151
|
Torres HM, Arnold KM, Oviedo M, Westendorf JJ, Weaver SR. Inflammatory Processes Affecting Bone Health and Repair. Curr Osteoporos Rep 2023; 21:842-853. [PMID: 37759135 PMCID: PMC10842967 DOI: 10.1007/s11914-023-00824-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing. RECENT FINDINGS Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells. Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.
Collapse
Affiliation(s)
- Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Katherine M Arnold
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Biomedical Engineering and Physiology Track/Regenerative Sciences Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manuela Oviedo
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
152
|
Jadzic J, Mijucic J, Bracanovic D, Nikolic S, Bracanovic M, Djuric M, Djonic D. Age-at-death estimation based on micro-CT assessment of pubic symphysis: Potentially new methodological approach. Forensic Sci Int 2023; 352:111851. [PMID: 37801865 DOI: 10.1016/j.forsciint.2023.111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/28/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Although various methods for age-at-death estimation of skeletal remains are available, this is still an unsolved issue in forensic anthropology, especially concerning elderly individuals. Moreover, the lack of population-specific methods often made age-at-death estimation unreliable in other populations. AIM Our study aimed to examine whether micro-computed tomography (micro-CT) analysis of pubic bone samples obtained from the contemporary Serbian population could be used in anthropological and forensic practice for age-at-death estimation. METHODOLOGY This study encompassed 62 pubic samples obtained from 26 adult male and 36 adult female cadaveric donors (age range: 22-91 years). Initially, staging according to the Suchey-Brooks phases was performed by two experienced investigators, followed by micro-CT assessment of pubic bone trabecular and cortical compartments (spatial resolution of the scans was 10 µm). RESULTS Our results revealed an age-associated decline in trabecular and cortical micro-architecture of elderly male and female individuals, with the most prominent changes present in trabecular bone volume fraction and total porosity of the anterior and posterior cortical surface of the pubic bone. Those parameters were used to generate age-at-death estimation equations. One sample t-test did not reveal a significant difference between estimated age-at-death and real (known) age-at-death in the overall sample (mean absolute error [MAE] of 4.76 years), female (MAE of 9.66 years) and male cadaveric donors (MAE of 6.10 years, p > 0.05). CONCLUSION Our data indicated that micro-architectural features of trabecular and cortical compartments of pubic bone could potentially be applied as an additional reliable method for age-at-death estimation in the Serbian population.
Collapse
Affiliation(s)
- Jelena Jadzic
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jovana Mijucic
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Djurdja Bracanovic
- Department of Radiology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodan Nikolic
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milos Bracanovic
- Clinic for Emergency Surgery, Clinical Center of Serbia, Belgrade, Serbia
| | - Marija Djuric
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danijela Djonic
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
153
|
Xiong J, Ma Y, Cao Y, Yang X, Ma J, Zhang J, Wan C, Huang P. Age estimation by modified Suchey-Brooks method using three-dimensional reconstructed CT images of Chinese Han population. Leg Med (Tokyo) 2023; 65:102304. [PMID: 37562072 DOI: 10.1016/j.legalmed.2023.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
The method proposed by Suchey-Brooks for adult age estimation based on the surface morphology of the pubic symphysis has been widely accepted. The applicability of the method varies considerably in different populations. The present study established a virtual reference sample and aimed to develop population-specific criteria that can be used for age estimation in different skeletal samples. First, The dry bone specimens from 100 individuals were compared with their corresponding three-dimensional (3D) reconstruction model and showed high inter-method agreement (k = 0.743-0.811), suggesting that the virtual bone model and physical bone specimens have comparable performances in describing the surface morphology of the pubic symphysis. We retrospectively collected clinical computed tomography (CT) data from 895 Chinese patients to create a virtual reference sample of the pubic symphysis. Based on the original Suchey-Brooks method, each of the 895 reference samples was assigned a phase, for each sex and phase, data on the mean age, standard deviation, and 95% age range of the corresponding sample were obtained, which was then used as the "method modified for Chinese" (modified method) and compared to the "SB method". Compared to the SB method, modified method had a lower inaccuracy in dry bones for males over 35 years and females over 45 years, in dry bone CT test sample for males over 55 years and females over 45 years, and in postmortem CT test sample for males over 35 years and females over 55 years. The modified method can improve the accuracy of age estimation for older samples over 40 years. It has shown considerable reliability when applied as a population-specific criterion, but its accuracy is still not sufficient, and caution is needed when using it.
Collapse
Affiliation(s)
- Jian Xiong
- Department of Forensic Medicine, Guizhou Medical University, Guizhou Guiyang 550004, PR China; Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China
| | - Yonggang Ma
- Department of Medical Imaging, 3201 Hospital Affiliated, Xi'an Jiaotong University School of Medicine, Hanzhong 723000, PR China
| | - Yongjie Cao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China
| | - Xiaotong Yang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Jiwei Ma
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia Nei Mongol 010110, PR China
| | - Ji Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China.
| | - Changwu Wan
- Department of Forensic Medicine, Guizhou Medical University, Guizhou Guiyang 550004, PR China.
| | - Ping Huang
- Department of Forensic Medicine, Guizhou Medical University, Guizhou Guiyang 550004, PR China; Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China.
| |
Collapse
|
154
|
Huang Q, Guo J, Zhao H, Zheng Y, Zhang Y. The associations of alcoholic liver disease and nonalcoholic fatty liver disease with bone mineral density and the mediation of serum 25-Hydroxyvitamin D: A bidirectional and two-step Mendelian randomization. PLoS One 2023; 18:e0292881. [PMID: 37856513 PMCID: PMC10586666 DOI: 10.1371/journal.pone.0292881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Reduced bone mineral density (BMD) and osteoporosis are common in chronic liver diseases. However, the causal effect of alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) on BMD remains uncertain. OBJECTIVES This study uses a two-sample Mendelian randomization (MR) design to evaluate the genetically predicted effect of ALD and NAFLD on BMDs using summary data from publically available genome-wide association studies (GWASs). METHODS The GWAS summary statistics of ALD (1416 cases and 213,592 controls) and NAFLD (894 cases and 217,898 controls) were obtained from the FinnGen consortium. BMDs of four sites (total body, n = 56,284; femoral neck, n = 32,735; lumbar spine, n = 28,498; forearm, n = 8143) were from the GEnetic Factors for OSteoporosis Consortium. Data for alcohol consumption (n = 112,117) and smoking (n = 33,299) and serum 25-Hydroxyvitamin D (25-OHD) level (n = 417,580) were from UK-biobank. We first performed univariate MR analysis with the Inverse Variance Weighted (IVW) method as the primary analysis to investigate the genetically predicted effect of ALD or NAFLD on BMD. Then, multivariate MR and mediation analysis were performed to identify whether the effect was mediated by alcohol consumption, smoking, or serum 25-OHD level. RESULTS The MR results suggested a robust genetically predicted effect of ALD on reduced BMD in the femoral neck (FN-BMD) (IVW beta = -0.0288; 95% CI: -0.0488, -0.00871; P = 0.00494) but not the other three sites. Serum 25-OHD level exhibited a significant mediating effect on the association between ALD and reduced FN-BMD albeit the proportion of mediation was mild (2.21%). No significant effects of NAFLD, alcohol consumption, or smoking on BMD in four sites, or reverse effect of BMD on ALD or NAFLD were detected. CONCLUSION Our findings confirm the genetically predicted effect of ALD on reduced FN-BMD, and highlight the importance of periodic BMD and serum 25-OHD monitoring and vitamin D supplementation as needed in patients with ALD. Future research is required to validate our results and investigate the probable underlying mechanisms.
Collapse
Affiliation(s)
- Qinyao Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyua People’s Hospital), Qingyuan, China
| | - Jianglong Guo
- Department of Medical Imaging, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Hongjun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyua People’s Hospital), Qingyuan, China
| | - Yi Zheng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuying Zhang
- Central Laboratory, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| |
Collapse
|
155
|
Mohsin S, Brock F, Kaimala S, Greenwood C, Sulaiman M, Rogers K, Adeghate E. A pilot study: effect of irisin on trabecular bone in a streptozotocin-induced animal model of type 1 diabetic osteopathy utilizing a micro-CT. PeerJ 2023; 11:e16278. [PMID: 37868046 PMCID: PMC10588705 DOI: 10.7717/peerj.16278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Background Osteoporosis is a significant co-morbidity of type 1 diabetes mellitus (DM1) leading to increased fracture risk. Exercise-induced hormone 'irisin' in low dosage has been shown to have a beneficial effect on bone metabolism by increasing osteoblast differentiation and reducing osteoclast maturation, and inhibiting apoptosis and inflammation. We investigated the role of irisin in treating diabetic osteopathy by observing its effect on trabecular bone. Methods DM1 was induced by intraperitoneal injection of streptozotocin 60 mg/kg body weight. Irisin in low dosage (5 µg twice a week for 6 weeks I/P) was injected into half of the control and 4-week diabetic male Wistar rats. Animals were sacrificed six months after induction of diabetes. The trabecular bone in the femoral head and neck was analyzed using a micro-CT technique. Bone turnover markers were measured using ELISA, Western blot, and RT-PCR techniques. Results It was found that DM1 deteriorates the trabecular bone microstructure by increasing trabecular separation (Tb-Sp) and decreasing trabecular thickness (Tb-Th), bone volume fraction (BV/TV), and bone mineral density (BMD). Irisin treatment positively affects bone quality by increasing trabecular number p < 0.05 and improves the BMD, Tb-Sp, and BV/TV by 21-28%. The deterioration in bone microarchitecture is mainly attributed to decreased bone formation observed as low osteocalcin and high sclerostin levels in diabetic bone samples p < 0.001. The irisin treatment significantly suppressed the serum and bone sclerostin levels p < 0.001, increased the serum CTX1 levels p < 0.05, and also showed non-significant improvement in osteocalcin levels. Conclusions This is the first pilot study to our knowledge that shows that a low dose of irisin marginally improves the trabecular bone in DM1 and is an effective peptide in reducing sclerostin levels.
Collapse
Affiliation(s)
- Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abudhabi, United Arab Emirates
| | - Fiona Brock
- Cranfield Forensic Institute, Cranfield University, Shrivenham, United Kingdom
| | - Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abudhabi, United Arab Emirates
| | - Charlene Greenwood
- School of Chemical and Physical Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Mohsin Sulaiman
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abudhabi, United Arab Emirates
| | - Keith Rogers
- Cranfield Forensic Institute, Cranfield University, Shrivenham, United Kingdom
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abudhabi, United Arab Emirates
| |
Collapse
|
156
|
Yang Y, Yuan K, Liu Y, Wang Q, Lin Y, Yang S, Huang K, Kan T, Zhang Y, Xu M, Yu Z, Fan Q, Wang Y, Li H, Tang T. Constitutively activated AMPKα1 protects against skeletal aging in mice by promoting bone-derived IGF-1 secretion. Cell Prolif 2023; 56:e13476. [PMID: 37042047 PMCID: PMC10542616 DOI: 10.1111/cpr.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
Senile osteoporosis is characterized by age-related bone loss and bone microarchitecture deterioration. However, little is known to date about the mechanism that maintains bone homeostasis during aging. In this study, we identify adenosine monophosphate-activated protein kinase alpha 1 (AMPKα1) as a critical factor regulating the senescence and lineage commitment of mesenchymal stem cells (MSCs). A phospho-mutant mouse model shows that constitutive AMPKα1 activation prevents age-related bone loss and promoted MSC osteogenic commitment with increased bone-derived insulin-like growth factor 1 (IGF-1) secretion. Mechanistically, upregulation of IGF-1 signalling by AMPKα1 depends on cAMP-response element binding protein (CREB)-mediated transcriptional regulation. Furthermore, the essential role of the AMPKα1/IGF-1/CREB axis in promoting aged MSC osteogenic potential is confirmed using three-dimensional (3D) culture systems. Taken together, these results can provide mechanistic insight into the protective effect of AMPKα1 against skeletal aging by promoting bone-derived IGF-1 secretion.
Collapse
Affiliation(s)
- Yiqi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qishan Wang
- School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kai Huang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianyou Kan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuxin Zhang
- Department of Rehabilitation Medicine, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mingming Xu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiming Fan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yugang Wang
- Department of Trauma Surgery, Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Hanjun Li
- Clinical Stem Cell Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
157
|
Ahmed F, Minamizaki T, Aubin JE, Damayanti MA, Yoshiko Y. Large scale analysis of osteocyte lacunae in klotho hypomorphic mice using high-resolution micro-computed tomography. Ann Anat 2023; 250:152142. [PMID: 37572763 DOI: 10.1016/j.aanat.2023.152142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Osteocytes are the most abundant cell type in adult bone, and the morphological characteristics of osteocytes and their lacunae appear to influence bone mass and fragility. Although conventional computed tomography (CT) has contributed greatly to advances in bone morphometry, capturing details of the entire hierarchical assembly, e.g., osteocyte lacuna parameters, has been limited by the analytical performance of CT (> 1 µm resolution). METHODS We used high-resolution (700 nm) micro-CT to evaluate and compare the osteocyte lacuna parameters over a large scale, i.e., in a maximum of about 45,700 lacunae (average), in tibial metaphyseal cortical bones of wild-type (WT) and αKlotho-hypomorphic (kl/kl) mice, the latter a model that exhibits osteopenia and aberrant osteocytes. RESULTS Of osteocyte lacuna parameters, lacunar surface per lacunar volume were significantly lower and lacuna diameter were significantly larger in kl/kl mice compared to WT mice. By analysis of individual osteocyte lacunae, we found that lacunar sphericity in kl/kl mice was higher than that in WT mice, and the diameters in the major and the minor axes were respectively lower and higher in kl/kl mice, especially at the proximal site of the region of interest. CONCLUSION We successfully assessed osteocyte lacuna parameters on the largest scale in mice reported to date and found that the shape of osteocyte lacunae of kl/kl mice are significantly different from those of WT mice. Although the mechanisms underlying the lacunar shape differences observed are not yet clear, changes in lacunar geometry are known to affect the transitions of strains to the osteocyte microenvironment and likely local osteocyte response(s). Thus, the fact that the differences are limited to the mesial region near the primary spongiosa suggests the likelihood of site-specific anomalies in mechanosensitive effects in kl/kl osteocytes with consequent site-specific effects bone metabolism and function.
Collapse
Affiliation(s)
- Faisal Ahmed
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jane E Aubin
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Merry Annisa Damayanti
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Padjadjaran University, Bandung, Indonesia
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
158
|
Balziano S, Greenstein N, Apterman S, Fogel I, Baran I, Prat D. Subtype consideration in hip fracture research: patient variances in inter- and intra-classification levels highlight the need for future research deliberation. A 2-years follow-up prospective-historical cohort. Arch Osteoporos 2023; 18:123. [PMID: 37770694 DOI: 10.1007/s11657-023-01334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023]
Abstract
Current research on elderly patients with hip fractures often neglects specific subtypes, either grouping all fracture types or overlooking them entirely. By categorizing elderly patients based on fracture subtypes, we observed diverse baseline characteristics but found no discrepancies in measured outcomes. This emphasizes the need for caution in future research dealing with different or broader measured outcomes that were not covered by the scope of this research. PURPOSE/INTRODUCTION Existing research in elderly patients with hip fractures often overlooks the distinct subtypes or lumps all fracture types together. We aim to examine the differences between hip fracture subtypes to assess if these differences are meaningful for clinical outcomes and should be considered in future research. METHODS Patients above 65 years who underwent hip fracture surgeries during a three-year period were retrospectively reviewed. Cases were grouped based on fracture subtype: non-displaced femoral neck (nDFN), displaced femoral neck (DFN), stable intertrochanteric (sIT), and unstable intertrochanteric (uIT). RESULTS Among the 1,285 included cases, the nDFN-group had lower ASA scores (p = 0.009) and younger patients (p < 0.001), followed by the DFN-group (p = 0.014). The uIT-group had a higher proportion of female patients (72.3%, p = 0.004). Differences in preoperative ambulation status were observed (p = 0.001). However, no significant associations were found between fracture type and postoperative outcomes, including ambulation, transfusions, complications, reoperations, or mortality. Gender and preoperative ambulation status were predictors of mortality across all time frames. ASA score predicted mortality only within the first year after surgery. Age and gender were predictors of postoperative blood transfusions, while age and preoperative ambulation status were predictors of postoperative complications. CONCLUSIONS Variations in baseline characteristics of hip fractures were observed, but no significant differences were found in measured outcomes. This indicates that the hip fracture group is not homogeneous, emphasizing the need for caution in research involving this population. While grouping all types of proximal femur fractures may be acceptable depending on the outcome being studied, it's essential not to extrapolate these results to outcomes beyond the study's scope. Therefore, we recommend consider hip fracture subtypes when researching different outcomes not covered by this study.
Collapse
Affiliation(s)
- Snir Balziano
- Department of Orthopedic Surgery, Chaim Sheba Medical Center, Tel Aviv University, Ramat Gan, Israel.
| | - Nechemia Greenstein
- Department of Orthopedic Surgery, Chaim Sheba Medical Center, Tel Aviv University, Ramat Gan, Israel
| | - Sagy Apterman
- Department of Orthopedic Surgery, Chaim Sheba Medical Center, Tel Aviv University, Ramat Gan, Israel
| | - Itay Fogel
- Department of Orthopedic Surgery, Chaim Sheba Medical Center, Tel Aviv University, Ramat Gan, Israel
| | - Isaac Baran
- Department of Orthopedic Surgery, Chaim Sheba Medical Center, Tel Aviv University, Ramat Gan, Israel
| | - Dan Prat
- Department of Orthopedic Surgery, Chaim Sheba Medical Center, Tel Aviv University, Ramat Gan, Israel
| |
Collapse
|
159
|
He MC, Tian JQ, He XM, Yang P, Lin TY, Zhang QW, He W, Wei QS. Mechanical properties of trabeculae and osteocyte morphology change significantly in different areas of the necrotic femoral head. Front Cell Dev Biol 2023; 11:1250070. [PMID: 37822871 PMCID: PMC10562544 DOI: 10.3389/fcell.2023.1250070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Background: Osteonecrosis of the femoral head is a complex hip ailment. The precise changes in bone tissue during the disease's onset remain unclear. It is vital to assess both the quantity and quality of the trabecular state in a necrotic femoral head. Aim: This study aims to identify and compare the ultrastructural changes in osteocyte morphology and nanomechanical characteristics within various regions of necrotic femoral heads. Methods: Between December 2016 and May 2023, we gathered ten necrotic femoral heads from patients and five femoral heads from cadavers. The samples from the necrotic femoral heads were categorized into three areas: necrotic, sclerotic, and normal. Our assessment methods encompassed hematoxylin and eosin staining, sclerostin (SOST) immunohistochemistry, micro-computed tomography, nanoindentation, and acid-etched scanning electron microscopy. These techniques enabled us to examine the SOST expression, trabecular microstructure, micromechanical properties of trabeculae, and modifications in osteocyte morphology at the ultrastructural level. Results: The protein level of SOST was found to be lower in the sclerotic area. In the necrotic area, decreased values of bone volume fraction, trabecular thickness, and trabecular number and an increased value of trabecular separation were found. Conversely, in the sclerotic area, higher mean values of bone volume fraction, trabecular number, and trabecular thickness and lower trabecular separation indicated significant changes in the structural characteristics of trabeculae. Compared with the healthy area, the elastic modulus and hardness in the sclerotic area were significantly higher than those in the necrotic, normal, and control areas, while those in necrotic areas were significantly lower than those in the healthy area. The number of osteocytes tended to increase in the sclerotic area with more canalicular cells compared to the healthy area and control group. Conclusion: These results imply that the stress distribution within the sclerotic area could potentially lead to enhanced trabecular quality and quantity. This effect is also reflected in the increased count of osteocytes and their canaliculars. It is plausible that the sclerotic trabecular bone plays a pivotal role in the repair of necrotic femoral heads.
Collapse
Affiliation(s)
- Min-Cong He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Qing Tian
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ming He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Yang
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian-Ye Lin
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Wen Zhang
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiu-Shi Wei
- The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
160
|
Liu Z, Niu Y, Fu Z, Dean M, Fu Z, Hu Y, Zou Z. 3D relationship between hierarchical canal network and gradient mineralization of shark tooth osteodentin. Acta Biomater 2023; 168:185-197. [PMID: 37451657 DOI: 10.1016/j.actbio.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Osteodentin is a dominant mineralized collagenous tissue in the teeth of many fishes, with structural and histological characteristics resembling those of bone. Osteodentin, like bone, comprises osteons as basic structural building blocks, however, it lacks the osteocytes and the lacuno-canalicular network (LCN), which are known to play critical roles in controlling the mineralization of the collagenous matrix in bone. Although numerous vascular canals exist in osteodentin, their role in tooth maturation and the matrix mineralization process remain poorly understood. Here, high resolution micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM) were used to obtain 3D structural information of osteodentin in shark teeth at multiple scales. We observed a complex 3D network of primary canals with a diameter ranging from ∼10 µm to ∼120 µm, where the canals are surrounded by osteon-like concentric layers of lamellae, with 'interosteonal' tissue intervening between neighboring osteons. In addition, numerous hierarchically branched secondary canals extended radially from the primary canals into the interosteonal tissue, decreasing in diameter from ∼10 µm to hundreds of nanometers. Interestingly, the mineralization degree increases from the periphery of primary canals into the interosteonal tissue, suggesting that mineralization begins in the interosteonal tissue. Correspondingly, the hardness and elastic modulus of the interosteonal tissue are higher than those of the osteonal tissue. These results demonstrate that the 3D hierarchical canal network is positioned to play a critical role in controlling the gradient mineralization of osteodentin, also providing valuable insight into the formation of mineralized collagenous tissue without osteocytes and LCN. STATEMENT OF SIGNIFICANCE: Bone is a composite material with versatile mechanical properties. Osteocytes and their lacuno-canalicular network (LCN) are known to play critical roles during formation of human bone. However, the bone and osteodentin of many fishes, although lacking osteocytes and LCN, exhibit similar osteon-like structure and mechanical functions. Here, using various high resolution 3D characterization techniques, we reveal that the 3D network of primary canals and numerous hierarchically branched secondary canals correlate with the mineralization gradient and micromechanical properties of osteonal and interosteonal tissues of shark tooth osteodentin. This work significantly improves our understanding of the construction of bone-like mineralized tissue without osteocytes and LCN, and provides inspirations for the fabrication of functional materials with hierarchical structure.
Collapse
Affiliation(s)
- Zhuanfei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yunya Niu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zeyao Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Mason Dean
- Department of Infectious Diseases & Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yongming Hu
- School of Microelectronics, Hubei University, Wuhan 430062, Hubei, China..
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.; Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China.
| |
Collapse
|
161
|
Fan R, Liu J, Jia Z. Effects of different running intensities on the micro-level failure strain of rat femoral cortical bone structures: a finite element investigation. Biomed Eng Online 2023; 22:89. [PMID: 37700306 PMCID: PMC10496390 DOI: 10.1186/s12938-023-01151-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Running with the appropriate intensity may produce a positive influence on the mechanical properties of cortical bone structure. However, few studies have discussed the effects of different running intensities on the mechanical properties at different levels, especially at the micro-level, because the micromechanical parameters are difficult to measure experimentally. METHODS An approach that combines finite element analysis and experimental data was proposed to predict a micromechanical parameter in the rat femoral cortical bone structure, namely, the micro-level failure strain. Based on the previous three-point bending experimental information, fracture simulations were performed on the femur finite element models to predict their failure process under the same bending load, and the micro-level failure strains in tension and compression of these models were back-calculated by fitting the experimental load-displacement curves. Then, the effects of different running intensities on the micro-level failure strain of rat femoral cortical bone structure were investigated. RESULTS The micro-level failure strains of the cortical bone structures expressed statistical variations under different running intensities, which indicated that different mechanical stimuli of running had significant influences on the micromechanical properties. The greatest failure strain occurred in the cortical bone structure under low-intensity running, and the lowest failure strain occurred in the structure under high-intensity running. CONCLUSIONS Moderate and low-intensity running were effective in enhancing the micromechanical properties, whereas high-intensity running led to the weakening of the micromechanical properties of cortical bone. Based on these, the changing trends in the micromechanical properties were exhibited, and the effects of different running intensities on the fracture performance of rat cortical bone structures could be discussed in combination with the known mechanical parameters at the macro- and nano-levels, which provided the theoretical basis for reducing fracture incidence through running exercise.
Collapse
Affiliation(s)
- Ruoxun Fan
- Department of Traffic Engineering, Yangzhou Polytechnic Institute, Yangzhou, 225127, People's Republic of China.
| | - Jie Liu
- Department of Aerospace Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, People's Republic of China
| | - Zhengbin Jia
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| |
Collapse
|
162
|
Leković A, Nikolić S. Atheroprotective effect of myocardial bridge sustains in aging: Autopsy study on subjects with dual left anterior descending coronary artery type 3. Cardiovasc Pathol 2023; 66:107553. [PMID: 37321465 DOI: 10.1016/j.carpath.2023.107553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND The atheroprotective role of the myocardial bridge (MB) on a tunneled segment is already demonstrated in subjects with dual left anterior descending coronary artery (dual LAD) type 3 anomaly, but the dynamics of changes and whether this protective effect sustains during aging is unknown. METHODS The retrospective autopsy study included cases of dual LAD type 3 anomaly identified over 18 years. The severity grade of atherosclerosis in branches of dual LAD was estimated by microscopy. The Spearman's correlation test and Receiver operator characteristics (ROC) curve analyses were performed to determine the relation of subjects' age with a degree of the protective role of the myocardial bridge. RESULTS A total of 32 dual LAD type 3 cases were identified. The systematic heart examination revealed an anomaly prevalence of 2.1%. The age significantly positively correlated with the severity of atherosclerosis in the subepicardial dual LAD branch but not with the severity of atherosclerosis in the intramyocardial dual LAD branch. Subjects aged ≥38 years were likely to have a more severe degree of atherosclerosis in subepicardial than in intramyocardial LAD arteries (AUC 0.81 95% CI 0.59-1; sensitivity 100%, specificity 66.7%). In subjects aged ≥58 years, this difference was likely to be more pronounced (≥2 degree difference; AUC 0.75 95% CI 0.58-0.93; sensitivity 92.9%, specificity 66.7%). CONCLUSION The atheroprotective effect of the myocardial bridge on tunneled segments usually becomes evident throughout the second half of the fourth decade of life and is most pronounced after about 60 years and ceases only in some.
Collapse
Affiliation(s)
- Aleksa Leković
- Institute of Forensic Medicine, University of Belgrade Faculty of Medicine, Belgrade, Serbia.
| | - Slobodan Nikolić
- Institute of Forensic Medicine, University of Belgrade Faculty of Medicine, Belgrade, Serbia.
| |
Collapse
|
163
|
Muratovic D, Findlay DM, Quinn MJ, Quarrington RD, Solomon LB, Atkins GJ. Microstructural and cellular characterisation of the subchondral trabecular bone in human knee and hip osteoarthritis using synchrotron tomography. Osteoarthritis Cartilage 2023; 31:1224-1233. [PMID: 37178862 DOI: 10.1016/j.joca.2023.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE It is unclear if different factors influence osteoarthritis (OA) progression and degenerative changes characterising OA disease in hip and knee. We investigated the difference between hip OA and knee OA at the subchondral bone (SCB) tissue and cellular level, relative to the degree of cartilage degeneration. DESIGN Bone samples were collected from 11 patients (aged 70.4 ± 10.7years) undergoing knee arthroplasty and 8 patients (aged 62.3 ± 13.4years) undergoing hip arthroplasty surgery. Trabecular bone microstructure, osteocyte-lacunar network, and bone matrix vascularity were evaluated using synchrotron micro-CT imaging. Additionally, osteocyte density, viability, and connectivity were determined histologically. RESULTS The associations between severe cartilage degeneration and increase of bone volume fraction (%) [- 8.7, 95% CI (-14.1, -3.4)], trabecular number (#/mm) [- 1.5, 95% CI (-0.8, -2.3)], osteocyte lacunar density (#/mm3) [4714.9; 95% CI (2079.1, 7350.6)] and decrease of trabecular separation (mm) [- 0.07, 95% CI (0.02, 0.1)] were found in both knee and hip OA. When compared to knee OA, hip OA was characterised by larger (µm3) but less spheric osteocyte lacunae [47.3; 95% CI (11.2, 83.4), - 0.04; 95% CI (-0.06, -0.02), respectively], lower vascular canal density (#/mm3) [- 22.8; 95% CI (-35.4, -10.3)], lower osteocyte cell density (#/mm2) [- 84.2; 95% CI (-102.5, -67.4)], and less senescent (#/mm2) but more apoptotic osteocytes (%) [- 2.4; 95% CI (-3.6, -1.2), 24.9; 95% CI (17.7, 32.1)], respectively. CONCLUSION SCB from hip OA and knee OA exhibits different characteristics at the tissue and cellular levels, suggesting different mechanisms of OA progression in different joints.
Collapse
Affiliation(s)
- Dzenita Muratovic
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia; Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia.
| | - David M Findlay
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| | - Micaela J Quinn
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia; Bone and Joint Osteoimmunology Laboratory, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ryan D Quarrington
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lucian B Solomon
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia; Orthopaedic and Trauma Service, the Royal Adelaide Hospital and the Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Gerald J Atkins
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
164
|
Demirtas A, Taylor EA, Gludovatz B, Ritchie RO, Donnelly E, Ural A. An integrated experimental-computational framework to assess the influence of microstructure and material properties on fracture toughness in clinical specimens of human femoral cortical bone. J Mech Behav Biomed Mater 2023; 145:106034. [PMID: 37494816 DOI: 10.1016/j.jmbbm.2023.106034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/08/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
Microstructural and compositional changes that occur due to aging, pathological conditions, or pharmacological treatments alter cortical bone fracture resistance. However, the relative importance of these changes to the fracture resistance of cortical bone has not been quantified in detail. In this technical note, we developed an integrated experimental-computational framework utilizing human femoral cortical bone biopsies to advance the understanding of how fracture resistance of cortical bone is modulated due to modifications in its microstructure and material properties. Four human biopsy samples from individuals with varying fragility fracture history and osteoporosis treatment status were converted to finite element models incorporating specimen-specific material properties and were analyzed using fracture mechanics-based modeling. The results showed that cement line density and osteonal volume had a significant effect on crack volume. The removal of cement lines substantially increased the crack volume in the osteons and interstitial bone, representing straight crack growth, compared to models with cement lines due to the lack of crack deflection in the models without cement lines. Crack volume in the osteons and interstitial bone increased when mean elastic modulus and ultimate strength increased and mean fracture toughness decreased. Crack volume in the osteons and interstitial bone was reduced when material property heterogeneity was incorporated in the models. Although both the microstructure and the heterogeneity of the material properties of the cortical bone independently increased the fracture toughness, the relative contribution of the microstructure was more significant. The integrated experimental-computational framework developed here can identify the most critical microscale features of cortical bone modulated by pathological processes or pharmacological treatments that drive changes in fracture resistance and improve our understanding of the relative influence of microstructure and material properties on fracture resistance of cortical bone.
Collapse
Affiliation(s)
- Ahmet Demirtas
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA
| | - Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA; Musculoskeletal Integrity Program, Weill Cornell Medicine, Research Institute, Hospital for Special Surgery, New York City, NY, USA
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA.
| |
Collapse
|
165
|
Marty AG, Barbone PE, Morgan EF. Multiscale theoretical model shows that aging-related mechanical degradation of cortical bone is driven by microstructural changes in addition to porosity. J Mech Behav Biomed Mater 2023; 145:106029. [PMID: 37499524 PMCID: PMC10528045 DOI: 10.1016/j.jmbbm.2023.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
This study aims to gain mechanistic understanding of how aging-related changes in the microstructure of cortical bone drive mechanical consequences at the macroscale. To that end, cortical bone was modeled as a bundle of elastic-plastic, parallel fibers, which represented osteons and interstitial tissue, loaded in uniaxial tension. Distinct material properties were assigned to each fiber in either the osteon or interstitial fiber "families." Models representative of mature (20-60 yrs.) bone, and elderly (60+) bone were created by modeling aging via the following changes to the input parameters: (i) increasing porosity from 5% to 15%, (ii) increasing the ratio of the number of osteon fibers relative to interstitial fibers from 40% to 50%, and (iii) changing the fiber material properties from representing mature bone samples to representing elderly bone samples (i.e., increased strength and decreased toughness of interstitial fibers together with decreased toughness of osteon fibers). To understand the respective contributions of these changes, additional models isolating one or two of each of these were also created. From the computed stress-strain curve for the fiber bundle, the yield point (ϵy, σy), ultimate point (ϵu, σu), and toughness (UT) for the bundle as a whole were measured. We found that changes to all three input parameters were required for the model to capture the aging-related decline in cortical bone mechanical properties consistent with those previously reported in the literature. In both mature and elderly bundles, rupture of the interstitial fibers drove the initial loss of strength following the ultimate point. Plasticity and more gradual rupture of the osteons drove the remainder of the response. Both the onset and completion of interstitial fiber rupture occurred at lower strains in the elderly vs. mature case. These findings point to the importance of studying microstructural changes beyond porosity, such as the area fraction of osteons and the material properties of osteon and interstitial tissue, in order to further understanding of aging-related changes in bone.
Collapse
Affiliation(s)
- André Gutiérrez Marty
- Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA.
| | - Paul E Barbone
- Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA.
| | - Elise F Morgan
- Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA; Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, 02115, MA, USA.
| |
Collapse
|
166
|
Ahmed Khan HL, Murthykumar K, Sekaran S, Ganapathy D. Digital Panoramic Radiographs for Age Prediction Utilizing the Tooth Coronal Index of First Mandibular Bicuspids Among the South Indian Population. Cureus 2023; 15:e45870. [PMID: 37885555 PMCID: PMC10597869 DOI: 10.7759/cureus.45870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Age estimation holds significant importance within the realm of forensic science, serving as a crucial tool for various purposes such as validating birth certificates, aiding immigration processes, and determining eligibility for retirement benefits. Additionally, age estimation carries significant implications in situations involving human trafficking, offering insights into matters such as legal culpability, adult classification, and marriage age assessment. Aim The purpose of this research was to assess the precision of the Tooth Coronal Index (TCI) in the estimation of age, a key component of forensic odontology. Materials and methods The research employed a retrospective approach, analyzing 700 digital panoramic radiographs of the mandibular first bicuspids. The study population was categorized into five age groups viz. 20-30, 31-40, 41-50, 51-60, and above 61 years respectively. Statistical methods were applied to investigate the relation between TCI and age. Additionally, one-way ANOVA was utilized to compare the groups. Results Findings revealed that males aged between 20-30 years exhibited underestimation, while males above 60 years displayed overestimation. Among females, the smallest disparity between existent and calculated age was observed in the 31-40 age group. Notably, ANOVA analysis for females indicated highly significant differences between the calculated and actual ages across all age segments (P<0.01). Regarding the mean TCI, inter-group comparisons showed statistically insignificant differences in males, while in females, the distinctions were statistically extremely noteworthy (P<0.01). Conclusion The utilization of TCI for age estimation based on mandibular first bicuspids is recommended as a convenient, non-invasive, and time-efficient approach.
Collapse
Affiliation(s)
- Hooriyah Laiq Ahmed Khan
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthikeyan Murthykumar
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Saravanan Sekaran
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Dhanraj Ganapathy
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
167
|
Radotić K, Stanković M, Bartolić D, Natić M. Intrinsic Fluorescence Markers for Food Characteristics, Shelf Life, and Safety Estimation: Advanced Analytical Approach. Foods 2023; 12:3023. [PMID: 37628022 PMCID: PMC10453546 DOI: 10.3390/foods12163023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Food is a complex matrix of proteins, fats, minerals, vitamins, and other components. Various analytical methods are currently used for food testing. However, most of the used methods require sample preprocessing and expensive chemicals. New analytical methods are needed for quick and economic measurement of food quality and safety. Fluorescence spectroscopy is a simple and quick method to measure food quality, without sample preprocessing. This technique has been developed for food samples due to the application of a front-face measuring setup. Fluorescent compounds-fluorophores in the food samples are highly sensitive to their environment. Information about molecular structure and changes in food samples is obtained by the measurement of excitation-emission matrices of the endogenous fluorophores and by applying multivariate chemometric tools. Synchronous fluorescence spectroscopy is an advantageous screening mode used in food analysis. The fluorescent markers in food are amino acids tryptophan and tyrosine; the structural proteins collagen and elastin; the enzymes and co-enzymes NADH and FAD; vitamins; lipids; porphyrins; and mycotoxins in certain food types. The review provides information on the principles of the fluorescence measurements of food samples and the advantages of this method over the others. An analysis of the fluorescence spectroscopy applications in screening the various food types is provided.
Collapse
Affiliation(s)
- Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia; (M.S.); (D.B.)
- Center for Green Technologies, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Mira Stanković
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia; (M.S.); (D.B.)
- Center for Green Technologies, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Dragana Bartolić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia; (M.S.); (D.B.)
- Center for Green Technologies, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Maja Natić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| |
Collapse
|
168
|
Espina S, Casas-Deza D, Bernal-Monterde V, Domper-Arnal MJ, García-Mateo S, Lué A. Evaluation and Management of Nutritional Consequences of Chronic Liver Diseases. Nutrients 2023; 15:3487. [PMID: 37571424 PMCID: PMC10421025 DOI: 10.3390/nu15153487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Liver diseases are the major predisposing conditions for the development of malnutrition, sarcopenia, and frailty. Recently, the mechanism of the onset of these complications has been better established. Regardless of the etiology of the underlying liver disease, the clinical manifestations are common. The main consequences are impaired dietary intake, altered macro- and micronutrient metabolism, energy metabolism disturbances, an increase in energy expenditure, nutrient malabsorption, sarcopenia, frailty, and osteopathy. These complications have direct effects on clinical outcomes, survival, and quality of life. The nutritional status should be assessed systematically and periodically during follow-up in these patients. Maintaining and preserving an adequate nutritional status is crucial and should be a mainstay of treatment. Although general nutritional interventions have been established, special considerations are needed in specific settings such as decompensated cirrhosis, alcohol-related liver disease, and metabolic-dysfunction-associated fatty liver disease. In this review, we summarize the physiopathology and factors that impact the nutritional status of liver disease. We review how to assess malnutrition and sarcopenia and how to prevent and manage these complications in this setting.
Collapse
Affiliation(s)
- Silvia Espina
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (S.E.); (D.C.-D.); (V.B.-M.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (M.J.D.-A.); (S.G.-M.)
| | - Diego Casas-Deza
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (S.E.); (D.C.-D.); (V.B.-M.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (M.J.D.-A.); (S.G.-M.)
| | - Vanesa Bernal-Monterde
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (S.E.); (D.C.-D.); (V.B.-M.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (M.J.D.-A.); (S.G.-M.)
| | - María José Domper-Arnal
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (M.J.D.-A.); (S.G.-M.)
- Gastroenterology Department, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Sandra García-Mateo
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (M.J.D.-A.); (S.G.-M.)
- Gastroenterology Department, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Alberto Lué
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (M.J.D.-A.); (S.G.-M.)
- Gastroenterology Department, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| |
Collapse
|
169
|
Li C, Zhang Y, Du Y, Hou Z, Zhang Y, Cui W, Chen W. A Review of Advanced Biomaterials and Cells for the Production of Bone Organoid. SMALL SCIENCE 2023; 3:2300027. [PMID: 40213606 PMCID: PMC11935846 DOI: 10.1002/smsc.202300027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/25/2023] [Indexed: 02/18/2025] Open
Abstract
Rapid advancements in traditional bone tissue engineering have led to innovation in bone repair models and the resolution of insurmountable clinical issues like graft scarcity. The pathophysiological process of treating bone disease, however, is a multidimensional and multimodal regenerative regulatory mechanism that includes numerous immune, inflammatory, or metabolic responses related to the graft or the organism itself. Based on a 3D in vitro cell culture system that is remarkably identical to the body's bone tissue, the bone organoid is a biomimicking bone organ environment. It can accurately mimic the actual repair and regeneration condition in vivo because it shares the same physiological function, structure, morphology, and metabolic process as endogenous bone tissue. As a disruptive regenerative medicine technology, it has wide application prospects in the fields of organ development, gene editing, disease modeling, and precision therapy. Herein, the development process and physiological basis of different cell-based bone organoids are reviewed, the current status of the application of different materials, cells, and construction methods for building bone organoids is described, and the prospects and challenges for the development of bone organoids in future medical fields is discussed.
Collapse
Affiliation(s)
- Chao Li
- Department of Orthopaedic SurgeryKey Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institution of Hebei ProvinceNHC Key Laboratory of Intelligent Orthopaedic EquipmentThe Third Hospital of Hebei Medical UniversityNo.139 Ziqiang RoadShijiazhuang050051P. R. China
| | - Yipu Zhang
- Department of Orthopaedic SurgeryKey Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institution of Hebei ProvinceNHC Key Laboratory of Intelligent Orthopaedic EquipmentThe Third Hospital of Hebei Medical UniversityNo.139 Ziqiang RoadShijiazhuang050051P. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yawei Du
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhiyong Hou
- Department of Orthopaedic SurgeryKey Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institution of Hebei ProvinceNHC Key Laboratory of Intelligent Orthopaedic EquipmentThe Third Hospital of Hebei Medical UniversityNo.139 Ziqiang RoadShijiazhuang050051P. R. China
| | - Yingze Zhang
- Department of Orthopaedic SurgeryKey Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institution of Hebei ProvinceNHC Key Laboratory of Intelligent Orthopaedic EquipmentThe Third Hospital of Hebei Medical UniversityNo.139 Ziqiang RoadShijiazhuang050051P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wei Chen
- Department of Orthopaedic SurgeryKey Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institution of Hebei ProvinceNHC Key Laboratory of Intelligent Orthopaedic EquipmentThe Third Hospital of Hebei Medical UniversityNo.139 Ziqiang RoadShijiazhuang050051P. R. China
| |
Collapse
|
170
|
Biguetti CC, Lakkasetter Chandrashekar B, Simionato GB, Momesso NR, Duarte MAH, Rodrigues DC, Matsumoto MA. Influence of age and gender on alveolar bone healing post tooth extraction in 129 Sv mice: a microtomographic, histological, and biochemical characterization. Clin Oral Investig 2023; 27:4605-4616. [PMID: 37261497 DOI: 10.1007/s00784-023-05087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVES To analyze the effect of biological sex and aging on craniofacial bone features in 129 Sv mice and their influence on dental socket healing post tooth extraction. MATERIALS AND METHODS A total of 52 129 Sv mice were used, of which 28 were young (3-4 months) and 24 were aged (17-18 months), equally distributed according to biological sex. After an upper right incisor extraction, mice specimens were collected at 7, 14, and 21-days post-surgery for microtomographic (microCT) and comprehensive histological analysis. Mandible, skull bones, and maxillae at 21 days were analyzed by microCT, while blood plasma samples were collected for the detection of key bone turnover markers (P1NP and CTX-1) by enzyme-linked immunosorbent (ELISA) assay. RESULTS Aged females depicted significantly decreased mineralized bone content in alveolar sockets in comparison to young females and aged males at day 7, and aged males at day 14. Mandible RCA and Ma.AR of aged females were also significantly decreased in comparison with young females. Histological evaluation revealed that all alveolar sockets healed at 21 days with inflammation resolution and deposition of new bone. Immunohistochemistry for TRAP revealed increased area density for osteoclasts in alveolar sockets of aged females when compared to young females at 21 days. While a significant increase in CTX-1 levels was detected in blood plasma of aged females when compared to young females, P1NP levels did not significantly change between young and older females. No significant changes were observed for males. CONCLUSIONS Age and gender can significantly affect craniofacial bones of 129 Sv mice, especially maxilla and mandible in females. Considering the altered bone resorption parameters and delayed alveolar bone healing in older females, careful deliberation is necessary during development of pre-clinical models for craniofacial research. CLINICAL RELEVANCE Aging can be a contributing factor to slower bone healing in craniofacial bones. However, there are no sufficient experimental studies that have addressed this phenomenon along with biological sex taken into consideration.
Collapse
Affiliation(s)
- Claudia Cristina Biguetti
- Department of Surgery and Biomechanics, School of Podiatric Medicine, University of Texas Rio Grande Valley, Harlingen, TX, USA.
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Araçatuba, Brazil.
| | | | - Gustavo Baroni Simionato
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Araçatuba, Brazil
| | - Nataira Regina Momesso
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Araçatuba, Brazil
| | - Marco Antonio Hungaro Duarte
- Department of Dental Materials and Endodontics, School of Dentistry of Bauru, University of Sao Paulo (USP), Bauru, São Paulo, Brazil
| | | | - Mariza Akemi Matsumoto
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Araçatuba, Brazil
| |
Collapse
|
171
|
Kitase Y, Prideaux M. Regulation of the Osteocyte Secretome with Aging and Disease. Calcif Tissue Int 2023; 113:48-67. [PMID: 37148298 DOI: 10.1007/s00223-023-01089-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
As the most numerous and long-lived of all bone cells, osteocytes have essential functions in regulating skeletal health. Through the lacunar-canalicular system, secreted proteins from osteocytes can reach cells throughout the bone. Furthermore, the intimate connectivity between the lacunar-canalicular system and the bone vasculature allows for the transport of osteocyte-secreted factors into the circulation to reach the entire body. Local and endocrine osteocyte signaling regulates physiological processes such as bone remodeling, bone mechanoadaptation, and mineral homeostasis. However, these processes are disrupted by impaired osteocyte function induced by aging and disease. Dysfunctional osteocyte signaling is now associated with the pathogenesis of many disorders, including chronic kidney disease, cancer, diabetes mellitus, and periodontitis. In this review, we focus on the targeting of bone and extraskeletal tissues by the osteocyte secretome. In particular, we highlight the secreted osteocyte proteins, which are known to be dysregulated during aging and disease, and their roles during disease progression. We also discuss how therapeutic or genetic targeting of osteocyte-secreted proteins can improve both skeletal and systemic health.
Collapse
Affiliation(s)
- Yukiko Kitase
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
172
|
Skedros JG, Cronin JT, Dayton MR, Bloebaum RD, Bachus KN. Exploration of the synergistic role of cortical thickness asymmetry ("Trabecular Eccentricity" concept) in reducing fracture risk in the human femoral neck and a control bone (Artiodactyl Calcaneus). J Theor Biol 2023; 567:111495. [PMID: 37068584 DOI: 10.1016/j.jtbi.2023.111495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
The mechanobiology of the human femoral neck is a focus of research for many reasons including studies that aim to curb age-related bone loss that contributes to a near-exponential rate of hip fractures. Many believe that the femoral neck is often loaded in rather simple bending, which causes net tension stress in the upper (superior) femoral neck and net compression stress in its inferior aspect ("T/C paradigm"). This T/C loading regime lacks in vivo proof. The "C/C paradigm" is a plausible alternative simplified load history that is characterized by a gradient of net compression across the entire femoral neck; action of the gluteus medius and external rotators of the hip are important in this context. It is unclear which paradigm is at play in natural loading due to lack of in vivo bone strain data and deficiencies in understanding mechanisms and manifestations of bone adaptation in tension vs. compression. For these reasons, studies of the femoral neck would benefit from being compared to a 'control bone' that has been proven, by strain data, to be habitually loaded in bending. The artiodactyl (sheep and deer) calcaneus model has been shown to be a very suitable control in this context. However, the application of this control in understanding the load history of the femoral neck has only been attempted in two prior studies, which did not examine the interplay between cortical and trabecular bone, or potential load-sharing influences of tendons and ligaments. Our first goal is to compare fracture risk factors of the femoral neck in both paradigms. Our second goal is to compare and contrast the deer calcaneus to the human femoral neck in terms of fracture risk factors in the T/C paradigm (the C/C paradigm is not applicable in the artiodactyl calcaneus due to its highly constrained loading). Our third goal explores interplay between dorsal/compression and plantar/tension regions of the deer calcaneus and the load-sharing roles of a nearby ligament and tendon, with insights for translation to the femoral neck. These goals were achieved by employing the analytical model of Fox and Keaveny (J. Theoretical Biology 2001, 2003) that estimates fracture risk factors of the femoral neck. This model focuses on biomechanical advantages of the asymmetric distribution of cortical bone in the direction of habitual loading. The cortical thickness asymmetry of the femoral neck (thin superior cortex, thick inferior cortex) reflects the superior-inferior placement of trabecular bone (i.e., "trabecular eccentricity," TE). TE helps the femoral neck adapt to typical stresses and strains through load-sharing between superior and inferior cortices. Our goals were evaluated in the context of TE. Results showed the C/C paradigm has lower risk factors for the superior cortex and for the overall femoral neck, which is clinically relevant. TE analyses of the deer calcaneus revealed important synergism in load-sharing between the plantar/tension cortex and adjacent ligament/tendon, which challenges conventional understanding of how this control bone achieves functional adaptation. Comparisons with the control bone also exposed important deficiencies in current understanding of human femoral neck loading and its potential histocompositional adaptations.
Collapse
Affiliation(s)
- John G Skedros
- University of Utah, Department of Orthopaedics, Salt Lake City, UT, USA; Research Service, Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - John T Cronin
- University of Utah, Department of Orthopaedics, Salt Lake City, UT, USA
| | - Michael R Dayton
- University of Colorado, Department of Orthopedics, Aurora, CO, USA
| | - Roy D Bloebaum
- University of Utah, Department of Orthopaedics, Salt Lake City, UT, USA; Research Service, Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Kent N Bachus
- University of Utah, Department of Orthopaedics, Salt Lake City, UT, USA; Research Service, Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
173
|
Chen Z, Wang P, Zhang M, Wen S, Cheng H, Wang N, Wu M, Wang Z, Li B, Guo X, Zhang Y, Guan D, Wang L, Zhao R. Forensic Pathological Analysis of Death Due to Pulmonary Thromboembolism: A Retrospective Study Based on 145 Cases. Am J Forensic Med Pathol 2023; 44:111-115. [PMID: 36689553 DOI: 10.1097/paf.0000000000000811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pulmonary thromboembolism (PTE) is a common cause of sudden unexpected death in forensic and clinical practice. Although the prevention of thrombosis has been paid more attention in clinical practice in recent years, the number of deaths due to PTE remains extensive. In the present study, 145 cases of fatal PTE were collected and retrospectively analyzed from 2001 to 2020 at the School of Forensic Medicine, China Medical University in Liaoning Province, northeast of China. The demographic characteristics, risk factors of PTE, origins of thrombi, and time interval from the occurrence of main risk factors to PTE were retrospectively analyzed. The 40 to 59 age group accounted for the 51.0% of the total cases. Immobilization, trauma (especially fracture of the pelvis, femur, tibia, or fibula), surgery, cesarean section, and mental disorders were the top 5 high-risk factors. Among the involved cases, 92.9% of the PTE (130/140) occurred within 60 days and peak at 8 to 15 days after the exposure of main risk factors. According to the autopsy findings, 87.6% of the thrombi blocked the bilateral pulmonary arteries at pulmonary hilus, with a maximum diameter of 1.6 cm and a maximum length of 21.9 cm, which were mainly derived from lower limb (65.5%) or pelvic veins (10.3%). Although the embolus limited the pulmonary circulation, there is no difference on the ratio of lung-to-heart weight between PTE and the disease-free accident victims. Overall, our present retrospective study provides important information for the forensic analysis on the cause of death and potential guidance on clinical prevention of PTE.
Collapse
Affiliation(s)
- Ziyuan Chen
- From the Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang
| | - Pengfei Wang
- From the Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang
| | - Mengzhou Zhang
- Key Laboratory of Evidence Science, Ministry of Education, China University of Political Science and Law, Beijing
| | - Shuheng Wen
- From the Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang
| | - Hao Cheng
- From the Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang
| | - Ning Wang
- From the Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang
| | - Mingzhe Wu
- From the Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang
| | - Ziwei Wang
- From the Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang
| | - Bingxuan Li
- Department of forensic pathology, Institute of criminal science and technology, Criminal Investigation Police University of China, Shenyang, China
| | - Xiangshen Guo
- From the Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang
| | - Yujian Zhang
- From the Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang
| | - Dawei Guan
- From the Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang
| | - Linlin Wang
- From the Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang
| | - Rui Zhao
- From the Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang
| |
Collapse
|
174
|
Sang W, Ural A. Evaluating the Role of Canalicular Morphology and Perilacunar Region Properties on Local Mechanical Environment of Lacunar-Canalicular Network Using Finite Element Modeling. J Biomech Eng 2023; 145:1156059. [PMID: 36629002 DOI: 10.1115/1.4056655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Physiological and pathological processes such as aging, diseases, treatments, and lactation can alter lacunar-canalicular network (LCN) morphology and perilacunar region properties. These modifications can impact the mechanical environment of osteocytes which in turn can influence osteocyte mechanosensitivity and the remodeling process. In this study, we aim to evaluate how the modifications in the canalicular morphology, lacunar density, and the perilacunar region properties influence the local mechanical environment of LCN and the apparent bone properties using three-dimensional finite element (FE) modeling. The simulation results showed that a 50% reduction in perilacunar elastic modulus led to about 7% decrease in apparent elastic modulus of the bone. The increase in canalicular density, length, and diameter did not influence the strain amplification in the models but they increased the amount of highly strained bone around LCN. Change in lacunar density did not influence the strain amplification and the amount of highly strained regions on LCN surfaces. Reduction in perilacunar elastic modulus increased both the strain amplification and the volume of highly strained tissue around and on the surface of LCN. The FE models of LCN in this study can be utilized to quantify the influence of modifications in canalicular morphology, lacunar density, and perilacunar region properties on the apparent bone properties and the local mechanical environment of LCN. Although this is a numerical study with idealized models, it provides important information on how mechanical environment of osteocytes is influenced by the modifications in LCN morphology and perilacunar region properties due to physiological and pathological processes.
Collapse
Affiliation(s)
- Wen Sang
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085
| |
Collapse
|
175
|
Cirovic A, Cirovic A. Letter to the Editor on "The relationship of multiple metals mixture and osteoporosis in elderly Chinese women: An aging and longevity study". ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121351. [PMID: 36863434 DOI: 10.1016/j.envpol.2023.121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia.
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| |
Collapse
|
176
|
Shimonty A, Bonewald LF, Pin F. Role of the Osteocyte in Musculoskeletal Disease. Curr Osteoporos Rep 2023; 21:303-310. [PMID: 37084017 DOI: 10.1007/s11914-023-00788-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE OF THE REVIEW The purpose of this review is to summarize the role of the osteocyte in muscle atrophy in cancer patients, sarcopenia, spinal cord injury, Duchenne's muscular dystrophy, and other conditions associated with muscle deterioration. RECENT FINDINGS One type of bone cell, the osteocyte, appears to play a major role in muscle and bone crosstalk, whether physiological or pathological. Osteocytes are cells living within the bone-mineralized matrix. These cells are connected to each other by means of dendrites to create an intricately connected network. The osteocyte network has been shown to respond to different types of stimuli such as mechanical unloading, immobilization, aging, and cancer by producing osteocytes-derived factors. It is now becoming clear that some of these factors including sclerostin, RANKL, TGF-β, and TNF-α have detrimental effects on skeletal muscle. Bone and muscle not only communicate mechanically but also biochemically. Osteocyte-derived factors appear to contribute to the pathogenesis of muscle disease and could be used as a cellular target for new therapeutic approaches.
Collapse
Affiliation(s)
- Anika Shimonty
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
177
|
Al-Qudsy L, Hu YW, Xu H, Yang PF. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone. ACS Biomater Sci Eng 2023; 9:2203-2219. [PMID: 37075172 DOI: 10.1021/acsbiomaterials.2c01377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Bone comprises mechanically different materials in a specific hierarchical structure. Mineralized collagen fibrils (MCFs), represented by tropocollagen molecules and hydroxyapatite nanocrystals, are the fundamental unit of bone. The mechanical characterization of MCFs provides the unique adaptive mechanical competence to bone to withstand mechanical load. The structural and mechanical role of MCFs is critical in the deformation mechanisms of bone and the marvelous strength and toughness possessed by bone. However, the role of MCFs in the mechanical behavior of bone across multiple length scales is not fully understood. In the present study, we shed light upon the latest progress regarding bone deformation at multiple hierarchical levels and emphasize the role of MCFs during bone deformation. We propose the concept of hierarchical deformation of bone to describe the interconnected deformation process across multiple length scales of bone under mechanical loading. Furthermore, how the deterioration of bone caused by aging and diseases impairs the hierarchical deformation process of the cortical bone is discussed. The present work expects to provide insights on the characterization of MCFs in the mechanical properties of bone and lays the framework for the understanding of the multiscale deformation mechanics of bone.
Collapse
Affiliation(s)
- Luban Al-Qudsy
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Medical Instrumentation Engineering Techniques, Electrical Engineering Technical College, Middle Technical University, 8998+QHJ Baghdad, Iraq
| | - Yi-Wei Hu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng-Fei Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
178
|
Cavati G, Pirrotta F, Merlotti D, Ceccarelli E, Calabrese M, Gennari L, Mingiano C. Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification. Antioxidants (Basel) 2023; 12:antiox12040928. [PMID: 37107303 PMCID: PMC10135862 DOI: 10.3390/antiox12040928] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Type 2 diabetes (T2D) and osteoporosis (OP) are major causes of morbidity and mortality that have arelevant health and economic burden. Recent epidemiological evidence suggests that both of these disorders are often associated with each other and that T2D patients have an increased risk of fracture, making bone an additional target of diabetes. As occurs for other diabetic complications, the increased accumulation of advanced glycation end-products (AGEs) and oxidative stress represent the major mechanisms explaining bone fragility in T2D. Both of these conditions directly and indirectly (through the promotion of microvascular complications) impair the structural ductility of bone and negatively affect bone turnover, leading to impaired bone quality, rather than decreased bone density. This makes diabetes-induced bone fragility remarkably different from other forms of OP and represents a major challenge for fracture risk stratification, since either the measurement of BMD or the use of common diagnostic algorithms for OP have a poor predictive value. We review and discuss the role of AGEs and oxidative stress on the pathophysiology of bone fragility in T2D, providing some indications on how to improve fracture risk prediction in T2D patients.
Collapse
Affiliation(s)
- Guido Cavati
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Filippo Pirrotta
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Elena Ceccarelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Marco Calabrese
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Christian Mingiano
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
179
|
Fernandes DM, Sirak KA, Cheronet O, Novak M, Brück F, Zelger E, Llanos-Lizcano A, Wagner A, Zettl A, Mandl K, Duffet Carlson KS, Oberreiter V, Özdoğan KT, Sawyer S, La Pastina F, Borgia E, Coppa A, Dobeš M, Velemínský P, Reich D, Bell LS, Pinhasi R. Density separation of petrous bone powders for optimized ancient DNA yields. Genome Res 2023; 33:622-631. [PMID: 37072186 PMCID: PMC10234301 DOI: 10.1101/gr.277714.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
Density separation is a process routinely used to segregate minerals, organic matter, and even microplastics, from soils and sediments. Here we apply density separation to archaeological bone powders before DNA extraction to increase endogenous DNA recovery relative to a standard control extraction of the same powders. Using nontoxic heavy liquid solutions, we separated powders from the petrous bones of 10 individuals of similar archaeological preservation into eight density intervals (2.15 to 2.45 g/cm3, in 0.05 increments). We found that the 2.30 to 2.35 g/cm3 and 2.35 to 2.40 g/cm3 intervals yielded up to 5.28-fold more endogenous unique DNA than the corresponding standard extraction (and up to 8.53-fold before duplicate read removal), while maintaining signals of ancient DNA authenticity and not reducing library complexity. Although small 0.05 g/cm3 intervals may maximally optimize yields, a single separation to remove materials with a density above 2.40 g/cm3 yielded up to 2.57-fold more endogenous DNA on average, which enables the simultaneous separation of samples that vary in preservation or in the type of material analyzed. While requiring no new ancient DNA laboratory equipment and fewer than 30 min of extra laboratory work, the implementation of density separation before DNA extraction can substantially boost endogenous DNA yields without decreasing library complexity. Although subsequent studies are required, we present theoretical and practical foundations that may prove useful when applied to other ancient DNA substrates such as teeth, other bones, and sediments.
Collapse
Affiliation(s)
- Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria;
- CIAS, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Kendra A Sirak
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Florian Brück
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Evelyn Zelger
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | | | - Anna Wagner
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Anna Zettl
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Kellie Sara Duffet Carlson
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Department of History and Art History, Utrecht University, 3512 BS Utrecht, The Netherlands
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Francesco La Pastina
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, United Kingdom
| | - Emanuela Borgia
- Dipartimento di Scienze dell'Antichità, Sapienza Università di Roma, Rome 00185, Italy
| | - Alfredo Coppa
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome 00185, Italy
| | - Miroslav Dobeš
- Institute of Archaeology of the Czech Academy of Sciences, Prague 118 00, Czech Republic
| | - Petr Velemínský
- Department of Anthropology, National Museum, Prague 115 79, Czech Republic
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Lynne S Bell
- Centre for Forensic Research, School of Criminology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria;
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
180
|
Kengkard P, Choovuthayakorn J, Mahakkanukrauh C, Chitapanarux N, Intasuwan P, Malatong Y, Sinthubua A, Palee P, Lampang SN, Mahakkanukrauh P. Convolutional neural network of age-related trends digital radiographs of medial clavicle in a Thai population: a preliminary study. Anat Cell Biol 2023; 56:86-93. [PMID: 36655305 PMCID: PMC9989796 DOI: 10.5115/acb.22.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Age at death estimation has always been a crucial yet challenging part of identification process in forensic field. The use of human skeletons have long been explored using the principle of macro and micro-architecture change in correlation with increasing age. The clavicle is recommended as the best candidate for accurate age estimation because of its accessibility, time to maturation and minimal effect from weight. Our study applies pre-trained convolutional neural network in order to achieve the most accurate and cost effective age estimation model using clavicular bone. The total of 988 clavicles of Thai population with known age and sex were radiographed using Kodak 9000 Extra-oral Imaging System. The radiographs then went through preprocessing protocol which include region of interest selection and quality assessment. Additional samples were generated using generative adversarial network. The total clavicular images used in this study were 3,999 which were then separated into training and test set, and the test set were subsequently categorized into 7 age groups. GoogLeNet was modified at two layers and fine tuned the parameters. The highest validation accuracy was 89.02% but the test set achieved only 30% accuracy. Our results show that the use of medial clavicular radiographs has a potential in the field of age at death estimation, thus, further study is recommended.
Collapse
Affiliation(s)
| | | | | | | | - Pittayarat Intasuwan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Yanumart Malatong
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Apichat Sinthubua
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| | - Patison Palee
- College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Sakarat Na Lampang
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
181
|
Wang X, Huang J, Su L, Ma Q, Ma C, Xie Z. Complete excision of giant clavicular hydatid cyst: a case report. BMC Infect Dis 2023; 23:178. [PMID: 36949399 PMCID: PMC10035111 DOI: 10.1186/s12879-023-08149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Echinococcosis, also known as hydatid disease, is a zoonotic parasitic disease prevalent in pastoral areas, mainly involving the liver and lungs, and less frequently the bones and surrounding soft tissues. Diagnosis and treatment of bone hydatid disease is a challenge, and because of the insidious course of the disease, the lesions are often widely disseminated by the time patients seek medical attention. CASE PRESENTATION A 29-year-old woman presented with a painless mass that was gradually increasing in size in the cervical thorax. Imaging revealed an enlarged clavicle with multiple bone cortical defects and the existence of cysts in the soft tissues surrounding the clavicle, for which complete excision of the clavicle and the attached cysts was performed. There was no recurrence of the cyst within one year after the operation, and the patient felt well and had normal shoulder joint movement. CONCLUSIONS Bone hydatid may appear in bones throughout the body, and cysts that leak from the bone into the surrounding soft tissues may spread at a relatively rapid rate. Prompt surgical removal of the affected bone and surrounding cysts is necessary for treatment.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopedics and Trauma, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University), Ministry of Education, Urumqi, Xinjiang, China.
- Xinjiang Clinical Research Center for Orthopedics, Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Jinyong Huang
- Department of Orthopedics and Trauma, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Liping Su
- Department of Pathologyathology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qian Ma
- Department of Pathologyathology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chao Ma
- Department of Orthopaedics, the Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zengru Xie
- Department of Orthopedics and Trauma, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University), Ministry of Education, Urumqi, Xinjiang, China.
- Xinjiang Clinical Research Center for Orthopedics, Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
182
|
Cifuentes-Mendiola SE, Solís-Suarez DL, Martínez-Davalos A, García-Hernández AL. Macrovascular and microvascular type 2 diabetes complications are interrelated in a mouse model. J Diabetes Complications 2023; 37:108455. [PMID: 36963291 DOI: 10.1016/j.jdiacomp.2023.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
AIM Evaluate the development of multiple complications, their interactions, and common mechanisms in the same individual with T2D. MATERIAL AND METHODS 4-week-old male C57BL/6J mice were divided into: control (n = 6) and T2D (n = 6). T2D was induced through a high-carbohydrate-diet and low doses of streptozotocin. T2D was validated by metabolic parameters. Diabetic neuropathy was evaluated by mechanical and thermal sensitivity tests. We performed a histopathological analysis of the heart, kidney, liver, and parotid salivary glands and changes in bone microarchitecture by μCT. We calculated the relative risk (RR), odd ratios (OR) and Pearson correlation coefficients between the different complications and metabolic features. RESULTS T2D mice have cardiomyopathy, neuropathy, nephropathy, liver steatosis and fibrosis, structural damage in parotid salivary glands, and bone porosity. RR analysis shows that all complications are interrelated by hyperglycaemia, insulin resistance, obesity, and systemic inflammation. CONCLUSIONS T2D mice develop multiple complications simultaneously, which are related to each other, and this is associated with metabolic alterations. Our findings open up new approaches for the study and new therapeutic approaches of the pathophysiology of T2D and its complications.
Collapse
Affiliation(s)
- S E Cifuentes-Mendiola
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México CP 54714, Mexico
| | - D L Solís-Suarez
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México CP 54714, Mexico
| | - A Martínez-Davalos
- Physics institute, National Autonomous University of Mexico, Circuito de la Investigación Científica, Ciudad Universitaria, 04510 México City, Mexico
| | - A L García-Hernández
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México CP 54714, Mexico.
| |
Collapse
|
183
|
Dragoun Kolibová S, Wölfel EM, Hemmatian H, Milovanovic P, Mushumba H, Wulff B, Neidhardt M, Püschel K, Failla AV, Vlug A, Schlaefer A, Ondruschka B, Amling M, Hofbauer LC, Rauner M, Busse B, Jähn-Rickert K. Osteocyte apoptosis and cellular micropetrosis signify skeletal aging in type 1 diabetes. Acta Biomater 2023; 162:254-265. [PMID: 36878337 DOI: 10.1016/j.actbio.2023.02.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Bone fragility is a profound complication of type 1 diabetes mellitus (T1DM), increasing patient morbidity. Within the mineralized bone matrix, osteocytes build a mechanosensitive network that orchestrates bone remodeling; thus, osteocyte viability is crucial for maintaining bone homeostasis. In human cortical bone specimens from individuals with T1DM, we found signs of accelerated osteocyte apoptosis and local mineralization of osteocyte lacunae (micropetrosis) compared with samples from age-matched controls. Such morphological changes were seen in the relatively young osteonal bone matrix on the periosteal side, and micropetrosis coincided with microdamage accumulation, implying that T1DM drives local skeletal aging and thereby impairs the biomechanical competence of the bone tissue. The consequent dysfunction of the osteocyte network hampers bone remodeling and decreases bone repair mechanisms, potentially contributing to the enhanced fracture risk seen in individuals with T1DM. STATEMENT OF SIGNIFICANCE: Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease that causes hyperglycemia. Increased bone fragility is one of the complications associated with T1DM. Our latest study on T1DM-affected human cortical bone identified the viability of osteocytes, the primary bone cells, as a potentially critical factor in T1DM-bone disease. We linked T1DM with increased osteocyte apoptosis and local accumulation of mineralized lacunar spaces and microdamage. Such structural changes in bone tissue suggest that T1DM speeds up the adverse effects of aging, leading to the premature death of osteocytes and potentially contributing to diabetes-related bone fragility.
Collapse
Affiliation(s)
- Sofie Dragoun Kolibová
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Eva Maria Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; University of Belgrade, Faculty of Medicine, Center of Bone Biology, Institute of Anatomy, Belgrade, Serbia
| | - Herbert Mushumba
- University Medical Center Hamburg Eppendorf, Institute of Legal Medicine, Hamburg, Germany
| | - Birgit Wulff
- University Medical Center Hamburg Eppendorf, Institute of Legal Medicine, Hamburg, Germany
| | - Maximilian Neidhardt
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Am-Schwarzenberg-Campus 3, Hamburg 21073, Germany; Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- University Medical Center Hamburg Eppendorf, Institute of Legal Medicine, Hamburg, Germany
| | - Antonio Virgilio Failla
- University Medical Center Hamburg Eppendorf, UKE microscopy Imaging facility, Hamburg, Germany
| | - Annegreet Vlug
- Leiden University Medical Center (LUMC), Centre for Bone Quality, Leiden, the Netherlands
| | - Alexander Schlaefer
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Am-Schwarzenberg-Campus 3, Hamburg 21073, Germany; Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- University Medical Center Hamburg Eppendorf, Institute of Legal Medicine, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Department of Medicine III, Technische Universität Dresden Medical Center, Diabetes, and Metabolic Bone Diseases, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Department of Medicine III, Technische Universität Dresden Medical Center, Diabetes, and Metabolic Bone Diseases, Dresden, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
184
|
Shah FA. The many facets of micropetrosis - Magnesium whitlockite deposition in bisphosphonate-exposed human alveolar bone with osteolytic metastasis. Micron 2023; 168:103441. [PMID: 36924676 DOI: 10.1016/j.micron.2023.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The lacuno-canalicular space of apoptotic osteocytes eventually becomes mineralised in vivo. This condition is known as micropetrosis and is a fundamental characteristic of ageing bone. Increased prevalence of such hypermineralised osteocyte lacunae is viewed as a structural marker of impaired bone function - both mechanical and biological. Within the lacuno-canalicular space, mineralised apoptotic debris typically occurs as micrometre-sized, spherical nodules of magnesium-rich, carbonated apatite. Moreover, characteristically facetted, rhomboidal nodules of magnesium whitlockite [Mg-whitlockite; Ca18Mg2(HPO4)2(PO4)12] have been reported in human alveolar bone exposed to the bisphosphonate alendronate. This work provides supporting evidence for Mg-whitlockite formation in the alveolar bone of a 70-year-old male exposed to the bisphosphonate zoledronic acid to suppress osteolytic changes in skeletal metastasis. Backscattered electron scanning electron microscopy (BSE-SEM) revealed spherical and rhomboidal nodules within the lacuno-canalicular space. A variant of spherical nodules exhibited a fuzzy surface layer comprising radially extending acicular crystallites. The rhomboidal nodules ranged between ∼200 nm to ∼2.4 µm across the widest dimension (652 ± 331 nm). Micro-Raman spectroscopy and energy dispersive X-ray spectroscopy confirmed that rhomboidal nodules are compositionally distinct from spherical nodules, exhibiting higher Mg content and lower Ca/P ratio. Formation of Mg-whitlockite within osteocyte lacunae is multifactorial in nature and suggests altered bone biomineralisation. Nevertheless, the underlying mechanism(s) and sequence of events remain poorly understood and warrant further investigation. The possibility to discriminate between carbonated apatite and Mg-whitlockite nodules within osteocyte lacunae, based on particle morphology, attests to the diagnostic potential of BSE-SEM with or without additional analyses of material composition.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
185
|
Mutlu U, Telci Caklili O, Barburoglu M, Yarman S. Frequency of hyperostosis frontalis interna in patients with active acromegaly: is there a possible role of GH excess or hyperprolactinemia in its etiopathogenesis? Hormones (Athens) 2023; 22:25-32. [PMID: 36223065 DOI: 10.1007/s42000-022-00401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Acromegaly is characterized by bone changes due to excessive growth hormone (GH) secretion. Hyperostosis frontalis interna (HFI) is described as an overgrowth in the inner plate of the frontal bone. An increased incidence of HFI has been reported in patients with acromegaly. Since the etiology of HFI is poorly understood, we have analyzed whether there is a relationship between the hormonal and metabolic status of patients with acromegaly (with or without hyperprolactinemia) and the pathogenesis of HFI. METHODS Forty-five patients with acromegaly and two control groups consisting of 25 patients with prolactinoma (group 1) and 47 healthy subjects (group 2) were included in this retrospective study. Baseline hormonal data and cranial imaging were obtained from medical records and analyzed. RESULTS Mean frontal bone thickness was 6.75 mm in acromegaly, 4.85 mm in group 1, and 5.1 mm in group 2 of controls (p < 0.001). The frequency of HFI was higher in acromegalic patients than in the controls (22%, 0%, and 2.2%, respectively). There was no difference between the HFI positive and negative acromegalic patients in basal GH, IGF-1, and PRL levels, IGF-1 index, diagnosis lag time, and insulin resistance. There was no difference between groups regarding parietal and occipital bone thickness. CONCLUSION Although the frequency of HFI is 22% in patients with acromegaly, neither excess GH nor hyperprolactinemia plays a role in its etiopathogenesis. Various genetic or epigenetic factors may contribute to its etiology.
Collapse
Affiliation(s)
- Ummu Mutlu
- Istanbul Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul University, Turgut Ozal Street, Capa, Sehremini, Fatih, Istanbul, Turkey.
| | - Ozge Telci Caklili
- Istanbul Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul University, Turgut Ozal Street, Capa, Sehremini, Fatih, Istanbul, Turkey
| | - Mehmet Barburoglu
- Istanbul Faculty of Medicine, Department of Radiology, Istanbul University, Istanbul, Turkey
| | - Sema Yarman
- Istanbul Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul University, Turgut Ozal Street, Capa, Sehremini, Fatih, Istanbul, Turkey
| |
Collapse
|
186
|
Srinivasan W, Thorell W, McCumber TL, Vilburn M, Snow EL. Hyperostosis cranialis interna and an ectopic ossification on the endosteal dura deep to the trigeminal ganglion: Case analysis and clinical implications. TRANSLATIONAL RESEARCH IN ANATOMY 2023. [DOI: 10.1016/j.tria.2023.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
187
|
Ahmed N, Eras V, Pruß A, Perka C, Brune J, Vu-Han TL. Allografts: expanding the surgeon's armamentarium. Cell Tissue Bank 2023; 24:273-283. [PMID: 35763162 PMCID: PMC10006263 DOI: 10.1007/s10561-022-10015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/05/2022] [Indexed: 11/02/2022]
Abstract
In Germany, bone allografts are widely used and their application in clinics has increased over the years. Successful use of allografts depends on many factors such as the procurement, processing, sterilization and the surgeon's surgical experience. Tissue banks have provided safe and sterile allografts for decades ranging from hard to soft tissue. Allografts are obtained from various tissues such as bone, tendon, amniotic membrane, meniscus and skin. An advantage of allografts is their wide applicability that has never been limited by indication restrictions thus providing a huge benefit for surgeon's. The use of the correct allograft in different indications is extremely important. Thereby surgeons have access to various allograft forms such as mineralized, demineralized, freeze-dried, paste, powder, chips strips and putty. The vast options of allografts allow surgeon's to use allografts in indications they deem fit. Currently, the application of allografts is at the discretion of the expert surgeon. However, regulations are often changed locally or internationally and may impact/limit allograft use to certain indications. Here, we report the different indications where our peracetic acid (PAA) sterilised bone allografts were used as well as general literature on bone allograft use in other indications.
Collapse
Affiliation(s)
- Norus Ahmed
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), Haus 42, Köpenicker Str. 325, 12555, Berlin, Germany.
| | - Volker Eras
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), Haus 42, Köpenicker Str. 325, 12555, Berlin, Germany
| | - Axel Pruß
- Institute for Transfusion Medicine, University Tissue Bank, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jan Brune
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), Haus 42, Köpenicker Str. 325, 12555, Berlin, Germany
| | - Tu-Lan Vu-Han
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
188
|
Andronowski JM, Cole ME, Davis RA, Tubo GR, Taylor JT, Cooper DML. A multimodal 3D imaging approach of pore networks in the human femur to assess age-associated vascular expansion and Lacuno-Canalicular reduction. Anat Rec (Hoboken) 2023; 306:475-493. [PMID: 36153809 DOI: 10.1002/ar.25089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022]
Abstract
Cellular communication in the mechanosensory osteocyte Lacuno-Canalicular Network (LCN) regulates bone tissue remodeling throughout life. Age-associated declines in LCN size and connectivity dysregulate mechanosensitivity to localized remodeling needs of aging or damaged tissue, compromising bone quality. Synchrotron radiation-based micro-Computed Tomography (SRμCT) and Confocal Laser Scanning Microscopy (CLSM) were employed to visualize LCN and vascular canal morphometry in an age series of the anterior femur (males n = 14, females n = 11, age range = 19-101, mean age = 55). Age-associated increases in vascular porosity were driven by pore coalescence, including a significant expansion in pore diameter and a significant decline in pore density. In contrast, the LCN showed significant age-associated reductions in lacunar volume fraction, mean diameter, and density, and in canalicular volume fraction and connectivity density. Lacunar density was significantly lower in females across the lifespan, exacerbating their age-associated decline. Canalicular connectivity density was also significantly lower in females but approached comparable declining male values in older age. Our data illuminate the trajectory and potential morphometric sources of age-associated bone loss. Increased vascular porosity contributes to bone fragility with aging, while an increasingly reduced and disconnected LCN undermines the mechanosensitivity required to repair and reinforce bone. Understanding why and how this degradation occurs is essential for improving the diagnosis and treatment of age-related changes in bone quality and fragility.
Collapse
Affiliation(s)
- Janna M Andronowski
- Faculty of Medicine, Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Mary E Cole
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | - Reed A Davis
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | - Gina R Tubo
- Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Joshua T Taylor
- Faculty of Medicine, Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - David M L Cooper
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, College of Medicine, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
189
|
Blau S, Roberts J, Cunha E, Delabarde T, Mundorff AZ, de Boer HH. Re-examining so-called 'secondary identifiers' in Disaster Victim Identification (DVI): Why and how are they used? Forensic Sci Int 2023; 345:111615. [PMID: 36907108 DOI: 10.1016/j.forsciint.2023.111615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/10/2022] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
Disaster victim identification (DVI) refers to the identification of multiple deceased persons following an event that has a catastrophic effect on human lives and living conditions. Identification methods in DVI are typically described as either being primary, which include nuclear genetic markers (DNA), dental radiograph comparisons, and fingerprint comparisons, or secondary, which are all other identifiers and are ordinarily considered insufficient as a sole means of identification. The aim of this paper is to review the concept and definition of so-called 'secondary identifiers" and draw on personal experiences to provide practical recommendations for improved consideration and use. Initially, the concept of secondary identifiers is defined and examples of publications where such identifiers have been used in human rights violation cases and humanitarian emergencies are reviewed. While typically not investigated under a strict DVI framework, the review highlights the idea that non-primary identifiers have proven useful on their own for identifying individuals killed as a result of political, religious, and/or ethnic violence. The use of non-primary identifiers in DVI operations in the published literature is then reviewed. Because there is a plethora of different ways in which secondary identifiers are referenced it was not possible to identify useful search terms. Consequently, a broad literature search (rather than a systematic review) was undertaken. The reviews highlight the potential value of so-called secondary identifiers but more importantly show the need to scrutinise the implied inferior value of non-primary methods which is suggested by the terms "primary" and "secondary". The investigative and evaluative phases of the identification process are examined, and the concept of "uniqueness" is critiqued. The authors suggest that non-primary identifiers may play an important role in providing leads to formulating an identification hypothesis and, using the Bayesian approach of evidence interpretation, may assist in establishing the value of the evidence in guiding the identification effort. A summary of contributions non-primary identifiers may make to DVI efforts is provided. In conclusion, the authors argue that all lines of evidence should be considered because the value of an identifier will depend on the context and the victim population. A series of recommendations are provided for consideration for the use of non-primary identifiers in DVI scenarios.
Collapse
Affiliation(s)
- S Blau
- Victorian Institute of Forensic Medicine, Department of Forensic Medicine, Monash University, Melbourne, Australia.
| | - J Roberts
- Alecto Forensics, Liverpool John Moores University, UK
| | - E Cunha
- National Institute of Legal Medicine and Forensic Sciences, Lisbon and University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - T Delabarde
- Institute of Legal Medicine, Paris. UMR8045 CNRS Université de Paris, France
| | - A Z Mundorff
- Department of Anthropology, University of Tennessee, Knoxville, TN, USA
| | - H H de Boer
- Victorian Institute of Forensic Medicine, Department of Forensic Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
190
|
Yang L, Tuxunjiang P, Liu W, Guo H. Vertebral and pelvic echinococcosis in northwestern China. INTERNATIONAL ORTHOPAEDICS 2023; 47:1153-1162. [PMID: 36826481 PMCID: PMC10079730 DOI: 10.1007/s00264-023-05731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE Echinococcosis remains a major economic and severe public health problem in endemic areas. Bone echinococcosis is rare, and the vertebra and pelvis are the most common sites of echinococcosis involving the skeletal. Because of the clinical severe symptoms and high recurrence rate, it brings excellent trouble to patients. METHODS This study retrospectively analyzed the clinical manifestations, laboratory tests, radiological findings, and treatment of 44 patients with vertebral and pelvic echinococcosis during a period of 16 years (2005-2020). RESULTS The mean age was 43 years (25 males, 19 females; 19-68 years). The most common symptom was pain, followed by numbness, weakness, activity limitation, and progressive paraparesis. Enzyme-linked immunosorbent assay test (ELISA) results were positive in 18 cases (75%). There are 24 cases of hydatid infection of the spine, 14 hydatid infection of the pelvis, and six hydatid infection of both vertebra and pelvis. The site of infection was 13 (29.5%) thoracic, five (11.4%) lumbar, four (9.1%) lumbosacral, seven (15.9%) sacral, 19 (43.2%) ilium, seven (15.9%) hip, six (13.6%) ischium, five (11.4%) pubis, and two (4.5%) femur, respectively. The imaging findings were cystic dilatancy, septal, and irregular bone destruction. MRI has a special value in showing the relationship between the surrounding tissues and organs of cystic bone echinococcosis. All patients were followed up for at least one year. The mean follow-up time was 3.6 years. CONCLUSIONS Even in epidemic areas, the incidence of bone echinococcosis is relatively rare. However, when encountering the vertebral and pelvic destruction, consider bone echinococcosis's possibility, especially for the herdsmen in endemic regions.
Collapse
Affiliation(s)
- Laihong Yang
- Medical Imaging Center, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830054, People's Republic of China
| | - Pahati Tuxunjiang
- Medical Imaging Center, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830054, People's Republic of China
| | - Wenya Liu
- Medical Imaging Center, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830054, People's Republic of China
| | - Hui Guo
- Medical Imaging Center, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830054, People's Republic of China. .,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, People's Republic of China.
| |
Collapse
|
191
|
Koepke LG, von Kroge S, Heuer A, Kammal AL, Ondruschka B, Rolvien T, Viezens L. Analysis of Three-Dimensional Bone Microarchitecture of the Axis Exposes Pronounced Regional Heterogeneity Associated with Clinical Fracture Patterns. Calcif Tissue Int 2023; 112:563-572. [PMID: 36826480 PMCID: PMC10106346 DOI: 10.1007/s00223-023-01070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/04/2023] [Indexed: 02/25/2023]
Abstract
The odontoid process (dens) of the second cervical vertebra (axis) is prone to fracture. While the importance of its skeletal integrity has been previously noted, representative three-dimensional microarchitecture analyses in humans are not available. This study aimed to determine the bone microarchitecture of the axis using high-resolution quantitative computed tomography (HR-pQCT) and to derive clinical implications for the occurrence and treatment of axis fractures. For initial clinical reference, the apparent density of the axis was determined based on clinical computed tomography (CT) images in patients without and with fractures of the axis. Subsequently, 28 human axes (female 50%) obtained at autopsy were analyzed by HR-pQCT. Analyses were performed in three different regions corresponding to zones I (tip of dens), II (base of dens), and III (corpus axis) of the Anderson and D'Alonzo classification. Lower apparent densities based on clinical CT data were detected in zone II and III compared to zone I in both the group without and with fracture. In the autopsy specimens, cortical thickness and bone volume fraction decreased continuously from zone I to zone III. Trabecular and cortical tissue mineral density was lowest in zone III, with no differences between zones I and II. In conclusion, our clinical and high-resolution ex vivo imaging data highlight a marked regional heterogeneity of bone microarchitecture, with poor cortical and trabecular properties near the dens base. These results may partly explain why zones II and III are at high risk of fracture and osteosynthesis failure.
Collapse
Affiliation(s)
- Leon-Gordian Koepke
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Heuer
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Lena Kammal
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Viezens
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
192
|
Xia N, Cai Y, Kan Q, Xiao J, Cui L, Zhou J, Xu W, Liu D. The role of microscopic properties on cortical bone strength of femoral neck. BMC Musculoskelet Disord 2023; 24:133. [PMID: 36803341 PMCID: PMC9940427 DOI: 10.1186/s12891-023-06248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Femoral neck fractures are serious consequence of osteoporosis (OP), numbers of people are working on the micro-mechanisms of femoral neck fractures. This study aims to investigate the role and weight of microscopic properties on femoral neck maximum load (Lmax), funding the indicator which effects Lmax most. METHODS A total of 115 patients were recruited from January 2018 to December 2020. Femoral neck samples were collected during the total hip replacement surgery. Femoral neck Lmax, micro-structure, micro-mechanical properties, micro-chemical composition were all measured and analyzed. Multiple linear regression analyses were performed to identify significant factors that affected the femoral neck Lmax. RESULTS The Lmax, cortical bone mineral density (cBMD), cortical bone thickness (Ct. Th), elastic modulus, hardness and collagen cross-linking ratio were all significantly decreased, whereas other parameters were significantly increased during the progression of OP (P < 0.05). In micro-mechanical properties, elastic modulus has the strongest correlation with Lmax (P < 0.05). The cBMD has the strongest association with Lmax in micro-structure (P < 0.05). In micro-chemical composition, crystal size has the strongest correlation with Lmax (P < 0.05). Multiple linear regression analysis showed that elastic modulus was most strongly related to Lmax (β = 0.920, P = 0.000). CONCLUSIONS Compared with other parameters, elastic modulus has the greatest influence on Lmax. Evaluation of microscopic parameters on femoral neck cortical bone can clarify the effects of microscopic properties on Lmax, providing a theoretical basis for the femoral neck OP and fragility fractures.
Collapse
Affiliation(s)
- Ning Xia
- Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083 China
| | - Yun Cai
- grid.443397.e0000 0004 0368 7493Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 China
| | - Qianhua Kan
- grid.263901.f0000 0004 1791 7667School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 611756 China
| | - Jian Xiao
- Department of Endocrinology, The General Hospital of Western Theater Command, Chengdu, 610083 China
| | - Lin Cui
- Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083 China
| | - Jiangjun Zhou
- Department of Orthopedic, The 908Th Hospital of Joint Logistic Support Force of PLA, Nanchang, 330001 China
| | - Wei Xu
- Trauma Center, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Da Liu
- Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| |
Collapse
|
193
|
Semenistaja S, Skuja S, Kadisa A, Groma V. Healthy and Osteoarthritis-Affected Joints Facing the Cellular Crosstalk. Int J Mol Sci 2023; 24:4120. [PMID: 36835530 PMCID: PMC9964755 DOI: 10.3390/ijms24044120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive, severely debilitating, and multifactorial joint disease that is recognized as the most common type of arthritis. During the last decade, it shows an incremental global rise in prevalence and incidence. The interaction between etiologic factors that mediate joint degradation has been explored in numerous studies. However, the underlying processes that induce OA remain obscure, largely due to the variety and complexity of these mechanisms. During synovial joint dysfunction, the osteochondral unit undergoes cellular phenotypic and functional alterations. At the cellular level, the synovial membrane is influenced by cartilage and subchondral bone cleavage fragments and extracellular matrix (ECM) degradation products from apoptotic and necrotic cells. These "foreign bodies" serve as danger-associated molecular patterns (DAMPs) that trigger innate immunity, eliciting and sustaining low-grade inflammation in the synovium. In this review, we explore the cellular and molecular communication networks established between the major joint compartments-the synovial membrane, cartilage, and subchondral bone of normal and OA-affected joints.
Collapse
Affiliation(s)
- Sofija Semenistaja
- Department of Doctoral Studies, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Sandra Skuja
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Anda Kadisa
- Department of Internal Diseases, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Valerija Groma
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|
194
|
Multisystemic involvement of post-traumatic fat embolism at a Pediatric Trauma Center: a clinical series and literature review. Eur J Pediatr 2023; 182:1811-1821. [PMID: 36790485 DOI: 10.1007/s00431-023-04869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
UNLABELLED Post-traumatic fat embolism syndrome (FES) is a severe complication consequent to bone fractures. The authors describe its clinical features and management in a population of teenagers by detailing demographics, organ involvement, laboratory, and imaging findings, as well as outcome. Moreover, a systematic review of pediatric published case reports of post-traumatic FES is provided. First, a series of eight episodes of post-traumatic FES that occurred in seven patients (median age 16.0 years, IQR 16.0-17.5) admitted to a pediatric intensive care unit (PICU) in an 8-year period was analyzed through a retrospective chart review. Secondly, a systematic research was performed on PUBMED database. Trauma patients ≤ 18 years without comorbidities in a 20-year period (2002-2022) were included in the review. Neurological impairment was present in five out of seven patients, and a patent foramen ovale was found in four cases. Hemodynamic instability requiring vasoactive drugs was recorded in four patients. A severe form of acute respiratory distress syndrome (ARDS) occurred in five cases, with the evidence of hemorrhagic alveolitis in three of them. In the literature review, eighteen cases were examined. Most cases refer to adolescents (median age 17.0 years). More than half of patients experienced two or more long bone fractures (median: 2 fractures). Both respiratory and neurological impairment were common (77.8% and 83.3%, respectively). 88.9% of patients underwent invasive mechanical ventilation and 33.3% of them required vasoactive drugs support. Neurological sequelae were reported in 22.2% of patients. CONCLUSION Post-traumatic FES is an uncommon multi-faceted condition even in pediatric trauma patients, requiring a high level of suspicion. Prognosis of patients who receive prompt support in an intensive care setting is generally favorable. WHAT IS KNOWN •Post-traumatic fat embolism syndrome is a severe condition complicating long bone or pelvic fractures. •Little is known about clinical features and management in pediatric age. WHAT IS NEW •Post-traumatic fat embolism syndrome can cause multiple organ failure, often requiring an intensive care management. •Prompt supportive care contributes to a favorable prognosis.
Collapse
|
195
|
Jadzic J, Djonic D. Bone loss in chronic liver diseases: Could healthy liver be a requirement for good bone health? World J Gastroenterol 2023; 29:825-833. [PMID: 36816627 PMCID: PMC9932432 DOI: 10.3748/wjg.v29.i5.825] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 01/11/2023] [Indexed: 02/06/2023] Open
Abstract
Given that the liver is involved in many metabolic mechanisms, it is not surprising that chronic liver disease (CLD) could have numerous complications. Secondary osteoporosis and increased bone fragility are frequently overlooked complications in CLD patients. Previous studies implied that up to one-third of these individuals meet diagnostic criteria for osteopenia or osteoporosis. Recent publications indicated that CLD-induced bone fragility depends on the etiology, duration, and stage of liver disease. Therefore, the increased fracture risk in CLD patients puts a severe socioeconomic burden on the health system and urgently requires more effective prevention, diagnosis, and treatment measures. The pathogenesis of CLD-induced bone loss is multifactorial and still insufficiently understood, especially considering the relative impact of increased bone resorption and reduced bone formation in these individuals. It is essential to note that inconsistent findings regarding bone mineral density measurement were previously reported in these individuals. Bone mineral density is widely used as the "golden standard" in the clinical assessment of bone fragility although it is not adequate to predict individual fracture risk. Therefore, microscale bone alterations (bone microstructure, mechanical properties, and cellular indices) were analyzed in CLD individuals. These studies further support the thesis that bone strength could be compromised in CLD individuals, implying that an individualized approach to fracture risk assessment and subsequent therapy is necessary for CLD patients. However, more well-designed studies are required to solve the bone fragility puzzle in CLD patients.
Collapse
Affiliation(s)
- Jelena Jadzic
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Danijela Djonic
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
196
|
Jadzic J, Djonic D. Bone loss in chronic liver diseases: Could healthy liver be a requirement for good bone health? World J Gastroenterol 2023; 29:825-833. [DOI: https:/doi.org/10.3748/wjg.v29.i5.825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
|
197
|
Blouin S, Misof BM, Mähr M, Fratzl-Zelman N, Roschger P, Lueger S, Messmer P, Keplinger P, Rauch F, Glorieux FH, Berzlanovich A, Gruber GM, Brugger PC, Shane E, Recker RR, Zwerina J, Hartmann MA. Osteocyte lacunae in transiliac bone biopsy samples across life span. Acta Biomater 2023; 157:275-287. [PMID: 36549635 DOI: 10.1016/j.actbio.2022.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Osteocytes act as bone mechanosensors, regulators of osteoblast/osteoclast activity and mineral homeostasis, however, knowledge about their functional/morphological changes throughout life is limited. We used quantitative backscattered electron imaging (qBEI) to investigate osteocyte lacunae sections (OLS) as a 2D-surrogate characterizing the osteocytes. OLS characteristics, the density of mineralized osteocyte lacunae (i.e., micropetrotic osteocytes, md.OLS-Density in nb/mm2) and the average degree of mineralization (CaMean in weight% calcium) of cortex and spongiosa were analyzed in transiliac biopsy samples from healthy individuals under 30 (n=59) and over 30 years (n=50) (i.e., before and after the age of peak bone mass, respectively). We found several differences in OLS-characteristics: 1). Inter-individually between the age groups: OLS-Density and OLS-Porosity were reduced by about 20% in older individuals in spongiosa and in cortex versus younger probands (both, p < 0.001). 2). Intra-individually between bone compartments: OLS-Density was higher in the cortex, +18.4%, p < 0.001 for younger and +7.6%, p < 0.05 for older individuals. Strikingly, the most frequent OLS nearest-neighbor distance was about 30 µm in both age groups and at both bone sites revealing a preferential organization of osteocytes in clusters. OLS-Density was negatively correlated with CaMean in both spongiosa and cortex (both, p < 0.001). Few mineralized OLS were found in young individuals along with an increase of md.OLS-Density with age. In summary, this transiliac bone sample analysis of 200000 OLS from 109 healthy individuals throughout lifespan reveals several age-related differences in OLS characteristics. Moreover, our study provides reference data from healthy individuals for different ages to be used for diagnosis of bone abnormalities in diseases. STATEMENT OF SIGNIFICANCE: Osteocytes are bone cells embedded in lacunae within the mineralized bone matrix and have a key role in the bone metabolism and the mineral homeostasis. Not easily accessible, we used quantitative backscattered electron imaging to determine precisely number and shape descriptors of the osteocyte lacunae in 2D. We analyzed transiliac biopsy samples from 109 individuals with age distributed from 2 to 95 years. Compact cortical bone showed constantly higher lacunar density than cancellous bone but the lacunar density in both bone tissue decreased with age before the peak bone mass age at 30 years and stabilized or even increased after this age. This extensive study provides osteocyte lacunae reference data from healthy individuals usable for bone pathology diagnosis.
Collapse
Affiliation(s)
- Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria.
| | - Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Matthias Mähr
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Sonja Lueger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Phaedra Messmer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Petra Keplinger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Frank Rauch
- Shriners Hospital for Children and McGill University, Montreal, ON QC, H4A 0A9, Canada
| | - Francis H Glorieux
- Shriners Hospital for Children and McGill University, Montreal, ON QC, H4A 0A9, Canada
| | - Andrea Berzlanovich
- Unit of Forensic Gerontology, Center of Forensic Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerlinde M Gruber
- Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Peter C Brugger
- Center for Anatomy and Cell Biology, Department of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Elizabeth Shane
- Department of Medicine, Division of Endocrinology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska, USA
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| |
Collapse
|
198
|
Welsh H, Brickley MB. Pathology or expected morphology? Investigating patterns of cortical porosity and trabecularization during infancy and early childhood. Anat Rec (Hoboken) 2023; 306:354-365. [PMID: 36116138 DOI: 10.1002/ar.25081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 01/25/2023]
Abstract
Increased cortical porosity is associated with a heightened risk of skeletal fragility due to bone loss and structural decay in adults. However, few studies have examined the etiology of cortical porosity in infants and children. This study examines whether age-related changes in femoral growth and locomotor development influence femoral midshaft cortical porosity in a sample of 48 individuals (fetal to 3.99 years) from the 10th-13th century cemetery of St. Étienne de Toulouse, France. Histological sections were prepared and imaged using light microscopy. Midshaft geometric variables such as total area, cortical area, and pore area were calculated using BoneJ. Increased porosity and cortical trabecularization were found to be significantly associated with age, being almost exclusively present in individuals aged 0.5-1.99 years. At approximately 6 months of age infants typically begin engaging in regular femoral loading and experience an acceleration in growth. The observed increase in midshaft porosity and trabecularization, therefore, likely results from the reorganization and redistribution of cortical bone, stimulated by increased growth velocity and the onset of weight-bearing activities. The reduction in cortical porosity and trabecularization in individuals aged 2.0-3.99 years indicates that children are approaching some sort of homeostasis as growth velocity slows and their femora adapt to consistent loading. Understanding what expected skeletal development looks like is necessary when conducting bioarcheological studies and this study provides evidence for a pattern of transient midshaft porosity during infancy and early childhood.
Collapse
Affiliation(s)
- Hayley Welsh
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Megan B Brickley
- Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
199
|
Heveran CM, Boerckel JD. Osteocyte Remodeling of the Lacunar-Canalicular System: What's in a Name? Curr Osteoporos Rep 2023; 21:11-20. [PMID: 36512204 PMCID: PMC11223162 DOI: 10.1007/s11914-022-00766-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Osteocytes directly modify the bone surrounding the expansive lacunar-canalicular system (LCS) through both resorption and deposition. The existence of this phenomenon is now widely accepted, but is referred to as "osteocyte osteolysis," "LCS remodeling," and "perilacunar remodeling," among other names. The uncertainty in naming this physiological process reflects the many persistent questions about why and how osteocytes interact with local bone matrix. The goal of this review is to examine the purpose and nature of LCS remodeling and its impacts on multiscale bone quality. RECENT FINDINGS While LCS remodeling is clearly important for systemic calcium mobilization, this process may have additional potential drivers and may impact the ability of bone to resist fracture. There is abundant evidence that the osteocyte can resorb and replace bone mineral and does so outside of extreme challenges to mineral homeostasis. The impacts of the osteocyte on organic matrix are less certain, especially regarding whether osteocytes produce osteoid. Though multiple lines of evidence point towards osteocyte production of organic matrix, definitive work is needed. Recent high-resolution imaging studies demonstrate that LCS remodeling influences local material properties. The role of LCS remodeling in the maintenance and deterioration of bone matrix quality in aging and disease are active areas of research. In this review, we highlight current progress in understanding why and how the osteocyte removes and replaces bone tissue and the consequences of these activities to bone quality. We posit that answering these questions is essential for evaluating whether, how, when, and why LCS remodeling may be manipulated for therapeutic benefit in managing bone fragility.
Collapse
Affiliation(s)
- C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, USA.
| | - J D Boerckel
- Department of Orthopaedic Surgery, Department of Bioengineering, University of Pennsylvania School of Medicine, Philadelphia, USA.
| |
Collapse
|
200
|
Marrone M, Cazzato G, Caricato P, Angeletti C, Ingravallo G, Casatta N, Lupo C, Vinci F, Agazzino G, Stellacci A, Oliva A. Diagnostic Methods in Forensic Pathology: A New Sign in Death from Hanging. Diagnostics (Basel) 2023; 13:510. [PMID: 36766615 PMCID: PMC9914265 DOI: 10.3390/diagnostics13030510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
PURPOSE To evaluate the usefulness of studying vital injuries at the sternal head insertion of the sternocleidomastoid muscle in the medico-legal assessment of death by hanging. MATERIALS AND METHODS Study material was obtained from eight bodies of people who died from hanging. The control group included as many specimens collected from people who died from traumatic causes other than hanging (precipitation from medium to large heights and traffic accidents). The structures under study were examined histologically with a BX-51 light microscope (Olympus). An analysis of the extravasated erythrocytes was performed by counting the number per mm2 in the histologic section on 10 HPF (400×), and Student's t-test for a comparison of the averages was applied for all parametric values. The authors noted that the key finding, indicative of the subject's viability at the time of discontinuation, was the presence of recent hemorrhagic infiltrate (in the absence of hemosiderin) at the tendon insertion of the sternocleidomastoid muscle and the proximal part of the muscle itself. RESULTS All specimens tested were positive for the presence of hemorrhagic infiltrate at the portions tested in a statistically significant manner. In contrast, in the control cases there was no or, where present, no statistically significant (p < 0.05) presence of recent hemorrhagic infiltrate. The limitation of the study is the low number of samples examined. In any case, the results obtained are strongly indicative of the possibility of using this type of forensic pathological investigation in cases where there is a doubt in terms of a differential diagnosis between hanging (suicidal type) and suspension of a corpse in a simulation of hanging.
Collapse
Affiliation(s)
- Maricla Marrone
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Gerardo Cazzato
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Pierluigi Caricato
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Carlo Angeletti
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Nadia Casatta
- Innovation Department, Diapath S.p.A., Via Savoldini n.71, 24057 Martinengo, Italy
| | - Carmelo Lupo
- Innovation Department, Diapath S.p.A., Via Savoldini n.71, 24057 Martinengo, Italy
| | - Francesco Vinci
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Gisella Agazzino
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandra Stellacci
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Oliva
- Section of Legal Medicine, Public Health Institute, Catholic University of the Sacred Heart, 20123 Milano, Italy
| |
Collapse
|