1701
|
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020. [DOI: 10.1126/science.abb2507 and 1=2-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Structure of the nCoV trimeric spike
The World Health Organization has declared the outbreak of a novel coronavirus (2019-nCoV) to be a public health emergency of international concern. The virus binds to host cells through its trimeric spike glycoprotein, making this protein a key target for potential therapies and diagnostics. Wrapp
et al.
determined a 3.5-angstrom-resolution structure of the 2019-nCoV trimeric spike protein by cryo–electron microscopy. Using biophysical assays, the authors show that this protein binds at least 10 times more tightly than the corresponding spike protein of severe acute respiratory syndrome (SARS)–CoV to their common host cell receptor. They also tested three antibodies known to bind to the SARS-CoV spike protein but did not detect binding to the 2019-nCoV spike protein. These studies provide valuable information to guide the development of medical counter-measures for 2019-nCoV.
Science
, this issue p.
1260
Collapse
Affiliation(s)
- Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kizzmekia S. Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jory A. Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Olubukola Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
1702
|
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020. [PMID: 32075877 DOI: 10.1126/science:abb2507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The outbreak of a novel coronavirus (2019-nCoV) represents a pandemic threat that has been declared a public health emergency of international concern. The CoV spike (S) glycoprotein is a key target for vaccines, therapeutic antibodies, and diagnostics. To facilitate medical countermeasure development, we determined a 3.5-angstrom-resolution cryo-electron microscopy structure of the 2019-nCoV S trimer in the prefusion conformation. The predominant state of the trimer has one of the three receptor-binding domains (RBDs) rotated up in a receptor-accessible conformation. We also provide biophysical and structural evidence that the 2019-nCoV S protein binds angiotensin-converting enzyme 2 (ACE2) with higher affinity than does severe acute respiratory syndrome (SARS)-CoV S. Additionally, we tested several published SARS-CoV RBD-specific monoclonal antibodies and found that they do not have appreciable binding to 2019-nCoV S, suggesting that antibody cross-reactivity may be limited between the two RBDs. The structure of 2019-nCoV S should enable the rapid development and evaluation of medical countermeasures to address the ongoing public health crisis.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- Betacoronavirus/chemistry
- Betacoronavirus/immunology
- Betacoronavirus/metabolism
- Betacoronavirus/ultrastructure
- Cross Reactions
- Cryoelectron Microscopy
- Image Processing, Computer-Assisted
- Models, Molecular
- Peptidyl-Dipeptidase A/metabolism
- Protein Binding
- Protein Conformation
- Protein Domains
- Protein Multimerization
- Receptors, Coronavirus
- Receptors, Virus/metabolism
- Severe acute respiratory syndrome-related coronavirus/chemistry
- Severe acute respiratory syndrome-related coronavirus/immunology
- Severe acute respiratory syndrome-related coronavirus/ultrastructure
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Spike Glycoprotein, Coronavirus/ultrastructure
Collapse
Affiliation(s)
- Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jory A Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Olubukola Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
1703
|
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020. [DOI: 10.1126/science.abb2507 or(1=2)-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Structure of the nCoV trimeric spike
The World Health Organization has declared the outbreak of a novel coronavirus (2019-nCoV) to be a public health emergency of international concern. The virus binds to host cells through its trimeric spike glycoprotein, making this protein a key target for potential therapies and diagnostics. Wrapp
et al.
determined a 3.5-angstrom-resolution structure of the 2019-nCoV trimeric spike protein by cryo–electron microscopy. Using biophysical assays, the authors show that this protein binds at least 10 times more tightly than the corresponding spike protein of severe acute respiratory syndrome (SARS)–CoV to their common host cell receptor. They also tested three antibodies known to bind to the SARS-CoV spike protein but did not detect binding to the 2019-nCoV spike protein. These studies provide valuable information to guide the development of medical counter-measures for 2019-nCoV.
Science
, this issue p.
1260
Collapse
Affiliation(s)
- Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kizzmekia S. Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jory A. Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Olubukola Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
1704
|
Shang J, Wan Y, Liu C, Yount B, Gully K, Yang Y, Auerbach A, Peng G, Baric R, Li F. Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry. PLoS Pathog 2020; 16:e1008392. [PMID: 32150576 PMCID: PMC7082060 DOI: 10.1371/journal.ppat.1008392] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/19/2020] [Accepted: 02/08/2020] [Indexed: 12/03/2022] Open
Abstract
Coronaviruses recognize a variety of receptors using different domains of their envelope-anchored spike protein. How these diverse receptor recognition patterns affect viral entry is unknown. Mouse hepatitis coronavirus (MHV) is the only known coronavirus that uses the N-terminal domain (NTD) of its spike to recognize a protein receptor, CEACAM1a. Here we determined the cryo-EM structure of MHV spike complexed with mouse CEACAM1a. The trimeric spike contains three receptor-binding S1 heads sitting on top of a trimeric membrane-fusion S2 stalk. Three receptor molecules bind to the sides of the spike trimer, where three NTDs are located. Receptor binding induces structural changes in the spike, weakening the interactions between S1 and S2. Using protease sensitivity and negative-stain EM analyses, we further showed that after protease treatment of the spike, receptor binding facilitated the dissociation of S1 from S2, allowing S2 to transition from pre-fusion to post-fusion conformation. Together these results reveal a new role of receptor binding in MHV entry: in addition to its well-characterized role in viral attachment to host cells, receptor binding also induces the conformational change of the spike and hence the fusion of viral and host membranes. Our study provides new mechanistic insight into coronavirus entry and highlights the diverse entry mechanisms used by different viruses. Coronaviruses recognize many receptors using their envelope-anchored spike protein. The role of receptor binding in coronavirus entry into host cells is a fundamental question in virology. Mouse hepatitis coronavirus (MHV) is unique among all coronaviruses in that it uses the N-terminal domain (NTD) of its spike protein to bind a protein receptor CEACAM1a. While extensive research has been performed on the cell entry mechanisms of coronaviruses that use a different domain of their spike protein for receptor binding, the cell entry mechanism for MHV is still elusive. Here we determined the cryo-EM structure of MHV spike protein complexed with CEACAM1a. The structure reveals unique features of receptor binding by MHV spike that facilitate the structural changes of MHV spike and promote cell entry of MHV. We further confirmed the structural results with biochemical and negative-stain EM analyses. These results suggest that receptor binding plays dual roles in MHV entry: it promotes both viral attachment to host cells and the fusion of host and viral membranes. Our study provides insight into the molecular mechanism of MHV entry, demonstrating how cell entry of MHV has been adapted to its unique way of receptor binding.
Collapse
Affiliation(s)
- Jian Shang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Yushun Wan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Chang Liu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kendra Gully
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yang Yang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Ashley Auerbach
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Guiqing Peng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
1705
|
Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol 2020; 92:495-500. [PMID: 32022276 PMCID: PMC7166505 DOI: 10.1002/jmv.25698] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 11/10/2022]
Abstract
The 2019 novel coronavirus (2019-nCoV) outbreak has caused a large number of deaths with thousands of confirmed cases worldwide, especially in East Asia. This study took an immunoinformatics approach to identify significant cytotoxic T lymphocyte (CTL) and B cell epitopes in the 2019-nCoV surface glycoprotein. Also, interactions between identified CTL epitopes and their corresponding major histocompatibility complex (MHC) class I supertype representatives prevalent in China were studied by molecular dynamics simulations. We identified five CTL epitopes, three sequential B cell epitopes and five discontinuous B cell epitopes in the viral surface glycoprotein. Also, during simulations, the CTL epitopes were observed to be binding MHC class I peptide-binding grooves via multiple contacts, with continuous hydrogen bonds and salt bridge anchors, indicating their potential in generating immune responses. Some of these identified epitopes can be potential candidates for the development of 2019-nCoV vaccines.
Collapse
Affiliation(s)
- Vargab Baruah
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
1706
|
Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci 2020; 12:9. [PMID: 32127517 PMCID: PMC7054527 DOI: 10.1038/s41368-020-0075-9] [Citation(s) in RCA: 1053] [Impact Index Per Article: 210.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
A novel β-coronavirus (2019-nCoV) caused severe and even fetal pneumonia explored in a seafood market of Wuhan city, Hubei province, China, and rapidly spread to other provinces of China and other countries. The 2019-nCoV was different from SARS-CoV, but shared the same host receptor the human angiotensin-converting enzyme 2 (ACE2). The natural host of 2019-nCoV may be the bat Rhinolophus affinis as 2019-nCoV showed 96.2% of whole-genome identity to BatCoV RaTG13. The person-to-person transmission routes of 2019-nCoV included direct transmission, such as cough, sneeze, droplet inhalation transmission, and contact transmission, such as the contact with oral, nasal, and eye mucous membranes. 2019-nCoV can also be transmitted through the saliva, and the fetal-oral routes may also be a potential person-to-person transmission route. The participants in dental practice expose to tremendous risk of 2019-nCoV infection due to the face-to-face communication and the exposure to saliva, blood, and other body fluids, and the handling of sharp instruments. Dental professionals play great roles in preventing the transmission of 2019-nCoV. Here we recommend the infection control measures during dental practice to block the person-to-person transmission routes in dental clinics and hospitals.
Collapse
Affiliation(s)
- Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
1707
|
Wu A, Niu P, Wang L, Zhou H, Zhao X, Wang W, Wang J, Ji C, Ding X, Wang X, Lu R, Gold S, Aliyari S, Zhang S, Vikram E, Zou A, Lenh E, Chen J, Ye F, Han N, Peng Y, Guo H, Wu G, Jiang T, Tan W, Cheng G. Mutations, Recombination and Insertion in the Evolution of 2019-nCoV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.02.29.971101. [PMID: 32511312 PMCID: PMC7217300 DOI: 10.1101/2020.02.29.971101] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The 2019 novel coronavirus (2019-nCoV or SARS-CoV-2) has spread more rapidly than any other betacoronavirus including SARS-CoV and MERS-CoV. However, the mechanisms responsible for infection and molecular evolution of this virus remained unclear. Methods We collected and analyzed 120 genomic sequences of 2019-nCoV including 11 novel genomes from patients in China. Through comprehensive analysis of the available genome sequences of 2019-nCoV strains, we have tracked multiple inheritable SNPs and determined the evolution of 2019-nCoV relative to other coronaviruses. Results Systematic analysis of 120 genomic sequences of 2019-nCoV revealed co-circulation of two genetic subgroups with distinct SNPs markers, which can be used to trace the 2019-nCoV spreading pathways to different regions and countries. Although 2019-nCoV, human and bat SARS-CoV share high homologous in overall genome structures, they evolved into two distinct groups with different receptor entry specificities through potential recombination in the receptor binding regions. In addition, 2019-nCoV has a unique four amino acid insertion between S1 and S2 domains of the spike protein, which created a potential furin or TMPRSS2 cleavage site. Conclusions Our studies provided comprehensive insights into the evolution and spread of the 2019-nCoV. Our results provided evidence suggesting that 2019-nCoV may increase its infectivity through the receptor binding domain recombination and a cleavage site insertion. One Sentence Summary Novel 2019-nCoV sequences revealed the evolution and specificity of betacoronavirus with possible mechanisms of enhanced infectivity.
Collapse
|
1708
|
Wang N, Shang J, Jiang S, Du L. Subunit Vaccines Against Emerging Pathogenic Human Coronaviruses. Front Microbiol 2020; 11:298. [PMID: 32265848 PMCID: PMC7105881 DOI: 10.3389/fmicb.2020.00298] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Seven coronaviruses (CoVs) have been isolated from humans so far. Among them, three emerging pathogenic CoVs, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and a newly identified CoV (2019-nCoV), once caused or continue to cause severe infections in humans, posing significant threats to global public health. SARS-CoV infection in humans (with about 10% case fatality rate) was first reported from China in 2002, while MERS-CoV infection in humans (with about 34.4% case fatality rate) was first reported from Saudi Arabia in June 2012. 2019-nCoV was first reported from China in December 2019, and is currently infecting more than 70000 people (with about 2.7% case fatality rate). Both SARS-CoV and MERS-CoV are zoonotic viruses, using bats as their natural reservoirs, and then transmitting through intermediate hosts, leading to human infections. Nevertheless, the intermediate host for 2019-nCoV is still under investigation and the vaccines against this new CoV have not been available. Although a variety of vaccines have been developed against infections of SARS-CoV and MERS-CoV, none of them has been approved for use in humans. In this review, we have described the structure and function of key proteins of emerging human CoVs, overviewed the current vaccine types to be developed against SARS-CoV and MERS-CoV, and summarized recent advances in subunit vaccines against these two pathogenic human CoVs. These subunit vaccines are introduced on the basis of full-length spike (S) protein, receptor-binding domain (RBD), non-RBD S protein fragments, and non-S structural proteins, and the potential factors affecting these subunit vaccines are also illustrated. Overall, this review will be helpful for rapid design and development of vaccines against the new 2019-nCoV and any future CoVs with pandemic potential. This review was written for the topic of Antivirals for Emerging Viruses: Vaccines and Therapeutics in the Virology section of Frontiers in Microbiology.
Collapse
Affiliation(s)
- Ning Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Jian Shang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| |
Collapse
|
1709
|
Robson B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput Biol Med 2020; 119:103670. [PMID: 32209231 PMCID: PMC7094376 DOI: 10.1016/j.compbiomed.2020.103670] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022]
Abstract
This paper concerns study of the genome of the Wuhan Seafood Market isolate believed to represent the causative agent of the disease COVID-19. This is to find a short section or sections of viral protein sequence suitable for preliminary design proposal for a peptide synthetic vaccine and a peptidomimetic therapeutic, and to explore some design possibilities. The project was originally directed towards a use case for the Q-UEL language and its implementation in a knowledge management and automated inference system for medicine called the BioIngine, but focus here remains mostly on the virus itself. However, using Q-UEL systems to access relevant and emerging literature, and to interact with standard publically available bioinformatics tools on the Internet, did help quickly identify sequences of amino acids that are well conserved across many coronaviruses including 2019-nCoV. KRSFIEDLLFNKV was found to be particularly well conserved in this study and corresponds to the region around one of the known cleavage sites of the SARS virus that are believed to be required for virus activation for cell entry. This sequence motif and surrounding variations formed the basis for proposing a specific synthetic vaccine epitope and peptidomimetic agent. The work can, nonetheless, be described in traditional bioinformatics terms, and readily reproduced by others, albeit with the caveat that new data and research into 2019-nCoV is emerging and evolving at an explosive pace. Preliminary studies using molecular modeling and docking, and in that context the potential value of certain known herbal extracts, are also described. Bioinformatics studies are carried out on the COVID-19 virus. A sequence motif KRSFIEDLLFNKV is of particular interest. Based on the above, synthetic peptides are designed. Preliminary considerations are also given to non-peptide organic molecules.
Collapse
Affiliation(s)
- B Robson
- Ingine Inc., Cleveland, Ohio, USA; The Dirac Foundation, Oxfordshire, UK.
| |
Collapse
|
1710
|
Meganathan M, Madhana Gopal K, Kameswari P. D. Evaluation of COVID-19 Cognizance among Pharmacy Students of South India. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2020. [DOI: 10.18311/ajprhc/2021/26387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
1711
|
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5:562-569. [PMID: 32094589 PMCID: PMC7095430 DOI: 10.1038/s41564-020-0688-y] [Citation(s) in RCA: 2146] [Impact Index Per Article: 429.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 11/22/2022]
Abstract
Over the past 20 years, several coronaviruses have crossed the species barrier into humans, causing outbreaks of severe, and often fatal, respiratory illness. Since SARS-CoV was first identified in animal markets, global viromics projects have discovered thousands of coronavirus sequences in diverse animals and geographic regions. Unfortunately, there are few tools available to functionally test these viruses for their ability to infect humans, which has severely hampered efforts to predict the next zoonotic viral outbreak. Here, we developed an approach to rapidly screen lineage B betacoronaviruses, such as SARS-CoV and the recent SARS-CoV-2, for receptor usage and their ability to infect cell types from different species. We show that host protease processing during viral entry is a significant barrier for several lineage B viruses and that bypassing this barrier allows several lineage B viruses to enter human cells through an unknown receptor. We also demonstrate how different lineage B viruses can recombine to gain entry into human cells, and confirm that human ACE2 is the receptor for the recently emerging SARS-CoV-2. This study describes the development of an approach to rapidly screen lineage B betacoronaviruses, such as SARS-CoV and the recently emerged SARS-CoV-2, for receptor usage and their ability to infect cell types from different species. Using it, they confirm human ACE2 as the receptor for SARs-CoV-2 and show that host protease processing during viral entry is a significant barrier for viral entry.
Collapse
Affiliation(s)
- Michael Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
1712
|
Shanmugaraj B, Malla A, Phoolcharoen W. Emergence of Novel Coronavirus 2019-nCoV: Need for Rapid Vaccine and Biologics Development. Pathogens 2020; 9:E148. [PMID: 32098302 PMCID: PMC7168632 DOI: 10.3390/pathogens9020148] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Novel Coronavirus (2019-nCoV) is an emerging pathogen that was first identified in Wuhan, China in late December 2019. This virus is responsible for the ongoing outbreak that causes severe respiratory illness and pneumonia-like infection in humans. Due to the increasing number of cases in China and outside China, the WHO declared coronavirus as a global health emergency. Nearly 35,000 cases were reported and at least 24 other countries or territories have reported coronavirus cases as early on as February. Inter-human transmission was reported in a few countries, including the United States. Neither an effective anti-viral nor a vaccine is currently available to treat this infection. As the virus is a newly emerging pathogen, many questions remain unanswered regarding the virus's reservoirs, pathogenesis, transmissibility, and much more is unknown. The collaborative efforts of researchers are needed to fill the knowledge gaps about this new virus, to develop the proper diagnostic tools, and effective treatment to combat this infection. Recent advancements in plant biotechnology proved that plants have the ability to produce vaccines or biopharmaceuticals rapidly in a short time. In this review, the outbreak of 2019-nCoV in China, the need for rapid vaccine development, and the potential of a plant system for biopharmaceutical development are discussed.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ashwini Malla
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waranyoo Phoolcharoen
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
1713
|
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395:565-574. [PMID: 32007145 PMCID: PMC7159086 DOI: 10.1016/s0140-6736(20)30251-8] [Citation(s) in RCA: 7460] [Impact Index Per Article: 1492.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/02/2022]
Abstract
BACKGROUND In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. METHODS We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. FINDINGS The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. INTERPRETATION 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. FUNDING National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.
Collapse
Affiliation(s)
- Roujian Lu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiang Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Peihua Niu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bo Yang
- Division for Viral Disease Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Honglong Wu
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Wenling Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Zhu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuhai Bi
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Xuejun Ma
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Faxian Zhan
- Division for Viral Disease Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Liang Wang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Tao Hu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Zhenhong Hu
- Central Theater, People's Liberation Army General Hospital, Wuhan, China
| | - Weimin Zhou
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Medical Virology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yao Meng
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Lin
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Jianying Yuan
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Zhihao Xie
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Jinmin Ma
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dayan Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - George F Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weijun Chen
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China; The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Central Theater, People's Liberation Army General Hospital, Wuhan, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
1714
|
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367:1260-1263. [PMID: 32075877 PMCID: PMC7164637 DOI: 10.1126/science.abb2507] [Citation(s) in RCA: 6306] [Impact Index Per Article: 1261.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 11/02/2022]
Abstract
The outbreak of a novel coronavirus (2019-nCoV) represents a pandemic threat that has been declared a public health emergency of international concern. The CoV spike (S) glycoprotein is a key target for vaccines, therapeutic antibodies, and diagnostics. To facilitate medical countermeasure development, we determined a 3.5-angstrom-resolution cryo-electron microscopy structure of the 2019-nCoV S trimer in the prefusion conformation. The predominant state of the trimer has one of the three receptor-binding domains (RBDs) rotated up in a receptor-accessible conformation. We also provide biophysical and structural evidence that the 2019-nCoV S protein binds angiotensin-converting enzyme 2 (ACE2) with higher affinity than does severe acute respiratory syndrome (SARS)-CoV S. Additionally, we tested several published SARS-CoV RBD-specific monoclonal antibodies and found that they do not have appreciable binding to 2019-nCoV S, suggesting that antibody cross-reactivity may be limited between the two RBDs. The structure of 2019-nCoV S should enable the rapid development and evaluation of medical countermeasures to address the ongoing public health crisis.
Collapse
Affiliation(s)
- Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jory A Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Olubukola Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
1715
|
Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30339-9. [PMID: 32081428 PMCID: PMC7092824 DOI: 10.1016/j.bbrc.2020.02.071] [Citation(s) in RCA: 500] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023]
Abstract
2019-nCoV is a newly identified coronavirus with high similarity to SARS-CoV. We performed a structural analysis of the receptor binding domain (RBD) of spike glycoprotein responsible for entry of coronaviruses into host cells. The RBDs from the two viruses share 72% identity in amino acid sequences, and molecular simulation reveals highly similar ternary structures. However, 2019-nCoV has a distinct loop with flexible glycyl residues replacing rigid prolyl residues in SARS-CoV. Molecular modeling revealed that 2019-nCoV RBD has a stronger interaction with angiotensin converting enzyme 2 (ACE2). A unique phenylalanine F486 in the flexible loop likely plays a major role because its penetration into a deep hydrophobic pocket in ACE2. ACE2 is widely expressed with conserved primary structures throughout the animal kingdom from fish, amphibians, reptiles, birds, to mammals. Structural analysis suggests that ACE2 from these animals can potentially bind RBD of 2019-nCoV, making them all possible natural hosts for the virus. 2019-nCoV is thought to be transmitted through respiratory droplets. However, since ACE2 is predominantly expressed in intestines, testis, and kidney, fecal-oral and other routes of transmission are also possible. Finally, antibodies and small molecular inhibitors that can block the interaction of ACE2 with RBD should be developed to combat the virus.
Collapse
Affiliation(s)
- Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yihang Pan
- Edmond H. Fischer Translational Medical Research Laboratory, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Zhizhuang Joe Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
1716
|
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.02.11.944462. [PMID: 32511295 PMCID: PMC7217118 DOI: 10.1101/2020.02.11.944462] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The outbreak of a novel betacoronavirus (2019-nCov) represents a pandemic threat that has been declared a public health emergency of international concern. The CoV spike (S) glycoprotein is a key target for urgently needed vaccines, therapeutic antibodies, and diagnostics. To facilitate medical countermeasure (MCM) development we determined a 3.5 Å-resolution cryo-EM structure of the 2019-nCoV S trimer in the prefusion conformation. The predominant state of the trimer has one of the three receptor-binding domains (RBDs) rotated up in a receptor-accessible conformation. We also show biophysical and structural evidence that the 2019-nCoV S binds ACE2 with higher affinity than SARS-CoV S. Additionally we tested several published SARS-CoV RBD-specific monoclonal antibodies and found that they do not have appreciable binding to nCoV-2019 S, suggesting antibody cross-reactivity may be limited between the two virus RBDs. The atomic-resolution structure of 2019-nCoV S should enable rapid development and evaluation of MCMs to address the ongoing public health crisis.
Collapse
Affiliation(s)
- Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kizzmekia S. Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jory A. Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Olubukola Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
1717
|
Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, He L, Chen Y, Wu J, Shi Z, Zhou Y, Du L, Li F. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J Virol 2020. [PMID: 31826992 DOI: 10.1128/jvi.02015.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Antibody-dependent enhancement (ADE) of viral entry has been a major concern for epidemiology, vaccine development, and antibody-based drug therapy. However, the molecular mechanism behind ADE is still elusive. Coronavirus spike protein mediates viral entry into cells by first binding to a receptor on the host cell surface and then fusing viral and host membranes. In this study, we investigated how a neutralizing monoclonal antibody (MAb), which targets the receptor-binding domain (RBD) of Middle East respiratory syndrome (MERS) coronavirus spike, mediates viral entry using pseudovirus entry and biochemical assays. Our results showed that MAb binds to the virus surface spike, allowing it to undergo conformational changes and become prone to proteolytic activation. Meanwhile, MAb binds to cell surface IgG Fc receptor, guiding viral entry through canonical viral-receptor-dependent pathways. Our data suggest that the antibody/Fc-receptor complex functionally mimics viral receptor in mediating viral entry. Moreover, we characterized MAb dosages in viral-receptor-dependent, Fc-receptor-dependent, and both-receptors-dependent viral entry pathways, delineating guidelines on MAb usages in treating viral infections. Our study reveals a novel molecular mechanism for antibody-enhanced viral entry and can guide future vaccination and antiviral strategies.IMPORTANCE Antibody-dependent enhancement (ADE) of viral entry has been observed for many viruses. It was shown that antibodies target one serotype of viruses but only subneutralize another, leading to ADE of the latter viruses. Here we identify a novel mechanism for ADE: a neutralizing antibody binds to the surface spike protein of coronaviruses like a viral receptor, triggers a conformational change of the spike, and mediates viral entry into IgG Fc receptor-expressing cells through canonical viral-receptor-dependent pathways. We further evaluated how antibody dosages impacted viral entry into cells expressing viral receptor, Fc receptor, or both receptors. This study reveals complex roles of antibodies in viral entry and can guide future vaccine design and antibody-based drug therapy.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibody-Dependent Enhancement
- Cell Line
- Dipeptidyl Peptidase 4/metabolism
- Humans
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/metabolism
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- Middle East Respiratory Syndrome Coronavirus/physiology
- Peptide Hydrolases/metabolism
- Proprotein Convertases/antagonists & inhibitors
- Proprotein Convertases/metabolism
- Protein Conformation
- Protein Domains
- Protein Multimerization
- Receptors, Fc/metabolism
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Receptors, Virus/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Trypsin/metabolism
- Virus Internalization
Collapse
Affiliation(s)
- Yushun Wan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Jian Shang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Shihui Sun
- Laboratory of Infection and Immunity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Jing Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Qibin Geng
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Lei He
- Laboratory of Infection and Immunity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuehong Chen
- Laboratory of Infection and Immunity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Zhengli Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yusen Zhou
- Laboratory of Infection and Immunity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
1718
|
Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J Virol 2020; 94:JVI.02015-19. [PMID: 31826992 PMCID: PMC7022351 DOI: 10.1128/jvi.02015-19] [Citation(s) in RCA: 429] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023] Open
Abstract
Antibody-dependent enhancement (ADE) of viral entry has been observed for many viruses. It was shown that antibodies target one serotype of viruses but only subneutralize another, leading to ADE of the latter viruses. Here we identify a novel mechanism for ADE: a neutralizing antibody binds to the surface spike protein of coronaviruses like a viral receptor, triggers a conformational change of the spike, and mediates viral entry into IgG Fc receptor-expressing cells through canonical viral-receptor-dependent pathways. We further evaluated how antibody dosages impacted viral entry into cells expressing viral receptor, Fc receptor, or both receptors. This study reveals complex roles of antibodies in viral entry and can guide future vaccine design and antibody-based drug therapy. Antibody-dependent enhancement (ADE) of viral entry has been a major concern for epidemiology, vaccine development, and antibody-based drug therapy. However, the molecular mechanism behind ADE is still elusive. Coronavirus spike protein mediates viral entry into cells by first binding to a receptor on the host cell surface and then fusing viral and host membranes. In this study, we investigated how a neutralizing monoclonal antibody (MAb), which targets the receptor-binding domain (RBD) of Middle East respiratory syndrome (MERS) coronavirus spike, mediates viral entry using pseudovirus entry and biochemical assays. Our results showed that MAb binds to the virus surface spike, allowing it to undergo conformational changes and become prone to proteolytic activation. Meanwhile, MAb binds to cell surface IgG Fc receptor, guiding viral entry through canonical viral-receptor-dependent pathways. Our data suggest that the antibody/Fc-receptor complex functionally mimics viral receptor in mediating viral entry. Moreover, we characterized MAb dosages in viral-receptor-dependent, Fc-receptor-dependent, and both-receptors-dependent viral entry pathways, delineating guidelines on MAb usages in treating viral infections. Our study reveals a novel molecular mechanism for antibody-enhanced viral entry and can guide future vaccination and antiviral strategies. IMPORTANCE Antibody-dependent enhancement (ADE) of viral entry has been observed for many viruses. It was shown that antibodies target one serotype of viruses but only subneutralize another, leading to ADE of the latter viruses. Here we identify a novel mechanism for ADE: a neutralizing antibody binds to the surface spike protein of coronaviruses like a viral receptor, triggers a conformational change of the spike, and mediates viral entry into IgG Fc receptor-expressing cells through canonical viral-receptor-dependent pathways. We further evaluated how antibody dosages impacted viral entry into cells expressing viral receptor, Fc receptor, or both receptors. This study reveals complex roles of antibodies in viral entry and can guide future vaccine design and antibody-based drug therapy.
Collapse
|
1719
|
Wong MC, Javornik Cregeen SJ, Ajami NJ, Petrosino JF. Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.02.07.939207. [PMID: 32511310 PMCID: PMC7217297 DOI: 10.1101/2020.02.07.939207] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A novel coronavirus (nCoV-2019) was the cause of an outbreak of respiratory illness detected in Wuhan, Hubei Province, China in December of 2019. Genomic analyses of nCoV-2019 determined a 96% resemblance with a coronavirus isolated from a bat in 2013 (RaTG13); however, the receptor binding motif (RBM) of these two genomes share low sequence similarity. This divergence suggests a possible alternative source for the RBM coding sequence in nCoV-2019. We identified high sequence similarity in the RBM between nCoV-2019 and a coronavirus genome reconstructed from a viral metagenomic dataset from pangolins possibly indicating a more complex origin for nCoV-2019.
Collapse
|
1720
|
Qing E, Hantak M, Perlman S, Gallagher T. Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection. mBio 2020; 11:e02764-19. [PMID: 32047128 PMCID: PMC7018658 DOI: 10.1128/mbio.02764-19] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Coronaviruses (CoVs) are common human and animal pathogens that can transmit zoonotically and cause severe respiratory disease syndromes. CoV infection requires spike proteins, which bind viruses to host cell receptors and catalyze virus-cell membrane fusion. Several CoV strains have spike proteins with two receptor-binding domains, an S1A that engages host sialic acids and an S1B that recognizes host transmembrane proteins. As this bivalent binding may enable broad zoonotic CoV infection, we aimed to identify roles for each receptor in distinct infection stages. Focusing on two betacoronaviruses, murine JHM-CoV and human Middle East respiratory syndrome coronavirus (MERS-CoV), we found that virus particle binding to cells was mediated by sialic acids; however, the transmembrane protein receptors were required for a subsequent virus infection. These results favored a two-step process in which viruses first adhere to sialic acids and then require subsequent engagement with protein receptors during infectious cell entry. However, sialic acids sufficiently facilitated the later stages of virus spread through cell-cell membrane fusion, without requiring protein receptors. This virus spread in the absence of the prototype protein receptors was increased by adaptive S1A mutations. Overall, these findings reveal roles for sialic acids in virus-cell binding, viral spike protein-directed cell-cell fusion, and resultant spread of CoV infections.IMPORTANCE CoVs can transmit from animals to humans to cause serious disease. This zoonotic transmission uses spike proteins, which bind CoVs to cells with two receptor-binding domains. Here, we identified the roles for the two binding processes in the CoV infection process. Binding to sialic acids promoted infection and also supported the intercellular expansion of CoV infections through syncytial development. Adaptive mutations in the sialic acid-binding spike domains increased the intercellular expansion process. These findings raise the possibility that the lectin-like properties of many CoVs contribute to facile zoonotic transmission and intercellular spread within infected organisms.
Collapse
Affiliation(s)
- Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Michael Hantak
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
1721
|
Abstract
An in-depth annotation of the newly discovered coronavirus (2019-nCoV) genome has revealed differences between 2019-nCoV and severe acute respiratory syndrome (SARS) or SARS-like coronaviruses. A systematic comparison identified 380 amino acid substitutions between these coronaviruses, which may have caused functional and pathogenic divergence of 2019-nCoV.
Collapse
|
1722
|
Gao K, Nguyen DD, Wang R, Wei GW. Machine intelligence design of 2019-nCoV drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.01.30.927889. [PMID: 32511308 PMCID: PMC7217289 DOI: 10.1101/2020.01.30.927889] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wuhan coronavirus, called 2019-nCoV, is a newly emerged virus that infected more than 9692 people and leads to more than 213 fatalities by January 30, 2020. Currently, there is no effective treatment for this epidemic. However, the viral protease of a coronavirus is well-known to be essential for its replication and thus is an effective drug target. Fortunately, the sequence identity of the 2019-nCoV protease and that of severe-acute respiratory syndrome virus (SARS-CoV) is as high as 96.1%. We show that the protease inhibitor binding sites of 2019-nCoV and SARS-CoV are almost identical, which means all potential anti-SARS-CoV chemotherapies are also potential 2019-nCoV drugs. Here, we report a family of potential 2019-nCoV drugs generated by a machine intelligence-based generative network complex (GNC). The potential effectiveness of treating 2019-nCoV by using some existing HIV drugs is also analyzed.
Collapse
Affiliation(s)
- Kaifu Gao
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Duc Duy Nguyen
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Rui Wang
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
| |
Collapse
|
1723
|
Letko M, Munster V. Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.01.22.915660. [PMID: 32511294 PMCID: PMC7217099 DOI: 10.1101/2020.01.22.915660] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Over the past 20 years, several coronaviruses have crossed the species barrier into humans, causing outbreaks of severe, and often fatal, respiratory illness. Since SARS-CoV was first identified in animal markets, global viromics projects have discovered thousands of coronavirus sequences in diverse animals and geographic regions. Unfortunately, there are few tools available to functionally test these novel viruses for their ability to infect humans, which has severely hampered efforts to predict the next zoonotic viral outbreak. Here we developed an approach to rapidly screen lineage B betacoronaviruses, such as SARS-CoV and the recent 2019-nCoV, for receptor usage and their ability to infect cell types from different species. We show that host protease processing during viral entry is a significant barrier for several lineage B viruses and that bypassing this barrier allows several lineage B viruses to enter human cells through an unknown receptor. We also demonstrate how different lineage B viruses can recombine to gain entry into human cells and confirm that human ACE2 is the receptor for the recently emerging 2019-nCoV.
Collapse
Affiliation(s)
- Michael Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| |
Collapse
|
1724
|
Jaimes JA, Millet JK, Stout AE, André NM, Whittaker GR. A Tale of Two Viruses: The Distinct Spike Glycoproteins of Feline Coronaviruses. Viruses 2020; 12:v12010083. [PMID: 31936749 PMCID: PMC7019228 DOI: 10.3390/v12010083] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 11/16/2022] Open
Abstract
Feline coronavirus (FCoV) is a complex viral agent that causes a variety of clinical manifestations in cats, commonly known as feline infectious peritonitis (FIP). It is recognized that FCoV can occur in two different serotypes. However, differences in the S protein are much more than serological or antigenic variants, resulting in the effective presence of two distinct viruses. Here, we review the distinct differences in the S proteins of these viruses, which are likely to translate into distinct biological outcomes. We introduce a new concept related to the non-taxonomical classification and differentiation among FCoVs by analyzing and comparing the genetic, structural, and functional characteristics of FCoV and the FCoV S protein among the two serotypes and FCoV biotypes. Based on our analysis, we suggest that our understanding of FIP needs to consider whether the presence of these two distinct viruses has implications in clinical settings.
Collapse
Affiliation(s)
- Javier A. Jaimes
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (J.A.J.); (A.E.S.); (N.M.A.)
| | - Jean K. Millet
- Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, 78352 Jouy-en-Josas, France;
| | - Alison E. Stout
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (J.A.J.); (A.E.S.); (N.M.A.)
| | - Nicole M. André
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (J.A.J.); (A.E.S.); (N.M.A.)
| | - Gary R. Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (J.A.J.); (A.E.S.); (N.M.A.)
- Correspondence:
| |
Collapse
|
1725
|
Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans. Proc Natl Acad Sci U S A 2020; 117:1438-1446. [PMID: 31900356 PMCID: PMC6983407 DOI: 10.1073/pnas.1908898117] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We report here a 3.3-Å cryo-EM structure of feline infectious peritonitis virus (FIPV) S protein derived from the serotype I FIPV UU4 strain. The near-atomic EM map enabled ab initio modeling of 27 out of the 33 experimentally verified high-mannose and complex-type N-glycans that mask most of the protein surface. We demonstrated the feasibility to directly visualize the core fucose of a complex-type glycan, which was independently cross-validated by glycopeptide mass spectrometry analyses. There exist 3 N-glycans that wedge between 2 galectin-like domains within the S1 subunit of FIPV-UU4 S protein, resulting in a propeller-like conformation unique to all reported CoV S proteins. The results highlight a structural role of glycosylation in maintaining complex protein structures. Feline infectious peritonitis virus (FIPV) is an alphacoronavirus that causes a nearly 100% mortality rate without effective treatment. Here we report a 3.3-Å cryoelectron microscopy (cryo-EM) structure of the serotype I FIPV spike (S) protein, which is responsible for host recognition and viral entry. Mass spectrometry provided site-specific compositions of densely distributed high-mannose and complex-type N-glycans that account for 1/4 of the total molecular mass; most of the N-glycans could be visualized by cryo-EM. Specifically, the N-glycans that wedge between 2 galectin-like domains within the S1 subunit of FIPV S protein result in a unique propeller-like conformation, underscoring the importance of glycosylation in maintaining protein structures. The cleavage site within the S2 subunit responsible for activation also showed distinct structural features and glycosylation. These structural insights provide a blueprint for a better molecular understanding of the pathogenesis of FIP.
Collapse
|
1726
|
Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, Kumar S, Bhattacharyya A, Kumar H, Bansal S, Medhi B. Drug targets for corona virus: A systematic review. Indian J Pharmacol 2020; 52:56-65. [PMID: 32201449 PMCID: PMC7074424 DOI: 10.4103/ijp.ijp_115_20] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
The 2019-novel coronavirus (nCoV) is a major source of disaster in the 21th century. However, the lack of specific drugs to prevent/treat an attack is a major need at this current point of time. In this regard, we conducted a systematic review to identify major druggable targets in coronavirus (CoV). We searched PubMed and RCSB database with keywords HCoV, NCoV, corona virus, SERS-CoV, MERS-CoV, 2019-nCoV, crystal structure, X-ray crystallography structure, NMR structure, target, and drug target till Feb 3, 2020. The search identified seven major targets (spike protein, envelop protein, membrane protein, protease, nucleocapsid protein, hemagglutinin esterase, and helicase) for which drug design can be considered. There are other 16 nonstructural proteins (NSPs), which can also be considered from the drug design perspective. The major structural proteins and NSPs may serve an important role from drug design perspectives. However, the occurrence of frequent recombination events is a major deterrent factor toward the development of CoV-specific vaccines/drugs.
Collapse
Affiliation(s)
- Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nishant Shekhar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shweta Sinha
- Department of Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anusuya Bhattacharyya
- Departments of Ophthalmology, Government Medical College and Hospital, Chandigarh, India
| | - Harish Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Bansal
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
1727
|
Yamamoto V, Bolanos JF, Fiallos J, Strand SE, Morris K, Shahrokhinia S, Cushing TR, Hopp L, Tiwari A, Hariri R, Sokolov R, Wheeler C, Kaushik A, Elsayegh A, Eliashiv D, Hedrick R, Jafari B, Johnson JP, Khorsandi M, Gonzalez N, Balakhani G, Lahiri S, Ghavidel K, Amaya M, Kloor H, Hussain N, Huang E, Cormier J, Wesson Ashford J, Wang JC, Yaghobian S, Khorrami P, Shamloo B, Moon C, Shadi P, Kateb B. COVID-19: Review of a 21st Century Pandemic from Etiology to Neuro-psychiatric Implications. J Alzheimers Dis 2020; 77:459-504. [PMID: 32925078 PMCID: PMC7592693 DOI: 10.3233/jad-200831] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
COVID-19 is a severe infectious disease that has claimed >150,000 lives and infected millions in the United States thus far, especially the elderly population. Emerging evidence has shown the virus to cause hemorrhagic and immunologic responses, which impact all organs, including lungs, kidneys, and the brain, as well as extremities. SARS-CoV-2 also affects patients', families', and society's mental health at large. There is growing evidence of re-infection in some patients. The goal of this paper is to provide a comprehensive review of SARS-CoV-2-induced disease, its mechanism of infection, diagnostics, therapeutics, and treatment strategies, while also focusing on less attended aspects by previous studies, including nutritional support, psychological, and rehabilitation of the pandemic and its management. We performed a systematic review of >1,000 articles and included 425 references from online databases, including, PubMed, Google Scholar, and California Baptist University's library. COVID-19 patients go through acute respiratory distress syndrome, cytokine storm, acute hypercoagulable state, and autonomic dysfunction, which must be managed by a multidisciplinary team including nursing, nutrition, and rehabilitation. The elderly population and those who are suffering from Alzheimer's disease and dementia related illnesses seem to be at the higher risk. There are 28 vaccines under development, and new treatment strategies/protocols are being investigated. The future management for COVID-19 should include B-cell and T-cell immunotherapy in combination with emerging prophylaxis. The mental health and illness aspect of COVID-19 are among the most important side effects of this pandemic which requires a national plan for prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Vicky Yamamoto
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- Brain Mapping Foundation (BMF), Los Angeles, CA, USA
- USC Keck School of Medicine, The USC Caruso Department of Otolaryngology-Head and Neck Surgery, Los Angeles, CA, USA
- USC-Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Joe F. Bolanos
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - John Fiallos
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Susanne E. Strand
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Kevin Morris
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Sanam Shahrokhinia
- Cedars-Sinai Medical Center, Department of Nutrition, Los Angeles, CA, USA
| | - Tim R. Cushing
- UCLA-Cedar-Sinai California Rehabilitation Institute, Los Angeles, CA, USA
| | - Lawrence Hopp
- Cedars Sinai Medical Center Department of Ophthalmology and UCLA Jules Stein Eye Institute, Los Angeles, CA, USA
| | - Ambooj Tiwari
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- New York University, Department of Neurology, New York, NY, USA
| | - Robert Hariri
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- Celularity Corporation, Warren, NJ, USA
- Weill Cornell School of Medicine, Department of Neurosurgery, New York, NY, USA
| | - Rick Sokolov
- Cedars-Sinai Medical Center, Department of Infectious Disease Los Angeles, CA, USA
| | - Christopher Wheeler
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- Brain Mapping Foundation (BMF), Los Angeles, CA, USA
- T-NeuroPharma, Albuquerque, NM, USA
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Arts, and Mathematics, Florida Polytechnic University, Lakeland, FL, USA
| | - Ashraf Elsayegh
- Cedars Sinai Medical Center, Department of Pulmonology, Los Angeles, CA, USA
| | - Dawn Eliashiv
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- UCLA David Geffen, School of Medicine, Department of Neurology, Los Angeles, CA, USA
| | - Rebecca Hedrick
- Cedars Sinai Medical Center, Department of Psychiatry, Los Angeles, CA, USA
| | - Behrouz Jafari
- University of California, Irvine, School of Medicine, Department of Medicine, Irvine, CA, USA
| | - J. Patrick Johnson
- Cedars Sinai Medical Center, Spine Institute, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Department of Neurosurgery, Los Angeles, CA, USA
| | - Mehran Khorsandi
- Cedars-Sinai Medical Center, Department of Cardiology, Los Angeles, CA, USA
| | - Nestor Gonzalez
- Cedars-Sinai Medical Center, Department of Neurosurgery, Los Angeles, CA, USA
| | - Guita Balakhani
- Cedars-Sinai Medical Center, Department of Nephrology, Los Angeles, CA, USA
| | - Shouri Lahiri
- Cedars-Sinai Medical Center, Department of Neurology, Los Angeles, CA, USA
| | - Kazem Ghavidel
- University of Tehran School of Medicine, Department of Cardiology, Tehran, Iran
| | - Marco Amaya
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Harry Kloor
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
| | - Namath Hussain
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- Loma Linda University, Department of Neurosurgery, Loma Linda, CA, USA
| | - Edmund Huang
- Cedars-Sinai Medical Center, Department of Nephrology, Los Angeles, CA, USA
| | - Jason Cormier
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- Lafayette Surgical Specialty Hospital, Lafayette, Louisiana, USA
| | - J. Wesson Ashford
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- Stanford University School of Medicine (Affiliated), Department of Psychiatry and Behavioral Science and Department of Veteran’s Affair, Palo Alto, CA, USA
| | - Jeffrey C. Wang
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- USC-Keck School of Medicine, Department of Orthopedic Surgery, Los Angeles, CA, USA
| | - Shadi Yaghobian
- Cedars-Sinai Medical Center, Department of Internal Medicine, Los Angeles, CA, USA
| | - Payman Khorrami
- Cedars Sinai Medical Center, Department of Gastroenterology, Los Angeles, CA, USA
| | - Bahman Shamloo
- Cedars Sinai Medical Center, Pain Management, Los Angeles, CA, USA
| | - Charles Moon
- Cedars Sinai Orthopaedic Center, Department of Orthopedics, Los Angeles, CA, USA
| | - Payam Shadi
- Cedars-Sinai Medical Center, Department of Internal Medicine, Los Angeles, CA, USA
| | - Babak Kateb
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
- Brain Mapping Foundation (BMF), Los Angeles, CA, USA
- Loma Linda University, Department of Neurosurgery, Loma Linda, CA, USA
- National Center for NanoBioElectronic (NCNBE), Los Angeles, CA, USA
- Brain Technology and Innovation Park, Los Angeles, CA, USA
| |
Collapse
|
1728
|
Sethi A, Sanam S, Munagalasetty S, Jayanthi S, Alvala M. Understanding the role of galectin inhibitors as potential candidates for SARS-CoV-2 spike protein: in silico studies. RSC Adv 2020; 10:29873-29884. [PMID: 35518264 PMCID: PMC9056307 DOI: 10.1039/d0ra04795c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Galectin 3 have the potential to inhibit the SARS-CoV-2 spike protein. We validated the studies by docking, MD and MM/GBSA calculations.
Collapse
Affiliation(s)
- Aaftaab Sethi
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education & Research-Hyderabad
- Balanagar
- India
| | - Swetha Sanam
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education & Research-Hyderabad
- Balanagar
- India
| | - Sharon Munagalasetty
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education & Research-Hyderabad
- Balanagar
- India
| | - Sivaraman Jayanthi
- Computational Drug Design Lab
- School of Bio Sciences and Technology
- Vellore Institute of Technology
- Vellore
- India
| | - Mallika Alvala
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education & Research-Hyderabad
- Balanagar
- India
- MARS Training Academy
| |
Collapse
|
1729
|
Ong E, Wong MU, Huffman A, He Y. COVID-19 Coronavirus Vaccine Design Using Reverse Vaccinology and Machine Learning. Front Immunol 2020. [PMID: 32719684 DOI: 10.3389/fimmu.2020.01581/full] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
To ultimately combat the emerging COVID-19 pandemic, it is desired to develop an effective and safe vaccine against this highly contagious disease caused by the SARS-CoV-2 coronavirus. Our literature and clinical trial survey showed that the whole virus, as well as the spike (S) protein, nucleocapsid (N) protein, and membrane (M) protein, have been tested for vaccine development against SARS and MERS. However, these vaccine candidates might lack the induction of complete protection and have safety concerns. We then applied the Vaxign and the newly developed machine learning-based Vaxign-ML reverse vaccinology tools to predict COVID-19 vaccine candidates. Our Vaxign analysis found that the SARS-CoV-2 N protein sequence is conserved with SARS-CoV and MERS-CoV but not from the other four human coronaviruses causing mild symptoms. By investigating the entire proteome of SARS-CoV-2, six proteins, including the S protein and five non-structural proteins (nsp3, 3CL-pro, and nsp8-10), were predicted to be adhesins, which are crucial to the viral adhering and host invasion. The S, nsp3, and nsp8 proteins were also predicted by Vaxign-ML to induce high protective antigenicity. Besides the commonly used S protein, the nsp3 protein has not been tested in any coronavirus vaccine studies and was selected for further investigation. The nsp3 was found to be more conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV than among 15 coronaviruses infecting human and other animals. The protein was also predicted to contain promiscuous MHC-I and MHC-II T-cell epitopes, and the predicted linear B-cell epitopes were found to be localized on the surface of the protein. Our predicted vaccine targets have the potential for effective and safe COVID-19 vaccine development. We also propose that an "Sp/Nsp cocktail vaccine" containing a structural protein(s) (Sp) and a non-structural protein(s) (Nsp) would stimulate effective complementary immune responses.
Collapse
Affiliation(s)
- Edison Ong
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Mei U Wong
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Anthony Huffman
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Yongqun He
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
1730
|
Chakravarti A, Upadhyay S, Bharara T, Broor S. Current understanding, knowledge gaps and a perspective on the future of COVID-19 Infections: A systematic review. Indian J Med Microbiol 2020; 38:1-8. [PMID: 32719202 PMCID: PMC7706469 DOI: 10.4103/ijmm.ijmm_20_138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
A novel coronavirus infection, which began as an outbreak of unusual viral pneumonia in Wuhan, a central city in China, has evolved into a global health crisis. The outbreak is an unembellished reminder of the hazard coronaviruses pose to public health. Government and researchers around the world have been taking swift measures to control the outbreak and conduct aetiological studies to understand the various facets of the outbreak. This review is an attempt at providing an insight about the current understanding, knowledge gaps and a perspective on the future of coronavirus disease 2019 (COVID-19) infections. All the authentic data published so far on COVID-19 has been systematically analysed. PubMed, NCBI, World Health Organisation, Ministry of Health and Family Welfare (India), and Centers for Disease Control and Prevention databases and bibliographies of relevant studies up to 22nd June 2020 have been included. The Wuhan outbreak is a stark reminder of the continuing threat posed by zoonotic diseases to global health. Despite an armamentarium of Government officials, researchers and medical fraternity working towards the containment of this novel coronavirus viral pneumonia continues to spread at an alarming rate infecting multitudes and claiming hundreds of lives.
Collapse
Affiliation(s)
- Anita Chakravarti
- Department of Microbiology, SGT University, Gurugram, Haryana, India
| | - Shalini Upadhyay
- Department of Microbiology, SGT University, Gurugram, Haryana, India
| | - Tanisha Bharara
- Department of Microbiology, SGT University, Gurugram, Haryana, India
| | - Shobha Broor
- Department of Microbiology, SGT University, Gurugram, Haryana, India
| |
Collapse
|
1731
|
Zheng Q, Lu Y, Lure F, Jaeger S, Lu P. Clinical and radiological features of novel coronavirus pneumonia. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2020; 28:391-404. [PMID: 32538893 PMCID: PMC7369043 DOI: 10.3233/xst-200687] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/18/2020] [Accepted: 05/05/2020] [Indexed: 05/02/2023]
Abstract
Recently, COVID-19 has spread in more than 100 countries and regions around the world, raising grave global concerns. COVID-19 transmits mainly through respiratory droplets and close contacts, causing cluster infections. The symptoms are dominantly fever, fatigue, and dry cough, and can be complicated with tiredness, sore throat, and headache. A few patients have symptoms such as stuffy nose, runny nose, and diarrhea. The severe disease can progress rapidly into the acute respiratory distress syndrome (ARDS). Reverse transcription polymerase chain reaction (RT-PCR) and Next-generation sequencing (NGS) are the gold standard for diagnosing COVID-19. Chest imaging is used for cross validation. Chest CT is highly recommended as the preferred imaging diagnosis method for COVID-19 due to its high density and high spatial resolution. The common CT manifestation of COVID-19 includes multiple segmental ground glass opacities (GGOs) distributed dominantly in extrapulmonary/subpleural zones and along bronchovascular bundles with crazy paving sign and interlobular septal thickening and consolidation. Pleural effusion or mediastinal lymphadenopathy is rarely seen. In CT imaging, COVID-19 manifests differently in its various stages including the early stage, the progression (consolidation) stage, and the absorption stage. In its early stage, it manifests as scattered flaky GGOs in various sizes, dominated by peripheral pulmonary zone/subpleural distributions. In the progression state, GGOs increase in number and/or size, and lung consolidations may become visible. The main manifestation in the absorption stage is interstitial change of both lungs, such as fibrous cords and reticular opacities. Differentiation between COVID-19 pneumonia and other viral pneumonias are also analyzed. Thus, CT examination can help reduce false negatives of nucleic acid tests.
Collapse
Affiliation(s)
- Qiuting Zheng
- Department of Medical Imaging, Shenzhen Center for Chronic Disease Control, Guangdong Shenzhen 518020, China
| | - Yibo Lu
- Department of Medical Imaging, The Fourth People’s Hospital of Nanning, Guangxi Nanning 530023, China
| | - Fleming Lure
- MS Technologies, 10110 Molecular Dr., Suite 305, Rockville, MD 20850, USA
- Shenzhen Zhiying Medical Co., Ltd, Guangdong Shenzhen 518020, China
| | - Stefan Jaeger
- National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Puxuan Lu
- Department of Medical Imaging, Shenzhen Center for Chronic Disease Control, Guangdong Shenzhen 518020, China
| |
Collapse
|
1732
|
Shanmugarajan D, P. P, Kumar BRP, Suresh B. Curcumin to inhibit binding of spike glycoprotein to ACE2 receptors: computational modelling, simulations, and ADMET studies to explore curcuminoids against novel SARS-CoV-2 targets. RSC Adv 2020; 10:31385-31399. [PMID: 35520671 PMCID: PMC9056388 DOI: 10.1039/d0ra03167d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/08/2020] [Indexed: 11/21/2022] Open
Abstract
The significant role of curcumin against SARS-CoV-2 drug targets to thwart virus replication and binding into the host system using the computational biology paradigm approach.
Collapse
Affiliation(s)
- Dhivya Shanmugarajan
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- JSS Academy of Higher Education & Research
- Mysuru 570 015
- India
| | - Prabitha P.
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- JSS Academy of Higher Education & Research
- Mysuru 570 015
- India
| | - B. R. Prashantha Kumar
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- JSS Academy of Higher Education & Research
- Mysuru 570 015
- India
| | - B. Suresh
- JSS Academy of Higher Education & Research
- Mysuru 570 015
- India
| |
Collapse
|
1733
|
Kasetsirikul S, Umer M, Soda N, Sreejith KR, Shiddiky MJA, Nguyen NT. Detection of the SARS-CoV-2 humanized antibody with paper-based ELISA. Analyst 2020; 145:7680-7686. [DOI: 10.1039/d0an01609h] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This work reports the development of a rapid, simple and inexpensive colorimetric paper-based assay for the detection of the severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) humanized antibody.
Collapse
Affiliation(s)
- Surasak Kasetsirikul
- School of Engineering and Build Environment (EBE)
- Griffith University
- Nathan Campus
- Australia
- Queensland Micro-and Nanotechnology Centre (QMNC)
| | - Muhammad Umer
- Queensland Micro-and Nanotechnology Centre (QMNC)
- Griffith University
- Nathan Campus
- Australia
| | - Narshone Soda
- Queensland Micro-and Nanotechnology Centre (QMNC)
- Griffith University
- Nathan Campus
- Australia
- School of Environment and Science (ESC)
| | - Kamalalayam Rajan Sreejith
- School of Engineering and Build Environment (EBE)
- Griffith University
- Nathan Campus
- Australia
- Queensland Micro-and Nanotechnology Centre (QMNC)
| | - Muhammad J. A. Shiddiky
- Queensland Micro-and Nanotechnology Centre (QMNC)
- Griffith University
- Nathan Campus
- Australia
- School of Environment and Science (ESC)
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre (QMNC)
- Griffith University
- Nathan Campus
- Australia
| |
Collapse
|
1734
|
Khasawneh AI, Humeidan AA, Alsulaiman JW, Bloukh S, Ramadan M, Al-Shatanawi TN, Awad HH, Hijazi WY, Al-Kammash KR, Obeidat N, Saleh T, Kheirallah KA. Medical Students and COVID-19: Knowledge, Attitudes, and Precautionary Measures. A Descriptive Study From Jordan. Front Public Health 2020. [PMID: 32574313 DOI: 10.3389/fpubh.2020.00253/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The recent coronavirus disease (COVID-19) pandemic is associated with increasing morbidity and mortality and has impacted the lives of the global populations. Human behavior and knowledge assessment during the crisis are critical in the overall efforts to contain the outbreak. To assess knowledge, attitude, perceptions, and precautionary measures toward COVID-19 among a sample of medical students in Jordan. This is a cross-sectional descriptive study conducted between the 16th and 19th of March 2020. Participants were students enrolled in different levels of study at the six medical schools in Jordan. An online questionnaire which was posted on online platforms was used. The questionnaire consisted of four main sections: socio-demographics, sources of information, knowledge attitudes, and precautionary measures regarding COVID-19. Medical students used mostly social media (83.4%) and online search engines (84.8%) as their preferred source of information on COVID-19 and relied less on medical search engines (64.1%). Most students believed that hand shaking (93.7%), kissing (94.7%), exposure to contaminated surfaces (97.4%), and droplet inhalation (91.0%) are the primary mode of transmission but were indecisive regarding airborne transmission with only 41.8% in support. Participants also reported that elderly with chronic illnesses are the most susceptible group for the coronavirus infection (95.0%). As a response to the COVID-19 pandemic more than 80.0% of study participants adopted social isolation strategies, regular hand washing, and enhanced personal hygiene measures as their first line of defense against the virus. In conclusion, Jordanian medical students showed expected level of knowledge about the COVID-19 virus and implemented proper strategies to prevent its spread.
Collapse
Affiliation(s)
- Ashraf I Khasawneh
- The Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Anas Abu Humeidan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Jomana W Alsulaiman
- Department of Pediatrics, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mohannad Ramadan
- School of Medicine, Jordan University of Sciences and Technology, Irbid, Jordan
| | - Tariq N Al-Shatanawi
- Department of Public Health, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Hasan H Awad
- School of Medicine, Jordan University of Sciences and Technology, Irbid, Jordan
| | - Waleed Y Hijazi
- School of Medicine, Jordan University of Sciences and Technology, Irbid, Jordan
| | - Kinda R Al-Kammash
- School of Medicine, Jordan University of Sciences and Technology, Irbid, Jordan
| | - Nail Obeidat
- School of Medicine, Jordan University of Sciences and Technology, Irbid, Jordan
| | - Tareq Saleh
- The Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Khalid A Kheirallah
- School of Medicine, Jordan University of Sciences and Technology, Irbid, Jordan
| |
Collapse
|
1735
|
Rath SL, Kumar K. Investigation of the Effect of Temperature on the Structure of SARS-CoV-2 Spike Protein by Molecular Dynamics Simulations. Front Mol Biosci 2020. [PMID: 33195427 DOI: 10.1101/2020.06.10.145086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Statistical and epidemiological data imply temperature sensitivity of the SARS-CoV-2 coronavirus. However, the molecular level understanding of the virus structure at different temperature is still not clear. Spike protein is the outermost structural protein of the SARS-CoV-2 virus which interacts with the Angiotensin Converting Enzyme 2 (ACE2), a human receptor, and enters the respiratory system. In this study, we performed an all atom molecular dynamics simulation to study the effect of temperature on the structure of the Spike protein. After 200 ns of simulation at different temperatures, we came across some interesting phenomena exhibited by the protein. We found that the solvent exposed domain of Spike protein, namely S1, is more mobile than the transmembrane domain, S2. Structural studies implied the presence of several charged residues on the surface of N-terminal Domain of S1 which are optimally oriented at 10-30°C. Bioinformatics analyses indicated that it is capable of binding to other human receptors and should not be disregarded. Additionally, we found that receptor binding motif (RBM), present on the receptor binding domain (RBD) of S1, begins to close around temperature of 40°C and attains a completely closed conformation at 50°C. We also found that the presence of glycan moieties did not influence the observed protein dynamics. Nevertheless, the closed conformation disables its ability to bind to ACE2, due to the burying of its receptor binding residues. Our results clearly show that there are active and inactive states of the protein at different temperatures. This would not only prove beneficial for understanding the fundamental nature of the virus, but would be also useful in the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Soumya Lipsa Rath
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | - Kishant Kumar
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal, India
| |
Collapse
|
1736
|
Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, Kumar S, Bhattacharyya A, Kumar H, Bansal S, Medhi B. Drug targets for corona virus: A systematic review. Indian J Pharmacol 2020. [PMID: 32201449 DOI: 10.4103/ijp.ijp.115-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
The 2019-novel coronavirus (nCoV) is a major source of disaster in the 21th century. However, the lack of specific drugs to prevent/treat an attack is a major need at this current point of time. In this regard, we conducted a systematic review to identify major druggable targets in coronavirus (CoV). We searched PubMed and RCSB database with keywords HCoV, NCoV, corona virus, SERS-CoV, MERS-CoV, 2019-nCoV, crystal structure, X-ray crystallography structure, NMR structure, target, and drug target till Feb 3, 2020. The search identified seven major targets (spike protein, envelop protein, membrane protein, protease, nucleocapsid protein, hemagglutinin esterase, and helicase) for which drug design can be considered. There are other 16 nonstructural proteins (NSPs), which can also be considered from the drug design perspective. The major structural proteins and NSPs may serve an important role from drug design perspectives. However, the occurrence of frequent recombination events is a major deterrent factor toward the development of CoV-specific vaccines/drugs.
Collapse
Affiliation(s)
- Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nishant Shekhar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shweta Sinha
- Department of Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anusuya Bhattacharyya
- Departments of Ophthalmology, Government Medical College and Hospital, Chandigarh, India
| | - Harish Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Bansal
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
1737
|
Zhang Z, Zhu Z, Chen W, Cai Z, Xu B, Tan Z, Wu A, Ge X, Guo X, Tan Z, Xia Z, Zhu H, Jiang T, Peng Y. Cell membrane proteins with high N-glycosylation, high expression and multiple interaction partners are preferred by mammalian viruses as receptors. Bioinformatics 2019; 35:723-728. [PMID: 30102334 PMCID: PMC7109886 DOI: 10.1093/bioinformatics/bty694] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/12/2018] [Accepted: 08/08/2018] [Indexed: 01/03/2023] Open
Abstract
Motivation Receptor mediated entry is the first step for viral infection. However, the question of how viruses select receptors remains unanswered. Results Here, by manually curating a high-quality database of 268 pairs of mammalian virus–host receptor interaction, which included 128 unique viral species or sub-species and 119 virus receptors, we found the viral receptors are structurally and functionally diverse, yet they had several common features when compared to other cell membrane proteins: more protein domains, higher level of N-glycosylation, higher ratio of self-interaction and more interaction partners, and higher expression in most tissues of the host. This study could deepen our understanding of virus–receptor interaction. Availability and implementation The database of mammalian virus–host receptor interaction is available at http://www.computationalbiology.cn: 5000/viralReceptor. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zheng Zhang
- College of Biology, Hunan University, Changsha, China
| | - Zhaozhong Zhu
- College of Biology, Hunan University, Changsha, China
| | - Wenjun Chen
- College of Biology, Hunan University, Changsha, China
| | - Zena Cai
- College of Biology, Hunan University, Changsha, China
| | - Beibei Xu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Zhiying Tan
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Aiping Wu
- Center of System Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Xingyi Ge
- College of Biology, Hunan University, Changsha, China
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, China
| | - Zhongyang Tan
- College of Biology, Hunan University, Changsha, China
| | - Zanxian Xia
- School of Life Sciences, Central South University, Changsha, China
| | - Haizhen Zhu
- College of Biology, Hunan University, Changsha, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Taijiao Jiang
- Center of System Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Yousong Peng
- College of Biology, Hunan University, Changsha, China
| |
Collapse
|
1738
|
Investigation of the Role of the Spike Protein in Reversing the Virulence of the Highly Virulent Taiwan Porcine Epidemic Diarrhea Virus Pintung 52 Strains and Its Attenuated Counterpart. Viruses 2019; 12:v12010041. [PMID: 31905842 PMCID: PMC7019868 DOI: 10.3390/v12010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has continuously caused severe economic losses to the global swine industries; however, no successful vaccine against PEDV has been developed. In this study, we generated four autologous recombinant viruses, including the highly virulent iPEDVPT-P5, attenuated iPEDVPT-P96, and two chimeric viruses (iPEDVPT-P5-96S and iPEDVPT-P96-5S) with the reciprocally exchanged spike (S) gene, to study the role of the S gene in PEDV pathogenesis. A deeper understanding of PEDV attenuation will aid in the rational design of a live attenuated vaccine (LAV) using reverse genetics system. Our results showed that replacing the S gene from the highly virulent iPEDVPT-P5 led to complete restoration of virulence of the attenuated iPEDVPT-P96, with nearly identical viral shedding, diarrhea pattern, and mortality rate as the parental iPEDVPT-P5. In contrast, substitution of the S gene with that from the attenuated iPEDVPT-P96 resulted in partial attenuation of iPEDVPT-P5, exhibiting similar viral shedding and diarrhea patterns as the parental iPEDVPT-P96 with slightly severe histological lesions and higher mortality rate. Collectively, our data confirmed that the attenuation of the PEDVPT-P96 virus is primarily attributed to mutations in the S gene. However, mutation in S gene alone could not fully attenuate the virulence of iPEDVPT-P5. Gene (s) other than S gene might also play a role in determining virulence.
Collapse
|
1739
|
Yan C, Duan G, Wu FX, Wang J. IILLS: predicting virus-receptor interactions based on similarity and semi-supervised learning. BMC Bioinformatics 2019; 20:651. [PMID: 31881820 PMCID: PMC6933616 DOI: 10.1186/s12859-019-3278-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Viral infectious diseases are the serious threat for human health. The receptor-binding is the first step for the viral infection of hosts. To more effectively treat human viral infectious diseases, the hidden virus-receptor interactions must be discovered. However, current computational methods for predicting virus-receptor interactions are limited. Result In this study, we propose a new computational method (IILLS) to predict virus-receptor interactions based on Initial Interaction scores method via the neighbors and the Laplacian regularized Least Square algorithm. IILLS integrates the known virus-receptor interactions and amino acid sequences of receptors. The similarity of viruses is calculated by the Gaussian Interaction Profile (GIP) kernel. On the other hand, we also compute the receptor GIP similarity and the receptor sequence similarity. Then the sequence similarity is used as the final similarity of receptors according to the prediction results. The 10-fold cross validation (10CV) and leave one out cross validation (LOOCV) are used to assess the prediction performance of our method. We also compare our method with other three competing methods (BRWH, LapRLS, CMF). Conlusion The experiment results show that IILLS achieves the AUC values of 0.8675 and 0.9061 with the 10-fold cross validation and leave-one-out cross validation (LOOCV), respectively, which illustrates that IILLS is superior to the competing methods. In addition, the case studies also further indicate that the IILLS method is effective for the virus-receptor interaction prediction.
Collapse
Affiliation(s)
- Cheng Yan
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China.,School of Computer and Information,Qiannan Normal University for Nationalities, Longshan Road, DuYun, 558000, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China.
| | - Fang-Xiang Wu
- Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SKS7N5A9, Canada
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China
| |
Collapse
|
1740
|
Minimum Determinants of Transmissible Gastroenteritis Virus Enteric Tropism Are Located in the N-Terminus of Spike Protein. Pathogens 2019; 9:pathogens9010002. [PMID: 31861369 PMCID: PMC7168613 DOI: 10.3390/pathogens9010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/08/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide, that possesses both enteric and respiratory tropism. The ability to replicate in the enteric tract directly correlates with virulence, as TGEVs with an exclusive respiratory tropism are attenuated. The tissue tropism is determined by spike (S) protein, although the molecular bases for enteric tropism remain to be fully characterized. Both pAPN and sialic acid binding domains (aa 506–655 and 145–155, respectively) are necessary but not sufficient for enteric tract infection. Using a TGEV infectious cDNA and enteric (TGEV-SC11) or respiratory (TGEV-SPTV) isolates, encoding a full-length S protein, a set of chimeric recombinant viruses, with a sequential modification in S protein amino terminus, was engineered. In vivo tropism, either enteric, respiratory or both, was studied by inoculating three-day-old piglets and analyzing viral titers in lung and gut. The data indicated that U655>G change in S gene (S219A in S protein) was required to confer enteric tropism to a respiratory virus that already contains the pAPN and sialic acid binding domains in its S protein. Moreover, an engineered virus containing U655>G and a 6 nt insertion at position 1124 (Y374-T375insND in S protein) was genetically stable after passage in cell cultures, and increased virus titers in gut by 1000-fold. We postulated that the effect of these residues in enteric tropism may be mediated by the modification of both glycosaminoglycan binding and S protein structure.
Collapse
|
1741
|
Characterization and Pathogenicity of the Porcine Deltacoronavirus Isolated in Southwest China. Viruses 2019; 11:v11111074. [PMID: 31752115 PMCID: PMC6893596 DOI: 10.3390/v11111074] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a newly emerging enteric pathogen in swine that causes diarrhea in neonatal piglets and creates an additional economic burden on porcine industries in Asia and North America. In this study, a PDCoV isolate, CHN-SC2015, was isolated from Sichuan Province in southwest China. The isolate was characterized by a cytopathic effect, immunofluorescence, and electron microscopy. CHN-SC2015 titers in LLC-PK cells ranged from 104.31 to 108.22 TCID50/mL during the first 30 passages. During serial passage, 11 nucleotide mutations occurred in the S gene, resulting in nine amino acid changes. A whole genome sequencing analysis demonstrated that CHN-SC2015 shares 97.5%-99.1% identity with 59 reference strains in GenBank. Furthermore, CHN-SC2015 contained 6-nt deletion and 9-nt insertion in the ORF1ab gene, 3-nt deletion in the S gene and 11-nt deletion in its 3'UTR compared with other reference strains available in GenBank. A phylogenetic analysis showed that CHN-SC2015 is more closely related to other PDCoV strains in China than to the strains from Southeast Asia, USA, Japan, and South Korea, indicating the diversity of genetic relationships and regional and epidemic characteristics among these strains. A recombination analysis indicated that CHN-SC2015 experienced recombination events between SHJS/SL/2016 and TT-1115. In vivo infection demonstrated that CHN-SC2015 is highly pathogenic to sucking piglets, causing diarrhea, vomiting, dehydration, and death. Virus was shed daily in the feces of infected piglets and upon necropsy, was found distributed in the gastrointestinal tract and in multiple organs. CHN-SC2015 is the first systematically characterized strain from southwest China hitherto reported. Our results enrich the body of information on the epidemiology, pathogenicity and molecular evolution associated with PDCoV.
Collapse
|
1742
|
Are Community Acquired Respiratory Viral Infections an Underestimated Burden in Hematology Patients? Microorganisms 2019; 7:microorganisms7110521. [PMID: 31684063 PMCID: PMC6920795 DOI: 10.3390/microorganisms7110521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Despite a plethora of studies demonstrating significant morbidity and mortality due to community-acquired respiratory viral (CRV) infections in intensively treated hematology patients, and despite the availability of evidence-based guidelines for the diagnosis and management of respiratory viral infections in this setting, there is no uniform inclusion of respiratory viral infection management in the clinical hematology routine. Nevertheless, timely diagnosis and systematic management of CRV infections in intensively treated hematology patients has a demonstrated potential to significantly improve outcome. We have briefly summarized the recently published data on CRV infection epidemiology, as well as guidelines on the diagnosis and management of CRV infections in patients intensively treated for hematological malignancies. We have also assessed available treatment options, as well as mentioned novel agents currently in development.
Collapse
|
1743
|
Li Z, Tomlinson AC, Wong AH, Zhou D, Desforges M, Talbot PJ, Benlekbir S, Rubinstein JL, Rini JM. The human coronavirus HCoV-229E S-protein structure and receptor binding. eLife 2019; 8:51230. [PMID: 31650956 PMCID: PMC6970540 DOI: 10.7554/elife.51230] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022] Open
Abstract
The coronavirus S-protein mediates receptor binding and fusion of the viral and host cell membranes. In HCoV-229E, its receptor binding domain (RBD) shows extensive sequence variation but how S-protein function is maintained is not understood. Reported are the X-ray crystal structures of Class III-V RBDs in complex with human aminopeptidase N (hAPN), as well as the electron cryomicroscopy structure of the 229E S-protein. The structures show that common core interactions define the specificity for hAPN and that the peripheral RBD sequence variation is accommodated by loop plasticity. The results provide insight into immune evasion and the cross-species transmission of 229E and related coronaviruses. We also find that the 229E S-protein can expose a portion of its helical core to solvent. This is undoubtedly facilitated by hydrophilic subunit interfaces that we show are conserved among coronaviruses. These interfaces likely play a role in the S-protein conformational changes associated with membrane fusion.
Collapse
Affiliation(s)
- Zhijie Li
- Department of Molecular Genetics, The University of Toronto, Toronto, Canada
| | | | - Alan Hm Wong
- Department of Biochemistry, The University of Toronto, Toronto, Canada
| | - Dongxia Zhou
- Department of Molecular Genetics, The University of Toronto, Toronto, Canada
| | - Marc Desforges
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval, Canada
| | - Pierre J Talbot
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - John L Rubinstein
- Department of Biochemistry, The University of Toronto, Toronto, Canada.,Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Canada
| | - James M Rini
- Department of Molecular Genetics, The University of Toronto, Toronto, Canada.,Department of Biochemistry, The University of Toronto, Toronto, Canada
| |
Collapse
|
1744
|
Wang N, Rosen O, Wang L, Turner HL, Stevens LJ, Corbett KS, Bowman CA, Pallesen J, Shi W, Zhang Y, Leung K, Kirchdoerfer RN, Becker MM, Denison MR, Chappell JD, Ward AB, Graham BS, McLellan JS. Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD. Cell Rep 2019; 28:3395-3405.e6. [PMID: 31553909 PMCID: PMC6935267 DOI: 10.1016/j.celrep.2019.08.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/06/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV.
Collapse
Affiliation(s)
- Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Osnat Rosen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Laura J Stevens
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Charles A Bowman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jesper Pallesen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Robert N Kirchdoerfer
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michelle M Becker
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mark R Denison
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
1745
|
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging zoonotic pathogen with a broad host range. The extent of MERS-CoV in nature can be traced to its adaptable cell entry steps. The virus can bind host-cell carbohydrates as well as proteinaceous receptors. Following receptor interaction, the virus can utilize diverse host proteases for cleavage activation of virus-host cell membrane fusion and subsequent genome delivery. The fusion and genome delivery steps can be completed at variable times and places, either at or near cell surfaces or deep within endosomes. Investigators focusing on the CoVs have developed several methodologies that effectively distinguish these different cell entry pathways. Here we describe these methods, highlighting virus-cell entry factors, entry inhibitors, and viral determinants that specify the cell entry routes. While the specific methods described herein were utilized to reveal MERS-CoV entry pathways, they are equally suited for other CoVs, as well as other protease-dependent viral species.
Collapse
|
1746
|
Membrane Protein of Human Coronavirus NL63 Is Responsible for Interaction with the Adhesion Receptor. J Virol 2019; 93:JVI.00355-19. [PMID: 31315999 PMCID: PMC6744225 DOI: 10.1128/jvi.00355-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
It is generally accepted that the coronaviral S protein is responsible for viral interaction with a cellular receptor. Here we show that the M protein is also an important player during early stages of HCoV-NL63 infection and that the concerted action of the two proteins (M and S) is a prerequisite for effective infection. We believe that this study broadens the understanding of HCoV-NL63 biology and may also alter the way in which we perceive the first steps of cell infection with the virus. The data presented here may also be important for future research into vaccine or drug development. Human coronavirus NL63 (HCoV-NL63) is a common respiratory virus that causes moderately severe infections. We have previously shown that the virus uses heparan sulfate proteoglycans (HSPGs) as the initial attachment factors, facilitating viral entry into the cell. In the present study, we show that the membrane protein (M) of HCoV-NL63 mediates this attachment. Using viruslike particles lacking the spike (S) protein, we demonstrate that binding to the cell is not S protein dependent. Furthermore, we mapped the M protein site responsible for the interaction with HSPG and confirmed its relevance using a viable virus. Importantly, in silico analysis of the region responsible for HSPG binding in different clinical isolates and the Amsterdam I strain did not exhibit any signs of cell culture adaptation. IMPORTANCE It is generally accepted that the coronaviral S protein is responsible for viral interaction with a cellular receptor. Here we show that the M protein is also an important player during early stages of HCoV-NL63 infection and that the concerted action of the two proteins (M and S) is a prerequisite for effective infection. We believe that this study broadens the understanding of HCoV-NL63 biology and may also alter the way in which we perceive the first steps of cell infection with the virus. The data presented here may also be important for future research into vaccine or drug development.
Collapse
|
1747
|
Alsaadi EAJ, Neuman BW, Jones IM. A Fusion Peptide in the Spike Protein of MERS Coronavirus. Viruses 2019; 11:E825. [PMID: 31491938 PMCID: PMC6784214 DOI: 10.3390/v11090825] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses represent current and emerging threats for many species, including humans. Middle East respiratory syndrome-related coronavirus (MERS-CoV) is responsible for sporadic infections in mostly Middle Eastern countries, with occasional transfer elsewhere. A key step in the MERS-CoV replication cycle is the fusion of the virus and host cell membranes mediated by the virus spike protein, S. The location of the fusion peptide within the MERS S protein has not been precisely mapped. We used isolated peptides and giant unilamellar vesicles (GUV) to demonstrate membrane binding for a peptide located near the N-terminus of the S2 domain. Key residues required for activity were mapped by amino acid replacement and their relevance in vitro tested by their introduction into recombinant MERS S protein expressed in mammalian cells. Mutations preventing membrane binding in vitro also abolished S-mediated syncytium formation consistent with the identified peptide acting as the fusion peptide for the S protein of MERS-CoV.
Collapse
Affiliation(s)
| | - Benjamin W Neuman
- Biology Department, CASE, Texas A&M University, Texarkana, TX 75503, USA
| | - Ian M Jones
- School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK.
| |
Collapse
|
1748
|
Kleine-Weber H, Pöhlmann S, Hoffmann M. Spike proteins of novel MERS-coronavirus isolates from North- and West-African dromedary camels mediate robust viral entry into human target cells. Virology 2019; 535:261-265. [PMID: 31357164 PMCID: PMC7112047 DOI: 10.1016/j.virol.2019.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022]
Abstract
The highly pathogenic Middle East respiratory syndrome (MERS)-related coronavirus (CoV) is transmitted from dromedary camels, the natural reservoir, to humans. For at present unclear reasons, MERS cases have so far only been observed in the Arabian Peninsula, although MERS-CoV also circulates in African dromedary camels. A recent study showed that MERS-CoV found in North/West- (Morocco) and West-African (Burkina Faso and Nigeria) dromedary camels are genetically distinct from Arabian viruses and have reduced replicative capacity in human cells, potentially due to amino acid changes in one or more viral proteins. Here, we show that the spike (S) proteins of the prototypic Arabian MERS-CoV strain, human betacoronavirus 2c EMC/2012, and the above stated African MERS-CoV variants do not appreciably differ in expression, DPP4 binding and ability to drive entry into target cells. Thus, virus-host-interactions at the entry stage may not limit spread of North- and West-African MERS-CoV in human cells.
Collapse
Affiliation(s)
- Hannah Kleine-Weber
- Infection Biology Unit, Deutsches Primatenzentrum - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, Deutsches Primatenzentrum - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany.
| | - Markus Hoffmann
- Infection Biology Unit, Deutsches Primatenzentrum - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
1749
|
Kim Y, Lee H, Park K, Park S, Lim JH, So MK, Woo HM, Ko H, Lee JM, Lim SH, Ko BJ, Park YS, Choi SY, Song DH, Lee JY, Kim SS, Kim DY. Selection and Characterization of Monoclonal Antibodies Targeting Middle East Respiratory Syndrome Coronavirus through a Human Synthetic Fab Phage Display Library Panning. Antibodies (Basel) 2019; 8:E42. [PMID: 31544848 PMCID: PMC6783954 DOI: 10.3390/antib8030042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 12/28/2022] Open
Abstract
Since its first report in the Middle East in 2012, the Middle East respiratory syndrome-coronavirus (MERS-CoV) has become a global concern due to the high morbidity and mortality of individuals infected with the virus. Although the majority of MERS-CoV cases have been reported in Saudi Arabia, the overall risk in areas outside the Middle East remains significant as inside Saudi Arabia. Additional pandemics of MERS-CoV are expected, and thus novel tools and reagents for therapy and diagnosis are urgently needed. Here, we used phage display to develop novel monoclonal antibodies (mAbs) that target MERS-CoV. A human Fab phage display library was panned against the S2 subunit of the MERS-CoV spike protein (MERS-S2P), yielding three unique Fabs (S2A3, S2A6, and S2D5). The Fabs had moderate apparent affinities (Half maximal effective concentration (EC50 = 123-421 nM) for MERS-S2P, showed no cross-reactivity to spike proteins from other CoVs, and were non-aggregating and thermostable (Tm = 61.5-80.4 °C). Reformatting the Fabs into IgGs (Immunoglobulin Gs) greatly increased their apparent affinities (KD = 0.17-1.2 nM), presumably due to the effects of avidity. These apparent affinities were notably higher than that of a previously reported anti-MERS-CoV S2 reference mAb (KD = 8.7 nM). Furthermore, two of the three mAbs (S2A3 and S2D5) bound only MERS-CoV (Erasmus Medical Center (EMC)) and not other CoVs, reflecting their high binding specificity. However, the mAbs lacked MERS-CoV neutralizing activity. Given their high affinity, specificity, and desirable stabilities, we anticipate that these anti-MERS-CoV mAbs would be suitable reagents for developing antibody-based diagnostics in laboratory or hospital settings for point-of-care testing.
Collapse
Affiliation(s)
- Yoonji Kim
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do 28160, Korea
| | - Hansaem Lee
- Korea Center for Disease Control, Osong Health Technology Administration Complex, Cheongju-si, Chungcheongbuk-do 28159, Korea
| | - Keunwan Park
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do 28160, Korea
| | - Sora Park
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do 28160, Korea
| | - Ju-Hyeon Lim
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do 28160, Korea
| | - Min Kyung So
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do 28160, Korea
| | - Hye-Min Woo
- Korea Center for Disease Control, Osong Health Technology Administration Complex, Cheongju-si, Chungcheongbuk-do 28159, Korea
| | - Hyemin Ko
- Korea Center for Disease Control, Osong Health Technology Administration Complex, Cheongju-si, Chungcheongbuk-do 28159, Korea
| | - Jeong-Min Lee
- Plexense, Inc., Yongin-si, Gyeonggi-do 441-813, Korea
| | - Sun Hee Lim
- Plexense, Inc., Yongin-si, Gyeonggi-do 441-813, Korea
| | - Byoung Joon Ko
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do 28160, Korea
| | - Yeon-Su Park
- Plexense, Inc., Yongin-si, Gyeonggi-do 441-813, Korea
| | - So-Young Choi
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do 28160, Korea
| | - Du Hyun Song
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do 28160, Korea
| | - Joo-Yeon Lee
- Korea Center for Disease Control, Osong Health Technology Administration Complex, Cheongju-si, Chungcheongbuk-do 28159, Korea
| | - Sung Soon Kim
- Korea Center for Disease Control, Osong Health Technology Administration Complex, Cheongju-si, Chungcheongbuk-do 28159, Korea
| | - Dae Young Kim
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do 28160, Korea.
| |
Collapse
|
1750
|
Pascual-Iglesias A, Sanchez CM, Penzes Z, Sola I, Enjuanes L, Zuñiga S. Recombinant Chimeric Transmissible Gastroenteritis Virus (TGEV) - Porcine Epidemic Diarrhea Virus (PEDV) Virus Provides Protection against Virulent PEDV. Viruses 2019; 11:v11080682. [PMID: 31349683 PMCID: PMC6723174 DOI: 10.3390/v11080682] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide. Although both inactivated and live attenuated vaccines have been extensively used, the emergence of highly virulent strains and the recurrent outbreaks even in vaccinated farms highlight the need of effective vaccines. Engineering of genetically defined live attenuated vaccines is a rational approach for novel vaccine development. In this line, we engineered an attenuated virus based on the transmissible gastroenteritis virus (TGEV) genome, expressing a chimeric spike protein from a virulent United States (US) PEDV strain. This virus (rTGEV-RS-SPEDV) was attenuated in highly-sensitive five-day-old piglets, as infected animals did not lose weight and none of them died. In addition, the virus caused very minor tissue damage compared with a virulent virus. The rTGEV-RS-SPEDV vaccine candidate was also attenuated in three-week-old animals that were used to evaluate the protection conferred by this virus, compared with the protection induced by infection with a virulent PEDV US strain (PEDV-NVSL). The rTGEV-RS-SPEDV virus protected against challenge with a virulent PEDV strain, reducing challenge virus titers in jejunum and leading to undetectable challenge virus RNA levels in feces. The rTGEV-RS-SPEDV virus induced a humoral immune response specific for PEDV, including neutralizing antibodies. Altogether, the data indicated that rTGEV-RS-SPEDV is a promising vaccine candidate against virulent PEDV infection.
Collapse
Affiliation(s)
- Alejandro Pascual-Iglesias
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Carlos M Sanchez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Zoltan Penzes
- Ceva Animal Health, Ceva-Phylaxia, Szallas u. 5, 1107 Budapest, Hungary
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain.
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|