151
|
Regidor PA, Mueller A, Sailer M, Gonzalez Santos F, Rizo JM, Moreno Egea F. Chronic Inflammation in PCOS: The Potential Benefits of Specialized Pro-Resolving Lipid Mediators (SPMs) in the Improvement of the Resolutive Response. Int J Mol Sci 2020; 22:ijms22010384. [PMID: 33396555 PMCID: PMC7795660 DOI: 10.3390/ijms22010384] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
PCOS as the most common endocrine disorder of women in their reproductive age affects between 5–15% of the female population. Apart from its cardinal symptoms, like irregular and anovulatory cycles, hyperandrogenemia and a typical ultrasound feature of the ovary, obesity, and insulin resistance are often associated with the disease. Furthermore, PCOS represents a status of chronic inflammation with permanently elevated levels of inflammatory markers including IL-6 and IL-18, TNF-α, and CRP. Inflammation, as discovered only recently, consists of two processes occurring concomitantly: active initiation, involving “classical” mediators including prostaglandins and leukotrienes, and active resolution processes based on the action of so-called specialized pro-resolving mediators (SPMs). These novel lipid mediator molecules derive from the essential ω3-poly-unsaturated fatty acids (PUFAs) DHA and EPA and are synthesized via specific intermediates. The role and benefits of SPMs in chronic inflammatory diseases like obesity, atherosclerosis, and Diabetes mellitus has become a subject of intense research during the last years and since PCOS features several of these pathologies, this review aims at summarizing potential roles of SPMs in this disease and their putative use as novel therapeutics.
Collapse
Affiliation(s)
| | - Anna Mueller
- Exeltis Germany GmbH, Adalperostr. 84, 85737 Ismaning, Germany; (A.M.); (M.S.)
| | - Manuela Sailer
- Exeltis Germany GmbH, Adalperostr. 84, 85737 Ismaning, Germany; (A.M.); (M.S.)
| | | | | | - Fernando Moreno Egea
- Solutex SA. Avenida de la Transición Española 24, 28108 Alcobendas, Spain; (F.G.S.); (F.M.E.)
| |
Collapse
|
152
|
Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, Martinotti S, Conti P, Flati V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front Cell Dev Biol 2020; 8:607483. [PMID: 33409282 PMCID: PMC7779530 DOI: 10.3389/fcell.2020.607483] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-β) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-β in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, Chieti, Italy
| | - Sonia Spalletta
- Department of Clinical Pathology, E. Profili Hospital, Fabriano, Ancona, Italy
| | - Giulia Giambuzzi
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Vincenzo De Iuliis
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Elena Toniato
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Stefano Martinotti
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Pio Conti
- Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
153
|
Strieder-Barboza C, Baker NA, Flesher CG, Karmakar M, Patel A, Lumeng CN, O’Rourke RW. Depot-specific adipocyte-extracellular matrix metabolic crosstalk in murine obesity. Adipocyte 2020; 9:189-196. [PMID: 32272860 PMCID: PMC7153651 DOI: 10.1080/21623945.2020.1749500] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Subcutaneous (SAT) and visceral (VAT) adipose tissues have distinct metabolic phenotypes. We hypothesized that the extracellular matrix (ECM) regulates depot-specific differences in adipocyte metabolic function in murine obesity. VAT and SAT preadipocytes from lean or obese mice were subject to adipogenic differentiation in standard 2D culture on plastic tissue culture plates or in 3D culture in ECM, followed by metabolic profiling. Adipocytes from VAT relative to SAT manifested impaired insulin-stimulated glucose uptake and decreased adipogenic capacity. In 3D-ECM-adipocyte culture, ECM regulated adipocyte metabolism in a depot-specific manner, with SAT ECM rescuing defects in glucose uptake and adipogenic gene expression in VAT adipocytes, while VAT ECM impaired adipogenic gene expression in SAT adipocytes. These findings demonstrate that ECM-adipocyte crosstalk regulates depot-specific differences in adipocyte metabolic dysfunction in murine obesity.
Collapse
Affiliation(s)
- Clarissa Strieder-Barboza
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicki A. Baker
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carmen G. Flesher
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Monita Karmakar
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ayush Patel
- Undergraduate Research Opportunity Program, University of Michigan, Ann Arbor, MI, USA
| | - Carey N. Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Robert W. O’Rourke
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
154
|
Liu F, He J, Wang H, Zhu D, Bi Y. Adipose Morphology: a Critical Factor in Regulation of Human Metabolic Diseases and Adipose Tissue Dysfunction. Obes Surg 2020; 30:5086-5100. [PMID: 33021706 PMCID: PMC7719100 DOI: 10.1007/s11695-020-04983-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022]
Abstract
Emerging evidence highlights that dysfunction of adipose tissue contributes to impaired insulin sensitivity and systemic metabolic deterioration in obese state. Of note, adipocyte hypertrophy serves as a critical event which associates closely with adipose dysfunction. An increase in cell size exacerbates hypoxia and inflammation as well as excessive collagen deposition, finally leading to metabolic dysregulation. Specific mechanisms of adipocyte hypertrophy include dysregulated differentiation and maturation of preadipocytes, enlargement of lipid droplets, and abnormal adipocyte osmolarity sensors. Also, weight loss therapies exert profound influence on adipocyte size. Here, we summarize the critical role of adipocyte hypertrophy in the development of metabolic disturbances. Future studies are required to establish a standard criterion of size measurement to better clarify the impact of adipocyte hypertrophy on changes in metabolic homeostasis.
Collapse
Affiliation(s)
- Fangcen Liu
- Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Jielei He
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hongdong Wang
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
155
|
Wenderott JK, Flesher CG, Baker NA, Neeley CK, Varban OA, Lumeng CN, Muhammad LN, Yeh C, Green PF, O'Rourke RW. Elucidating nanoscale mechanical properties of diabetic human adipose tissue using atomic force microscopy. Sci Rep 2020; 10:20423. [PMID: 33235234 PMCID: PMC7686328 DOI: 10.1038/s41598-020-77498-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/11/2020] [Indexed: 01/07/2023] Open
Abstract
Obesity-related type 2 diabetes (DM) is a major public health concern. Adipose tissue metabolic dysfunction, including fibrosis, plays a central role in DM pathogenesis. Obesity is associated with changes in adipose tissue extracellular matrix (ECM), but the impact of these changes on adipose tissue mechanics and their role in metabolic disease is poorly defined. This study utilized atomic force microscopy (AFM) to quantify difference in elasticity between human DM and non-diabetic (NDM) visceral adipose tissue. The mean elastic modulus of DM adipose tissue was twice that of NDM adipose tissue (11.50 kPa vs. 4.48 kPa) to a 95% confidence level, with significant variability in elasticity of DM compared to NDM adipose tissue. Histologic and chemical measures of fibrosis revealed increased hydroxyproline content in DM adipose tissue, but no difference in Sirius Red staining between DM and NDM tissues. These findings support the hypothesis that fibrosis, evidenced by increased elastic modulus, is enhanced in DM adipose tissue, and suggest that measures of tissue mechanics may better resolve disease-specific differences in adipose tissue fibrosis compared with histologic measures. These data demonstrate the power of AFM nanoindentation to probe tissue mechanics, and delineate the impact of metabolic disease on the mechanical properties of adipose tissue.
Collapse
Affiliation(s)
- J K Wenderott
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60201, USA
| | - Carmen G Flesher
- Department of Surgery, Section of General Surgery, University of Michigan Medical School, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5343, USA
| | - Nicki A Baker
- Department of Surgery, Section of General Surgery, University of Michigan Medical School, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5343, USA
| | - Christopher K Neeley
- Department of Surgery, Section of General Surgery, University of Michigan Medical School, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5343, USA
| | - Oliver A Varban
- Department of Surgery, Section of General Surgery, University of Michigan Medical School, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5343, USA
| | - Carey N Lumeng
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Lutfiyya N Muhammad
- Division of Biostatistics, Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Chen Yeh
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60201, USA
| | - Peter F Green
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Robert W O'Rourke
- Department of Surgery, Section of General Surgery, University of Michigan Medical School, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5343, USA.
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
156
|
Xie ZJ, Novograd J, Itzkowitz Y, Sher A, Buchen YD, Sodhi K, Abraham NG, Shapiro JI. The Pivotal Role of Adipocyte-Na K peptide in Reversing Systemic Inflammation in Obesity and COVID-19 in the Development of Heart Failure. Antioxidants (Basel) 2020; 9:E1129. [PMID: 33202598 PMCID: PMC7697697 DOI: 10.3390/antiox9111129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
This review summarizes data from several laboratories that have demonstrated a role of the Na/K-ATPase, specifically its α1 subunit, in the generation of reactive oxygen species (ROS) via the negative regulator of Src. Together with Src and other signaling proteins, the Na/K-ATPase forms an oxidant amplification loop (NKAL), amplifies ROS, and participates in cytokines storm in obesity. The development of a peptide fragment of the α1 subunit, NaKtide, has been shown to negatively regulate Src. Several groups showed that the systemic administration of the cell permeable modification of NaKtide (pNaKtide) or its selective delivery to fat tissue-adipocyte specific expression of NaKtide-ameliorate the systemic elevation of inflammatory cytokines seen in chronic obesity. Severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2), the RNA Coronavirus responsible for the COVID-19 global pandemic, invades cells via the angiotensin converting enzyme 2 (ACE-2) receptor (ACE2R) that is appended in inflamed fat tissue and exacerbates the formation of the cytokines storm. Both obesity and heart and renal failure are well known risks for adverse outcomes in patients infected with COVID-19. White adipocytes express ACE-2 receptors in high concentration, especially in obese patients. Once the virus invades the white adipocyte cell, it creates a COVID19-porphyrin complex which degrades and produces free porphyrin and iron and increases ROS. The increased formation of ROS and activation of the NKAL results in a further potentiated formation of ROS production, and ultimately, adipocyte generation of more inflammatory mediators, leading to systemic cytokines storm and heart failure. Moreover, chronic obesity also results in the reduction of antioxidant genes such as heme oxygenase-1 (HO-1), increasing adipocyte susceptibility to ROS and cytokines. It is the systemic inflammation and cytokine storm which is responsible for many of the adverse outcomes seen with COVID-19 infections in obese subjects, leading to heart failure and death. This review will also describe the potential antioxidant drugs and role of NaKtide and their demonstrated antioxidant effect used as a major strategy for improving obesity and epicardial fat mediated heart failure in the context of the COVID pandemic.
Collapse
Affiliation(s)
- Zi-jian Xie
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Joel Novograd
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yaakov Itzkowitz
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Ariel Sher
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yosef D. Buchen
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Komal Sodhi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Nader G. Abraham
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| |
Collapse
|
157
|
Billert M, Rak A, Nowak KW, Skrzypski M. Phoenixin: More than Reproductive Peptide. Int J Mol Sci 2020; 21:ijms21218378. [PMID: 33171667 PMCID: PMC7664650 DOI: 10.3390/ijms21218378] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Phoenixin (PNX) neuropeptide is a cleaved product of the Smim20 protein. Its most common isoforms are the 14- and 20-amino acid peptides. The biological functions of PNX are mediated via the activation of the GPR173 receptor. PNX plays an important role in the central nervous system (CNS) and in the female reproductive system where it potentiates LH secretion and controls the estrus cycle. Moreover, it stimulates oocyte maturation and increases the number of ovulated oocytes. Nevertheless, PNX not only regulates the reproduction system but also exerts anxiolytic, anti-inflammatory, and cell-protective effects. Furthermore, it is involved in behavior, food intake, sensory perception, memory, and energy metabolism. Outside the CNS, PNX exerts its effects on the heart, ovaries, adipose tissue, and pancreatic islets. This review presents all the currently available studies demonstrating the pleiotropic effects of PNX.
Collapse
Affiliation(s)
- Maria Billert
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
| | - Krzysztof W. Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
- Correspondence: ; Tel.: +48-6184-637-24
| |
Collapse
|
158
|
Berezin AE, Berezin AA, Lichtenauer M. Emerging Role of Adipocyte Dysfunction in Inducing Heart Failure Among Obese Patients With Prediabetes and Known Diabetes Mellitus. Front Cardiovasc Med 2020; 7:583175. [PMID: 33240938 PMCID: PMC7667132 DOI: 10.3389/fcvm.2020.583175] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue dysfunction is a predictor for cardiovascular (CV) events and heart failure (HF) in patient population with obesity, metabolic syndrome, and known type 2 diabetes mellitus. Previous preclinical and clinical studies have yielded controversial findings regarding the role of accumulation of adipose tissue various types in CV risk and HF-related clinical outcomes in obese patients. There is evidence for direct impact of infiltration of epicardial adipocytes into the underlying myocardium to induce adverse cardiac remodeling and mediate HF development and atrial fibrillation. Additionally, perivascular adipocytes accumulation is responsible for release of proinflammatory adipocytokines (adiponectin, leptin, resistin), stimulation of oxidative stress, macrophage phenotype switching, and worsening vascular reparation, which all lead to microvascular inflammation, endothelial dysfunction, atherosclerosis acceleration, and finally to increase in CV mortality. However, systemic effects of white and brown adipose tissue can be different, and adipogenesis including browning of adipose tissue and deficiency of anti-inflammatory adipocytokines (visfatin, omentin, zinc-α2-glycoprotein, glypican-4) was frequently associated with adipose triglyceride lipase augmentation, altered glucose homeostasis, resistance to insulin of skeletal muscles, increased cardiomyocyte apoptosis, lowered survival, and weak function of progenitor endothelial cells, which could significantly influence on HF development, as well as end-organ fibrosis and multiple comorbidities. The exact underlying mechanisms for these effects are not fully understood, while they are essential to help develop improved treatment strategies. The aim of the review is to summarize the evidence showing that adipocyte dysfunction may induce the onset of HF and support advance of HF through different biological mechanisms involving inflammation, pericardial, and perivascular adipose tissue accumulation, adverse and electrical cardiac remodeling, and skeletal muscle dysfunction. The unbalancing effects of natriuretic peptides, neprilysin, and components of renin–angiotensin system, as exacerbating cause of altered adipocytokine signaling on myocardium and vasculature, in obesity patients at high risk of HF are disputed. The profile of proinflammatory and anti-inflammatory adipocytokines as promising biomarker for HF risk stratification is discussed in the review.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Alexander A Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Division of Cardiology, Department of Internal Medicine II, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
159
|
Asif S, Morrow NM, Mulvihill EE, Kim KH. Understanding Dietary Intervention-Mediated Epigenetic Modifications in Metabolic Diseases. Front Genet 2020; 11:590369. [PMID: 33193730 PMCID: PMC7593700 DOI: 10.3389/fgene.2020.590369] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of metabolic disorders, such as obesity, diabetes and fatty liver disease, is dramatically increasing. Both genetic and environmental factors are well-known contributors to the development of these diseases and therefore, the study of epigenetics can provide additional mechanistic insight. Dietary interventions, including caloric restriction, intermittent fasting or time-restricted feeding, have shown promising improvements in patients' overall metabolic profiles (i.e., reduced body weight, improved glucose homeostasis), and an increasing number of studies have associated these beneficial effects with epigenetic alterations. In this article, we review epigenetic changes involved in both metabolic diseases and dietary interventions in primary metabolic tissues (i.e., adipose, liver, and pancreas) in hopes of elucidating potential biomarkers and therapeutic targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Shaza Asif
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nadya M. Morrow
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Erin E. Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
160
|
Drareni K, Ballaire R, Alzaid F, Goncalves A, Chollet C, Barilla S, Nguewa JL, Dias K, Lemoine S, Riveline JP, Roussel R, Dalmas E, Velho G, Treuter E, Gautier JF, Venteclef N. Adipocyte Reprogramming by the Transcriptional Coregulator GPS2 Impacts Beta Cell Insulin Secretion. Cell Rep 2020; 32:108141. [PMID: 32937117 PMCID: PMC7495095 DOI: 10.1016/j.celrep.2020.108141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/03/2020] [Accepted: 08/21/2020] [Indexed: 01/10/2023] Open
Abstract
Glucose homeostasis is maintained through organ crosstalk that regulates secretion of insulin to keep blood glucose levels within a physiological range. In type 2 diabetes, this coordinated response is altered, leading to a deregulation of beta cell function and inadequate insulin secretion. Reprogramming of white adipose tissue has a central role in this deregulation, but the critical regulatory components remain unclear. Here, we demonstrate that expression of the transcriptional coregulator GPS2 in white adipose tissue is correlated with insulin secretion rate in humans. The causality of this relationship is confirmed using adipocyte-specific GPS2 knockout mice, in which inappropriate secretion of insulin promotes glucose intolerance. This phenotype is driven by adipose-tissue-secreted factors, which cause increased pancreatic islet inflammation and impaired beta cell function. Thus, our study suggests that, in mice and in humans, GPS2 controls the reprogramming of white adipocytes to influence pancreatic islet function and insulin secretion.
Collapse
Affiliation(s)
- Karima Drareni
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, Université de Paris, 75006 Paris, France.
| | | | - Fawaz Alzaid
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Andreia Goncalves
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Catherine Chollet
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Serena Barilla
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14157, Sweden
| | - Jean-Louis Nguewa
- Department of Diabetes, Clinical Investigation Centre (CIC-9504), Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Karine Dias
- École Normale Supérieure, PSL Research University, Centre National de la Recherche Scientifique (CNRS), INSERM, Institut de Biologie de l'École Normale Supérieure (IBENS), Plateforme Génomique, Paris, France
| | - Sophie Lemoine
- École Normale Supérieure, PSL Research University, Centre National de la Recherche Scientifique (CNRS), INSERM, Institut de Biologie de l'École Normale Supérieure (IBENS), Plateforme Génomique, Paris, France
| | - Jean-Pierre Riveline
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, Université de Paris, 75006 Paris, France; Department of Diabetes, Clinical Investigation Centre (CIC-9504), Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ronan Roussel
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, Université de Paris, 75006 Paris, France; Department of Diabetology, Endocrinology and Nutrition, DHU FIRE, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Elise Dalmas
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Gilberto Velho
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Eckardt Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14157, Sweden
| | - Jean-François Gautier
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, Université de Paris, 75006 Paris, France; Department of Diabetes, Clinical Investigation Centre (CIC-9504), Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, Université de Paris, 75006 Paris, France.
| |
Collapse
|
161
|
Mohiuddin OA, Motherwell JM, Rogers E, Bratton MR, Zhang Q, Wang G, Bunnell B, Hayes DJ, Gimble JM. Characterization and Proteomic Analysis of Decellularized Adipose Tissue Hydrogels Derived from Lean and Overweight/Obese Human Donors. ACTA ACUST UNITED AC 2020; 4:e2000124. [PMID: 32914579 DOI: 10.1002/adbi.202000124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/28/2020] [Indexed: 12/19/2022]
Abstract
While decellularized adipose tissue (DAT) has potential as an "off-the-shelf" biomaterial product for regenerative medicine, it remains to be determined if donor-source body mass index (BMI) impacts the functionality of DAT. This study set out to comparatively characterize lean versus overweight/obese-donor derived DAT hydrogel based on proteome and to analyze their respective effects on adipose stromal/stem cell (ASC) viability, and differentiation in vitro. Decellularized adipose tissue from lean (lDAT) and overweight/obese (oDAT) donors is produced and characterized. Variability in the fibril microstructures is found, with dense fibrotic fiber clusters and large pore area uniquely present in the oDAT samples. Proteomic analysis reveals that lDAT contains a greater proportion of enriched extracellular proteins and a smaller proportion of enriched intracellular proteins relative to oDAT. Biocompatibility studies show that ASCs cultured in lDAT and oDAT hydrogels remain viable. The adipogenic and osteogenic differentiation capability of ASCs seeded in lDAT and oDAT hydrogels is confirmed by an upregulation in marker gene expression and phenotypic analysis. In conclusion, this study establishes that DAT hydrogels derived from lean and overweight/obese adipose donors present similar physicochemical profiles with some distinctive features while comparably supporting the viability and adipogenic differentiation of ASCs in vitro.
Collapse
Affiliation(s)
- Omair A Mohiuddin
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jessica M Motherwell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Emma Rogers
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70112, USA
| | | | - Qiang Zhang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| | - Bruce Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA, 16802, USA
| | - Jeffrey M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- LaCell LLC and Obatala Sciences Inc., New Orleans, LA, 70148, USA
| |
Collapse
|
162
|
Pandey NN, Sharma S, Jagia P, Kumar S. Epicardial fat attenuation, not volume, predicts obstructive coronary artery disease and high risk plaque features in patients with atypical chest pain. Br J Radiol 2020; 93:20200540. [PMID: 32706985 DOI: 10.1259/bjr.20200540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE This study sought to investigate the association between volume and attenuation of epicardial fat and presence of obstructive coronary artery disease (CAD) and high-risk plaque features (HRPF) on CT angiography (CTA) in patients with atypical chest pain and whether the association, if any, is independent of conventional cardiovascular risk factors and coronary artery calcium score (CACS). METHODS Patients referred for coronary CTA with atypical chest pain and clinical suspicion of CAD were included in the study. Quantification of CACS, epicardial fat volume (EFV) and epicardial fat attenuation (EFat) was performed on non-contrast images. CTA was evaluated for presence of obstructive CAD and presence of HRPF. RESULTS 255 patients (median age [interquartile range; IQR]: 51[41-60] years, 51.8% males) were included. On CTA, CAD, obstructive CAD (≥50% stenosis) and CTA-derived HRPFs was present in 133 (52.2%), 37 (14.5%) and 82 (32.2%) patients respectively. A significantly lower EFat was seen in patients with obstructive CAD than in those without (-86HU [IQR:-88 to -82 HU] vs -84 [IQR:-87 HU to -82 HU]; p = 0.0486) and in patients with HRPF compared to those without (-86 HU [IQR:-88 to -83 HU] vs -83 HU [-86 HU to -81.750 HU]; p < 0.0001). EFat showed significant association with obstructive CAD (unadjusted Odd's ratio (OR) [95% CI]: 0.90 [0.81-0.99];p = 0.0248) and HRPF (unadjusted OR [95% CI]: 0.83 [0.76-0.90];p < 0.0001) in univariate analysis, which remained significant in multivariate analysis. However, EFV did not show any significant association with neither obstructive CAD nor HRPF in multivariate analysis. Adding EFat to conventional coronary risk factors and CACS in the pre-test probability models increased the area-under curve (AUC) for prediction of both obstructive CAD (AUC[95% CI]: 0.76 [0.70-0.81] vs 0.71 [0.65-0.77)) and HRPF (AUC [95% CI]: 0.92 [0.88-0.95] vs 0.89 [0.85-0.93]), although not reaching statistical significance. CONCLUSION EFat, but not EFV, is an independent predictor of obstructive CAD and HRPF. Addition of EFat to traditional cardiovascular risk factors and CACS improves estimation for pretest probability of obstructive CAD and HRPF. ADVANCES IN KNOWLEDGE EFat is an important attribute of epicardial fat as it reflects the "quality" of fat, taking into account the effects of brown-white fat transformation and fibrosis, as opposed to mere evaluation of "quantity" of fat by EFV. Our study shows that EFat is a better predictor of obstructive CAD and HRPF than EFV and can thus explain the inconsistent association of increased EFV alone with CAD.
Collapse
Affiliation(s)
- Niraj Nirmal Pandey
- Department of Cardiovascular Radiology & Endovascular Interventions, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sanjiv Sharma
- Department of Cardiovascular Radiology & Endovascular Interventions, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Priya Jagia
- Department of Cardiovascular Radiology & Endovascular Interventions, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sanjeev Kumar
- Department of Cardiovascular Radiology & Endovascular Interventions, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
163
|
The Transcriptomic Evidence on the Role of Abdominal Visceral vs. Subcutaneous Adipose Tissue in the Pathophysiology of Diabetes in Asian Indians Indicates the Involvement of Both. Biomolecules 2020; 10:biom10091230. [PMID: 32847136 PMCID: PMC7563456 DOI: 10.3390/biom10091230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
The roles of abdominal visceral (VAT) and subcutaneous adipose tissue (SAT) in the molecular pathogenesis type-2 diabetics (T2D) among Asian Indians showing a "thin fat" phenotype largely remains obscure. In this study, we generated transcription profiles in biopsies of these adipose depots obtained during surgery in 19 diabetics (M: F ratio, 8:11) and 16 (M: F ratio 5:11) age- and BMI-matched non-diabetics. Gene set enrichment analysis (GSEA) was used for comparing transcription profile and showed that 19 gene sets, enriching inflammation and immune system-related pathways, were upregulated in diabetics with F.D.R. <25% and >25%, respectively, in VAT and SAT. Moreover, 13 out of the 19 significantly enriched pathways in VAT were among the top 20 pathways in SAT. On comparison of VAT vs. SAT among diabetics, none of the gene sets were found significant at F.D.R. <25%. The Weighted Gene Correlation Analysis (WGCNA) analysis of the correlation between measures of average gene expression and overall connectivity between VAT and SAT was significantly positive. Several modules of co-expressed genes in both the depots showed a bidirectional correlation with various diabetes-related intermediate phenotypic traits. They enriched several diabetes pathogenicity marker pathways, such as inflammation, adipogenesis, etc. It is concluded that, in Asian Indians, diabetes pathology inflicts similar molecular alternations in VAT and SAT, which are more intense in the former. Both adipose depots possibly play a role in the pathophysiology of T2D, and whether it is protective or pathogenic also depends on the nature of modules of co-expressed genes contained in them.
Collapse
|
164
|
DeBari MK, Abbott RD. Adipose Tissue Fibrosis: Mechanisms, Models, and Importance. Int J Mol Sci 2020; 21:ijms21176030. [PMID: 32825788 PMCID: PMC7503256 DOI: 10.3390/ijms21176030] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Increases in adipocyte volume and tissue mass due to obesity can result in inflammation, further dysregulation in adipose tissue function, and eventually adipose tissue fibrosis. Like other fibrotic diseases, adipose tissue fibrosis is the accumulation and increased production of extracellular matrix (ECM) proteins. Adipose tissue fibrosis has been linked to decreased insulin sensitivity, poor bariatric surgery outcomes, and difficulty in weight loss. With the rising rates of obesity, it is important to create accurate models for adipose tissue fibrosis to gain mechanistic insights and develop targeted treatments. This article discusses recent research in modeling adipose tissue fibrosis using in vivo and in vitro (2D and 3D) methods with considerations for biomaterial selections. Additionally, this article outlines the importance of adipose tissue in treating other fibrotic diseases and methods used to detect and characterize adipose tissue fibrosis.
Collapse
Affiliation(s)
- Megan K. DeBari
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
165
|
Goldstein N, Kezerle Y, Gepner Y, Haim Y, Pecht T, Gazit R, Polischuk V, Liberty IF, Kirshtein B, Shaco-Levy R, Blüher M, Rudich A. Higher Mast Cell Accumulation in Human Adipose Tissues Defines Clinically Favorable Obesity Sub-Phenotypes. Cells 2020; 9:cells9061508. [PMID: 32575785 PMCID: PMC7349306 DOI: 10.3390/cells9061508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
The identification of human obesity sub-types may improve the clinical management of patients with obesity and uncover previously unrecognized obesity mechanisms. Here, we hypothesized that adipose tissue (AT) mast cells (MC) estimation could be a mark for human obesity sub-phenotyping beyond current clinical-based stratifications, both cross-sectionally and prospectively. We estimated MC accumulation using immunohistochemistry and gene expression in abdominal visceral AT (VAT) and subcutaneous (SAT) in a human cohort of 65 persons with obesity who underwent elective abdominal (mainly bariatric) surgery, and we validated key results in two clinically similar, independent cohorts (n = 33, n = 56). AT-MC were readily detectable by immunostaining for either c-kit or tryptase and by assessing the gene expression of KIT (KIT Proto-Oncogene, Receptor Tyrosine Kinase), TPSB2 (tryptase beta 2), and CMA1 (chymase 1). Participants were characterized as VAT-MClow if the expression of both CMA1 and TPSB2 was below the median. Higher expressers of MC genes (MChigh) were metabolically healthier (lower fasting glucose and glycated hemoglobin, with higher pancreatic beta cell reserve (HOMA-β), and lower triglycerides and alkaline-phosphatase) than people with low expression (MClow). Prospectively, higher MC accumulation in VAT or SAT obtained during surgery predicted greater postoperative weight-loss response to bariatric surgery. Jointly, high AT-MC accumulation may be used to clinically define obesity sub-phenotypes, which are associated with a “healthier” cardiometabolic risk profile and a better weight-loss response to bariatric surgery.
Collapse
Affiliation(s)
- Nir Goldstein
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.G.); (Y.H.); (T.P.)
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine and Sylvan Adams Sports Institute Tel Aviv University, Tel-Aviv 6997801, Israel;
| | - Yarden Kezerle
- Institute of Pathology, Soroka University Medical Center Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (Y.K.); (R.S.-L.)
| | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine and Sylvan Adams Sports Institute Tel Aviv University, Tel-Aviv 6997801, Israel;
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.G.); (Y.H.); (T.P.)
| | - Tal Pecht
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.G.); (Y.H.); (T.P.)
| | - Roi Gazit
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Vera Polischuk
- Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.P.); (I.F.L.); (B.K.)
| | - Idit F. Liberty
- Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.P.); (I.F.L.); (B.K.)
| | - Boris Kirshtein
- Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.P.); (I.F.L.); (B.K.)
| | - Ruthy Shaco-Levy
- Institute of Pathology, Soroka University Medical Center Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (Y.K.); (R.S.-L.)
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.G.); (Y.H.); (T.P.)
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Correspondence:
| |
Collapse
|
166
|
Mishra BK, Banerjee BD, Agrawal V, Madhu SV. Association of PPARγ gene expression with postprandial hypertriglyceridaemia and risk of type 2 diabetes mellitus. Endocrine 2020; 68:549-556. [PMID: 32180115 DOI: 10.1007/s12020-020-02257-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Peroxisome proliferator-activated receptor γ (PPARγ) gene is strongly associated with type 2 diabetes mellitus, as well as postprandial lipemia, and plays an important role in Wnt dependent adipogenesis in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). We aimed to study the expression of PPARγ gene in SAT and VAT to find out its correlation with postprandial hypertriglyceredemia and glucose intolerance. METHODS Thirty subjects who were scheduled to undergo abdominal surgery were recruited in three groups (n = 10 in NGT, n = 10 in prediabetes, and n = 10 in T2DM). A standardized oral fat challenge was performed. Anthropometry, plasma glucose, HbA1c, and fasting serum insulin were also measured. SAT and VATs were collected during surgery for PPARγ gene expression studies by real-time PCR. RESULTS PPARγ gene expression was 5.5-fold lower in T2DM and 1.7-fold lower in prediabetes as compared with NGT subjects in VAT. There was a significant negative correlation of expression of PPARγ gene in VAT {Tgauc (r = -0.57, p < 0.007), Peak Tg (r = -0.51, p < 0.01)} as well as in subcutaneous adipose tissue {Tgauc (r = -0.45, p < 0.02)} with PPTg responses measures. CONCLUSION Reduced adipocyte expression of PPARγ gene and the resultant postprandial hypertriglyceredemia is associated with greater risk of diabetes and prediabetes.
Collapse
Affiliation(s)
- B K Mishra
- Department of Endocrinology, University College of Medical Sciences, University of Delhi, Delhi, India
| | - B D Banerjee
- Department of Biochemistry, University College of Medical Sciences, University of Delhi, Delhi, India
| | - V Agrawal
- Department of Surgery, University College of Medical Sciences, University of Delhi, Delhi, India
| | - S V Madhu
- Department of Endocrinology, University College of Medical Sciences, University of Delhi, Delhi, India.
| |
Collapse
|
167
|
Aprile M, Cataldi S, Perfetto C, Ambrosio MR, Italiani P, Tatè R, Blüher M, Ciccodicola A, Costa V. In-Vitro-Generated Hypertrophic-Like Adipocytes Displaying PPARG Isoforms Unbalance Recapitulate Adipocyte Dysfunctions In Vivo. Cells 2020; 9:cells9051284. [PMID: 32455814 PMCID: PMC7290899 DOI: 10.3390/cells9051284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Identifying molecular features of hypertrophic adipocytes requires appropriate in vitro models. We describe the generation of a model of human hypertrophic-like adipocytes directly comparable to normal adipose cells and the pathologic evolution toward hypertrophic state. We generate in vitro hypertrophic cells from mature adipocytes, differentiated from human mesenchymal stem cells. Combining optical, confocal, and transmission electron microscopy with mRNA/protein quantification, we characterize this cellular model, confirming specific alterations also in subcutaneous adipose tissue. Specifically, we report the generation and morphological/molecular characterization of human normal and hypertrophic-like adipocytes. The latter displays altered morphology and unbalance between canonical and dominant negative (PPARGΔ5) transcripts of PPARG, paralleled by reduced expression of PPARγ targets, including GLUT4. Furthermore, the unbalance of PPARγ isoforms associates with GLUT4 down-regulation in subcutaneous adipose tissue of individuals with overweight/obesity or impaired glucose tolerance/type 2 diabetes, but not with normal weight or glucose tolerance. In conclusion, the hypertrophic-like cells described herein are an innovative tool for studying molecular dysfunctions in hypertrophic obesity and the unbalance between PPARγ isoforms associates with down-regulation of GLUT4 and other PPARγ targets, representing a new hallmark of hypertrophic adipocytes.
Collapse
Affiliation(s)
- Marianna Aprile
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (C.P.); (R.T.); (A.C.)
- Correspondence: (M.A.); (V.C.)
| | - Simona Cataldi
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (C.P.); (R.T.); (A.C.)
| | - Caterina Perfetto
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (C.P.); (R.T.); (A.C.)
| | - Maria Rosaria Ambrosio
- Department of Translational Medicine, University of Naples “Federico II” & URT “Genomic of Diabetes,” Institute of Experimental Endocrinology and Oncology “G. Salvatore,” CNR, Via Pansini 5, 80131 Naples, Italy;
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology CNR, Via P. Castellino 111, 80131 Naples, Italy;
| | - Rosarita Tatè
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (C.P.); (R.T.); (A.C.)
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, 4289 Leipzig, Germany;
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (C.P.); (R.T.); (A.C.)
- Department of Science and Technology, University of Naples “Parthenope,” 80131 Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (C.P.); (R.T.); (A.C.)
- Correspondence: (M.A.); (V.C.)
| |
Collapse
|
168
|
Wang Q, Mu RF, Liu X, Zhou HM, Xu YH, Qin WY, Yang CR, Wang LB, Li HZ, Xiong WY. Steaming Changes the Composition of Saponins of Panax notoginseng (Burk.) F.H. Chen That Function in Treatment of Hyperlipidemia and Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4865-4875. [PMID: 32306731 DOI: 10.1021/acs.jafc.0c00746] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Saponins of Panax notoginseng (Burk.) F.H. Chen have been classified as a type of composition in functional foods for numerous diseases. However, its mild effects and other characteristics limited clinical applications in diseases. Inspired by "nine steaming and nine processing" of P. notoginseng in traditional Chinese medicine, we developed a "steaming"-mimic protocol, which significantly changed the composition of saponins of P. notoginseng from the original, R1, Rg1, Re, Rb1, and Rd (raw-PNS), to the products after steaming, 20S/R-Rh1, Rk3, Rh4, 20S/R-Rg3, Rk1, and Rg5 (N-PNS). Surprisingly, N-PNS demonstrated promising activities in improving hyperlipidemia and reducing body weight and weight of white adipose tissue and the inhibition of adipogenesis in obese mice. In accordance with the results in vivo, N-PNS remarkably blunted adipogenesis at the early stage of differentiation dose-dependently in vitro. Moreover, we demonstrated that the activity may involve the adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway by promoting phosphorylation of AMPKT172 and downregulating its downstream factors: sterol regulatory element binding protein 1c, stearoyl-CoA desaturase 1, and fatty acid synthase. Taken together, the steaming-induced eight compositions of saponins showed a very promising function in improving hyperlipidemia and obesity both in vivo and in vitro, providing fundamental evidence for future study and application in treatment of hyperlipidemia, obesity, and other lipid-related metabolic syndromes.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Rong-Fang Mu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing Liu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, Yunnan 650500, People's Republic of China
| | - Hui-Min Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yu-Hui Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, People's Republic of China
| | - Wan-Ying Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, Yunnan 650500, People's Republic of China
| | - Li-Bin Wang
- Biochip Research Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, People's Republic of China
| | - Hai-Zhou Li
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, Yunnan 650500, People's Republic of China
| | - Wen-Yong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, Kunming, Yunnan 650500, People's Republic of China
- Biochip Research Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, People's Republic of China
| |
Collapse
|
169
|
Choi YR, Shim J, Kim MJ. Genistin: A Novel Potent Anti-Adipogenic and Anti-Lipogenic Agent. Molecules 2020; 25:E2042. [PMID: 32349444 PMCID: PMC7248826 DOI: 10.3390/molecules25092042] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022] Open
Abstract
Soy isoflavones are popular ingredients with anti-adipogenic and anti-lipogenic properties. The anti-adipogenic and anti-lipogenic properties of genistein are well-known, but those of genistin and glycitein remain unknown, and those of daidzein are characterized by contrasting data. Therefore, the purpose of our study was to investigate the effects of daidzein, glycitein, genistein, and genistin on adipogenesis and lipogenesis in 3T3-L1 cells. Proliferation of 3T3-L1 preadipocytes was unaffected by genistin and glycitein, but it was affected by 50 and 100 µM genistein and 100 µM daidzein for 48 h. Among the four isoflavones, only 50 and 100 µM genistin and genistein markedly suppressed lipid accumulation during adipogenesis in 3T3-L1 cells through a similar signaling pathway in a dose-dependent manner. Genistin and genistein suppress adipocyte-specific proteins and genes, such as peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding protein α (C/EBPα), and adipocyte binding protein 2 (aP2)/fatty acid-binding protein 4 (FABP4), and lipogenic enzymes such as ATP citrate lyase (ACL), acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FAS). Both isoflavones also activate AMP-activated protein kinase α (AMPKα), an essential factor in adipocyte differentiation, and inhibited sterol regulatory element-binding transcription factor 1c (SREBP-1c). These results indicate that genistin is a potent anti-adipogenic and anti-lipogenic agent.
Collapse
Affiliation(s)
- Yae Rim Choi
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea (J.S.)
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Jaewon Shim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea (J.S.)
| | - Min Jung Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea (J.S.)
| |
Collapse
|
170
|
Guzmán-Ruiz R, Tercero-Alcázar C, Rabanal-Ruiz Y, Díaz-Ruiz A, El Bekay R, Rangel-Zuñiga OA, Navarro-Ruiz MC, Molero L, Membrives A, Ruiz-Rabelo JF, Pandit A, López-Miranda J, Tinahones FJ, Malagón MM. Adipose tissue depot-specific intracellular and extracellular cues contributing to insulin resistance in obese individuals. FASEB J 2020; 34:7520-7539. [PMID: 32293066 PMCID: PMC7384030 DOI: 10.1096/fj.201902703r] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/10/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022]
Abstract
Adipose tissue dysregulation in obesity strongly influences systemic metabolic homeostasis and is often linked to insulin resistance (IR). However, the molecular mechanisms underlying adipose tissue dysfunction in obesity are not fully understood. Herein, a proteomic analysis of subcutaneous (SC) and omental (OM) fat from lean subjects and obese individuals with different degrees of insulin sensitivity was performed to identify adipose tissue biomarkers related to obesity‐associated metabolic disease. Our results suggest that dysregulation of both adipose tissue extracellular matrix (ECM) organization and intracellular trafficking processes may be associated with IR in obesity. Thus, abnormal accumulation of the small leucine‐rich proteoglycan, lumican, as observed in SC fat of IR obese individuals, modifies collagen I organization, impairs adipogenesis and activates stress processes [endoplasmic reticulum and oxidative stress] in adipocytes. In OM fat, IR is associated with increased levels of the negative regulator of the Rab family of small GTPases, GDI2, which alters lipid storage in adipocytes by inhibiting insulin‐stimulated binding of the Rab protein, Rab18, to lipid droplets. Together, these results indicate that lumican and GDI2 might play depot‐dependent, pathogenic roles in obesity‐associated IR. Our findings provide novel insights into the differential maladaptive responses of SC and OM adipose tissue linking obesity to IR.
Collapse
Affiliation(s)
- Rocío Guzmán-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Reina Sofia University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Tercero-Alcázar
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Reina Sofia University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Yoana Rabanal-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Reina Sofia University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Díaz-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Reina Sofia University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Rajaa El Bekay
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, University of Málaga, Málaga, Spain
| | - Oriol A Rangel-Zuñiga
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Lipids and Atherosclerosis Unit, IMIBIC, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - M Carmen Navarro-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Reina Sofia University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Molero
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Reina Sofia University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Membrives
- Unidad de Gestión Clínica de Cirugía General y Digestivo, Sección de Obesidad, IMIBIC, Reina Sofia University Hospital, Córdoba, Spain
| | - Juan F Ruiz-Rabelo
- Unidad de Gestión Clínica de Cirugía General y Digestivo, Sección de Obesidad, IMIBIC, Reina Sofia University Hospital, Córdoba, Spain
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Lipids and Atherosclerosis Unit, IMIBIC, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), University of Málaga, Málaga, Spain
| | - María M Malagón
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Reina Sofia University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
171
|
Nasution LS, Jusuf AA, Jusman SW, Sadikin M. Hypoxia and autophagic response of obese adult rat adipocytes which differ in nutritional state during childhood. J Clin Biochem Nutr 2020; 66:132-138. [PMID: 32231409 DOI: 10.3164/jcbn.19-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 09/29/2019] [Indexed: 11/22/2022] Open
Abstract
The prevalence of obesity in adults is increasing worldwide, which is problematic since obesity is associated with degenerative diseases. Nowadays Indonesia is facing an interesting phenomenon since there are adults who have been obese since childhood and others who conversely were undernourished while young. The biological differences of these two types of obesities are not well understood. This study aims to analyse the difference in the size and number of visceral adipocytes, HIF-1α, HIF-2α and MAP1LC3A/LC3 in obese adult rat groups that were undernourished at a young age compared to groups who were normal or even already fat from childhood. We analyzed Hif-1α, Hif-2α, Lc3 mRNA by RT-qPCR; HIF-1α, HIF-2α, MAP1LC3A/LC3 protein level by ELISA. The HIF-1α and HIF-2α protein level of visceral adipocytes derived from the group of rat which were undernourished while young increased significantly compared to the group which was overnourished. The visceral adipocytes of the group which was overnourished since childhood showed an increase in Hif-2α mRNA level. The Lc3 mRNA of the rat group which were undernourished since young increased significantly compared to rat group which was obese since childhood.
Collapse
Affiliation(s)
- Lailan Safina Nasution
- Doctoral Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Salemba Raya 4 Jakarta 10430, Indonesia.,Department of Nutrition, Faculty of Medicine, Universitas Muhammadiyah Jakarta, K.H. Ahmad Dahlan Jakarta 15419, Indonesia
| | - Ahmad Aulia Jusuf
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Salemba Raya 4 Jakarta 10430, Indonesia
| | - Sri Widia Jusman
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Salemba Raya 4 Jakarta 10430, Indonesia.,Center of Hypoxia and Oxidative Stress Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Salemba Raya 4 Jakarta 10430, Indonesia
| | - Mohamad Sadikin
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Salemba Raya 4 Jakarta 10430, Indonesia.,Center of Hypoxia and Oxidative Stress Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Salemba Raya 4 Jakarta 10430, Indonesia
| |
Collapse
|
172
|
Russo L, Muir L, Geletka L, Delproposto J, Baker N, Flesher C, O'Rourke R, Lumeng CN. Cholesterol 25-hydroxylase (CH25H) as a promoter of adipose tissue inflammation in obesity and diabetes. Mol Metab 2020; 39:100983. [PMID: 32229247 PMCID: PMC7267735 DOI: 10.1016/j.molmet.2020.100983] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Expansion of visceral adipose tissue (VAT) and metabolic inflammation are consequences of obesity and associated with type 2 diabetes (T2DM). Metabolically activated adipose tissue macrophages (ATMs) undergo qualitative and quantitative changes that influence their inflammatory responses. How these cells contribute to insulin resistance (IR) in humans is not well understood. Cholesterol 25-Hydroxylase (CH25H) converts cholesterol into 25-Hydroxycholesterol (25-HC), an oxysterol that modulates immune responses. Using human and murine models, we investigated the role of CH25H in metabolic inflammation. Methods We performed transcriptomic (RNASeq) analysis on the human whole AT biopsies and sorted ATMs from obese non-diabetic (NDM) and obese diabetic (DM) subjects to inquire if CH25H was increased in DM. We challenged mice lacking Ch25h with a high-fat diet (HFD) to characterize their metabolic and immunologic profiling. Ch25h KO mice and human adipose tissue biopsies from NDM and DM subjects were analyzed. LC-MS was conducted to measure 25-HC level in AT. In vitro analysis permitted us to investigate the effect of 25-HC on cytokine expression. Results In our RNASeq analysis of human visceral and subcutaneous biopsies, gene pathways related to inflammation were increased in obese DM vs. non-DM subjects that included CH25H. CH25H was enriched in the stromal vascular fraction of human adipose tissue and highly expressed in CD206+ human ATMs by flow cytometry analysis. We measured the levels of the oxysterols, 25-HC and 7α25diHC, in human visceral adipose tissue samples and showed a correlation between BMI and 25-HC. Using mouse models of diet-induced obesity (DIO), we found that HFD-induced Ch25h expression in eWAT and increased levels of 25-HC in AT. On HFD, Ch25h KO mice became obese but exhibited reduced plasma insulin levels, improved insulin action, and decreased ectopic lipid deposit. Improved insulin sensitivity in Ch25h KO mice was due to attenuation of CD11c+ adipose tissue macrophage infiltration in eWAT. Finally, by testing AT explants, bone marrow-derived macrophages (BMDMs) and SVF cells from Ch25h deficient mice, we observed that 25-HC is required for the expression of pro-inflammatory genes. 25-HC was also able to induce inflammatory genes in preadipocytes. Conclusions Our data suggest a critical role for CH25H/25-HC in the progression of meta-inflammation and insulin resistance in obese humans and mouse models of obesity. In response to obesogenic stimuli, CH25H/25-HC could exert a pro-inflammatory role. CH25H upregulation in visceral adipose tissue is associated with diabetes in humans. ATMs are the primary site of CH25H expression in humans and mice. DIO in mice activates Ch25h expression and 25-HC production in visceral adipose tissue. Obese Ch25h KO mice have improved insulin sensitivity due to attenuated adipose tissue inflammation. In response to inflammatory stimuli, Ch25h/25-HC potentiates myeloid activation.
Collapse
Affiliation(s)
- Lucia Russo
- Department of Pediatrics, Division of Pulmonary Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lindsey Muir
- Department of Pediatrics, Division of Pulmonary Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lynn Geletka
- Department of Pediatrics, Division of Pulmonary Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jennifer Delproposto
- Department of Pediatrics, Division of Pulmonary Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Nicki Baker
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carmen Flesher
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Robert O'Rourke
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carey N Lumeng
- Department of Pediatrics, Division of Pulmonary Medicine, University of Michigan Medical School, Ann Arbor, MI, United States; Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
173
|
Lee K, Lee YJ, Kim KJ, Chei S, Jin H, Oh HJ, Lee BY. Gomisin N from Schisandra chinensis Ameliorates Lipid Accumulation and Induces a Brown Fat-Like Phenotype through AMP-Activated Protein Kinase in 3T3-L1 Adipocytes. Int J Mol Sci 2020; 21:ijms21062153. [PMID: 32245100 PMCID: PMC7139380 DOI: 10.3390/ijms21062153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity results from an imbalance between energy intake and energy expenditure, in which excess fat is stored as triglycerides (TGs) in white adipocytes. Recent studies have explored the anti-obesity effects of certain edible phytochemicals, which suppress TG accumulation and stimulate a brown adipocyte-like phenotype in white adipocytes. Gomisin N (GN) is an important bioactive component of Schisandra chinensis, a woody plant endemic to Asia. GN has antioxidant, anti-inflammatory and hepatoprotective effects in vivo and in vitro. However, the anti-obesity effects of GN in lipid metabolism and adipocyte browning have not yet been investigated. In the present study, we aimed to determine whether GN suppresses lipid accumulation and regulates energy metabolism, potentially via AMP-activated protein kinase (AMPK), in 3T3-L1 adipocytes. Our findings demonstrate that GN inhibited adipogenesis and lipogenesis in adipocyte differentiation. Also, GN not only increased the expression of thermogenic factors, including uncoupling protein 1 (UCP1), but also enhanced fatty acid oxidation (FAO) in 3T3-L1 cells. Therefore, GN may have a therapeutic benefit as a promising natural agent to combat obesity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Boo-Yong Lee
- Correspondence: ; Tel.: +82-31-881-7155; Fax: +82-31-881-7219
| |
Collapse
|
174
|
The Adipocyte Acquires a Fibroblast-Like Transcriptional Signature in Response to a High Fat Diet. Sci Rep 2020; 10:2380. [PMID: 32047213 PMCID: PMC7012923 DOI: 10.1038/s41598-020-59284-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Visceral white adipose tissue (vWAT) expands and undergoes extensive remodeling during diet-induced obesity. Much is known about the contribution of various stromal vascular cells to the remodeling process, but less is known of the changes that occur within the adipocyte as it becomes progressively dysfunctional. Here, we performed a transcriptome analysis of isolated vWAT adipocytes to assess global pathway changes occurring in response to a chronic high fat diet (HFD). The data demonstrate that the adipocyte responds to the HFD by adopting a fibroblast-like phenotype, characterized by enhanced expression of ECM, focal adhesion and cytoskeletal genes and suppression of many adipocyte programs most notably those associated with mitochondria. This study reveals that during obesity the adipocyte progressively becomes metabolically dysfunctional due to its acquisition of fibrogenic functions. We propose that mechano-responsive transcription factors such as MRTFA and SRF contribute to both upregulation of morphological genes as well as suppression of mitochondrial programs.
Collapse
|
175
|
Ponce AJ, Galván-Salas T, Lerma-Alvarado RM, Ruiz-Herrera X, Hernández-Cortés T, Valencia-Jiménez R, Cárdenas-Rodríguez LE, Martínez de la Escalera G, Clapp C, Macotela Y. Low prolactin levels are associated with visceral adipocyte hypertrophy and insulin resistance in humans. Endocrine 2020; 67:331-343. [PMID: 31919769 DOI: 10.1007/s12020-019-02170-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/21/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE Low prolactin (PRL) serum levels are associated with glucose intolerance and type 2 diabetes in adults, and with metabolic syndrome and obesity in children. In obese rodents, PRL treatment promotes insulin sensitivity by maintaining adipose tissue fitness, and lack of PRL signaling exacerbates obesity-derived metabolic alterations. Since adipose tissue dysfunction is a key factor triggering metabolic alterations, we evaluated whether PRL serum levels are associated with adipocyte hypertrophy (a marker of adipose tissue dysfunction), insulin resistance, and metabolic syndrome in lean, overweight, and obese adult men and women. METHODS Samples of serum and adipose tissue from 40 subjects were obtained to evaluate insulin resistance index (homeostasis model assessment of insulin resistance (HOMA-IR)), signs of metabolic syndrome (glucose levels, high-density lipoproteins, triglycerides, blood pressure, and waist circumference), as well as adipocyte size and gene expression in fat. RESULTS Lower PRL serum levels are associated with adipocyte hypertrophy, in visceral but not in subcutaneous fat, and with a higher HOMA-IR. Furthermore, low systemic PRL levels together with high waist circumference predict an elevated HOMA-IR whereas low serum PRL values in combination with high blood glucose predicts visceral adipocyte hypertrophy. In agreement, visceral fat from insulin resistant subjects shows reduced expression of prolactin receptor. However, there is no association between PRL levels and obesity or signs of metabolic syndrome. CONCLUSIONS Our results support that low levels of PRL are markers of visceral fat dysfunction and insulin resistance, and suggest the potential therapeutic value of medications elevating PRL levels to help maintain metabolic homeostasis.
Collapse
Affiliation(s)
- Antonio J Ponce
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, México
| | - Tomás Galván-Salas
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, México
- Hospital General de Querétaro, Servicio de Cirugía General, SESEQ, 76170, Querétaro, México
| | | | - Xarubet Ruiz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, México
| | - Tomás Hernández-Cortés
- Hospital General de Querétaro, Servicio de Cirugía General, SESEQ, 76170, Querétaro, México
| | | | - Laura E Cárdenas-Rodríguez
- Hospital General de Querétaro, Centro Estatal de Diagnóstico Especializado, SESEQ, 76170, Querétaro, México
| | - Gonzalo Martínez de la Escalera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, México
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, México
| | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, México.
| |
Collapse
|
176
|
Salazar J, Chávez-Castillo M, Rojas J, Ortega A, Nava M, Pérez J, Rojas M, Espinoza C, Chacin M, Herazo Y, Angarita L, Rojas DM, D'Marco L, Bermudez V. Is "Leptin Resistance" Another Key Resistance to Manage Type 2 Diabetes? Curr Diabetes Rev 2020; 16:733-749. [PMID: 31886750 DOI: 10.2174/1573399816666191230111838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/08/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Although novel pharmacological options for the treatment of type 2 diabetes mellitus (DM2) have been observed to modulate the functionality of several key organs in glucose homeostasis, successful regulation of insulin resistance (IR), body weight management, and pharmacological treatment of obesity remain notable problems in endocrinology. Leptin may be a pivotal player in this scenario, as an adipokine which centrally regulates appetite and energy balance. In obesity, excessive caloric intake promotes a low-grade inflammatory response, which leads to dysregulations in lipid storage and adipokine secretion. In turn, these entail alterations in leptin sensitivity, leptin transport across the blood-brain barrier and defects in post-receptor signaling. Furthermore, hypothalamic inflammation and endoplasmic reticulum stress may increase the expression of molecules which may disrupt leptin signaling. Abundant evidence has linked obesity and leptin resistance, which may precede or occur simultaneously to IR and DM2. Thus, leptin sensitivity may be a potential early therapeutic target that demands further preclinical and clinical research. Modulators of insulin sensitivity have been tested in animal models and small clinical trials with promising results, especially in combination with agents such as amylin and GLP-1 analogs, in particular, due to their central activity in the hypothalamus.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - Joselyn Rojas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Angel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - José Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | | | - Maricarmen Chacin
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Yaneth Herazo
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Lissé Angarita
- Escuela de Nutricion y Dietetica, Facultad de Medicina, Universidad Andres Bello, Sede Concepcion, Chile
| | - Diana Marcela Rojas
- Escuela de Nutricion y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Luis D'Marco
- Hospital Clinico de Valencia, INCLIVA, Servicio de Nefrologia, Valencia, Spain
| | - Valmore Bermudez
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
177
|
Strieder-Barboza C, Baker NA, Flesher CG, Karmakar M, Neeley CK, Polsinelli D, Dimick JB, Finks JF, Ghaferi AA, Varban OA, Lumeng CN, O'Rourke RW. Advanced glycation end-products regulate extracellular matrix-adipocyte metabolic crosstalk in diabetes. Sci Rep 2019; 9:19748. [PMID: 31875018 PMCID: PMC6930305 DOI: 10.1038/s41598-019-56242-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 12/28/2022] Open
Abstract
The adipose tissue extracellular matrix (ECM) regulates adipocyte cellular metabolism and is altered in obesity and type 2 diabetes, but mechanisms underlying ECM-adipocyte metabolic crosstalk are poorly defined. Advanced glycation end-product (AGE) formation is increased in diabetes. AGE alter tissue function via direct effects on ECM and by binding scavenger receptors on multiple cell types and signaling through Rho GTPases. Our goal was to determine the role and underlying mechanisms of AGE in regulating human ECM-adipocyte metabolic crosstalk. Visceral adipocytes from diabetic and non-diabetic humans with obesity were studied in 2D and 3D-ECM culture systems. AGE is increased in adipose tissue from diabetic compared to non-diabetic subjects. Glycated collagen 1 and AGE-modified ECM regulate adipocyte glucose uptake and expression of AGE scavenger receptors and Rho signaling mediators, including the DIAPH1 gene, which encodes the human Diaphanous 1 protein (hDia1). Notably, inhibition of hDia1, but not scavenger receptors RAGE or CD36, attenuated AGE-ECM inhibition of adipocyte glucose uptake. These data demonstrate that AGE-modification of ECM contributes to adipocyte insulin resistance in human diabetes, and implicate hDia1 as a potential mediator of AGE-ECM-adipocyte metabolic crosstalk.
Collapse
Affiliation(s)
- Clarissa Strieder-Barboza
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicki A Baker
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carmen G Flesher
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Monita Karmakar
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher K Neeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dominic Polsinelli
- Undergraduate Research Opportunity Program, University of Michigan, Ann Arbor, MI, USA
| | - Justin B Dimick
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonathan F Finks
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Amir A Ghaferi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Oliver A Varban
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Surgery, Ann Arbor Veterans Affairs Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
178
|
Nakano Y. Adult-Onset Diseases in Low Birth Weight Infants: Association with Adipose Tissue Maldevelopment. J Atheroscler Thromb 2019; 27:397-405. [PMID: 31866623 PMCID: PMC7242223 DOI: 10.5551/jat.rv17039] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Low birth weight (LBW) infants have higher risk of developing insulin resistance and its comorbidities later in life. The concept of “developmental origins of health and disease” suggests that intrauterine and postnatal environments have an important role in increasing these risks. The risk of such adult-onset diseases in LBW infants might be associated with adipose tissue maldevelopment including altered body composition and increased amount of visceral fat, which is the same mechanism as that in children and adults with metabolic syndrome. However, LBW infants often have different characteristics: they are not always overweight or obese over their life course. The inconsistency might be associated with the thrifty phenotype, which is produced in response to impaired growth potential and decreased lean body mass. LBW infants tend to be obese within the limits of impaired growth potential. Through our previous investigations evaluating longitudinal changes in adiponectin levels at an early stage of life, we speculated that probably, the intrauterine life of term infants or the period up to term-equivalent age in preterm infants might be the key age for the development of adipose tissues including fat cells. Because of that, we hypothesized that the smaller number of adipocytes in LBW infants might be associated with overloading of single adipocytes and impaired adipose tissue expandability. The possible mechanisms are discussed from the perspective of adipose tissue maldevelopment in LBW infants.
Collapse
Affiliation(s)
- Yuya Nakano
- Department of Pediatrics, Showa University School of Medicine
| |
Collapse
|
179
|
Drareni K, Ballaire R, Barilla S, Mathew MJ, Toubal A, Fan R, Liang N, Chollet C, Huang Z, Kondili M, Foufelle F, Soprani A, Roussel R, Gautier JF, Alzaid F, Treuter E, Venteclef N. GPS2 Deficiency Triggers Maladaptive White Adipose Tissue Expansion in Obesity via HIF1A Activation. Cell Rep 2019; 24:2957-2971.e6. [PMID: 30208320 PMCID: PMC6153369 DOI: 10.1016/j.celrep.2018.08.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic white adipose tissue (WAT) represents a maladaptive mechanism linked to the risk for developing type 2 diabetes in humans. However, the molecular events that predispose WAT to hypertrophy are poorly defined. Here, we demonstrate that adipocyte hypertrophy is triggered by loss of the corepressor GPS2 during obesity. Adipocyte-specific GPS2 deficiency in mice (GPS2 AKO) causes adipocyte hypertrophy, inflammation, and mitochondrial dysfunction during surplus energy. This phenotype is driven by HIF1A activation that orchestrates inadequate WAT remodeling and disrupts mitochondrial activity, which can be reversed by pharmacological or genetic HIF1A inhibition. Correlation analysis of gene expression in human adipose tissue reveals a negative relationship between GPS2 and HIF1A, adipocyte hypertrophy, and insulin resistance. We propose therefore that the obesity-associated loss of GPS2 in adipocytes predisposes for a maladaptive WAT expansion and a pro-diabetic status in mice and humans. Adipose-specific GPS2 deficiency predisposes for adipocyte hypertrophy Loss of GPS2 triggers transcriptional activation of HIF1A pathways Deregulation of GPS2-HIF1A interplay provokes disrupted mitochondrial activity GPS2 and HIF1A levels are negatively correlated in human adipose tissue
Collapse
Affiliation(s)
- Karima Drareni
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Raphaëlle Ballaire
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France; Inovarion, 75013 Paris, France
| | - Serena Barilla
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Mano J Mathew
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Amine Toubal
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Rongrong Fan
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Ning Liang
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Catherine Chollet
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Zhiqiang Huang
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Maria Kondili
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Fabienne Foufelle
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Antoine Soprani
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France; Clinique Geoffroy Saint-Hilaire, Ramsey General de Santé, Paris, France
| | - Ronan Roussel
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France; Diabetology, Endocrinology and Nutrition Department, DHU FIRE, Bichat Hospital, AP-HP, Paris, France; Faculty of Medicine, University Paris-Diderot, Paris, France
| | - Jean-François Gautier
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France; Assistance Publique-Hôpitaux de Paris, Lariboisière Hospital, Department of Diabetes, Clinical Investigation Centre (CIC-9504), University Paris-Diderot, Paris, France; Faculty of Medicine, University Paris-Diderot, Paris, France
| | - Fawaz Alzaid
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Eckardt Treuter
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden.
| | - Nicolas Venteclef
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.
| |
Collapse
|
180
|
Sawamoto A, Nakanishi M, Okuyama S, Furukawa Y, Nakajima M. Heptamethoxyflavone inhibits adipogenesis via enhancing PKA signaling. Eur J Pharmacol 2019; 865:172758. [DOI: 10.1016/j.ejphar.2019.172758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 01/18/2023]
|
181
|
Abstract
Adipose tissue is highly dynamic and increases its size dependent on the status of nutrition. Generally, an increase of adipose tissue mass is attributed to two mechanisms, namely hypertrophy (increase in adipocyte size) and hyperplasia (increase in adipocyte number). Here, we analyzed the proliferation capacity of a pool of nutrition sensing preadipocytes after short-term high fat diet (HFD) feeding. We show that this process is age independent and that adipocyte hyperplasia seems not to be dependent on adipocyte hypertrophy. Further, we could show that the subsequent development into adipocytes is influenced by the duration of HFD feeding after proliferation. Our data also demonstrate that the studied pool of preadipocytes seems to be finite and cannot be reactivated by multiple bouts of HFD feeding. In conclusion, our results indicate an important link between stem cells, nutrition status and homeostasis in the epididymal adipose tissue.
Collapse
Affiliation(s)
- Elisabeth Kulenkampff
- Institute of Food Nutrition and Health, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food Nutrition and Health, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| |
Collapse
|
182
|
Belligoli A, Compagnin C, Sanna M, Favaretto F, Fabris R, Busetto L, Foletto M, Dal Prà C, Serra R, Prevedello L, Da Re C, Bardini R, Mescoli C, Rugge M, Fioretto P, Conci S, Bettini S, Milan G, Vettor R. Characterization of subcutaneous and omental adipose tissue in patients with obesity and with different degrees of glucose impairment. Sci Rep 2019; 9:11333. [PMID: 31383894 PMCID: PMC6683173 DOI: 10.1038/s41598-019-47719-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/12/2019] [Indexed: 01/05/2023] Open
Abstract
Although obesity represents a risk factor for the development of type 2 diabetes mellitus (T2DM), the link between these pathological conditions is not so clear. The manner in which the different elements of adipose tissue (AT) interplay in order to grow has been suggested to have a role in the genesis of metabolic complications, but this has not yet been fully addressed in humans. Through IHC, transmission electron microscopy, cytometry, and in vitro cultures, we described the morphological and functional changes of subcutaneous and visceral AT (SAT and VAT) in normoglycemic, prediabetic and T2DM patients with obesity compared to lean subjects. In both SAT and VAT we measured a hypertrophic and hyperplastic expansion, causing similar vascular rarefaction in obese patients with different degrees of metabolic complications. Capillaries display dysfunctional basement membrane thickening only in T2DM patients evidencing VAT as a new target of T2DM microangiopathy. The largest increase in adipocyte size and decrease in adipose stem cell number and adipogenic potential occur both in T2DM and in prediabetes. We showed that SAT and VAT remodeling with stemness deficit is associated with early glucose metabolism impairment suggesting the benefit of an AT-target therapy controlling hypertrophy and hyperplasia already in prediabetic obese patients.
Collapse
Affiliation(s)
- Anna Belligoli
- Department of Medicine, University of Padua, Internal Medicine 3, 35128, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128, Padua, Italy
| | - Chiara Compagnin
- Department of Medicine, University of Padua, Internal Medicine 3, 35128, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128, Padua, Italy
| | - Marta Sanna
- Department of Medicine, University of Padua, Internal Medicine 3, 35128, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128, Padua, Italy
| | - Francesca Favaretto
- Department of Medicine, University of Padua, Internal Medicine 3, 35128, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128, Padua, Italy
| | - Roberto Fabris
- Department of Medicine, University of Padua, Internal Medicine 3, 35128, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128, Padua, Italy
| | - Luca Busetto
- Department of Medicine, University of Padua, Internal Medicine 3, 35128, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128, Padua, Italy
| | - Mirto Foletto
- Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128, Padua, Italy
| | - Chiara Dal Prà
- Department of Medicine, University of Padua, Internal Medicine 3, 35128, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128, Padua, Italy
| | - Roberto Serra
- Department of Medicine, University of Padua, Internal Medicine 3, 35128, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128, Padua, Italy
| | - Luca Prevedello
- Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128, Padua, Italy
| | - Chiara Da Re
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Division of General Surgery, 35128, Padua, Italy
| | - Romeo Bardini
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Division of General Surgery, 35128, Padua, Italy
| | - Claudia Mescoli
- Department of Medicine, University of Padua, Surgical Pathology and Cytopathology Unit, 35121, Padua, Italy
| | - Massimo Rugge
- Department of Medicine, University of Padua, Surgical Pathology and Cytopathology Unit, 35121, Padua, Italy
| | - Paola Fioretto
- Department of Medicine, University of Padua, Internal Medicine 3, 35128, Padua, Italy
| | - Scilla Conci
- Department of Medicine, University of Padua, Internal Medicine 3, 35128, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128, Padua, Italy
| | - Silvia Bettini
- Department of Medicine, University of Padua, Internal Medicine 3, 35128, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128, Padua, Italy
| | - Gabriella Milan
- Department of Medicine, University of Padua, Internal Medicine 3, 35128, Padua, Italy.
- Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128, Padua, Italy.
| | - Roberto Vettor
- Department of Medicine, University of Padua, Internal Medicine 3, 35128, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128, Padua, Italy
| |
Collapse
|
183
|
Gradel AKJ, Porsgaard T, Brockhoff PB, Seested T, Lykkesfeldt J, Refsgaard HHF. Delayed insulin absorption correlates with alterations in subcutaneous depot kinetics in rats with diet-induced obesity. Obes Sci Pract 2019; 5:281-288. [PMID: 31275602 PMCID: PMC6587326 DOI: 10.1002/osp4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Obesity is associated with delayed insulin absorption upon subcutaneous (s.c.) dosing in humans. The aim of this study was to investigate whether alterations in depot structure and kinetics of the s.c. injection depot contribute to this delay. METHODS Rats fed a high-fat diet (HFD) and low-fat diet (LFD) were included in a series of insulin pharmacokinetic and imaging studies. Injection depots were visualized with micro X-ray computed tomography imaging upon s.c. administration of insulin aspart mixed with the contrast agent iomeprol, and insulin aspart exposure was measured by means of luminescent oxygen channelling immunoassay. RESULTS Body weight and fat mass were increased in rats fed an HFD vs. LFD (p < 0.05), whereas the lean mass was not. The HFD group exhibited delayed insulin absorption from the s.c. tissue (p < 0.001). This delay was associated with smaller injection depots upon s.c. dosing (p < 0.05) and correlated with a slower depot disappearance from the s.c. tissue (p < 0.05) compared with the LFD group. Depot disappearance from the s.c. tissue was inversely correlated with body fat mass (p < 0.05). CONCLUSIONS Alterations in s.c. injection depot structure and kinetics may play a role in the obesity-associated delay in insulin absorption.
Collapse
Affiliation(s)
- A. K. J. Gradel
- Department of Veterinary and Animal Sciences, Section of Experimental Animal Models, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
- Global Drug Discovery, Novo Nordisk A/SMåløvDenmark
| | - T. Porsgaard
- Global Drug Discovery, Novo Nordisk A/SMåløvDenmark
| | - P. B. Brockhoff
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKgs. LyngbyDenmark
| | - T. Seested
- Global Drug Discovery, Novo Nordisk A/SMåløvDenmark
| | - J. Lykkesfeldt
- Department of Veterinary and Animal Sciences, Section of Experimental Animal Models, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | |
Collapse
|
184
|
Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, Beguinot F, Miele C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci 2019; 20:ijms20092358. [PMID: 31085992 PMCID: PMC6539070 DOI: 10.3390/ijms20092358] [Citation(s) in RCA: 831] [Impact Index Per Article: 166.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a critical risk factor for the development of type 2 diabetes (T2D), and its prevalence is rising worldwide. White adipose tissue (WAT) has a crucial role in regulating systemic energy homeostasis. Adipose tissue expands by a combination of an increase in adipocyte size (hypertrophy) and number (hyperplasia). The recruitment and differentiation of adipose precursor cells in the subcutaneous adipose tissue (SAT), rather than merely inflating the cells, would be protective from the obesity-associated metabolic complications. In metabolically unhealthy obesity, the storage capacity of SAT, the largest WAT depot, is limited, and further caloric overload leads to the fat accumulation in ectopic tissues (e.g., liver, skeletal muscle, and heart) and in the visceral adipose depots, an event commonly defined as “lipotoxicity.” Excessive ectopic lipid accumulation leads to local inflammation and insulin resistance (IR). Indeed, overnutrition triggers uncontrolled inflammatory responses in WAT, leading to chronic low-grade inflammation, therefore fostering the progression of IR. This review summarizes the current knowledge on WAT dysfunction in obesity and its associated metabolic abnormalities, such as IR. A better understanding of the mechanisms regulating adipose tissue expansion in obesity is required for the development of future therapeutic approaches in obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Michele Longo
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Federica Zatterale
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Jamal Naderi
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Luca Parrillo
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Gregory Alexander Raciti
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Claudia Miele
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| |
Collapse
|
185
|
Abstract
One of the biggest challenges in the management of obesity is the prevention of weight regain after successful weight loss. Weight regain after weight loss has large interindividual variation. Although many factors probably contribute to this variation, we hypothesize that variability in biological responses associated with weight loss-induced shrinking of subcutaneous adipocytes has an important role. In this Review, we show that weight loss-induced variations in cellular stress, extracellular matrix remodelling, inflammatory responses, adipokine secretion and lipolysis seem to be associated with the amount of weight that is regained after successful weight loss. Weight regain could therefore, at least in part, depend on a combination of these factors. Further research on the causality of these associations could aid the development of effective strategies to prevent weight regain after successful weight loss.
Collapse
Affiliation(s)
- Marleen A van Baak
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands.
| | - Edwin C M Mariman
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
186
|
Abbott KA, Burrows TL, Thota RN, Alex A, Acharya S, Attia J, McEvoy M, Garg ML. Association between plasma phospholipid omega-3 polyunsaturated fatty acids and type 2 diabetes is sex dependent: The Hunter Community Study. Clin Nutr 2019; 39:1059-1066. [PMID: 31023487 DOI: 10.1016/j.clnu.2019.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/20/2019] [Accepted: 04/08/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND & AIMS Chronic inflammation drives the development of insulin resistance and type 2 diabetes. Long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) eicosapentaenoic acid (EPA, c20:5n-3) and docosahexaenoic acid (DHA, c22:6n-3) may protect against type 2 diabetes development. The aim of this current study is to determine whether LCn-3PUFA status is associated with type 2 diabetes in the Hunter Community Study. METHODS Men and women aged 55-85 years were randomly selected from the electoral roll and invited to participate. Participants were included in the current study if they had plasma phospholipid fatty acid composition data available and diabetes status could be determined. LCn-3PUFA status was determined by fatty acid composition of plasma phospholipids (EPA + DHA, %,w/w). Diabetes was determined according to World Health Organisation criteria. Insulin was measured in n = 251 participants and HOMA-IR calculated. RESULTS In total, n = 2092 (diabetes: n = 249) participants were included. After adjusting for confounders of diabetes, LCn-3PUFA status was inversely associated with diabetes in overweight/obese females (OR [95%CI]: 0.90 [0.80, 1.00], p = 0.045) but not males (p-interactionsex = 0.041). Overweight/obese females with diabetes had significantly lower levels of DHA than those without diabetes (mean difference [95%CI]: -0.53 [-0.87, -0.20], p = 0.002), with no difference in EPA. LCn-3PUFA was inversely associated with HOMA-IR (r = -0.175, p = 0.005). CONCLUSIONS This study provides further evidence of a sex-dependent association between LCn-3PUFA and type 2 diabetes. Causal pathways between LCn-3PUFA and type 2 diabetes merits delineation.
Collapse
Affiliation(s)
- Kylie A Abbott
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - Tracy L Burrows
- School of Health Sciences, University of Newcastle, NSW, Australia
| | - Rohith N Thota
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Anu Alex
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - Shamasunder Acharya
- Department of Diabetes and Endocrinology, John Hunter Hospital, Hunter New England Local Health District, Newcastle, NSW, Australia; School of Medicine and Public Health, University of Newcastle, NSW, Australia
| | - John Attia
- School of Medicine and Public Health, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Mark McEvoy
- School of Medicine and Public Health, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Manohar L Garg
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia.
| |
Collapse
|
187
|
Atawia RT, Bunch KL, Toque HA, Caldwell RB, Caldwell RW. Mechanisms of obesity-induced metabolic and vascular dysfunctions. FRONT BIOSCI-LANDMRK 2019; 24:890-934. [PMID: 30844720 PMCID: PMC6689231 DOI: 10.2741/4758] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity has reached epidemic proportions and its prevalence is climbing. Obesity is characterized by hypertrophied adipocytes with a dysregulated adipokine secretion profile, increased recruitment of inflammatory cells, and impaired metabolic homeostasis that eventually results in the development of systemic insulin resistance, a phenotype of type 2 diabetes. Nitric oxide synthase (NOS) is an enzyme that converts L-arginine to nitric oxide (NO), which functions to maintain vascular and adipocyte homeostasis. Arginase is a ureohydrolase enzyme that competes with NOS for L-arginine. Arginase activity/expression is upregulated in obesity, which results in diminished bioavailability of NO, impairing both adipocyte and vascular endothelial cell function. Given the emerging role of NO in the regulation of adipocyte physiology and metabolic capacity, this review explores the interplay between arginase and NO, and their effect on the development of metabolic disorders, cardiovascular diseases, and mitochondrial dysfunction in obesity. A comprehensive understanding of the mechanisms involved in the development of obesity-induced metabolic and vascular dysfunction is necessary for the identification of more effective and tailored therapeutic avenues for their prevention and treatment.
Collapse
Affiliation(s)
- Reem T Atawia
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Katharine L Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology,and Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Robert W Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904,USA,
| |
Collapse
|
188
|
Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism 2019; 92:71-81. [PMID: 30447223 DOI: 10.1016/j.metabol.2018.11.005] [Citation(s) in RCA: 326] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
Abstract
Obesity, a pandemic of the modern world, is intimately associated with dyslipidemia, which is mainly driven by the effects of insulin resistance and pro-inflammatory adipokines. However, recent evidence suggests that obesity-induced dyslipidemia is not a unique pathophysiological entity, but rather has distinct characteristics depending on many individual factors. In line with that, in a subgroup of metabolically healthy obese (MHO) individuals, dyslipidemia is less prominent or even absent. In this review, we will address the main characteristics of dyslipidemia and mechanisms that induce its development in obesity. The fields, which should be further investigated to expand our knowledge on obesity-related dyslipidemia and potentially yield new strategies for prevention and management of cardiometabolic risk, will be highlighted. Also, we will discuss recent findings on novel lipid biomarkers in obesity, in particular proprotein convertase subtilisin/kexin type 9 (PCSK9), as the key molecule that regulates metabolism of low-density lipoproteins (LDL), and sphingosine-1-phosphate (S1P), as one of the most important mediators of high-density lipoprotein (HDL) particles function. Special attention will be given to microRNAs and their potential use as biomarkers of obesity-associated dyslipidemia.
Collapse
Affiliation(s)
- Jelena Vekic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stefanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Zorana Jelic-Ivanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
189
|
Liu Z, Wang S, Wang Y, Zhou N, Shu J, Stamm C, Jiang M, Luo F. Association of epicardial adipose tissue attenuation with coronary atherosclerosis in patients with a high risk of coronary artery disease. Atherosclerosis 2019; 284:230-236. [PMID: 30777338 DOI: 10.1016/j.atherosclerosis.2019.01.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Density may indicate some tissue characteristics and help reveal the role of epicardial adipose tissue (EAT) in coronary artery disease (CAD). Therefore, we assessed the association of EAT density with the coronary artery plaque burden in patients presenting with chest pain. METHODS This retrospective cohort study comprised 614 patients (mean age 61 ± 9 years, 61% males) with a high cardiovascular disease risk, who underwent cardiac computed tomography angiography. Density was reflected as attenuation. RESULTS EAT attenuation was significantly associated with EAT volume with a negative Pearson's correlation coefficient and gradually increased across coronary artery calcium (CAC) scores of 0, 1-100, 101-400 and > 400. EAT attenuation was tightly associated with CAD risk factors, including age, sex, BMI, total cholesterol, neutrophil to lymphocyte ratios and CAC score. The association between EAT attenuation and CAC score was strengthened after adjusting for multivariable indices (OR 1.21, 95% CI 1.05-1.40, p = 0.01) and further adjusting for EAT volume (OR 1.26 95% CI 1.06-1.51, p<0.01). However, EAT attenuation was associated only with CAD presence (OR 1.32, 95% CI 1.02-1.69, p<0.05), CAC presence (OR 1.28, 95% CI 1.02-1.60, p<0.05), segment involvement score (OR 1.19, 95% CI 1.01-1.40, p<0.05) and segment stenosis score (OR 1.19, 95% CI 1.01-1.40, p<0.05) in the EAT volume- and multivariable-adjusted model. Additionally, EAT attenuation was not associated with significant coronary artery lesions and triple-vessel plaques. CONCLUSIONS Higher EAT attenuation is associated with a higher risk of CAD.
Collapse
Affiliation(s)
- Zihou Liu
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Shunjun Wang
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yongqiang Wang
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ningbo Zhou
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jie Shu
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany
| | - Meng Jiang
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fanyan Luo
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
190
|
Abstract
Adipose tissue possesses the remarkable capacity to control its size and function in response to a variety of internal and external cues, such as nutritional status and temperature. The regulatory circuits of fuel storage and oxidation in white adipocytes and thermogenic adipocytes (brown and beige adipocytes) play a central role in systemic energy homeostasis, whereas dysregulation of the pathways is closely associated with metabolic disorders and adipose tissue malfunction, including obesity, insulin resistance, chronic inflammation, mitochondrial dysfunction, and fibrosis. Recent studies have uncovered new regulatory elements that control the above parameters and provide new mechanistic opportunities to reprogram fat cell fate and function. In this Review, we provide an overview of the current understanding of adipocyte metabolism in physiology and disease and also discuss possible strategies to alter fuel utilization in fat cells to improve metabolic health.
Collapse
Affiliation(s)
- Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Shingo Kajimura
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA.
- UCSF Diabetes Center, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.
| |
Collapse
|
191
|
Sarigil O, Anil-Inevi M, Yilmaz E, Mese G, Tekin HC, Ozcivici E. Label-free density-based detection of adipocytes of bone marrow origin using magnetic levitation. Analyst 2019; 144:2942-2953. [DOI: 10.1039/c8an02503g] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first report on application of magnetic levitation technology for detection of adipogenic cells based on single cell density measurement.
Collapse
Affiliation(s)
- Oyku Sarigil
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| | - Muge Anil-Inevi
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| | - Esra Yilmaz
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics
- Izmir Institute of Technology
- Urla
- Turkey
| | - H. Cumhur Tekin
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| | - Engin Ozcivici
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| |
Collapse
|
192
|
Tojal A, Neves C, Veiga H, Ferreira S, Rodrigues I, Martel F, Calhau C, Negrão R, Keating E. Perigestational high folic acid: impact on offspring's peripheral metabolic response. Food Funct 2019; 10:7216-7226. [DOI: 10.1039/c9fo01807g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Perigestational excess folic acid programmed offspring to increased weight gain, but also to adipocyte hypertrophy, associated with Lpl upregulation, and to hyperglycemia, possibly due to VAT and skeletal muscle Glut4 downregulation.
Collapse
|
193
|
Chang CC, Sia KC, Chang JF, Lin CM, Yang CM, Huang KY, Lin WN. Lipopolysaccharide promoted proliferation and adipogenesis of preadipocytes through JAK/STAT and AMPK-regulated cPLA2 expression. Int J Med Sci 2019; 16:167-179. [PMID: 30662340 PMCID: PMC6332489 DOI: 10.7150/ijms.24068] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
The proliferation and adipogenesis of preadipocytes played important roles in the development of adipose tissue and contributed much to the processes of obesity. On the other hand, lipopolysaccharide (LPS), also known as endotoxin, is a key outer membrane component of gram-negative bacteria in the gut microbiota, and has a dominant role in linking inflammation to high-fat diet-induced metabolic syndrome. Studies suggested the potential roles of LPS in hepatic steatosis and in obese mice models. However, the molecular mechanisms underlying LPS-regulated obesity remained largely unknown. Here we reported that LPS stimulated expression of cyosolic phospholipase A2 (cPLA2), one of inflammation regulators of obesity, in the preadipocytes. Pretreatment the inhibitors of JAK2, STAT3, STAT5 or AMPK significantly reduced LPS-increased mRNA and protein expression of cPLA2 together with phosphorylation of JAK2, STAT3, STAT5 and AMPK, separately. Similarly, transfection of siRNA against JAK2 or AMPK abolished expression of cPLA2 and phosphorylation of JAK2 or AMPK together with downregulated expression of JAK2 and AMPK protein. LPS enhanced activation of STAT3 and STAT5 via JAK2-dependent manner in the preadipocytes. Transfection of JAK2 or AMPK siRNA further proofed the independence of JAK2 and AMPK in LPS-treated preadipocytes. In addition, LPS-increased DNA synthesis, cell numbers and cell viability of preadipocytes were attenuated by AACOCF3, AG490, BML-275, cPLA2 siRNA, JAK2 siRNA or AMPK siRNA. Attenuation JAK2/STAT or AMPK-dependent cPLA2 expression reduced LPS-mediated adipogenesis of preadipocytes. Stimulation of arachidonic acid or AMPK activator, A-769662, increased cell numbers and cell viability and promoted differentiation of preadipocytes. Collectively, these results indicated that LPS increased preadipocytes proliferation and adipogenesis via JAK/STAT and AMPK-dependent cPLA2 expression. The mechanisms of LPS-stimulated cPLA2 expression may be a link between bacteria and obesity and provides the molecular basis for preventing metabolic syndrome or hyperplasic obesity.
Collapse
Affiliation(s)
- Chao-Chien Chang
- Division of Cardiology, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, School of medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kee-Chin Sia
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jia-Feng Chang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.,PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Internal Medicine, En-Chu-Kong Hospital, New Taipei City, Taiwan
| | - Chia-Mo Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Chemistry, Fu-Jen Catholic University, New Taipei, Taiwan.,Division of Chest Medicine, Shin Kong Hospital, Taipei, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
194
|
Gu M, Luo L, Fang K. Crocin inhibits obesity via AMPK-dependent inhibition of adipocyte differentiation and promotion of lipolysis. Biosci Trends 2018; 12:587-594. [DOI: 10.5582/bst.2018.01240] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ming Gu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Li Luo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Kai Fang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
195
|
Kim B, Kwon J, Kim MS, Park H, Ji Y, Holzapfel W, Hyun CK. Protective effects of Bacillus probiotics against high-fat diet-induced metabolic disorders in mice. PLoS One 2018; 13:e0210120. [PMID: 30596786 PMCID: PMC6312313 DOI: 10.1371/journal.pone.0210120] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Recently, modulation of gut microbiota by probiotics treatment has been emerged as a promising strategy for treatment of metabolic disorders. Apart from lactic acid bacteria, Bacillus species (Bacillus spp.) have also been paid attention as potential probiotics, but nevertheless, the molecular mechanisms for their protective effect against metabolic dysfunction remain to be elucidated. In this study, we demonstrate that a probiotic mixture composed of 5 different Bacillus spp. protects mice from high-fat diet (HFD)-induced obesity, insulin resistance and non-alcoholic fatty liver disease (NAFLD). Probiotic Bacillus treatment substantially attenuated body weight gain and enhanced glucose tolerance by sensitizing insulin action in skeletal muscle and epididymal adipose tissue (EAT) of HFD-fed mice. Bacillus-treated HFD-fed mice also exhibited significantly suppressed chronic inflammation in the liver, EAT and skeletal muscle, which was observed to be associated with reduced HFD-induced intestinal permeability and enhanced adiponectin production. Additionally, Bacillus treatment significantly reversed HFD-induced hepatic steatosis. In Bacillus-treated mice, hepatic expression of lipid oxidative genes was significantly increased, and lipid accumulation in subcutaneous and mesenteric adipose tissues were significantly decreased, commensurate with down-regulated expression of genes involved in lipid uptake and lipogenesis. Although, in Bacillus-treated mice, significant alterations in gut microbiota composition was not observed, the enhanced expression of tight junction-associated proteins showed a possibility of improving gut barrier function by Bacillus treatment. Our findings provide possible explanations how Bacillus probiotics protect diet-induced obese mice against metabolic disorders, identifying the treatment of probiotic Bacillus as a potential therapeutic approach.
Collapse
Affiliation(s)
- Bobae Kim
- School of Life Science, Handong Global University, Pohang, Gyungbuk, Republic of Korea
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Jeonghyeon Kwon
- School of Life Science, Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Min-Seok Kim
- School of Life Science, Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Haryung Park
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Yosep Ji
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
- Holzapfel Effective Microbes (HEM), Pohang, Gyungbuk, Republic of Korea
| | - Wilhelm Holzapfel
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
- Holzapfel Effective Microbes (HEM), Pohang, Gyungbuk, Republic of Korea
| | - Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang, Gyungbuk, Republic of Korea
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
196
|
Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr Physiol 2018; 9:1-58. [PMID: 30549014 DOI: 10.1002/cphy.c170040] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The objective of this comprehensive review is to summarize and discuss the available evidence of how adipose tissue inflammation affects insulin sensitivity and glucose tolerance. Low-grade, chronic adipose tissue inflammation is characterized by infiltration of macrophages and other immune cell populations into adipose tissue, and a shift toward more proinflammatory subtypes of leukocytes. The infiltration of proinflammatory cells in adipose tissue is associated with an increased production of key chemokines such as C-C motif chemokine ligand 2, proinflammatory cytokines including tumor necrosis factor α and interleukins 1β and 6 as well as reduced expression of the key insulin-sensitizing adipokine, adiponectin. In both rodent models and humans, adipose tissue inflammation is consistently associated with excess fat mass and insulin resistance. In humans, associations with insulin resistance are stronger and more consistent for inflammation in visceral as opposed to subcutaneous fat. Further, genetic alterations in mouse models of obesity that reduce adipose tissue inflammation are-almost without exception-associated with improved insulin sensitivity. However, a dissociation between adipose tissue inflammation and insulin resistance can be observed in very few rodent models of obesity as well as in humans following bariatric surgery- or low-calorie-diet-induced weight loss, illustrating that the etiology of insulin resistance is multifactorial. Taken together, adipose tissue inflammation is a key factor in the development of insulin resistance and type 2 diabetes in obesity, along with other factors that likely include inflammation and fat accumulation in other metabolically active tissues. © 2019 American Physiological Society. Compr Physiol 9:1-58, 2019.
Collapse
Affiliation(s)
- Maggie S Burhans
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Derek K Hagman
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica N Kuzma
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kelsey A Schmidt
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Mario Kratz
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
197
|
Chronic lifestyle diseases display seasonal sensitive comorbid trend in human population evidence from Google Trends. PLoS One 2018; 13:e0207359. [PMID: 30540756 PMCID: PMC6291106 DOI: 10.1371/journal.pone.0207359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/30/2018] [Indexed: 02/08/2023] Open
Abstract
Seasonal and human physiological changes are important factors in the development of many diseases. But, the study of genuine seasonal impact on these diseases is difficult to measure due to many other environment and lifestyle factors which directly affect these diseases. However, several clinical studies have been conducted in different parts of the world, and it has clearly indicated that certain groups of population are highly subjected to seasonal changes, and their maladaptation can possibly lead to several disorders/diseases. Thus, it is crucial to study the significant seasonal sensitive diseases spread across the human population. To narrow down these disorders/diseases, the study hypothesized that high altitude (HA) associated diseases and disorders are of the strong variants of seasonal physiologic changes. It is because, HA is the only geographical condition for which humans can develop very efficient physiological adaptation mechanism called acclimatization. To study this hypothesis, PubMed was used to collect the HA associated symptoms and disorders. Disease Ontology based semantic similarity network (DSN) and disease-drug networks were constructed to narrow down the benchmark diseases and disorders of HA. The DSN which was further subjected to different community structure analysis uncovered the highly associated or possible comorbid diseases of HA. The predicted 12 lifestyle diseases were assumed to be “seasonal (sensitive) comorbid lifestyle diseases (SCLD)”. A time series analyses on Google Search data of the world from 2004–2016 was conducted to investigate whether the 12 lifestyle diseases have seasonal patterns. Because, the trends were sensitive to the term used as benchmark; the temporal relationships among the 12 disease search volumes and their temporal sequences similarity by dynamic time warping analyses was used to predict the comorbid diseases. Among the 12 lifestyle diseases, the study provides an indirect evidence in the existence of severe seasonal comorbidity among hypertension, obesity, asthma and fibrosis diseases, which is widespread in the world population. Thus, the present study has successfully addressed this issue by predicting the SCLD, and indirectly verified them among the world population using Google Search Trend. Furthermore, based on the SCLD seasonal trend, the study also classified them as severe, moderate, and mild. Interestingly, seasonal trends of the severe seasonal comorbid diseases displayed an inverse pattern between USA (Northern hemisphere) and New Zealand (Southern hemisphere). Further, knowledge in the so called “seasonal sensitive populations” physiological response to seasonal triggers such as winter, summer, spring, and autumn become crucial to modulate disease incidence, disease course, or clinical prevention.
Collapse
|
198
|
Gancheva S, Jelenik T, Álvarez-Hernández E, Roden M. Interorgan Metabolic Crosstalk in Human Insulin Resistance. Physiol Rev 2018; 98:1371-1415. [PMID: 29767564 DOI: 10.1152/physrev.00015.2017] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Excessive energy intake and reduced energy expenditure drive the development of insulin resistance and metabolic diseases such as obesity and type 2 diabetes mellitus. Metabolic signals derived from dietary intake or secreted from adipose tissue, gut, and liver contribute to energy homeostasis. Recent metabolomic studies identified novel metabolites and enlarged our knowledge on classic metabolites. This review summarizes the evidence of their roles as mediators of interorgan crosstalk and regulators of insulin sensitivity and energy metabolism. Circulating lipids such as free fatty acids, acetate, and palmitoleate from adipose tissue and short-chain fatty acids from the gut effectively act on liver and skeletal muscle. Intracellular lipids such as diacylglycerols and sphingolipids can serve as lipotoxins by directly inhibiting insulin action in muscle and liver. In contrast, fatty acid esters of hydroxy fatty acids have been recently shown to exert a series of beneficial effects. Also, ketoacids are gaining interest as potent modulators of insulin action and mitochondrial function. Finally, branched-chain amino acids not only predict metabolic diseases, but also inhibit insulin signaling. Here, we focus on the metabolic crosstalk in humans, which regulates insulin sensitivity and energy homeostasis in the main insulin-sensitive tissues, skeletal muscle, liver, and adipose tissue.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Tomas Jelenik
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Elisa Álvarez-Hernández
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| |
Collapse
|
199
|
The Role of Berberine in the Prevention of HIF-1 α Activation to Alleviate Adipose Tissue Fibrosis in High-Fat-Diet-Induced Obese Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4395137. [PMID: 30622603 PMCID: PMC6304498 DOI: 10.1155/2018/4395137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Berberine (BBR) is the main active ingredient of a traditional Chinese herb Coptis chinensis. It has been reported to exhibit beneficial effects in treating diabetes and obesity. However, the underlying mechanism has not been fully elucidated. Adipose tissue fibrosis is a hallmark of obesity-associated adipose tissue dysfunction. HIF-1α plays a key role in adipose tissue fibrosis, which closely linked to metabolic dysfunction in obese state. We hypothesized that BBR may alleviate obesity-induced adipose tissue fibrosis and associated metabolic dysfunction through inhibition of HIF-1α. To test this hypothesis, we treated high fat diet (HFD) feeding mice with different dose of BBR (100 mg/kg, 200 mg/kg, and 300 mg/kg) for 8 weeks. We found that BBR treatment greatly decreased the body weight gain and reduced insulin resistance induced by HFD. Data also revealed that BBR improved histologic fibrous of epididymal white adipose tissue (eWAT) and was accompanied with inhibition of the abnormal synthesis and deposition of extracellular matrix (ECM) proteins, such as collagen and fibronectin. We also found that BBR treatment suppressed the expression of HIF-1α and decreased the mRNA expression of LOX in epididymal adipose tissue, which plays a key role in fibrosis development. Taken together, these results suggest that BBR can regulate metabolic homeostasis and suppress adipose tissue fibrosis through inhibiting the expression of HIF-1α.
Collapse
|
200
|
Anti-obesity activity of OBEX is regulated by activation of thermogenesis and decreasing adiposity gain. Sci Rep 2018; 8:17155. [PMID: 30464239 PMCID: PMC6249269 DOI: 10.1038/s41598-018-34840-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
The incidence of obesity has been increasing dramatically worldwide over the past decades, thus requiring novel and effective therapeutic approaches. OBEX is an oral nutritional supplement composed of antioxidants with antiobesity activity. The effects of OBEX have been tested in vivo and in vitro. In vivo, OBEX reduces weight gain by decreasing adiposity gain and increasing energy expenditure in high fat diet-fed mice through the activation of thermogenesis in brown adipose tissue (BAT) independent of eating behaviors. In vitro analysis with 3T3-F442A cells revealed anti-proliferative and anti-differentiation effects of OBEX. In addition, OBEX induced a clear reduction of the lipid load in mature adipocytes obtained from 3T3-F442A cells. Overall, our findings suggest that OBEX has a protective effect against an obesogenic environment.
Collapse
|