1651
|
Advanced glycation end products-induced insulin resistance involves repression of skeletal muscle GLUT4 expression. Sci Rep 2018; 8:8109. [PMID: 29802324 PMCID: PMC5970140 DOI: 10.1038/s41598-018-26482-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/14/2018] [Indexed: 11/08/2022] Open
Abstract
Little is known about advanced glycation end products (AGEs) participation in glucose homeostasis, a process in which skeletal muscle glucose transporter GLUT4 (Scl2a4 gene) plays a key role. This study investigated (1) the in vivo and in vitro effects of AGEs on Slc2a4/GLUT4 expression in skeletal muscle of healthy rats, and (2) the potential involvement of endoplasmic reticulum and inflammatory stress in the observed regulations. For in vivo analysis, rats were treated with advanced glycated rat albumin (AGE-albumin) for 12 weeks; for in vitro analysis, soleus muscles from normal rats were incubated with bovine AGE-albumin for 2.5 to 7.5 hours. In vivo, AGE-albumin induced whole-body insulin resistance; decreased (~30%) Slc2a4 mRNA and GLUT4 protein content; and increased (~30%) the nuclear content of nuclear factor NF-kappa-B p50 subunit (NFKB1), and cellular content of 78 kDa glucose-regulated protein (GRP78). In vitro, incubation with AGE-albumin decreased (~50%) the Slc2a4/GLUT4 content; and increased cellular content of GRP78/94, phosphorylated-IKK-alpha/beta, nuclear content of NFKB1 and RELA, and the nuclear protein binding into Slc2a4 promoter NFKB-binding site. The data reveal that AGEs impair glucose homeostasis in non-diabetic states of increased AGEs concentration; an effect that involves activation of endoplasmic reticulum- and inflammatory-stress and repression of Slc2a4/GLUT4 expression.
Collapse
|
1652
|
Serrano Mujica L, Bridi A, Della Méa R, Rissi VB, Guarda N, Moresco RN, Premaor MO, Antoniazzi AQ, Gonçalves PBD, Comim FV. Oxidative stress and metabolic markers in pre- and postnatal polycystic ovary syndrome rat protocols. J Inflamm Res 2018; 11:193-202. [PMID: 29805266 PMCID: PMC5960249 DOI: 10.2147/jir.s160264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Several studies have described an enhanced inflammatory status and oxidative stress balance disruption in women with polycystic ovary syndrome (PCOS). However, there is scarce information about redox markers in the blood of androgenized animal models. Here, we evaluated the serum/plasma oxidative stress marker and metabolic parameter characteristics of prenatal (PreN) and postnatal (PostN) androgenized rat models of PCOS. Materials and methods For PreN androgenization (n=8), 2.5 mg of testosterone propionate was subcutaneously administered to dams at embryonic days 16, 17, and 18, whereas PostN androgenization (n=7) was accomplished by subcutaneously injecting 1.25 mg of testosterone propionate to animals at PostN day 5. A unique control group (n=8) was constituted for comparison. Results Our results indicate that PostN group rats exhibited particular modifications in the oxidative stress marker, an increased plasma ferric-reducing ability of plasma, and an increased antioxidant capacity reflected by higher albumin serum levels. PostN animals also presented increased total cholesterol and triglyceride-glucose levels, suggesting severe metabolic disarrangement. Conclusion Study findings indicate that changes in oxidative stress could be promoted by testosterone propionate exposure after birth, which is likely associated with anovulation and/or lipid disarrangement.
Collapse
Affiliation(s)
- Lady Serrano Mujica
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul
| | - Alessandra Bridi
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul.,Department of Veterinary Medicine, University of São Paulo, São Paulo
| | - Ricardo Della Méa
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul
| | - Vitor Braga Rissi
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul
| | - Naiara Guarda
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis
| | - Rafael Noal Moresco
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis
| | - Melissa Orlandin Premaor
- Department of Clinical Medicine, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Alfredo Quites Antoniazzi
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul
| | - Paulo Bayard Dias Gonçalves
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul
| | - Fabio Vasconcellos Comim
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul.,Department of Clinical Medicine, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
1653
|
Stolmeijer R, Bouma HR, Zijlstra JG, Drost-de Klerck AM, ter Maaten JC, Ligtenberg JJM. A Systematic Review of the Effects of Hyperoxia in Acutely Ill Patients: Should We Aim for Less? BIOMED RESEARCH INTERNATIONAL 2018; 2018:7841295. [PMID: 29888278 PMCID: PMC5977014 DOI: 10.1155/2018/7841295] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/04/2018] [Accepted: 04/12/2018] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Despite widespread and liberal use of oxygen supplementation, guidelines about rational use of oxygen are scarce. Recent data demonstrates that current protocols lead to hyperoxemia in the majority of the patients and most health care professionals are not aware of the negative effects of hyperoxemia. METHOD To investigate the effects of hyperoxemia in acutely ill patients on clinically relevant outcomes, such as neurological and functional status as well as mortality, we performed a literature review using Medline (PubMed) and Embase. We used the following terms: hyperoxemia OR hyperoxemia OR ["oxygen inhalation therapy" AND (mortality OR death OR outcome OR survival)] OR [oxygen AND (mortality OR death OR outcome OR survival)]. Original studies about the clinical effects of hyperoxemia in adult patients suffering from acute or emergency illnesses were included. RESULTS 37 articles were included, of which 31 could be divided into four large groups: cardiac arrest, traumatic brain injury (TBI), stroke, and sepsis. Although a single study demonstrated a transient protective effect of hyperoxemia after TBI, other studies revealed higher mortality rates after cardiac arrest, stroke, and TBI treated with oxygen supplementation leading to hyperoxemia. Approximately half of the studies showed no association between hyperoxemia and clinically relevant outcomes. CONCLUSION Liberal oxygen therapy leads to hyperoxemia in a majority of patients and hyperoxemia may negatively affect survival after acute illness. As a clinical consequence, aiming for normoxemia may limit negative effects of hyperoxemia in patients with acute illness.
Collapse
Affiliation(s)
- R. Stolmeijer
- Department of Emergency Medicine, Medical Center Leeuwarden, Leeuwarden, Netherlands
| | - H. R. Bouma
- Department of Clinical Pharmacy & Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - J. G. Zijlstra
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - A. M. Drost-de Klerck
- Department of Emergency Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - J. C. ter Maaten
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Emergency Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - J. J. M. Ligtenberg
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Emergency Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
1654
|
Epigenetics of Subcellular Structure Functioning in the Origin of Risk or Resilience to Comorbidity of Neuropsychiatric and Cardiometabolic Disorders. Int J Mol Sci 2018; 19:ijms19051456. [PMID: 29757967 PMCID: PMC5983601 DOI: 10.3390/ijms19051456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Mechanisms controlling mitochondrial function, protein folding in the endoplasmic reticulum (ER) and nuclear processes such as telomere length and DNA repair may be subject to epigenetic cues that relate the genomic expression and environmental exposures in early stages of life. They may also be involved in the comorbid appearance of cardiometabolic (CMD) and neuropsychiatric disorders (NPD) during adulthood. Mitochondrial function and protein folding in the endoplasmic reticulum are associated with oxidative stress and elevated intracellular calcium levels and may also underlie the vulnerability for comorbid CMD and NPD. Mitochondria provide key metabolites such as nicotinamide adenine dinucleotide (NAD+), ATP, α-ketoglutarate and acetyl coenzyme A that are required for many transcriptional and epigenetic processes. They are also a source of free radicals. On the other hand, epigenetic markers in nuclear DNA determine mitochondrial biogenesis. The ER is the subcellular organelle in which secretory proteins are folded. Many environmental factors stop the ability of cells to properly fold proteins and modify post-translationally secretory and transmembrane proteins leading to endoplasmic reticulum stress and oxidative stress. ER functioning may be epigenetically determined. Chronic ER stress is emerging as a key contributor to a growing list of human diseases, including CMD and NPD. Telomere loss causes chromosomal fusion, activation of the control of DNA damage-responses, unstable genome and altered stem cell function, which may underlie the comorbidity of CMD and NPD. The length of telomeres is related to oxidative stress and may be epigenetically programmed. Pathways involved in DNA repair may be epigenetically programmed and may contribute to diseases. In this paper, we describe subcellular mechanisms that are determined by epigenetic markers and their possible relation to the development of increased susceptibility to develop CMD and NPD.
Collapse
|
1655
|
Guan G, Lan S. Implications of Antioxidant Systems in Inflammatory Bowel Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1290179. [PMID: 29854724 PMCID: PMC5966678 DOI: 10.1155/2018/1290179] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 01/16/2023]
Abstract
The global incidence of inflammatory bowel disease (IBD), a group of chronic gastrointestinal disorders, has been rising. The preponderance of evidence demonstrates that oxidative stress (OS) performs a critical function in the onset of IBD and the manner of its development. The purpose of this review is to outline the generation of reactive oxygen species and antioxidant defense mechanisms in the gastrointestinal tract and the role played by OS in marking the onset and development of IBD. Furthermore, the review demonstrates the various ways through which OS is related to genetic susceptibility and the mucosal immune response. The experimental results suggest that certain therapeutic regimens for IBD could have a favorable impact by scavenging free radicals, reducing cytokine and prooxidative enzyme concentrations, and improving the antioxidative capabilities of cells. However, antioxidative activity characterized by a high level of specificity may be fundamental for the development of clinical therapies and for relapsing IBD patients. Therefore, additional research is required to clarify the ways through which OS is related to the pathogenesis and progression of IBD.
Collapse
Affiliation(s)
- Guiping Guan
- College of Bioscience and Biotechnology and College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shile Lan
- College of Bioscience and Biotechnology and College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
1656
|
Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, Ren J, Chen Y. NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α. Basic Res Cardiol 2018; 113:23. [DOI: 10.1007/s00395-018-0682-1] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/09/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
|
1657
|
Kumar V. T cells and their immunometabolism: A novel way to understanding sepsis immunopathogenesis and future therapeutics. Eur J Cell Biol 2018; 97:379-392. [PMID: 29773345 DOI: 10.1016/j.ejcb.2018.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/03/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023] Open
Abstract
Sepsis has always been considered as a big challenge for pharmaceutical companies in terms of discovering and designing new therapeutics. The pathogenesis of sepsis involves aberrant activation of innate immune cells (i.e. macrophages, neutrophils etc.) at early stages. However, a stage of immunosuppression is also observed during sepsis even in the patients who have recovered from it. This stage of immunosuppression is observed due to the loss of conventional (i.e. CD4+, CD8+) T cells, Th17 cells and an upregulation of regulatory T cells (Tregs). This process also impacts metabolic processes controlling immune cell metabolism called immunometabolism. The present review is focused on the T cell-mediated immune response, their immunometabolism and targeting T cell immunometabolism during sepsis as future therapeutic approach. The first part of the manuscripts describes an impact of sepsis on conventional T cells, Th17 cells and Tregs along with their impact on sepsis. The subsequent section further describes the immunometabolism of these cells (CD4+, CD8+, Th17, and Tregs) under normal conditions and during sepsis-induced immunosuppression. The article ends with the therapeutic targeting of T cell immunometabolism (both conventional T cells and Tregs) during sepsis as a future immunomodulatory approach for its management.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Mater Research, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
1658
|
Haller C, Chaskar P, Piccand J, Cominetti O, Macron C, Dayon L, Kraus MRC. Insights into Islet Differentiation and Maturation through Proteomic Characterization of a Human iPSC-Derived Pancreatic Endocrine Model. Proteomics Clin Appl 2018; 12:e1600173. [PMID: 29578310 DOI: 10.1002/prca.201600173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/09/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Great progresses have been made for generating in vitro pluripotent stem cell pancreatic β-like cells. However, the maturation stage of the cells still requires in vivo maturation to recreate the environmental niche. A deeper understanding of the factors promoting maturation of the cells is of great interest for clinical applications. EXPERIMENTAL DESIGN Label-free mass spectrometry based proteomic analysis is performed on samples from a longitudinal study of differentiation of human induced pluripotent stem cells toward glucose responsive insulin producing cells. RESULTS Proteome patterns correlate with specific transcription factor gene expression levels during in vitro differentiation, showing the relevance of the technology for identification of pancreatic-specific markers. The analysis of proteomes of the implanted cells in a longitudinal study shows that the neovascularization process linked to the extracellular matrix environment is time-dependent and conditions the proper maturation of the cells in β-like cells secreting insulin in response to glucose. CONCLUSIONS AND CLINICAL RELEVANCE Proteomic profiling is valuable to qualify and better understand in vivo maturation of progenitor cells toward β-cells. This is critical for future clinical trials where in vivo maturation still needs to be improved for robustness and effectiveness of cell therapy. Novel biomarkers for predicting the efficiency of maturation represents noninvasive monitoring tools for following efficiency of the implant.
Collapse
Affiliation(s)
- Corinne Haller
- Stem Cells, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Prasad Chaskar
- Stem Cells, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Julie Piccand
- Stem Cells, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Ornella Cominetti
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Charlotte Macron
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Loïc Dayon
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Marine R-C Kraus
- Stem Cells, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| |
Collapse
|
1659
|
Jin X, Li F, Liu B, Zheng X, Li H, Ye F, Chen W, Li Q. Different mitochondrial fragmentation after irradiation with X-rays and carbon ions in HeLa cells and its influence on cellular apoptosis. Biochem Biophys Res Commun 2018; 500:958-965. [PMID: 29709476 DOI: 10.1016/j.bbrc.2018.04.214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 11/27/2022]
Abstract
Although mitochondria are known to play an important role in radiation-induced cellular damage, the mechanisms by which ionizing radiation modulates mitochondrial dynamics are largely unknown. In this study, human cervical carcinoma cell line HeLa was used to demonstrate the different modes of mitochondrial network in response to different quality radiations such as low linear energy transfer (LET) X-rays and high-LET carbon ions. Mitochondria fragmented into punctate and clustered ones upon carbon ion irradiation in a dose- and LET-dependent manner, which was associated with apoptotic cell death. In contrast, low-dose X-ray irradiation promoted mitochondrial fusion while mitochondrial fission was detected until the radiation dose was more than 1 Gy. This fission was driven by ERK1/2-mediated phosphorylation of Drp1 on Serine 616. Inhibition of mitochondrial fragmentation suppressed the radiation-induced apoptosis and thus enhanced the resistance of cells to carbon ions and high-dose X-rays, but not for cells irradiated with X-rays at the low dose. Our results suggest that radiations of different qualities cause diverse changes of mitochondrial dynamics in cancer cells, which play an important role in determining the cell fate.
Collapse
Affiliation(s)
- Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China
| | - Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China
| | - Hongbin Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Ye
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
1660
|
Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol 2018; 15:335-346. [PMID: 29306791 PMCID: PMC5756062 DOI: 10.1016/j.redox.2017.12.019] [Citation(s) in RCA: 429] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 02/08/2023] Open
Abstract
Impaired cardiac microvascular function contributes to diabetic cardiovascular complications although effective therapy remains elusive. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor recently approved for treatment of type 2 diabetes, promotes glycosuria excretion and offers cardioprotective actions beyond its glucose-lowering effects. This study was designed to evaluate the effect of empagliflozin on cardiac microvascular injury in diabetes and the underlying mechanism involved with a focus on mitochondria. Our data revealed that empagliflozin improved diabetic myocardial structure and function, preserved cardiac microvascular barrier function and integrity, sustained eNOS phosphorylation and endothelium-dependent relaxation, as well as improved microvessel density and perfusion. Further study suggested that empagliflozin exerted its effects through inhibition of mitochondrial fission in an adenosine monophosphate (AMP)-activated protein kinase (AMPK)-dependent manner. Empagliflozin restored AMP-to-ATP ratio to trigger AMPK activation, suppressed Drp1S616 phosphorylation, and increased Drp1S637 phosphorylation, ultimately leading to inhibition of mitochondrial fission. The empagliflozin-induced inhibition of mitochondrial fission preserved cardiac microvascular endothelial cell (CMEC) barrier function through suppressed mitochondrial reactive oxygen species (mtROS) production and subsequently oxidative stress to impede CMEC senescence. Empagliflozin-induced fission loss also favored angiogenesis by promoting CMEC migration through amelioration of F-actin depolymerization. Taken together, these results indicated the therapeutic promises of empagliflozin in the treatment of pathological microvascular changes in diabetes.
Collapse
Affiliation(s)
- Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| | - Shuyi Wang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Pingjun Zhu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Shunying Hu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Yundai Chen
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai 210032, China.
| |
Collapse
|
1661
|
Chen X, Qian J, Wang L, Li J, Zhao Y, Han J, Khan Z, Chen X, Wang J, Liang G. Kaempferol attenuates hyperglycemia-induced cardiac injuries by inhibiting inflammatory responses and oxidative stress. Endocrine 2018; 60:83-94. [PMID: 29392616 DOI: 10.1007/s12020-018-1525-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Suppression of inflammation and oxidative stress is an attractive strategy to against diabetic cardiomyopathy (DCM). Kaempferol (KPF) exerts both anti-inflammatory and antioxidant pharmacological properties. However, little is known about the effect of KPF on protecting myocardial injury in diabetes. The present study aimed to investigate the effect of KPF on DCM and underlying mechanism. METHODS Anti-inflammation and anti-oxidative stress activities of KPF were evaluated in H9c2 cells or primary cardiomyocytes by real-time quantitate PCR, immunoblotting, immunofluorescence, ELISA, and FACS. Streptozotocin (STZ)-induced type 1 diabetes mellitus mice were constructed. Corresponding to experiments in vitro, the therapeutic effect of KPF was also assessed using heart tissues from mice. RESULTS KPF significantly inhibited high glocose (HG) induced expression of inflammatory cytokines and generation of ROS, leading to reduced fibrotic responses and cell apoptosis in vitro. KPF mediated DCM protective effects through inhibiting nuclear factor-κB (NF-κB) nucleus translocation and activating nuclear factor-erythroid 2 p45-related factor-2 (Nrf-2). In STZ-induced type 1 diabetic mouse model, KPF prevented diabetes-induced cardiac fibrosis and apoptosis. These changes were also accompanied by reducing inflammation and oxidative stress in diabetic mice hearts. CONCLUSION KPF is a potential therapeutic agent for the treatment of DCM, mechanically linked to inhibition of NF-κB and Nrf-2 activation.
Collapse
Affiliation(s)
- Xuemei Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jianchang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Lintao Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jieli Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jibo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Zia Khan
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A5C1, Canada
| | - Xiaojun Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| |
Collapse
|
1662
|
Morris G, Puri BK, Walder K, Berk M, Stubbs B, Maes M, Carvalho AF. The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications. Mol Neurobiol 2018; 55:8765-8787. [PMID: 29594942 PMCID: PMC6208857 DOI: 10.1007/s12035-018-1028-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| | - Ken Walder
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Florey Institute for Neuroscience and Mental Health, Melbourne, Australia
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
- Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, UK
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
1663
|
Safe S, Nair V, Karki K. Metformin-induced anticancer activities: recent insights. Biol Chem 2018; 399:321-335. [PMID: 29272251 DOI: 10.1515/hsz-2017-0271] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Metformin is a widely used antidiabetic drug, and there is evidence among diabetic patients that metformin is a chemopreventive agent against multiple cancers. There is also evidence in human studies that metformin is a cancer chemotherapeutic agent, and several clinical trials that use metformin alone or in combination with other drugs are ongoing. In vivo and in vitro cancer cell culture studies demonstrate that metformin induces both AMPK-dependent and AMPK-independent genes/pathways that result in inhibition of cancer cell growth and migration and induction of apoptosis. The effects of metformin in cancer cells resemble the patterns observed after treatment with drugs that downregulate specificity protein 1 (Sp1), Sp3 and Sp4 or by knockdown of Sp1, Sp3 and Sp4 by RNA interference. Studies in pancreatic cancer cells clearly demonstrate that metformin decreases expression of Sp1, Sp3, Sp4 and pro-oncogenic Sp-regulated genes, demonstrating that one of the underlying mechanisms of action of metformin as an anticancer agent involves targeting of Sp transcription factors. These observations are consistent with metformin-mediated effects on genes/pathways in many other tumor types.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Vijayalekshmi Nair
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| |
Collapse
|
1664
|
Apaiajai N, Chunchai T, Jaiwongkam T, Kerdphoo S, Chattipakorn SC, Chattipakorn N. Testosterone Deprivation Aggravates Left-Ventricular Dysfunction in Male Obese Insulin-Resistant Rats via Impairing Cardiac Mitochondrial Function and Dynamics Proteins. Gerontology 2018; 64:333-343. [PMID: 29566382 DOI: 10.1159/000487188] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/26/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We have previously reported that testosterone deprivation at a very young age accelerated, but did not aggravate, left-ventricular (LV) dysfunction in obese insulin-resistant rats. However, the effects of testosterone deprivation during adulthood on LV function in obese insulin-resistant rats remains unclear. We hypothesized that testosterone deprivation aggravates LV dysfunction and cardiac autonomic imbalance via the impairment of cardiac mitochondrial function and dynamics proteins, a reduction in insulin receptor function, and an increase in apoptosis in obese insulin-resistant rats. METHODS Male rats were fed on either a normal diet (ND) or a high-fat diet (HFD) for 12 weeks. They were then subdivided into 2 groups: sham operation (NDS, HFS) and orchiectomy (NDO, HFO). Metabolic parameters, blood pressure, heart rate variability (HRV), and LV function were determined at baseline and before and after orchiectomy. Mitochondrial function and dynamics proteins, insulin signaling, and apoptosis were determined 12 weeks postoperatively. RESULTS HFS rats exhibited obese insulin resistance, depressed HRV, and LV dysfunction. In HFO rats, systolic blood pressure was increased with more excessive depression of HRV and increased LV dysfunction, compared with HFS rats. These adverse cardiac effects were consistent with markedly increased mitochondrial dysfunction, reduced mitochondrial complex I and III proteins, reduced mitochondrial fusion proteins, and increased apoptosis, compared with HFS rats. However, testosterone deprivation did not lead to any alteration in the insulin-resistant condition in HFO rats, compared with HFS rats. CONCLUSION We concluded that testosterone deprivation during adulthood aggravated the impairment of mitochondrial function, mitochondrial respiratory complex, mitochondrial dynamics proteins, and apoptosis, leading to LV dysfunction in obese insulin-resistant rats.
Collapse
Affiliation(s)
- Nattayaporn Apaiajai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
1665
|
Hu Q, Ren J, Li G, Wu J, Wu X, Wang G, Gu G, Ren H, Hong Z, Li J. The mitochondrially targeted antioxidant MitoQ protects the intestinal barrier by ameliorating mitochondrial DNA damage via the Nrf2/ARE signaling pathway. Cell Death Dis 2018; 9:403. [PMID: 29540694 PMCID: PMC5851994 DOI: 10.1038/s41419-018-0436-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
Disruption of the mucosal barrier following intestinal ischemia reperfusion (I/R) is life threatening in clinical practice. Mitochondrial dysfunction and oxidative stress significantly contribute to the early phase of I/R injury and amplify the inflammatory response. MitoQ is a mitochondrially targeted antioxidant that exerts protective effects following I/R injury. In the present study, we aimed to determine whether and how MitoQ protects intestinal epithelial cells (IECs) from I/R injury. In both in vivo and in vitro studies, we found that MitoQ pretreatment downregulated I/R-induced oxidative stress and stabilized the intestinal barrier, as evidenced by MitoQ-treated I/R mice exhibiting attenuated intestinal hyperpermeability, inflammatory response, epithelial apoptosis, and tight junction damage compared to controls. Mechanistically, I/R elevated mitochondrial 8-hydroxyguanine content, reduced mitochondrial DNA (mtDNA) copy number and mRNA transcription levels, and induced mitochondrial disruption in IECs. However, MitoQ pretreatment dramatically inhibited these deleterious effects. mtDNA depletion alone was sufficient to induce apoptosis and mitochondrial dysfunction of IECs. Mitochondrial transcription factor A (TFAM), a key activator of mitochondrial transcription, was significantly reduced during I/R injury, a phenomenon that was prevented by MitoQ treatment. Furthermore, we observed that thee protective properties of MitoQ were affected by upregulation of cellular antioxidant genes, including HO-1, NQO-1, and γ-GCLC. Transfection with Nrf2 siRNA in IECs exposed to hypoxia/reperfusion conditions partially blocked the effects of MitoQ on mtDNA damage and mitochondrial oxidative stress. In conclusion, our data suggest that MitoQ exerts protective effect on I/R-induced intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Qiongyuan Hu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Lab for Trauma and Surgical Infection, Nanjing, China
| | - Jianan Ren
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
- Lab for Trauma and Surgical Infection, Nanjing, China.
| | - Guanwei Li
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Wu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Lab for Trauma and Surgical Infection, Nanjing, China
| | - Xiuwen Wu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
- Lab for Trauma and Surgical Infection, Nanjing, China.
| | - Gefei Wang
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guosheng Gu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huajian Ren
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Medical school of Nanjing Medical University, Nanjing, China
| | - Zhiwu Hong
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jieshou Li
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
1666
|
Skeie JM, Aldrich BT, Goldstein AS, Schmidt GA, Reed CR, Greiner MA. Proteomic analysis of corneal endothelial cell-descemet membrane tissues reveals influence of insulin dependence and disease severity in type 2 diabetes mellitus. PLoS One 2018. [PMID: 29529022 PMCID: PMC5846724 DOI: 10.1371/journal.pone.0192287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to characterize the proteome of the corneal endothelial cell layer and its basement membrane (Descemet membrane) in humans with various severities of type II diabetes mellitus compared to controls, and identify differentially expressed proteins across a range of diabetic disease severities that may influence corneal endothelial cell health. Endothelium-Descemet membrane complex tissues were peeled from transplant suitable donor corneas. Protein fractions were isolated from each sample and subjected to multidimensional liquid chromatography and tandem mass spectrometry. Peptide spectra were matched to the human proteome, assigned gene ontology, and grouped into protein signaling pathways unique to each of the disease states. We identified an average of 12,472 unique proteins in each of the endothelium-Descemet membrane complex tissue samples. There were 2,409 differentially expressed protein isoforms that included previously known risk factors for type II diabetes mellitus related to metabolic processes, oxidative stress, and inflammation. Gene ontology analysis demonstrated that diabetes progression has many protein footprints related to metabolic processes, binding, and catalysis. The most represented pathways involved in diabetes progression included mitochondrial dysfunction, cell-cell junction structure, and protein synthesis regulation. This proteomic dataset identifies novel corneal endothelial cell and Descemet membrane protein expression in various stages of diabetic disease. These findings give insight into the mechanisms involved in diabetes progression relevant to the corneal endothelium and its basement membrane, prioritize new pathways for therapeutic targeting, and provide insight into potential biomarkers for determining the health of this tissue.
Collapse
Affiliation(s)
- Jessica M. Skeie
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, United States of America
- Iowa Lions Eye Bank, Coralville, United States of America
- Cornea Research Center, University of Iowa, Iowa City, United States of America
| | - Benjamin T. Aldrich
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, United States of America
- Iowa Lions Eye Bank, Coralville, United States of America
- Cornea Research Center, University of Iowa, Iowa City, United States of America
| | - Andrew S. Goldstein
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, United States of America
- Iowa Lions Eye Bank, Coralville, United States of America
| | - Gregory A. Schmidt
- Iowa Lions Eye Bank, Coralville, United States of America
- Cornea Research Center, University of Iowa, Iowa City, United States of America
| | - Cynthia R. Reed
- Iowa Lions Eye Bank, Coralville, United States of America
- Cornea Research Center, University of Iowa, Iowa City, United States of America
| | - Mark A. Greiner
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, United States of America
- Iowa Lions Eye Bank, Coralville, United States of America
- Cornea Research Center, University of Iowa, Iowa City, United States of America
- * E-mail:
| |
Collapse
|
1667
|
Glintborg D, Rubin KH, Nybo M, Abrahamsen B, Andersen M. Cardiovascular disease in a nationwide population of Danish women with polycystic ovary syndrome. Cardiovasc Diabetol 2018. [PMID: 29519249 PMCID: PMC5844097 DOI: 10.1186/s12933-018-0680-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is associated with obesity and low grade inflammation and the risk for cardiovascular disease (CVD) could be increased in PCOS. Methods National register-based study including women with PCOS and no previous diagnosis of CVD, hypertension, or dyslipidemia. PCOS Denmark (N = 18,112) included women with PCOS in the Danish National Patient Register. PCOS Odense University Hospital (OUH, N = 1165) was an embedded cohort including premenopausal women with PCOS and clinical and biochemical examination. Three age-matched controls were included per patient in PCOS Denmark (N = 52,769). The main study outcome was CVD events including hypertension and dyslipidemia defined according to nationwide in- and outpatient hospital contact diagnosis codes and/or inferred from filled medicine prescriptions. Results The age at inclusion was median (quartiles) 29 (23–35) years and follow up was 11.1 (6.9–16.0) years. The Hazard ratio (95% CI) for development of CVD in PCOS Denmark was 1.7 (1.7; 1.8) (P < 0.001) and the total event rate of CVD was 22.6 per 1000 patient years in PCOS Denmark vs. 13.2 per 1000 patient years in controls (P < 0.001). The median age at diagnosis of CVD was 35 (28–42) years in PCOS Denmark vs. 36 (30–43) years in controls (P < 0.001). Obesity, diabetes, and infertility, and previous use of oral contraceptives were associated with increased risk of development of CVD in PCOS Denmark (P < 0.001). Women in PCOS OUH resembled women in PCOS Denmark regarding risk of CVD. Age, BMI, blood pressure, lipid status, and glycemic status predicted development of CVD in PCOS OUH. Conclusion The event rate of CVD including hypertension and dyslipidemia was higher in PCOS compared to controls. The risk of developing CVD must be considered even in young women with PCOS. Electronic supplementary material The online version of this article (10.1186/s12933-018-0680-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorte Glintborg
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 3rd Floor, 5000, Odense C, Denmark. .,Institute of Clinical Research, University of Southern Denmark, 5000, Odense, Denmark.
| | - Katrine Hass Rubin
- OPEN-Odense Patient Data Explorative Network, Institute of Clinical Research, University of Southern Denmark, 5000, Odense, Denmark
| | - Mads Nybo
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 4800, Odense, Denmark
| | - Bo Abrahamsen
- OPEN-Odense Patient Data Explorative Network, Institute of Clinical Research, University of Southern Denmark, 5000, Odense, Denmark.,Department of Medicine, Holbæk Hospital, Holbæk, Denmark
| | - Marianne Andersen
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 3rd Floor, 5000, Odense C, Denmark.,Institute of Clinical Research, University of Southern Denmark, 5000, Odense, Denmark
| |
Collapse
|
1668
|
Zhang J, Yang B, Xiao W, Li X, Li H. Effects of testosterone supplement treatment in hypogonadal adult males with T2DM: a meta-analysis and systematic review. World J Urol 2018; 36:1315-1326. [PMID: 29511802 DOI: 10.1007/s00345-018-2256-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Testosterone supplement treatment (TST) is a classic therapy for hypogonadal men with type 2 diabetes mellitus (T2DM), but the effects of TST in different studies are inconsistent. We conducted this meta-analysis to evaluate the precise role of TST in hypogonadal men with T2DM. METHODS PubMed, Embase, Cochrane Library and Web of Science were searched to identify qualified randomized controlled trials (RCTs). Pooled mean differences (MDs) with 95% confidence intervals (CIs) were calculated to measure the specific effects of TST. Trial sequential analysis was performed to verify the pooled results. RESULTS A total of eight RCTs were enrolled in our meta-analysis, including 596 hypogonadal participants with T2DM. Compared with comparators, TST can significantly improve glycemic control by reducing homeostatic model assessment of insulin resistance (MD - 0.79, 95% CI - 1.23 to - 0.34), fasting glucose (MD - 0.98, 95% CI - 1.13 to - 0.54), fasting insulin (MD - 2.47, 95% CI - 3.99 to - 0.95) and HbA1c% (MD - 0.45, 95% CI - 0.73 to - 0.16). In addition, TST can result in a decline in cholesterol (MD - 0.29, 95% CI - 0.38 to - 0.19) and triglyceride (MD - 0.37, 95% CI - 0.59 to - 0.15). CONCLUSION Our results indicated that TST can improve glycemic control and decrease TC and TG in hypogonadal patients with T2DM. We recommend TST during the anti-diabetic therapy in these patients.
Collapse
Affiliation(s)
- Jianzhong Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Bin Yang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wenhui Xiao
- The Fourth Clinical Medical College, Institute of Medicine and Nursing Hubei University of Medicine, Shiyan, 442000, China
| | - Xiao Li
- Department of Urology, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing, 210009, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
1669
|
Quagliariello V, Rossetti S, Cavaliere C, Di Palo R, Lamantia E, Castaldo L, Nocerino F, Ametrano G, Cappuccio F, Malzone G, Montanari M, Vanacore D, Romano FJ, Piscitelli R, Iovane G, Pepe MF, Berretta M, D'Aniello C, Perdonà S, Muto P, Botti G, Ciliberto G, Veneziani BM, De Falco F, Maiolino P, Caraglia M, Montella M, Iaffaioli RV, Facchini G. Metabolic syndrome, endocrine disruptors and prostate cancer associations: biochemical and pathophysiological evidences. Oncotarget 2018; 8:30606-30616. [PMID: 28389628 PMCID: PMC5444769 DOI: 10.18632/oncotarget.16725] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/06/2017] [Indexed: 01/18/2023] Open
Abstract
This review summarizes the main pathophysiological basis of the relationship between metabolic syndrome, endocrine disruptor exposure and prostate cancer that is the most common cancer among men in industrialized countries. Metabolic syndrome is a cluster of metabolic and hormonal factors having a central role in the initiation and recurrence of many western chronic diseases including hormonal-related cancers and it is considered as the worlds leading health problem in the coming years. Many biological factors correlate metabolic syndrome to prostate cancer and this review is aimed to focus, principally, on growth factors, cytokines, adipokines, central obesity, endocrine abnormalities and exposure to specific endocrine disruptors, a cluster of chemicals, to which we are daily exposed, with a hormone-like structure influencing oncogenes, tumor suppressors and proteins with a key role in metabolism, cell survival and chemo-resistance of prostate cancer cells. Finally, this review will analyze, from a molecular point of view, how specific foods could reduce the relative risk of incidence and recurrence of prostate cancer or inhibit the biological effects of endocrine disruptors on prostate cancer cells. On the basis of these considerations, prostate cancer remains a great health problem in terms of incidence and prevalence and interventional studies based on the treatment of metabolic syndrome in cancer patients, minimizing exposure to endocrine disruptors, could be a key point in the overall management of this disease.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy.,Medical Oncology, Abdominal Department, National Cancer Institute G. Pascale Foundation, Napoli, Italy.,Association for Multidisciplinary Studies in Oncology and Mediterranean Diet, Piazza Nicola Amore, Naples, Italy
| | - Sabrina Rossetti
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | - Carla Cavaliere
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Department of Onco-Ematology Medical Oncology, S.G. Moscati Hospital of Taranto, Taranto, Italy
| | - Rossella Di Palo
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Elvira Lamantia
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Luigi Castaldo
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Division of Urology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | - Flavia Nocerino
- Epidemiology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Gianluca Ametrano
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Francesca Cappuccio
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Psicology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Gabriella Malzone
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Micaela Montanari
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Daniela Vanacore
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy
| | - Francesco Jacopo Romano
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy
| | - Raffaele Piscitelli
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Pharmacy Unit, Istituto Nazionale Tumori, Istituto Nazionale Tumori-Fondazione G. Pascale Naples, Italy
| | - Gelsomina Iovane
- Division of Medical Oncology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | - Maria Filomena Pepe
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy.,Association for Multidisciplinary Studies in Oncology and Mediterranean Diet, Piazza Nicola Amore, Naples, Italy
| | - Carmine D'Aniello
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Division of Medical Oncology, A.O.R.N. dei COLLI "Ospedali Monaldi-Cotugno-CTO", Napoli, Italy
| | - Sisto Perdonà
- Division of Urology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | - Paolo Muto
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Francesco De Falco
- Psicology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale Tumori, Istituto Nazionale Tumori-Fondazione G. Pascale Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Maurizio Montella
- Epidemiology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Rosario Vincenzo Iaffaioli
- Medical Oncology, Abdominal Department, National Cancer Institute G. Pascale Foundation, Napoli, Italy.,Association for Multidisciplinary Studies in Oncology and Mediterranean Diet, Piazza Nicola Amore, Naples, Italy
| | - Gaetano Facchini
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy.,Association for Multidisciplinary Studies in Oncology and Mediterranean Diet, Piazza Nicola Amore, Naples, Italy
| |
Collapse
|
1670
|
Ghanei N, Rezaei N, Amiri GA, Zayeri F, Makki G, Nasseri E. The probiotic supplementation reduced inflammation in polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
1671
|
Xu YX, Huang C, Liu M, Chen N, Chen W, Yang C, Zhao Y, Li X, Duan J, Liu S, Yang S. Survivin regulated by autophagy mediates hyperglycemia-induced vascular endothelial cell dysfunction. Exp Cell Res 2018; 364:152-159. [DOI: 10.1016/j.yexcr.2018.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/21/2017] [Accepted: 01/28/2018] [Indexed: 12/11/2022]
|
1672
|
Lambert C, Cubedo J, Padró T, Vilahur G, López-Bernal S, Rocha M, Hernández-Mijares A, Badimon L. Effects of a Carob-Pod-Derived Sweetener on Glucose Metabolism. Nutrients 2018; 10:E271. [PMID: 29495516 PMCID: PMC5872689 DOI: 10.3390/nu10030271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) have a higher incidence of cardiovascular (CV) events. The ingestion of high-glycemic index (GI) diets, specially sweetened beverage consumption, has been associated with the development of T2DM and CV disease. OBJECTIVE We investigated the effects of the intake of a sweetened beverage, obtained from natural carbohydrates containing pinitol (PEB) compared to a sucrose-enriched beverage (SEB) in the context of impaired glucose tolerance (IGT) and diabetes. METHODS The study was divided in three different phases: (1) a discovery phase where the plasma proteomic profile was investigated by 2-DE (two-dimensional electrophoresis) followed by mass spectrometry (matrix-assisted laser desorption/ionization time-of-flight-MALDI-TOF/TOF) in healthy and IGT volunteers; (2) a verification phase where the potential mechanisms behind the observed protein changes were investigated in the discovery cohort and in an additional group of T2DM volunteers; and (3) the results were validated in a proof-of-concept interventional study in an animal model of diabetic rats with complementary methodologies. RESULTS Six weeks of pinitol-enriched beverage (PEB) intake induced a significant increase in two proteins involved in the insulin secretion pathway, insulin-like growth factor acid labile subunit (IGF1BP-ALS; 1.3-fold increase; P = 0.200) and complement C4A (1.83-fold increase; P = 0.007) in IGT subjects but not in healthy volunteers. Changes in C4A were also found in the serum samples of Zucker diabetic fatty (ZDF) rats after four weeks of PEB intake compared to basal levels (P = 0.042). In addition, an increased expression of the glucose transporter-2 (GLUT2) gene was observed in the jejunum (P = 0.003) of inositol-supplemented rats when compared to sucrose supplementation. This change was correlated with the observed change in C4A (P = 0.002). CONCLUSIONS Our results suggest that the substitution of a common sugar source, such as sucrose, by a naturally-based, pinitol-enriched beverage induces changes in the insulin secretion pathway that could help to reduce blood glucose levels by protecting β-cells and by stimulating the insulin secretion pathway. This mechanism of action could have a relevant role in the prevention of insulin resistance and diabetes progression.
Collapse
Affiliation(s)
- Carmen Lambert
- Program ICCC-Cardiovascular Research Center, Institut de Reserca, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
| | - Judit Cubedo
- Program ICCC-Cardiovascular Research Center, Institut de Reserca, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Ciber CV, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Teresa Padró
- Program ICCC-Cardiovascular Research Center, Institut de Reserca, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Ciber CV, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Gemma Vilahur
- Program ICCC-Cardiovascular Research Center, Institut de Reserca, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Ciber CV, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Sergi López-Bernal
- Program ICCC-Cardiovascular Research Center, Institut de Reserca, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
| | - Milagros Rocha
- Service of Endocrinology, University Hospital Dr Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46020 Valencia, Spain.
| | - Antonio Hernández-Mijares
- Service of Endocrinology, University Hospital Dr Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46020 Valencia, Spain.
- Department of Medicine, University of Valencia, 46010 Valencia, Spain.
| | - Lina Badimon
- Program ICCC-Cardiovascular Research Center, Institut de Reserca, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Ciber CV, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Cardiovascular Research Chair, UAB, 08025 Barcelona, Spain.
| |
Collapse
|
1673
|
Gianfrancesco MA, Paquot N, Piette J, Legrand-Poels S. Lipid bilayer stress in obesity-linked inflammatory and metabolic disorders. Biochem Pharmacol 2018; 153:168-183. [PMID: 29462590 DOI: 10.1016/j.bcp.2018.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
The maintenance of the characteristic lipid compositions and physicochemical properties of biological membranes is essential for their proper function. Mechanisms allowing to sense and restore membrane homeostasis have been identified in prokaryotes for a long time and more recently in eukaryotes. A membrane remodeling can result from aberrant metabolism as seen in obesity. In this review, we describe how such lipid bilayer stress can account for the modulation of membrane proteins involved in the pathogenesis of obesity-linked inflammatory and metabolic disorders. We address the case of the Toll-like receptor 4 that is implicated in the obesity-related low grade inflammation and insulin resistance. The lipid raft-mediated TLR4 activation is promoted by an enrichment of the plasma membrane with saturated lipids or cholesterol increasing the lipid phase order. We discuss of the plasma membrane Na, K-ATPase that illustrates a new concept according to which direct interactions between specific residues and particular lipids determine both stability and activity of the pump in parallel with indirect effects of the lipid bilayer. The closely related sarco(endo)-plasmic Ca-ATPase embedded in the more fluid ER membrane seems to be more sensitive to a lipid bilayer stress as demonstrated by its inactivation in cholesterol-loaded macrophages or its inhibition mediated by an increased PtdCho/PtdEtn ratio in obese mice hepatocytes. Finally, we describe the model recently proposed for the activation of the conserved IRE-1 protein through alterations in the ER membrane lipid packing and thickness. Such IRE-1 activation could occur in response to abnormal lipid synthesis and membrane remodeling as observed in hepatocytes exposed to excess nutrients. Since the IRE-1/XBP1 branch also stimulates the lipid synthesis, this pathway could create a vicious cycle "lipogenesis-ER lipid bilayer stress-lipogenesis" amplifying hepatic ER pathology and the obesity-linked systemic metabolic defects.
Collapse
Affiliation(s)
- Marco A Gianfrancesco
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Sylvie Legrand-Poels
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium.
| |
Collapse
|
1674
|
Monnin C, Ramrup P, Daigle-Young C, Vuckovic D. Improving negative liquid chromatography/electrospray ionization mass spectrometry lipidomic analysis of human plasma using acetic acid as a mobile-phase additive. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:201-211. [PMID: 29105990 DOI: 10.1002/rcm.8024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/15/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Mobile-phase additives in liquid chromatography/mass spectrometry (LC/MS) are used to improve peak shape, analyte ionization efficiency and method coverage. Both basic and acidic mobile phases have been used successfully for negative electrospray ionization (ESI), but very few systematic investigations exist to date to justify the choice of mobile phase. Acetic acid was previously shown to improve ionization in untargeted metabolomics of urine, but has not been investigated in lipidomics. The goal of this study was to systematically compare the performance of acetic acid to that of other commonly employed additives in negative LC/ESI-MS lipidomics. METHODS The performance of acetic acid was compared to that of commonly used mobile-phase additives in lipidomics, namely ammonium acetate, ammonium acetate with acetic acid and ammonium hydroxide, using lipid standard solutions containing representatives of major mammalian lipid subclasses and isopropanol-precipitated human plasma. This design allowed comparison of the influence of additive and additive concentration on lipid signal intensity, lipid peak shape and lipid coverage in both simple and complex biological matrices using both Orbitrap and quadrupole time-of-flight MS platforms with different ESI source designs. RESULTS Ammonium hydroxide caused 2- to 1000-fold signal suppression of all lipid classes in comparison to acetic acid. In comparison to ammonium acetate, acetic acid increased lipid signal intensity from 2- to 19-fold for 11 lipid subclasses, and decreased ionization efficiency only for ceramide and phosphatidylcholine lipid classes which can be effectively ionized in positive ESI mode. The improved ionization efficiency using acetic acid also increased lipid coverage by 21-50% versus ammonium acetate additive. CONCLUSIONS Acetic acid at a concentration of 0.02% (v/v) is the suggested choice as a mobile-phase additive for lipidomics and targeted lipid profiling with negative LC/ESI-MS based on signal enhancement and improved lipid coverage compared to ammonium acetate, ammonium acetate with acetic acid and ammonium hydroxide mobile phases.
Collapse
Affiliation(s)
- Cian Monnin
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| | - Parsram Ramrup
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| | - Carolann Daigle-Young
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| | - Dajana Vuckovic
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
1675
|
Neutrophils Release Metalloproteinases during Adhesion in the Presence of Insulin, but Cathepsin G in the Presence of Glucagon. Mediators Inflamm 2018; 2018:1574928. [PMID: 29670459 PMCID: PMC5833473 DOI: 10.1155/2018/1574928] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022] Open
Abstract
In patients with reperfusion after ischemia and early development of diabetes, neutrophils can attach to blood vessel walls and release their aggressive bactericide agents, which damage the vascular walls. Insulin and 17β-estradiol (E2) relieve the vascular complications observed in metabolic disorders. In contrast, glucagon plays an essential role in the pathophysiology of diabetes. We studied the effect of hormones on neutrophil secretion during adhesion to fibronectin. Amino acid analysis revealed that proteins secreted by neutrophils are characterized by a stable amino acid profile enriched with glutamate, leucine, lysine, and arginine. The total amount of secreted proteins defined as the sum of detected amino acids was increased in the presence of insulin and reduced in the presence of glucagon. E2 did not affect the amount of protein secretion. Proteome analysis showed that in the presence of insulin and E2, neutrophils secreted metalloproteinases MMP-9 and MMP-8 playing a key role in modulation of the extracellular matrix. In contrast, glucagon induced the secretion of cathepsin G, a key bactericide protease of neutrophils. Cathepsin G can promote the development of vascular complications because of its proinflammatory activity and ability to stimulate neutrophil adhesion via the proteolysis of surface receptors.
Collapse
|
1676
|
SIRT3: A New Regulator of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7293861. [PMID: 29643974 PMCID: PMC5831850 DOI: 10.1155/2018/7293861] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 01/13/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death worldwide, and defects in mitochondrial function contribute largely to the occurrence of CVDs. Recent studies suggest that sirtuin 3 (SIRT3), the mitochondrial NAD+-dependent deacetylase, may regulate mitochondrial function and biosynthetic pathways such as glucose and fatty acid metabolism and the tricarboxylic acid (TCA) cycle, oxidative stress, and apoptosis by reversible protein lysine deacetylation. SIRT3 regulates glucose and lipid metabolism and maintains myocardial ATP levels, which protects the heart from metabolic disturbances. SIRT3 can also protect cardiomyocytes from oxidative stress-mediated cell damage and block the development of cardiac hypertrophy. Recent reports show that SIRT3 is involved in the protection of several heart diseases. This review discusses the progress in SIRT3-related research and the role of SIRT3 in the prevention and treatment of CVDs.
Collapse
|
1677
|
Comparative study on the antileishmanial activities of chemically and biologically synthesized silver nanoparticles (AgNPs). 3 Biotech 2018; 8:98. [PMID: 29430360 DOI: 10.1007/s13205-018-1121-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022] Open
Abstract
The present study was conducted to investigate the antileishmanial activity of biogenic silver nanoparticles (AgNPs) compared to chemically synthesized AgNPs. A nano dimension size (10-15 nm) biogenic AgNPs was produced and characterized by UV-Vis spectroscopy and X-rays diffraction. The chemically synthesized AgNPs was recovering from our previous study with a nanoparticle (NP) size in the range of 10-40 nm. The antileishmanial activities were investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay. The infectivity was determined by Giemsa staining of the infected macrophages cells. Nitric oxide (NO) accumulation was measured by Griess reagent using NaNO2 as a positive control. After 24 h of exposure with nanoparticles (NPs), a concentration-dependent growth inhibition was observed. The IC50 values were determined against promastigotes of L. infantum as 19.42 ± 2.76 µg/ml for leaves aqueous extract mediated AgNPs, 30.71 ± 1.91 µg/ml for stem mediated AgNPs and 51.23 ± 2.20 µg/ml for chemically synthesized AgNPs. It was also detected that all types of NPs produced NO at a significant level. However, the production of a high-level of NO in the biologically synthesized NPs activated macrophage cells, infected with L. infantum promastigotes indicates that NO radicals are mainly responsible for induced cell death and a decrease in the pathogenicity of the parasites. Since, biogenic nanoparticles are cost-effective, eco-friendly, simple to synthesize, and more effective than chemically synthesized silver nanoparticles, therefore, it could be used as a potential alternative for the development of antileishmanial drugs.
Collapse
|
1678
|
Ježek J, Cooper KF, Strich R. Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression. Antioxidants (Basel) 2018; 7:E13. [PMID: 29337889 PMCID: PMC5789323 DOI: 10.3390/antiox7010013] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are organelles with a highly dynamic ultrastructure maintained by a delicate equilibrium between its fission and fusion rates. Understanding the factors influencing this balance is important as perturbations to mitochondrial dynamics can result in pathological states. As a terminal site of nutrient oxidation for the cell, mitochondrial powerhouses harness energy in the form of ATP in a process driven by the electron transport chain. Contemporaneously, electrons translocated within the electron transport chain undergo spontaneous side reactions with oxygen, giving rise to superoxide and a variety of other downstream reactive oxygen species (ROS). Mitochondrially-derived ROS can mediate redox signaling or, in excess, cause cell injury and even cell death. Recent evidence suggests that mitochondrial ultrastructure is tightly coupled to ROS generation depending on the physiological status of the cell. Yet, the mechanism by which changes in mitochondrial shape modulate mitochondrial function and redox homeostasis is less clear. Aberrant mitochondrial morphology may lead to enhanced ROS formation, which, in turn, may deteriorate mitochondrial health and further exacerbate oxidative stress in a self-perpetuating vicious cycle. Here, we review the latest findings on the intricate relationship between mitochondrial dynamics and ROS production, focusing mainly on its role in malignant disease.
Collapse
Affiliation(s)
- Jan Ježek
- Department of Molecular Biology, Rowan University Graduate School of Biomedical Sciences, Stratford, NJ 08084, USA.
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University Graduate School of Biomedical Sciences, Stratford, NJ 08084, USA.
| | - Randy Strich
- Department of Molecular Biology, Rowan University Graduate School of Biomedical Sciences, Stratford, NJ 08084, USA.
| |
Collapse
|
1679
|
Lack of pronounced changes in the expression of fatty acid handling proteins in adipose tissue and plasma of morbidly obese humans. Nutr Diabetes 2018; 8:3. [PMID: 29335416 PMCID: PMC5851429 DOI: 10.1038/s41387-017-0013-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/20/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022] Open
Abstract
Background/Objectives Fatty acid handling proteins are involved in the process of accumulation of lipids in different fat tissue depots. Thus, the aim of the study was to estimate the expression of both fatty acid transport and binding proteins in the subcutaneous (SAT) and visceral adipose tissue (VAT) of patients with morbid obesity without metabolic syndrome, as well as the plasma concentrations of these transporters. Subjects/Methods Protein (Western blotting) and mRNA (Real-time PCR) expression of selected fatty acid handling proteins was assessed in the visceral and subcutaneous adipose tissue of 30 patients with morbid obesity. The control group consisted of 10 lean age-matched patients. Plasma levels of fatty acid protein transporters were also evaluated using ELISA method. Moreover, total plasma fatty acid composition and concentration was determined by gas-liquid chromatography (GLC). Results Significant increase in fatty acid translocase (FAT/CD36) mRNA (P = 0.03) and plasmalemmal (P = 0.01) expression was observed in VAT of patients with morbid obesity vs. lean subjects together with elevation of lipoprotein lipase (LPL), as well as peroxisome proliferator-activated receptor γ (PPARγ) in both examined compartments of adipose tissue. Moreover, in obese subjects plasma concentration of RBP4 was markedly elevated (P = 0.04) and sCD36 level presented a tendency for an increase (P = 0.08) with concomitant lack of changes in FABP4 concentration (P > 0.05). Conclusions Fatty acid transport into adipocytes may be, at least in part, related to the increased expression of FAT/CD36 in the VAT of morbidly obese patients, which is accompanied by augmented expression of LPL, as well as PPARγ. Probably, alternations in plasma concentrations of RBP4 and sCD36 in obese patients are associated with “unhealthy” fat distribution.
Collapse
|
1680
|
Jové M, Pradas I, Naudí A, Rovira-Llopis S, Bañuls C, Rocha M, Portero-Otin M, Hernández-Mijares A, Victor VM, Pamplona R. Lipidomics reveals altered biosynthetic pathways of glycerophospholipids and cell signaling as biomarkers of the polycystic ovary syndrome. Oncotarget 2018; 9:4522-4536. [PMID: 29435121 PMCID: PMC5796992 DOI: 10.18632/oncotarget.23393] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/04/2017] [Indexed: 01/12/2023] Open
Abstract
PURPOSE In this work, a non-targeted approach was used to unravel changes in the plasma lipidome of PCOS patients. The aim is to offer new insights in PCOS patients strictly selected in order to avoid confounding factors such as dyslipemia, obesity, altered glucose/insulin metabolism, cardiovascular disease, or cancer. RESULTS Multivariate statistics revealed a specific lipidomic signature for PCOS patients without associated pathologies. This signature implies changes, mainly by down-regulation, in glycerolipid, glycerophospholipid and sphingolipid metabolism suggesting an altered biosynthetic pathway of glycerophospholipids and cell signaling as second messengers in women with PCOS. CONCLUSIONS Our study confirms that a lipidomic approach discriminates a specific phenotype from PCOS women without associated pathologies from healthy controls. METHODS In a cross-sectional pilot study, data were obtained from 34 subjects, allocated to one of two groups: a) lean, healthy controls (n = 20), b) PCOS patients (n = 14) with diagnosis based on hyperandrogenaemia, oligo-anovulation and abnormal ovaries with small follicular cysts. A detailed biochemical characterization was made and lipidomic profiling was performed via an untargeted approach using LC-ESI-QTOF MS/MS.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198 Lleida, Spain
| | - Irene Pradas
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198 Lleida, Spain
| | - Alba Naudí
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198 Lleida, Spain
| | - Susana Rovira-Llopis
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Service of Endocrinology, University Hospital Dr. Peset, 46017 Valencia, Spain
| | - Celia Bañuls
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Service of Endocrinology, University Hospital Dr. Peset, 46017 Valencia, Spain
| | - Milagros Rocha
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Service of Endocrinology, University Hospital Dr. Peset, 46017 Valencia, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198 Lleida, Spain
| | - Antonio Hernández-Mijares
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Service of Endocrinology, University Hospital Dr. Peset, 46017 Valencia, Spain
- Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia University, 46010 Valencia, Spain
- Department of Medicine, Valencia University, 46010 Valencia, Spain
| | - Victor M. Victor
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Service of Endocrinology, University Hospital Dr. Peset, 46017 Valencia, Spain
- Department of Physiology, Valencia University, 46010 Valencia, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198 Lleida, Spain
| |
Collapse
|
1681
|
Coregulation of endoplasmic reticulum stress and oxidative stress in neuropathic pain and disinhibition of the spinal nociceptive circuitry. Pain 2018; 159:894-906. [DOI: 10.1097/j.pain.0000000000001161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
1682
|
Spinedi E, Cardinali DP. The Polycystic Ovary Syndrome and the Metabolic Syndrome: A Possible Chronobiotic-Cytoprotective Adjuvant Therapy. Int J Endocrinol 2018; 2018:1349868. [PMID: 30147722 PMCID: PMC6083563 DOI: 10.1155/2018/1349868] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome is a highly frequent reproductive-endocrine disorder affecting up to 8-10% of women worldwide at reproductive age. Although its etiology is not fully understood, evidence suggests that insulin resistance, with or without compensatory hyperinsulinemia, and hyperandrogenism are very common features of the polycystic ovary syndrome phenotype. Dysfunctional white adipose tissue has been identified as a major contributing factor for insulin resistance in polycystic ovary syndrome. Environmental (e.g., chronodisruption) and genetic/epigenetic factors may also play relevant roles in syndrome development. Overweight and/or obesity are very common in women with polycystic ovary syndrome, thus suggesting that some polycystic ovary syndrome and metabolic syndrome female phenotypes share common characteristics. Sleep disturbances have been reported to double in women with PCOS and obstructive sleep apnea is a common feature in polycystic ovary syndrome patients. Maturation of the luteinizing hormone-releasing hormone secretion pattern in girls in puberty is closely related to changes in the sleep-wake cycle and could have relevance in the pathogenesis of polycystic ovary syndrome. This review article focuses on two main issues in the polycystic ovary syndrome-metabolic syndrome phenotype development: (a) the impact of androgen excess on white adipose tissue function and (b) the possible efficacy of adjuvant melatonin therapy to improve the chronobiologic profile in polycystic ovary syndrome-metabolic syndrome individuals. Genetic variants in melatonin receptor have been linked to increased risk of developing polycystic ovary syndrome, to impairments in insulin secretion, and to increased fasting glucose levels. Melatonin therapy may protect against several metabolic syndrome comorbidities in polycystic ovary syndrome and could be applied from the initial phases of patients' treatment.
Collapse
Affiliation(s)
- Eduardo Spinedi
- Centre for Experimental and Applied Endocrinology (CENEXA, UNLP-CONICET-FCM), CEAS-CICPBA, La Plata Medical School, La Plata, Argentina
| | - Daniel P. Cardinali
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
1683
|
Bansal A, Henao-Mejia J, Simmons RA. Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health. Endocrinology 2018; 159:32-45. [PMID: 29145569 PMCID: PMC5761609 DOI: 10.1210/en.2017-00882] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/08/2017] [Indexed: 12/24/2022]
Abstract
The incidence of metabolic disorders like type 2 diabetes and obesity continues to increase. In addition to the well-known contributors to these disorders, such as food intake and sedentary lifestyle, recent research in the exposure science discipline provides evidence that exposure to endocrine-disrupting chemicals like bisphenol A and phthalates via multiple routes (e.g., food, drink, skin contact) also contribute to the increased risk of metabolic disorders. Endocrine-disrupting chemicals (EDCs) can disrupt any aspect of hormone action. It is becoming increasingly clear that EDCs not only affect endocrine function but also adversely affect immune system function. In this review, we focus on human, animal, and in vitro studies that demonstrate EDC exposure induces dysfunction of the immune system, which, in turn, has detrimental effects on metabolic health. These findings highlight how the immune system is emerging as a novel player by which EDCs may mediate their effects on metabolic health. We also discuss studies highlighting mechanisms by which EDCs affect the immune system. Finally, we consider that a better understanding of the immunomodulatory roles of EDCs will provide clues to enhance metabolic function and contribute toward the long-term goal of reducing the burden of environmentally induced diabetes and obesity.
Collapse
Affiliation(s)
- Amita Bansal
- Center for Research on Reproduction and Women’s
Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia,
Pennsylvania 19104
- Center of Excellence in Environmental Toxicology,
Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
19104
- Division of Neonatology, Department of Pediatrics, The
Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Jorge Henao-Mejia
- Division of Neonatology, Department of Pediatrics, The
Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
- The Institute for Immunology, Department of Pathology and
Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania,
Philadelphia, Pennsylvania 19104
| | - Rebecca A. Simmons
- Center for Research on Reproduction and Women’s
Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia,
Pennsylvania 19104
- Center of Excellence in Environmental Toxicology,
Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
19104
- Division of Neonatology, Department of Pediatrics, The
Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
1684
|
Sadeghi Ataabadi M, Alaee S, Bagheri MJ, Bahmanpoor S. Role of Essential Oil of Mentha Spicata (Spearmint) in Addressing Reverse Hormonal and Folliculogenesis Disturbances in a Polycystic Ovarian Syndrome in a Rat Model. Adv Pharm Bull 2017; 7:651-654. [PMID: 29399556 PMCID: PMC5788221 DOI: 10.15171/apb.2017.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/09/2022] Open
Abstract
Purpose: Given the antiandrogenic effects of spearmint, in this study we evaluated the effects of its essential oil on polycystic ovarian syndrome in a rat model. Methods: Female rats were treated as follows: Control, normal rats which received 150 mg/kg spearmint oil or 300 mg/kg spearmint oil, or sesame oil; and PCOS-induced rats which received 150 mg/kg spearmint oil or 300 mg/kg spearmint oil, or sesame oil. Then the animals were killed and the levels of LH, FSH, testosterone and ovarian folliculogenesis were evaluated. Results: Spearmint oil reduced body weight, testosterone level, ovarian cysts and atretic follicles and increased Graafian follicles in PCOS rats. Conclusion: Spearmint has treatment potential on PCOS through inhibition of testosterone and restoration of follicular development in ovarian tissue.
Collapse
Affiliation(s)
- Mahmood Sadeghi Ataabadi
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Alaee
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Jafar Bagheri
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Bahmanpoor
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
1685
|
Abstract
The review presents modern information on the development of disorders of endothelium-dependent vascular reactivity in diabetes mellitus (DM) type 2. In type 2 DM, disorders of endothelium-dependent vascular reactivity associated with hyperglycemia and oxidative stress, manifesting by a reduced vascular response to vasodilators and pressor (paradoxical) vascular reactions to them, directly associated with cardiovascular events are observed.
Collapse
|
1686
|
Bhansali S, Bhansali A, Walia R, Saikia UN, Dhawan V. Alterations in Mitochondrial Oxidative Stress and Mitophagy in Subjects with Prediabetes and Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2017; 8:347. [PMID: 29326655 PMCID: PMC5737033 DOI: 10.3389/fendo.2017.00347] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIM Hyperglycemia-mediated oxidative stress impedes cell-reparative process like autophagy, which has been implicated in impairment of β-cell function in type 2 diabetes mellitus (T2DM). However, the role of mitophagy (selective mitochondrial autophagy) in progression of hyperglycemia remains elusive. This study aimed to assess the impact of increasing severity of hyperglycemia on mitochondrial stress and mitophagy. DESIGN AND METHODS A case-control study included healthy controls, subjects with prediabetes, newly diagnosed T2DM (NDT2DM) and advanced duration of T2DM (ADT2DM) (n = 20 each). Mitochondrial stress indices, transcriptional and translational expression of mitophagy markers (PINK1, PARKIN, MFN2, NIX, LC3-II, and LAMP-2) and transmission electron microscopic (TEM) studies were performed in peripheral blood mononuclear cells. RESULTS With mild hyperglycemia in subjects with prediabetes, to moderate to severe hyperglycemia in NDT2DM and ADT2DM, a progressive rise in mitochondrial oxidative stress was observed. Prediabetic subjects exhibited significantly increased expression of mitophagy-related markers and showed a positive association with HOMA-β, whereas, patients with NDT2DM and ADT2DM demonstrated decreased expression, with a greater decline in ADT2DM subjects. TEM studies revealed significantly reduced number of distorted mitochondria in prediabetics, as compared to the T2DM patients. In addition, receiver operating characteristic analysis showed HbA1C > 7% (53 mmol/mol) was associated with attenuated mitophagy. CONCLUSION Increasing hyperglycemia is associated with progressive rise in oxidative stress and altered mitochondrial morphology. Sustenance of mitophagy at HbA1C < 7% (53 mmol/mol) strengthens the rationale of achieving HbA1C below this cutoff for good glycemic control. An "adaptive" increase in mitophagy may delay progression to T2DM by preserving the β-cell function in subjects with prediabetes.
Collapse
Affiliation(s)
- Shipra Bhansali
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rama Walia
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
1687
|
Paolicchi E, Gemignani F, Krstic-Demonacos M, Dedhar S, Mutti L, Landi S. Targeting hypoxic response for cancer therapy. Oncotarget 2017; 7:13464-78. [PMID: 26859576 PMCID: PMC4924654 DOI: 10.18632/oncotarget.7229] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxic tumor microenvironment (HTM) is considered to promote metabolic changes, oncogene activation and epithelial mesenchymal transition, and resistance to chemo- and radio-therapy, all of which are hallmarks of aggressive tumor behavior. Cancer cells within the HTM acquire phenotypic properties that allow them to overcome the lack of energy and nutrients supply within this niche. These phenotypic properties include activation of genes regulating glycolysis, glucose transport, acidosis regulators, angiogenesis, all of which are orchestrated through the activation of the transcription factor, HIF1A, which is an independent marker of poor prognosis. Moreover, during the adaptation to a HTM cancer cells undergo deep changes in mitochondrial functions such as “Warburg effect” and the “reverse Warburg effect”. This review aims to provide an overview of the characteristics of the HTM, with particular focus on novel therapeutic strategies currently in clinical trials, targeting the adaptive response to hypoxia of cancer cells.
Collapse
Affiliation(s)
- Elisa Paolicchi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| | | | - Marija Krstic-Demonacos
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency and Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luciano Mutti
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Stefano Landi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
1688
|
Bhansali S, Bhansali A, Dhawan V. Favourable metabolic profile sustains mitophagy and prevents metabolic abnormalities in metabolically healthy obese individuals. Diabetol Metab Syndr 2017; 9:99. [PMID: 29255491 PMCID: PMC5728047 DOI: 10.1186/s13098-017-0298-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Obesity-mediated oxidative stress results in mitochondrial dysfunction, which has been implicated in the pathogenesis of metabolic syndrome and T2DM. Recently, mitophagy, a cell-reparative process has emerged as a key facet in maintaining the mitochondrial health, which may contribute to contain the metabolic abnormalities in obese individuals. However, the status of mitophagy in metabolically healthy obese (MHO) and metabolically abnormal diabetic obese (MADO) subjects remains to be elucidated. Hence, the present study aims to unravel the alterations in mitochondrial oxidative stress (MOS) and mitophagy in these subjects. METHODS 60 subjects including MHNO (metabolically healthy non-obese), MHO and MADO were enrolled as per the Asian criteria for obesity (n = 20 each). Biochemical parameters, MOS indices, transcriptional and translational expression of mitophagy markers (PINK1, PARKIN, MFN2, NIX, LC3-II, and LAMP-2), and transmission electron microscopic (TEM) studies were performed in peripheral blood mononuclear cells. RESULTS The MHO subjects displayed a favorable metabolic profile, despite accompanied by an increased adiposity as compared to the MHNO group; while MADO group exhibited several metabolic abnormalities, inspite of similar body composition as MHO subjects. A progressive rise in the MOS was observed in MHO and MADO subjects as compared to the MHNO group, and it showed a positive and significant correlation with the body composition in these groups. Further, mitophagy remained unaltered in the MHO group, while it was significantly downregulated in the MADO group. In addition, TEM studies revealed a significant increase in the percentage of damaged mitochondria in MADO patients as compared to other groups, while MHO and MHNO groups did not show any significant alterations for the same. CONCLUSION A favorable metabolic profile and moderate levels of MOS in the MHO group may play a crucial role in the sustenance of mitophagy, which may further limit the aggravation of MOS, inflammation, and emergence of metabolic aberrations in contrast to MADO subjects, who exhibited multiple metabolic abnormalities and attenuated mitophagy. Therefore, these MHO subjects are likely to be at a lower risk of developing metabolic syndrome and T2DM.
Collapse
Affiliation(s)
- Shipra Bhansali
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Research Block-B, Chandigarh, 160012 India
| | - Anil Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Research Block-B, Chandigarh, 160012 India
| |
Collapse
|
1689
|
Diaz-Morales N, Rovira-Llopis S, Bañuls C, Lopez-Domenech S, Escribano-Lopez I, Veses S, Jover A, Rocha M, Hernandez-Mijares A, Victor VM. Does Metformin Protect Diabetic Patients from Oxidative Stress and Leukocyte-Endothelium Interactions? Antioxid Redox Signal 2017; 27:1439-1445. [PMID: 28467723 DOI: 10.1089/ars.2017.7122] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Since metformin can exert beneficial vascular effects, we aimed at studying its effect on reactive oxygen species (ROS) production, antioxidant enzyme expression, levels of adhesion molecules, and leukocyte-endothelium interactions in the leukocytes from type 2 diabetic (T2D) patients. The study was carried out in 72 T2D patients (41 of whom were treated with metformin for at least 12 months at a dose of 1700 mg per day), and in 40 sex- and age-matched control subjects. Leukocytes from T2D patients exhibited enhanced levels of mitochondrial ROS and decreased mRNA levels of glutathione peroxidase 1 (gpx1) and sirtuin 3 (sirt3) with respect to controls, whereas metformin was shown to revert these effects. No changes were observed on total ROS production and the expression levels of superoxide dismutase 1 and catalase. Furthermore, increases in leukocyte-endothelial interactions and intercellular adhesion molecule-1 and P-selectin levels were found in T2D and were also restored in metformin-treated patients. Our findings raise the question of whether metformin could modulate the appearance of atherosclerosis in T2D patients and reduce vascular events by decreasing leukocyte oxidative stress through an increase in gpx1 and sirt3 expression, and undermining adhesion molecule levels and leukocyte-endothelium interactions. Antioxid. Redox Signal. 27, 1439-1445.
Collapse
Affiliation(s)
- Noelia Diaz-Morales
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Susana Rovira-Llopis
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Celia Bañuls
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Sandra Lopez-Domenech
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Irene Escribano-Lopez
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Silvia Veses
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Ana Jover
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Milagros Rocha
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 2 CIBERehd-Department of Pharmacology, University of Valencia , Valencia, Spain
| | - Antonio Hernandez-Mijares
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 3 Department of Medicine, University of Valencia , Valencia, Spain
| | - Victor M Victor
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 2 CIBERehd-Department of Pharmacology, University of Valencia , Valencia, Spain
- 4 Department of Physiology, University of Valencia , Valencia, Spain
| |
Collapse
|
1690
|
Cardoso SM, Correia SC, Carvalho C, Moreira PI. Mitochondria in Alzheimer's Disease and Diabetes-Associated Neurodegeneration: License to Heal! Handb Exp Pharmacol 2017; 240:281-308. [PMID: 28251365 DOI: 10.1007/164_2017_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a difficult puzzle to solve, in part because the etiology of this devastating neurodegenerative disorder remains murky. However, diabetes has been pinpointed as a major risk factor for the sporadic forms of AD. Several overlapping neurodegenerative mechanisms have been identified between AD and diabetes, including mitochondrial malfunction. This is not surprising taking into account that neurons are cells with a complex morphology, long lifespan, and high energetic requirements which make them particularly reliant on a properly organized and dynamic mitochondrial network to sustain neuronal function and integrity. In this sense, this chapter provides an overview on the role of mitochondrial bioenergetics and dynamics to the neurodegenerative events that occur in AD and diabetes, and how these organelles may represent a mechanistic link between these two pathologies. From a therapeutic perspective, it will be discussed how mitochondria can be targeted in order to efficaciously counteract neurodegeneration associated with AD and diabetes.
Collapse
Affiliation(s)
- Susana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal. .,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, 3000-548, Portugal.
| |
Collapse
|
1691
|
Javn S, Thomas S, Ramachandran S, Loganathan S, Sundari M, Mala K. Polycystic ovarian syndrome-associated cardiovascular complications: An overview of the association between the biochemical markers and potential strategies for their prevention and elimination. Diabetes Metab Syndr 2017; 11 Suppl 2:S841-S851. [PMID: 28711514 DOI: 10.1016/j.dsx.2017.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/01/2017] [Indexed: 01/28/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is associated with multiple cardiovascular risk factors (CVRF) including endothelial dysfunction (ED) and presence of metabolic syndrome (MS). The probable reason suggested for elevated CVRF in PCOS is oxidative stress (OS), which is an integral factor in cardiometabolic complications (CMC) seen in PCOS women. The interrelated mechanisms by which CVRF instigate clinical manifestation plays a crucial role in identification of a strategy to treat different comorbidities in PCOS. The existing treatment for PCOS mostly focuses on management of individual disorders, however, therapeutic strategies or novel targets to address cardiovascular complications in PCOS deserve extensive analysis.
Collapse
Affiliation(s)
- Sb Javn
- Department of Biotechnology, School of Bioengineering, SRM University, Potheri 603203, TN, India
| | - Sowmya Thomas
- Department of Biotechnology, School of Bioengineering, SRM University, Potheri 603203, TN, India
| | - Sandhiya Ramachandran
- Department of Biotechnology, School of Bioengineering, SRM University, Potheri 603203, TN, India
| | - Swetha Loganathan
- Department of Biotechnology, School of Bioengineering, SRM University, Potheri 603203, TN, India
| | - Meenakshi Sundari
- Department of General Medicine, SRM University, Potheri 603203, TN, India
| | - Kanchana Mala
- Medical College Hospital and Research Center, SRM University, Potheri 603203, TN, India.
| |
Collapse
|
1692
|
Jamilian M, Foroozanfard F, Rahmani E, Talebi M, Bahmani F, Asemi Z. Effect of Two Different Doses of Vitamin D Supplementation on Metabolic Profiles of Insulin-Resistant Patients with Polycystic Ovary Syndrome. Nutrients 2017; 9:E1280. [PMID: 29186759 PMCID: PMC5748731 DOI: 10.3390/nu9121280] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
This study was carried out to evaluate the effects of vitamin D supplementation on the metabolic profiles of insulin-resistant subjects with polycystic ovary syndrome (PCOS). This randomized double-blind, placebo-controlled trial was conducted on 90 insulin-resistant women with PCOS. Participants were randomly assigned to three groups to intake either 4000 IU of vitamin D or 1000 IU of vitamin D or placebo (n = 30 each group) daily for 12 weeks. Vitamin D supplementation (4000 IU), compared with vitamin D (1000 IU) and placebo, led to significant reductions in total testosterone (-0.2 ± 0.2 vs. -0.1 ± 0.6 and +0.1 ± 0.2 ng/mL, respectively, p = 0.02), free androgen index (FAI) (-0.06 ± 0.12 vs. -0.02 ± 0.12 and +0.004 ± 0.04, respectively, p = 0.04), hirsutism (-1.1 ± 1.1 vs. -0.8 ± 1.2 and -0.1 ± 0.4, respectively, p = 0.001) and high-sensitivity C-reactive protein (hs-CRP) (-0.7 ± 1.4 vs. -0.5 ± 0.9 and +0.5 ± 2.4 mg/L, respectively, p = 0.01). In addition, we found significant elevations in mean change of sex hormone-binding globulin (SHBG) (+19.1 ± 23.0 vs. +4.5 ± 11.0 and +0.7 ± 10.4 nmol/L, respectively, p < 0.001) and total antioxidant capacity (TAC) (+130 ± 144 vs. +33 ± 126 and -36 ± 104 mmol/L, respectively, p < 0.001) in the high-dose vitamin D group compared with low-dose vitamin D and placebo groups. Overall, high-dose vitamin D administration for 12 weeks to insulin-resistant women with PCOS had beneficial effects on total testosterone, SHBG, FAI, serum hs-CRP and plasma TAC levels compared with low-dose vitamin D and placebo groups.
Collapse
Affiliation(s)
- Mehri Jamilian
- Endocrinology and Metabolism Research Center, Arak University of Medical Sciences, Arak 6618634683, Iran;
| | - Fatemeh Foroozanfard
- Department of Gynecology and Obstetrics, School of Medicine, Kashan University of Medical Sciences, Kashan 8715988141, Iran; (F.F.); (M.T.)
| | - Elham Rahmani
- Department of Gynecology and Obstetrics, School of Medicine, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran;
| | - Maesoomeh Talebi
- Department of Gynecology and Obstetrics, School of Medicine, Kashan University of Medical Sciences, Kashan 8715988141, Iran; (F.F.); (M.T.)
| | - Fereshteh Bahmani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan 8715988141, Iran;
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan 8715988141, Iran;
| |
Collapse
|
1693
|
Ju L, Tong W, Qiu M, Shen W, Sun J, Zheng S, Chen Y, Liu W, Tian J. Antioxidant MMCC ameliorates catch-up growth related metabolic dysfunction. Oncotarget 2017; 8:99931-99939. [PMID: 29245950 PMCID: PMC5725141 DOI: 10.18632/oncotarget.21965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/29/2017] [Indexed: 11/25/2022] Open
Abstract
Postnatal catch-up growth may be related to reduce mitochondrial content and oxidation capacity in skeletal muscle. The aim of this study is to explore the effect and mechanism of antioxidant MitoQuinone mesylate beta cyclodextrin complex (MMCC) ameliorates catch-up growth related metabolic disorders. Catch-up growth mice were created by restricting maternal food intake during the last week of gestation and providing high fat diet after weaning. Low birthweight mice and normal birthweight controls were randomly subjected to normal fat diet, high fat diet and high fat diet with MMCC drinking from the 4th week. MMCC treatment for 21 weeks slowed down the catch up growth and ameliorated catch-up growth related obesity, glucose intolerance and insulin resistance. MMCC administration significantly inhibited the peroxidation of the membrane lipid and up-regulated the antioxidant enzymes Catalase and MnSOD. In addition, MMCC treatment effectively enhanced mitochondrial functions in skeletal muscle through the up-regulation of the ATP generation, and the promotion of mitochondrial replication and remodeling. To conclude, this study demonstrates that antioxidant MMCC effectively ameliorates catch-up growth related metabolic dysfunctions by increasing mitochondrial functions in skeletal muscle.
Collapse
Affiliation(s)
- Liping Ju
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Tong
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Miaoyan Qiu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weili Shen
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jichao Sun
- Laboratory of Endocrine and Metabolic Diseases, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Zheng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Chen
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wentao Liu
- Key Laboratory of Shanghai Gastric Neoplasms, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Surgery, Shanghai, China
| | - Jingyan Tian
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
1694
|
Lu QB, Wan MY, Wang PY, Zhang CX, Xu DY, Liao X, Sun HJ. Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFκB/mTOR/P70S6K signaling cascade. Redox Biol 2017; 14:656-668. [PMID: 29175753 PMCID: PMC5716955 DOI: 10.1016/j.redox.2017.11.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
Phenotypic switch of vascular smooth muscle cells (VSMCs) is characterized by increased expressions of VSMC synthetic markers and decreased levels of VSMC contractile markers, which is an important step for VSMC proliferation and migration during the development and progression of cardiovascular diseases including atherosclerosis. Chicoric acid (CA) is identified to exert powerful cardiovascular protective effects. However, little is known about the effects of CA on VSMC biology. Herein, in cultured VSMCs, we showed that pretreatment with CA dose-dependently suppressed platelet-derived growth factor type BB (PDGF-BB)-induced VSMC phenotypic alteration, proliferation and migration. Mechanistically, PDGF-BB-treated VSMCs exhibited higher mammalian target of rapamycin (mTOR) and P70S6K phosphorylation, which was attenuated by CA pretreatment, diphenyleneiodonium chloride (DPI), reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC) and nuclear factor-κB (NFκB) inhibitor Bay117082. PDGF-BB-triggered ROS production and p65-NFκB activation were inhibited by CA. In addition, both NAC and DPI abolished PDGF-BB-evoked p65-NFκB nuclear translocation, phosphorylation and degradation of Inhibitor κBα (IκBα). Of note, blockade of ROS/NFκB/mTOR/P70S6K signaling cascade prevented PDGF-BB-evoked VSMC phenotypic transformation, proliferation and migration. CA treatment prevented intimal hyperplasia and vascular remodeling in rat models of carotid artery ligation in vivo. These results suggest that CA impedes PDGF-BB-induced VSMC phenotypic switching, proliferation, migration and neointima formation via inhibition of ROS/NFκB/mTOR/P70S6K signaling cascade. Chicoric acid attenuated PDGF-BB-evoked VSMC phenotypic transformation, proliferation and migration. Chicoric acid antagonized the activated ROS/NFκB/mTOR/P70S6K signaling pathway in VSMCs. Chicoric acid treatment prevented intimal hyperplasia in rat models of carotid artery ligation.
Collapse
Affiliation(s)
- Qing-Bo Lu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Ming-Yu Wan
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Pei-Yao Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chen-Xing Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Dong-Yan Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiang Liao
- Department of Medical Imaging, General Hospital of Nanjing Military Area Command, Nanjing, Jiangsu 210002, PR China.
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
1695
|
de Mello AH, Costa AB, Engel JDG, Rezin GT. Mitochondrial dysfunction in obesity. Life Sci 2017; 192:26-32. [PMID: 29155300 DOI: 10.1016/j.lfs.2017.11.019] [Citation(s) in RCA: 328] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022]
Abstract
Obesity leads to various changes in the body. Among them, the existing inflammatory process may lead to an increase in the production of reactive oxygen species (ROS) and cause oxidative stress. Oxidative stress, in turn, can trigger mitochondrial changes, which is called mitochondrial dysfunction. Moreover, excess nutrients supply (as it commonly is the case with obesity) can overwhelm the Krebs cycle and the mitochondrial respiratory chain, causing a mitochondrial dysfunction, and lead to a higher ROS formation. This increase in ROS production by the respiratory chain may also cause oxidative stress, which may exacerbate the inflammatory process in obesity. All these intracellular changes can lead to cellular apoptosis. These processes have been described in obesity as occurring mainly in peripheral tissues. However, some studies have already shown that obesity is also associated with changes in the central nervous system (CNS), with alterations in the blood-brain barrier (BBB) and in cerebral structures such as hypothalamus and hippocampus. In this sense, this review presents a general view about mitochondrial dysfunction in obesity, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS.
Collapse
Affiliation(s)
- Aline Haas de Mello
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil.
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Jéssica Della Giustina Engel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| |
Collapse
|
1696
|
Ding Y, Xia BH, Zhang CJ, Zhuo GC. Mitochondrial tRNA Leu(UUR) C3275T, tRNA Gln T4363C and tRNA Lys A8343G mutations may be associated with PCOS and metabolic syndrome. Gene 2017; 642:299-306. [PMID: 29155328 DOI: 10.1016/j.gene.2017.11.049] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 01/26/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a very prevalent endocrine disease affecting reproductive women. Clinically, patients with this disorder are more vulnerable to develop type 2 diabetes mellitus (T2DM), cardiovascular events, as well as metabolic syndrome (MetS). To date, the molecular mechanism underlying PCOS remains largely unknown. Previously, we showed that mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) mutation was an important cause for PCOS. In the current study, we described the clinical and biochemical features of a three-generation pedigree with maternally transmitted MetS, combined with PCOS. A total of three matrilineal relatives exhibited MetS including obesity, high triglyceride (TG) and Hemoglobin A1c (HbA1c) levels, and hypertension. Whereas one patient from the third generation manifestated PCOS. Mutational analysis of the whole mitochondrial genes from the affected individuals identified a set of genetic variations belonging to East Asia haplogroup B4b1c. Among these variants, the homoplasmic C3275T mutation disrupted a highly evolutionary conserved base-pairing (28A-46C) on the variable region of tRNALeu(UUR), whereas the T4363C mutation created a new base-pairing (31T-37A) in the anticodon stem of tRNAGln, furthermore, the A8343G mutation occurred at the very conserved position of tRNALys and may result the failure in mitochondrial tRNAs (mt-tRNAs) metabolism. Biochemical analysis revealed the deficiency in mitochondrial functions including lower levels of mitochondrial membrane potential (MMP), ATP production and mtDNA copy number, while a significantly increased reactive oxygen species (ROS) generation was observed in polymononuclear leukocytes (PMNs) from the individuals carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for the clinical phenotypes. Taken together, our data indicated that mt-tRNA mutations were associated with MetS and PCOS in this family, which shaded additional light into the pathophysiology of PCOS that were manifestated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yu Ding
- Central Laboratory, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, China.
| | - Bo-Hou Xia
- Department of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Cai-Juan Zhang
- Department of Gynecology and Obstetrics, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Guang-Chao Zhuo
- Central Laboratory, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
1697
|
Baltatu OC, Amaral FG, Campos LA, Cipolla-Neto J. Melatonin, mitochondria and hypertension. Cell Mol Life Sci 2017; 74:3955-3964. [PMID: 28791422 PMCID: PMC11107636 DOI: 10.1007/s00018-017-2613-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022]
Abstract
Melatonin, due to its multiple means and mechanisms of action, plays a fundamental role in the regulation of the organismal physiology by fine tunning several functions. The cardiovascular system is an important site of action as melatonin regulates blood pressure both by central and peripheral interventions, in addition to its relation with the renin-angiotensin system. Besides, the systemic management of several processes, melatonin acts on mitochondria regulation to maintain a healthy cardiovascular system. Hypertension affects target organs in different ways and cellular energy metabolism is frequently involved due to mitochondrial alterations that include a rise in reactive oxygen species production and an ATP synthesis decrease. The discussion that follows shows the role played by melatonin in the regulation of mitochondrial physiology in several levels of the cardiovascular system, including brain, heart, kidney, blood vessels and, particularly, regulating the renin-angiotensin system. This discussion shows the putative importance of using melatonin as a therapeutic tool involving its antioxidant potential and its action on mitochondrial physiology in the cardiovascular system.
Collapse
Affiliation(s)
- Ovidiu C Baltatu
- Center of Innovation, Technology and Education (CITE) at Anhembi Morumbi University-Laureate International Universities, 500 Dr. Altino Bondensan Ave, São José dos Campos, SP, 12247-016, Brazil
| | - Fernanda G Amaral
- Department of Physiology, Federal University of São Paulo, 862 Botucatu St, 5th Floor, São Paulo, SP, 04023-901, Brazil
| | - Luciana A Campos
- Center of Innovation, Technology and Education (CITE) at Anhembi Morumbi University-Laureate International Universities, 500 Dr. Altino Bondensan Ave, São José dos Campos, SP, 12247-016, Brazil
| | - Jose Cipolla-Neto
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1524, room 115/118, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
1698
|
Abstract
The deterioration of physical and mental capabilities is inevitable with aging. Some hereditary factors cannot be changed, but other external factors can be manipulated to provide our body with better weapons to improve quality of life as we age. Different cellular pathways leading to cell deterioration and aging usually act through excessive oxidative damage and chronic inflammation. Suppression of inflammation is the most important driver of successful longevity and increases in importance with advancing age. Modifying caloric intake, amount and type of food, and maintaining an active lifestyle can decrease the risk of most common chronic diseases of aging.
Collapse
|
1699
|
Zernii EY, Gancharova OS, Baksheeva VE, Golovastova MO, Kabanova EI, Savchenko MS, Tiulina VV, Sotnikova LF, Zamyatnin AA, Philippov PP, Senin II. Mitochondria-Targeted Antioxidant SkQ1 Prevents Anesthesia-Induced Dry Eye Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9281519. [PMID: 29158874 PMCID: PMC5660788 DOI: 10.1155/2017/9281519] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/14/2017] [Indexed: 02/03/2023]
Abstract
Dry eye syndrome (DES) is an age-related condition increasingly detected in younger people of risk groups, including patients who underwent ocular surgery or long-term general anesthesia. Being a multifactorial disease, it is characterized by oxidative stress in the cornea and commonly complicated by ocular surface inflammation. Polyetiologic DES is responsive to SkQ1, a mitochondria-targeted antioxidant suppressing age-related changes in the ocular tissues. Here, we demonstrate safety and efficacy of topical administration of SkQ1 at a dosage of 7.5 μM for the prevention of general anesthesia-induced DES in rabbits. The protective action of SkQ1 improves clinical state of the ocular surface by inhibiting apoptotic and prenecrotic changes in the corneal epithelium. The underlying mechanism involves the suppression of the oxidative stress supported by the stimulation of intrinsic antioxidant activity and the activity of antioxidant enzymes, foremost glutathione peroxidase and glutathione reductase, in the cornea. Furthermore, SkQ1 increases antioxidant activity and stability of the tear film and produces anti-inflammatory effect exhibited as downregulation of TNF-α and IL-6 and pronounced upregulation of IL-10 in tears. Our data suggest novel features of SkQ1 and point to its feasibility in patients with DES and individuals at risk for the disease including those subjected to general anesthesia.
Collapse
Affiliation(s)
- Evgeni Yu. Zernii
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Olga S. Gancharova
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Viktoriia E. Baksheeva
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Marina O. Golovastova
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ekaterina I. Kabanova
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Department of Biology and Pathology of Domestic, Laboratory and Exotic Animals, Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow 109472, Russia
| | - Marina S. Savchenko
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Veronika V. Tiulina
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Department of Biology and Pathology of Domestic, Laboratory and Exotic Animals, Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow 109472, Russia
| | - Larisa F. Sotnikova
- Department of Biology and Pathology of Domestic, Laboratory and Exotic Animals, Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow 109472, Russia
| | - Andrey A. Zamyatnin
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Pavel P. Philippov
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ivan I. Senin
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
1700
|
Jové M, Collado R, Quiles JL, Ramírez-Tortosa MC, Sol J, Ruiz-Sanjuan M, Fernandez M, de la Torre Cabrera C, Ramírez-Tortosa C, Granados-Principal S, Sánchez-Rovira P, Pamplona R. A plasma metabolomic signature discloses human breast cancer. Oncotarget 2017; 8:19522-19533. [PMID: 28076849 PMCID: PMC5386702 DOI: 10.18632/oncotarget.14521] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/26/2016] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Metabolomics is the comprehensive global study of metabolites in biological samples. In this retrospective pilot study we explored whether serum metabolomic profile can discriminate the presence of human breast cancer irrespective of the cancer subtype. METHODS Plasma samples were analyzed from healthy women (n = 20) and patients with breast cancer after diagnosis (n = 91) using a liquid chromatography-mass spectrometry platform. Multivariate statistics and a Random Forest (RF) classifier were used to create a metabolomics panel for the diagnosis of human breast cancer. RESULTS Metabolomics correctly distinguished between breast cancer patients and healthy control subjects. In the RF supervised class prediction analysis comparing breast cancer and healthy control groups, RF accurately classified 100% both samples of the breast cancer patients and healthy controls. So, the class error for both group in and the out-of-bag error were 0. We also found 1269 metabolites with different concentration in plasma from healthy controls and cancer patients; and basing on exact mass, retention time and isotopic distribution we identified 35 metabolites. These metabolites mostly support cell growth by providing energy and building stones for the synthesis of essential biomolecules, and function as signal transduction molecules. The collective results of RF, significance testing, and false discovery rate analysis identified several metabolites that were strongly associated with breast cancer. CONCLUSIONS In breast cancer a metabolomics signature of cancer exists and can be detected in patient plasma irrespectively of the breast cancer type.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain
| | - Ricardo Collado
- Department of Oncology, Medical Oncology Unit, Hospital San Pedro de Alcántara, Cáceres, Official Postgraduate Programme in Nutrition and Food Technology, University of Granada, Spain
| | - José Luís Quiles
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Department of Physiology, University of Granada, Granada, Spain
| | - Mari-Carmen Ramírez-Tortosa
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain
| | | | | | | | - Cesar Ramírez-Tortosa
- Department of Pathological Anatomy, Hospital of Jaén, Jaén, Spain.,GENYO, Centre for Genomics and Oncological Research (Pfizer / University of Granada / Andalusian Regional Government), PTS Granada, Granada, Spain
| | | | | | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain
| |
Collapse
|