151
|
Khan JZ, Zainab SR, Rehman MU, Abid M, Mazhar MU, Shah FA, Tipu MK. Chronic stress intensify PTZ-induced seizures by triggering neuroinflammation and oxidative stress. Biochem Biophys Res Commun 2024; 729:150333. [PMID: 38991397 DOI: 10.1016/j.bbrc.2024.150333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Epilepsy is a paroxysmal abnormal hypersynchronous electrical discharge characterized by recurrent seizures. It affects more than 50 million people worldwide. Stress is the leading cause of neurodegeneration and can produce seizures that may lead to or aggravate epilepsy. Inflammation plays a vital role in epilepsy by modulating oxidative stress, and levels of neuroinflammatory cytokines including NF-κB, TNF-α, and IL-1β. METHODS Stress-induced changes in behavior were evaluated in mice by employing behavioral assessment tests such as an elevated plus maze, light-dark box, open field test, tail suspension test, Y-maze, novel object recognition test, and Morris water maze in pentylenetetrazole (PTZ) kindled mice. Behavioral changes in all these paradigms including seizure score, latency, and frequency showed an increase in symptoms in PTZ (35 mg/kg) induced seizures in stressed mice (RS-PTZ) as compared to PTZ, Stress, and normal animals. RESULTS The Enzyme-linked immunosorbent assay (ELISA) results confirmed increased in serum cortisol levels. Histological examinations showed neurodegenerative changes in the hippocampus and cortex regions. The spectrophotometric evaluation showed an increase in oxidative stress by decreasing antioxidant production i.e. reduced glutathione, glutathione -s- transferase, and catalase (CAT), and increasing oxidant levels such as maloaldehyde and nitric oxide. Immunohistochemistry results showed increased expression of NF-κB, TNF-α, and IL-1β in the cortex and hippocampus of mice brains. CONCLUSIONS Results from the study conclude that stress increases the likelihood of eliciting an epileptic attack by increasing the level of reactive oxygen species and neuroinflammation.
Collapse
Affiliation(s)
- Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Syeda Rida Zainab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | | | - Muhammad Abid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy Prince Sattam Bin Abdulaziz University, Al-Kharj, 16278, Saudi Arabia.
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
152
|
He X, Yang Y, Zhou S, Wei Q, Zhou H, Tao J, Yang G, You M. Alterations in microbiota-metabolism-circRNA crosstalk in autism spectrum disorder-like behaviours caused by maternal exposure to glyphosate-based herbicides in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117060. [PMID: 39299209 DOI: 10.1016/j.ecoenv.2024.117060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Epidemiological evidence indicates exposure to glyphosate-based herbicides (GBHs) increases the risk for autism spectrum disorder (ASD). The gut microbiota has been found to influence ASD behaviours through the microbiota-gut-brain axis. However, the underlying links between early life GBH exposure and ASD-like phenotypes through the microbiota-gut-brain axis remain unclear. Therefore, we exposed mice to low-dose GBH (0.10, 0.25, 0.50, and 1.00 %) and determined the effects on ASD-like behaviours. Furthermore, three kinds of omics (gut microbiomics, metabolomics, and transcriptomics) were conducted to investigate the effects of GBH exposure on gut microbiota, gut metabolites, and circular RNAs (circRNAs) in the prefrontal cortex (PFC) using a cross-generational mouse model. Behavioural analyses suggested social impairment and repetitive/stereotypic behaviours in the GBH-exposed offspring. Furthermore, maternal exposure to glyphosate significantly altered the ASD-associated gut microbiota of offspring, and ASD-associated gut metabolites were identified. Specifically, we found that alterations in the gut microenvironment may contribute to changes in gut permeability and the blood-brain barrier, which are related to changes in the levels of circRNAs in the PFC. Our results suggest a potential effect of circRNAs through the disruption of the gut-brain interaction, which is an important factor in the pathogenesis of ASD in offspring induced by maternal exposure to GBH.
Collapse
Affiliation(s)
- Xiu He
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Yongyong Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Shun Zhou
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Qinghao Wei
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Hao Zhou
- Department of Developmental Behavioural Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Junyan Tao
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Guanghong Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China.
| | - Mingdan You
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| |
Collapse
|
153
|
Lai Z, Wei Y, He M, Lin C, Ouyang W, Liu X. Toxicity and related molecular mechanisms of Sb(III) in the embryos and larvae of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124551. [PMID: 39004205 DOI: 10.1016/j.envpol.2024.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Antimony (Sb) pollution poses a severe threat to humans and ecosystems due to the extensive use of Sb in various fields. However, little is known about the toxic effects of Sb and its aquatic ecotoxicological mechanism. This study aimed to reveal the toxicity and related molecular mechanisms of trivalent Sb (Sb(III)) in zebrafish embryos/larvae. Sb(III) accumulated in larvae, which correlated with the exposure concentration. Although no significant lethal or teratogenic effects were observed, normal growth and development were affected. Exposure to 10 or 20 mg/L Sb(III) increased the levels of reactive oxygen species in the larvae while enhancing catalase activity and increasing cell apoptosis. Transcriptomic analysis revealed that Sb(III) promoted glutathione metabolism and the ferroptosis pathway. In addition, symptoms associated with ferroptosis, including mitochondrial damage, biochemical levels of related molecules and increased tissue iron content, were detected. Quantitative polymerase chain reaction (qPCR) analyses further confirmed that Sb(III) significantly altered the transcription levels of genes related to the ferroptosis pathway by disrupting iron homeostasis. Furthermore, ferrostatin-1 (Fer-1) mitigated the toxic effects induced by Sb(III) in zebrafish. Our research fills the gap in the literature on the toxicity and mechanism of Sb(III) in aquatic organisms, which is highly important for understanding the ecological risks associated with Sb.
Collapse
Affiliation(s)
- Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yihan Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
154
|
Kanarik M, Liiver K, Norden M, Teino I, Org T, Laugus K, Shimmo R, Karelson M, Saarma M, Harro J. RNA m 6A methyltransferase activator affects anxiety-related behaviours, monoamines and striatal gene expression in the rat. Acta Neuropsychiatr 2024; 37:e52. [PMID: 39380240 DOI: 10.1017/neu.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Modification of mRNA by methylation is involved in post-transcriptional regulation of gene expression by affecting the splicing, transport, stability and translation of mRNA. Methylation of adenosine at N6 (m6A) is one of the most common and important cellular modification occurring in the mRNA of eukaryotes. Evidence that m6A mRNA methylation is involved in regulation of stress response and that its dysregulation may contribute to the pathogenesis of neuropsychiatric disorders is accumulating. We have examined the acute and subchronic (up to 18 days once per day intraperitoneally) effect of the first METTL3/METTL14 activator compound CHMA1004 (methyl-piperazine-2-carboxylate) at two doses (1 and 5 mg/kg) in male and female rats. CHMA1004 had a locomotor activating and anxiolytic-like profile in open field and elevated zero-maze tests. In female rats sucrose consumption and swimming in Porsolt's test were increased. Nevertheless, CHMA1004 did not exhibit strong psychostimulant-like properties: CHMA1004 had no effect on 50-kHz ultrasonic vocalizations except that it reduced the baseline difference between male and female animals, and acute drug treatment had no effect on extracellular dopamine levels in striatum. Subchronic CHMA1004 altered ex vivo catecholamine levels in several brain regions. RNA sequencing of female rat striata after subchronic CHMA1004 treatment revealed changes in the expression of a number of genes linked to dopamine neuron viability, neurodegeneration, depression, anxiety and stress response. Conclusively, the first-in-class METTL3/METTL14 activator compound CHMA1004 increased locomotor activity and elicited anxiolytic-like effects after systemic administration, demonstrating that pharmacological activation of RNA m6A methylation has potential for neuropsychiatric drug development.
Collapse
Affiliation(s)
- Margus Kanarik
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Tartumaa, Estonia
| | - Kristi Liiver
- School of Natural Sciences and Health, Tallinn University, Tallinn, Harjumaa, Estonia
| | - Marianna Norden
- School of Natural Sciences and Health, Tallinn University, Tallinn, Harjumaa, Estonia
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Indrek Teino
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Uusimaa, Finland
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Tartumaa, Estonia
| | - Tõnis Org
- Institute of Genomics, University of Tartu, Tartu, Tartumaa, Estonia
| | - Karita Laugus
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Tartumaa, Estonia
| | - Ruth Shimmo
- School of Natural Sciences and Health, Tallinn University, Tallinn, Harjumaa, Estonia
| | - Mati Karelson
- Division of Molecular Technology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Tartumaa, Estonia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Uusimaa, Finland
| |
Collapse
|
155
|
Modi AD, Zahid H, Southerland AC, Modi DM. Epitranscriptomics and cervical cancer: the emerging role of m 6A, m 5C and m 1A RNA modifications. Expert Rev Mol Med 2024; 26:e20. [PMID: 39377535 PMCID: PMC11488341 DOI: 10.1017/erm.2024.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 10/09/2024]
Abstract
Cervical cancer (CC), one of the most prevalent and detrimental gynaecologic cancers, evolves through genetic and epigenetic alterations resulting in the promotion of oncogenic activity and dysfunction of tumour-suppressing mechanisms. Despite medical advancement, the prognosis for advanced-stage patients remains extremely low due to high recurrence rates and resistance to existing treatments. Thereby, the search for potential prognostic biomarkers is heightened to unravel new modalities of CC pathogenesis and to develop novel anti-cancer therapies. Epitranscriptomic modifications, reversible epigenetic RNA modifications, regulate various biological processes by deciding RNA fate to mediating RNA interactions. This narrative review provides insight into the cellular and molecular roles of endogenous RNA-editing proteins and their associated epitranscriptomic modifications, especially N6-methyladenosine (m6A), 5-methylcytosine (m5C) and N1-methyladenosine (m1A), in governing the development, progression and metastasis of CC. We discussed the in-depth epitranscriptomic mechanisms underlying the regulation of over 50 RNAs responsible for tumorigenesis, proliferation, migration, invasion, survival, autophagy, stemness, epithelial-mesenchymal transition, metabolism (glucose, lipid, glutamate and glutamine), resistance (drug and radiation), angiogenesis and recurrence of CC. Additionally, we provided a concise overview of the therapeutic potential of targeting the altered expression of endogenous RNA-editing proteins and aberrant deposition of RNA modifications on both coding and non-coding RNAs in CC.
Collapse
Affiliation(s)
- Akshat D. Modi
- Department of Biological Sciences, University of Toronto, Scarborough, Canada
| | - Hira Zahid
- Department of Biology, University of Toronto, Mississauga, Canada
| | | | | |
Collapse
|
156
|
Deng C, Han Y, Zhou H, Zhang J, Cheng J, Li S, Ruan J, Liu G, He J, Hua RX, Fu W. YTHDF3 gene polymorphisms increase Wilms tumor risk in Chinese girls. J Cancer 2024; 15:6103-6109. [PMID: 39440064 PMCID: PMC11493011 DOI: 10.7150/jca.99928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Wilms tumor is a prevalent pediatric tumor influenced by various genetic factors. m6A modification is a common nucleotide modification that plays a role in a variety of cancers. As a "reader", YTHDF3 is essential for recognizing m6A modifications. However, the association between YTHDF3 gene polymorphisms and Wilms tumor susceptibility has not been previously reported. A five-center case‒control study including 414 patients and 1199 controls was conducted to explore the relationship between YTHDF3 gene polymorphisms and Wilms tumor susceptibility. The samples were genotyped via TaqMan real-time quantitative polymerase chain reaction. Odds ratios (ORs) and 95% confidence intervals (CIs) were utilized as indicators to assess their correlation. The YTHDF3 rs2241753 AA genotype was significantly associated with an increased risk of Wilms tumor in females (adjusted OR=1.74, 95% CI=1.05-2.88, P=0.033). The risk of Wilms tumor was also notably elevated in female children with 1-3 risk genotypes (adjusted OR=1.47, 95% CI=1.04-2.07, P=0.028). The YTHDF3 rs2241753 AA genotype and the presence of 1-3 risk genotypes were significantly associated with increased Wilms tumor risk in female children.
Collapse
Affiliation(s)
- Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yufeng Han
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Haixia Zhou
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Jichen Ruan
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
157
|
Li P, Zhao J, Wei X, Luo L, Chu Y, Zhang T, Zhu A, Yan J. Acupuncture may play a key role in anti-depression through various mechanisms in depression. Chin Med 2024; 19:135. [PMID: 39367470 PMCID: PMC11451062 DOI: 10.1186/s13020-024-00990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/28/2024] [Indexed: 10/06/2024] Open
Abstract
Depression has emerged as a significant global health concern, exerting a profound impact on individuals, as evidenced by its high prevalence and associated suicide rates. Considering its pervasive nature, the absence of optimal treatment modalities remains a challenge. Acupuncture has garnered substantial clinical and experimental validation for its efficacy in addressing diverse forms of depression, including postpartum, post-stroke, and adolescent depression. This article endeavors to elucidate the distinctive attributes and underlying mechanisms of acupuncture in the contemporary treatment of depression. Research has demonstrated that acupuncture exerts diverse physiological effects in animal models of depression, encompassing modulation of the brain, serum, and brain-gut axis. These effects are attributed to various mechanisms, including anti-inflammatory and anti-oxidative actions, promotion of neuronal plasticity, neuroprotection, neurotrophic effects, modulation of neurotransmitters, regulation of endocrine and immune functions, and modulation of cell signal pathways. Currently, the therapeutic mechanism of acupuncture involves the engagement of multiple targets, pathways, and bidirectional regulation. Hence, acupuncture emerges as a promising alternative medical modality, exhibiting substantial research prospects and meriting comprehensive worth further study and dissemination.
Collapse
Affiliation(s)
- Peng Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Department of clinical medicine, Xiamen medical college, xiamen, China
| | - Jiangna Zhao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiuxiang Wei
- Rehabilitation Medicine Department, Shenzhen Hospital of Traditional Chinese and Western Medicine , Shenzhen, China
| | - Longfei Luo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yuzhou Chu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Tao Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Anning Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Juntao Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
158
|
Cai W, Wei XF, Zhang JR, Tao L, Li D, Zhang K, Shen WD. Acupuncture ameliorates depression-like behavior of poststroke depression model rats through the regulation of gut microbiota and NLRP3 inflammasome in the colon. Neuroreport 2024; 35:883-894. [PMID: 39207304 DOI: 10.1097/wnr.0000000000002076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study was conducted to examine the effects of acupuncture on gut microbiota and expression of NLRP3 inflammasome in the colon in poststroke depression (PSD) model rats. Sprague-Dawley male rats were randomized into four groups: sham surgery group, poststroke depression group, acupuncture group, and probiotics group. Acupuncture therapy at Baihui (GV20), Shenting (GV24), bilateral Zusanli (ST36) acupoints in the acupuncture group and probiotic gavage therapy in the probiotics group were performed once per day for 2 weeks. Behaviors of depression were assessed by using weight measurements, sucrose preference test, open field test, and forced swimming test. Histopathological alterations in the colon were determined by hematoxylin-eosin staining, the expression of NLRP3/ASC/caspase-1 pathway-related proteins was analyzed by western blotting. Serum levels of IL-1β and IL-18 were derived from ELISA. The 16S rRNA gene sequencing was performed to examine and analyze the differences of gut microbiota of rats among all groups. Acupuncture was effective to increase weight and ameliorate depressive-like behaviors in PSD rats. Acupuncture increased the diversity of gut microbiota, upregulated the abundance of Bifidobacteriaceae and Lactobacillaceae, and decreased the relative abundance of Peptostreptococcaceae, Rikenellaceae, Eggerthellaceae, and Streptococcaceae at family level. Acupuncture effectively improved the pathological changes in the colon. Meanwhile, acupuncture reduced NLRP3, ASC, caspase-1 protein expressions in the colon, and serum levels of IL-18 and IL-1β. Acupuncture may reduce depressive-like behaviors of PSD by regulating the gut microbiota and suppressing hyperactivation of NLRP3 inflammasome in the colon. Microbiota-gut-brain axis may be an effective target pathway for acupuncture treatment of PSD.
Collapse
Affiliation(s)
- Wa Cai
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Xi-Fang Wei
- Department of Acupuncture, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou
| | - Jing-Ruo Zhang
- Department of Acupuncture and Moxibustion, Jiaxing Hospital of TCM, Zhejiang Chinese Medicine University, Jiaxing, China
| | - Larissa Tao
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Dong Li
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Kun Zhang
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Wei-Dong Shen
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai
| |
Collapse
|
159
|
Peng Y, Jia J, Zhang M, Ma W, Cui Y, Yu M. Transcription Factor TFAP2B Exerts Neuroprotective Effects Targeting BNIP3-Mediated Mitophagy in Ischemia/Reperfusion Injury. Mol Neurobiol 2024; 61:7319-7334. [PMID: 38381297 DOI: 10.1007/s12035-024-04004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) leads to malignant brain edema, blood-brain barrier destruction, and neuronal apoptosis. N6-methyladenosine (m6A) RNA modification in CIRI was still limited explored. In this study, MeRIP- and RNA-sequencing were performed of middle cerebral artery occlusion and reperfusion (MCAO/R) rats to find novel potential molecular targets. Transcription factor TFAP2B stood out of which its m6A abundance decreased associated with a marked reduction of its mRNA based on cojoint interactive bioinformatics analysis of the MeRIP- and RNA-sequencing data. It was suggested TFAP2B could have a role in CIRI. Functionally, overexpression of TFAP2B in cultured primary neurons could effectively improve the cell survival and pro-survival autophagy in parallel with reduced cell apoptosis during OGD/R in vitro. Through the RNA-sequencing of TFAP2B overexpressed primary neurons and subsequent validation experiments, it was found that mitophagy receptor BNIP3 was one of the important targets of TFAP2B in OGD/R neurons through which TFAP2B could bind to its promoter region for transcriptional activation of BNIP3, thereby enhancing BNIP3-mediated mitophagy to protect against OGD/R injury of neurons. Lastly, TFAP2B was demonstrated to alleviate the MCAO/R damage to a certain extent in vivo. Although it failed to confirm TFAP2B dysregulation was m6A dependent in current research, this is the first research of TFAP2B in CIRI field with important guiding significance.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Jiaoying Jia
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Wenjia Ma
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Mengqiang Yu
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
160
|
Xie J, Yin Y, Lin B, Li X, Li Q, Tang X, Pan L, Xiong X. Autophagy and PPARs/NF-κB-associated inflammation are involved in hepatotoxicity induced by the synthetic phenolic antioxidant 2,4-di-tert-butylphenol in common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116937. [PMID: 39226863 DOI: 10.1016/j.ecoenv.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
The synthetic phenolic antioxidant 2,4-di-tert-butylphenol (2,4-DTBP) is an emergent contaminant and can disrupt the delicate balance of aquatic ecosystems. This study aimed to investigate 2,4-DTBP-induced hepatotoxicity in common carp and the underlying mechanisms involved. Sixty common carp were divided into four groups and exposed to 0 mg/L, 0.01 mg/L, 0.1 mg/L or 1 mg/L 2,4-DTBP for 30 days. Here, we first demonstrated that 2,4-DTBP exposure caused liver damage, manifested as hepatocyte nuclear pyknosis, inflammatory cell infiltration and apoptosis. Moreover, 2,4-DTBP exposure induced hepatic reactive oxygen species (ROS) overload and disrupted antioxidant capacity, as indicated by the reduced activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). In addition, transmission electron microscopy revealed that 2,4-DTBP exposure induced autophagosome accumulation in the liver of common carp. Western blot analysis further revealed that 2,4-DTBP exposure significantly decreased the protein levels of mTOR and increased the LC3II/LC3I ratio. Furthermore, 2,4-DTBP exposure inhibited lysozyme (LZM) and alkaline phosphatase (AKP) activity; decreased immunoglobulin M (IgM), complement 3 (C3), and complement 4 (C4) levels in the serum; increased the mRNA levels of proinflammatory cytokines (NF-κB, TNF-α, IL-1β and IL-6); and increased the mRNA levels of three types of proliferator-activated receptors (PPARs) (α, β/δ and γ). Molecular docking revealed that 2,4-DTBP directly binds to the internal active pocket of PPARs. Overall, we concluded that 2,4-DTBP exposure in aquatic systems could induce hepatotoxicity in common carp by regulating autophagy and controlling inflammatory responses. The present study provides new insights into the hepatotoxicity mechanism induced by 2,4-DTBP in aquatic organisms and furthers our understanding of the effects of 2,4-DTBP on public health and ecotoxicology.
Collapse
Affiliation(s)
- Jiaqi Xie
- Hunan Food and Drug Vocational College, Changsha, Hunan Province 410208, China
| | - Yuxiang Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Bixiao Lin
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Xinlian Li
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000,, China
| | - Qiuyue Li
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000,, China
| | - Xiaoqing Tang
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000,, China
| | - Lingai Pan
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Xuan Xiong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
161
|
He J, Xie P, An XQ, Guo DF, Bi B, Wu G, Yu WF, Ren ZK, Zuo L. LncRNA NPTN-IT1-201 Ameliorates Depressive-like Behavior by Targeting miR-142-5p and Regulating Inflammation and Apoptosis via BDNF. Curr Med Sci 2024; 44:971-986. [PMID: 39145838 DOI: 10.1007/s11596-024-2917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/26/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are widely expressed in the brain and are associated with the development of neurological and neurodegenerative diseases. However, their roles and molecular mechanisms in major depressive disorder (MDD) remain largely unknown. This study aimed to identify lncRNAs and miRNAs involved in the development of MDD and elucidate their molecular mechanisms. METHODS Transcriptome and bioinformatic analyses were performed to identify miRNAs and lncRNAs related to MDD. C57 mice were subjected to chronic unpredictable mild stress (CUMS) to establish a depression model. Lentiviruses containing either lncRNA NPTN-IT1-201 or miR-142-5p were microinjected into the hippocampal region of these mice. Behavioral tests including the sucrose preference test (SPT), tail suspension test (TST), and forced swim test (FST) were conducted to evaluate depressive-like behaviors. RESULTS The results revealed that overexpression of lncRNA NPTN-IT1-201 or inhibition of miR-142-5p significantly ameliorated depressive-like behaviors in CUMS-treated mice. Dual-luciferase reporter assays confirmed interactions between miR-142-5p with both brain-derived neurotrophic factor (BDNF) and NPTN-IT1-201. ELISA analysis revealed significant alterations in relevant biomarkers in the blood samples of MDD patients compared to healthy controls. Histological analyses, including HE and Nissl staining, showed marked structural changes in brain tissues following CUMS treatment, which were partially reversed by lncRNA NPTN-IT1-201 overexpression or miR-142-5p inhibition. Immunofluorescence imaging demonstrated significant differences in the levels of BAX, Bcl2, p65, Iba1 among different treatment groups. TUNEL assays confirmed reduced apoptosis in brain tissues following these interventions. Western blotting showed the significant differences in BDNF, BAX, and Bcl2 protein levels among different treatment groups. CONCLUSION NPTN-IT1-201 regulates inflammation and apoptosis in MDD by targeting BDNF via miR-142-5p, making it a potential therapeutic target for MDD.
Collapse
Affiliation(s)
- Jun He
- Department of Immunology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, China
- Guizhou Provincial Center for Clinical Laboratory, Guiyang, 550002, China
| | - Peng Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Xiao-Qiong An
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Dong-Fen Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Bin Bi
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, 550004, China
| | - Gang Wu
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, 550004, China
| | - Wen-Feng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| | - Zhen-Kui Ren
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| | - Li Zuo
- Department of Immunology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
162
|
Mehta SL, Arruri V, Vemuganti R. Role of transcription factors, noncoding RNAs, epitranscriptomics, and epigenetics in post-ischemic neuroinflammation. J Neurochem 2024; 168:3430-3448. [PMID: 38279529 PMCID: PMC11272908 DOI: 10.1111/jnc.16055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Post-stroke neuroinflammation is pivotal in brain repair, yet persistent inflammation can aggravate ischemic brain damage and hamper recovery. Following stroke, specific molecules released from brain cells attract and activate central and peripheral immune cells. These immune cells subsequently release diverse inflammatory molecules within the ischemic brain, initiating a sequence of events, including activation of transcription factors in different brain cell types that modulate gene expression and influence outcomes; the interactive action of various noncoding RNAs (ncRNAs) to regulate multiple biological processes including inflammation, epitranscriptomic RNA modification that controls RNA processing, stability, and translation; and epigenetic changes including DNA methylation, hydroxymethylation, and histone modifications crucial in managing the genic response to stroke. Interactions among these events further affect post-stroke inflammation and shape the depth of ischemic brain damage and functional outcomes. We highlighted these aspects of neuroinflammation in this review and postulate that deciphering these mechanisms is pivotal for identifying therapeutic targets to alleviate post-stroke dysfunction and enhance recovery.
Collapse
Affiliation(s)
- Suresh L. Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
163
|
Zhou B, Fu J, Yuan Y, Han F, Huo K, Chu PK, Zhang X. Potential-dependent simultaneous detection of uric acid and glucose using dual-function Ni@CNT supported carbon fiber electrodes. Microchem J 2024; 205:111244. [DOI: 10.1016/j.microc.2024.111244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
164
|
Yu T, Luo L, Xue J, Tang W, Wu X, Yang F. Gut microbiota-NLRP3 inflammasome crosstalk in metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102458. [PMID: 39233138 DOI: 10.1016/j.clinre.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with metabolic dysfunction, ranging from hepatic steatosis with or without mild inflammation to nonalcoholic steatohepatitis, which can rapidly progress to liver fibrosis and even liver cancer. In 2023, after several rounds of Delphi surveys, a new consensus recommended renaming NAFLD as metabolic dysfunction-associated steatotic liver disease (MASLD). Ninety-nine percent of NAFLD patients meet the new MASLD criteria related to metabolic cardiovascular risk factors under the "multiple parallel hits" of lipotoxicity, insulin resistance (IR), a proinflammatory diet, and an intestinal microbiota disorder, and previous research on NAFLD remains valid. The NLRP3 inflammasome, a well-known member of the pattern recognition receptor (PRR) family, can be activated by danger signals transmitted by pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), as well as cytokines involved in immune and inflammatory responses. The activation of the NLRP3 inflammasome pathway by MASLD triggers the production of the inflammatory cytokines IL-1β and IL-18. In MASLD, while changes in the composition and metabolites of the intestinal microbiota occur, the disrupted intestinal microbiota can also generate the inflammatory cytokines IL-1β and IL-18 by damaging the intestinal barrier, negatively regulating the liver on the gut-liver axis, and further aggravating MASLD. Therefore, modulating the gut-microbiota-liver axis through the NLRP3 inflammasome may emerge as a novel therapeutic approach for MASLD patients. In this article, we review the evidence regarding the functions of the NLRP3 inflammasome and the intestinal microbiota in MASLD, as well as their interactions in this disease.
Collapse
Affiliation(s)
- Tingting Yu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan 430000, PR China
| | - Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China
| | - Juan Xue
- Department of Gastroenterology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430015, PR China
| | - Wenqian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China
| | - Xiaojie Wu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan 430000, PR China
| | - Fan Yang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China.
| |
Collapse
|
165
|
Xing S, Xu S, Wang L, Guo L, Zhou X, Wu H, Wang W, Liu L. Salidroside exerts antidepressant-like action by promoting adult hippocampal neurogenesis through SIRT1/PGC-1α signalling. Acta Neuropsychiatr 2024:1-11. [PMID: 39344773 DOI: 10.1017/neu.2024.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Depression is one of the major mental disorders, which seriously endangers human health, brings a serious burden to patients’ families. In this study, we intended to further explore the antidepressant-like effect and possible molecular mechanisms of Salidroside (SAL). We built corticosterone (CORT)-induced depressive mice model and used behavioural tests to evaluate depression behaviour. To explore the molecular mechanisms of SAL, we employed a variety of methods such as immunofluorescence, western blot, pharmacological interference, etc. The results demonstrated that SAL both at 25 mg/kg and 50 mg/kg can reduce immobility time in the tail suspension test (TST). At the same time, SAL treatment could restore the reduced sugar water intake preference in the sucrose preference test (SPT) in CORT-induced depressive mice and reduce the immobility time in TST and forced swimming experiments (FST). In addition, SAL treatment reversed the reduction in the number of Ki-67, BrdU, and NeuN in the hippocampus due to CORT treatment. SAL treatment also restored the expression of SIRT1, PGC-1α, brain-derived neurotrophic factor (BDNF) and other proteins in the hippocampus. In addition, after blocking SIRT1 signalling with EX527, we found that the treatment with SAL failed to reduce the immobility time in TST and FST, the level of SIRT1 and PGC-1α activity were correspondingly downregulated, and the expression of DCX and Ki-67 in the hippocampus failed to be activated. These findings suggested that SAL exerts antidepressant-like effects by promoting hippocampal neurogenesis through the SIRT1/PGC-1α signalling pathway.
Collapse
Affiliation(s)
- Shan Xing
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyi Xu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Linjiao Wang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyuan Guo
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoxin Wu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lanying Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai, China
- Department of Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Mental Diseases of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
166
|
Xia W, Liu Y, Lu J, Cheung HH, Meng Q, Huang B. RNA methylation in neurodevelopment and related diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1723-1732. [PMID: 39344412 PMCID: PMC11693867 DOI: 10.3724/abbs.2024159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
Biological development and genetic information transfer are governed by genetic, epigenetic, transcriptional, and posttranscriptional mechanisms. RNA methylation, the attachment of methyl (-CH 3) groups to RNA molecules, is a posttranscriptional modification that has gained increasing attention in recent years because of its role in RNA epitranscriptomics. RNA modifications (RMs) influence various aspects of RNA metabolism and are involved in the regulation of diverse biological processes and diseases. Neural cell types emerge at specific stages of brain development, and recent studies have revealed that neurodevelopment, aging, and disease are tightly linked to transcriptome dysregulation. In this review, we discuss the roles of N6-methyladenine (m6A) and 5-methylcytidine (m5C) RNA modifications in neurodevelopment, physiological functions, and related diseases.
Collapse
Affiliation(s)
- Wenjuan Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Yue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Jiafeng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Hoi-Hung Cheung
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong 999077China
| | - Qingxia Meng
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| |
Collapse
|
167
|
Padrez Y, Golubewa L. Black Silicon Surface-Enhanced Raman Spectroscopy Biosensors: Current Advances and Prospects. BIOSENSORS 2024; 14:453. [PMID: 39451667 PMCID: PMC11505860 DOI: 10.3390/bios14100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Black silicon was discovered by accident and considered an undesirable by-product of the silicon industry. A highly modified surface, consisting of pyramids, needles, holes, pillars, etc., provides high light absorption from the UV to the NIR range and gives black silicon its color-matte black. Although black silicon has already attracted some interest as a promising material for sensitive sensors, the potential of this material has not yet been fully exploited. Over the past three decades, black silicon has been actively introduced as a substrate for surface-enhanced Raman spectroscopy (SERS)-a molecule-specific vibrational spectroscopy technique-and successful proof-of-concept experiments have been conducted. This review focuses on the current progress in black silicon SERS biosensor fabrication, the recent advances in the design of the surface morphology and an analysis of the relation of surface micro-structuring and SERS efficiency and sensitivity. Much attention is paid to problems of non-invasiveness of the technique and biocompatibility of black silicon, its advantages over other SERS biosensors, cost-effectiveness and reproducibility, as well as the expansion of black silicon applications. The question of existing limitations and ways to overcome them is also addressed.
Collapse
Affiliation(s)
| | - Lena Golubewa
- Department of Molecular Compounds Physics, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
168
|
Han P, Liu X, He J, Han L, Li J. Overview of mechanisms and novel therapies on rheumatoid arthritis from a cellular perspective. Front Immunol 2024; 15:1461756. [PMID: 39376556 PMCID: PMC11456432 DOI: 10.3389/fimmu.2024.1461756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation of joints in response to autoimmune disorders. Once triggered, many factors were involved in the development of RA, including both cellular factors like osteoclasts, synovial fibroblasts, T cells, B cells, and soluble factors like interleukin-1 (IL-1), IL-6, IL-17 and tumor necrosis factor-α (TNF-α), etc. The complex interplay of those factors results in such pathological abnormality as synovial hyperplasia, bone injury and multi-joint inflammation. To treat this chronic life-affecting disease, the primary drugs used in easing the patient's symptoms are disease-modifying antirheumatic drugs (DMARDs). However, these traditional drugs could cause serious side effects, such as high blood pressure and stomach ulcers. Interestingly, recent discoveries on the pathogenesis of RA have led to various new kinds of drugs or therapeutic strategies. Therefore, we present a timely review of the latest development in this field, focusing on the cellular aspects of RA pathogenesis and new therapeutic methods in clinical application. Hopefully it can provide translational guide to the pre-clinical research and treatment for the autoimmune joint disease.
Collapse
Affiliation(s)
- Peng Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jiang He
- Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Luyang Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
169
|
Ren X, Shi B, Chang Z, Zhang J, Wang S, Liu R, Sang M, Dong H, Wu Q. Relationship between pathogenic E.coli O78-induced intestinal epithelial barrier damage and Zonulin expression levels in yaks. Front Cell Infect Microbiol 2024; 14:1456356. [PMID: 39376662 PMCID: PMC11456573 DOI: 10.3389/fcimb.2024.1456356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
To explore whether the intestinal damage of yak colibacillosis resulted from the regulation of Zonulin expression by its pathogenic bacteria, the overexpression and interference plasmids of Zonulin were designed and cultured in Tranwell after cell transfection. Then qRT-PCR and Western blot were used to detect the results of cell transfection, 200 mL 1×105 CFU/mL E.coli O78 was added for 4 hours, transmembrane resistance was measured by transmembrane resistance meter, FD4 fluorescence concentration in the lower chamber was detected by enzyme labeling instrument, bacterial translocation was measured by CFU counting method, and epithelial mucin (MUC1, MUC2) and tight junction protein (FABP2, Occludin, ZO-1) were detected by qRT-PCR. Results The Zonulin gene overexpression and knockout cell lines were successfully constructed, the TEER value of the barrier of Zonulin overexpression cell lines began to decrease at 1 h after the addition of E.coli O78 and reached the lowest value at 4 h, and the TEER value of Zonulin interference cell lines decreased within 1-4 h after the addition of E.coli O78. At 4 h, the FD4 passing capacity of Zonulin overexpression cell lines was significantly higher than that of interfering cell lines, reaching twice as much as siRNA-1. The amount of bacterial translocation in overexpressed cell lines increased rapidly within 1-4 h, and the concentration of E.coli in the lower chamber was significantly higher than that in the siRNA-1 group at 4 h, but there was no significant change in the siRNA-1 group in the 1-4 h. There was no significant change in the mRNA level of MUC1 in Zonulin overexpression and interference cell lines after the addition of E.coli O78. In the overexpression group, the mRNA levels of MUC2, Occludin, and ZO-1 were significantly decreased, and the mRNA level of FABP2 was increased considerably. These results suggest stimulate epithelial cells to secrete Zonulin protein. Many Zonulin proteins regulate the opening of tight junction structures, reduce the transmembrane resistance of the cell barrier, and improve the permeability of the cell barrier and the amount of bacterial translocation.
Collapse
Affiliation(s)
- Xiaoli Ren
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Bin Shi
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Sciences, Xizang Lhasa, China
| | - Zhenyu Chang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Jingbo Zhang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Shuo Wang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Ruidong Liu
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Mudan Sang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Hailong Dong
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Qingxia Wu
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| |
Collapse
|
170
|
Zhu X, Liu Q, Zhu F, Jiang R, Lu Z, Wang C, Gong P, Yao Q, Xia T, Sun J, Ju F, Wang D, Sun R, Zhou Y, You B, Shi W. An engineered cellular carrier delivers miR-138-5p to enhance mitophagy and protect hypoxic-injured neurons via the DNMT3A/Rhebl1 axis. Acta Biomater 2024; 186:424-438. [PMID: 39122135 DOI: 10.1016/j.actbio.2024.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Mitophagy influences the progression and prognosis of ischemic stroke (IS). However, whether DNA methylation in the brain is associated with altered mitophagy in hypoxia-injured neurons remains unclear. Here, miR-138-5p was found to be highly expressed in exosomes secreted by astrocytes stimulated with oxygen and glucose deprivation/re-oxygenation (OGD/R), which could influence the recovery of OGD/R-injured neurons through autophagy. Mechanistically, miR-138-5p promotes the stable expression of Ras homolog enriched in brain like 1(Rhebl1) through DNA-methyltransferase-3a (DNMT3A), thereby enhancing ubiquitin-dependent mitophagy to maintain mitochondrial homeostasis. Furthermore, we employed glycosylation engineering and bioorthogonal click reactions to load mirna onto the surface of microglia and deliver them to injured region utilising the inflammatory chemotactic properties of microglia to achieve drug-targeted delivery to the central nervous system (CNS). Our findings demonstrate miR-138-5p improves mitochondrial function in neurons through the miR-138-5p/DNMT3A/Rhebl1 axis. Additionally, our engineered cell vector-targeted delivery system could be promising for treating IS. STATEMENT OF SIGNIFICANCE: In this study, we demonstrated that miR-138-5p in exosomes secreted by astrocytes under hypoxia plays a critical role in the treatment of hypoxia-injured neurons. And we find a new target of miR-138-5p, DNMT3A, which affects neuronal mitophagy and thus exerts a protective effect by regulating the methylation of Rbebl1. Furthermore, we have developed a carrier delivery system by combining miR-138-5p with the cell membrane of microglia and utilized the inflammatory chemotactic properties of microglia to deliver this system to the brain via intravenous injection. This groundbreaking study not only provides a novel therapeutic approach for ischemia-reperfusion treatment but also establishes a solid theoretical foundation for further research on targeted drug delivery for central nervous system diseases with promising clinical applications.
Collapse
Affiliation(s)
- Xingjia Zhu
- Department of Neurosurgery, Research Center of Clinical Medicine, Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, 226001, Nantong, PR China
| | - Qianqian Liu
- Department of Neurosurgery, Research Center of Clinical Medicine, Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, 226001, Nantong, PR China
| | - Fengwei Zhu
- Department of Neurosurgery, Research Center of Clinical Medicine, Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, 226001, Nantong, PR China; Department of Critical Care Medicine, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, 224001, Yancheng, PR China
| | - Rui Jiang
- Department of Neurosurgery, Research Center of Clinical Medicine, Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, 226001, Nantong, PR China
| | - Zhichao Lu
- Department of Neurosurgery, Research Center of Clinical Medicine, Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, 226001, Nantong, PR China
| | - Chenxing Wang
- Department of Neurosurgery, Research Center of Clinical Medicine, Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, 226001, Nantong, PR China
| | - Peipei Gong
- Department of Neurosurgery, Research Center of Clinical Medicine, Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, 226001, Nantong, PR China
| | - Qi Yao
- Department of Neurosurgery, Research Center of Clinical Medicine, Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, 226001, Nantong, PR China
| | - Tian Xia
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, 226001, Nantong, PR China
| | - Jie Sun
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, 226001, Nantong, PR China
| | - Fei Ju
- Department of Pathogen Biology, School of Medicine, Nantong University, 226001, Nantong, PR China
| | - Defeng Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, 226001, Nantong, PR China
| | - Ruifan Sun
- Department of Neurosurgery, Research Center of Clinical Medicine, Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, 226001, Nantong, PR China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, 226001, Nantong, PR China.
| | - Bo You
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, 226001, Nantong, PR China.
| | - Wei Shi
- Department of Neurosurgery, Research Center of Clinical Medicine, Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, 226001, Nantong, PR China.
| |
Collapse
|
171
|
Ju M, Zhang Z, Gao F, Chen G, Zhao S, Wang D, Wang H, Jia Y, Shen L, Yuan Y, Yao H. Intranasal Delivery of circATF7IP siRNA via Lipid Nanoparticles Alleviates LPS-induced Depressive-Like Behaviors. Adv Healthc Mater 2024:e2402219. [PMID: 39254274 DOI: 10.1002/adhm.202402219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Major depressive disorder (MDD) is a prevalent mental disorder that significantly impacts social and psychological function, but no effective medication is currently available. Circular RNAs (circRNAs) have been reported to participate in the pathogenesis of MDD which are envisioned as promising therapeutic targets. However, nonviral-based delivery strategies targeting circRNA against MDD are not thoroughly investigated. Here, it is identified that circATF7IP is significantly upregulated in plasma samples and positively correlated with 24-Hamilton Depression Scale (HAMD-24) scores of MDD patients. Synergistic amine lipid nanoparticles (SALNPs) are designed to deliver siRNA targeting circATF7IP (si-circATF7IP) into the hippocampus brain region by intranasal administration. Intranasal delivery of SALNP-si-circATF7IP successfully alleviated the depressive-like behaviors in the LPS-induced mouse depression model via decreasing CD11b+CD45dim microglia population and pro-inflammatory cytokine productions (TNF-α and IL-6). These results indicate that the level of circATF7IP positively correlates with MDD pathogenesis, and SALNP delivery of si-circATF7IP via intranasal administration is an effective strategy to ameliorate LPS-induced depressive-like behaviors.
Collapse
Affiliation(s)
- Minzi Ju
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zhongkun Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Feng Gao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Gang Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Department of Psychiatry, the Third People's Hospital of Huai'an, Huai'an, Jiangsu, 223001, China
| | - Sibo Zhao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Dan Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Huijuan Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yanpeng Jia
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226019, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
172
|
Wang Y, Zhang F, Du Z, Fan X, Huang X, Zhang L, Li S, Liu Z, Wang C. Insights into the Mechanisms of Single-Photon and Two-Photon Excited Surface Enhanced Fluorescence by Submicrometer Silver Particles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1451. [PMID: 39269113 PMCID: PMC11397608 DOI: 10.3390/nano14171451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Surface enhanced fluorescence (SEF) based on noble metal nanoparticles is an effective means to achieve high sensitivity in fluorescence detection. Currently, the physical mechanism behind enhanced fluorescence is not fully understood. This paper measures the fluorescence signals of Dihydroporphyrin f methyl ether (CPD4) under both single-photon and two-photon excitation based on submicrometer silver particles with rough morphologies, achieving enhancement factors of 34 and 45 times, respectively. On this basis, by combining the radiative field characteristics produced by the silver particles, a stimulated radiation model of molecules is established to elucidate the changes in the molecular photophysical process when influenced by silver particles. Moreover, the fluorescence lifetime of the molecules was measured, showing that the presence of silver particles induces an increase in the molecular radiative decay rate, causing the fluorescence lifetime to decay from 3.8 ns to 3 ns. The results indicate that the fluorescence enhancement primarily originates from the submicrometer silver particles' enhancement effect on the excitation light. Additionally, the fluorescence signal emitted by the molecules couples with the silver particles, causing the local surface plasmon resonances generated by the silver particles to also emit light signals of the same frequency. Under the combined effect, the fluorescence of the molecules is significantly enhanced. The findings provide a theoretical foundation for understanding the fluorescence enhancement mechanism of silver particles, adjusting the enhancement effect, and developing enhanced fluorescence detection devices based on submicrometer silver particles, holding significant practical importance.
Collapse
Affiliation(s)
- Yan Wang
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China
- Weifang Key Laboratory of Laser Technology and Application, Weifang University, Weifang 261061, China
| | - Feng Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Zaifa Du
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China
- Weifang Key Laboratory of Laser Technology and Application, Weifang University, Weifang 261061, China
| | - Xinmin Fan
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China
- Weifang Key Laboratory of Laser Technology and Application, Weifang University, Weifang 261061, China
| | - Xiaodong Huang
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China
- Weifang Key Laboratory of Laser Technology and Application, Weifang University, Weifang 261061, China
| | - Lujun Zhang
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China
- Weifang Key Laboratory of Laser Technology and Application, Weifang University, Weifang 261061, China
| | - Sensen Li
- Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
| | - Zhaohong Liu
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
| | - Chunyan Wang
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China
- Weifang Key Laboratory of Laser Technology and Application, Weifang University, Weifang 261061, China
| |
Collapse
|
173
|
Liu X, He C, Bai Y, Fan D, Zang F, Zhang H, Zhang H, Yao H, Zhang Z, Xie C. White matter microstructure mediates the pairwise relationship between childhood maltreatment, microRNA-9, and the severity of major depressive disorder. Chin Med J (Engl) 2024; 137:2140-2142. [PMID: 39113182 PMCID: PMC11374261 DOI: 10.1097/cm9.0000000000003188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 09/06/2024] Open
Affiliation(s)
- Xinyi Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Cancan He
- Neuropsychiatric Research Institute, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Dandan Fan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Neuropsychiatric Research Institute, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Feifei Zang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Neuropsychiatric Research Institute, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Hongxing Zhang
- Henan Key Laboratory of Psychology and Behavior, Xinxiang Medical University, Xinxiang, Henan 453000, China
- Department of Radiology, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Haisan Zhang
- Psychology School of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Neuropsychiatric Research Institute, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210009, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Neuropsychiatric Research Institute, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
174
|
Xu GE, Zhao X, Li G, Gokulnath P, Wang L, Xiao J. The landscape of epigenetic regulation and therapeutic application of N 6-methyladenosine modifications in non-coding RNAs. Genes Dis 2024; 11:101045. [PMID: 38988321 PMCID: PMC11233902 DOI: 10.1016/j.gendis.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/18/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2024] Open
Abstract
RNA N6-methyladenosine (m6A) methylation is the most abundant and conserved RNA modification in eukaryotes. It participates in the regulation of RNA metabolism and various pathophysiological processes. Non-coding RNAs (ncRNAs) are defined as small or long transcripts which do not encode proteins and display numerous biological regulatory functions. Similar to mRNAs, m6A deposition is observed in ncRNAs. Studying RNA m6A modifications on ncRNAs is of great importance specifically to deepen our understanding of their biological roles and clinical implications. In this review, we summarized the recent research findings regarding the mutual regulation between RNA m6A modification and ncRNAs (with a specific focus on microRNAs, long non-coding RNAs, and circular RNAs) and their functions. We also discussed the challenges of m6A-containing ncRNAs and RNA m6A as therapeutic targets in human diseases and their future perspective in translational roles.
Collapse
Affiliation(s)
- Gui-E Xu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xuan Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lijun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
175
|
Chen R, Wang X, Li N, Golubnitschaja O, Zhan X. Body fluid multiomics in 3PM-guided ischemic stroke management: health risk assessment, targeted protection against health-to-disease transition, and cost-effective personalized approach are envisaged. EPMA J 2024; 15:415-452. [PMID: 39239108 PMCID: PMC11371995 DOI: 10.1007/s13167-024-00376-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Because of its rapid progression and frequently poor prognosis, stroke is the third major cause of death in Europe and the first one in China. Many independent studies demonstrated sufficient space for prevention interventions in the primary care of ischemic stroke defined as the most cost-effective protection of vulnerable subpopulations against health-to-disease transition. Although several studies identified molecular patterns specific for IS in body fluids, none of these approaches has yet been incorporated into IS treatment guidelines. The advantages and disadvantages of individual body fluids are thoroughly analyzed throughout the paper. For example, multiomics based on a minimally invasive approach utilizing blood and its components is recommended for real-time monitoring, due to the particularly high level of dynamics of the blood as a body system. On the other hand, tear fluid as a more stable system is recommended for a non-invasive and patient-friendly holistic approach appropriate for health risk assessment and innovative screening programs in cost-effective IS management. This article details aspects essential to promote the practical implementation of highlighted achievements in 3PM-guided IS management. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00376-2.
Collapse
Affiliation(s)
- Ruofei Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Xiaoyan Wang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Na Li
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Venusberg Campus 1, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, 53127 Germany
| | - Xianquan Zhan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Jinan Key Laboratory of Cancer Multiomics, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 P. R. China
| |
Collapse
|
176
|
Pan Z, Yu X, Wang W, Shen K, Chen J, Zhang Y, Huang R. Sestrin2 remedies neuroinflammatory response by inhibiting A1 astrocyte conversion via autophagy. J Neurochem 2024; 168:2640-2653. [PMID: 38761015 DOI: 10.1111/jnc.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Most central nervous diseases are accompanied by astrocyte activation. Autophagy, an important pathway for cells to protect themselves and maintain homeostasis, is widely involved in regulation of astrocyte activation. Reactive astrocytes may play a protective or harmful role in different diseases due to different phenotypes of astrocytes. It is an urgent task to clarify the formation mechanisms of inflammatory astrocyte phenotype, A1 astrocytes. Sestrin2 is a highly conserved protein that can be induced under a variety of stress conditions as a potential protective role in oxidative damage process. However, whether Sestrin2 can affect autophagy and involve in A1 astrocyte conversion is still uncovered. In this study, we reported that Sestrin2 and autophagy were significantly induced in mouse hippocampus after multiple intraperitoneal injections of lipopolysaccharide, with the elevation of A1 astrocyte conversion and inflammatory mediators. Knockdown Sestrin2 in C8-D1A astrocytes promoted the levels of A1 astrocyte marker C3 mRNA and inflammatory factors, which was rescued by autophagy inducer rapamycin. Overexpression of Sestrin2 in C8-D1A astrocytes attenuated A1 astrocyte conversion and reduced inflammatory factor levels via abundant autophagy. Moreover, Sestrin2 overexpression improved mitochondrial structure and morphology. These results suggest that Sestrin2 can suppress neuroinflammation by inhibiting A1 astrocyte conversion via autophagy, which is a potential drug target for treating neuroinflammation.
Collapse
Affiliation(s)
- Zhenguo Pan
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurology, People's Hospital of Xiangshui County, Yancheng, China
| | - Xiaoyu Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Weiwei Wang
- Department of Pathology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Kai Shen
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jianwei Chen
- Interventional Medicine Center, Xi'an People's Hospital, Xi'an, China
| | - Yunfeng Zhang
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Rongrong Huang
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
177
|
Wu L, Cheng Y, Wang R, Sun S, Ma B, Zhang Z. NDRG2 regulates glucose metabolism and ferroptosis of OGD/R-treated astrocytes by the Wnt/β-catenin signaling. J Biochem Mol Toxicol 2024; 38:e23827. [PMID: 39193856 DOI: 10.1002/jbt.23827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/10/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Ischemic stroke is one main type of cerebrovascular disorders with leading cause of death and disability worldwide. Astrocytes are the only nerve cell type storing glycogen in the brain, which regulate the glucose metabolism and handle the energy supply and survive of neurons. Astrocyte ferroptosis contributes to neuron injury in brain disorders. N-myc downstream-regulated gene 2 (NDRG2) has been implicated in the progression of brain diseases, including ischemic stroke. However, whether NDRG2 could affect the glucose metabolism and ferroptosis of astrocytes during ischemic stroke remains largely unknown. Mouse astrocytes were treated with oxygen-glucose deprivation/reoxygenation (OGD/R) to establish the in vitro model. Glial fibrillary acidic protein, NDRG2, Wnt3a and β-catenin expression levels were detected by immunofluorescence staining and western blot analyses. Glucose metabolism was investigated by glucose uptake, lactate production, nicotinamide adenine dinucleotide phosphate hydrogen/nicotinamide adenine dinucleotide phosphate (NADPH/NADP+), ATP and glycolysis enzymes (HK2, PKM2 and lactate dehydrogenase A [LDHA]) levels. Ferroptosis was assessed via reactive oxygen species (ROS), glutathione (GSH), iron and ferroptosis-related markers (GPX4 and PTGS2) contents. Glycolysis enzymes and ferroptosis-related markers levels were measured via western blot. NDRG2 expression was elevated in OGD/R-induced astrocytes. NDRG2 overexpression aggravated OGD/R-induced loss of glucose metabolism through reducing glucose uptake, lactate production, NADPH/NADP+ and ATP levels. NDRG2 upregulation exacerbated OGD/R-caused reduction of glycolysis enzymes (HK2, PKM2 and LDHA) levels. NDRG2 promoted OGD/R-induced ferroptosis of astrocytes by increasing ROS, iron and PTGS2 levels and decreasing GSH and GPX4 levels. NDRG2 overexpression enhanced OGD/R-induced decrease of Wnt/β-catenin signaling activation by reducing Wnt3a and β-catenin expression. NDRG2 silencing played an opposite effect. Inhibition of Wnt/β-catenin signaling activation by IWR-1 attenuated the influences of NDRG2 knockdown on glucose metabolism, glycolysis enzymes levels and ferroptosis. These findings demonstrated that NDRG2 contributes to OGD/R-induced inhibition of glucose metabolism and promotion of ferroptosis in astrocytes through inhibiting Wnt/β-catenin signaling activation, which might be associated with ischemic stroke progression.
Collapse
Affiliation(s)
- Lin Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yingying Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Runfeng Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shukai Sun
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Ma
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhiguo Zhang
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
178
|
Yang X, Mu Y, Feng Y, Li M, Hu H, Zhang X, Zuo Z, Wu R, Xu J, Zheng F, He X, Hu X, Zhang L. Physical exercise-induced circAnks1b upregulation promotes protective endoplasmic reticulum stress and suppresses apoptosis via miR-130b-5p/Pak2 signaling in an ischemic stroke model. CNS Neurosci Ther 2024; 30:e70055. [PMID: 39328024 PMCID: PMC11427801 DOI: 10.1111/cns.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
AIMS Physical exercise (PE) can accelerate post-stroke recovery. This study investigated contributions of circRNAs to PE-induced improvements in post-stroke neurological function. METHODS Rats subjected to transient middle cerebral artery occlusion were left sedentary or provided running-wheel access for 4 weeks during recovery. CircRNAs from peri-infarct cortex were identified by high-throughput sequencing, and interactions with miRNAs by immunoprecipitation, fluorescence in suit hybridization, and dual-luciferase reporter assays. In vivo circRNA knockdown was achieved using shRNA-AAVs and in vitro overexpression by plasmid transfection. Transmission electron microscopy, western blotting, and TUNEL assays were conducted to explore circRNA contributions to endoplasmic reticulum (ER) stress and neuronal apoptosis. CircRNA levels were measured in plasma from stroke patients by qRT-PCR and associations with neurological scores assessed by Pearson's correlation analysis. RESULTS PE upregulated circAnks1b, reduced infarct volume, and mitigated neurological dysfunction, while circAnks1b knockdown exacerbated neurological dysfunction and increased infarct size despite PE. CircAnks1b sponged miR-130b-5p, thereby disinhibiting Pak2 expression. Conversely, Pak2 downregulation disrupted PE-mediated protective ER stress, leading to reduced IRE1/XBP1 and heightened apoptosis. Plasma circAnks1b was higher in stroke patients receiving PE than sedentary patients and correlated negatively with neurological scores. CONCLUSIONS CircAnks1b upregulation may be an effective therapeutic strategy for post-stroke recovery.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yating Mu
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yifeng Feng
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Mingyue Li
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Haojie Hu
- Department of PsychologyNew York UniversityNew YorkNew YorkUSA
| | - Xiaoya Zhang
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Zejie Zuo
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Rui Wu
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Jinghui Xu
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Fang Zheng
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xiaofei He
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xiquan Hu
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Liying Zhang
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
179
|
Gao J, Wang C, Zhang J, Shawuti Z, Wang S, Ma C, Wang J. CircZNF609 inhibits miR-150-5p to promote high glucose-induced damage to retinal microvascular endothelial cells. Mol Cell Endocrinol 2024; 590:112261. [PMID: 38679361 DOI: 10.1016/j.mce.2024.112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Hyperglycemia is a key contributor to diabetic macrovascular and ocular complications. It triggers a cascade of cellular damage, particularly in the retinal microvascular endothelial cells (RMECs). However, the underlying molecular mechanisms remain only partially understood. This study hypothesizes that CircZNF609 plays a pivotal role in mediating high glucose-induced damage in RMECs by modulating miR-150-5p and its downstream target genes, thereby affecting cellular survival, apoptosis, and oxidative stress. Gene expression datasets (GSE193974 and GSE160308) and clinical samples were used to investigate the expression levels of CircZNF609 and its interaction with miR-150-5p in the context of diabetic retinopathy (DR). Our results demonstrate that CircZNF609 is upregulated in both peripheral blood stem cells from DR patients and high glucose-stimulated hRMECs. Functional experiments reveal that silencing CircZNF609 improves cell viability, reduces apoptosis, inhibits tube formation, and modulates oxidative stress markers, whereas CircZNF609 overexpression exacerbates these effects. Moreover, miR-150-5p, a microRNA, was found to be negatively regulated by CircZNF609 and downregulated in DR. Its overexpression mitigates high glucose-induced cell injury. Our findings suggest a novel mechanism whereby CircZNF609 exacerbates high glucose-induced endothelial cell damage by sponging miR-150-5p, implicating the CircZNF609/miR-150-5p axis as a potential therapeutic target in diabetic retinopathy.
Collapse
Affiliation(s)
- Jing Gao
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830054, China
| | - Chenfei Wang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830054, China
| | - Jie Zhang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Zulifeiya Shawuti
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Siyao Wang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Cunhua Ma
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Juan Wang
- Department of Cardiology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
180
|
Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother 2024; 178:117207. [PMID: 39067168 DOI: 10.1016/j.biopha.2024.117207] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Gut microbiota is involved in intricate and active metabolic processes the host's brain function, especially its role in immune responses, secondary metabolism, and symbiotic connections with the host. Gut microbiota can promote the production of essential metabolites, neurotransmitters, and other neuroactive chemicals that affect the development and treatment of central nervous system diseases. This article introduces the relevant pathways and manners of the communication between the brain and gut, summarizes a comprehensive overview of the current research status of key gut microbiota metabolites that affect the functions of the nervous system, revealing those adverse factors that affect typical communication between the brain-gut axis, and outlining the efforts made by researchers to alleviate these neurological diseases through targeted microbial interventions. The relevant pathways and manners of communication between the brain and gut contribute to the experimental design of new treatment plans and drug development. The factors that may cause changes in gut microbiota and affect metabolites, as well as current intervention methods are summarized, which helps improve gut microbiota brain dialogue, prevent adverse triggering factors from interfering with the gut microbiota system, and minimize neuropathological changes.
Collapse
Affiliation(s)
- Shengwen Lu
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qiqi Zhao
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yu Guan
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Zhiwen Sun
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wenhao Li
- School of Basic Medical Science of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China; INTI International University, Nilai 71800, Malaysia.
| |
Collapse
|
181
|
Sun T, Chen G, Jiang W, Xu W, You L, Jiang C, Chen S, Wang D, Zheng X, Yuan Y. Distinguishing bipolar depression, bipolar mania, and major depressive disorder by gut microbial characteristics. Bipolar Disord 2024; 26:584-594. [PMID: 38647010 DOI: 10.1111/bdi.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND Gut microbial disturbance has been widely confirmed in mood disorders. However, little is known about whether gut microbial characteristics can distinguish major depressive disorder (MDD), bipolar depression (BP-D), and bipolar mania (BP-M). METHODS This was a prospective case-control study. The composition of gut microbiota was profiled using 16S ribosomal RNA (rRNA) gene sequencing of fecal samples and compared between healthy controls (HC; n = 46), MDD (n = 51), BP-D (n = 44), and patients with BP-M (n = 45). RESULTS Gut microbial compositions were remarkably changed in the patients with MDD, BP-D, and BP-M. Compared to HC, distinct gut microbiome signatures were found in MDD, BP-D, and BP-M, and some gut microbial changes were overlapping between the three mood disorders. Furthermore, we identified a signature of 7 operational taxonomic units (OUT; Prevotellaceae-related OUT22, Prevotellaceae-related OUT31, Prevotellaceae-related OTU770, Ruminococcaceae-related OUT70, Bacteroidaceae-related OTU1536, Propionibacteriaceae-related OTU97, Acidaminococcaceae-related OTU34) that can distinguish patients with MDD from those with BP-D, BP-M, or HC, with area under the curve (AUC) values ranging from 0.910 to 0.996. CONCLUSION Our results provide the clinical rationale for the discriminative diagnosis of MDD, BP-D, and BP-M by characteristic gut microbial features.
Collapse
Affiliation(s)
- Taipeng Sun
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Medical Psychology, Huai'an Third People's Hospital, Huaian, Jiangsu, China
| | - Gang Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Medical Psychology, Huai'an Third People's Hospital, Huaian, Jiangsu, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Linlin You
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Chenguang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Suzhen Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Dan Wang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
182
|
Abohassan M, Khaleel AQ, Pallathadka H, Kumar A, Allela OQB, Hjazi A, Pramanik A, Mustafa YF, Hamzah HF, Mohammed BA. Circular RNA as a Biomarker for Diagnosis, Prognosis and Therapeutic Target in Acute and Chronic Lymphoid Leukemia. Cell Biochem Biophys 2024; 82:1979-1991. [PMID: 39136839 DOI: 10.1007/s12013-024-01404-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 10/02/2024]
Abstract
Circular RNAs (circRNAs) are single-stranded RNAs that have received much attention in recent years. CircRNAs lack a 5' head and a 3' poly-A tail. The structure of this type of RNAs make them resistant to digestion by exonucleases. CircRNAs are expressed in different cells and have various functions. The function of circRNAs is done by sponging miRNAs, changing gene expression, and protein production. The expression of circRNAs changes in different types of cancers, which causes changes in cell growth, proliferation, differentiation, and apoptosis. Changes in the expression of circRNAs can cause the invasion and progression of tumors. Studies have shown that changes in the expression of circRNAs can be seen in acute lymphoid leukemia (ALL) and chronic lymphoid leukemia (CLL). The conducted studies aim to identify circRNAs whose expression has changed in these leukemias and their more precise function so that these circRNAs can be identified as biomarkers, prediction of patient prognosis, and treatment targets for ALL and CLL patients. In this study, we review the studies conducted on the role and function of circRNAs in ALL and CLL patients. The results of the studies show that there is a possibility of using circRNAs as biomarkers in the identification and treatment of patients in the future.
Collapse
MESH Headings
- Humans
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Prognosis
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- RNA/metabolism
- RNA/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
Collapse
Affiliation(s)
- Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar, 31001, Iraq.
| | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Ivison of Research and Innovation Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | |
Collapse
|
183
|
Murugan R, Mukesh G, Haridevamuthu B, Priya PS, Pachaiappan R, Almutairi BO, Arokiyaraj S, Guru A, Arockiaraj J. Plausible antioxidant and anticonvulsant potential of brain targeted naringenin-conjugated graphene oxide nanoparticles. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:22125-22136. [DOI: 10.1007/s13399-023-04343-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 10/16/2023]
|
184
|
Zeng X, Tang J, Zhang Q, Wang C, Qi J, Wei Y, Xu J, Yang K, Zhou Z, Wu H, Luo J, Jiang Y, Song Z, Wu J, Wu J. CircHIPK2 Contributes Cell Growth in Intestinal Epithelial of Colitis and Colorectal Cancer through Promoting TAZ Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401588. [PMID: 38981023 PMCID: PMC11425914 DOI: 10.1002/advs.202401588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Colorectal cancer (CRC) and inflammatory bowel disease (IBD) are escalating global health concerns. Despite their distinct clinical presentations, both disorders share intricate genetic and molecular interactions. The Hippo signaling pathway plays a crucial role in regulating cell processes and is implicated in the pathogenesis of IBD and CRC. Circular RNAs (circRNAs) have gained attention for their roles in various diseases, including IBD and CRC. However, a comprehensive understanding of specific circRNAs involved in both IBD and CRC, and their functional roles is lacking. Here, it is found that circHIPK2 (hsa_circRNA_104507) is a bona fide circRNA consistently upregulated in both IBD and CRC suggesting its potential as a biomarker. Furthermore, silencing of circHIPK2 suppressed the growth of CRC cells in vitro and in vivo. Interestingly, decreased circHipk2 potentiated dextran sulfate sodium (DSS)-induced colitis but alleviated colitis-associated tumorigenesis. Most significantly, mechanistic investigations further unveil that circHIPK2, mediated by FUS, interacting with EIF4A3 to promote the translation of TAZ, ultimately increasing the transcription of downstream target genes CCN1 and CCN2. Taken together, circHIPK2 emerges as a key player in the shared mechanisms of IBD and CRC, modulating the Hippo signaling pathway. CircHIPK2-EIF4A3 axis contributes to cell growth in intestinal epithelial of colitis and CRC by enhancing TAZ translation.
Collapse
Affiliation(s)
- Xixi Zeng
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
- The Joint Innovation Center for Health and Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Zhejiang, 324000, China
| | - Jielin Tang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, China
| | - Qian Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Chenxing Wang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children of Wenzhou Medical University, Zhejiang, 325003, China
| | - Ji Qi
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Yusi Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jiali Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Kaiyuan Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Zuolin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Hao Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jiarong Luo
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children of Wenzhou Medical University, Zhejiang, 325003, China
| | - Zengqiang Song
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jinyu Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jianmin Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315302, China
| |
Collapse
|
185
|
Tibenda JJ, Wang N, Li N, Dang Y, Zhu Y, Wang X, Zhang Z, Zhao Q. Research progress of circular RNAs in myocardial ischemia. Life Sci 2024; 352:122809. [PMID: 38908786 DOI: 10.1016/j.lfs.2024.122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
Circular RNAs (circRNAs) are a type of single-stranded RNA that forms a covalently closed continuous loop. Its structure, stability, properties, and cell- and tissue-specificity have gained considerable recognition in the research and clinical sectors, as its role has been observed in different diseases, such as cardiovascular diseases, cancers, and central nervous system diseases, etc. Cardiovascular disease is still named as the number one cause of death globally, with myocardial ischemia (MI) accounting for 15 % of mortality annually. A number of circRNAs have been identified and are being studied for their ability to reduce MI by inhibiting the molecular mechanisms associated with myocardial ischemia reperfusion injury, such as inflammation, oxidative stress, autophagy, apoptosis, and so on. CircRNAs play a significant role as crucial regulatory elements at transcriptional levels, regulating different proteins, and at posttranscriptional levels, having interactions with RNA-binding proteins, ribosomal proteins, micro-RNAS, and long non-coding RNAS, making it possible to exert their effects through the circRNA-miRNA-mRNA axis. CircRNAs are a potential novel biomarker and therapeutic target for myocardial ischemia and cardiovascular diseases in general. The purpose of this review is to summarize the relationship, function, and mechanism observed between circRNAs and MI injury, as well as to provide directions for future research and clinical trials.
Collapse
Affiliation(s)
- Jonnea Japhet Tibenda
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Niuniu Wang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Nuan Li
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Yanning Dang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Yafei Zhu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhengjun Zhang
- Department of Cardiology, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Qipeng Zhao
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
186
|
Wang Y, Yan D, Liu J, Tang D, Chen X. Protein modification and degradation in ferroptosis. Redox Biol 2024; 75:103259. [PMID: 38955112 PMCID: PMC11267077 DOI: 10.1016/j.redox.2024.103259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Ferroptosis is a form of iron-related oxidative cell death governed by an integrated redox system, encompassing pro-oxidative proteins and antioxidative proteins. These proteins undergo precise control through diverse post-translational modifications, including ubiquitination, phosphorylation, acetylation, O-GlcNAcylation, SUMOylation, methylation, N-myristoylation, palmitoylation, and oxidative modification. These modifications play pivotal roles in regulating protein stability, activity, localization, and interactions, ultimately influencing both the buildup of iron and lipid peroxidation. In mammalian cells, regulators of ferroptosis typically undergo degradation via two principal pathways: the ubiquitin-proteasome system, which handles the majority of protein degradation, and autophagy, primarily targeting long-lived or aggregated proteins. This comprehensive review aims to summarize recent advances in the post-translational modification and degradation of proteins linked to ferroptosis. It also discusses strategies for modulating ferroptosis through protein modification and degradation systems, providing new insights into potential therapeutic applications for both cancer and non-neoplastic diseases.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Biological Targeting Diagnosis, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ding Yan
- Key Laboratory of Biological Targeting Diagnosis, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinbao Liu
- Key Laboratory of Biological Targeting Diagnosis, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, 75390, USA.
| | - Xin Chen
- Key Laboratory of Biological Targeting Diagnosis, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
187
|
Sun X, Wang H, Pu X, Wu Y, Yuan X, Wang X, Lu H. Manipulating the tumour immune microenvironment by N6-methyladenosine RNA modification. Cancer Gene Ther 2024; 31:1315-1322. [PMID: 38834772 DOI: 10.1038/s41417-024-00791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
N6-methyladenosine (m6A), a posttranscriptional regulatory mechanism, is the most common epigenetic modification in mammalian mRNA. M6A modifications play a crucial role in the developmental network of immune cells. The expression of m6A-related regulators often affects carcinogenesis and tumour suppression networks. In the tumour microenvironment, m6A-modified enzymes can affect the occurrence and progression of tumours by regulating the activation and invasion of tumour-associated immune cells. Immunotherapy, which utilises immune cells, has been demonstrated to be a powerful weapon in tumour treatment and is increasingly being used in the clinic. Here, we provide an updated and comprehensive overview of how m6A modifications affect invasive immune cells and their potential role in immune regulation. In addition, we summarise the regulation of epigenetic regulators associated with m6A modifications in tumour cells on the antitumour response of immune cells in the tumour immune microenvironment. These findings provide new insights into the role of m6A modifications in the immune response and tumour development, leading to the development of novel immunotherapies for cancer treatment.
Collapse
Affiliation(s)
- Xinyu Sun
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huirong Wang
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xi Pu
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuting Wu
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao Yuan
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xu Wang
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hanqiang Lu
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
188
|
Fan L, Yao D, Fan Z, Zhang T, Shen Q, Tong F, Qian X, Xu L, Jiang C, Dong N. Beyond VICs: Shedding light on the overlooked VECs in calcific aortic valve disease. Biomed Pharmacother 2024; 178:117143. [PMID: 39024838 DOI: 10.1016/j.biopha.2024.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Calcific aortic valve disease (CAVD) is prevalent in developed nations and has emerged as a pressing global public health concern due to population aging. The precise etiology of this disease remains uncertain, and recent research has primarily focused on examining the role of valvular interstitial cells (VICs) in the development of CAVD. The predominant treatment options currently available involve open surgery and minimally invasive interventional surgery, with no efficacious pharmacological treatment. This article seeks to provide a comprehensive understanding of valvular endothelial cells (VECs) from the aspects of valvular endothelium-derived nitric oxide (NO), valvular endothelial mechanotransduction, valvular endothelial injury, valvular endothelial-mesenchymal transition (EndMT), and valvular neovascularization, which have received less attention, and aims to establish their role and interaction with VICs in CAVD. The ultimate goal is to provide new perspectives for the investigation of non-invasive treatment options for this disease.
Collapse
Affiliation(s)
- Lin Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingyi Yao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengfeng Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tailong Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Shen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqiang Tong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chen Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
189
|
Yang P, Nie T, Sun X, Xu L, Ma C, Wang F, Long L, Chen J. Wheel-Running Exercise Alleviates Anxiety-Like Behavior via Down-Regulating S-Nitrosylation of Gephyrin in the Basolateral Amygdala of Male Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400205. [PMID: 38965798 PMCID: PMC11425869 DOI: 10.1002/advs.202400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Physical exercise has beneficial effect on anxiety disorders, but the underlying molecular mechanism remains largely unknown. Here, it is demonstrated that physical exercise can downregulate the S-nitrosylation of gephyrin (SNO-gephyrin) in the basolateral amygdala (BLA) to exert anxiolytic effects. It is found that the level of SNO-gephyrin is significantly increased in the BLA of high-anxiety rats and a downregulation of SNO-gephyrin at cysteines 212 and 284 produced anxiolytic effect. Mechanistically, inhibition of SNO-gephyrin by either Cys212 or Cys284 mutations increased the surface expression of GABAAR γ2 and the subsequent GABAergic neurotransmission, exerting anxiolytic effect in male rats. On the other side, overexpression of neuronal nitric oxide synthase in the BLA abolished the anxiolytic-like effects of physical exercise. This study reveals a key role of downregulating SNO-gephyrin in the anxiolytic effects of physical exercise, providing a new explanation for protein post-translational modifications in the brain after exercise.
Collapse
Affiliation(s)
- Ping‐Fen Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesDepartment of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
| | - Tai‐Lei Nie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesDepartment of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
| | - Xia‐Nan Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesDepartment of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
| | - Lan‐Xin Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesDepartment of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430030China
| | - Fang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesDepartment of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
- Hubei Shizhen LaboratoryWuhan430030China
| | - Li‐Hong Long
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesDepartment of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
- Hubei Shizhen LaboratoryWuhan430030China
| | - Jian‐Guo Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesDepartment of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
- Hubei Shizhen LaboratoryWuhan430030China
| |
Collapse
|
190
|
Wang Y, Zhang H, Hao Y, Jin F, Tang L, Xu X, He Z, Wang Y. Expression profile of circular RNAs in blood samples of Northern Chinese males with intracerebral hemorrhage shows downregulation of hsa-circ-0090829. Heliyon 2024; 10:e35864. [PMID: 39220968 PMCID: PMC11365373 DOI: 10.1016/j.heliyon.2024.e35864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Circular RNAs (circRNAs) are involved in several neurological disorders; however, the mechanisms underlying their involvement remain to be clarified. We attempted to explore the expression profiles of circRNAs and their potential functions and mechanisms in the pathogenesis of intracerebral hemorrhage (ICH) in Northern Chinese males. The microarray results showed that 50 circRNAs were significantly upregulated, while 194 circRNAs were significantly downregulated in ICH patients compared with healthy controls (p < 0.05). After bioinformatics analysis, a circRNA-microRNA-messenger RNA network and a protein-protein interaction network were constructed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the neurotrophin signaling pathway, long-term potentiation, and the mitogen-activated protein kinase pathway are potentially implicated in ICH pathophysiology. The quantitative real-time polymerase chain reaction results revealed that hsa-circ-0090829 was significantly downregulated in ICH. The receiver operating characteristic curve analysis showed that the area under the curve of hsa-circ-0090829 between ICH and healthy controls was 0.807. Furthermore, the dual-luciferase assay showed that hsa-circ-0090829 sponged miR-526b-5p. This study reports the altered expression of circRNAs and identifies the potential functions of these circRNAs in ICH. Our results may facilitate further mechanistic research on circRNAs in ICH and provide probable novel diagnostic biomarkers and therapeutic targets for ICH.
Collapse
Affiliation(s)
- Yuye Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
- Department of Neurology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
| | - Heyu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangdong, Guangzhou, 510080, China
| | - Yuehan Hao
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Feng Jin
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ling Tang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xiaoxue Xu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zhiyi He
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yanzhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| |
Collapse
|
191
|
Liu T, Li J, Sun L, Zhu C, Wei J. The role of ACE2 in RAS axis on microglia activation in Parkinson's disease. Neuroscience 2024; 553:128-144. [PMID: 38986737 DOI: 10.1016/j.neuroscience.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The classic renin-angiotensin system (RAS) induces organ damage, while the ACE2/Ang-(1-7)/MasR axis opposes it. However, the role of ACE2 in the brain is unclear. We studied ACE2's role in the brain. METHOD We used male C57BL/6J (WT) mice, ACE2 knockout (KO) mice, and MPTP-induced mice. Behavioral tests confirmed successful modeling. We assessed the impact of ACE2 KO on the RAS axis and PD index, including ACE, ACE2, AT1, AT2, MasR, TH, α-syn, and Iba1. We investigated ACE2 and MasR's involvement in microglial activation via western blot and immunofluorescence. GSE10867 and GSE26532 datasets were used to analyze the effects of AT1 antagonists and in vitro PD models on microglia. RESULT Behavioral tests revealed that MPTP mice displayed motor deficits, depression, anxiety, and increased inflammatory markers in the SN and CPU, with reduced antioxidant capacity. ACE2 KO worsened these symptoms and exacerbated inflammation and oxidative stress. LPS-induced ACE2/MasR activation in BV2 cells demonstrated anti-inflammatory and neuroprotective effects by modulating microglial polarization. Antagonists inhibited microglial activation via inflammation and ROS processes. CONCLUSION The RAS axis regulates inflammation and oxidative stress to maintain CNS function, suggesting potential targets for neurologic disease treatment. Understanding microglial RAS activation can offer new therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Jingwen Li
- Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475000, China.
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| |
Collapse
|
192
|
Dong T, Yu C, Mao Q, Han F, Yang Z, Yang Z, Pires N, Wei X, Jing W, Lin Q, Hu F, Hu X, Zhao L, Jiang Z. Advances in biosensors for major depressive disorder diagnostic biomarkers. Biosens Bioelectron 2024; 258:116291. [PMID: 38735080 DOI: 10.1016/j.bios.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Depression is one of the most common mental disorders and is mainly characterized by low mood or lack of interest and pleasure. It can be accompanied by varying degrees of cognitive and behavioral changes and may lead to suicide risk in severe cases. Due to the subjectivity of diagnostic methods and the complexity of patients' conditions, the diagnosis of major depressive disorder (MDD) has always been a difficult problem in psychiatry. With the discovery of more diagnostic biomarkers associated with MDD in recent years, especially emerging non-coding RNAs (ncRNAs), it is possible to quantify the condition of patients with mental illness based on biomarker levels. Point-of-care biosensors have emerged due to their advantages of convenient sampling, rapid detection, miniaturization, and portability. After summarizing the pathogenesis of MDD, representative biomarkers, including proteins, hormones, and RNAs, are discussed. Furthermore, we analyzed recent advances in biosensors for detecting various types of biomarkers of MDD, highlighting representative electrochemical sensors. Future trends in terms of new biomarkers, new sample processing methods, and new detection modalities are expected to provide a complete reference for psychiatrists and biomedical engineers.
Collapse
Affiliation(s)
- Tao Dong
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Chenghui Yu
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Qi Mao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Han
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenwei Yang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Pires
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Hu
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiao Hu
- Engineering Research Center of Ministry of Education for Smart Justice, School of Criminal Investigation, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Libo Zhao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
193
|
Cui S, Huang Q, Li T, Shen W, Chen X, Sun X. Reduction in Renal Interstitial Fibrosis in Aged Male Mice by Intestinal Microbiota Rejuvenation. Gerontology 2024; 70:1161-1170. [PMID: 39137736 DOI: 10.1159/000540839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
INTRODUCTION Renal interstitial fibrosis is an important pathological basis for kidney ageing and the progression of ageing nephropathy. In the present research, we established an aged mouse model of faecal microbiota transplantation (FMT), identified the rejuvenation features of the kidney in aged male mice, and preliminarily analysed the possible mechanism by which the rejuvenation of the intestinal microbiota reduces renal interstitial fibrosis and delays senescence in aged male mice. METHODS We established an aged male mice model that was treated with FMT (FMT-Old) and a normal aged male mice control group (Old). Differentially expressed cytokines were identified using a cytokine array, and changes in protein expression related to signal transduction pathways in renal tissues were detected using a signalling pathway array. Senescence-associated β-galactosidase and Masson staining were performed to observe the degrees of renal senescence and tubule interstitial fibrosis. Immunohistochemistry was utilized to detect changes in the expression of the ageing markers p53 and p21 and the inflammation-related protein nuclear factor (NF-κB) subunit (RelA/p65). RESULTS The pathological features of renal senescence in the FMT-Old group were significantly alleviated, and the levels of the ageing indicators p53 and p21 were decreased (p < 0.05). Ingenuity Pathway Analysis revealed that six differentially expressed cytokines, MIP-3β (CCL-19), E-selectin (SELE), Fas ligand (Fas L/FASLG), CXCL-11 (I-TAC), CXCL-1 and CCL-3 (MIP-1α) were related to a common upstream regulatory protein, RelA/p65, and the expression of this protein was significantly different between groups according to the signalling pathway array. CONCLUSION Our findings suggest that the intestinal microbiota regulates the renal microenvironment by reducing immune inflammatory responses through the inhibition of the NF-κB signalling pathway, thereby delaying renal senescence in aged male mice.
Collapse
Affiliation(s)
- Shaoyuan Cui
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China,
| | - Qi Huang
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tian Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| |
Collapse
|
194
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
195
|
D’Aversa E, Salvatori F, Vaccarezza M, Antonica B, Grisafi M, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. circRNAs as Epigenetic Regulators of Integrity in Blood-Brain Barrier Architecture: Mechanisms and Therapeutic Strategies in Multiple Sclerosis. Cells 2024; 13:1316. [PMID: 39195206 PMCID: PMC11352526 DOI: 10.3390/cells13161316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease leading to progressive demyelination and neuronal loss, with extensive neurological symptoms. As one of the most widespread neurodegenerative disorders, with an age onset of about 30 years, it turns out to be a socio-health and economic issue, thus necessitating therapeutic interventions currently unavailable. Loss of integrity in the blood-brain barrier (BBB) is one of the distinct MS hallmarks. Brain homeostasis is ensured by an endothelial cell-based monolayer at the interface between the central nervous system (CNS) and systemic bloodstream, acting as a selective barrier. MS results in enhanced barrier permeability, mainly due to the breakdown of tight (TJs) and adherens junctions (AJs) between endothelial cells. Specifically, proinflammatory mediator release causes failure in cytoplasmic exposure of junctions, resulting in compromised BBB integrity that enables blood cells to cross the barrier, establishing iron deposition and neuronal impairment. Cells with a compromised cytoskeletal protein network, fiber reorganization, and discontinuous junction structure can occur, resulting in BBB dysfunction. Recent investigations on spatial transcriptomics have proven circularRNAs (circRNAs) to be powerful multi-functional molecules able to epigenetically regulate transcription and structurally support proteins. In the present review, we provide an overview of the recent role ascribed to circRNAs in maintaining BBB integrity/permeability via cytoskeletal stability. Increased knowledge of the mechanisms responsible for impairment and circRNA's role in driving BBB damage and dysfunction might be helpful for the recognition of novel therapeutic targets to overcome BBB damage and unrestrained neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta D’Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Bianca Antonica
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Miriana Grisafi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
196
|
Wang Z, Zhang X, Zhang G, Zheng YJ, Zhao A, Jiang X, Gan J. Astrocyte modulation in cerebral ischemia-reperfusion injury: A promising therapeutic strategy. Exp Neurol 2024; 378:114814. [PMID: 38762094 DOI: 10.1016/j.expneurol.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Jia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
197
|
Deng X, Zeng Y, Ding D. MiR-30c-5p-Targeted Regulation of GNAI2 Improves Neural Function Injury and Inflammation in Cerebral Ischemia-Reperfusion Injury. Appl Biochem Biotechnol 2024; 196:5235-5248. [PMID: 38153649 DOI: 10.1007/s12010-023-04802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/29/2023]
Abstract
MiRNAs are related to neuronal proliferation and apoptosis following cerebral ischemia-reperfusion injury (CIRI). This study focused on miR-30c-5p in the disease. An oxygen-glucose deprivation/re-oxygenation (OGD/R) model was prepared in HT22 cells and transfected to overexpress miR-30c-5p and G Protein Subunit Alpha I2 (GNAI2) respectively or co-transfected to silence miR-30c-5p and GNAI2. Meanwhile, a middle cerebral artery occlusion (MCAO) model was constructed in mice, and miR-30c-5p and GNAI2 were silenced in vivo simultaneously. The mice were evaluated for neurological damage, apoptosis, and inflammation. HT22 cells were tested for cytotoxicity, proliferation, apoptosis, and inflammatory factors. The interaction between miR-30c-5p and GNAI2 was predicted, analyzed, and confirmed. MiR-30c-5p was found to be downregulated in both experimental models. miR-30c-5p reduced lactate dehydrogenase production, inflammatory response, inhibit apoptosis, and enhanced neuronal proliferation, while GNAI2 overexpression showed the opposite results. Downregulated miR-30c-5p worsened neurological function, apoptosis, and inflammation of MCAO mice while silencing GNAI2 attenuated the influence of downregulated miR-30c-5p. MiR-30c-5p can improve neuronal apoptosis and inflammatory response caused by CIRI and is neuroprotective by targeting GNAI2, providing a new target for treating CIRI.
Collapse
Affiliation(s)
- Xinbo Deng
- Department of Neurology, Yichun People's Hospital of Jiangxi Province, No. 1061 Jinxiu Avenue, Yuanzhou District, Yichun City, Jiangxi Province, 336000, China
| | - Ying Zeng
- Department of Neurology, Yichun People's Hospital of Jiangxi Province, No. 1061 Jinxiu Avenue, Yuanzhou District, Yichun City, Jiangxi Province, 336000, China
| | - Dan Ding
- Department of Neurology, Yichun People's Hospital of Jiangxi Province, No. 1061 Jinxiu Avenue, Yuanzhou District, Yichun City, Jiangxi Province, 336000, China.
| |
Collapse
|
198
|
Liu L, Zhou H, Wang X, Wen F, Zhang G, Yu J, Shen H, Huang R. Effects of environmental phenols on eGFR: machine learning modeling methods applied to cross-sectional studies. Front Public Health 2024; 12:1405533. [PMID: 39148651 PMCID: PMC11324456 DOI: 10.3389/fpubh.2024.1405533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
Purpose Limited investigation is available on the correlation between environmental phenols' exposure and estimated glomerular filtration rate (eGFR). Our target is established a robust and explainable machine learning (ML) model that associates environmental phenols' exposure with eGFR. Methods Our datasets for constructing the associations between environmental phenols' and eGFR were collected from the National Health and Nutrition Examination Survey (NHANES, 2013-2016). Five ML models were contained and fine-tuned to eGFR regression by phenols' exposure. Regression evaluation metrics were used to extract the limitation of the models. The most effective model was then utilized for regression, with interpretation of its features carried out using shapley additive explanations (SHAP) and the game theory python package to represent the model's regression capacity. Results The study identified the top-performing random forest (RF) regressor with a mean absolute error of 0.621 and a coefficient of determination of 0.998 among 3,371 participants. Six environmental phenols with eGFR in linear regression models revealed that the concentrations of triclosan (TCS) and bisphenol S (BPS) in urine were positively correlated with eGFR, and the correlation coefficients were β = 0.010 (p = 0.026) and β = 0.007 (p = 0.004) respectively. SHAP values indicate that BPS (1.38), bisphenol F (BPF) (0.97), 2,5-dichlorophenol (0.87), TCS (0.78), BP3 (0.60), bisphenol A (BPA) (0.59) and 2,4-dichlorophenol (0.47) in urinary contributed to the model. Conclusion The RF model was efficient in identifying a correlation between phenols' exposure and eGFR among United States NHANES 2013-2016 participants. The findings indicate that BPA, BPF, and BPS are inversely associated with eGFR.
Collapse
Affiliation(s)
- Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hao Zhou
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xueli Wang
- Department of Pathology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Fukang Wen
- Institute of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Guibin Zhang
- College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Jinao Yu
- Institute of Computer Science and Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Hui Shen
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, United States
| | - Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
199
|
You M, Chen N, Yang Y, Cheng L, He H, Cai Y, Liu Y, Liu H, Hong G. The gut microbiota-brain axis in neurological disorders. MedComm (Beijing) 2024; 5:e656. [PMID: 39036341 PMCID: PMC11260174 DOI: 10.1002/mco2.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Previous studies have shown a bidirectional communication between human gut microbiota and the brain, known as the microbiota-gut-brain axis (MGBA). The MGBA influences the host's nervous system development, emotional regulation, and cognitive function through neurotransmitters, immune modulation, and metabolic pathways. Factors like diet, lifestyle, genetics, and environment shape the gut microbiota composition together. Most research have explored how gut microbiota regulates host physiology and its potential in preventing and treating neurological disorders. However, the individual heterogeneity of gut microbiota, strains playing a dominant role in neurological diseases, and the interactions of these microbial metabolites with the central/peripheral nervous systems still need exploration. This review summarizes the potential role of gut microbiota in driving neurodevelopmental disorders (autism spectrum disorder and attention deficit/hyperactivity disorder), neurodegenerative diseases (Alzheimer's and Parkinson's disease), and mood disorders (anxiety and depression) in recent years and discusses the current clinical and preclinical gut microbe-based interventions, including dietary intervention, probiotics, prebiotics, and fecal microbiota transplantation. It also puts forward the current insufficient research on gut microbiota in neurological disorders and provides a framework for further research on neurological disorders.
Collapse
Affiliation(s)
- Mingming You
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Nan Chen
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yuanyuan Yang
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Lingjun Cheng
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hongzhang He
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yanhua Cai
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yating Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Guolin Hong
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
200
|
Zhao LP, Wang HJ, Hu D, Hu JH, Guan ZR, Yu LH, Jiang YP, Tang XQ, Zhou ZH, Xie T, Lou JS. β-Elemene induced ferroptosis via TFEB-mediated GPX4 degradation in EGFR wide-type non-small cell lung cancer. J Adv Res 2024; 62:257-272. [PMID: 37689240 PMCID: PMC11331178 DOI: 10.1016/j.jare.2023.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
INTRODUCTION β-Elemene (β-ELE), derived from Curcuma wenyujin, has anticancer effect on non-small cell lung cancer (NSCLC). However, the potential target and detail mechanism were still not clear. TFEB is the master regulator of lysosome biogenesis. Ferroptosis, a promising strategy for cancer therapy could be triggered via suppression on glutathione peroxidase 4 (GPX4). Weather TFEB-mediated lysosome degradation contributes to GPX4 decline and how β-ELE modulates on this process are not clear. OBJECTIVES To observe the action of β-ELE on TFEB, and the role of TFEB-mediated GPX4 degradation in β-ELE induced ferroptosis. METHODS Surface plasmon resonance (SPR) and molecular docking were applied to observe the binding affinity of β-ELE on TFEB. Activation of TFEB and lysosome were observed by immunofluorescence, western blot, flow cytometry and qPCR. Ferroptosis induced by β-ELE was observed via lipid ROS, a labile iron pool (LIP) assay and western blot. A549TFEB KO cells were established via CRISPR/Cas9. The regulation of TFEB on GPX4 and ferroptosis was observed in β-ELE treated A549WT and A549TFEB KO cells, which was further studied in orthotopic NOD/SCID mouse model. RESULTS β-ELE can bind to TFEB, notably activate TFEB, lysosome and transcriptional increase on downstream gene GLA, MCOLN1, SLC26A11 involved in lysosome activity in EGFR wild-type NSCLC cells. β-ELE increased GPX4 ubiquitination and lysosomal localization, with the increase on lysosome degradation of GPX4. Furthermore, β-ELE induced ferroptosis, which could be promoted by TFEB overexpression or compromised by TFEB knockout. Genetic knockout or inactivation of TFEB compromised β-ELE induced lysosome degradation of GPX4, which was further demonstrated in orthotopic NSCLC NOD/SCID mice model. CONCLUSION This study firstly demonstrated that TFEB promoted GPX4 lysosome degradation contributes to β-ELE induced ferroptosis in EGFR wild-type NSCLC, which gives a clue that TFEB mediated GPX4 degradation would be a novel strategy for ferroptosis induction and NSCLC therapy.
Collapse
Affiliation(s)
- Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zheng-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao-Qi Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|