1701
|
Backman SA, Stambolic V, Suzuki A, Haight J, Elia A, Pretorius J, Tsao MS, Shannon P, Bolon B, Ivy GO, Mak TW. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat Genet 2001; 29:396-403. [PMID: 11726926 DOI: 10.1038/ng782] [Citation(s) in RCA: 377] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Initially identified in high-grade gliomas, mutations in the PTEN tumor-suppressor are also found in many sporadic cancers and a few related autosomal dominant hamartoma syndromes. PTEN is a 3'-specific phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) phosphatase and functions as a negative regulator of PI3K signaling. We generated a tissue-specific deletion of the mouse homolog Pten to address its role in brain function. Mice homozygous for this deletion (PtenloxP/loxP;Gfap-cre), developed seizures and ataxia by 9 wk and died by 29 wk. Histological analysis showed brain enlargement in PtenloxP/loxP;Gfap-cre mice as a consequence of primary granule-cell dysplasia in the cerebellum and dentate gyrus. Pten mutant cells showed a cell-autonomous increase in soma size and elevated phosphorylation of Akt. These data represent the first evidence for the role of Pten and Akt in cell size regulation in mammals and provide an animal model for a human phakomatosis condition, Lhermitte-Duclos disease (LDD).
Collapse
Affiliation(s)
- S A Backman
- Department of Medical Biophysics, University of Toronto and Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1702
|
Virolle T, Adamson ED, Baron V, Birle D, Mercola D, Mustelin T, de Belle I. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol 2001; 3:1124-8. [PMID: 11781575 DOI: 10.1038/ncb1201-1124] [Citation(s) in RCA: 329] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PTEN tumour suppressor and pro-apoptotic gene is frequently mutated in human cancers. We show that PTEN transcription is upregulated by Egr-1 after irradiation in wild-type, but not egr-1-/-, mice in vivo. We found that Egr-1 specifically binds to the PTEN 5' untranslated region, which contains a functional GCGGCGGCG Egr-1-binding site. Inducing Egr-1 by exposing cells to ultraviolet light upregulates expression of PTEN messenger RNA and protein, and leads to apoptosis. egr-1-/- cells, which cannot upregulate PTEN expression after irradiation, are resistant to ultraviolet-light-induced apoptosis. Therefore, Egr-1 can directly regulate PTEN, triggering the initial step in this apoptotic pathway. Loss of Egr-1 expression, which often occurs in human cancers, could deregulate the PTEN gene and contribute to the radiation resistance of some cancer cells.
Collapse
Affiliation(s)
- T Virolle
- The Burnham Institute, Cancer Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
1703
|
Jin J, Anthopoulos N, Wetsch B, Binari RC, Isaac DD, Andrew DJ, Woodgett JR, Manoukian AS. Regulation of Drosophila tracheal system development by protein kinase B. Dev Cell 2001; 1:817-27. [PMID: 11740943 DOI: 10.1016/s1534-5807(01)00090-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein kinase B (PKB, also termed Akt) is a phosphatidylinositol 3' kinase (PI3'K)-dependent enzyme implicated in survival signaling and human tumorigenesis. To identify potential targets of this protein kinase, we employed a genetic screen in Drosophila. Among several genes that genetically interacted with PKB was trachealess (trh), which encodes a bHLH-PAS domain transcription factor required for development of the trachea and other tubular organs. Trh activates expression of the fibroblast growth factor receptor Breathless, which, in turn, is required for directed migration of all tracheal branches. Using a combination of biochemical and transgenic approaches, we show that direct phosphorylation of Trh by PKB at serine 665 is essential for nuclear localization and functional activation of this regulator of branching morphogenesis.
Collapse
Affiliation(s)
- J Jin
- Division of Cellular and Molecular Biology, Ontario Cancer Institute, University Health Network, Princess Margaret Hospital, Toronto, Ontario, M5G 2M9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
1704
|
Abstract
Rapamycins represent a novel family of anticancer agents, currently including rapamycin and its derivatives, CCI-779 and RAD001. Rapamycins inhibit the function of the mammalian target of rapamycin (mTOR), and potently suppress tumor cell growth by arresting cells in G1 phase or potentially inducing apoptosis of cells, in culture or in xenograft tumor models. However, recent data indicate that genetic mutations or compensatory changes in tumor cells influence the sensitivity of rapamycins. First, mutations of mTOR or FKBP12 prevent rapamycin from binding to mTOR, conferring rapamycin resistance. Second, mutations or defects of mTOR-regulated proteins, including S6K1, 4E-BP1, PP2A-related phosphatases, and p27(Kip1) also render rapamycin insensitivity. In addition, the status of ATM, p53, PTEN/Akt and 14-3-3 are also associated with rapamycin sensitivity. To better explore the role of rapamycins against tumors, this review will summarize the current knowledge of the mechanism of action of rapamycins, and progress in understanding mechanisms of acquired or intrinsic resistance.
Collapse
Affiliation(s)
- S Huang
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | |
Collapse
|
1705
|
Mosser VA, Li Y, Quon MJ. PTEN does not modulate GLUT4 translocation in rat adipose cells under physiological conditions. Biochem Biophys Res Commun 2001; 288:1011-7. [PMID: 11689011 DOI: 10.1006/bbrc.2001.5876] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PTEN is a 3'-inositol lipid phosphatase that dephosphorylates products of PI 3-kinase. Since PI 3-kinase is required for many metabolic actions of insulin, we investigated the role of PTEN in insulin-stimulated translocation of GLUT4. In control rat adipose cells, we observed a approximately 2-fold increase in cell surface GLUT4 upon maximal insulin stimulation. Overexpression of wild-type PTEN abolished this response to insulin. Translocation of GLUT4 in cells overexpressing PTEN mutants without lipid phosphatase activity was similar to that observed in control cells. Overexpression of PTEN-CBR3 (mutant with disrupted membrane association domain) partially impaired translocation of GLUT4. In Cos-7 cells, overexpression of wild-type PTEN had no effect on ERK2 phosphorylation in response to acute insulin stimulation. However, Elk-1 phosphorylation in response to chronic insulin treatment was significantly decreased. Thus, when PTEN is overexpressed, both its lipid phosphatase activity and subcellular localization play a role in antagonizing metabolic actions of insulin that are dependent on PI 3-kinase but independent of MAP kinase. However, because translocation of GLUT4 in cells overexpressing a dominant inhibitory PTEN mutant (C124S) was similar to that of control cells, we conclude that endogenous PTEN may not modulate metabolic functions of insulin under normal physiological conditions.
Collapse
Affiliation(s)
- V A Mosser
- Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
1706
|
Hermanto U, Zong CS, Wang LH. ErbB2-overexpressing human mammary carcinoma cells display an increased requirement for the phosphatidylinositol 3-kinase signaling pathway in anchorage-independent growth. Oncogene 2001; 20:7551-62. [PMID: 11709727 DOI: 10.1038/sj.onc.1204964] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2001] [Revised: 08/17/2001] [Accepted: 09/13/2001] [Indexed: 11/09/2022]
Abstract
The proto-oncogene ErbB2 is known to be amplified and to play an important role in the development of about one-third of human breast cancers. Phosphatidylinositol 3-kinase (PI3K), which is often activated in ErbB2-overexpressing breast cancer cells, is known to regulate cell proliferation and cell survival. Selective inhibitors of the PI3K pathway were used to assess the relevance of PI3K signaling in the anchorage-independent growth of a series of human mammary carcinoma cell lines. Wortmannin, LY294002, and rapamycin at concentrations that did not affect MAPK phosphorylation but substantially inhibited PI3K, Akt, and p70(S6K) significantly suppressed the soft agar growth of tumor cell lines that overexpress ErbB2 but not the growth of tumor lines with low ErbB2 expression. A similar growth inhibition of ErbB2-overexpressing carcinoma lines was observed when a dominant negative p85(PI3K) mutant was introduced into these cells. Forced expression of ErbB2 in breast cancer lines originally expressing low ErbB2 levels augmented receptor expression and sensitized those lines to LY294002- and rapamycin-mediated inhibition of colony formation. Furthermore, treatment with LY294002 resulted in the selective increase of cyclin-dependent kinase inhibitors p21(Cip1) or p27(Kip1) and suppression of cyclin E-associated Cdk2 kinase activity in ErbB2-overexpressing lines, which may account for their hypersensitivity toward inhibitors of the PI3K pathway in anchorage-independent growth. Our results indicate that the PI3K/Akt/p70(S6K) pathway plays an enhanced role in the anchorage-independent growth of ErbB2-overexpressing breast cancer cells, therefore providing a molecular basis for the selective targeting of this signaling pathway in the treatment of ErbB2-related human breast malignancies.
Collapse
Affiliation(s)
- U Hermanto
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
1707
|
Stolarov J, Chang K, Reiner A, Rodgers L, Hannon GJ, Wigler MH, Mittal V. Design of a retroviral-mediated ecdysone-inducible system and its application to the expression profiling of the PTEN tumor suppressor. Proc Natl Acad Sci U S A 2001; 98:13043-8. [PMID: 11687610 PMCID: PMC60821 DOI: 10.1073/pnas.221450598] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have engineered the ecdysone-inducible mammalian expression system for general retroviral delivery to cultured mammalian cells. We inducibly expressed PTEN in the glioblastoma cell line, U87MG, lacking this gene. Because nearly all cells are recruited on induction, we find both up- and down-regulated genes by cDNA microarray analysis. The changes we see are similar to those observed after treatment with LY294002, an inhibitor of phosphatidylinositol 3-OH kinase, fully consistent with the model that PTEN antagonizes phosphatidylinositol 3-OH kinase. Both treatments result in suppressed expression of the transforming growth factor (TGF)-beta gene and the genes of the cholesterol biosynthesis pathway. Our results illustrate the power of using a fully inducible expression system in conjunction with cDNA microarray analysis for exploring gene function.
Collapse
Affiliation(s)
- J Stolarov
- Cold Spring Harbor Laboratory, 1 Bungtown Road, P.O. Box 100, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | |
Collapse
|
1708
|
Srivastava RK. TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 2001; 3:535-46. [PMID: 11774036 PMCID: PMC1506567 DOI: 10.1038/sj.neo.7900203] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2001] [Accepted: 08/27/2001] [Indexed: 02/06/2023]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL/APO-2L) is a member of the TNF family that promotes apoptosis by binding to the transmembrane receptors TRAIL-R1/DR4 and TRAIL-R2/DR5. Its cytotoxic activity is relatively selective to the human tumor cell lines without much effect on the normal cells. Hence, it exerts an antitumor activity without causing toxicity, as apparent by studies with several xenograft models. This review discusses the intracellular mechanisms by which TRAIL induces apoptosis. The major pathway of its action proceeds through the formation of DISC and activation of caspase-8. The apoptotic processes, therefore, follow two signaling pathways, namely the mitochondrial-independent activation of caspase-3, and mitochondrial-dependent apoptosis due to cleavage of BID by caspase-8, the formation of apoptosomes, and activation of caspase-9 and the downstream caspases. Bcl-2 and Bcl-X(L) have no effect on TRAIL-induced apoptosis in lymphoid cells, whereas these genes block or delay apoptosis in nonlymphoid cancer cells. TRAIL participates in cytotoxicity mediated by activated NK cells, monocytes, and some cytotoxic T cells. Hence, TRAIL may prove to be an effective antitumor agent. In addition, it may enhance the effectiveness of treatment with chemotherapeutic drugs and irradiation. Nontagged Apo-2L/TRAIL does not cause hepatotoxicity in monkeys and chimpanzees and in normal human hepatocytes. Thus, nontagged Apo-2L/TRAIL appears to be a promising new candidate for use in the treatment of cancer.
Collapse
Affiliation(s)
- R K Srivastava
- Department of Pharmaceutical Sciences, University of Maryland - School of Pharmacy Greenebaum Cancer Center, 20 North Pine Street, Baltimore, MD 21201, USA.
| |
Collapse
|
1709
|
Schöndorf T, Becker M, Göhring UJ, Wappenschmidt B, Kolhagen H, Kurbacher CM. Interaction of cisplatin, paclitaxel and adriamycin with the tumor suppressor PTEN. Anticancer Drugs 2001; 12:797-800. [PMID: 11707646 DOI: 10.1097/00001813-200111000-00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Due to its pivotal role in signal transduction, the universal tumor suppressor PTEN (also termed MMAC or TEP) is one of the putative candidates for involvement in tumorigenesis of several tissues. Although involvement of PTEN in tumorigenesis was shown in different tissues, no data are available concerning PTEN activity in response to antineoplastic agents. Therefore, we assayed the PTEN activity exposed to either blank medium or the commonly used anti-cancer drugs cisplatin, adriamycin or paclitaxel, respectively, in three different concentrations. PTEN activity was determined using the Malachite Green assay basing upon dephosphorylation of phosphatidylinositol-3,4,5-triphosphate (PIP3) by the PTEN enzyme and subsequent determination of inorganic phosphate released. Although the three different anti-cancer drugs assayed act with different cellular modes, the antineoplastics influenced PTEN activity in a similar manner: at low concentrations tested all three antineoplastics significantly increased PTEN activity. However, increasing drug concentrations exhibited a decline but not a total loss of PTEN activity. The data indicate that PTEN activity is increased following cytotoxic drug exposure and, thereby, exhibits its suppressive function. However, the decrease of PTEN activity in response to increasing drug concentrations suggests an aberration of total functional activity. As far as the regulative checkpoint PTEN is abolished, tumor cells might evade cell death pathways resulting in increased proliferation of cancer cells. This might be a general event in refractory tumor cells surviving chemotherapy.
Collapse
Affiliation(s)
- T Schöndorf
- Department of Gynecology and Obstetics, University of Cologne, 50924 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
1710
|
Abstract
It is ten years since the publication of three papers describing the cloning of a new proto-oncogene serine/threonine kinase termed protein kinase B (PKB)/Akt. Key roles for this protein kinase in cellular processes such as glucose metabolism, cell proliferation, apoptosis, transcription and cell migration are now well established. The explosion of publications involving PKB/Akt in the past three years emphasizes the high level of current interest in this signalling molecule. This review focuses on tracing the characterization of this kinase, through the elucidation of its mechanism of regulation, to its role in regulating physiological and pathophysiological processes, to our current understanding of the biology of PKB/Akt, and prospects for the future.
Collapse
Affiliation(s)
- D P Brazil
- Friedrich Miescher Institute, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | | |
Collapse
|
1711
|
Thakkar H, Chen X, Tyan F, Gim S, Robinson H, Lee C, Pandey SK, Nwokorie C, Onwudiwe N, Srivastava RK. Pro-survival function of Akt/protein kinase B in prostate cancer cells. Relationship with TRAIL resistance. J Biol Chem 2001; 276:38361-9. [PMID: 11461904 DOI: 10.1074/jbc.m103321200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tumor necrosis factor superfamily member TRAIL/Apo-2L has recently been shown to induce apoptosis in transformed and cancer cells. Some prostate cancer cells express constitutively active Akt/protein kinase B due to a complete loss of lipid phosphatase PTEN gene, a negative regulator of phosphatidylinositol 3-kinase pathway. Constitutively active Akt promotes cellular survival and resistance to chemotherapy and radiation. We have recently noticed that some human prostate cancer cells are resistant to TRAIL. We therefore examined the intracellular mechanisms of cellular resistance to TRAIL. The cell lines expressing the highest level of constitutively active Akt were more resistant to undergo apoptosis by TRAIL than those expressing the lowest level. Down-regulation of constitutively active Akt by phosphatidylinositol 3-kinase inhibitors, wortmannin and LY294002, reversed cellular resistance to TRAIL. Treatment of resistant cells with cycloheximide (a protein synthesis inhibitor) rendered cells sensitive to TRAIL. Transfecting dominant negative Akt decreased Akt activity and increased TRAIL-induced apoptosis in cells with high Akt activity. Conversely, transfecting constitutively active Akt into cells with low Akt activity increased Akt activity and attenuated TRAIL-induced apoptosis. Inhibition of TRAIL sensitivity occurs at the level of BID cleavage, as caspase-8 activity was not affected. Enforced expression of anti-apoptotic protein Bcl-2 or Bcl-X(L) inhibited TRAIL-induced mitochondrial dysfunction and apoptosis. We therefore identify Akt as a constitutively active kinase that promotes survival of prostate cancer cells and demonstrate that modulation of Akt activity, by pharmacological or genetic approaches, alters the cellular responsiveness to TRAIL. Thus, TRAIL in combination with agents that down-regulate Akt activity can be used to treat prostate cancer.
Collapse
Affiliation(s)
- H Thakkar
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Greenebaum Cancer Center, Baltimore, Maryland 21201-1180, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1712
|
Koul D, Parthasarathy R, Shen R, Davies MA, Jasser SA, Chintala SK, Rao JS, Sun Y, Benvenisite EN, Liu TJ, Yung WK. Suppression of matrix metalloproteinase-2 gene expression and invasion in human glioma cells by MMAC/PTEN. Oncogene 2001; 20:6669-78. [PMID: 11709701 DOI: 10.1038/sj.onc.1204799] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2000] [Revised: 06/07/2001] [Accepted: 06/11/2001] [Indexed: 01/21/2023]
Abstract
Human gliomas are highly invasive, and remain to be a major obstacle for any effective therapeutic remedy. Among many other factors, gliomas express elevated levels of matrix metalloproteinases (MMPs), which have been implicated to play an important role in tumor invasion as well as neovascularization. The tumor suppressor gene mutated in multiple advanced cancers/phosphatase and tensin homologue (MMAC/PTEN) has been shown to inhibit cell migration, spreading, and focal adhesion. In this study, we determined whether MMAC/PTEN inhibits tumor invasion by modulating MMP-2 activity. Our results showed that reintroduction of the MMAC/PTEN gene into human glioma U251 and U87 cells modified their phenotype and growth characteristics. The ability of MMAC/PTEN to induce anoikis in U251 cells was accompanied by a significant inhibition of in vitro invasion (70%). Expression of MMAC/PTEN in U251 and U87 cells inhibited MMP-2 enzymatic activity as determined by zymography. Furthermore, MMAC/PTEN expression strongly decreased MMP-2 mRNA levels, which correlated well with the inhibition of invasion capacity in these cells. Concomitant with MMP-2 expression and activity, MMP-2 promoter activity was also reduced in MMAC/PTEN expressing cells. Our observations suggest that MMAC/PTEN inhibits tumor cell invasion in part by regulating MMP-2 gene transcription and thereby its enzymatic activity. Further characterization of this regulation will facilitate the development of MMAC/PTEN based gene therapy for gliomas.
Collapse
Affiliation(s)
- D Koul
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1713
|
Flusberg DA, Numaguchi Y, Ingber DE. Cooperative control of Akt phosphorylation, bcl-2 expression, and apoptosis by cytoskeletal microfilaments and microtubules in capillary endothelial cells. Mol Biol Cell 2001; 12:3087-94. [PMID: 11598193 PMCID: PMC60157 DOI: 10.1091/mbc.12.10.3087] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Capillary endothelial cells can be switched between growth and apoptosis by modulating their shape with the use of micropatterned adhesive islands. The present study was carried out to examine whether cytoskeletal filaments contribute to this response. Disruption of microfilaments or microtubules with the use of cytochalasin D or nocodazole, respectively, led to levels of apoptosis in capillary cells equivalent to that previously demonstrated by inducing cell rounding with the use of micropatterned culture surfaces containing small (<20 microm in diameter) circular adhesive islands coated with fibronectin. Simultaneous disruption of microfilaments and microtubules led to more pronounced cell rounding and to enhanced levels of apoptosis approaching that observed during anoikis in fully detached (suspended) cells, indicating that these two cytoskeletal filament systems can cooperate to promote cell survival. Western blot analysis revealed that the protein kinase Akt, which is known to be critical for control of cell survival became dephosphorylated during cell rounding induced by disruption of the cytoskeleton, and that this was accompanied by a decrease in bcl-2 expression as well as a subsequent increase in caspase activation. This ability of the cytoskeleton to control capillary endothelial cell survival may be important for understanding the relationship among extracellular matrix turnover, cell shape changes, and apoptosis during angiogenesis inhibition.
Collapse
Affiliation(s)
- D A Flusberg
- Department of Surgery, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
1714
|
Abstract
We are particularly interested in testing the principles of cell proliferation and apoptosis in the microenvironment of human lung cancers with respect to the cell survival protein Akt 1 and PTEN 2. Akt is a cytosolic protein which promotes cell survival by phosphorylative inactivation of targets in apoptotic pathways. Akt has been found to play a role in the survival of experimental cancer cell lines in breast, prostate, ovary, lung and brain tissue. PTEN is a tumor suppressor gene whose protein product is expressed in inverse proportion to phosphorylated Akt in endometrial and breast cancer cell lines. No studies of the diagnostic significance of Akt and PTEN in human lung cancers have been reported.
Collapse
Affiliation(s)
- O David
- Tulane University Health Sciences Center SL79 1430 Tulane Avenue New Orleans, LA 70112, USA. odavid@ tulane.edu
| |
Collapse
|
1715
|
Abstract
The normal prostate and early-stage prostate cancers depend on androgens for growth and survival, and androgen ablation therapy causes them to regress. Cancers that are not cured by surgery eventually become androgen independent, rendering anti-androgen therapy ineffective. But how does androgen independence arise? We predict that understanding the pathways that lead to the development of androgen-independent prostate cancer will pave the way to effective therapies for these, at present, untreatable cancers.
Collapse
Affiliation(s)
- B J Feldman
- Department of Medicine, Stanford University School of Medicine, California 94305-5103, USA.
| | | |
Collapse
|
1716
|
Abstract
Since its discovery 10 years ago, the potential functions of protein kinase B (PKB)/AKT have been catalogued with increasing efficiency. The physiological relevance of some of the proposed mechanisms by which PKB/AKT mediates many of its effects has been questioned, and recent work using new reagents and approaches has revealed some cracks in our understanding of this important molecule, and also hinted that these effects may involve other players.
Collapse
Affiliation(s)
- M P Scheid
- Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | | |
Collapse
|
1717
|
Kwabi-Addo B, Giri D, Schmidt K, Podsypanina K, Parsons R, Greenberg N, Ittmann M. Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci U S A 2001; 98:11563-8. [PMID: 11553783 PMCID: PMC58769 DOI: 10.1073/pnas.201167798] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2001] [Indexed: 01/20/2023] Open
Abstract
The PTEN gene encodes a lipid phosphatase that negatively regulates the phosphatidylinositol 3-kinase pathway and is inactivated in a wide variety of malignant neoplasms. High rates of loss of heterozygosity are observed at the 10q23.3 region containing the human PTEN gene in prostate cancer and other human malignancies, but the demonstrated rate of biallelic inactivation of the PTEN gene by mutation or homozygous deletion is significantly lower than the rate of loss of heterozygosity. The transgenic adenocarcinoma of mouse prostate model is a well characterized animal model of prostate cancer. Analysis of prostate cancer progression in transgenic adenocarcinoma of mouse prostate mice bred to Pten(+/-) heterozygous mice, coupled with analysis of the Pten gene and protein in the resulting tumors, reveals that haploinsufficiency of the Pten gene promotes the progression of prostate cancer in this model system. This observation provides a potential explanation for the discordance in rates of loss of heterozygosity at 10q23 and biallelic PTEN inactivation observed in prostate cancer and many human malignancies.
Collapse
Affiliation(s)
- B Kwabi-Addo
- Department of Pathology and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
1718
|
Schwartzbauer G, Robbins J. The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival. J Biol Chem 2001; 276:35786-93. [PMID: 11448956 DOI: 10.1074/jbc.m102479200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cardiac hypertrophy is a complex process involving the coordinated actions of many genes. In a high throughput screen designed to identify transcripts that are actively translated during cardiac hypertrophy, we identified a number of genes with established links to hypertrophy, including those coding for Sp3, c-Jun, annexin II, cathepsin B, and HB-EGF, thus showing the general utility of the screen. Focusing on a candidate transcript that has not been previously linked to hypertrophy, we found that protein levels of the tumor suppressor PTEN (phosphatase and tensin homologue on chromosome ten) were increased in the absence of increased messenger RNA levels. Increased PTEN expression by recombinant adenovirus in cultured neonatal rat primary cardiomyocytes caused cardiomyocyte apoptosis as evidenced by increased caspase-3 activity and cleaved poly(A)DP-ribose polymerase. Expression of PTEN was also able to block growth factor signaling through the phosphatidylinositol 3,4,5-triphosphate pathway. Surprisingly, expression of a catalytically inactive PTEN mutant led to cardiomyocyte hypertrophy, with increased protein synthesis, cell surface area, and atrial natriuretic factor expression. This hypertrophy was accompanied by an increase in Akt activity and improved cell viability in culture.
Collapse
Affiliation(s)
- G Schwartzbauer
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, Children's Hospital Research Foundation, Cincinnati Ohio 45229-3039, USA
| | | |
Collapse
|
1719
|
Chen X, Thakkar H, Tyan F, Gim S, Robinson H, Lee C, Pandey SK, Nwokorie C, Onwudiwe N, Srivastava RK. Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 2001; 20:6073-83. [PMID: 11593415 DOI: 10.1038/sj.onc.1204736] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2001] [Revised: 06/07/2001] [Accepted: 06/14/2001] [Indexed: 11/09/2022]
Abstract
TRAIL/Apo-2L is a member of the tumor necrosis factor superfamily and has recently been shown to induce apoptosis in cancer cells, but not in normal cells. In nude mice injected with human tumors, TRAIL reduces the size of these tumors without side effects. Akt promotes cell survival and block apoptosis. Some prostate cancer cells express high levels of Akt due to lack of active lipid phosphatase PTEN, a negative regulator of PI-3 kinase pathway, which may be responsible for drug resistance. The objective of this paper is to investigate the intracellular molecules that regulate TRAIL resistance. We have examined caspase-8 activity, BID cleavage, Akt activity, mitochondrial membrane potential (DeltaPsi(m)) and apoptosis in prostate cancer (LNCap, PC-3, PC-3M and DU145) cells treated with or without TRAIL. PC-3, PC-3M and DU145 cells are sensitive to TRAIL, whereas LNCap cells are resistant. LNCap cells express the highest level of constitutively active Akt, which is directly correlated with TRAIL resistance. TRAIL activates caspase-8 in all the cell lines. Downregulation of constitutively active Akt by PI-3 kinase inhibitors (wortmannin and LY-294002), dominant negative Akt or PTEN, renders LNCap cells sensitive to TRAIL. Inhibition of TRAIL sensitivity occurs at the level of BID cleavage. Inhibition of protein synthesis by cycloheximide also causes LNCap cells sensitive to TRAIL. Overexpression of Bcl-2 or Bcl-X(L) inhibits TRAIL-induced DeltaPsi(m) and apoptosis. Overexpression of constitutively active Akt in PC-3M cells (express very low levels of constitutively active Akt) restores TRAIL resistance. These data suggest that elevated Akt activity protects LNCap cells from TRAIL-induced apoptosis, and the PI-3 kinase/Akt pathway may inhibit apoptotic signals by inhibiting processing of BID. Thus, constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer.
Collapse
Affiliation(s)
- X Chen
- Department of Pharmaceutical Sciences, University of Maryland-School of Pharmacy, Greenebaum Cancer Center, 20 N Pine Street, Baltimore, MD 21201-1180, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1720
|
Abstract
Tumors of the central nervous system (CNS) can be devastating because they often affect children, are difficult to treat, and frequently cause mental impairment or death. New insights into the causes and potential treatment of CNS tumors have come from discovering connections with genes that control cell growth, differentiation, and death during normal development. Links between tumorigenesis and normal development are illustrated by three common CNS tumors: retinoblastoma, glioblastoma, and medulloblastoma. For example, the retinoblastoma (Rb) tumor suppressor protein is crucial for control of normal neuronal differentiation and apoptosis. Excessive activity of the epidermal growth factor receptor and loss of the phosphatase PTEN are associated with glioblastoma, and both genes are required for normal growth and development. The membrane protein Patched1 (Ptc1), which controls cell fate in many tissues, regulates cell growth in the cerebellum, and reduced Ptc1 function contributes to medulloblastoma. Just as elucidating the mechanisms that control normal development can lead to the identification of new cancer-related genes and signaling pathways, studies of tumor biology can increase our understanding of normal development. Learning that Ptc1 is a medulloblastoma tumor suppressor led directly to the identification of the Ptc1 ligand, Sonic hedgehog, as a powerful mitogen for cerebellar granule cell precursors. Much remains to be learned about the genetic events that lead to brain tumors and how each event regulates cell cycle progression, apoptosis, and differentiation. The prospects for beneficial work at the boundary between oncology and developmental biology are great.
Collapse
Affiliation(s)
- R Wechsler-Reya
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5329, USA.
| | | |
Collapse
|
1721
|
Yu WP, Pallen CJ, Tay A, Jirik FR, Brenner S, Tan YH, Venkatesh B. Conserved synteny between the Fugu and human PTEN locus and the evolutionary conservation of vertebrate PTEN function. Oncogene 2001; 20:5554-61. [PMID: 11571655 DOI: 10.1038/sj.onc.1204679] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Revised: 05/10/2001] [Accepted: 05/10/2001] [Indexed: 11/08/2022]
Abstract
Mutations of PTEN, which encodes a protein-tyrosine and lipid phosphatase, are prevalent in a variety of human cancers. The human genome 'draft' sequence still lacks organization and much of the PTEN and adjacent loci remain undefined. The pufferfish, Fugu rubripes, by virtue of having a compact genome represents an excellent template for rapid vertebrate gene discovery. Sequencing of 56 kb from the Fugu pten (fpten) locus identified four complete genes and one partial gene homologous to human genes. Genes neighboring fpten include a PAPS synthase (fpapss2) differentially expressed between non-metastatic/metastatic human carcinoma cell lines, an inositol phosphatase (fminpp1) and an omega class glutathione-S-transferase (fgsto). We have determined the order of human BAC clones at the hPTEN locus and that the locus contains hPAPSS2 and hMINPP1 genes oriented as are their Fugu orthologs. Although the human genes span 500 kb, the Fugu genes lie within only 22 kb due to the compressed intronic and intergenic regions that typify this genome. Interestingly, and providing striking evidence of regulatory element conservation between widely divergent vertebrate species, the compact 2.1 kb fpten promoter is active in human cells. Also, like hPTEN, fpten has a growth and tumor suppressor activity in human glioblastoma cells, demonstrating conservation of protein function.
Collapse
Affiliation(s)
- W P Yu
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
1722
|
Moritake H, Horii Y, Kuroda H, Sugimoto T. Analysis of PTEN/MMAC1 alteration in neuroblastoma. ACTA ACUST UNITED AC 2001; 125:151-5. [PMID: 11369059 DOI: 10.1016/s0165-4608(00)00378-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. Although it has been reported that loss of heterozygosity at various loci, including 10q, frequently occurs in neuroblastoma, a bona fide tumor suppressor gene has not been identified. Recently, a gene mapped to chromosome 10q23, PTEN/MMAC1, was identified as a tumor suppressor gene that inhibits cell survival and cell proliferation by catalyzing the dephosphorylation of phosphatidylinositol 3,4,5-triphosphate. To screen for mutations of this gene in neuroblastoma, we analyzed 11 primary neuroblastoma tumors and 16 neuroblastoma cell lines for PTEN/MMAC1 mutations and deletions. All nine exons of the PTEN/MMAC1 gene were examined using the polymerase chain reaction-single strand conformational polymorphism assay and sequencing. Only one of the cell lines showed a mutation, a 1-bp frameshift deletion in exon 7, and an allelic loss in the opposite allele was revealed by a microsatellite analysis. Our results indicate that the disruption of the PTEN/MMAC1 gene is not a frequent event in neuroblastoma, and suggest that this disruption may be responsible for malignant progression in only a limited proportion of cases of neuroblastoma.
Collapse
Affiliation(s)
- H Moritake
- Department of Pediatrics, Miyazaki Medical College, 200 Kihara, Kiyotake-cho, 889-1692, Miyazaki, Japan.
| | | | | | | |
Collapse
|
1723
|
Thomas M, Glaunsinger B, Pim D, Javier R, Banks L. HPV E6 and MAGUK protein interactions: determination of the molecular basis for specific protein recognition and degradation. Oncogene 2001; 20:5431-9. [PMID: 11571640 PMCID: PMC3072467 DOI: 10.1038/sj.onc.1204719] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Revised: 06/13/2001] [Accepted: 06/14/2001] [Indexed: 11/08/2022]
Abstract
It has recently been shown that the high-risk human papillomavirus (HPV) E6 proteins can target the PDZ-domain containing proteins, Dlg, MUPP-1, MAGI-1 and hScrib for proteasome-mediated degradation. However, the E6 proteins from HPV-16 and HPV-18 (the two most common high-risk virus types) differ in their ability to target these proteins in a manner that correlates with their malignant potential. To investigate the underlying mechanisms for this, we have mutated HPV-16 and HPV-18 E6s to give each protein the other's PDZ-binding motif. Analysis of these mutants shows that the greater ability of HPV-18 E6 to bind to these proteins and to target them for degradation is indeed due to a single amino acid difference. Using a number of assays, we show that the E6 proteins interact specifically with only one of the five PDZ domains of MAGI-1, and this is the first interaction described for this particular PDZ domain. We also show that the guanylate kinase homology domain and the regions of MAGI-1 downstream of amino acid 733 are not required for the degradation of MAGI-1. Finally, in a series of comparative analyses, we show that the degradation of MAGI-1 occurs through a different mechanism from that used by the E6 protein to induce the degradation of Dlg and p53.
Collapse
Affiliation(s)
- M Thomas
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy
| | | | | | | | | |
Collapse
|
1724
|
Kubiatowski T, Jang T, Lachyankar MB, Salmonsen R, Nabi RR, Quesenberry PJ, Litofsky NS, Ross AH, Recht LD. Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. J Neurosurg 2001; 95:480-8. [PMID: 11565871 DOI: 10.3171/jns.2001.95.3.0480] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECT Glioblastoma multiforme is the most malignant of the primary brain tumors and aggressively infiltrates surrounding brain tissue, resulting in distant foci within the central nervous system, thereby rendering this tumor surgically incurable. The recent findings that both phosphatidylinositol 3-kinase (PI 3-K) and the phosphatase and tensin homolog (PTEN) regulate tumor cell invasiveness have led the authors to surmise that these lipid signaling molecules might play a role in regulating matrix metalloproteinases (MMPs), which are essential for tumor cell invasion. METHODS Using the C6 glioma cell line, which does not express measurable amounts of PTEN protein and in which in vitro invasiveness is MMP dependent, the authors determined that in vitro glioma cell invasiveness was significantly reduced when cells were preincubated overnight with LY294002 or wortmannin, two specific inhibitors of PI 3-K signaling. Next, using gelatin zymography, it was noted that these compounds significantly inhibited MMP-2 and MMP-9 activities. Moreover, the decrease in MMP activity correlated with the decrease in PI 3-K activity, as assessed by Akt phosphorylation. Finally, using semiquantitative reverse transcriptase-polymerase chain reaction, the authors demonstrated that LY294002 decreased messenger (m)RNA levels for both MMPs. Thus, these in vitro data indicate that PI 3-K signaling modulates gelatinase activity at the level of mRNA. Using immunostaining of phosphorylated Akt (p-Akt) as a measure of PI 3-K activity, the authors next assessed rat brains implanted with C6 cells. Compared with surrounding brain, there was marked p-Akt staining in C6 glioma cells and in neurons immediately adjacent to the tumor, but not in normal brain. The p-Akt staining in tumors was especially intense in perivascular areas. Using double-labeling techniques, colocalization of p-Akt with MMP-2 and MMP-9 was also noted in perivascular tumor areas. CONCLUSIONS The increase in p-Akt staining within these PTEN-deficient gliomas is consistent with what would be predicted from unchecked PI 3-K signaling. Furthermore, the immunohistochemically detected colocalization of p-Akt and MMP-2 and MMP-9 supports the authors' in vitro studies and the proposed linkage between PI 3-K signaling and MMP activity in gliomas.
Collapse
Affiliation(s)
- T Kubiatowski
- Department of Surgery, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1725
|
Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T, Roninson I, Weng W, Suzuki R, Tobe K, Kadowaki T, Hay N. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 2001; 15:2203-8. [PMID: 11544177 PMCID: PMC312770 DOI: 10.1101/gad.913901] [Citation(s) in RCA: 730] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The serine/threonine kinase Akt has been implicated in the control of cell survival and metabolism. Here we report the disruption of the most ubiquitously expressed member of the akt family of genes, akt1, in the mouse. Akt1(-/-) mice are viable but smaller when compared to wild-type littermates. In addition, the life span of Akt1(-/-) mice, upon exposure to genotoxic stress, is shorter. However, Akt1(-/-) mice do not display a diabetic phenotype. Increased spontaneous apoptosis in testes, and attenuation of spermatogenesis is observed in Akt1(-/-) male mice. Increased spontaneous apoptosis is also observed in the thymi of Akt1(-/-) mice, and Akt1(-/-) thymocytes are more sensitive to apoptosis induced by gamma-irradiation and dexamethasone. Finally, Akt1(-/-) mouse embryo fibroblasts (MEFs) are more susceptible to apoptosis induced by TNF, anti-Fas, UV irradiation, and serum withdrawal.
Collapse
Affiliation(s)
- W S Chen
- Department of Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1726
|
Abstract
Gliomas are primary central nervous system tumors that arise from astrocytes, oligodendrocytes or their precursors. Gliomas can be classified into several groups according to their histologic characteristics, the most malignant of the gliomas is glioblastoma multiforme. In contrast to the long-standing and well-defined histopathology, the underlying molecular and genetic bases for gliomas are only just emerging. Many genetic alterations have been identified in human gliomas, however, establishing unequivocal correlation between these genetic alterations and gliomagenesis requires accurate animal models for this disease. Here we are reviewing the existing animal models for gliomas with different strategies and our current knowledge on the important issues about this disease, such as activation of signal transduction pathways, disruption of cell cycle arrest pathways, cell-of-origin of gliomas, and therapeutic strategies.
Collapse
Affiliation(s)
- C Dai
- Departments of Cell Biology, Neurology, and Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
1727
|
Nguyen MH, Ho JM, Beattie BK, Barber DL. TEL-JAK2 mediates constitutive activation of the phosphatidylinositol 3'-kinase/protein kinase B signaling pathway. J Biol Chem 2001; 276:32704-13. [PMID: 11435425 DOI: 10.1074/jbc.m103100200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A subset of chromosomal translocations that participate in leukemia involve activated tyrosine kinases. The ets transcription factor, TEL, undergoes translocations with several distinct tyrosine kinases including JAK2. TEL-JAK2 transforms cell lines to factor independence, and constitutive tyrosine kinase activity results in the phosphorylation of several substrates including STAT1, STAT3, and STAT5. In this study we have shown that TEL-JAK2 can constitutively activate the phosphatidylinositol 3'-kinase (PI 3'-kinase) signaling pathway. The regulatory subunit of PI 3'-kinase, p85, associates with TEL-JAK2 in immunoprecipitations, and this was shown to be mediated by the amino-terminal SH2 domain of p85 but independent of a putative p85-binding motif within TEL-JAK2. The scaffolding protein Gab2 can also mediate the association of p85. TEL-JAK2 constitutively phosphorylates the downstream substrate protein kinase B/AKT. Importantly, the pharmacologic PI 3'-kinase inhibitor, LY294002, blocked TEL-JAK2 factor-independent growth and phosphorylation of protein kinase B. However, LY294002 did not alter STAT5 tyrosine phosphorylation, indicating that STAT5 and protein kinase B activation mediated by TEL-JAK2 are independent signaling pathways. Therefore, activation of the PI 3'-kinase signaling pathway is an important event mediated by TEL-JAK2 chromosomal translocations.
Collapse
Affiliation(s)
- M H Nguyen
- Division of Cellular and Molecular Biology, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | | | | | | |
Collapse
|
1728
|
Masuyama N, Oishi K, Mori Y, Ueno T, Takahama Y, Gotoh Y. Akt inhibits the orphan nuclear receptor Nur77 and T-cell apoptosis. J Biol Chem 2001; 276:32799-805. [PMID: 11438550 DOI: 10.1074/jbc.m105431200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Akt is a common mediator of cell survival in a variety of circumstances. Although some candidate Akt targets have been described, the function of Akt is not fully understood, particularly because of the cell type- and context-dependent apoptosis regulation. In this study, we demonstrate that one of the mechanisms by which Akt antagonizes apoptosis involves the inhibition of Nur77, a transcription factor implicated in T-cell receptor-mediated apoptosis. It has been suggested that Akt phosphorylates Nur77 directly, but whether Akt suppresses biological functions of Nur77 remains unknown. We found that Akt inhibited the DNA binding activity of Nur77 and stimulated its association with 14-3-3 in a phosphorylation site-dependent manner. Moreover, we found that expression of Akt suppressed Nur77-induced apoptosis in fibroblasts and activation-induced cell death of T-cell hybridomas. The inhibition of Nur77 by Akt suggests a mechanism that explains how T-cell receptor activation can promote survival in some instances even when Nur77 is induced. Collectively, these results may suggest that Akt is a negative regulator of Nur77 in T-cell apoptosis.
Collapse
Affiliation(s)
- N Masuyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | |
Collapse
|
1729
|
Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, Neshat M, Wang H, Yang L, Gibbons J, Frost P, Dreisbach V, Blenis J, Gaciong Z, Fisher P, Sawyers C, Hedrick-Ellenson L, Parsons R. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice. Proc Natl Acad Sci U S A 2001; 98:10320-5. [PMID: 11504907 PMCID: PMC56959 DOI: 10.1073/pnas.171060098] [Citation(s) in RCA: 487] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PTEN phosphatase acts as a tumor suppressor by negatively regulating the phosphoinositide 3-kinase (PI3K) signaling pathway. It is unclear which downstream components of this pathway are necessary for oncogenic transformation. In this report we show that transformed cells of PTEN(+/-) mice have elevated levels of phosphorylated Akt and activated p70/S6 kinase associated with an increase in proliferation. Pharmacological inactivation of mTOR/RAFT/FRAP reduced neoplastic proliferation, tumor size, and p70/S6 kinase activity, but did not affect the status of Akt. These data suggest that p70/S6K and possibly other targets of mTOR contribute significantly to tumor development and that inhibition of these proteins may be therapeutic for cancer patients with deranged PI3K signaling.
Collapse
Affiliation(s)
- K Podsypanina
- Institute of Cancer Genetics, Department of Pathology and Medicine, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, Russ Berrie Pavilion, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1730
|
Fan S, Ma YX, Gao M, Yuan RQ, Meng Q, Goldberg ID, Rosen EM. The multisubstrate adapter Gab1 regulates hepatocyte growth factor (scatter factor)-c-Met signaling for cell survival and DNA repair. Mol Cell Biol 2001; 21:4968-84. [PMID: 11438654 PMCID: PMC87224 DOI: 10.1128/mcb.21.15.4968-4984.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocyte growth factor (scatter factor) (HGF/SF) is a pleiotrophic mediator of epithelial cell motility, morphogenesis, angiogenesis, and tumorigenesis. HGF/SF protects cells against DNA damage by a pathway from its receptor c-Met to phosphatidylinositol 3-kinase (PI3K) to c-Akt, resulting in enhanced DNA repair and decreased apoptosis. We now show that protection against the DNA-damaging agent adriamycin (ADR; topoisomerase IIalpha inhibitor) requires the Grb2-binding site of c-Met, and overexpression of the Grb2-associated binder Gab1 (a multisubstrate adapter required for epithelial morphogenesis) inhibits the ability of HGF/SF to protect MDCK epithelial cells against ADR. In contrast to Gab1 and its homolog Gab2, overexpression of c-Cb1, another multisubstrate adapter that associates with c-Met, did not affect protection. Gab1 blocked the ability of HGF/SF to cause the sustained activation of c-Akt and c-Akt signaling (FKHR phosphorylation). The Gab1 inhibition of sustained c-Akt activation and of cell protection did not require the Gab1 pleckstrin homology or SHP2 phosphatase-binding domain but did require the PI3K-binding domain. HGF/SF protection of parental MDCK cells was blocked by wortmannin, expression of PTEN, and dominant negative mutants of p85 (regulatory subunit of PI3K), Akt, and Pak1; the protection of cells overexpressing Gab1 was restored by wild-type or activated mutants of p85, Akt, and Pak1. These findings suggest that the adapter Gab1 may redirect c-Met signaling through PI3K away from a c-Akt/Pak1 cell survival pathway.
Collapse
Affiliation(s)
- S Fan
- Department of Radiation Oncology, Long Island Jewish Medical Center, The Long Island Campus for the Albert Einstein College of Medicine, New Hyde Park, New York 11040, USA
| | | | | | | | | | | | | |
Collapse
|
1731
|
Leslie NR, Biondi RM, Alessi DR. Phosphoinositide-regulated kinases and phosphoinositide phosphatases. Chem Rev 2001; 101:2365-80. [PMID: 11749378 DOI: 10.1021/cr000091i] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- N R Leslie
- MRC Protein Phosphorylation Unit and Division of Signal Transduction Therapy, Department of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | | | | |
Collapse
|
1732
|
Ono H, Katagiri H, Funaki M, Anai M, Inukai K, Fukushima Y, Sakoda H, Ogihara T, Onishi Y, Fujishiro M, Kikuchi M, Oka Y, Asano T. Regulation of phosphoinositide metabolism, Akt phosphorylation, and glucose transport by PTEN (phosphatase and tensin homolog deleted on chromosome 10) in 3T3-L1 adipocytes. Mol Endocrinol 2001; 15:1411-22. [PMID: 11463863 DOI: 10.1210/mend.15.8.0684] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To investigate the roles of PTEN (phosphatase and tensin homolog deleted on chromosome 10) in the regulation of 3-position phosphorylated phosphoinositide metabolism as well as insulin-induced Akt phosphorylation and glucose metabolism, wild-type PTEN and its phosphatase-dead mutant (C124S) with or without an N-terminal myristoylation tag were overexpressed in Sf-9 cells and 3T3-L1 adipocytes using baculovirus and adenovirus systems, respectively. When expressed in Sf-9 cells together with the p110alpha catalytic subunit of phosphoinositide 3-kinase, myristoylated PTEN markedly reduced the accumulations of both phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate induced by p110alpha. In contrast, overexpression of the C124S mutants apparently increased these accumulations. In 3T3-L1 adipocytes, insulin-induced accumulations of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate were markedly suppressed by overexpression of wild-type PTEN with the N-terminal myristoylation tag, but not by that without the tag. On the contrary, the C124S mutants of PTEN enhanced insulin-induced accumulations of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. Interestingly, the phosphorylation level of Akt at Thr308 (Akt2 at Thr309), but not at Ser473 (Akt2 at Ser474), was revealed to correlate well with the accumulation of phosphatidylinositol 3,4,5-trisphosphate modified by overexpression of these PTEN proteins. Finally, insulin-induced increases in glucose transport activity were significantly inhibited by the overexpression of myristoylated wild-type PTEN, but were not enhanced by expression of the C124S mutant of PTEN. Therefore, in conclusion, 1) PTEN dephosphorylates both phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate in vivo, and the C124S mutants interrupt endogenous PTEN activity in a dominant-negative manner. 2) The membrane targeting process of PTEN may be important for exerting its function. 3) Phosphorylations of Thr309 and Ser474 of Akt2 are regulated differently, and the former is regulated very sensitively by the function of PTEN. 4) The phosphorylation level of Ser474, but not that of Thr309, in Akt2 correlates well with insulin-stimulated glucose transport activity in 3T3-L1 adipocytes. 5) The activity of endogenous PTEN may not play a major role in the regulation of glucose transport activity in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- H Ono
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1733
|
Abstract
Genetic instability contributes to the origin of cancer as well as to the ability of cancer cells to become resistant to various therapies. Because of this, cytotoxic rather than cytostatic therapies might be most effective against this disease. Many oncogenes and tumor suppressors mediate their effects by interfering with or inducing apoptotic signaling. Thus, apoptotic pathways might be significantly altered in cancer cells relative to untransformed cells, and these differences might present a therapeutic window that can be exploited for development of cancer drugs.
Collapse
Affiliation(s)
- P Huang
- DuPont Pharmaceuticals, 500 S. Ridgeway Ave, Glenolden, PA 19036, USA.
| | | |
Collapse
|
1734
|
Zhan XL, Wishart MJ, Guan KL. Nonreceptor tyrosine phosphatases in cellular signaling: regulation of mitogen-activated protein kinases. Chem Rev 2001; 101:2477-96. [PMID: 11749384 DOI: 10.1021/cr000245u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- X L Zhan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
1735
|
Abstract
Even though phosphorylation of phosphatidylinositols by phosphoinositide 3-kinase has an important and pervasive role in the nervous system, little is known about the phosphatases that reverse this reaction. Recently, such a phosphatase, PTEN, was cloned as a tumor suppressor for gliomas. We now know that PTEN is a tumor suppressor for many tumor types and is a phosphatidylinositol phosphatase specific for the 3-position of the inositol ring. PTEN is expressed in most, if not all, neurons and is localized in the nucleus and cytoplasm. PTEN is not evident in neural processes or synapses. PTEN is induced during neuronal differentiation and is required for survival of differentiating neuronal cells. In summary, PTEN is a regulatory molecule with multiple functions at multiple subcellular sites. Further studies are required to determine which downstream pathways are regulated by PTEN, by which mechanisms PTEN activity is regulated, which stimuli regulate PTEN activity, and why a molecule that inhibits several survival pathways is induced during neurogenesis.
Collapse
Affiliation(s)
- A H Ross
- Department of Biochemistry and Molecular Pharmacology, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
1736
|
Perlman H, Pagliari LJ, Nguyen N, Bradley K, Liu H, Pope RM. The Fas-FasL death receptor and PI3K pathways independently regulate monocyte homeostasis. Eur J Immunol 2001; 31:2421-30. [PMID: 11500826 DOI: 10.1002/1521-4141(200108)31:8<2421::aid-immu2421>3.0.co;2-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peripheral blood-derived monocytes spontaneously undergo apoptosis mediated by Fas-Fas ligand (FasL) interactions. Activation of monocytes by LPS or TNF-alpha prevents spontaneous monocyte apoptosis through an unknown mechanism. Here, we demonstrate that LPS and TNF-alpha up-regulate Flip and suppress spontaneous Fas-FasL mediated monocyte apoptosis and caspase 8 and 3 activation. Flip was responsible for this protection, since inhibition of Flip by antisense oligonucleotides in the presence of LPS or TNF-alpha restored monocyte sensitivity to spontaneous apoptosis. We also investigated whether the PI3K pathway contributes to the suppression of spontaneous monocyte apoptosis mediated by LPS and TNF-alpha. Monocytes treated with a reversible PI3K inhibitor (LY294002) displayed enhanced apoptosis, while LPS and TNF-alpha partially protected against apoptosis mediated by LY294002. However, direct suppression of Fas-FasL interactions by addition of neutralizing anti-FasL antibody did not further suppress LY294002-induced apoptosis in the presence of LPS or TNF-alpha. Collectively, these data demonstrate that LPS or TNF-alpha protect monocytes from death receptor-mediated apoptosis through the up-regulation of Flip, but not apoptosis initiated by inhibition of the PI3K pathway.
Collapse
Affiliation(s)
- H Perlman
- Northwestern University Medical School and the Veterans Administration Chicago Healthcare System, Lakeside Division, Division of Rheumatology, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
1737
|
Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW. Regulation of PTEN transcription by p53. Mol Cell 2001; 8:317-25. [PMID: 11545734 DOI: 10.1016/s1097-2765(01)00323-9] [Citation(s) in RCA: 699] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PTEN tumor suppressor is frequently mutated in human cancers and is a negative regulator of PI3'K/PKB/Akt-dependent cellular survival. Investigation of the human genomic PTEN locus revealed a p53 binding element directly upstream of the PTEN gene. Deletion and mutation analyses showed that this element is necessary for inducible transactivation of PTEN by p53. A p53-independent element controlling constitutive expression of PTEN was also identified. In contrast to p53 mutant cell lines, induction of p53 in primary and tumor cell lines with wild-type p53 increased PTEN mRNA levels. PTEN was required for p53-mediated apoptosis in immortalized mouse embryonic fibroblasts. Our results reveal a unique role for p53 in regulation of cellular survival and an interesting connection in tumor suppressor signaling.
Collapse
Affiliation(s)
- V Stambolic
- Amgen Research Institute and, Ontario Cancer Institute, 620 University Avenue, Ontario, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
1738
|
Sun M, Wang G, Paciga JE, Feldman RI, Yuan ZQ, Ma XL, Shelley SA, Jove R, Tsichlis PN, Nicosia SV, Cheng JQ. AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:431-7. [PMID: 11485901 PMCID: PMC1850562 DOI: 10.1016/s0002-9440(10)61714-2] [Citation(s) in RCA: 353] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2001] [Indexed: 11/21/2022]
Abstract
Extensive studies have demonstrated that the Akt/AKT1 pathway is essential for cell survival and inhibition of apoptosis; however, alterations of Akt/AKT1 in human primary tumors have not been well documented. In this report, significantly increased AKT1 kinase activity was detected in primary carcinomas of prostate (16 of 30), breast (19 of 50), and ovary (11 of 28). The results were confirmed by Western blot and immunohistochemical staining analyses with phospho-Ser473 Akt antibody. The majority of AKT1-activated tumors are high grade and stage III/lV (13 of 16 prostate, 15 of 19 breast, and 8 of 11 ovarian carcinomas). Previous studies showed that wild-type AKT1 was unable to transform NIH3T3 cells. To demonstrate the biological significance of AKT1 activation in human cancer, constitutively activated AKT1 (Myr-Akt) was introduced into NIH3T3 cells. Overexpression of Myr-Akt in the stably transfected cells resulted in malignant phenotype, as determined by growth in soft agar and tumor formation in nude mice. These data indicate that AKT1 kinase, which is frequently activated in human cancer, is a determinant in oncogenesis and a potential target for cancer intervention.
Collapse
Affiliation(s)
- M Sun
- Department of Pathology and Laboratory Medicine, University of South Florida College of Medicine and H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1739
|
Turturro F, Frist AY, Arnold MD, Seth P, Pulford K. Biochemical differences between SUDHL-1 and KARPAS 299 cells derived from t(2;5)-positive anaplastic large cell lymphoma are responsible for the different sensitivity to the antiproliferative effect of p27(Kip1). Oncogene 2001; 20:4466-75. [PMID: 11494142 DOI: 10.1038/sj.onc.1204582] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2001] [Revised: 04/19/2001] [Accepted: 04/27/2001] [Indexed: 11/09/2022]
Abstract
An inverse correlation between p27(Kip1) expression and proliferation has been recently established in tissues derived from human lymphomas. The nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)/phospholipase C-gamma (PLCgamma) complex also appears to play an important role in cell proliferation and malignant transformation of anaplastic large cell lymphoma (ALCL). In this study, we report that SUDHL-1 and KARPAS 299 ALCL-derived cell lines present different sensitivity to the antiproliferative effect of recombinant adenovirus-mediated p27(Kip1) expression or to serum-starvation in culture media. The results indicate that exogenous p27(Kip1) may interact with the NPM-ALK/PLCgamma pathway in SUDHL-1 but not in KARPAS 299 cells. This interaction correlates with changes in cell cycle and cell morphology observed mainly in SUDHL-1 cells. The percentage of SUDHL-1 cells in S phase declines, whereas it is almost unchanged in KARPAS 299 cells as compared to the controls after 96 h of infection with the recombinant adenovirus. Furthermore KARPAS 299 cells are resistant to serum-starvation due to deficient p27(Kip1)-upregulation and G1 arrest, whereas SUDHL-1 cells respond with increased G1 phase and p27(Kip1)-upregulation after 48 h of serum-starvation. Both cell lines express appropriate variation of levels of cyclins E and A, and Rb-phosphorylation as expected by growing them in culture media with different FBS content. Although both cell lines express cyclin D2, SUDHL-1 cells only present high level of cyclin D3. Moreover SUDHL-1 cells express high level of PTEN and the PKB/Akt pathway is constitutively activated in both cell lines. Lastly SUDHL-1 cells show higher levels of phosphotyrosine-containing proteins that is correlated with a higher NPM-ALK-associated autophosphorylation activity compared to KARPAS 299 cells. Our study clearly identifies some of the biochemical differences that may explain the difference in sensitivity to antiproliferative stimuli shown by two cell lines derived from the same type of lymphoma.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/physiology
- Apoptosis
- Cell Cycle
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 2/ultrastructure
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 5/ultrastructure
- Culture Media, Serum-Free/pharmacology
- Cyclin D1/deficiency
- Cyclin-Dependent Kinase Inhibitor p27
- Genetic Vectors/genetics
- Humans
- Isoenzymes/metabolism
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- PTEN Phosphohydrolase
- Phospholipase C gamma
- Phosphoproteins/analysis
- Phosphoric Monoester Hydrolases/physiology
- Phosphorylation
- Phosphotyrosine/analysis
- Protein Processing, Post-Translational
- Protein Serine-Threonine Kinases
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-akt
- Recombinant Fusion Proteins/physiology
- S Phase
- Transfection
- Translocation, Genetic
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
- Tumor Suppressor Proteins
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- F Turturro
- Human Gene Therapy Research Institute, John Stoddard Cancer Center, Iowa Methodist Medical Center, 1415 Woodland Ave., Des Moines, IA 50309, USA
| | | | | | | | | |
Collapse
|
1740
|
Suzuki A, Yamaguchi MT, Ohteki T, Sasaki T, Kaisho T, Kimura Y, Yoshida R, Wakeham A, Higuchi T, Fukumoto M, Tsubata T, Ohashi PS, Koyasu S, Penninger JM, Nakano T, Mak TW. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 2001; 14:523-34. [PMID: 11371355 DOI: 10.1016/s1074-7613(01)00134-0] [Citation(s) in RCA: 477] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PTEN, a tumor suppressor gene, is essential for embryogenesis. We used the Cre-loxP system to generate a T cell-specific deletion of the Pten gene (Pten(flox/-) mice). All Pten(flox/-) mice develop CD4+ T cell lymphomas by 17 weeks. Pten(flox/-) mice show increased thymic cellularity due in part to a defect in thymic negative selection. Pten(flox/-) mice exhibit elevated levels of B cells and CD4+ T cells in the periphery, spontaneous activation of CD4+ T cells, autoantibody production, and hypergammaglobulinemia. Pten(flox/-) T cells hyperproliferate, are autoreactive, secrete increased levels of Th1/Th2 cytokines, resist apoptosis, and show increased phosphorylation of PKB/Akt and ERK. Peripheral tolerance to SEB is also impaired in Pten(flox/-) mice. PTEN is thus an important regulator of T cell homeostasis and self-tolerance.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- Cell Division
- Cytokines/biosynthesis
- DNA-Binding Proteins/metabolism
- Enterotoxins/immunology
- Female
- Genes, Tumor Suppressor
- I-kappa B Proteins
- Immune Tolerance
- Lymphatic Diseases/immunology
- Lymphoma, T-Cell/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mitogen-Activated Protein Kinases/metabolism
- PTEN Phosphohydrolase
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/immunology
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Antigen/genetics
- Receptors, Antigen/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Splenomegaly
- Staphylococcus aureus/immunology
- Superantigens/immunology
- Thymus Gland/abnormalities
- Thymus Gland/cytology
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- A Suzuki
- Department of Molecular and Cellular Biology, Osaka University, 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1741
|
Ma N, Jin J, Lu F, Woodgett J, Liu FF. The role of protein kinase B (PKB) in modulating heat sensitivity in a human breast cancer cell line. Int J Radiat Oncol Biol Phys 2001; 50:1041-50. [PMID: 11429232 DOI: 10.1016/s0360-3016(01)01596-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Protein kinase B (PKB) is a critical mediator of phosphoinositide 3-kinase-dependent survival signals in mammalian cells. Its activity is induced after heat shock, and is inhibited in cells undergoing apoptosis. We hypothesized that PKB may be an important modulator for heat-induced apoptosis in human cancer cells. METHODS AND MATERIALS MCF-7 cells were transfected using four different plasmids, encoding a kinase-dead mutant PKB-AAA, a constitutively activated mutant PKB-DD, wild-type PKB, and the neomycin-resistant selection gene. These stable transfectants were subjected to heat shock, and assessed for PKB phosphorylation, PKB activity, and likelihood of undergoing apoptosis. RESULTS After heating to 45 degrees C x 30 mins, 25% of MCF-7/neo transfectants underwent apoptosis, which increased to 38% in the presence of wortmannin (WT), an inhibitor of phosphoinositide 3-kinase. In contrast, 23% of the constitutively activated MCF-7/DD transfectants underwent apoptosis, minimally affected by WT. Heat-induced apoptosis occurred in 34% of the kinase-dead MCF-7/AAA transfectants, which increased further to 58% with the addition of WT. This in turn was associated with a two-fold reduction in clonogenic survival compared to the MCF-7/neo transfectants. CONCLUSION Heat shock activation of PKB in human MCF-7 cells appears to be a significant modulator of heat-induced apoptosis and survival. Further understanding of this important pathway may offer potential in developing novel strategies in cancer therapy.
Collapse
Affiliation(s)
- N Ma
- Department of Experimental Therapeutics, Princess Margaret Hospital, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
1742
|
Leslie NR, Bennett D, Gray A, Pass I, Hoang-Xuan K, Downes CP. Targeting mutants of PTEN reveal distinct subsets of tumour suppressor functions. Biochem J 2001; 357:427-35. [PMID: 11439092 PMCID: PMC1221969 DOI: 10.1042/0264-6021:3570427] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tumour suppressor protein PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a lipid phosphatase which can antagonize the phosphoinositide 3-kinase (PI 3-kinase) signalling pathway, promoting apoptosis and inhibiting cell-cycle progression and cell motility. We show that very little cellular PTEN is associated with the plasma membrane, but that artificial membrane-targeting of PTEN enhances its inhibition of signalling to protein kinase B (PKB). Evidence for potential targeting of PTEN to the membrane through PDZ domain-mediated protein-protein interactions led us to use a PTEN enzyme with a deletion of the C-terminal PDZ-binding sequence, that retains full phosphatase activity against soluble substrates, and to analyse the efficiency of this mutant in different cellular assays. The extreme C-terminal PDZ-binding sequence was dispensable for the efficient down-regulation of cellular PtdIns(3,4,5)P3 levels and a number of PI 3-kinase-dependent signalling activities, including PKB and p70S6K. However, the PDZ-binding sequence was required for the efficient inhibition of cell spreading. The data show that a PTEN mutation, similar to those found in some tumours, affects some functions of the protein but not others, and implicate the deregulation of PTEN-dependent processes other than PKB activation in the development of some tumours. Significantly, this hypothesis is supported by data showing low levels of PKB phosphorylation in a glioblastoma sample carrying a mutation in the extreme C-terminus of PTEN compared with tumours carrying phosphatase-inactivating mutations of the enzyme. Our data show that deregulation of PKB is not a universal feature of tumours carrying PTEN mutations and implicate other processes that may be deregulated in these tumours.
Collapse
Affiliation(s)
- N R Leslie
- Division of Signal Transduction Therapy, Department of Biochemistry, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
1743
|
Mercurio AM, Bachelder RE, Chung J, O'Connor KL, Rabinovitz I, Shaw LM, Tani T. Integrin laminin receptors and breast carcinoma progression. J Mammary Gland Biol Neoplasia 2001; 6:299-309. [PMID: 11547899 DOI: 10.1023/a:1011323608064] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This review explores the mechanistic basis of breast carcinoma progression by focusing on the contribution of integrins. Integrins are essential for progression not only for their ability to mediate physical interactions with extracellular matrices but also for their ability to regulate signaling pathways that control actin dynamics and cell movement, as well as for growth and survival. Our comments center on the alpha6 integrins (alpha6beta1 and alpha6beta4), which are receptors for the laminin family of basement membrane components. Numerous studies have implicated these integrins in breast cancer progression and have provided a rationale for studying the mechanistic basis of their contribution to aggressive disease. Recent work by our group and others on mechanisms of breast carcinoma invasion and survival that are influenced by the alpha6 integrins are discussed.
Collapse
Affiliation(s)
- A M Mercurio
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
1744
|
Abstract
Reversible protein phosphorylation is the most common mechanism for cellular regulation in eukaryotic systems. Indeed, approximately 5% of the Arabidopsis genome encodes protein kinases and phosphatases. Among the thousands of such enzymes, only a small fraction has been examined experimentally. Studies have demonstrated that Ser/Thr phosphorylation and dephosphorylation play a key role in the regulation of plant physiology and development. However, function of tyrosine phosphorylation, despite the overwhelming importance in animals, has not been systematically studied in higher plants. As a result, it is still controversial whether tyrosine phosphorylation is important in plant signal transduction. Recently, the first two protein tyrosine phosphatases (PTPs) from a higher plant were characterized. A diverse group of genes encoding putative PTPs have been identified from the Arabidopsis genome sequence databases. Genetic analyses of various PTPs are underway and preliminary results have provided evidence that these PTPs serve critical functions in plant responses to stress signals and in plant development.
Collapse
Affiliation(s)
- Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Julie Ting
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Rajeev Gupta
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
1745
|
Yamada KM, Araki M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 2001; 114:2375-82. [PMID: 11559746 DOI: 10.1242/jcs.114.13.2375] [Citation(s) in RCA: 323] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PTEN (also known as MMAC-1 or TEP-1) is one of the most frequently mutated tumor suppressors in human cancer. It is also essential for embryonic development. PTEN functions primarily as a lipid phosphatase to regulate crucial signal transduction pathways; a key target is phosphatidylinositol 3,4,5-trisphosphate. In addition, it displays weak tyrosine phosphatase activity, which may downmodulate signaling pathways that involve focal adhesion kinase (FAK) or Shc. Levels of PTEN are regulated in embryos and adult organisms, and gene-targeting studies demonstrate that it has a crucial role in normal development. Functions for PTEN have been identified in the regulation of many normal cell processes, including growth, adhesion, migration, invasion and apoptosis. PTEN appears to play particularly important roles in regulating anoikis (apoptosis of cells after loss of contact with extracellular matrix) and cell migration. Gene targeting and transient expression studies have provided insight into the specific signaling pathways that regulate these processes. Characterization of the diverse signaling networks modulated by PTEN, as well as the regulation of PTEN concentration, enzymatic activity, and coordination with other phosphatases, should provide intriguing new insight into the biology of normal and malignant cells.
Collapse
Affiliation(s)
- K M Yamada
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.
| | | |
Collapse
|
1746
|
Taniyama K, Goodison S, Ito R, Bookstein R, Miyoshi N, Tahara E, Tarin D, Urquidi V. PTEN expression is maintained in sporadic colorectal tumours. J Pathol 2001; 194:341-8. [PMID: 11439367 DOI: 10.1002/path.908] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Loss of PTEN (phosphatase and tensin homologue deleted from chromosome 10) function has been implicated in the progression of several types of cancer. Allele loss close to the PTEN locus occurs in sporadic colon cancer and germline PTEN mutations cause Cowden disease, an inherited cancer syndrome characterized by an increased incidence of gastrointestinal tract lesions that can progress to colorectal carcinoma. However, although PTEN is a good candidate for involvement in the pathogenesis of sporadic colon cancer, previous analyses have not revealed a high frequency of somatic mutations in colorectal tumours. Alternative mechanisms which could lead to a loss of PTEN expression in colon cancer have not been investigated. This study monitored PTEN mRNA and protein levels in a panel of 50 tumour tissues obtained from 35 patients with sporadic colon cancer. RT-PCR and immunohistochemistry were used to evaluate the expression of mRNA and protein, respectively, in normal, adenoma and adenocarcinoma colorectal tissues as well as in metastatic lesions. To overcome the problem of heterogeneity and normal stromal cell contamination in homogenized tissue specimens, specific cell types were isolated by microdissection prior to PCR analysis. No loss of PTEN expression was evident in any of the colon tissues examined. PTEN protein was localized exclusively in the cytoplasm of normal and tumour cells and no correlation of immunostaining intensity and tumour stage or grade was revealed. As with previous deletion and mutation analyses, the present study suggests that loss of PTEN expression is not prevalent in sporadic colon cancer.
Collapse
Affiliation(s)
- K Taniyama
- Department of Clinical Pathology, Kure Kyosai Hospital, Kure, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1747
|
Liu X, Shi Y, Han EK, Chen Z, Rosenberg SH, Giranda VL, Luo Y, Ng SC. Downregulation of Akt1 inhibits anchorage-independent cell growth and induces apoptosis in cancer cells. Neoplasia 2001; 3:278-86. [PMID: 11571628 PMCID: PMC1505865 DOI: 10.1038/sj.neo.7900163] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2001] [Accepted: 05/20/2001] [Indexed: 01/22/2023] Open
Abstract
The serine/threonine kinases, Akt1/PKBalpha, Akt2/PKBbeta, and Akt3/PKBgamma, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an Akt1 antisense oligonucleotide (AS) to specifically downregulate Akt1 protein in both cancer and normal cells. Our data indicate that Akt1 AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FACS analysis and a caspase activity assay. Conversely, Akt1 AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF), fibroblast from muscle (FBM), and mammary gland epithelial 184B5 cells. In addition, Akt1 AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akt1 is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of Akt1 may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.
Collapse
Affiliation(s)
- X Liu
- Cancer Research, Pharmaceutical Product Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1748
|
Parsons MJ, Jones RG, Tsao MS, Odermatt B, Ohashi PS, Woodgett JR. Expression of active protein kinase B in T cells perturbs both T and B cell homeostasis and promotes inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:42-8. [PMID: 11418630 DOI: 10.4049/jimmunol.167.1.42] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The molecular mechanisms that contribute to autoimmunity remain poorly defined. While inflammation is considered to be one of the major checkpoints in autoimmune disease progression, very little is known about the initiating events that trigger inflammation. We have studied transgenic mice expressing the prosurvival molecule protein kinase B/Akt under control of a T cell-specific CD2 promoter. In this study, we demonstrate that aged mice develop lymphadenopathy and splenomegaly that result from an accumulation of CD4, CD8, and unexpectedly B cells. An increased proportion of T cells express activation markers, while T cell proliferative responses remain normal. B cells are hyperproliferative in response to anti-IgM F(ab')(2) and anti-CD40, and increased IgA and IgG2a were found in the sera. In addition, a profound multiorgan lymphocytic infiltration is observed, and T cells from these mice display a defect in Fas-mediated apoptosis, which may be the mechanism underlying this phenotype. Therefore, T cell expression of active protein kinase B can alter T cell homeostasis, indirectly influence B cell homeostasis, and promote inflammation in vivo.
Collapse
Affiliation(s)
- M J Parsons
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
1749
|
Simpson L, Li J, Liaw D, Hennessy I, Oliner J, Christians F, Parsons R. PTEN expression causes feedback upregulation of insulin receptor substrate 2. Mol Cell Biol 2001; 21:3947-58. [PMID: 11359902 PMCID: PMC87057 DOI: 10.1128/mcb.21.12.3947-3958.2001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PTEN is a tumor suppressor that antagonizes phosphatidylinositol-3 kinase (PI3K) by dephosphorylating the D3 position of phosphatidylinositol (3,4,5)-triphosphate (PtdIns-3,4,5-P3). Given the importance of PTEN in regulating PtdIns-3,4,5-P3 levels, we used Affymetrix GeneChip arrays to identify genes regulated by PTEN. PTEN expression rapidly reduced the activity of Akt, which was followed by a G(1) arrest and eventually apoptosis. The gene encoding insulin receptor substrate 2 (IRS-2), a mediator of insulin signaling, was found to be the most induced gene at all time points. A PI3K-specific inhibitor, LY294002, also upregulated IRS-2, providing evidence that it was the suppression of the PI3K pathway that was responsible for the message upregulation. In addition, PTEN, LY294002, and rapamycin, an inhibitor of mammalian target of rapamycin, caused a reduction in the molecular weight of IRS-2 and an increase in the association of IRS-2 with PI3K. Apparently, PTEN inhibits a negative regulator of IRS-2 to upregulate the IRS-2-PI3K interaction. These studies suggest that PtdIns-3,4,5-P3 levels regulate the specific activity and amount of IRS-2 available for insulin signaling.
Collapse
Affiliation(s)
- L Simpson
- Institute of Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
1750
|
Marshall JG, Booth JW, Stambolic V, Mak T, Balla T, Schreiber AD, Meyer T, Grinstein S. Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fc gamma receptor-mediated phagocytosis. J Cell Biol 2001; 153:1369-80. [PMID: 11425868 PMCID: PMC2150726 DOI: 10.1083/jcb.153.7.1369] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Accepted: 05/18/2001] [Indexed: 11/23/2022] Open
Abstract
Phagocytosis is a highly localized and rapid event, requiring the generation of spatially and temporally restricted signals. Because phosphatidylinositol 3-kinase (PI3K) plays an important role in the innate immune response, we studied the generation and distribution of 3' phosphoinositides (3'PIs) in macrophages during the course of phagocytosis. The presence of 3'PI was monitored noninvasively in cells transfected with chimeras of green fluorescent protein and the pleckstrin homology domain of either Akt, Btk, or Gab1. Although virtually undetectable in unstimulated cells, 3'PI rapidly accumulated at sites of phagocytosis. This accumulation was sharply restricted to the phagosomal cup, with little 3'PI detectable in the immediately adjacent areas of the plasmalemma. Measurements of fluorescence recovery after photobleaching were made to estimate the mobility of lipids in the cytosolic monolayer of the phagosomal membrane. Stimulation of phagocytic receptors induced a marked reduction of lipid mobility that likely contributes to the restricted distribution of 3'PI at the cup. 3'PI accumulation during phagocytosis was transient, terminating shortly after sealing of the phagosomal vacuole. Two factors contribute to the rapid disappearance of 3'PI: the dissociation of the type I PI3K from the phagosomal membrane and the persistent accumulation of phosphoinositide phosphatases.
Collapse
Affiliation(s)
- John G. Marshall
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - James W. Booth
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | - Tak Mak
- Amgen Institute, Toronto, Ontario M5G 2C1, Canada
| | - Tamas Balla
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Alan D. Schreiber
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Tobias Meyer
- Department of Molecular Pharmacology, Stanford University, Stanford, California 94305
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|