151
|
Massa F, Sibaev A, Marsicano G, Blaudzun H, Storr M, Lutz B. Vanilloid receptor (TRPV1)-deficient mice show increased susceptibility to dinitrobenzene sulfonic acid induced colitis. J Mol Med (Berl) 2005; 84:142-6. [PMID: 16389550 DOI: 10.1007/s00109-005-0016-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 09/13/2005] [Indexed: 11/26/2022]
Abstract
In the human colon, vanilloid receptor TRPV1 is overexpressed both in afferent nerve terminals and in epithelial cells during inflammation. In the past years, pharmacological experiments using TRPV1 agonists and antagonists revealed that TRPV1 receptors may play proinflammatory and protective roles in the gastrointestinal tract. Here, we applied a genetic approach to define the role of TRPV1 and analyzed the effects of dinitrobenzene sulfonic acid (DNBS)-induced colitis in TRPV1-deficient (TRPV1-/-) mice. Intrarectal infusion of DNBS induced increased inflammation in TRPV1-/- mice compared to wild-type littermates (TRPV1+/+) as evaluated by macroscopic scoring and myeloperoxidase assays. This finding indicates that TRPV1 receptors are required for the protection within sensory pathways that regulate the response following the initiation of colonic inflammation. Electrophysiological recordings from circular smooth-muscle cells, performed 8 and 24 h after DNBS treatment, revealed strong spontaneous oscillatory action potentials in TRPV1-/- but not in TRPV1+/+ colons, indicating an early TRPV1-mediated control of inflammation-induced irritation of smooth-muscle activities. These unexpected results suggest that TRPV1 receptors mediate endogenous protection against experimentally induced colonic inflammation.
Collapse
Affiliation(s)
- F Massa
- Department of Physiological Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 6, 55099, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
152
|
Breshears MA, Eberle R, Ritchey JW. Temporal progression of viral replication and gross and histological lesions in Balb/c mice inoculated epidermally with Saimiriine herpesvirus 1 (SaHV-1). J Comp Pathol 2005; 133:103-13. [PMID: 15964589 DOI: 10.1016/j.jcpa.2005.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Accepted: 01/25/2005] [Indexed: 11/27/2022]
Abstract
Saimiriine herpesvirus 1 (SaHV-1), an alphaherpesvirus enzootic in squirrel monkeys, is genetically related to monkey B virus and human herpes simplex virus (HSV). To study the temporal progression of viral spread and associated lesions, Balb/c mice were inoculated epidermally by scarification with a green fluorescent protein (GFP)-expressing recombinant strain of SaHV-1 and killed sequentially. Pinpoint ulcerative lesions in the inoculated epidermis progressed over a few days to unilateral or bilateral hindlimb paresis or paralysis, urinary and faecal incontinence, abdominal distension, hunched posture and eventual depression warranting euthanasia. Viral replication was present within epidermal keratinocytes, neurons of the dorsal root ganglia and thoracolumbar spinal cord, regional autonomic ganglia, lower urinary tract epithelium and colonic myenteric plexuses, as indicated by histological lesions and GFP expression. Almost all mice inoculated with 10(5) or 10(6) plaque-forming units (PFU) of SaHV-1 developed rapidly progressive disease. Two of eight mice given 10(4)PFU developed disease, but no mice receiving less than 10(4)PFU gave evidence of infection. Mice that showed no clinical signs also failed to develop an antiviral IgG response, indicating absence of active viral infection. For SaHV-1 inoculated epidermally, the ID(50), CNSD(50) and LD(50) values were identical (10(4.38)), indicating that successful infection by this route invariably resulted in lethal CNS (central nervous system) disease. Consistently severe disease in all infected animals, with regionally extensive distribution of viral replication, constituted a marked difference from the disease produced by intramuscular inoculation.
Collapse
Affiliation(s)
- M A Breshears
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
153
|
Duncan M, Davison JS, Sharkey KA. Review article: endocannabinoids and their receptors in the enteric nervous system. Aliment Pharmacol Ther 2005; 22:667-83. [PMID: 16197488 DOI: 10.1111/j.1365-2036.2005.02648.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The therapeutic actions of cannabinoids have been known for centuries. In the last 25 years this area of research has grown exponentially with the discovery of specific cannabinoid receptors and endogenous ligands. In the enteric nervous system of gastrointestinal tract, cannabinoid receptors are located on enteric nerve terminals where they exert inhibitory actions on neurotransmission to reduce motility and secretion. Endogenous cannabinoids are present in the enteric nervous system, as are the degradative enzymes necessary to inhibit their action. The cellular mechanism of action of endocannabinoids has not been established in the enteric nervous system. Endocannabinoids not only act at cannabinoid receptors, but potentially also at vanilloid and 5-HT3 receptors, both of which are expressed in the gastrointestinal tract. The interactions between endocannabinoids and these other important receptor systems have not been extensively investigated. A greater understanding of the endocannabinoid system in the enteric nervous system could lead to advances with important therapeutic potential in the treatment of gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, secretory diarrhoea and gastro-oesophageal reflux disease.
Collapse
Affiliation(s)
- M Duncan
- Institute for Infection, Immunity and Inflammation and Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
154
|
Holzer P, Painsipp E, Schuligoi R. Differential effects of intragastric acid and capsaicin on gastric emptying and afferent input to the rat spinal cord and brainstem. BMC Neurosci 2005; 6:60. [PMID: 16162281 PMCID: PMC1239919 DOI: 10.1186/1471-2202-6-60] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 09/14/2005] [Indexed: 11/25/2022] Open
Abstract
Background Hydrochloric acid (HCl) is a potential threat to the integrity of the gastric mucosa and is known to contribute to upper abdominal pain. We have previously found that gastric mucosal challenge with excess HCl is signalled to the rat brainstem, but not spinal cord, as visualized by expression of c-fos messenger ribonucleic acid (mRNA), a surrogate marker of neuronal excitation. This study examined whether gastric mucosal exposure to capsaicin, a stimulant of nociceptive afferents that does not damage the gastric mucosa, is signalled to both brainstem and spinal cord and whether differences in the afferent signalling of gastric HCl and capsaicin challenge are related to different effects on gastric emptying. Results Rats were treated intragastrically with vehicle, HCl or capsaicin, activation of neurons in the brainstem and spinal cord was visualized by in situ hybridization autoradiography for c-fos mRNA, and gastric emptying deduced from the retention of intragastrically administered fluid. Relative to vehicle, HCl (0.5 M) and capsaicin (3.2 mM) increased c-fos transcription in the nucleus tractus solitarii by factors of 7.0 and 2.1, respectively. Capsaicin also caused a 5.2-fold rise of c-fos mRNA expression in lamina I of the caudal thoracic spinal cord, although the number of c-fos mRNA-positive cells in this lamina was very small. Thus, on average only 0.13 and 0.68 c-fos mRNA-positive cells were counted in 0.01 mm sections of the unilateral lamina I following intragastric administration of vehicle and capsaicin, respectively. In contrast, intragastric HCl failed to induce c-fos mRNA in the spinal cord. Measurement of gastric fluid retention revealed that HCl suppressed gastric emptying while capsaicin did not. Conclusion The findings of this study show that gastric mucosal exposure to HCl and capsaicin is differentially transmitted to the brainstem and spinal cord. Since only HCl blocks gastric emptying, it is hypothesized that the two stimuli are transduced by different afferent pathways. We infer that HCl is exclusively signalled by gastric vagal afferents whereas capsaicin is processed both by gastric vagal and intestinal spinal afferents.
Collapse
Affiliation(s)
- Peter Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | - Evelin Painsipp
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | - Rufina Schuligoi
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| |
Collapse
|
155
|
Funakoshi K, Nakano M, Atobe Y, Goris RC, Kadota T, Yazama F. Differential development of TRPV1-expressing sensory nerves in peripheral organs. Cell Tissue Res 2005; 323:27-41. [PMID: 16142452 DOI: 10.1007/s00441-005-0013-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
In mouse ontogeny, neurons immunoreactive for transient receptor potential vanilloid receptor 1 (TRPV1) were observed primarily in the dorsal root ganglia (DRG) at embryonic day 13 (E13). In the embryonic period, the number of TRPV1(+) neurons decreased, but then gradually increased postnatally. Some of TRPV1(+) neurons were also immunoreactive for calcitonin gene-related peptide (CGRP). At postnatal day 7 (P7), 66% of CGRP(+) neurons were TRPV1(+), and 55% of TRPV1(+) neurons were also CGRP(+) in the L4 DRG. In the peripheral organs, TRPV1-immunorective nerve fibers were transiently observed in the skin at E14. They were also observed in the urinary tract at E14, and in the rectum at E15. Many TRPV1(+) nerve fibers in these organs were also CGRP(+). At P1, TRPV1(+) nerve fibers were observed in the respiratory organs, and to a lesser extent in the stomach, colon, skin, and skeletal muscles. The number of TRPV1(+) nerve fibers on each organ gradually increased postnatally. At P7, TRPV1(+) nerve fibers were also observed in the small intestine and kidneys. The percentage of total TRPV1(+) nerve fibers that co-localized with CGRP was greater in most organs at P7 than at P1. The present results indicate that TRPV1 expression on peripheral processes differs among organs. The differential time course of TRPV1 expression in the cell bodies might be related to the organs to which they project. Co-localization of TRPV1 with CGRP on nerve fibers also varies among organs. This suggests that the TRPV1-mediated neuropeptide release that occurs in certain pathophysiologic conditions also varies among organs.
Collapse
Affiliation(s)
- Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Yokohama, 236-0004, Japan.
| | | | | | | | | | | |
Collapse
|
156
|
Talsania T, Anini Y, Siu S, Drucker DJ, Brubaker PL. Peripheral exendin-4 and peptide YY(3-36) synergistically reduce food intake through different mechanisms in mice. Endocrinology 2005; 146:3748-56. [PMID: 15932924 DOI: 10.1210/en.2005-0473] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glucagon-like peptide-1(7-36NH2) (GLP-1) and peptide YY(3-36NH2) (PYY(3-36NH2)) are cosecreted from the intestine in response to nutrient ingestion. Peripheral administration of GLP-1 or PYY(3-36NH2) decreases food intake (FI) in rodents and humans; however, the exact mechanisms by which these peptides regulate FI remain unclear. Male C57BL/6 mice were injected (ip) with exendin-4(1-39) (Ex4, a GLP-1 receptor agonist) and/or PYY(3-36NH2) (0.03-3 microg), and FI was determined for up to 24 h. Ex4 and PYY(3-36NH2) alone decreased FI by up to 83 and 26%, respectively (P < 0.05-0.001), whereas a combination of the two peptides (0.06 microg Ex4 plus 3 microg PYY(3-36NH2)) further reduced FI for up to 8 h in a synergistic manner (P < 0.05-0.001). Ex4 and/or PYY(3-36NH2) delayed gastric emptying by a maximum of 19% (P < 0.01-0.001); however, there was no significant effect on locomotor activity nor was there induction of taste aversion. Capsaicin pretreatment prevented the inhibitory effect of Ex4 on FI (P < 0.05), but had no effect on the anorexigenic actions of PYY(3-36NH2). Similarly, exendin-4(9-39) (a GLP-1 receptor antagonist) partially abolished Ex4-induced anorexia (P < 0.05), but did not affect the satiation produced by PYY(3-36NH2). Conversely, BIIE0246 (a Y2 receptor antagonist) completely blocked the anorexigenic effects of PYY(3-36NH2) (P < 0.001), but had no effect on Ex4-induced satiety. Thus, Ex4 and PYY(3-36NH2) suppress FI via independent mechanisms involving a GLP-1 receptor-dependent, sensory afferent pathway (Ex4) and a Y2-receptor mediated pathway (PYY(3-36NH2)). These findings suggest that administration of low doses of Ex4 together with PYY(3-36NH2) may increase the suppression of FI without inducing significant side effects.
Collapse
Affiliation(s)
- Tanvi Talsania
- Department of Physiology, Room 3366, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
157
|
Sanchez MG, Sanchez AM, Collado B, Malagarie-Cazenave S, Olea N, Carmena MJ, Prieto JC, Diaz-Laviada I I. Expression of the transient receptor potential vanilloid 1 (TRPV1) in LNCaP and PC-3 prostate cancer cells and in human prostate tissue. Eur J Pharmacol 2005; 515:20-7. [PMID: 15913603 DOI: 10.1016/j.ejphar.2005.04.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 04/01/2005] [Accepted: 04/08/2005] [Indexed: 11/23/2022]
Abstract
Vanilloid receptor subtype-1 (TRPV1), the founding member of the vanilloid receptor-like transient receptor potential channel family, is a non-selective cation channel that responds to noxious stimuli such as low pH, painful heat and irritants. In the present study, we show, as means of reverse transcriptase-polymerase chain reaction and Western blot analysis, that the vanilloid TRPV1 receptor is expressed in the prostate epithelial cell lines PC-3 and LNCaP as well as in human prostate tissue. The kinetic parameters inferred from [(125)I]-resiniferatoxin binding were in concordance with data of TRPV1 receptors expressed in other tissues. The contribution of the endogenously expressed TRPV1 channel to intracellular calcium concentration increase in the prostate cells was studied by measuring changes in Fura-2 fluorescence by fluorescence microscopy. Addition of capsaicin, (R)-methanandamide and resiniferatoxin to prostate cells induced a dose-dependent increase in the intracellular calcium concentration that was reversed by the vanilloid TRPV1 receptor antagonist capsazepine. These results indicate that the vanilloid TRPV1 receptor is expressed and functionally active in human prostate cells.
Collapse
Affiliation(s)
- Maria G Sanchez
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Alcala, Alcala de Henares, 28871 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Faussone-Pellegrini MS, Taddei A, Bizzoco E, Lazzeri M, Vannucchi MG, Bechi P. Distribution of the vanilloid (capsaicin) receptor type 1 in the human stomach. Histochem Cell Biol 2005; 124:61-8. [PMID: 16041554 DOI: 10.1007/s00418-005-0025-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2005] [Indexed: 02/08/2023]
Abstract
Vanilloid receptor type 1 (TRPV1) is expressed in a capsaicin-sensitive and peptide-containing sub-population of primary sensory nerves that in the rat stomach seems involved in regulation of chlorhydropeptic secretion and gastroprotection. Our aim was to identify which cell types express TRPV1 in the human stomach in order to gain a better insight in the role of this receptor in the regulation of HCl secretion. Immunohistochemistry, by using three different commercially available anti-capsaicin antibodies, in situ hybridisation and Western blot analysis were performed on fragments surgically obtained from the gastric body on the large curvature. TRPV1 labelling was found in the parietal cells at the level of intra-cytoplasmatic granules matching mitochondrial features and distribution. Immunolabelled neurons and nerve fibres were also seen, the latter numerous in the submucosa and mucosa and often ending close to the parietal cells. TRPV1 presence was confirmed by Western blot analysis and in situ hybridisation. TRPV1 presence in nerve structures and parietal cells suggests the possibility of a combined effect of both neuronal and epithelial TRPV1 on chlorhydropeptic secretion. The presumed TRPV1 mitochondrial location inside parietal cells is in favour of the existence of a local pathway of auto-regulation of HCl secretion. Therefore, TRPV1 might modulate chlorhydropeptic secretion in the human stomach through more complex pathways than previously thought.
Collapse
|
159
|
McNamara FN, Randall A, Gunthorpe MJ. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br J Pharmacol 2005; 144:781-90. [PMID: 15685214 PMCID: PMC1576058 DOI: 10.1038/sj.bjp.0706040] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. We have characterised the effects of piperine, a pungent alkaloid found in black pepper, on the human vanilloid receptor TRPV1 using whole-cell patch-clamp electrophysiology. 2. Piperine produced a clear agonist activity at the human TRPV1 receptor yielding rapidly activating whole-cell currents that were antagonised by the competitive TRPV1 antagonist capsazepine and the non-competitive TRPV1 blocker ruthenium red. 3. The current-voltage relationship of piperine-activated currents showed pronounced outward rectification (25+/-4-fold between -70 and +70 mV) and a reversal potential of 0.0+/-0.4 mV, which was indistinguishable from that of the prototypical TRPV1 agonist capsaicin. 4. Although piperine was a less potent agonist (EC50=37.9+/-1.9 microM) than capsaicin (EC50=0.29+/-0.05 microM), it demonstrated a much greater efficacy (approximately two-fold) at TRPV1. 5. This difference in efficacy did not appear to be related to the proton-mediated regulation of the receptor since a similar degree of potentiation was observed for responses evoked by piperine (230+/-20%, n=11) or capsaicin (284+/-32%, n=8) upon acidification to pH 6.5. 6. The effects of piperine upon receptor desensitisation were also unable to explain this effect since piperine resulted in more pronounced macroscopic desensitisation (t(1/2)=9.9+/-0.7 s) than capsaicin (t(1/2)>20 s) and also caused greater tachyphylaxis in response to repetitive agonist applications. 7. Overall, our data suggest that the effects of piperine at human TRPV1 are similar to those of capsaicin except for its propensity to induce greater receptor desensitisation and, rather remarkably, exhibit a greater efficacy than capsaicin itself. These results may provide insight into the TRPV1-mediated effects of piperine on gastrointestinal function.
Collapse
Affiliation(s)
- Fergal N McNamara
- Neurology & GI-CEDD, GlaxoSmithKline, New Fronteirs Science Park, Third Avenue, Harlow, Essex CM19 5AW
| | - Andrew Randall
- Neurology & GI-CEDD, GlaxoSmithKline, New Fronteirs Science Park, Third Avenue, Harlow, Essex CM19 5AW
| | - Martin J Gunthorpe
- Neurology & GI-CEDD, GlaxoSmithKline, New Fronteirs Science Park, Third Avenue, Harlow, Essex CM19 5AW
- Author for correspondence:
| |
Collapse
|
160
|
Kechagias S, Botella S, Petersson F, Borch K, Ericson AC. Expression of vanilloid receptor-1 in epithelial cells of human antral gastric mucosa. Scand J Gastroenterol 2005; 40:775-82. [PMID: 16118913 DOI: 10.1080/00365520510015782] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Capsaicin, which acts by binding to the vanilloid receptor-1 (VR1), has been shown to give protection against gastric mucosal injury and to enhance healing of gastric ulcers. Although VR1 has recently been reported to be present in non-neural tissues, it is primarily considered to be expressed in nociceptor sensory neurons of small diameter. The aim of the present study was to evaluate the distribution of VR1 immunoreactivity in the normal human gastric mucosa. MATERIALS AND METHODS Ten volunteers underwent gastroscopy and biopsies were obtained from the corpus and the antrum. The specimens were labelled immunohistochemically using polyclonal goat anti-VR1 and evaluated at the light- and electronmicroscopic level. Moreover, post-embedding immunogold labelling was performed and subsequently analysed at the electronmicroscopic level. RESULTS In the antrum, VR1 immunoreactivity was located in epithelial cells that fulfilled the criteria of endocrine cells of the "open type". These cells were located primarily in the neck region of the antral glands and the labelling was concentrated on the microvilli of these cells. At the ultrastructural level, round granulae with differences in electron density were identified in the basal compartment of the labelled cells. VR1 immunoreactivity was also identified in axon-like structures that were located in the lamina propria, often in close vicinity of vessels, in the corpus as well as in the antrum. CONCLUSIONS VR1-immunoreactivity was evident in antral epithelial cells exhibiting characteristics of endocrine-like cells. This may indicate that the gastroprotective effects of capsaicin, which hitherto have been attributed to primary afferent neurons, at least partly may be explained by an action on specific epithelial cells in the antrum.
Collapse
Affiliation(s)
- Stergios Kechagias
- Division of Internal Medicine, Department of Medicine and Care, University Hospital, Linköping, Sweden
| | | | | | | | | |
Collapse
|
161
|
Nagy I, Sántha P, Jancsó G, Urbán L. The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 2005; 500:351-69. [PMID: 15464045 DOI: 10.1016/j.ejphar.2004.07.037] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 02/06/2023]
Abstract
The cloning of the vanilloid receptor 1 opened a floodgate for discoveries regarding the function of this complex molecule. It has been found that, in addition to heat, protons and vanilloids, this receptor also responds to various endogenous ligands. Furthermore, it has been also emerged that, through associations with other molecules, the vanilloid receptor 1 plays an important role in the integration of various stimuli and modulation of cellular excitability. Although, originally, the vanilloid receptor 1 was associated with nociceptive primary afferent fibres, it has been gradually revealed that it is broadly expressed in the brain, epidermis and visceral cells. The expression pattern of the vanilloid receptor 1 indicates that it could be involved in various physiological functions and in the pathomechanisms of diverse diseases. Here, we summarise the molecular, pharmacological and physiological characteristics, and putative functions, of the vanilloid receptor 1, and discuss the therapeutic potential of this molecule.
Collapse
Affiliation(s)
- István Nagy
- Department of Anaesthetics and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, United Kingdom.
| | | | | | | |
Collapse
|
162
|
Barthó L, Benkó R, Patacchini R, Pethö G, Holzer-Petsche U, Holzer P, Lázár Z, Undi S, Illényi L, Antal A, Horváth OP. Effects of capsaicin on visceral smooth muscle: a valuable tool for sensory neurotransmitter identification. Eur J Pharmacol 2005; 500:143-57. [PMID: 15464028 DOI: 10.1016/j.ejphar.2004.07.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 11/27/2022]
Abstract
Studying the visceral effects of the sensory stimulant capsaicin is a useful and relatively simple tool of neurotransmitter identification and has been used for this purpose for approximately 25 years in the authors' and other laboratories. We believe that conclusions drawn from experiments on visceral preparations may have an impact on studies dealing with the central endings of primary afferent neurons, i.e. research on nociception at the spinal level. The present review concentrates on the effects of capsaicin--through the transient receptor potential vanilloid receptor type 1 (TRPV1) receptor--on innervated gastrointestinal, respiratory and genitourinary smooth muscle preparations. Tachykinins and calcitonin gene-related peptide (CGRP) are the most widely accepted transmitters to mediate "local efferent" effects of capsaicin-sensitive nerves in tissues taken from animals. Studies more and more frequently indicate a supra-additive interaction of various types of tachykinin receptors (tachykinin NK(1), NK(2), NK(3) receptors) in the excitatory effects of capsaicin. There is also evidence for a mediating role of ATP, acting on P(2) purinoceptors. Non-specific inhibitory actions of capsaicin-like drugs have to be taken into consideration while designing experiments with these drugs. Results obtained on human tissues may be sharply different from those of animal preparations. Capsaicin potently inhibits tone and movements of human intestinal preparations, an effect mediated by nitric oxide (NO) and/or vasoactive intestinal polypeptide.
Collapse
Affiliation(s)
- Lorand Barthó
- Department of Pharmacology and Pharmacotherapy, Division of Pharmacodynamics, University Medical School of Pécs, Pécs, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Hwang SJ, Oh JM, Valtschanoff JG. Expression of the vanilloid receptor TRPV1 in rat dorsal root ganglion neurons supports different roles of the receptor in visceral and cutaneous afferents. Brain Res 2005; 1047:261-6. [PMID: 15896726 DOI: 10.1016/j.brainres.2005.04.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 04/04/2005] [Accepted: 04/13/2005] [Indexed: 11/17/2022]
Abstract
A combination of tracing and multiple color immunofluorescence revealed that 69% of rat dorsal root ganglion (DRG) neurons innervating the urinary bladder expressed the vanilloid receptor TRPV1. In contrast, only 32% of DRG neurons innervating the skin of the L6 dermatome expressed TRPV1. However, a similar fraction of visceral (60-62%) and of cutaneous (59-60%) TRPV1-positive DRG neurons expressed the peptidergic markers substance P and calcitonin gene-related peptide, while the fraction of TRPV1-positive neurons that was labeled by the non-peptidergic marker Isolectin B4 was 58% for cutaneous and only 24% for visceral afferents. These results underscore differences of expression of functional markers in visceral and cutaneous afferents and support different mechanisms of activation of TRPV1 in viscera and in skin.
Collapse
Affiliation(s)
- Se Jin Hwang
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 133-791, South Korea
| | | | | |
Collapse
|
164
|
Belza A, Jessen AB. Bioactive food stimulants of sympathetic activity: effect on 24-h energy expenditure and fat oxidation. Eur J Clin Nutr 2005; 59:733-41. [PMID: 15870822 DOI: 10.1038/sj.ejcn.1602121] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 11/18/2004] [Accepted: 12/21/2004] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Bioactive food ingredients influence energy balance by exerting weak thermogenic effects. We studied whether the thermogenic effect of a combination of capsaicin, green tea extract (catechins and caffeine), tyrosine, and calcium was maintained after 7-day treatment and whether local effects in the gastric mucosa were involved in the efficacy. DESIGN The present study was designed as a 3-way crossover, randomised, placebo-controlled, double-blinded intervention. SETTING Department of Human Nutrition, RVAU, Denmark. SUBJECTS A total of 19 overweight to obese men (BMI: 28.0+/-2.7 kg/m2) were recruited by advertising locally. INTERVENTION The subjects took the supplements for a period of 7 days. The supplements were administrated as a simple supplement with the bioactive ingredients, a similar enterocoated version, or placebo. In all, 24-h energy expenditure (EE), substrate oxidations, spontaneous physical activity (SPA), and heart rate were measured in respiration chambers on the seventh day of each test period. RESULTS After adjustment for changes in body weight and SPA, 24-h EE was increased by 160 kJ/day (95% CI: 15-305) by the simple preparation as compared to placebo, whereas the enterocoated preparation had no such effect (53 kJ/day, -92 to 198); simple vs enterocoated versions (P=0.09). The simple preparation produced a deficit in 24-h energy balance of 193 kJ/day (49-338, P=0.03). Fat and carbohydrate oxidation were equally increased by the supplements. CONCLUSION A supplement containing bioactive food ingredients increased daily EE by approximately 200 kJ or 2%, without raising the heart rate or any observed adverse effects. The lack of effect of the enterocoated preparation suggests that a local action of capsaicin in the gastric mucosa is a prerequisite for exerting the thermogenic effect.
Collapse
Affiliation(s)
- A Belza
- Department of Human Nutrition, Centre for Advanced Food Studies, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
| | | |
Collapse
|
165
|
Abstract
BACKGROUND & AIMS Clostridium difficile toxin A is a potent intestinal inflammatory agent that has been shown to act at least partially by neurogenic mechanisms involving activation of the transient receptor potential vanilloid 1 (TRPV1) (capsaicin) receptor. We tested the hypothesis that leukotriene B4 (LTB4) mediates the effects of toxin A via activation of the TRPV1 receptor. METHODS Isolated rat ileal segments were pretreated with pharmacologic agents before intraluminal injection of toxin A or LTB4. After 3 hours, the treated segments were removed and inflammation was assessed by luminal fluid accumulation, myeloperoxidase activity, and histology. RESULTS LTB4 caused ileitis similar to that caused by toxin A and antagonism of TRPV1 receptors but not LTB4 receptors inhibited LTB4-induced inflammation. LTB4 also stimulated TRPV1-mediated substance P release and pretreatment with a specific substance P-receptor antagonist blocked LTB4-induced substance P action and ileitis. Inhibition of the LTB4 biosynthetic enzyme 5-lipoxygenase inhibited toxin A-induced increases in ileal LTB4 levels and toxin A- but not LTB4-induced ileitis. CONCLUSIONS LTB4 mediates the inflammatory effects of toxin A via activation of TRPV1 receptors.
Collapse
Affiliation(s)
- Douglas C McVey
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
166
|
Abstract
Visceral hypersensitivity is considered one of the causes of functional gastrointestinal disorders. The objectives of this review are to provide a practical description of neuroanatomy and physiology of gut sensation, to describe the diverse tests of visceral sensation and the potential role of brain imaging to further our understanding of visceral sensitivity in health and disease. Changes in motor function in the gut may influence sensory levels, eg, during contractions or as a result of changes in viscus compliance. New insights on sensory end organs, such as intraganglionic laminar endings, and basic neurophysiologic studies showing afferent firing during changes in stretch rather than tension illustrate the importance of different types of stimuli, not just tension, to stimulate afferent sensation. These insights provide the basis for understanding visceral sensation in health and disease, which will be extensively discussed in subsequent articles.
Collapse
Affiliation(s)
- Silvia Delgado-Aros
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
167
|
Benko R, Lazar Z, Undi S, Illenyi L, Antal A, Horvath OP, Rumbus Z, Wolf M, Maggi CA, Bartho L. Inhibition of nitric oxide synthesis blocks the inhibitory response to capsaicin in intestinal circular muscle preparations from different species. Life Sci 2005; 76:2773-82. [PMID: 15808879 DOI: 10.1016/j.lfs.2004.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 07/22/2004] [Indexed: 10/25/2022]
Abstract
Moderate concentrations of the sensory stimulant drug capsaicin caused relaxation in human and animal intestinal circular muscle preparations (guinea-pig proximal, mouse distal colon, human small intestine and appendix) in vitro. With the exception of the guinea-pig colon, the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine (L-NOARG; 10(-4) M) strongly inhibited the relaxant effect of capsaicin. Tetrodotoxin, an inhibitor of voltage-sensitive Na+ channels failed to significantly reduce the inhibitory effect of capsaicin in the guinea-pig colon, human ileum and appendix; it caused an approximately 50% reduction in the mouse colon. The relaxant effect of capsaicin was strongly reduced in colonic preparations from transient receptor potential vanilloid type (TRPV1) receptor knockout mice as compared to their wildtype controls. It is concluded that nitric oxide, possibly of sensory origin, is involved in the relaxant action of capsaicin in the circular muscle of the mouse and human intestine.
Collapse
Affiliation(s)
- Rita Benko
- Department of Pharmacology and Pharmacotherapy, University Medical School of Pecs, Szigeti ut 12, H-7643 Pecs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Beyak MJ, Vanner S. Inflammation-induced hyperexcitability of nociceptive gastrointestinal DRG neurones: the role of voltage-gated ion channels. Neurogastroenterol Motil 2005; 17:175-186. [PMID: 15810172 DOI: 10.1111/j.1365-2982.2004.00596.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gastrointestinal (GI) inflammation modulates the intrinsic properties of nociceptive dorsal root ganglia neurones, which innervate the GI tract and these changes are important in the genesis of abdominal pain and visceral hyperalgesia neurones exhibit hyperexcitability characterized by a decreased threshold for activation and increased firing rate, and changes in voltages-gated Na(+) and K(+) channels play a major role in this plasticity. This review highlights emerging evidence that specific subsets of channels and signalling pathways are involved and their potential to provide novel selective therapeutics targets for the treatment of abdominal pain.
Collapse
Affiliation(s)
- M J Beyak
- GI Diseases Research Unit, Queen's University, Kingston, Ontario, Canada K7L 5G2
| | | |
Collapse
|
169
|
Bulmer DCE, Jiang W, Hicks GA, Davis JB, Winchester WJ, Grundy D. Vagal selective effects of ruthenium red on the jejunal afferent fibre response to ischaemia in the rat. Neurogastroenterol Motil 2005; 17:102-11. [PMID: 15670270 DOI: 10.1111/j.1365-2982.2004.00586.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A variety of inflammatory mediators and local metabolites, have been implicated in the sensitivity of intestinal afferent fibres to brief periods of ischaemia and reperfusion. As yet, the contribution of the vanilloid transient receptor potential (TRPV)1 receptor to the response to intestinal ischaemia remains undetermined. In the present study, the effect of pretreatment with the competitive TRPV1 antagonist capsazepine and the non-selective TRPV channel antagonist ruthenium red, on the mesenteric afferent fibre response to ischaemia was examined. In control animals there was a reproducible biphasic increase in whole nerve afferent fibre activity during two brief periods of ischaemia. Treatment with ruthenium red significantly attenuated the early phase increase in afferent fibre activity during ischaemia. However, capsazepine treatment did not significantly alter the afferent fibre response to either ischaemia or reperfusion. Further experiments in chronically vagotomized animals indicated that the early phase response to ischaemia was mediated via vagal afferent fibres. The mechanism via which ruthenium red selectively inhibited vagal afferent fibres during ischaemia is unknown, but it does not appear to involve blockade of the TRPV1 receptor.
Collapse
Affiliation(s)
- D C E Bulmer
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | | | | | | | | | |
Collapse
|
170
|
Tóth A, Boczán J, Kedei N, Lizanecz E, Bagi Z, Papp Z, Edes I, Csiba L, Blumberg PM. Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. ACTA ACUST UNITED AC 2005; 135:162-8. [PMID: 15857679 DOI: 10.1016/j.molbrainres.2004.12.003] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 12/10/2004] [Accepted: 12/13/2004] [Indexed: 01/13/2023]
Abstract
The vanilloid receptor (TRPV1 or VR1) is a molecular integrator of various painful stimuli, including capsaicin, acid, and high temperature. It can also be activated by endogenous ligands, like the cannabinoid 1 receptor (CB1) agonist anandamide. TRPV1 is well characterized at the terminals of sensory nerves involved in the pain pathway. There is also evidence that TRPV1 is expressed in the brain but little is known about its function. Here, using commercially available specific antibodies to investigate the localization of TRPV1 in the brain of the rat, we report that TRPV1 was expressed in hippocampus, cortex, cerebellum, olfactory bulb, mesencephalon and hindbrain. Immunohistochemical analyses showed high expression in the cell bodies and dendrites of neurons in the hippocampus and in the cortex. To address the question of subcellular localization, immunoelectronmicroscopy was used. TRPV1-like staining was detected in the synapses (mostly, but not exclusively in post-synaptic dendritic spines), on the end feet of astrocytes and in pericytes. In summary, TRPV1 expression shows wide distribution in the brain of the rat, being found in astrocytes and pericytes as well as in neurons. Its localization is consistent with multiple functions within the central nervous system, including the regulation of brain vasculature.
Collapse
Affiliation(s)
- Attila Tóth
- Molecular Mechanisms of Tumor Promotion Section, Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
|
172
|
Yamamoto Y, Taniguchi K. Immunolocalization of VR1 and VRL1 in rat larynx. Auton Neurosci 2005; 117:62-5. [PMID: 15620571 DOI: 10.1016/j.autneu.2004.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 10/26/2004] [Accepted: 11/02/2004] [Indexed: 10/26/2022]
Abstract
Immunoreactivity for vanilloid receptor subtype 1 (VR1) and its analogue vanilloid receptor-like protein 1 (VRL1) were examined in combination with immunoreactivity for substance P (SP) and calcitonin gene-related peptide (CGRP) in the rat larynx. VR1 and VRL1 immunoreactivity were observed in the intraepithelial free nerve endings, subepithelial nerve plexus and laryngeal epithelial cells. Most of VR1 immunoreactive nerves were also immunoreactive for SP or CGRP. VR1 immunoreactive intraepithelial nerve endings may be laryngeal nociceptors.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Department of Veterinary Sciences, Faculty of Agriculture, Iwate University, Ueda 3-19-8, Morioka, Iwate, 080-8550, Japan.
| | | |
Collapse
|
173
|
Reuter A, Málaga-Trillo E, Binkle U, Rivera-Milla E, Beltre R, Zhou Y, Bastmeyer M, Stuermer CA. Evolutionary Analysis and Expression of Teleost Thy-1. Zebrafish 2004; 1:191-201. [DOI: 10.1089/zeb.2004.1.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexander Reuter
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
| | | | - Ulrike Binkle
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
| | - Eric Rivera-Milla
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
| | - Rosanna Beltre
- Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yi Zhou
- Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Martin Bastmeyer
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
174
|
Kadowaki M, Kuramoto H, Takaki M. Combined determination with functional and morphological studies of origin of nerve fibers expressing transient receptor potential vanilloid 1 in the myenteric plexus of the rat jejunum. Auton Neurosci 2004; 116:11-8. [PMID: 15556833 DOI: 10.1016/j.autneu.2004.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 07/30/2004] [Accepted: 08/21/2004] [Indexed: 11/20/2022]
Abstract
The aim of this study was to determine the action of capsaicin in isolated rat intestine and the origin of nerve fibers expressing transient receptor potential vanilloid 1 (TRPV1: capsaicin receptor) in the rat jejunum by combination of functional and immunohistochemical experiments. Capsaicin (1 microM) produced a prolonged relaxation response (52. +/-15.3% of the relaxation response to papaverine, mean +/- S.D., n=27) of the isolated jejunum in the presence of atropine and guanethidine. Pretreatment with the TRPV1 antagonist, capsazepine (10 microM) and ruthenium red (3 microM) significantly reduced the relaxation response to capsaicin by 78% (P<0.01) and 38% (P<0.05), respectively. Tetrodotoxin and calcitonin gene-related peptide (CGRP)-desensitization significantly reduced the response to capsaicin by 72% (P<0.01) and 42% (P<0.01), respectively. Therefore, we investigated the distribution of TRPV1-immunoreactivity (IR) in the myenteric plexus of the rat jejunum. Using antisera raised against either the N-terminal or C-terminal domains of rat TRPV1, TRPV1-IR was present in the nerve fibers, but not in the cell bodies of myenteric neurons. These TRPV1-immunoreactive nerve fibers were running in myenteric ganglia and their interconnecting strands. Most TRPV1-immunoreactive nerve fibers showed CGRP-IR, whereas few VR1-immunoreactive nerve fibers showed substance P-IR. After chronic denervation of the extrinsic nerve supply to the jejunum, both the relaxation response to capsaicin and TRPV1-immunoreactive nerve fibers completely disappeared. These findings indicate that these TRPV1-immunoreactive nerve fibers in the rat jejunum derive from extrinsic neurons and that activation of TRPV1 produces the relaxation response in the rat jejunum, at least in part, through the release of CGRP from nerve fibers expressing TRPV1.
Collapse
Affiliation(s)
- Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Department of Bioscience, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | |
Collapse
|
175
|
Holzer P. TRPV1 and the gut: from a tasty receptor for a painful vanilloid to a key player in hyperalgesia. Eur J Pharmacol 2004; 500:231-41. [PMID: 15464036 DOI: 10.1016/j.ejphar.2004.07.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 12/26/2022]
Abstract
Capsaicin, the pungent ingredient in red pepper, has been used since ancient times as a spice, despite the burning sensation associated with its intake. More than 50 years ago, Nikolaus Jancso discovered that capsaicin can selectively stimulate nociceptive primary afferent neurons. The ensuing research established that the neuropharmacological properties of capsaicin are due to its activation of the transient receptor potential ion channel of the vanilloid type 1 (TRPV1). Expressed by primary afferent neurons innervating the gut and other organs, TRPV1 is gated not only by vanilloids such as capsaicin, but also by noxious heat, acidosis and intracellular lipid mediators such as anandamide and lipoxygenase products. Importantly, TRPV1 can be sensitized by acidosis and activation of various pro-algesic pathways. Upregulation of TRPV1 in inflammatory bowel disease and the beneficial effect of TRPV1 downregulation in functional dyspepsia and irritable bladder make this polymodal nociceptor an attractive target of novel therapies for chronic abdominal pain.
Collapse
Affiliation(s)
- Peter Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
176
|
Rong W, Hillsley K, Davis JB, Hicks G, Winchester WJ, Grundy D. Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J Physiol 2004; 560:867-81. [PMID: 15331673 PMCID: PMC1665286 DOI: 10.1113/jphysiol.2004.071746] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to investigate the contribution of the TRPV1 receptor to jejunal afferent sensitivity in the murine intestine. Multiunit activity was recorded in vitro from mesenteric afferents supplying segments of mouse jejunum taken from wild-type (WT) and TRPV1 knockout (TRPV1(-/-)) animals. In WT preparations, ramp distension of the gut (up to 60 mmHg) produced biphasic changes in afferent activity so the pressure-response curve had an initial rapid increase in afferent discharge followed by a second phase of slower increase in activity. Afferent response to distension was significantly lower in TRPV1(-/-) than in WT mice. Single-unit analysis revealed three functional types of afferent fibres: (1) low-threshold fibres (2) wide dynamic range fibres and (3) high-threshold fibres. There was a marked downward shift of the pressure-response curve for wide dynamic range fibres in the TRPV1(-/-) mice as compared to the WT controls. The afferent response to intraluminal hydrochloric acid (20 mM) was also attenuated in the TRPV1(-/-) mice. In contrast, the response to bath application of bradykinin (1 microm, 3 ml) was not significantly different between the two groups. The TRPV1 antagonist capsazepine (10 microm) significantly attenuated the nerve responses to distension, intraluminal acid and bradykinin, as well as the spontaneous discharge in WT mice. The WT jejunal afferents responded to capsaicin with rapid increases in afferent activity, whereas TRPV1(-/-) afferents were not at all sensitive to capsaicin. Previous evidence indicates that TRPV1 is not mechanosensitive, so the results of the present study suggest that activation of TRPV1 may sensitize small intestinal afferent neurones.
Collapse
Affiliation(s)
- Weifang Rong
- Department of Biomedical Science, University of Sheffield, Alfred Danny Building, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | |
Collapse
|
177
|
Thorens B, Larsen PJ. Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis. Curr Opin Clin Nutr Metab Care 2004; 7:471-8. [PMID: 15192452 DOI: 10.1097/01.mco.0000134368.91900.84] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE OF REVIEW The control of glucose and energy homeostasis, including feeding behaviour, is tightly regulated by gut-derived peptidic and nonpeptidic endocrine mediators, autonomic nervous signals, as well as nutrients such as glucose. We will review recent findings on the role of the gastrointestinal tract innervation and of portal vein glucose sensors; we will review selected data on the action of gastrointestinally released hormones. RECENT FINDINGS The involvement of mechanosensory vagal afferents in postprandial meal termination has been clarified using mouse models with selective impairments of genes required for development of mechanosensory fibres. These activate central glucogen-like peptide-1/glucogen-like peptide-2 containing ascending pathways linking the visceroceptive brainstem neurons to hypothalamic nuclei. Mucosal terminals comprise the chemosensory vagal afferents responsive to postprandially released gastrointestinal hormones. The mechanism by which the hepatoportal glucose sensor stimulates glucose utilization by muscles was demonstrated, using genetically modified mice, to be insulin-independent but to require GLUT4 and AMP-kinase. This sensor is a key site of glucogen-like peptide-1 action and plays a critical role in triggering first phase insulin secretion. PeptideYY and ghrelin target intracerebral receptors as they are bidirectionally transported across the blood brain barrier. The anorectic functions of peripherally released peptideYY may however be mediated both via vagal afferents and intracerebral Y2 receptors in the brainstem and arcuate nucleus. SUMMARY These recent findings demonstrate that the use of improved anatomical and physiological techniques and animal models with targeted gene modifications lead to an improved understanding of the complex role of gastrointestinal signals in the control of energy homeostasis.
Collapse
|
178
|
Zhang L, Jones S, Brody K, Costa M, Brookes SJH. Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. Am J Physiol Gastrointest Liver Physiol 2004; 286:G983-91. [PMID: 14726308 DOI: 10.1152/ajpgi.00441.2003] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A number of transient receptor potential (TRP) channels has recently been shown to mediate cutaneous thermosensitivity. Sensitivity to warm and cool stimuli has been demonstrated in both human and animal gastrointestinal tract; however, the molecular mechanisms that underlie this have not been determined. Vagal afferent neurons with cell bodies in the nodose ganglion are known to mediate nonnociceptive sensation from the upper gut. In this study, isolated cultured nodose ganglion from the mouse neurons showed changes in cytoplasmic-free Ca(2+) concentrations over a range of temperatures, as well as to icilin (a TRPM8 and TRPN1 agonist) and capsaicin (a TRPV1 agonist). RT-PCR was used to show the presence of six temperature-sensitive TRP channel transcripts (TRPV1-4, TRPN1, and TRPM8) in whole nodose ganglia. In addition, RT-PCR of single nodose cell bodies, which had been retrogradely labeled from the upper gut, detected transcripts for TRPV1, TRPV2, TRPV4, TRPN1, and TRPM8 in a proportion of cells. Immunohistochemical labeling detected TRPV1 and TRPV2 proteins in nodose ganglia. The presence of TRP channel transcripts and proteins was also detected in cells within several regions of the gastrointestinal tract. Our results reveal that TRP channels are present in subsets of vagal afferent neurons that project to the stomach and may confer temperature sensitivity on these cells.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Human Physiology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, South Australia, 5001, Australia
| | | | | | | | | |
Collapse
|
179
|
Schicho R, Florian W, Liebmann I, Holzer P, Lippe IT. Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa. Eur J Neurosci 2004; 19:1811-8. [PMID: 15078554 DOI: 10.1111/j.1460-9568.2004.03290.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is still unknown which receptors of peripheral sensory pathways encode and integrate an acid-induced nociceptive event in the gastric mucosa. The transient receptor potential vanilloid receptor 1 (TRPV1) and the acid-sensing ion channel 3 (ASIC3) are two nociception-related receptors. Here we investigated (i) to what extent these receptors are distributed in stomach-innervating neurons of dorsal root and nodose ganglia, using immunohistochemistry and retrograde tracing, and (ii) whether their expression is altered in response to a noxious acid challenge of the stomach. We also explored the presence of TRPV1 in the gastric enteric nervous system because of its possible expression by intrinsic sensory neurons. Most stomach-innervating neurons in nodose ganglia were immunoreactive for TRPV1 (80%) and ASIC3 (75%), these results being similar in the dorsal root ganglia (71 and 82%). RT-PCR and Western blotting were performed up to 6 h after oral application of 0.5 m HCl to conscious rats. TRPV1 protein was increased in dorsal root but not in nodose ganglia whereas TRPV1 and ASIC3 mRNAs remained unchanged. TRPV1 mRNA was detected in longitudinal muscle-myenteric plexus preparations of control stomachs and was not altered by the acid challenge. Combined vagotomy and ganglionectomy abolished expression of TRPV1, indicating that it may derive from an extrinsic source. In summary, noxious acid challenge of the stomach increased TRPV1 protein in spinal but not vagal or intrinsic sensory afferents. The TRPV1 receptor may be a key molecule in the transduction of acid-induced nociception of the gastric mucosa and a mediator of visceral hypersensitivity.
Collapse
MESH Headings
- Acid Sensing Ion Channels
- Acids/pharmacology
- Animals
- Benzofurans/metabolism
- Blotting, Western/methods
- Cell Count/methods
- Female
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglionectomy/methods
- Gastric Mucosa/cytology
- Gastric Mucosa/drug effects
- Immunohistochemistry/methods
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Nodose Ganglion/cytology
- Nodose Ganglion/drug effects
- Nodose Ganglion/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sodium Channels/genetics
- Sodium Channels/metabolism
- Vagotomy/methods
Collapse
Affiliation(s)
- Rudolf Schicho
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.
| | | | | | | | | |
Collapse
|
180
|
MacNaughton WK, Van Sickle MD, Keenan CM, Cushing K, Mackie K, Sharkey KA. Distribution and function of the cannabinoid-1 receptor in the modulation of ion transport in the guinea pig ileum: relationship to capsaicin-sensitive nerves. Am J Physiol Gastrointest Liver Physiol 2004; 286:G863-71. [PMID: 14701723 DOI: 10.1152/ajpgi.00482.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the distribution and function of cannabinoid (CB)(1) receptors in the submucosal plexus of the guinea pig ileum. CB(1) receptors were found on both types of submucosal secretomotor neurons, colocalizing with VIP and neuropeptide Y (NPY), the noncholinergic and cholinergic secretomotor neurons, respectively. CB(1) receptors colocalized with transient receptor potential vanilloid-1 receptors on paravascular nerves and fibers in the submucosal plexus. In the submucosal ganglia, these nerves were preferentially localized at the periphery of the ganglia. In denervated ileal segments, CB(1) receptor immunoreactivity in submucosal neurons was not modified, but paravascular and intraganglionic fiber staining was absent. Short-circuit current (I(sc)) was measured as an indicator of net electrogenic ion transport in Ussing chambers. In the ion-transport studies, I(sc) responses to capsaicin, which activates extrinsic primary afferents, and to electrical field stimulation (EFS) were reduced by pretreatment with the muscarinic antagonist atropine, abolished by tetrodotoxin, but were unaffected by VIP receptor desensitization, hexamethonium, alpha-amino-3-hydroxy-5-methlisoxazole-4-proprionic acid, or N-methyl-d-aspartate glutamate receptor antagonists. The responses to capsaicin and EFS were reduced by 47 +/- 12 and 30 +/- 14%, respectively, by the CB(1) receptor agonist WIN 55,212-2. This inhibitory effect was blocked by the CB(1) receptor antagonist, SR 141716A. I(sc) responses to forskolin or carbachol, which act directly on the epithelium, were not affected by WIN 55,212-2. The inhibitory effect of WIN 55,212-2 on EFS-evoked secretion was not observed in extrinsically denervated segments of ileum. Taken together, these data show cannabinoids act at CB(1) receptors on extrinsic primary afferent nerves, inhibiting the release of transmitters that act on cholinergic secretomotor pathways.
Collapse
Affiliation(s)
- Wallace K MacNaughton
- Dept. of Physiology and Biophysics, Univ. of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
181
|
Abstract
There is mounting evidence that the vanilloid (capsaicin) receptor; transient receptor potential channel, vanilloid subfamily member 1 (TRPV1), is subjected to multiple interacting levels of control. The first level is by reversible phosphorylation catalyzed by intrinsic kinases (e.g. protein kinase A and C) and phosphatases (e.g. calcineurin), which plays a pivotal role in receptor sensitization vs. tachyphylaxis. In addition, this mechanism links TRPV1 to intracellular signaling by various important endogenous as well as exogenous substances such as bradykinin, ethanol, nicotin and insulin. It is not clear, however, whether phosphorylation per se is sufficient to liberate TRPV1 under the inhibitory control of phosphatydylinositol-4,5-bisphosphate. The second level of control is by forming TRPV1 heteromers and their association with putative regulatory proteins. The next level of regulation is by subcellular compartmentalization. The membrane form of TRPV1 functions as a nonselective cation channel. On the endoplasmic reticulum, TRPV1 is present in two differentially regulated forms, one of which is inositol triphosphate-dependent whereas the other is not. These three TRPV1 compartments provide a versatile regulation of intracellular Ca(2+) levels. Last, there is a complex and poorly understood regulation of TRPV1 activity via control of gene expression. Factors that downregulate TRPV1 expression include vanilloid treatment and growth factor (notably, nerve growth factor) deprivation. By contrast, TRPV1 appears to be upregulated during inflammatory conditions. Interestingly, following experimental nerve injury and in animal models of diabetic neuropathy TRPV1 is present on neurons that do not normally express TRPV1. Combined, these findings imply an important role for aberrant TRPV1 expression in the development of neuropathic pain and hyperalgesia. In humans, disease-related changes in TRPV1 expression have already been described (e.g. inflammatory bowel disease and irritable bowel syndrome). The mechanisms that regulate TRPV1 gene expression under pathological conditions are unknown but a better understanding of these pathways has obvious implications for rational drug development.
Collapse
|
182
|
Borrelli F, Capasso R, Pinto A, Izzo AA. Inhibitory effect of ginger (Zingiber officinale) on rat ileal motility in vitro. Life Sci 2004; 74:2889-96. [PMID: 15050426 DOI: 10.1016/j.lfs.2003.10.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 10/30/2003] [Indexed: 12/12/2022]
Abstract
Ginger (Zingiber officinale rhizome) is a widespread herbal medicine mainly used for the treatment of gastrointestinal diseases, including dyspepsia, nausea and diarrhoea. In the present study we evaluated the effect of this herbal remedy on the contractions induced by electrical stimulation (EFS) or acetylcholine in the isolated rat ileum. Ginger (0.01-1000 microg/ml) inhibited both EFS- and acetylcholine-evoked contractions, being more potent in inhibiting the contractions induced by EFS. The depressant effect of ginger on EFS-induced contractions was reduced by the vanilloid receptor antagonist capsazepine (10(-5) M), but unaffected by the alpha(2)-adrenergic antagonist yohimbine (10(-7) M), the CB(1) receptor antagonist SR141716A (10(-6) M), the opioid antagonist naloxone (10(-6) M) or by the NO synthase inhibitor L-NAME (3 x 10(-4) M). Zingerone (up to 3 x 10(-4) M), one of the active ingredients of ginger, did not possess inhibitory effects. It is concluded that ginger possesses both prejunctional and postjunctional inhibitory effects on ileal contractility; the prejunctional inhibitory effect of ginger on enteric excitatory transmission could involve a capsazepine-sensible site (possibly vanilloid receptors).
Collapse
Affiliation(s)
- Francesca Borrelli
- Department of Experimental Pharmacology, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | | | | | | |
Collapse
|
183
|
Berthoud HR, Blackshaw LA, Brookes SJH, Grundy D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol Motil 2004; 16 Suppl 1:28-33. [PMID: 15066001 DOI: 10.1111/j.1743-3150.2004.00471.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we discuss the neuroanatomy of extrinsic gastrointestinal (GI) afferent neurones, the relationship between structure and function and the role of afferents in disease. Three pathways connect the gut to the central nervous system: vagal afferents signal mainly from upper GI regions, pelvic afferents mainly from the colorectal region and splanchnic afferents from throughout. Vagal afferents mediate reflex regulation of gut function and behaviour, operating mainly at physiological levels. There are two major functional classes - tension receptors, responding to muscular contraction and distension, and mucosal receptors. The function of vagal endings correlates well with their anatomy: tracing studies show intramuscular arrays (IMAs) and intraganglionic laminar endings (IGLEs); IGLEs are now known to respond to tension. Functional mucosal receptors correlate with endings traced to the lamina propria. Pelvic afferents serve similar functions to vagal afferents, and additionally mediate both innocuous and noxious sensations. Splanchnic afferents comprise mucosal and stretch-sensitive afferents with low thresholds in addition to high-threshold serosal/mesenteric afferents suggesting diverse roles. IGLEs, probably of pelvic origin, have been identified recently in the rectum and respond similarly to gastric vagal IGLEs. Gastrointestinal afferents may be sensitized or inhibited by chemical mediators released from several cell types. Whether functional changes have anatomical correlates is not known, but it is likely that they underlie diseases involving visceral hypersensitivity.
Collapse
Affiliation(s)
- H R Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | | | | | | |
Collapse
|
184
|
Ward SM, Sanders KM, Hirst GDS. Role of interstitial cells of Cajal in neural control of gastrointestinal smooth muscles. Neurogastroenterol Motil 2004; 16 Suppl 1:112-7. [PMID: 15066015 DOI: 10.1111/j.1743-3150.2004.00485.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Specialized cells known as interstitial cells of Cajal (ICC) are distributed in specific locations within the tunica muscularis of the gastrointestinal tract and serve as electrical pacemakers, active propagation pathways for slow waves, and mediators of enteric motor neurotransmission. Recent morphological studies have provided evidence that motor neurotransmission in the gut does not occur through loosely defined synaptic structures between nerves and smooth muscle, but rather via synaptic-like contacts that exist between varicose nerve terminals and intramuscular ICC (ICC-IM). ICC-IM are coupled to smooth muscle cells via gap junctions and electrical responses elicited in ICC are conducted to muscle cells. Electrophysiological studies of the stomach of wild-type and mutant animals that lack ICC-IM have provided functional evidence for the importance of ICC in cholinergic and nitrergic motor neurotransmission. The synaptic-like contacts between nerve terminals and ICC-IM facilitate rapid diffusion of transmitters to specific receptors on ICC. ICC-IM also play a role in generating unitary potentials in the stomach that contribute to the excitability of the gastric fundus and antrum.
Collapse
Affiliation(s)
- S M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA.
| | | | | |
Collapse
|
185
|
Geppetti P, Trevisani M. Activation and sensitisation of the vanilloid receptor: role in gastrointestinal inflammation and function. Br J Pharmacol 2004; 141:1313-20. [PMID: 15051629 PMCID: PMC1574908 DOI: 10.1038/sj.bjp.0705768] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The exquisite specific excitatory and desensitising actions of capsaicin on a subpopulation of primary sensory neurons have been instrumental in identifying the roles of these neurons in nociception, reflex responses and neurogenic inflammation. Structure activity studies with capsaicin-like molecules have suggested that a "receptor" should mediate the effects of capsaicin on sensory neurons. The cloning of the vanilloid receptor-1 (VR1) has confirmed this hypothesis. VR1 (TRPV1) belongs to the transient receptor potential (TRP) family of channels, and its activation by various xenobiotics, noxious temperature, extracellular low pH and high concentration of certain lipid derivatives results in cation influx and sensory nerve terminal excitation. TRPV1 may dimerise or form tetramers or heteromers with PLC-gamma and TrkA or even with other TRPs. TRPV1 is markedly upregulated and/or "sensitised" under inflammatory conditions via protein kinase C-epsilon-, cAMP-dependent PK- and PLC-gamma-dependent pathways or by exposure to dietary agents as ethanol. TRPV1 is expressed on sensory neurons distributed in all the regions of the gastrointestinal tract in myenteric ganglia, muscle layer and mucosa. There is evidence of TRPV1 expression also in epithelial cells of the gastrointestinal tract. High expression of TRPV1 has been detected in several inflammatory diseases of the colon and ileum, whereas neuropeptides released upon sensory nerve stimulation triggered by TRPV1 activation seem to play a role in intestinal motility disorders. TRPV1 antagonists, which will soon be available for clinical testing, may undergo scrutiny for the treatment of inflammatory diseases of the gut.
Collapse
Affiliation(s)
- Pierangelo Geppetti
- Department of Critical Care Medicine and Surgery, Clinical Pharmacology Unit, University of Florence, Viale Pieraccini 6, Florence 50139, Italy.
| | | |
Collapse
|
186
|
Cervero F, Laird JMA. Understanding the signaling and transmission of visceral nociceptive events. ACTA ACUST UNITED AC 2004; 61:45-54. [PMID: 15362152 DOI: 10.1002/neu.20084] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visceral pain can be considered as part of the defense reactions of the body against harmful stimuli, particularly of those that impinge on the mucosal lining of hollow organs. It is a problem of considerable clinical relevance, and its neurobiological mechanisms differ from those of somatic nociceptive or neuropathic pain. Much progress had been made in recent years in the understanding of the functional properties of the visceral nociceptors that trigger pain states, their molecular mechanisms of activation and sensitization and on their central actions. Some molecular targets have been identified as key players in the activation and sensitization of visceral nociceptors, notably ASICs, TTX-resistant Na channels and the TRPV1 receptor. Some nonneural elements of visceral organs, such as the urothelium have been shown to play active roles in the transduction of visceral sensory events by mechanisms involving ATP release by the urothelial cells. Certain well-known neurotransmitters, such as the tachykinin family of neuropeptides, likely play an important role in the peripheral and central activation of visceral nociceptive afferents and in the generation of visceral hyperalgesia. This article reviews current evidence on the mechanisms of activation and sensitization of visceral nociceptive afferents and on their role in the triggering and maintenance of clinically relevant visceral pain states.
Collapse
Affiliation(s)
- Fernando Cervero
- Anaesthesia Research Unit, McGill University, McIntyre Medical Bldg., Room 1207, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada.
| | | |
Collapse
|