151
|
Hallquist MN, Hwang K, Luna B, Dombrovski AY. Reward-based option competition in human dorsal stream and transition from stochastic exploration to exploitation in continuous space. SCIENCE ADVANCES 2024; 10:eadj2219. [PMID: 38394198 PMCID: PMC10889364 DOI: 10.1126/sciadv.adj2219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Primates exploring and exploiting a continuous sensorimotor space rely on dynamic maps in the dorsal stream. Two complementary perspectives exist on how these maps encode rewards. Reinforcement learning models integrate rewards incrementally over time, efficiently resolving the exploration/exploitation dilemma. Working memory buffer models explain rapid plasticity of parietal maps but lack a plausible exploration/exploitation policy. The reinforcement learning model presented here unifies both accounts, enabling rapid, information-compressing map updates and efficient transition from exploration to exploitation. As predicted by our model, activity in human frontoparietal dorsal stream regions, but not in MT+, tracks the number of competing options, as preferred options are selectively maintained on the map, while spatiotemporally distant alternatives are compressed out. When valuable new options are uncovered, posterior β1/α oscillations desynchronize within 0.4 to 0.7 s, consistent with option encoding by competing β1-stabilized subpopulations. Together, outcomes matching locally cached reward representations rapidly update parietal maps, biasing choices toward often-sampled, rewarded options.
Collapse
Affiliation(s)
| | - Kai Hwang
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
152
|
Zhang M, Lin X, Zhi Y, Mu Y, Kong Y. The dual facilitatory and inhibitory effects of social pain on physical pain perception. iScience 2024; 27:108951. [PMID: 38323007 PMCID: PMC10844037 DOI: 10.1016/j.isci.2024.108951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Pain is a multi-dimensional phenomenon that encompasses both physical pain experienced physiologically and social pain experienced emotionally. The interactions between them are thought to lead to increased pain load. However, the effect of social pain on physical pain perception during interactions remains unclear. Four experiments were conducted merging physical and social pains to examine the behavioral pattern and neural mechanism of the effect of social pain on physical pain perception. Seemingly paradoxical effects of social pain were observed, which both facilitated and inhibited physical pain perception under different attention orientations. Brain imaging revealed that the posterior insula encoded the facilitatory effect, whereas the frontal pole engaged in the inhibitory effect. At a higher level, the thalamus further modulated both processes, playing a switch-like role under different concern statuses of social pain. These results provide direct evidence for the dual-pathway mechanism of the effect of social pain on physical pain.
Collapse
Affiliation(s)
- Ming Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Lin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongkang Zhi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Mu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
153
|
Voldsbekk I, Kjelkenes R, Frogner ER, Westlye LT, Alnæs D. Testing the sensitivity of diagnosis-derived patterns in functional brain networks to symptom burden in a Norwegian youth sample. Hum Brain Mapp 2024; 45:e26631. [PMID: 38379514 PMCID: PMC10879903 DOI: 10.1002/hbm.26631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Aberrant brain network development represents a putative aetiological component in mental disorders, which typically emerge during childhood and adolescence. Previous studies have identified resting-state functional connectivity (RSFC) patterns reflecting psychopathology, but the generalisability to other samples and politico-cultural contexts has not been established. We investigated whether a previously identified cross-diagnostic case-control and autism spectrum disorder (ASD)-specific pattern of RSFC (discovery sample; aged 5-21 from New York City, USA; n = 1666) could be validated in a Norwegian convenience-based youth sample (validation sample; aged 9-25 from Oslo, Norway; n = 531). As a test of generalisability, we investigated if these diagnosis-derived RSFC patterns were sensitive to levels of symptom burden in both samples, based on an independent measure of symptom burden. Both the cross-diagnostic and ASD-specific RSFC pattern were validated across samples. Connectivity patterns were significantly associated with thematically appropriate symptom dimensions in the discovery sample. In the validation sample, the ASD-specific RSFC pattern showed a weak, inverse relationship with symptoms of conduct problems, hyperactivity and prosociality, while the cross-diagnostic pattern was not significantly linked to symptoms. Diagnosis-derived connectivity patterns in a developmental clinical US sample were validated in a convenience sample of Norwegian youth, however, they were not associated with mental health symptoms.
Collapse
Affiliation(s)
- Irene Voldsbekk
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Rikka Kjelkenes
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Erik R. Frogner
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of Oslo, Department of Neurology, Oslo University HospitalOsloNorway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| |
Collapse
|
154
|
Seifert AC, Xu J, Kong Y, Eippert F, Miller KL, Tracey I, Vannesjo SJ. Thermal stimulus task fMRI in the cervical spinal cord at 7 Tesla. Hum Brain Mapp 2024; 45:e26597. [PMID: 38375948 PMCID: PMC10877664 DOI: 10.1002/hbm.26597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024] Open
Abstract
Although functional magnetic resonance imaging (fMRI) is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B0 . Increasing field strength enables higher spatial resolution and improved sensitivity to blood oxygenation level-dependent (BOLD) signal, but amplifies the effects of B0 inhomogeneity. In this work, we present the first task fMRI in the spinal cord at 7 T. Further, we compare the performance of single-shot and multi-shot 2D echo-planar imaging (EPI) protocols, which differ in sensitivity to spatial and temporal B0 inhomogeneity. The cervical spinal cords of 11 healthy volunteers were scanned at 7 T using single-shot 2D EPI at 0.75 mm in-plane resolution and multi-shot 2D EPI at 0.75 and 0.6 mm in-plane resolutions. All protocols used 3 mm slice thickness. For each protocol, the BOLD response to 13 10-s noxious thermal stimuli applied to the right thumb was acquired in a 10-min fMRI run. Image quality, temporal signal to noise ratio (SNR), and BOLD activation (percent signal change and z-stat) at both individual- and group-level were evaluated between the protocols. Temporal SNR was highest in single-shot and multi-shot 0.75 mm protocols. In group-level analyses, activation clusters appeared in all protocols in the ipsilateral dorsal quadrant at the expected C6 neurological level. In individual-level analyses, activation clusters at the expected level were detected in some, but not all subjects and protocols. Single-shot 0.75 mm generally produced the highest mean z-statistic, while multi-shot 0.60 mm produced the best-localized activation clusters and the least geometric distortion. Larger than expected within-subject segmental variation of BOLD activation along the cord was observed. Group-level sensory task fMRI of the cervical spinal cord is feasible at 7 T with single-shot or multi-shot EPI. The best choice of protocol will likely depend on the relative importance of sensitivity to activation versus spatial localization of activation for a given experiment. PRACTITIONER POINTS: First stimulus task fMRI results in the spinal cord at 7 T. Single-shot 0.75 mm 2D EPI produced the highest mean z-statistic. Multi-shot 0.60 mm 2D EPI provided the best-localized activation and least distortion.
Collapse
Affiliation(s)
- Alan C. Seifert
- Biomedical Engineering and Imaging InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Diagnostic, Molecular, and Interventional RadiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Graduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Junqian Xu
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Yazhuo Kong
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Institute of PsychologyChinese Academy of SciencesBeijingChina
| | - Falk Eippert
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Max Planck Research Group Pain PerceptionMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - S. Johanna Vannesjo
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of PhysicsNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
155
|
Read ML, Berry SC, Graham KS, Voets NL, Zhang J, Aggleton JP, Lawrence AD, Hodgetts CJ. Scene-selectivity in CA1/subicular complex: Multivoxel pattern analysis at 7T. Neuropsychologia 2024; 194:108783. [PMID: 38161052 DOI: 10.1016/j.neuropsychologia.2023.108783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Prior univariate functional magnetic resonance imaging (fMRI) studies in humans suggest that the anteromedial subicular complex of the hippocampus is a hub for scene-based cognition. However, it is possible that univariate approaches were not sufficiently sensitive to detect scene-related activity in other subfields that have been implicated in spatial processing (e.g., CA1). Further, as connectivity-based functional gradients in the hippocampus do not respect classical subfield boundary definitions, category selectivity may be distributed across anatomical subfields. Region-of-interest approaches, therefore, may limit our ability to observe category selectivity across discrete subfield boundaries. To address these issues, we applied searchlight multivariate pattern analysis to 7T fMRI data of healthy adults who undertook a simultaneous visual odd-one-out discrimination task for scene and non-scene (including face) visual stimuli, hypothesising that scene classification would be possible in multiple hippocampal regions within, but not constrained to, anteromedial subicular complex and CA1. Indeed, we found that the scene-selective searchlight map overlapped not only with anteromedial subicular complex (distal subiculum, pre/para subiculum), but also inferior CA1, alongside posteromedial (including retrosplenial) and parahippocampal cortices. Probabilistic overlap maps revealed gradients of scene category selectivity, with the strongest overlap located in the medial hippocampus, converging with searchlight findings. This was contrasted with gradients of face category selectivity, which had stronger overlap in more lateral hippocampus, supporting ideas of parallel processing streams for these two categories. Our work helps to map the scene, in contrast to, face processing networks within, and connected to, the human hippocampus.
Collapse
Affiliation(s)
- Marie-Lucie Read
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Samuel C Berry
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Kim S Graham
- School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, John Radcliffe Hospital, Oxford, OX3 9DU2, UK
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Mathematics and Computer Science, Swansea University, Swansea SA1 8DD, UK
| | - John P Aggleton
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
156
|
Watson DM, Andrews TJ. Mapping the functional and structural connectivity of the scene network. Hum Brain Mapp 2024; 45:e26628. [PMID: 38376190 PMCID: PMC10878195 DOI: 10.1002/hbm.26628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
The recognition and perception of places has been linked to a network of scene-selective regions in the human brain. While previous studies have focussed on functional connectivity between scene-selective regions themselves, less is known about their connectivity with other cortical and subcortical regions in the brain. Here, we determine the functional and structural connectivity profile of the scene network. We used fMRI to examine functional connectivity between scene regions and across the whole brain during rest and movie-watching. Connectivity within the scene network revealed a bias between posterior and anterior scene regions implicated in perceptual and mnemonic aspects of scene perception respectively. Differences between posterior and anterior scene regions were also evident in the connectivity with cortical and subcortical regions across the brain. For example, the Occipital Place Area (OPA) and posterior Parahippocampal Place Area (PPA) showed greater connectivity with visual and dorsal attention networks, while anterior PPA and Retrosplenial Complex showed preferential connectivity with default mode and frontoparietal control networks and the hippocampus. We further measured the structural connectivity of the scene network using diffusion tractography. This indicated both similarities and differences with the functional connectivity, highlighting biases between posterior and anterior regions, but also between ventral and dorsal scene regions. Finally, we quantified the structural connectivity between the scene network and major white matter tracts throughout the brain. These findings provide a map of the functional and structural connectivity of scene-selective regions to each other and the rest of the brain.
Collapse
Affiliation(s)
- David M. Watson
- Department of Psychology and York Neuroimaging CentreUniversity of YorkYorkUK
| | - Timothy J. Andrews
- Department of Psychology and York Neuroimaging CentreUniversity of YorkYorkUK
| |
Collapse
|
157
|
Kabulska Z, Zhuang T, Lingnau A. Overlapping representations of observed actions and action-related features. Hum Brain Mapp 2024; 45:e26605. [PMID: 38379447 PMCID: PMC10879913 DOI: 10.1002/hbm.26605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
The lateral occipitotemporal cortex (LOTC) has been shown to capture the representational structure of a smaller range of actions. In the current study, we carried out an fMRI experiment in which we presented human participants with images depicting 100 different actions and used representational similarity analysis (RSA) to determine which brain regions capture the semantic action space established using judgments of action similarity. Moreover, to determine the contribution of a wide range of action-related features to the neural representation of the semantic action space we constructed an action feature model on the basis of ratings of 44 different features. We found that the semantic action space model and the action feature model are best captured by overlapping activation patterns in bilateral LOTC and ventral occipitotemporal cortex (VOTC). An RSA on eight dimensions resulting from principal component analysis carried out on the action feature model revealed partly overlapping representations within bilateral LOTC, VOTC, and the parietal lobe. Our results suggest spatially overlapping representations of the semantic action space of a wide range of actions and the corresponding action-related features. Together, our results add to our understanding of the kind of representations along the LOTC that support action understanding.
Collapse
Affiliation(s)
- Zuzanna Kabulska
- Faculty of Human Sciences, Institute of Psychology, Chair of Cognitive NeuroscienceUniversity of RegensburgRegensburgGermany
| | - Tonghe Zhuang
- Faculty of Human Sciences, Institute of Psychology, Chair of Cognitive NeuroscienceUniversity of RegensburgRegensburgGermany
| | - Angelika Lingnau
- Faculty of Human Sciences, Institute of Psychology, Chair of Cognitive NeuroscienceUniversity of RegensburgRegensburgGermany
| |
Collapse
|
158
|
Rai S, Graff K, Tansey R, Bray S. How do tasks impact the reliability of fMRI functional connectivity? Hum Brain Mapp 2024; 45:e26535. [PMID: 38348730 PMCID: PMC10884875 DOI: 10.1002/hbm.26535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 02/24/2024] Open
Abstract
While there is growing interest in the use of functional magnetic resonance imaging-functional connectivity (fMRI-FC) for biomarker research, low measurement reliability of conventional acquisitions may limit applications. Factors known to impact FC reliability include scan length, head motion, signal properties, such as temporal signal-to-noise ratio (tSNR), and the acquisition state or task. As tasks impact signal in a region-wise fashion, they likely impact FC reliability differently across the brain, making task an important decision in study design. Here, we use the densely sampled Midnight Scan Club (MSC) dataset, comprising 5 h of rest and 6 h of task fMRI data in 10 healthy adults, to investigate regional effects of tasks on FC reliability. We further considered how BOLD signal properties contributing to tSNR, that is, temporal mean signal (tMean) and temporal standard deviation (tSD), vary across the brain, associate with FC reliability, and are modulated by tasks. We found that, relative to rest, tasks enhanced FC reliability and increased tSD for specific task-engaged regions. However, FC signal variability and reliability is broadly dampened during tasks outside task-engaged regions. From our analyses, we observed signal variability was the strongest driver of FC reliability. Overall, our findings suggest that the choice of task can have an important impact on reliability and should be considered in relation to maximizing reliability in networks of interest as part of study design.
Collapse
Affiliation(s)
- Shefali Rai
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of NeuroscienceUniversity of CalgaryCalgaryAlbertaCanada
| | - Kirk Graff
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of NeuroscienceUniversity of CalgaryCalgaryAlbertaCanada
| | - Ryann Tansey
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of NeuroscienceUniversity of CalgaryCalgaryAlbertaCanada
| | - Signe Bray
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of RadiologyUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
159
|
Metzner C, Dimulescu C, Kamp F, Fromm S, Uhlhaas PJ, Obermayer K. Exploring global and local processes underlying alterations in resting-state functional connectivity and dynamics in schizophrenia. Front Psychiatry 2024; 15:1352641. [PMID: 38414495 PMCID: PMC10897003 DOI: 10.3389/fpsyt.2024.1352641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction We examined changes in large-scale functional connectivity and temporal dynamics and their underlying mechanisms in schizophrenia (ScZ) through measurements of resting-state functional magnetic resonance imaging (rs-fMRI) data and computational modelling. Methods The rs-fMRI measurements from patients with chronic ScZ (n=38) and matched healthy controls (n=43), were obtained through the public schizConnect repository. Computational models were constructed based on diffusion-weighted MRI scans and fit to the experimental rs-fMRI data. Results We found decreased large-scale functional connectivity across sensory and association areas and for all functional subnetworks for the ScZ group. Additionally global synchrony was reduced in patients while metastability was unaltered. Perturbations of the computational model revealed that decreased global coupling and increased background noise levels both explained the experimentally found deficits better than local changes to the GABAergic or glutamatergic system. Discussion The current study suggests that large-scale alterations in ScZ are more likely the result of global rather than local network changes.
Collapse
Affiliation(s)
- Christoph Metzner
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Department of Child and Adolescent Psychiatry, Charité – Universitätsmedizin Berlin, Berlin, Germany
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Cristiana Dimulescu
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Fabian Kamp
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sophie Fromm
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Peter J. Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Klaus Obermayer
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
160
|
Yuan JP, Coury SM, Ho TC, Gotlib IH. Early life stress moderates the relation between systemic inflammation and neural activation to reward in adolescents both cross-sectionally and longitudinally. Neuropsychopharmacology 2024; 49:532-540. [PMID: 37673968 PMCID: PMC10789786 DOI: 10.1038/s41386-023-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Elevated levels of systemic inflammation are associated with altered reward-related brain function in ventral striatal areas of the brain like the nucleus accumbens (NAcc). In adolescents, cross-sectional research indicates that exposure to early life stress (ELS) can moderate the relation between inflammation and neural activation, which may contribute to atypical reward function; however, no studies have tested whether this moderation by ELS of neuroimmune associations persists over time. Here, we conducted a cross-sectional analysis and the first exploratory longitudinal analysis testing whether cumulative severity of ELS moderates the association of systemic inflammation with reward-related processing in the NAcc in adolescents (n = 104; 58F/46M; M[SD] age = 16.00[1.45] years; range = 13.07-19.86 years). For the cross-sectional analysis, we modeled a statistical interaction between ELS and levels of C-reactive protein (CRP) predicting NAcc activation during the anticipation and outcome phases of a monetary reward task. We found that higher CRP was associated with blunted NAcc activation during the outcome of reward in youth who experienced higher levels of ELS (β = -0.31; p = 0.006). For the longitudinal analysis, we modeled an interaction between ELS and change in CRP predicting change in NAcc activation across 2 years. This analysis similarly showed that increasing CRP over time was associated with decreasing NAcc during reward outcomes in youth who experienced higher levels of ELS (β = -0.47; p = 0.022). Both findings support contemporary theoretical frameworks involving associations among inflammation, reward-related brain function, and ELS exposure, and suggest that experiencing ELS can have significant and enduring effects on neuroimmune function and adolescent neurodevelopment.
Collapse
Affiliation(s)
- Justin P Yuan
- Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Saché M Coury
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Tiffany C Ho
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
161
|
Saraçaydın G, Ruisch IH, van Rooij D, Sprooten E, Franke B, Buitelaar JK, Dietrich A, Hoekstra PJ. Shared genetic etiology between ADHD, task-related behavioral measures and brain activation during response inhibition in a youth ADHD case-control study. Eur Arch Psychiatry Clin Neurosci 2024; 274:45-58. [PMID: 37378697 PMCID: PMC10786981 DOI: 10.1007/s00406-023-01632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Impaired response inhibition is commonly present in individuals with attention-deficit/hyperactivity disorder (ADHD) and their unaffected relatives, suggesting impaired response inhibition as a candidate endophenotype in ADHD. Therefore, we explored whether behavioral and neural correlates of response inhibition are related to polygenic risk scores for ADHD (PRS-ADHD). We obtained functional magnetic resonance imaging of neural activity and behavioral measures during a stop-signal task in the NeuroIMAGE cohort, where inattention and hyperactivity-impulsivity symptoms were assessed with the Conners Parent Rating Scales. Our sample consisted of 178 ADHD cases, 103 unaffected siblings, and 173 controls (total N = 454; 8-29 years), for whom genome-wide genotyping was available. PRS-ADHD was constructed using the PRSice-2 software. We found PRS-ADHD to be associated with ADHD symptom severity, a slower and more variable response to Go-stimuli, and altered brain activation during response inhibition in several regions of the bilateral fronto-striatal network. Mean reaction time and intra-individual reaction time variability mediated the association of PRS-ADHD with ADHD symptoms (total, inattention, hyperactivity-impulsivity), and activity in the left temporal pole and anterior parahippocampal gyrus during failed inhibition mediated the relationship of PRS-ADHD with hyperactivity-impulsivity. Our findings indicate that PRS-ADHD are related to ADHD severity on a spectrum of clinical, sub-threshold, and normal levels; more importantly, we show a shared genetic etiology of ADHD and behavioral and neural correlates of response inhibition. Given the modest sample size of our study, future studies with higher power are warranted to explore mediation effects, suggesting that genetic liability to ADHD may adversely affect attention regulation on the behavioral level and point to a possible response inhibition-related mechanistic pathway from PRS-ADHD to hyperactivity-impulsivity.
Collapse
Affiliation(s)
- Gülhan Saraçaydın
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- Accare Child Study Center, Groningen, The Netherlands.
| | - I Hyun Ruisch
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Accare Child Study Center, Groningen, The Netherlands
| | - Daan van Rooij
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Emma Sprooten
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
- Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Accare Child Study Center, Groningen, The Netherlands
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Accare Child Study Center, Groningen, The Netherlands
| |
Collapse
|
162
|
Petersen JZ, Macoveanu J, Ysbæk-Nielsen AT, Kessing LV, Jørgensen MB, Miskowiak KW. Neural correlates of episodic memory decline following electroconvulsive therapy: An exploratory functional magnetic resonance imaging study. J Psychopharmacol 2024; 38:168-177. [PMID: 38159102 DOI: 10.1177/02698811231221153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is an efficient and rapid-acting treatment indicated for severe depressive disorders. While ECT is commonly accompanied by transient memory decline, the brain mechanisms underlying these side effects remain unclear. AIMS In this exploratory functional magnetic resonance (fMRI) study, we aimed to compare effects of ECT versus pharmacological treatment on neural response during episodic memory encoding in patients with affective disorders. METHODS This study included 32 ECT-treated patients (major depressive disorder (MDD), n = 23; bipolar depression, n = 9) and 40 partially remitted patients in pharmacological treatment (MDD, n = 24; bipolar disorder, n = 16). Participants underwent neuropsychological assessment, a strategic picture encoding fMRI scan paradigm, and mood rating. The ECT group was assessed before ECT (pre-ECT) and 3 days after their eighth ECT session (post-ECT). RESULTS Groups were comparable on age, gender, and educational years (ps ⩾ 0.05). Within-group analyses revealed a selective reduction in verbal learning and episodic memory pre- to post-ECT (p = 0.012) but no decline in global cognitive performance (p = 0.3). Functional magnetic resonance imaging analyses adjusted for mood symptoms revealed greater activity in ECT-treated patients than pharmacologically treated No-ECT patients across left precentral gyrus (PCG), right dorsomedial prefrontal cortex (dmPFC), and left middle frontal gyrus (MFG). In ECT-treated patients, greater decline in verbal learning and memory performance from pre- to post-ECT correlated with higher PCG response (r = -0.46, p = 0.008), but not with dmPFC or MFG activity (ps ⩾ 0.1), post-ECT. CONCLUSIONS Episodic memory decline was related to greater neural activity in the left PCG, but unrelated to increased dmPFC and MFG activity, immediately after ECT.
Collapse
Affiliation(s)
- Jeff Zarp Petersen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Copenhagen, Denmark
- Neurocogntion and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Julian Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Copenhagen, Denmark
- Neurocogntion and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Tobias Ysbæk-Nielsen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Copenhagen, Denmark
- Neurocogntion and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, København Ø, Denmark
| | - Martin Balslev Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, København Ø, Denmark
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Copenhagen, Denmark
- Neurocogntion and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
163
|
Moe AAK, Singh N, Dimmock M, Cox K, McGarvey L, Chung KF, McGovern AE, McMahon M, Richards AL, Farrell MJ, Mazzone SB. Brainstem processing of cough sensory inputs in chronic cough hypersensitivity. EBioMedicine 2024; 100:104976. [PMID: 38244293 PMCID: PMC10831188 DOI: 10.1016/j.ebiom.2024.104976] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Chronic cough is a prevalent and difficult to treat condition often accompanied by cough hypersensitivity, characterised by cough triggered from exposure to low level sensory stimuli. The mechanisms underlying cough hypersensitivity may involve alterations in airway sensory nerve responsivity to tussive stimuli which would be accompanied by alterations in stimulus-induced brainstem activation, measurable with functional magnetic resonance imaging (fMRI). METHODS We investigated brainstem responses during inhalation of capsaicin and adenosine triphosphate (ATP) in 29 participants with chronic cough and 29 age- and sex-matched controls. Psychophysical testing was performed to evaluate individual sensitivities to inhaled stimuli and fMRI was used to compare neural activation in participants with cough and control participants while inhaling stimulus concentrations that evoked equivalent levels of urge-to-cough sensation. FINDINGS Participants with chronic cough were significantly more sensitive to inhaled capsaicin and ATP and showed a change in relationship between urge-to-cough perception and cough induction. When urge-to-cough levels were matched, participants with chronic cough displayed significantly less neural activation in medullary regions known to integrate airway sensory inputs. By contrast, neural activations did not differ significantly between the two groups in cortical brain regions known to encode cough sensations whereas activation in a midbrain region of participants with chronic cough was significantly increased compared to controls. INTERPRETATION Cough hypersensitivity in some patients may occur in brain circuits above the level of the medulla, perhaps involving midbrain regions that amplify ascending sensory signals or change the efficacy of central inhibitory control systems that ordinarily serve to filter sensory inputs. FUNDING Supported in part by a research grant from Investigator-Initiated Studies Program of Merck Sharp & Dohme Pty Ltd. The opinions expressed in this paper are those of the authors and do not necessarily represent those of Merck Sharp & Dohme (Australia) Pty Ltd.
Collapse
Affiliation(s)
- Aung Aung Kywe Moe
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia
| | - Nabita Singh
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia
| | - Matthew Dimmock
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia; School of Allied Health Professions, Keele University, Staffordshire, UK
| | - Katherine Cox
- Centre for Human Psychopharmacology, Swinburne University, Australia
| | - Lorcan McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Kian Fan Chung
- Experimental Studies Unit, National Heart & Lung Institute, Imperial College London, UK; Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, UK
| | - Alice E McGovern
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Marcus McMahon
- Department of Respiratory and Sleep Medicine, Austin Hospital, Heidelberg, Australia
| | - Amanda L Richards
- Department of Otolaryngology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia; Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
164
|
Smith DV, Ludwig RM, Dennison JB, Reeck C, Fareri DS. An fMRI Dataset on Social Reward Processing and Decision Making in Younger and Older Adults. Sci Data 2024; 11:158. [PMID: 38302470 PMCID: PMC10834522 DOI: 10.1038/s41597-024-02931-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Behavioural and neuroimaging research has shown that older adults are less sensitive to financial losses compared to younger adults. Yet relatively less is known about age-related differences in social decisions and social reward processing. As part of a pilot study, we collected behavioural and functional magnetic resonance imaging (fMRI) data from 50 participants (Younger: N = 26, ages 18-34 years; Older: N = 24, ages 63-80 years) who completed three tasks in the scanner: an economic trust game as the investor with three partners (computer, stranger, friend) as the investee; a card-guessing task with monetary gains and losses shared with three partners (computer, stranger, friend); and an ultimatum game as responder to three anonymous proposers (computer, age-similar adults, age-dissimilar adults). We also collected B0 field maps and high-resolution structural images (T1-weighted and T2-weighted images). These data could be reused to answer questions about moment-to-moment variability in fMRI signal, representational similarity between tasks, and brain structure.
Collapse
Affiliation(s)
| | - Rita M Ludwig
- Temple University, Philadelphia, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey B Dennison
- Temple University, Philadelphia, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
165
|
Jirsaraie RJ, Palma AM, Small SL, Sandman CA, Davis EP, Baram TZ, Stern H, Glynn LM, Yassa MA. Prenatal Exposure to Maternal Mood Entropy Is Associated With a Weakened and Inflexible Salience Network in Adolescence. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:207-216. [PMID: 37611745 PMCID: PMC10881896 DOI: 10.1016/j.bpsc.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Fetal exposure to maternal mood dysregulation influences child cognitive and emotional development, which may have long-lasting implications for mental health. However, the neurobiological alterations associated with this dimension of adversity have yet to be explored. Here, we tested the hypothesis that fetal exposure to entropy, a novel index of dysregulated maternal mood, would predict the integrity of the salience network, which is involved in emotional processing. METHODS A sample of 138 child-mother pairs (70 females) participated in this prospective longitudinal study. Maternal negative mood level and entropy (an index of variable and unpredictable mood) were assessed 5 times during pregnancy. Adolescents engaged in a functional magnetic resonance imaging task that was acquired between 2 resting-state scans. Changes in network integrity were analyzed using mixed-effect and latent growth curve models. The amplitude of low frequency fluctuations was analyzed to corroborate findings. RESULTS Prenatal maternal mood entropy, but not mood level, was associated with salience network integrity. Both prenatal negative mood level and entropy were associated with the amplitude of low frequency fluctuations of the salience network. Latent class analysis yielded 2 profiles based on changes in network integrity across all functional magnetic resonance imaging sequences. The profile that exhibited little variation in network connectivity (i.e., inflexibility) consisted of adolescents who were exposed to higher negative maternal mood levels and more entropy. CONCLUSIONS These findings suggest that fetal exposure to maternal mood dysregulation is associated with a weakened and inflexible salience network. More broadly, they identify maternal mood entropy as a novel marker of early adversity that exhibits long-lasting associations with offspring brain development.
Collapse
Affiliation(s)
- Robert J Jirsaraie
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California; Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California
| | - Anton M Palma
- Department of Statistics, University of California, Irvine, Irvine, California
| | - Steven L Small
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas
| | - Curt A Sandman
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, Colorado; Department of Pediatrics, University of California, Irvine, Irvine, California
| | - Tallie Z Baram
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California; Department of Pediatrics, University of California, Irvine, Irvine, California; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Hal Stern
- Department of Statistics, University of California, Irvine, Irvine, California
| | - Laura M Glynn
- Department of Psychology, Chapman University, Orange, California.
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California; Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California; Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California.
| |
Collapse
|
166
|
Macoveanu J, Kjærstad HL, Halvorsen KS, Fisher PM, Vinberg M, Kessing LV, Miskowiak KW. Trajectory of reward-related abnormalities in unaffected relatives of patients with bipolar disorder - A longitudinal fMRI study. J Psychiatr Res 2024; 170:217-224. [PMID: 38157669 DOI: 10.1016/j.jpsychires.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
First-degree relatives of patients with bipolar disorder are at heightened risk of mood episodes, which may be attributed to the existence of endophenotypes i.e., heritable (neuro)biological changes present in patients and their unaffected relatives (UR). In this longitudinal MRI study, we aim to investigate the trajectories of aberrant reward-related functional changes identified in UR vs healthy controls (HC). Sixty-eight UR and 65 HC of similar age and gender distribution underwent MRI at baseline while performing a card guessing task. Of these, 29 UR and 36 HC were investigated with the same protocol following a 16-month period in average. We first identified brain regions showing group differences in the neural response to expected value (EV) and reward prediction error (PE) at baseline and analyzed how the reward-related response in these regions changed over time in UR vs HC. Relative to HC at baseline, UR showed lower EV signal in the right ventrolateral prefrontal cortex (vlPFC) and paracingulate gyrus and lower PE signal in the left vlPFC and dorsomedial PFC. The trajectories of these abnormalities in UR showed a normalization of the prefrontal EV signals, whereas the PE signals which correlated with depressive symptoms remained stable over time. While the UR showed both blunted EV and PE signals, none of these abnormalities increased over time, which is consistent with the observed stable mood symptoms.
Collapse
Affiliation(s)
- Julian Macoveanu
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark.
| | - Hanne Lie Kjærstad
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark
| | - Kaja Sofie Halvorsen
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Maj Vinberg
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Psychiatric Research Unit, Psychiatric Centre North Zealand, Hillerød, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Department of Psychology, University of Copenhagen, Denmark
| |
Collapse
|
167
|
Miskowiak KW, Petersen JZ, Macoveanu J, Ysbæk-Nielsen AT, Lindegaard IA, Cramer K, Mogensen MB, Hammershøj LG, Stougaard ME, Jørgensen JL, Schmidt LS, Vinberg M, Ehrenreich H, Hageman I, Videbech P, Gbyl K, Kellner CH, Kessing LV, Jørgensen MB. Effect of erythropoietin on cognitive side-effects of electroconvulsive therapy in depression: A randomized, double-blind, placebo-controlled trial. Eur Neuropsychopharmacol 2024; 79:38-48. [PMID: 38128460 DOI: 10.1016/j.euroneuro.2023.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective and rapid-acting treatment for severe depression but is associated with cognitive side-effects. Identification of add-on treatments that counteract these side-effects would be very helpful. This randomized, double-blinded, placebo-controlled, parallel-group study investigated the effects of four add-on erythropoietin (EPO; 40,000 IU/ml) or saline (placebo) infusions over 2.5 weeks of ECT (eight ECT sessions) in severely depressed patients with unipolar or bipolar depression. Neuropsychological assessments were conducted pre-ECT, three days after the eighth ECT (week 4), and at a 3-month follow-up. Further, functional magnetic resonance imaging (fMRI) was conducted after the eighth ECT. The primary outcome was change from pre- to post-ECT in a 'speed of complex cognitive processing' composite. Secondary outcomes were verbal and autobiographical memory. Of sixty randomized patients, one dropped out before baseline. Data were thus analysed for 59 patients (EPO, n = 33; saline, n = 26), of whom 28 had fMRI data. No ECT-related decline occurred in the primary global cognition measure (ps≥0.1), and no effect of EPO versus saline was observed on this outcome (ps≥0.3). However post-ECT, EPO-treated patients exhibited faster autobiographical memory recall than saline-treated patients (p = 0.02), which was accompanied by lower memory-related parietal cortex activity. The absence of global cognition changes with ECT and EPO, coupled with the specific impact of EPO on autobiographical memory recall speed and memory-related parietal cortex activity, suggests that assessing autobiographical memory may provide increased sensitivity in evaluating and potentially preventing cognitive side-effects of ECT. TRIAL REGISTRATIONS: ClinicalTrials.gov: NCT03339596, EudraCT no.: 2016-002326-36.
Collapse
Affiliation(s)
- Kamilla W Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Neurocognition and Emotion in Affective Disorders Centre (NEAD), Department of Psychology, University of Copenhagen, and Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark.
| | - Jeff Z Petersen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Julian Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Alexander T Ysbæk-Nielsen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Neurocognition and Emotion in Affective Disorders Centre (NEAD), Department of Psychology, University of Copenhagen, and Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Ida A Lindegaard
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Neurocognition and Emotion in Affective Disorders Centre (NEAD), Department of Psychology, University of Copenhagen, and Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Katrine Cramer
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Madel B Mogensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Lisa G Hammershøj
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Marie E Stougaard
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Josefine L Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Lejla Sjanic Schmidt
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Maj Vinberg
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; The Early Multimodular Prevention and Intervention Research Institution (EMPIRI), Mental Health Centre, Northern Zealand, Copenhagen University Hospital, Mental Health Services, Capital Region of Denmark, Denmark
| | - Hannelore Ehrenreich
- Clincial Neuroscience, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ida Hageman
- Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Poul Videbech
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Glostrup, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Krzysztof Gbyl
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Glostrup, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Charles H Kellner
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Lars V Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin B Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
168
|
Canal-Garcia A, Veréb D, Mijalkov M, Westman E, Volpe G, Pereira JB, For the Alzheimer’s Disease Neuroimaging Initiative. Dynamic multilayer functional connectivity detects preclinical and clinical Alzheimer's disease. Cereb Cortex 2024; 34:bhad542. [PMID: 38212285 PMCID: PMC10839846 DOI: 10.1093/cercor/bhad542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
Increasing evidence suggests that patients with Alzheimer's disease present alterations in functional connectivity but previous results have not always been consistent. One of the reasons that may account for this inconsistency is the lack of consideration of temporal dynamics. To address this limitation, here we studied the dynamic modular organization on resting-state functional magnetic resonance imaging across different stages of Alzheimer's disease using a novel multilayer brain network approach. Participants from preclinical and clinical Alzheimer's disease stages were included. Temporal multilayer networks were used to assess time-varying modular organization. Logistic regression models were employed for disease stage discrimination, and partial least squares analyses examined associations between dynamic measures with cognition and pathology. Temporal multilayer functional measures distinguished all groups, particularly preclinical stages, overcoming the discriminatory power of risk factors such as age, sex, and APOE ϵ4 carriership. Dynamic multilayer functional measures exhibited strong associations with cognition as well as amyloid and tau pathology. Dynamic multilayer functional connectivity shows promise as a functional imaging biomarker for both early- and late-stage Alzheimer's disease diagnosis.
Collapse
Affiliation(s)
- Anna Canal-Garcia
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17165, Sweden
| | - Dániel Veréb
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17165, Sweden
| | - Mite Mijalkov
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17165, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm 17165, Sweden
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg 40530, Sweden
| | - Joana B Pereira
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17165, Sweden
| | | |
Collapse
|
169
|
Assem M, Shashidhara S, Glasser MF, Duncan J. Basis of executive functions in fine-grained architecture of cortical and subcortical human brain networks. Cereb Cortex 2024; 34:bhad537. [PMID: 38244562 PMCID: PMC10839840 DOI: 10.1093/cercor/bhad537] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
Theoretical models suggest that executive functions rely on both domain-general and domain-specific processes. Supporting this view, prior brain imaging studies have revealed that executive activations converge and diverge within broadly characterized brain networks. However, the lack of precise anatomical mappings has impeded our understanding of the interplay between domain-general and domain-specific processes. To address this challenge, we used the high-resolution multimodal magnetic resonance imaging approach of the Human Connectome Project to scan participants performing 3 canonical executive tasks: n-back, rule switching, and stop signal. The results reveal that, at the individual level, different executive activations converge within 9 domain-general territories distributed in frontal, parietal, and temporal cortices. Each task exhibits a unique topography characterized by finely detailed activation gradients within domain-general territory shifted toward adjacent resting-state networks; n-back activations shift toward the default mode, rule switching toward dorsal attention, and stop signal toward cingulo-opercular networks. Importantly, the strongest activations arise at multimodal neurobiological definitions of network borders. Matching results are seen in circumscribed regions of the caudate nucleus, thalamus, and cerebellum. The shifting peaks of local gradients at the intersection of task-specific networks provide a novel mechanistic insight into how partially-specialized networks interact with neighboring domain-general territories to generate distinct executive functions.
Collapse
Affiliation(s)
- Moataz Assem
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
| | - Sneha Shashidhara
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Psychology Department, Ashoka University, Sonipat, 131029, India
| | - Matthew F Glasser
- Department of Radiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States
- Department of Neuroscience, Washington University in St. Louis, Saint Louis, MO, 63110, United States
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, United Kingdom
| |
Collapse
|
170
|
Eisenstein T, Furman-Haran E, Tal A. Early excitatory-inhibitory cortical modifications following skill learning are associated with motor memory consolidation and plasticity overnight. Nat Commun 2024; 15:906. [PMID: 38291029 PMCID: PMC10828487 DOI: 10.1038/s41467-024-44979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Consolidation of motor memories is vital to offline enhancement of new motor skills and involves short and longer-term offline processes following learning. While emerging evidence link glutamate and GABA dynamics in the primary motor cortex (M1) to online motor skill practice, its relationship with offline consolidation processes in humans is unclear. Using two-day repeated measures of behavioral and multimodal neuroimaging data before and following motor sequence learning, we show that short-term glutamatergic and GABAergic responses in M1 within minutes after learning were associated with longer-term learning-induced functional, structural, and behavioral modifications overnight. Furthermore, Glutamatergic and GABAergic modifications were differentially associated with different facets of motor memory consolidation. Our results point to unique and distinct roles of Glutamate and GABA in motor memory consolidation processes in the human brain across timescales and mechanistic levels, tying short-term changes on the neurochemical level to overnight changes in macroscale structure, function, and behavior.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
171
|
Dresbach S, Huber R, Gulban OF, Pizzuti A, Trampel R, Ivanov D, Weiskopf N, Goebel R. Characterisation of laminar and vascular spatiotemporal dynamics of CBV and BOLD signals using VASO and ME-GRE at 7T in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.576050. [PMID: 38410457 PMCID: PMC10896347 DOI: 10.1101/2024.01.25.576050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Interpretation of cortical laminar functional magnetic resonance imaging (fMRI) activity requires detailed knowledge of the spatiotemporal haemodynamic response across vascular compartments due to the well-known vascular biases (e.g. the draining veins). Further complications arise from the spatiotemporal hemodynamic response that differs depending on the duration of stimulation. This information is crucial for future studies using depth-dependent cerebral blood volume (CBV) measurements, which promise higher specificity for the cortical microvasculature than the blood oxygenation level dependent (BOLD) contrast. To date, direct information about CBV dynamics with respect to stimulus duration, cortical depth and vasculature is missing in humans. Therefore, we characterized the cortical depth-dependent CBV-haemodynamic responses across a wide set of stimulus durations with 0.9 mm isotropic spatial and 0.785 seconds effective temporal resolution in humans using slice-selective slab-inversion vascular space occupancy (SS-SI VASO). Additionally, we investigated signal contributions from macrovascular compartments using fine-scale vascular information from multi-echo gradient-echo (ME-GRE) data at 0.35 mm isotropic resolution. In total, this resulted in >7.5h of scanning per participant (n=5). We have three major findings: (I) While we could demonstrate that 1 second stimulation is viable using VASO, more than 12 seconds stimulation provides better CBV responses in terms of specificity to microvasculature, but durations beyond 24 seconds of stimulation may be wasteful for certain applications. (II) We observe that CBV responses show dilation patterns across the cortex. (III) While we found increasingly strong BOLD signal responses in vessel-dominated voxels with longer stimulation durations, we found increasingly strong CBV signal responses in vessel-dominated voxels only until 4 second stimulation durations. After 4 seconds, only the signal from non-vessel dominated voxels kept increasing. This might explain why CBV responses are more specific to the underlying neuronal activity for long stimulus durations.
Collapse
Affiliation(s)
- Sebastian Dresbach
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Renzo Huber
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- National Institutes of Health, Bethesda, MD, USA
| | - Omer Faruk Gulban
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Brain innovation, Maastricht, the Netherlands
| | - Alessandra Pizzuti
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Brain innovation, Maastricht, the Netherlands
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Dimo Ivanov
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth System Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Brain innovation, Maastricht, the Netherlands
| |
Collapse
|
172
|
Dong Z, Wald LL, Polimeni JR, Wang F. Single-shot Echo Planar Time-resolved Imaging for multi-echo functional MRI and distortion-free diffusion imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577002. [PMID: 38328081 PMCID: PMC10849706 DOI: 10.1101/2024.01.24.577002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Purpose To develop EPTI, a multi-shot distortion-free multi-echo imaging technique, into a single-shot acquisition to achieve improved robustness to motion and physiological noise, increased temporal resolution, and high SNR efficiency for dynamic imaging applications. Methods A new spatiotemporal encoding was developed to achieve single-shot EPTI by enhancing spatiotemporal correlation in k-t space. The proposed single-shot encoding improves reconstruction conditioning and sampling efficiency, with additional optimization under various accelerations to achieve optimized performance. To achieve high SNR efficiency, continuous readout with minimized deadtime was employed that begins immediately after excitation and extends for an SNR-optimized length. Moreover, k-t partial Fourier and simultaneous multi-slice acquisition were integrated to further accelerate the acquisition and achieve high spatial and temporal resolution. Results We demonstrated that ss-EPTI achieves higher tSNR efficiency than multi-shot EPTI, and provides distortion-free imaging with densely-sampled multi-echo images at resolutions ~1.25-3 mm at 3T and 7T-with high SNR efficiency and with comparable temporal resolutions to ss-EPI. The ability of ss-EPTI to eliminate dynamic distortions common in EPI also further improves temporal stability. For fMRI, ss-EPTI also provides early-TE images (e.g., 2.9ms) to recover signal-intensity and functional-sensitivity dropout in challenging regions. The multi-echo images provide TE-dependent information about functional fluctuations, successfully distinguishing noise-components from BOLD signals and further improving tSNR. For diffusion MRI, ss-EPTI provides high-quality distortion-free diffusion images and multi-echo diffusion metrics. Conclusion ss-EPTI provides distortion-free imaging with high image quality, rich multi-echo information, and enhanced efficiency within comparable temporal resolution to ss-EPI, offering a robust and efficient acquisition for dynamic imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
173
|
Wang ZJ, Lee HC, Chuang CH, Hsiao FC, Lee SH, Hsu AL, Wu CW. Traces of EEG-fMRI coupling reveals neurovascular dynamics on sleep inertia. Sci Rep 2024; 14:1537. [PMID: 38233587 PMCID: PMC10794702 DOI: 10.1038/s41598-024-51694-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
Upon emergence from sleep, individuals experience temporary hypo-vigilance and grogginess known as sleep inertia. During the transient period of vigilance recovery from prior nocturnal sleep, the neurovascular coupling (NVC) may not be static and constant as assumed by previous neuroimaging studies. Stemming from this viewpoint of sleep inertia, this study aims to probe the NVC changes as awakening time prolongs using simultaneous EEG-fMRI. The time-lagged coupling between EEG features of vigilance and BOLD-fMRI signals, in selected regions of interest, was calculated with one pre-sleep and three consecutive post-awakening resting-state measures. We found marginal changes in EEG theta/beta ratio and spectral slope across post-awakening sessions, demonstrating alterations of vigilance during sleep inertia. Time-varying EEG-fMRI coupling as awakening prolonged was evidenced by the changing time lags of the peak correlation between EEG alpha-vigilance and fMRI-thalamus, as well as EEG spectral slope and fMRI-anterior cingulate cortex. This study provides the first evidence of potential dynamicity of NVC occurred in sleep inertia and opens new avenues for non-invasive neuroimaging investigations into the neurophysiological mechanisms underlying brain state transitions.
Collapse
Affiliation(s)
- Zhitong John Wang
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, 5 Floor, 301, Yuantong Rd., Zhonghe Dist, New Taipei, 235040, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Hsiang Chuang
- Research Center for Education and Mind Sciences, College of Education, National Tsing Hua University, Hsinchu, Taiwan
| | - Fan-Chi Hsiao
- Department of Counseling, Clinical and Industrial/Organizational Psychology, Ming Chuan University, Taoyuan, Taiwan
| | - Shwu-Hua Lee
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, 259, Wenhua 1St Rd., Guishan Dist., Taoyuan, 33302, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ai-Ling Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, 259, Wenhua 1St Rd., Guishan Dist., Taoyuan, 33302, Taiwan.
- Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan.
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, 5 Floor, 301, Yuantong Rd., Zhonghe Dist, New Taipei, 235040, Taiwan.
- Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
174
|
Margolles P, Elosegi P, Mei N, Soto D. Unconscious Manipulation of Conceptual Representations with Decoded Neurofeedback Impacts Search Behavior. J Neurosci 2024; 44:e1235232023. [PMID: 37985180 PMCID: PMC10866193 DOI: 10.1523/jneurosci.1235-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
The necessity of conscious awareness in human learning has been a long-standing topic in psychology and neuroscience. Previous research on non-conscious associative learning is limited by the low signal-to-noise ratio of the subliminal stimulus, and the evidence remains controversial, including failures to replicate. Using functional MRI decoded neurofeedback, we guided participants from both sexes to generate neural patterns akin to those observed when visually perceiving real-world entities (e.g., dogs). Importantly, participants remained unaware of the actual content represented by these patterns. We utilized an associative DecNef approach to imbue perceptual meaning (e.g., dogs) into Japanese hiragana characters that held no inherent meaning for our participants, bypassing a conscious link between the characters and the dogs concept. Despite their lack of awareness regarding the neurofeedback objective, participants successfully learned to activate the target perceptual representations in the bilateral fusiform. The behavioral significance of our training was evaluated in a visual search task. DecNef and control participants searched for dogs or scissors targets that were pre-cued by the hiragana used during DecNef training or by a control hiragana. The DecNef hiragana did not prime search for its associated target but, strikingly, participants were impaired at searching for the targeted perceptual category. Hence, conscious awareness may function to support higher-order associative learning. Meanwhile, lower-level forms of re-learning, modification, or plasticity in existing neural representations can occur unconsciously, with behavioral consequences outside the original training context. The work also provides an account of DecNef effects in terms of neural representational drift.
Collapse
Affiliation(s)
- Pedro Margolles
- Basque Center on Cognition, Brain and Language (BCBL), Donostia - San Sebastián, Gipuzkoa 20009, Spain
- Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia 48940, Spain
| | - Patxi Elosegi
- Basque Center on Cognition, Brain and Language (BCBL), Donostia - San Sebastián, Gipuzkoa 20009, Spain
- Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia 48940, Spain
| | - Ning Mei
- Basque Center on Cognition, Brain and Language (BCBL), Donostia - San Sebastián, Gipuzkoa 20009, Spain
| | - David Soto
- Basque Center on Cognition, Brain and Language (BCBL), Donostia - San Sebastián, Gipuzkoa 20009, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia 48009, Spain
| |
Collapse
|
175
|
Okuno T, Ichinohe N, Woodward A. A reappraisal of the default mode and frontoparietal networks in the common marmoset brain. FRONTIERS IN NEUROIMAGING 2024; 2:1345643. [PMID: 38264540 PMCID: PMC10803424 DOI: 10.3389/fnimg.2023.1345643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
In recent years the common marmoset homolog of the human default mode network (DMN) has been a hot topic of discussion in the marmoset research field. Previously, the posterior cingulate cortex regions (PGM, A19M) and posterior parietal cortex regions (LIP, MIP) were defined as the DMN, but some studies claim that these form the frontoparietal network (FPN). We restarted from a neuroanatomical point of view and identified two DMN candidates: Comp-A (which has been called both the DMN and FPN) and Comp-B. We performed GLM analysis on auditory task-fMRI and found Comp-B to be more appropriate as the DMN, and Comp-A as the FPN. Additionally, through fingerprint analysis, a DMN and FPN in the tasking human was closer to the resting common marmoset. The human DMN appears to have an advanced function that may be underdeveloped in the common marmoset brain.
Collapse
Affiliation(s)
- Takuto Okuno
- Connectome Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Noritaka Ichinohe
- Laboratory for Ultrastructure Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Alexander Woodward
- Connectome Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama, Japan
| |
Collapse
|
176
|
Edmonds D, Salvo JJ, Anderson N, Lakshman M, Yang Q, Kay K, Zelano C, Braga RM. Social cognitive regions of human association cortex are selectively connected to the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570477. [PMID: 38106046 PMCID: PMC10723387 DOI: 10.1101/2023.12.06.570477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Reasoning about someone's thoughts and intentions - i.e., forming a theory of mind - is an important aspect of social cognition that relies on association areas of the brain that have expanded disproportionately in the human lineage. We recently showed that these association zones comprise parallel distributed networks that, despite occupying adjacent and interdigitated regions, serve dissociable functions. One network is selectively recruited by theory of mind processes. What circuit properties differentiate these parallel networks? Here, we show that social cognitive association areas are intrinsically and selectively connected to regions of the anterior medial temporal lobe that are implicated in emotional learning and social behaviors, including the amygdala at or near the basolateral complex and medial nucleus. The results suggest that social cognitive functions emerge through coordinated activity between amygdala circuits and a distributed association network, and indicate the medial nucleus may play an important role in social cognition in humans.
Collapse
Affiliation(s)
- Donnisa Edmonds
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Joseph J. Salvo
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Maya Lakshman
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Qiaohan Yang
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
177
|
Sugi T, Inubushi T, Ohno T, Onishi Y, Isobe T, Shigematsu T, Hanai S, Okada Y, Takahashi R, Tawara Y, Suzuki C, Kanno T, Magata Y, Fujishima I, Yoshikawa E, Ouchi Y. Neural substrates of cough control during coughing. Sci Rep 2024; 14:758. [PMID: 38191647 PMCID: PMC10774348 DOI: 10.1038/s41598-024-51477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Cough is known as a protective reflex to keep the airway free from harmful substances. Although brain activity during cough was previously examined mainly by functional magnetic resonance imaging (fMRI) with model analysis, this method does not capture real brain activity during cough. To obtain accurate measurements of brain activity during cough, we conducted whole-brain scans during different coughing tasks while correcting for head motion using a restraint-free positron emission tomography (PET) system. Twenty-four healthy right-handed males underwent multiple PET scans with [15O]H2O. Four tasks were performed during scans: "resting"; "voluntary cough (VC)", which simply repeated spontaneous coughing; "induced cough (IC)", where participants coughed in response to an acid stimulus in the cough-inducing method with tartaric acid (CiTA); and "suppressed cough (SC)", where coughing was suppressed against CiTA. The whole brain analyses of motion-corrected data revealed that VC chiefly activated the cerebellum extending to pons. In contrast, CiTA-related tasks (IC and SC) activated the higher sensory regions of the cerebral cortex and associated brain regions. The present results suggest that brain activity during simple cough is controlled chiefly by infratentorial areas, whereas manipulating cough predominantly requires the higher sensory brain regions to allow top-down control of information from the periphery.
Collapse
Affiliation(s)
- Takafumi Sugi
- Department of Biofunctional Imaging, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Rehabilitation Medicine, Hamamatsu City Rehabilitation Hospital, 1-6-1 Wagokita, Naka-ku, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Tomoo Inubushi
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-8601, Japan
| | - Tomohisa Ohno
- Department of Dentistry, Hamamatsu City Rehabilitation Hospital, 1-6-1 Wagokita, Naka-ku, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Yuya Onishi
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-8601, Japan
| | - Takashi Isobe
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-8601, Japan
| | - Takashi Shigematsu
- Department of Rehabilitation Medicine, Hamamatsu City Rehabilitation Hospital, 1-6-1 Wagokita, Naka-ku, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Satoshi Hanai
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, 1-6-1 Wagokita, Naka-ku, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Yoshiro Okada
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, 1-6-1 Wagokita, Naka-ku, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Ryosuke Takahashi
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, 1-6-1 Wagokita, Naka-ku, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Yuichi Tawara
- School of Rehabilitation Sciences, Seirei Christopher University, 3453, Mikatahara, Kita-ku, Hamamatsu, Shizuoka, 433-8105, Japan
| | - Chie Suzuki
- Department of Molecular Imaging, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Toshihiko Kanno
- Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Shizuoka, 434-0041, Japan
| | - Yasuhiro Magata
- Department of Molecular Imaging, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Ichiro Fujishima
- Department of Rehabilitation Medicine, Hamamatsu City Rehabilitation Hospital, 1-6-1 Wagokita, Naka-ku, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Etsuji Yoshikawa
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-8601, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
- Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Shizuoka, 434-0041, Japan.
| |
Collapse
|
178
|
Vaccarino SR, Wang S, Rizvi SJ, Lou W, Hassel S, MacQueen GM, Ho K, Frey BN, Lam RW, Milev RV, Rotzinger S, Ravindran AV, Strother SC, Kennedy SH. Functional neuroimaging biomarkers of anhedonia response to escitalopram plus adjunct aripiprazole treatment for major depressive disorder. BJPsych Open 2024; 10:e18. [PMID: 38179598 PMCID: PMC10790221 DOI: 10.1192/bjo.2023.588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Identifying neuroimaging biomarkers of antidepressant response may help guide treatment decisions and advance precision medicine. AIMS To examine the relationship between anhedonia and functional neurocircuitry in key reward processing brain regions in people with major depressive disorder receiving aripiprazole adjunct therapy with escitalopram. METHOD Data were collected as part of the CAN-BIND-1 study. Participants experiencing a current major depressive episode received escitalopram for 8 weeks; escitalopram non-responders received adjunct aripiprazole for an additional 8 weeks. Functional magnetic resonance imaging (on weeks 0 and 8) and clinical assessment of anhedonia (on weeks 0, 8 and 16) were completed. Seed-based correlational analysis was employed to examine the relationship between baseline resting-state functional connectivity (rsFC), using the nucleus accumbens (NAc) and anterior cingulate cortex (ACC) as key regions of interest, and change in anhedonia severity after adjunct aripiprazole. RESULTS Anhedonia severity significantly improved after treatment with adjunct aripiprazole.There was a positive correlation between anhedonia improvement and rsFC between the ACC and posterior cingulate cortex, ACC and posterior praecuneus, and NAc and posterior praecuneus. There was a negative correlation between anhedonia improvement and rsFC between the ACC and anterior praecuneus and NAc and anterior praecuneus. CONCLUSIONS Eight weeks of aripiprazole, adjunct to escitalopram, was associated with improved anhedonia symptoms. Changes in functional connectivity between key reward regions were associated with anhedonia improvement, suggesting aripiprazole may be an effective treatment for individuals experiencing reward-related deficits. Future studies are required to replicate our findings and explore their generalisability, using other agents with partial dopamine (D2) agonism and/or serotonin (5-HT2A) antagonism.
Collapse
Affiliation(s)
- Sophie R. Vaccarino
- Institute of Medical Science, University of Toronto, Canada; Centre for Depression and Suicide Studies, Unity Health Toronto, Canada; and Cumming School of Medicine, University of Calgary, Canada
| | - Shijing Wang
- Institute of Medical Science, University of Toronto, Canada; and Centre for Depression and Suicide Studies, Unity Health Toronto, Canada
| | - Sakina J. Rizvi
- Institute of Medical Science, University of Toronto, Canada; Centre for Depression and Suicide Studies, Unity Health Toronto, Canada; Department of Psychiatry, University of Toronto, Canada; Department of Psychiatry, Unity Health Toronto, Canada; and Li Ka Shing Knowledge Institute, Unity Health Toronto, Canada
| | - Wendy Lou
- Dalla Lana School of Public Health, University of Toronto, Canada; and Department of Biostatistics, University of Toronto, Canada
| | - Stefanie Hassel
- Cumming School of Medicine, University of Calgary, Canada; and Department of Psychiatry, University of Calgary, Canada
| | - Glenda M. MacQueen
- Cumming School of Medicine, University of Calgary, Canada; and Department of Psychiatry, University of Calgary, Canada
| | - Keith Ho
- Centre for Depression and Suicide Studies, Unity Health Toronto, Canada; Department of Psychiatry, Unity Health Toronto, Canada; and Li Ka Shing Knowledge Institute, Unity Health Toronto, Canada
| | - Benicio N. Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Canada
| | - Raymond W. Lam
- Department of Psychiatry, University of British Columbia, Canada
| | - Roumen V. Milev
- Department of Psychiatry, Providence Care, Queen's University, Canada
| | - Susan Rotzinger
- Centre for Depression and Suicide Studies, Unity Health Toronto, Canada
| | | | - Stephen C. Strother
- Institute of Medical Science, University of Toronto, Canada; Rotman Research Institute, Baycrest Centre, Canada; and Department of Medical Biophysics, University of Toronto, Canada
| | - Sidney H. Kennedy
- Institute of Medical Science, University of Toronto, Canada; Centre for Depression and Suicide Studies, Unity Health Toronto, Canada; Department of Psychiatry, University of Toronto, Canada; Department of Psychiatry, Unity Health Toronto, Canada; Li Ka Shing Knowledge Institute, Unity Health Toronto, Canada; and Krembil Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|
179
|
Orlando I, Filippini N. Aging modulates frontal lobes involvement in emotion regulation processing. J Neurosci Res 2024; 102:e25282. [PMID: 38284857 DOI: 10.1002/jnr.25282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
Emotion regulation (ER) is the process by which individuals can modulate the intensity of their emotional experience and it plays a crucial role in daily life. So far, behavioral analyses seem to suggest that ER ability remains stable throughout the lifespan. However, imaging studies evaluating the neural correlates of ER performance during the aging process have shown mixed results. In this study, we used the "Cambridge Centre for Ageing and Neuroscience cohort sample" to investigate: (1) ER behavioral performance and (2) the differential association between brain measures (based on both structural and functional connectivity data) and ER performance, in a group of younger/middle-aged participants (N = 159; age range: 18y < x < 58y) relative to a group of older healthy subjects (N = 136; age range: 58y < =x < 89y). Whereas we found no group-related differences either in ER behavioral data or the association between ER performance and structural data, we did observe that ER performance was differentially correlated in our two study groups to functional connectivity measures in the fronto-insular-temporal network, which has been shown to be involved in emotional processing. Group-related differences were specifically localized in a cluster of voxels within the anterior cingulate areas which revealed a reverse pattern between our study groups: in younger/middle-aged participants better ER performance was associated with increase connectivity, whereas among older participants better ER performance was related to reduced connectivity. Based on our results, we suggest that a de-differentiation mechanism, known to affect the frontal lobes brain activity and connectivity in older subjects, might explain our findings.
Collapse
Affiliation(s)
- Isabella Orlando
- Dept. of Psychology, Salesian Pontifical University of Rome, Rome, Italy
| | - Nicola Filippini
- Laboratory of Neuroimaging and Neurodegeneration, IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
180
|
Dhakal K, Rosenthal ES, Kulpanowski AM, Dodelson JA, Wang Z, Cudemus-Deseda G, Villien M, Edlow BL, Presciutti AM, Januzzi JL, Ning M, Taylor Kimberly W, Amorim E, Brandon Westover M, Copen WA, Schaefer PW, Giacino JT, Greer DM, Wu O. Increased task-relevant fMRI responsiveness in comatose cardiac arrest patients is associated with improved neurologic outcomes. J Cereb Blood Flow Metab 2024; 44:50-65. [PMID: 37728641 PMCID: PMC10905635 DOI: 10.1177/0271678x231197392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 09/21/2023]
Abstract
Early prediction of the recovery of consciousness in comatose cardiac arrest patients remains challenging. We prospectively studied task-relevant fMRI responses in 19 comatose cardiac arrest patients and five healthy controls to assess the fMRI's utility for neuroprognostication. Tasks involved instrumental music listening, forward and backward language listening, and motor imagery. Task-specific reference images were created from group-level fMRI responses from the healthy controls. Dice scores measured the overlap of individual subject-level fMRI responses with the reference images. Task-relevant responsiveness index (Rindex) was calculated as the maximum Dice score across the four tasks. Correlation analyses showed that increased Dice scores were significantly associated with arousal recovery (P < 0.05) and emergence from the minimally conscious state (EMCS) by one year (P < 0.001) for all tasks except motor imagery. Greater Rindex was significantly correlated with improved arousal recovery (P = 0.002) and consciousness (P = 0.001). For patients who survived to discharge (n = 6), the Rindex's sensitivity was 75% for predicting EMCS (n = 4). Task-based fMRI holds promise for detecting covert consciousness in comatose cardiac arrest patients, but further studies are needed to confirm these findings. Caution is necessary when interpreting the absence of task-relevant fMRI responses as a surrogate for inevitable poor neurological prognosis.
Collapse
Affiliation(s)
- Kiran Dhakal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Annelise M Kulpanowski
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jacob A Dodelson
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zihao Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gaston Cudemus-Deseda
- Department of Cardiac Anesthesiology and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marjorie Villien
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander M Presciutti
- Department of Psychiatry, Center for Health Outcomes and Interdisciplinary Research, Massachusetts General Hospital, Boston, MA, USA
| | - James L Januzzi
- Department of Medicine, Cardiology Division, Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| | - MingMing Ning
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - W Taylor Kimberly
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Edilberto Amorim
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - William A Copen
- Department of Radiology, Neuroradiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Pamela W Schaefer
- Department of Radiology, Neuroradiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David M Greer
- Department of Neurology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
181
|
Meissner SN, Bächinger M, Kikkert S, Imhof J, Missura S, Carro Dominguez M, Wenderoth N. Self-regulating arousal via pupil-based biofeedback. Nat Hum Behav 2024; 8:43-62. [PMID: 37904022 PMCID: PMC10810759 DOI: 10.1038/s41562-023-01729-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023]
Abstract
The brain's arousal state is controlled by several neuromodulatory nuclei known to substantially influence cognition and mental well-being. Here we investigate whether human participants can gain volitional control of their arousal state using a pupil-based biofeedback approach. Our approach inverts a mechanism suggested by previous literature that links activity of the locus coeruleus, one of the key regulators of central arousal and pupil dynamics. We show that pupil-based biofeedback enables participants to acquire volitional control of pupil size. Applying pupil self-regulation systematically modulates activity of the locus coeruleus and other brainstem structures involved in arousal control. Furthermore, it modulates cardiovascular measures such as heart rate, and behavioural and psychophysiological responses during an oddball task. We provide evidence that pupil-based biofeedback makes the brain's arousal system accessible to volitional control, a finding that has tremendous potential for translation to behavioural and clinical applications across various domains, including stress-related and anxiety disorders.
Collapse
Affiliation(s)
- Sarah Nadine Meissner
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Marc Bächinger
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Sanne Kikkert
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jenny Imhof
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Silvia Missura
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Manuel Carro Dominguez
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore.
| |
Collapse
|
182
|
Biondetti E, Chiarelli AM, Germuska M, Lipp I, Villani A, Caporale AS, Patitucci E, Murphy K, Tomassini V, Wise RG. Breath-hold BOLD fMRI without CO 2 sampling enables estimation of venous cerebral blood volume: potential use in normalization of stimulus-evoked BOLD fMRI data. Neuroimage 2024; 285:120492. [PMID: 38070840 DOI: 10.1016/j.neuroimage.2023.120492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024] Open
Abstract
BOLD fMRI signal has been used in conjunction with vasodilatory stimulation as a marker of cerebrovascular reactivity (CVR): the relative change in cerebral blood flow (CBF) arising from a unit change in the vasodilatory stimulus. Using numerical simulations, we demonstrate that the variability in the relative BOLD signal change induced by vasodilation is strongly influenced by the variability in deoxyhemoglobin-containing cerebral blood volume (CBV), as this source of variability is likely to be more prominent than that of CVR. It may, therefore, be more appropriate to describe the relative BOLD signal change induced by an isometabolic vasodilation as a proxy of deoxygenated CBV (CBVdHb) rather than CVR. With this in mind, a new method was implemented to map a marker of CBVdHb, termed BOLD-CBV, based on the normalization of voxel-wise BOLD signal variation by an estimate of the intravascular venous BOLD signal from voxels filled with venous blood. The intravascular venous BOLD signal variation, recorded during repeated breath-holding, was extracted from the superior sagittal sinus in a cohort of 27 healthy volunteers and used as a regressor across the whole brain, yielding maps of BOLD-CBV. In the same cohort, we demonstrated the potential use of BOLD-CBV for the normalization of stimulus-evoked BOLD fMRI by comparing group-level BOLD fMRI responses to a visuomotor learning task with and without the inclusion of voxel-wise vascular covariates of BOLD-CBV and the BOLD signal change per mmHg variation in end-tidal carbon dioxide (BOLD-CVR). The empirical measure of BOLD-CBV accounted for more between-subject variability in the motor task-induced BOLD responses than BOLD-CVR estimated from end-tidal carbon dioxide recordings. The new method can potentially increase the power of group fMRI studies by including a measure of vascular characteristics and has the strong practical advantage of not requiring experimental measurement of end-tidal carbon dioxide, unlike traditional methods to estimate BOLD-CVR. It also more closely represents a specific physiological characteristic of brain vasculature than BOLD-CVR, namely blood volume.
Collapse
Affiliation(s)
- Emma Biondetti
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy.
| | - Antonio Maria Chiarelli
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Michael Germuska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Ilona Lipp
- Department of Neurophysics, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Alessandro Villani
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Alessandra S Caporale
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Eleonora Patitucci
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Valentina Tomassini
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; MS Centre, Neurology Unit, 'SS. Annunziata' University Hospital, Chieti, Italy; Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK; Helen Durham Centre for Neuroinflammation, University Hospital of Wales, Cardiff, UK
| | - Richard G Wise
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
183
|
Leerssen J, Aghajani M, Bresser T, Rösler L, Winkler AM, Foster-Dingley JC, Van Someren EJW. Cognitive, Behavioral, and Circadian Rhythm Interventions for Insomnia Alter Emotional Brain Responses. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:60-69. [PMID: 36958474 DOI: 10.1016/j.bpsc.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND The highest risk of depression is conveyed by insomnia. This risk can be mitigated by sleep interventions. Understanding brain mechanisms underlying increased emotional stability following insomnia treatment could provide insight relevant to the prevention of depression. Here, we investigated how different sleep interventions alter emotion-related brain activity in people with insomnia at high risk of developing depression. METHODS Functional magnetic resonance imaging was used to assess how the amygdala response to emotional stimuli (negative facial expression) in 122 people with insomnia disorder differed from 36 control subjects and how the amygdala response changed after 6 weeks of either no treatment or internet-based circadian rhythm support (CRS), cognitive behavioral therapy for insomnia (CBT-I), or their combination (CBT-I+CRS). Effects on depression, insomnia and anxiety severity were followed up for 1 year. RESULTS Only combined treatment (CBT-I+CRS) significantly increased the amygdala response, compared with no treatment, CBT-I, and CRS. Individual differences in the degree of response enhancement were associated with improvement of insomnia symptoms directly after treatment (r = -0.41, p = .021). Moreover, exclusively CBT-I+CRS enhanced responsiveness of the left insula, which occurred in proportion to the reduction in depressive symptom severity (r = -0.37, p = .042). CONCLUSIONS This functional magnetic resonance imaging study on insomnia treatment, the largest to date, shows that a combined cognitive, behavioral, and circadian intervention enhances emotional brain responsiveness and might improve resilience in patients with insomnia who are at high risk of developing depression.
Collapse
Affiliation(s)
- Jeanne Leerssen
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands.
| | - Moji Aghajani
- Section Forensic Family and Youth Care, Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands; Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, VU University, Amsterdam, the Netherlands
| | - Tom Bresser
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands; Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Lara Rösler
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Anderson M Winkler
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jessica C Foster-Dingley
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, VU University, Amsterdam, the Netherlands
| |
Collapse
|
184
|
Kenzie JM, Rajashekar D, Goodyear BG, Dukelow SP. Resting state functional connectivity associated with impaired proprioception post-stroke. Hum Brain Mapp 2024; 45:e26541. [PMID: 38053448 PMCID: PMC10789217 DOI: 10.1002/hbm.26541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Deficits in proprioception, the knowledge of limb position and movement in the absence of vision, occur in ~50% of all strokes; however, our lack of knowledge of the neurological mechanisms of these deficits diminishes the effectiveness of rehabilitation and prolongs recovery. We performed resting-state functional magnetic resonance imaging (fMRI) on stroke patients to determine functional brain networks that exhibited changes in connectivity in association with proprioception deficits determined by a Kinarm robotic exoskeleton assessment. Thirty stroke participants were assessed for proprioceptive impairments using a Kinarm robot and underwent resting-state fMRI at 1 month post-stroke. Age-matched healthy control (n = 30) fMRI data were also examined and compared to stroke data in terms of the functional connectivity of brain regions associated with proprioception. Stroke patients exhibited reduced connectivity of the supplementary motor area and the supramarginal gyrus, relative to controls. Functional connectivity of these regions plus primary somatosensory cortex and parietal opercular area was significantly associated with proprioceptive function. The parietal lobe of the lesioned hemisphere is a significant node for proprioception after stroke. Assessment of functional connectivity of this region after stroke may assist with prognostication of recovery. This study also provides potential targets for therapeutic neurostimulation to aid in stroke recovery.
Collapse
Affiliation(s)
- Jeffrey M. Kenzie
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgaryAlbertaCanada
| | - Deepthi Rajashekar
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Bradley G. Goodyear
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgaryAlbertaCanada
- Department of RadiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Sean P. Dukelow
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgaryAlbertaCanada
| |
Collapse
|
185
|
Oliva V, Riegner G, Dean J, Khatib LA, Allen A, Barrows D, Chen C, Fuentes R, Jacobson A, Lopez C, Mosbey D, Reyes M, Ross J, Uvarova A, Liu T, Mobley W, Zeidan F. WITHDRAWN: I feel your pain: Higher empathy is associated with higher posterior default mode network activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553004. [PMID: 37645854 PMCID: PMC10462016 DOI: 10.1101/2023.08.11.553004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The authors discovered an error in the primary analysis and have withdrawn the results from this version of the investigation.
Collapse
|
186
|
Carvalheiro J, Philiastides MG. Distinct spatiotemporal brainstem pathways of outcome valence during reward- and punishment-based learning. Cell Rep 2023; 42:113589. [PMID: 38100353 DOI: 10.1016/j.celrep.2023.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Learning to seek rewards and avoid punishments, based on positive and negative choice outcomes, is essential for human survival. Yet, the neural underpinnings of outcome valence in the human brainstem and the extent to which they differ in reward and punishment learning contexts remain largely elusive. Here, using simultaneously acquired electroencephalography and functional magnetic resonance imaging data, we show that during reward learning the substantia nigra (SN)/ventral tegmental area (VTA) and locus coeruleus are initially activated following negative outcomes, while the VTA subsequently re-engages exhibiting greater responses for positive than negative outcomes, consistent with an early arousal/avoidance response and a later value-updating process, respectively. During punishment learning, we show that distinct raphe nucleus and SN subregions are activated only by negative outcomes with a sustained post-outcome activity across time, supporting the involvement of these brainstem subregions in avoidance behavior. Finally, we demonstrate that the coupling of these brainstem structures with other subcortical and cortical areas helps to shape participants' serial choice behavior in each context.
Collapse
Affiliation(s)
- Joana Carvalheiro
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| | - Marios G Philiastides
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
187
|
Sasaki A, Kawai E, Watanabe K, Yamano E, Oba C, Nakamura K, Natsume M, Mizuno K, Watanabe Y. Cacao Polyphenol-Rich Dark Chocolate Intake Contributes to Efficient Brain Activity during Cognitive Tasks: A Randomized, Single-Blinded, Crossover, and Dose-Comparison fMRI Study. Nutrients 2023; 16:41. [PMID: 38201871 PMCID: PMC10780455 DOI: 10.3390/nu16010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Cacao polyphenol-enriched dark chocolate may have beneficial effects on human health, such as facilitating maintaining good performance in long-lasting cognitive tasks. This study examined the effects of dark chocolate intake on improving brain function during cognitive tasks using functional magnetic resonance imaging (fMRI). In this randomized, single-blinded, crossover, and dose-comparison study, 26 healthy middle-aged participants ingested dark chocolate (25 g) either with a low concentration (LC) (211.7 mg) or a high concentration (HC) (635 mg) of cacao polyphenols. Thereafter, their brain activities were analyzed during continuous and effortful cognitive tasks relevant to executive functioning using fMRI in two consecutive 15 min sessions (25 and 50 min after ingestion). We observed significant interaction effects between chocolate consumption and brain activity measurement sessions in the left dorsolateral prefrontal cortex and left inferior parietal lobule. After HC chocolate ingestion, these areas showed lower brain activity in the second session than in the first session; however, these areas showed higher activity in the second session after LC chocolate ingestion. These results suggest that cacao polyphenol-enriched dark chocolate enhances the efficient use of cognitive resources by reducing the effort of brain activity.
Collapse
Affiliation(s)
- Akihiro Sasaki
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan; (E.K.); (K.W.); (E.Y.); (K.M.); (Y.W.)
- RIKEN Compass to Healthy Life Research Complex Program, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
- Center for Health Science Innovation, Osaka Metropolitan University, 3-1 Ofukacho, Kita-ku, Osaka 530-0011, Osaka, Japan
| | - Eriko Kawai
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan; (E.K.); (K.W.); (E.Y.); (K.M.); (Y.W.)
- Center for Health Science Innovation, Osaka Metropolitan University, 3-1 Ofukacho, Kita-ku, Osaka 530-0011, Osaka, Japan
| | - Kyosuke Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan; (E.K.); (K.W.); (E.Y.); (K.M.); (Y.W.)
- RIKEN Compass to Healthy Life Research Complex Program, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
- Center for Health Science Innovation, Osaka Metropolitan University, 3-1 Ofukacho, Kita-ku, Osaka 530-0011, Osaka, Japan
| | - Emi Yamano
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan; (E.K.); (K.W.); (E.Y.); (K.M.); (Y.W.)
- RIKEN Compass to Healthy Life Research Complex Program, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
- Center for Health Science Innovation, Osaka Metropolitan University, 3-1 Ofukacho, Kita-ku, Osaka 530-0011, Osaka, Japan
| | - Chisato Oba
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji 192-0919, Tokyo, Japan; (K.N.); (M.N.)
| | - Kentaro Nakamura
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji 192-0919, Tokyo, Japan; (K.N.); (M.N.)
| | - Midori Natsume
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji 192-0919, Tokyo, Japan; (K.N.); (M.N.)
| | - Kei Mizuno
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan; (E.K.); (K.W.); (E.Y.); (K.M.); (Y.W.)
- RIKEN Compass to Healthy Life Research Complex Program, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
- Center for Health Science Innovation, Osaka Metropolitan University, 3-1 Ofukacho, Kita-ku, Osaka 530-0011, Osaka, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan; (E.K.); (K.W.); (E.Y.); (K.M.); (Y.W.)
- RIKEN Compass to Healthy Life Research Complex Program, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
- Center for Health Science Innovation, Osaka Metropolitan University, 3-1 Ofukacho, Kita-ku, Osaka 530-0011, Osaka, Japan
| |
Collapse
|
188
|
Foland-Ross LC, Ghasemi E, Lozano Wun V, Aye T, Kowal K, Ross J, Reiss AL. Executive Dysfunction in Klinefelter Syndrome: Associations With Brain Activation and Testicular Failure. J Clin Endocrinol Metab 2023; 109:e88-e95. [PMID: 37595261 PMCID: PMC10735320 DOI: 10.1210/clinem/dgad487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
CONTEXT Executive dysfunction is a well-recognized component of the cognitive phenotype of Klinefelter syndrome (KS), yet the neural basis of KS-associated cognitive weaknesses, and their association with testicular failure is unknown. OBJECTIVE We investigated executive function, brain activation, and pubertal development in adolescents with and without KS. METHODS Forty-three adolescents with KS (mean age 12.3 ± 2.3 years) and 41 typically developing boys (mean age 11.9 ± 1.8 years) underwent pubertal evaluation, behavioral assessment, and completed functional magnetic resonance imaging (fMRI) as they performed an executive function task, the go/no-go task. Group differences in activation were examined. Associations among activation, executive function, and pubertal development measures were tested in secondary analyses. RESULTS Boys with KS exhibited reduced executive function, as well as lower activation in brain regions subserving executive function, including the inferior frontal gyrus, anterior insula, dorsal anterior cingulate cortex, and caudate nucleus. Secondary analyses indicated that the magnitude of activation differences in boys with KS was associated with severity of pubertal developmental delay, as indexed by lower testosterone (t(36) = 2.285; P = .028) and lower testes volume (t(36) = 2.238; P = .031). Greater parent-reported attention difficulties were additionally associated with lower testicular volume (t(36) = -2.028; P = .050). CONCLUSION These findings indicate a neural basis for executive dysfunction in KS and suggest alterations in pubertal development may contribute to increased severity of this cognitive weakness. Future studies that examine whether these patterns change with testosterone replacement therapy are warranted.
Collapse
Affiliation(s)
- Lara C Foland-Ross
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Elnaz Ghasemi
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Vanessa Lozano Wun
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tandy Aye
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 93405, USA
| | - Karen Kowal
- Department of Pediatrics, Nemours Children's Hospital Delaware, Wilmington, DE 19803, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Judith Ross
- Department of Pediatrics, Nemours Children's Hospital Delaware, Wilmington, DE 19803, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 93405, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
189
|
Angeli PA, DiNicola LM, Saadon-Grosman N, Eldaief MC, Buckner RL. Specialization of the Human Hippocampal Long Axis Revisited. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572264. [PMID: 38187548 PMCID: PMC10769203 DOI: 10.1101/2023.12.19.572264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The hippocampus possesses anatomical differences along its long axis. Here the functional specialization of the human hippocampal long axis was explored using network-anchored precision functional MRI (N = 11) paired with behavioral analyses (N=266). Functional connectivity analyses demonstrated that the anterior hippocampus was preferentially correlated with a cerebral network associated with remembering, while the posterior hippocampus was correlated with a distinct network associated with behavioral salience. Seed regions placed within the hippocampus recapitulated the distinct cerebral networks. Functional characterization using task data within the same intensively sampled individuals discovered a functional double dissociation between the anterior and posterior hippocampal regions. The anterior hippocampal region was sensitive to remembering and imagining the future, specifically tracking the process of scene construction, while the posterior hippocampal region displayed transient responses to targets in an oddball detection task and to transitions between task blocks. These findings suggest specialization along the long axis of the hippocampus with differential responses reflecting the functional properties of the partner cerebral networks.
Collapse
Affiliation(s)
- Peter A Angeli
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mark C Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
190
|
Thaploo D, Joshi A, Yilmaz E, Yildirim D, Altundag A, Hummel T. Functional connectivity patterns in parosmia. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:24. [PMID: 38115149 PMCID: PMC10731743 DOI: 10.1186/s12993-023-00225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Parosmia is a qualitative olfactory dysfunction presenting as "distorted odor perception" in presence of an odor source. Aim of this study was to use resting state functional connectivity to gain more information on the alteration of olfactory processing at the level of the central nervous system level. METHODS A cross sectional study was performed in 145 patients with parosmia (age range 20-76 years; 90 women). Presence and degree of parosmia was diagnosed on the basis of standardized questionnaires. Participants also received olfactory testing using the "Sniffin' Sticks". Then they underwent resting state scans using a 3 T magnetic resonance imaging scanner while fixating on a cross. RESULTS Whole brain analyses revealed reduced functional connectivity in salience as well as executive control networks. Region of interest-based analyses also supported reduced functional connectivity measures between primary and secondary olfactory eloquent areas (temporal pole, supramarginal gyrus and right orbitofrontal cortex; dorso-lateral pre-frontal cortex and the right piriform cortex). CONCLUSIONS Participants with parosmia exhibited a reduced information flow between memory, decision making centers, and primary and secondary olfactory areas.
Collapse
Affiliation(s)
- Divesh Thaploo
- Smell & Taste Clinic, Department of Otorhinolaryngology, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Akshita Joshi
- Smell & Taste Clinic, Department of Otorhinolaryngology, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Eren Yilmaz
- Faculty of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey
| | - Duzgun Yildirim
- Department of Medical Imaging, Acibadem University, Vocational School of Health Sciences, Istanbul, Turkey
| | - Aytug Altundag
- Faculty of Medicine, Department of Otorhinolaryngology, Biruni University, Istanbul, Turkey
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| |
Collapse
|
191
|
Braaß H, Feldheim J, Chu Y, Tinnermann A, Finsterbusch J, Büchel C, Schulz R, Gerloff C. Association between activity in the ventral premotor cortex and spinal cord activation during force generation-A combined cortico-spinal fMRI study. Hum Brain Mapp 2023; 44:6471-6483. [PMID: 37873743 PMCID: PMC10681651 DOI: 10.1002/hbm.26523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
Force generation is a crucial element of dexterity and a highly relevant skill of the human motor system. How cerebral and spinal components interact and how spinal activation is associated with the activity in the cerebral primary motor and premotor areas is poorly understood. Here, we conducted combined cortico-spinal functional magnetic resonance imaging during a simple visually guided isometric force generation task in 20 healthy young subjects. Activation was localized in the right cervical spinal cord and left primary motor and premotor areas. The main finding is that spinal activation was negatively correlated with ventral premotor cortex activation. Spinal activation was furthermore significantly correlated with primary motor cortex activation, while increasing target forces led to an increase in the amount of activation. These data indicate that human premotor areas such as the ventral premotor cortex might be functionally connected to the lower cervical spinal cord contributing to distal upper limb functions, a finding that extends our understanding of human motor function beyond the animal literature.
Collapse
Affiliation(s)
- Hanna Braaß
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jan Feldheim
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ying Chu
- Institute of Systems NeuroscienceUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Alexandra Tinnermann
- Institute of Systems NeuroscienceUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jürgen Finsterbusch
- Institute of Systems NeuroscienceUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christian Büchel
- Institute of Systems NeuroscienceUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Robert Schulz
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christian Gerloff
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
192
|
Zühlsdorff K, Verdejo-Román J, Clark L, Albein-Urios N, Soriano-Mas C, Cardinal RN, Robbins TW, Dalley JW, Verdejo-García A, Kanen JW. Computational modelling of reinforcement learning and functional neuroimaging of probabilistic reversal for dissociating compulsive behaviours in gambling and cocaine use disorders. BJPsych Open 2023; 10:e8. [PMID: 38073280 PMCID: PMC10755559 DOI: 10.1192/bjo.2023.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Individuals with cocaine use disorder or gambling disorder demonstrate impairments in cognitive flexibility: the ability to adapt to changes in the environment. Flexibility is commonly assessed in a laboratory setting using probabilistic reversal learning, which involves reinforcement learning, the process by which feedback from the environment is used to adjust behavior. AIMS It is poorly understood whether impairments in flexibility differ between individuals with cocaine use and gambling disorders, and how this is instantiated by the brain. We applied computational modelling methods to gain a deeper mechanistic explanation of the latent processes underlying cognitive flexibility across two disorders of compulsivity. METHOD We present a re-analysis of probabilistic reversal data from individuals with either gambling disorder (n = 18) or cocaine use disorder (n = 20) and control participants (n = 18), using a hierarchical Bayesian approach. Furthermore, we relate behavioural findings to their underlying neural substrates through an analysis of task-based functional magnetic resonanceimaging (fMRI) data. RESULTS We observed lower 'stimulus stickiness' in gambling disorder, and report differences in tracking expected values in individuals with gambling disorder compared to controls, with greater activity during reward expected value tracking in the cingulate gyrus and amygdala. In cocaine use disorder, we observed lower responses to positive punishment prediction errors and greater activity following negative punishment prediction errors in the superior frontal gyrus compared to controls. CONCLUSIONS Using a computational approach, we show that individuals with gambling disorder and cocaine use disorder differed in their perseverative tendencies and in how they tracked value neurally, which has implications for psychiatric classification.
Collapse
Affiliation(s)
- Katharina Zühlsdorff
- Department of Psychology, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK; and the Alan Turing Institute, London, UK
| | - Juan Verdejo-Román
- Department of Personality, Assessment and Psychological Treatment, Universidad de Granada, Spain; and Mind, Brain and Behavior Research Center, Universidad de Granada, Spain
| | - Luke Clark
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | | | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Spain; Department of Social Psychology and Quantitative Psychology, University of Barcelona, Spain; and CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - Rudolf N. Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK; Department of Psychiatry, University of Cambridge, UK; and Liaison Psychology, Cambridgeshire and Peterborough NHS Foundation Trust, UK
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, UK; and Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
| | - Jeffrey W. Dalley
- Department of Psychology, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK; and Department of Psychiatry, University of Cambridge, UK
| | - Antonio Verdejo-García
- School of Psychological Sciences, Monash University, Australia; and Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Jonathan W. Kanen
- Department of Psychology, University of Cambridge, UK; and Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
| |
Collapse
|
193
|
Hemmerling KJ, Hoggarth MA, Sandhu MS, Parrish TB, Bright MG. Spatial distribution of hand-grasp motor task activity in spinal cord functional magnetic resonance imaging. Hum Brain Mapp 2023; 44:5567-5581. [PMID: 37608682 PMCID: PMC10619382 DOI: 10.1002/hbm.26458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/17/2023] [Accepted: 08/05/2023] [Indexed: 08/24/2023] Open
Abstract
Upper extremity motor paradigms during spinal cord functional magnetic resonance imaging (fMRI) can provide insight into the functional organization of the cord. Hand-grasping is an important daily function with clinical significance, but previous studies of similar squeezing movements have not reported consistent areas of activity and are limited by sample size and simplistic analysis methods. Here, we study spinal cord fMRI activation using a unimanual isometric hand-grasping task that is calibrated to participant maximum voluntary contraction (MVC). Two task modeling methods were considered: (1) a task regressor derived from an idealized block design (Ideal) and (2) a task regressor based on the recorded force trace normalized to individual MVC (%MVC). Across these two methods, group motor activity was highly lateralized to the hemicord ipsilateral to the side of the task. Activation spanned C5-C8 and was primarily localized to the C7 spinal cord segment. Specific differences in spatial distribution are also observed, such as an increase in C8 and dorsal cord activity when using the %MVC regressor. Furthermore, we explored the impact of data quantity and spatial smoothing on sensitivity to hand-grasp motor task activation. This analysis shows a large increase in number of active voxels associated with the number of fMRI runs, sample size, and spatial smoothing, demonstrating the impact of experimental design choices on motor activation.
Collapse
Affiliation(s)
- Kimberly J. Hemmerling
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Biomedical Engineering, McCormick School of EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Mark A. Hoggarth
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Physical TherapyNorth Central CollegeNapervilleIllinoisUSA
| | - Milap S. Sandhu
- Shirley Ryan Ability LabChicagoIllinoisUSA
- Department of Physical Medicine and Rehabilitation, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Todd B. Parrish
- Department of Biomedical Engineering, McCormick School of EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Department of Radiology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Biomedical Engineering, McCormick School of EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
194
|
Agron S, de March CA, Weissgross R, Mishor E, Gorodisky L, Weiss T, Furman-Haran E, Matsunami H, Sobel N. A chemical signal in human female tears lowers aggression in males. PLoS Biol 2023; 21:e3002442. [PMID: 38127837 PMCID: PMC10734982 DOI: 10.1371/journal.pbio.3002442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Rodent tears contain social chemosignals with diverse effects, including blocking male aggression. Human tears also contain a chemosignal that lowers male testosterone, but its behavioral significance was unclear. Because reduced testosterone is associated with reduced aggression, we tested the hypothesis that human tears act like rodent tears to block male aggression. Using a standard behavioral paradigm, we found that sniffing emotional tears with no odor percept reduced human male aggression by 43.7%. To probe the peripheral brain substrates of this effect, we applied tears to 62 human olfactory receptors in vitro. We identified 4 receptors that responded in a dose-dependent manner to this stimulus. Finally, to probe the central brain substrates of this effect, we repeated the experiment concurrent with functional brain imaging. We found that sniffing tears increased functional connectivity between the neural substrates of olfaction and aggression, reducing overall levels of neural activity in the latter. Taken together, our results imply that like in rodents, a human tear-bound chemosignal lowers male aggression, a mechanism that likely relies on the structural and functional overlap in the brain substrates of olfaction and aggression. We suggest that tears are a mammalian-wide mechanism that provides a chemical blanket protecting against aggression.
Collapse
Affiliation(s)
- Shani Agron
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Claire A. de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Reut Weissgross
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eva Mishor
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Gorodisky
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Weiss
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Edna Furman-Haran
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Noam Sobel
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
195
|
Schipper MR, Vlegels N, van Harten TW, Rasing I, Koemans EA, Voigt S, de Luca A, Kaushik K, van Etten ES, van Zwet EW, Terwindt GM, Biessels GJ, van Osch MJP, van Walderveen MAA, Wermer MJH. Microstructural white matter integrity in relation to vascular reactivity in Dutch-type hereditary cerebral amyloid angiopathy. J Cereb Blood Flow Metab 2023; 43:2144-2155. [PMID: 37708241 PMCID: PMC10925868 DOI: 10.1177/0271678x231200425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Cerebral Amyloid Angiopathy (CAA) is characterized by cerebrovascular amyloid-β accumulation leading to hallmark cortical MRI markers, such as vascular reactivity, but white matter is also affected. By studying the relationship in different disease stages of Dutch-type CAA (D-CAA), we tested the relation between vascular reactivity and microstructural white matter integrity loss. In a cross-sectional study in D-CAA, 3 T MRI was performed with Blood-Oxygen-Level-Dependent (BOLD) fMRI upon visual activation to assess vascular reactivity and diffusion tensor imaging to assess microstructural white matter integrity through Peak Width of Skeletonized Mean Diffusivity (PSMD). We assessed the relationship between BOLD parameters - amplitude, time-to-peak (TTP), and time-to-baseline (TTB) - and PSMD, with linear and quadratic regression modeling. In total, 25 participants were included (15/10 pre-symptomatic/symptomatic; mean age 36/59 y). A lowered BOLD amplitude (unstandardized β = 0.64, 95%CI [0.10, 1.18], p = 0.02, Adjusted R2 = 0.48), was quadratically associated with increased PSMD levels. A delayed BOLD response, with prolonged TTP (β = 8.34 × 10-6, 95%CI [1.84 × 10-6, 1.48 × 10-5], p = 0.02, Adj. R2 = 0.25) and TTB (β = 6.57 × 10-6, 95%CI [1.92 × 10-6, 1.12 × 10-5], p = 0.008, Adj. R2 = 0.29), was linearly associated with increased PSMD. In D-CAA subjects, predominantly in the symptomatic stage, impaired cerebrovascular reactivity is related to microstructural white matter integrity loss. Future longitudinal studies are needed to investigate whether this relation is causal.
Collapse
Affiliation(s)
- Manon R Schipper
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Naomi Vlegels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Thijs W van Harten
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emma A Koemans
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sabine Voigt
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alberto de Luca
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kanishk Kaushik
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellis S van Etten
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik W van Zwet
- Department of Biostatistics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthias JP van Osch
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marieke JH Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
196
|
Liu J, Zou X, Gu J, Yu Q, Dong Z, Zuo H, Chen X, Du X, Zou D, Han Y, Peng J, Cheng O. Altered connectivity in the cognitive control-related prefrontal cortex in Parkinson's disease with rapid eye movement sleep behavior disorder. Brain Imaging Behav 2023; 17:702-714. [PMID: 37721659 DOI: 10.1007/s11682-023-00796-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
Rapid eye movement sleep behavior disorder (RBD) frequently occurs in Parkinson's disease (PD), however, the exact pathophysiological mechanism is not clear. The prefrontal cortex (PFC), especially ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC), and inferior frontal gyrus (IFG) which may play roles by regulating cognitive control processes. The purpose of this study was to investigate whether there is abnormal functional connectivity (FC) maps and volume changes in PD with RBD(PD-RBD). We recruited 20 PD-RBD, 20 PD without RBD (PD-nRBD), and 20 normal controls (NC). We utilized resting-state functional Magnetic Resonance Imaging (rs-MRI) to explore FC changes based on regions of interest (VLPFC, DLPFC, and IFG), and used voxel-based morphology technology to analyze whole-brain volumes by 3D-T1 structural MRI. Except the REM sleep behavioral disorders questionnaire (RBDSQ), the PD-RBD showed lower visuospatial/executive and attention scores than the NC group. The RBDSQ scores were significantly positively correlated with zFC of right DLPFC to bilateral posterior cingulate cortex (PCC) (P = 0.0362, R = 0.4708, AlphaSim corrected) and also significantly positively correlated with zFC of left VLPFC to right inferior temporal (P = 0.0157, R = 0.5323, AlphaSim corrected) in PD-RBD group. Furthermore, abnormal correlations with zFC values were also found in some cognitive subdomains in PD-RBD group. The study may suggest that in PD-RBD patients, the presence of RBD may be related to the abnormal FC of VLPFC and DLPFC, meanwhile, the abnormal FC of DLPFC and IFG may be related to the mechanisms of cognitive impairment.
Collapse
Affiliation(s)
- Jinjing Liu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaoya Zou
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Jinming Gu
- Department of Radiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Qian Yu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Zhaoying Dong
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Hongzhou Zuo
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaocui Chen
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Du
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Dezhi Zou
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Han
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Juan Peng
- Department of Radiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Oumei Cheng
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
197
|
Hoeppli ME, Garenfeld MA, Mortensen CK, Nahman‐Averbuch H, King CD, Coghill RC. Denoising task-related fMRI: Balancing noise reduction against signal loss. Hum Brain Mapp 2023; 44:5523-5546. [PMID: 37753711 PMCID: PMC10619396 DOI: 10.1002/hbm.26447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 09/28/2023] Open
Abstract
Preprocessing fMRI data requires striking a fine balance between conserving signals of interest and removing noise. Typical steps of preprocessing include motion correction, slice timing correction, spatial smoothing, and high-pass filtering. However, these standard steps do not remove many sources of noise. Thus, noise-reduction techniques, for example, CompCor, FIX, and ICA-AROMA have been developed to further improve the ability to draw meaningful conclusions from the data. The ability of these techniques to minimize noise while conserving signals of interest has been tested almost exclusively in resting-state fMRI and, only rarely, in task-related fMRI. Application of noise-reduction techniques to task-related fMRI is particularly important given that such procedures have been shown to reduce false positive rates. Little remains known about the impact of these techniques on the retention of signal in tasks that may be associated with systemic physiological changes. In this paper, we compared two ICA-based, that is FIX and ICA-AROMA, two CompCor-based noise-reduction techniques, that is aCompCor, and tCompCor, and standard preprocessing using a large (n = 101) fMRI dataset including noxious heat and non-noxious auditory stimulation. Results show that preprocessing using FIX performs optimally for data obtained using noxious heat, conserving more signals than CompCor-based techniques and ICA-AROMA, while removing only slightly less noise. Similarly, for data obtained during non-noxious auditory stimulation, FIX noise-reduction technique before analysis with a covariate of interest outperforms the other techniques. These results indicate that FIX might be the most appropriate technique to achieve the balance between conserving signals of interest and removing noise during task-related fMRI.
Collapse
Affiliation(s)
- M. E. Hoeppli
- Division of Behavioral Medicine and Clinical PsychologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Pediatric Pain Research Center (PPRC), Cincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - M. A. Garenfeld
- Division of Behavioral Medicine and Clinical PsychologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Pediatric Pain Research Center (PPRC), Cincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
| | - C. K. Mortensen
- Division of Behavioral Medicine and Clinical PsychologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Pediatric Pain Research Center (PPRC), Cincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - H. Nahman‐Averbuch
- Division of Behavioral Medicine and Clinical PsychologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Pediatric Pain Research Center (PPRC), Cincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Washington University Pain Center, Department of AnesthesiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - C. D. King
- Division of Behavioral Medicine and Clinical PsychologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Pediatric Pain Research Center (PPRC), Cincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati, College of MedicineCincinnatiOhioUSA
| | - R. C. Coghill
- Division of Behavioral Medicine and Clinical PsychologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Pediatric Pain Research Center (PPRC), Cincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati, College of MedicineCincinnatiOhioUSA
| |
Collapse
|
198
|
Balters S, Foland-Ross LC, Bruno J, Periyakoil VS, Valantine H, Reiss AL. Neural responses to gender-based microaggressions in academic medicine. J Neurosci Res 2023; 101:1803-1813. [PMID: 37654210 DOI: 10.1002/jnr.25240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Gender-based microaggressions have been associated with persistent disparities between women and men in academia. Little is known about the neural mechanisms underlying those often subtle and unintentional yet detrimental behaviors. Here, we assessed the neural responses to gender-based microaggressions in 28 early career faculty in medicine (N = 16 female, N = 12 male sex) using fMRI. Participants watched 33 videos of situations demonstrating gender-based microaggressions and control situations in academic medicine. Video topics had been previously identified through real-life anecdotes about microaggression from women faculty and were scripted and reenacted using professional actors. Primary voxel-wise analyses comparing group differences in activation elucidated a significant group by condition interaction in a right-lateralized cluster across the frontal (inferior and middle frontal gyri, frontal pole, precentral gyrus, postcentral gyrus) and parietal lobes (supramarginal gyrus, angular gyrus). Whereas women faculty exhibited reduced activation in these regions during the microaggression relative to the control condition, the opposite was true for men. Posthoc analyses showed that these patterns were significantly associated with the degree to which participants reported feeling judged for their gender in academic medicine. Lastly, secondary exploratory ROI analyses showed significant between-group differences in the right dorsolateral prefrontal cortex and inferior frontal gyrus. Women activated these two regions less in the microaggression condition compared to the control condition, whereas men did not. These findings indicate that the observation of gender-based microaggressions results in a specific pattern of neural reactivity in women early career faculty.
Collapse
Affiliation(s)
- Stephanie Balters
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Lara C Foland-Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer Bruno
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Vyjeyanthi S Periyakoil
- Department of Primary Care and Population Health, Stanford University School of Medicine, Stanford, California, USA
| | - Hannah Valantine
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Allan L Reiss
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
199
|
Carosella KA, Wiglesworth A, Bendezú JJ, Brower R, Mirza S, Mueller BA, Cullen KR, Klimes-Dougan B. Patterns of experience, expression, and physiology of stress relate to depressive symptoms and self-injurious thoughts and behaviors in adolescents: a person-centered approach. Psychol Med 2023; 53:7902-7912. [PMID: 37609891 PMCID: PMC10755230 DOI: 10.1017/s0033291723002003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Preliminary evidence shows that discordance in stress experience, expression, and physiology (EEP) in adolescents is linked to depression, suicidal ideation (SI), non-suicidal self-injury (NSSI), and brain functioning. This study employs person-centered analysis to probe the relationship between stress responses, psychopathology, and neural patterns in female adolescents who are oversampled for engagement in NSSI. METHODS Adolescent females (N = 109, ages 12-17) underwent a social stress test from which self-report measures of stress experience, observer ratings of stress expression, and physiological metrics of stress (via salivary cortisol) were obtained. Multi-trajectory modeling was employed to identify concordant and discordant stress EEP groups. Depressive symptoms, SI and attempt, NSSI engagement, frontal and limbic activation to emotional stimuli, and resting state fronto-limbic connectivity were examined in the EEP groups derived from the multi-trajectory models. RESULTS Four groups were identified, three of which demonstrated relatively concordant EEP and one which demonstrated discordant EEP (High Experience-High Expression-Low Physiology). Further, replicating past research, the High Experience-High Expression-Low Physiology discordant group exhibited higher depressive symptoms, SI, suicide attempt, and NSSI episodes (only for sensitivity analyses based on past year) relative to other EEP groups. No significant group differences in brain functioning emerged. CONCLUSION Results indicate that within-person, multi-level patterns in stress responding capture risk for dysfunction including depression and self-injurious thoughts and behaviors. Further interrogating of system-level stress functioning may better inform assessment and intervention efforts.
Collapse
Affiliation(s)
| | - Andrea Wiglesworth
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Jason José Bendezú
- Department of Psychology, The Pennsylvania State University, University Park Campus, University Park, PA, USA
| | - Rylee Brower
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Salahudeen Mirza
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Bryon A. Mueller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn R. Cullen
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Bonnie Klimes-Dougan
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
200
|
Schnittjer AJ, Kim H, Lepley AS, Onate JA, Criss CR, Simon JE, Grooms DR. Organization of sensorimotor activity in anterior cruciate ligament reconstructed individuals: an fMRI conjunction analysis. Front Hum Neurosci 2023; 17:1263292. [PMID: 38077185 PMCID: PMC10704895 DOI: 10.3389/fnhum.2023.1263292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/17/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Anterior cruciate ligament reconstruction (ACLR) is characterized by persistent involved limb functional deficits that persist for years despite rehabilitation. Previous research provides evidence of both peripheral and central nervous system adaptations following ACLR. However, no study has compared functional organization of the brain for involved limb motor control relative to the uninvolved limb and healthy controls. The purpose of this study was to examine sensorimotor cortex and cerebellar functional activity overlap and non-overlap during a knee motor control task between groups (ACLR and control), and to determine cortical organization of involved and uninvolved limb movement between groups. Methods Eighteen participants with left knee ACLR and 18 control participants performed a knee flexion/extension motor control task during functional magnetic resonance imaging (fMRI). A conjunction analysis was conducted to determine the degree of overlap in brain activity for involved and uninvolved limb knee motor control between groups. Results The ACLR group had a statistically higher mean percent signal change in the sensorimotor cortex for the involved > uninvolved contrast compared to the control group. Brain activity between groups statistically overlapped in sensorimotor regions of the cortex and cerebellum for both group contrasts: involved > uninvolved and uninvolved > involved. Relative to the control group, the ACLR group uniquely activated superior parietal regions (precuneus, lateral occipital cortex) for involved limb motor control. Additionally, for involved limb motor control, the ACLR group displayed a medial and superior shift in peak voxel location in frontal regions; for parietal regions, the ACLR group had a more posterior and superior peak voxel location relative to the control group. Conclusion ACLR may result in unique activation of the sensorimotor cortex via a cortically driven sensory integration strategy to maintain involved limb motor control. The ACLR group's unique brain activity was independent of strength, self-reported knee function, and time from surgery.
Collapse
Affiliation(s)
- Amber J. Schnittjer
- Translational Biomedical Sciences, Graduate College, Ohio University, Athens, OH, United States
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
| | - HoWon Kim
- Translational Biomedical Sciences, Graduate College, Ohio University, Athens, OH, United States
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
| | - Adam S. Lepley
- School of Kinesiology, Exercise and Sports Science Initiative, University of Michigan, Ann Arbor, MI, United States
| | - James A. Onate
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Cody R. Criss
- OhioHealth Riverside Methodist Hospital, Columbus, OH, United States
| | - Janet E. Simon
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, United States
| | - Dustin R. Grooms
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, OH, United States
| |
Collapse
|