151
|
Zhao Q, Chen S, Wang G, Du Y, Zhang Z, Yu G, Ren C, Zhang Y, Du J. Exogenous melatonin enhances soybean (Glycine max (L.) Merr.) seedling tolerance to saline-alkali stress by regulating antioxidant response and DNA damage repair. PHYSIOLOGIA PLANTARUM 2022; 174:e13731. [PMID: 35717632 DOI: 10.1111/ppl.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Saline-alkali (SA) stress induces excessive reactive oxygen species (ROS) accumulation in plant cells, resulting in oxidative damages of membranes, lipids, proteins, and nucleic acids. Melatonin has antioxidant protection effects in living organisms and thus has received a lot of attention. This study aimed to investigate the effect and regulating mechanism of melatonin treatment on soybean tolerance to SA stress. In this study, cultivars Heihe 49 (HH49, SA-tolerant) and Henong 95 (HN95, SA-sensitive) were pot-cultured in SA soil, then treated with MT (0-300 μM) at V1 stage. SA stress induced ROS accumulation and DNA damage in the seedling roots of both cultivars, causing G1/S arrest in HN95 and G2/M arrest in HH49. Melatonin treatment enhanced the activity of antioxidant enzymes in soybean seedling roots and reduced ROS accumulation. Additionally, melatonin treatment upregulated DNA damage repair genes, thus enhancing the reduction of DNA oxidative damage under SA stress. The effects of melatonin treatment were manifested as decreased RAPD polymorphism, 8-hydroxy-2'-deoxyguanine (8-OH-dG) level, and relative density of apurinic sites (AP-sites). Meanwhile, melatonin treatment partially alleviated the SA-induced G1/S arrest in HN95 and G2/M arrest in HH49, thus enhancing soybean seedling tolerance to SA stress.
Collapse
Affiliation(s)
- Qiang Zhao
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Suyu Chen
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Guangda Wang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Yanli Du
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Zhaoning Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Gaobo Yu
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Chunyuan Ren
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Jidao Du
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
- Research Center of Saline and Alkali Land Improvement Engineering Technology in Heilongjiang Province, Daqing, People's Republic of China
| |
Collapse
|
152
|
Response of Yam (Dioscorea alata) to the Application of Rhizophagus irregularis and Potassium Silicate under Salinity Stress. STRESSES 2022. [DOI: 10.3390/stresses2020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Yam (Dioscorea alata) is a tropical plant that is considered critical for food security. The use of high fertilizer, low soil fertility, and insect pest infestation reduce yam tuber yield and quality. The present study was performed to determine the effect of potassium silicate and arbuscular mycorrhizal fungi (AMF) on yam cultivated under salinity stress. This study revealed that the combination of Rhizophagus irregularis (AMF) and Potassium silicate was more effective than their individual application on yam and were beneficial for overall analyzed characters. We observed the days to emergence and the average days to first leaf emergence decreased by 33.46% and 26.78%, respectively, the number of leaves increased by 45.23%, number of sprouts per seed tuber by 50%, vine length by 60.8%, vine length at harvest by 40.53%, the average leaf width by 53.79%, petiole length by 31.74%, tuber length by 43.84%, average diameter of tuber by 56.58%, and average number of tuber per vine by 46.15% in T5 treated plants. We also recorded that starch content increased by 21.89%, ascorbic acid by 61.51%, average moisture by 8.36%, TSS by 50%, and total sugar by 69.53% in T5 treated plants. The total phenol was found to be 1.53% higher in T3 applied plants, while the dry matter was 36.37% higher in T5 treatment. Furthermore, the enzymatic evaluation of MDA in leaves was found to be enhanced by 142% in T2. The enzyme 8-OHdG from the leaves sample was reported to be increased after T5 by 621.15%. Moreover, the amount of CAT was higher by 53.46% in T2 treated plants. Likewise, the amount of enzyme SOD and POX in leaves of D. alata enhanced by 30.91% and 51.15% T2 treatments respectively.
Collapse
|
153
|
Ren W, Chen L, Wang Q, Ren Y. Transcriptome and Metabolome Analysis of Upland Cotton ( Gossypium hirsutum) Seed Pretreatment with MgSO 4 in Response to Salinity Stress. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060921. [PMID: 35743952 PMCID: PMC9227556 DOI: 10.3390/life12060921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Upland cotton (Gossypium hirsutum) is a salt-tolerant crop that can withstand high salinity levels without showing signs of harm to the plant. However, the plant is more prone to salinity stress at the germination stage and a poor germination as well as poor crop stand lead to a weak productivity. It is possible to obtain a comprehensive picture of the cotton seedling germination and establishment against salt stress by examining dynamic changes in the transcriptomic and metabolomic profiles. The reported study employed a pretreatment of cotton seeds by soaking them in 0.2% Magnesium Sulphate (MgSO4) solution at room temperature for 4, 8, and 12 h. The analysis of variance based on the studied traits emergence rate, above and underground plant parts' fresh weight measured, displayed significant differences of the three treatments compared with the control. A total of 28,801 and 264 differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were discovered to code for biological processes such as response to salt stress, cellular response to salt stress, abscisic acid receptor PYR/PYL, regulation of seed growth and germination, and auxin-activated signaling pathways. A large amount of ethylene-responsive transcription factors (ERF) was identified (1235) as differentially expressed, followed by bHLH (252), WRKY (96), MYB (202), GATA (81), RABA (64), DIVARICATA (28), and MADs-box (26) in treated seedling samples. Functional enrichment analysis revealed the significant roles in the hormones and signal transduction, carbohydrates metabolism, and biosynthesis of amino acids, promoting salt stress tolerance. Our results indicated positive effects of MgSO4 at 4 h treatment on seedling germination and growth, seemingly by activating certain growth-regulating enzymes (auxins, gibberellins, jasmonates, abscisic acid, and salicylic acid) and metabolites (phenolic acids, flavonoids, and akaloids). Such pretreatment of MgSO4 on seeds would be beneficial in future cotton management under saline conditions to enhance good crop stand and productivity.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (W.R.); (Q.W.)
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| | - Li Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (W.R.); (Q.W.)
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
- Correspondence:
| | - Qian Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (W.R.); (Q.W.)
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| | - Yanping Ren
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China;
| |
Collapse
|
154
|
Nguyen VQ, Sreewongchai T, Siangliw M, Roytrakul S, Yokthongwattana C. Comparative proteomic analysis of chromosome segment substitution lines of Thai jasmine rice KDML105 under short-term salinity stress. PLANTA 2022; 256:12. [PMID: 35710953 DOI: 10.1007/s00425-022-03929-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/26/2022] [Indexed: 05/21/2023]
Abstract
Heat shock proteins, ROS detoxifying enzymes, and ion homeostasis proteins, together with proteins in carbohydrate metabolism, cell structure, brassinosteroids, and carotenoid biosynthesis pathway were up-regulated in CSSLs under salinity stress. Rice is one of the most consumed staple foods worldwide. Salinity stress is a serious global problem affecting rice productivity. Many attempts have been made to select or produce salinity-tolerant rice varieties. Genetics and biochemical approaches were used to study the salinity-responsive pathway in rice to develop salinity tolerant strains. This study investigated the proteomic profiles of chromosome segment substitution lines (CSSLs) developed from KDML105 (Khao Dawk Mali 105, a Thai jasmine rice cultivar) under salinity stress. The CSSLs showed a clear resistant phenotype in response to 150 mM NaCl treatment compared to the salinity-sensitive line, IR29. Liquid chromatography-tandem mass spectrometry using the Ultimate 3000 Nano/Capillary LC System coupled to a Hybrid Quadrupole Q-Tof Impact II™ equipped with a nano-captive spray ion source was applied for proteomic analysis. Based on our criteria, 178 proteins were identified as differentially expressed proteins under salinity stress. Protein functions in DNA replication and transcription, and stress and defense accounted for the highest proportions in response to salinity stress, followed by protein transport and trafficking, carbohydrate metabolic process, signal transduction, and cell structure. The protein interaction network among the 75 up-regulated proteins showed connections between proteins involved in cell wall synthesis, transcription, translation, and in defense responses.
Collapse
Affiliation(s)
- Vinh Quang Nguyen
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, 10900, Thailand
| | - Tanee Sreewongchai
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Meechai Siangliw
- Rice Science Center (RSC), Rice Gene Discovery Unit (RGDU), Kasetsart University, Kamphaengsaen, Nakhon Pathom, 73140, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd, Pathumthani, 12120, Thailand
| | - Chotika Yokthongwattana
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd, Bangkok, 10900, Thailand.
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
155
|
Cope JE, Norton GJ, George TS, Newton AC. Evaluating Variation in Germination and Growth of Landraces of Barley ( Hordeum vulgare L.) Under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:863069. [PMID: 35783948 PMCID: PMC9245355 DOI: 10.3389/fpls.2022.863069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Ongoing climate change is resulting in increasing areas of salinity affected soils, rising saline groundwater and droughts resulting in irrigation with brackish water. This leads to increased salinity stress in crops that are already grown on marginal agricultural lands, such as barley. Tolerance to salinity stress is limited in the elite barley cultivar pools, but landraces of barley hold potential sources of tolerance due to their continuous selection on marginal lands. This study analyzed 140 heritage cultivars and landrace lines of barley, including 37 Scottish Bere lines that were selected from coastal regions, to screen for tolerance to salinity stress. Tolerance to salinity stress was screened by looking at the germination speed and the early root growth during germination, and the pre-maturity biomass accumulation during early growth stages. Results showed that most lines increased germination time, and decreased shoot biomass and early root growth with greater salinity stress. Elite cultivars showed increased response to the salinity, compared to the landrace lines. Individual Bere and landrace lines showed little to no effect of increased salinity in one or more experiments, one line showed high salinity tolerance in all experiments-Bere 49 A 27 Shetland. A Genome Wide Association Screening identified a number of genomic regions associated with increased tolerance to salinity stress. Two chromosomal regions were found, one associated with shoot biomass on 5HL, and another associated with early root growth, in each of the salinities, on 3HS. Within these regions a number of promising candidate genes were identified. Further analysis of these new regions and candidate genes should be undertaken, along with field trials, to identify targets for future breeding for salinity tolerance.
Collapse
Affiliation(s)
- Jonathan E. Cope
- The James Hutton Institute, Dundee, United Kingdom
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gareth J. Norton
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | |
Collapse
|
156
|
Ren C, Kuang Y, Lin Y, Guo Y, Li H, Fan P, Li S, Liang Z. Overexpression of grape ABA receptor gene VaPYL4 enhances tolerance to multiple abiotic stresses in Arabidopsis. BMC PLANT BIOLOGY 2022; 22:271. [PMID: 35655129 PMCID: PMC9161562 DOI: 10.1186/s12870-022-03663-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/27/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Abscisic acid (ABA) plays a crucial role in abiotic stress responses. The pyrabactin resistance (PYR)/PYR-like (PYL)/regulatory component of ABA receptor (RCAR) proteins that have been characterized as ABA receptors function as the core components in ABA signaling pathway. However, the functions of grape PYL genes in response to different abiotic stresses, particularly cold stress, remain less studied. RESULTS In this study, we investigated the expression profiles of grape PYL genes upon cold treatment and isolated the VaPYL4 gene from Vitis amurensis, a cold-hardy grape species. Overexpression of VaPYL4 gene in grape calli and Arabidopsis resulted in enhanced cold tolerance. Moreover, plant resistance to drought and salt stress was also improved by overexpressing VaPYL4 in Arabidopsis. More importantly, we evaluated the contribution of VaPYL4 to plant growth and development after the treatment with cold, salt and drought stress simultaneously. The transgenic plants showed higher survival rates, earlier flowering phenotype, and heavier fresh weight of seedlings and siliques when compared with wild-type plants. Physiological analyses showed that transgenic plants had much lower content of malondialdehyde (MDA) and higher peroxidase (POD) activity. Stress-responsive genes such as RD29A (Responsive to desiccation 29A), COR15A (Cold responsive 15A) and KIN2 (Kinase 2) were also significantly up-regulated in VaPYL4-overexpressing Arabidopsis plants. CONCLUSIONS Our results show that overexpression of VaPYL4 could improve plant performance upon different abiotic stresses, which therefore provides a useful strategy for engineering future crops to deal with adverse environments.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
| | - Yangfu Kuang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Yanping Lin
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Yuchen Guo
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Huayang Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
| |
Collapse
|
157
|
Martineli L, da Silva Berilli S, Amaro de Sales R, da Cunha M, Monaco PAVL, de Jesus Freitas S, Martineli M, Gabriel Berilli APC, Pireda S, da Silva Oliveira D, Louzada Pereira L. Influence of chromium and sodium on development, physiology, and anatomy of Conilon coffee seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44986-44997. [PMID: 35142998 DOI: 10.1007/s11356-022-18563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Some components found in the composition of the tannery sludge are nutrients for the plants; it can be considered an alternative source of fertilization as they have favorable agronomic characteristics. However, it is reported in some studies that the presence of chromium and sodium in this residue causes physiological and anatomical disturbances that inhibit the development of the plants. The objective of this study was to evaluate the influence of chromium and sodium on the physiology, anatomy, and development of Conilon coffee seedlings grown on substrates produced with tannery sludge and equivalent doses of chromium and sodium. The experiment was carried out in nursery using randomized block design, containing 5 treatments and 7 repetitions. The treatments consisted of the application of a 40% tannery sludge dose and equivalent doses of chromium and sodium mixed with a conventional substrate. Notably, the presence of sodium in the substrate caused greater damage to the plants, negatively influencing the physiology, anatomy, and, consequently, development of the plants, while the presence of chromium suggests that it does not influence much the evaluated characteristics. The treatment with tannery sludge, on the other hand, despite containing the same chromium and sodium contents, revealed a more pronounced negative influence on the physiology, anatomy, and development patterns of the seedlings. This shows that sodium and chromium alone are not the only factors responsible for the lowest growth indicators studied.
Collapse
Affiliation(s)
- Leonardo Martineli
- Federal Institute of Espírito Santo - Itapina Campus, Rodovia Br-259, Km 70, IFES Campus Itapina, Colatina, ES, CEP: 29.717-000, Brazil
| | - Sávio da Silva Berilli
- Federal Institute of Espírito Santo - Alegre Campus, Rodovia BR-482, Km 47, Alegre, ES, CEP: 29500-000, Brazil
| | - Ramon Amaro de Sales
- Federal University of Viçosa, Av. Peter Henry Rolfs, Campus Universitário, Viçosa, MG, CEP: 36570-900, Brazil.
| | - Maura da Cunha
- State University of the North Fluminense Darcy Ribeiro, Av. Alberto Lamego, 875 - Parque California, Campos Dos Goytacazes, RJ, CEP: 28013-600, Brazil
| | - Paola Afonsa Vieira Lo Monaco
- Federal Institute of Espírito Santo - Santa Teresa Campus, Rodovia ES-080, Km 93, Santa Teresa, ES, 29660-000, Brazil
| | - Sílvio de Jesus Freitas
- State University of the North Fluminense Darcy Ribeiro, Av. Alberto Lamego, 875 - Parque California, Campos Dos Goytacazes, RJ, CEP: 28013-600, Brazil
| | - Maristella Martineli
- Department of Agricultural Sciences of the State University of Montes Claros - Janaúba Campus, Av. Reinaldo Viana, 2630, Janaúba, MG, CEP: 39.440-000, Brazil
| | | | - Saulo Pireda
- State University of the North Fluminense Darcy Ribeiro, Av. Alberto Lamego, 875 - Parque California, Campos Dos Goytacazes, RJ, CEP: 28013-600, Brazil
| | - Dhiego da Silva Oliveira
- State University of the North Fluminense Darcy Ribeiro, Av. Alberto Lamego, 875 - Parque California, Campos Dos Goytacazes, RJ, CEP: 28013-600, Brazil
| | - Lucas Louzada Pereira
- Federal Institute of Espírito Santo - Venda Nova Campus, Avenida Elizabeth Minete Perim, nº 500, São Rafael, Venda Nova Do Imigrante, ES, CEP 29375-000, Brazil
| |
Collapse
|
158
|
Bandurska H, Breś W, Tomczyk A, Zielezińska M, Borowiak K. How chrysanthemum ( Chrysanthemum × grandiflorum) 'Palisade White' deals with long-term salt stress. AOB PLANTS 2022; 14:plac015. [PMID: 35558162 PMCID: PMC9089830 DOI: 10.1093/aobpla/plac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Salinity is a serious problem in the cultivation of ornamental plants. Chrysanthemum (Chrysanthemum × grandiflorum) 'Palisade White' was evaluated in order to examine its responses to long-term salt stress. Plants were grown in substrate supplemented with NaCl doses (g dm-3 of substrate) 0, 0.44, 0.96, 1.47, 1.98, 2.48 and 2.99. The initial electrical conductivity (EC) of the substrates was 0.3, 0.9, 1.4, 1.9, 2.6, 3.1 and 3.9 dS m-1, respectively. Plant growth, relative water content (RWC), Na, Cl, K, N and P concentrations, membrane injury (MI), chlorophyll and proline levels, as well as gas exchange parameters in leaves of chrysanthemum were determined. A dose-dependent significant reduction of growth and minor decrease of leaf RWC were observed. Foliar Na and Cl concentrations increased with the highest NaCl dose up to 6-fold. However, the concentration of K increased by about 14 %, N by about 5 % but P decreased by about 23 %. Membrane injury was rather low (11 %) even at the highest NaCl dose. Statistically significant decreases of stomatal conductance (20 %), transpiration rate (32 %) and photosynthesis (25 %) were already observed at the lowest NaCl dose and about 40 % decrease of all these parameters with the highest dose. A significant reduction in the intercellular CO2 concentration occurred at the lower NaCl doses and no changes with the highest dose. These results show that in plants grown with the highest NaCl dose, non-stomatal limitation of photosynthesis may occur. According to Maas and Hoffman tolerance assessment (1977) chrysanthemum 'Palisade White' may be considered as moderately sensitive to salt stress in terms of growth inhibition. However, it is able to cope with long-term salt stress without any signs of damage, such as chlorophyll depletion, leaf browning or necrotic spots probably due to maintenance of K homeostasis and proline accumulation, which alleviate the toxic effect of chloride.
Collapse
Affiliation(s)
- Hanna Bandurska
- Department of Plant Physiology, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Włodzimierz Breś
- Department of Plant Nutrition, Poznan University of Life Sciences, Zgorzelecka 4, 60-198 Poznań, Poland
| | - Agnieszka Tomczyk
- Department of Plant Nutrition, Poznan University of Life Sciences, Zgorzelecka 4, 60-198 Poznań, Poland
| | - Małgorzata Zielezińska
- Department of Plant Physiology, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Klaudia Borowiak
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94C, 60-649 Poznan, Poland
| |
Collapse
|
159
|
Biochar-based fertilizers and their applications in plant growth promotion and protection. 3 Biotech 2022; 12:136. [PMID: 35646504 DOI: 10.1007/s13205-022-03195-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/28/2022] [Indexed: 11/01/2022] Open
Abstract
Soil is an integral part of the ecosystem because it serves as a habitat for various microorganisms and lays the foundation for supporting plant growth and development. Therefore, factors such as increased anthropogenic activities hand by hand with other natural processes that harm the ecosystem may eventually lead to a decline in soil quality and fertility, hindering the growth of plants and soil microbial communities. Given the current global scenario of increasing human intervention, it is essential to find effective measures and reliable technologies to restore soil quality. Biochar is an emerging soil ameliorant employed for soil health restoration and is primarily generated through the anoxygenic pyrolysis of biomass. The biochar application in soil remediation may be beneficial due to biochar's unique physicochemical properties, including high carbon and metal fixation abilities. In addition, biochar possesses abilities to reduce the plant's environmental stress injuries. This review briefly overviewed the ingredients and mechanism of biochar productions. We then emphatically reviewed the advances in biochar applications in soil bioremediation, soil microflora growth stimulation, and the alleviation of various biotic and abiotic stresses in plants.
Collapse
|
160
|
Verma KK, Song XP, Joshi A, Rajput VD, Singh M, Sharma A, Singh RK, Li DM, Arora J, Minkina T, Li YR. Nanofertilizer Possibilities for Healthy Soil, Water, and Food in Future: An Overview. FRONTIERS IN PLANT SCIENCE 2022; 13:865048. [PMID: 35677230 PMCID: PMC9168910 DOI: 10.3389/fpls.2022.865048] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 05/27/2023]
Abstract
Conventional fertilizers and pesticides are not sustainable for multiple reasons, including high delivery and usage inefficiency, considerable energy, and water inputs with adverse impact on the agroecosystem. Achieving and maintaining optimal food security is a global task that initiates agricultural approaches to be revolutionized effectively on time, as adversities in climate change, population growth, and loss of arable land may increase. Recent approaches based on nanotechnology may improve in vivo nutrient delivery to ensure the distribution of nutrients precisely, as nanoengineered particles may improve crop growth and productivity. The underlying mechanistic processes are yet to be unlayered because in coming years, the major task may be to develop novel and efficient nutrient uses in agriculture with nutrient use efficiency (NUE) to acquire optimal crop yield with ecological biodiversity, sustainable agricultural production, and agricultural socio-economy. This study highlights the potential of nanofertilizers in agricultural crops for improved plant performance productivity in case subjected to abiotic stress conditions.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, India
| | - Anjney Sharma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Rajesh Kumar Singh
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Dong-Mei Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
161
|
Muthuraja R, Muthukumar T. Co-inoculation of halotolerant potassium solubilizing Bacillus licheniformis and Aspergillus violaceofuscus improves tomato growth and potassium uptake in different soil types under salinity. CHEMOSPHERE 2022; 294:133718. [PMID: 35077735 DOI: 10.1016/j.chemosphere.2022.133718] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Soil salinity is an important stress that negatively affects crop growth and productivity, causing extensive agricultural losses, worldwide. Potassium (K) solubilizing microorganisms (KSMs) can impart abiotic stress tolerance in plants in addition to nutrient solubilization. In this study, the salinity tolerance of KSMs Bacillus licheniformis and Aspergillus violaceofuscus originating from saxicolous habitats was examined using different concentrations of NaCl (0, 25, 50, 75, 100, and 125 mM) under in vitro conditions. The results indicated that both KSMs were capable of tolerating salinity. As B. licheniformis had a maximum growth in 100 mM NaCl at 37 °C, A. violaceofuscus had the maximum biomass and catalase (CAT) activity at 75 mM NaCl. However, maximum proline content was detected at 100 mM NaCl in both KSMs. Further, the ability of these KSMs to promote tomato growth individually and in combination with the presence or absence of mica was also examined in unsterilized or sterilized Alfisol and Vertisol soils under induced salinity in greenhouse conditions. The results of the greenhouse study revealed that inoculation of KSMs along with/without mica amendment significantly improved the morphological and physiological characteristics of tomato plants under salinity. Plant height, leaf area, biomass, relative water content, proline content, and CAT activity of dual inoculated plants were significantly higher than non-inoculated plants. Significant correlations existed between various soil, plant growth, soil pH and available K. From the results, it could be concluded that B. licheniformis and A. violaceofuscus are potential candidates for improving crop production in saline-stressed soils.
Collapse
Affiliation(s)
- Raji Muthuraja
- Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Thangavelu Muthukumar
- Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
162
|
Mitigation of Salinity Stress on Pomegranate (Punica granatum L. cv. Wonderful) Plant Using Salicylic Acid Foliar Spray. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Salt stress significantly impacts plant morphological structure and physiological processes, resulting in decreased plant growth. Salicylic acid (SA) is a key signal molecule that protects plants from the negative impacts of salinity. Under natural conditions, the pomegranate plant generally exhibits salt-tolerant characteristics. The objective of this study was to elucidate the salt-tolerance level of pomegranate (Punica granatum L. cv. Wonderful) and the effect of the regulating strategy of SA foliar spray on growth, morphological structure, and physiological processes. SA levels were 0, 0.25, 0.50, and 1 mM in the presence of salinity levels of 10, 35, and 70 mM NaCl, respectively. Vegetative growth indices, including stem cross-sectional area, leaf area, and total dry weight, were lowered by salinity treatments. However, SA applications greatly improved morphological characteristics and plant growth under salt stress. The effects of salinity were effectively reversed by SA treatment at 1 mM compared to control and other treatments. Interestingly, SA applications enhanced the chlorophyll, total phenolic, carbohydrate, and proline contents of leaves while decreasing electrolyte leakage (EL), Na, and Cl levels. Moreover, the foliar SA treatments enhanced the nutrient content in the leaves and increased the activities of peroxidase (POD) and catalase (CAT), with a decrease in malondialdehyde (MDA) content. This study suggests that the alleviation of the salinity stress by SA may be due to the activation of the antioxidant enzymatic mechanism and decrease in the lipid peroxidation of the pomegranate plant.
Collapse
|
163
|
Carbajal-Vázquez VH, Gómez-Merino FC, Alcántar-González EG, Sánchez-García P, Trejo-Téllez LI. Titanium Increases the Antioxidant Activity and Macronutrient Concentration in Tomato Seedlings Exposed to Salinity in Hydroponics. PLANTS (BASEL, SWITZERLAND) 2022; 11:1036. [PMID: 35448765 PMCID: PMC9024507 DOI: 10.3390/plants11081036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 11/17/2022]
Abstract
Global climate change affects agriculture and tends to aggravate the effect of various environmental stress factors including soil salinity. Beneficial elements such as titanium (Ti) may improve the performance of plants facing restrictive environments such as saline soils. This research work evaluated the individual effect of sodium chloride (0, 50, and 100 mM NaCl) in solution, that of leaf-applied Ti (0, 500, and 1000 mg L-1 Ti), and their interactions on physiological, biochemical, and nutritional variables of tomato (Solanum lycopersicum L.) seedlings cv. Rio Grande in a factorial design in greenhouse hydroponics. NaCl reduced seedling height, stem diameter, leaf area, SPAD units, and sugar and K concentrations, and increased antioxidant activity in stems and roots, photosynthetic pigments, sugars. Titanium increased the N, P, K, Ca, Mg, and Ti concentrations in leaves, but the concentration of total sugars in leaves was reduced when applying 500 mg Ti L-1. Under moderate salinity conditions (50 mM NaCl) the application of Ti increased the antioxidant activity in roots, while, at all salinity levels tested, Ti increased the concentrations of macro-nutrients and Ti in leaves. Titanium is concluded to have a positive effect on the antioxidant activity and nutrition of seedlings under saline stress conditions.
Collapse
Affiliation(s)
| | | | | | | | - Libia Iris Trejo-Téllez
- Laboratory of Plant Nutrition, College of Postgraduates in Agricultural Sciences Campus Montecillo, Texcoco 56230, Mexico; (V.H.C.-V.); (F.C.G.-M.); (E.G.A.-G.); (P.S.-G.)
| |
Collapse
|
164
|
Alleviation of salt stress and promotion of growth in peanut by Tsukamurella tyrosinosolvens and Burkholderia pyrrocinia. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01073-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
165
|
Youssef MS, Mira MM, Renault S, Hill RD, Stasolla C. Phytoglobin Expression Alters the Na +/K + Balance and Antioxidant Responses in Soybean Plants Exposed to Na 2SO 4. Int J Mol Sci 2022; 23:4072. [PMID: 35456890 PMCID: PMC9031766 DOI: 10.3390/ijms23084072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/10/2022] Open
Abstract
Soybean (Glycine max) is an economically important crop which is very susceptible to salt stress. Tolerance to Na2SO4 stress was evaluated in soybean plants overexpressing or suppressing the phytoglobin GmPgb1. Salt stress depressed several gas exchange parameters, including the photosynthetic rate, caused leaf damage, and reduced the water content and dry weights. Lower expression of respiratory burst oxidase homologs (RBOHB and D), as well as enhanced antioxidant activity, resulting from GmPgb1 overexpression, limited ROS-induced damage in salt-stressed leaf tissue. The leaves also exhibited higher activities of the H2O2-quenching enzymes, catalase (CAT) and ascorbate peroxidase (APX), as well as enhanced levels of ascorbic acid. Relative to WT and GmPgb1-suppressing plants, overexpression of GmPgb1 attenuated the accumulation of foliar Na+ and exhibited a lower Na+/K+ ratio. These changes were attributed to the induction of the Na+ efflux transporter SALT OVERLY SENSITIVE 1 (SOS1) limiting Na+ intake and transport and the inward rectifying K+ channel POTASSIUM TRANSPORTER 1 (AKT1) required for the maintenance of the Na+/K+ balance.
Collapse
Affiliation(s)
- Mohamed S. Youssef
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.Y.); (M.M.M.); (R.D.H.)
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohammed M. Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.Y.); (M.M.M.); (R.D.H.)
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Sylvie Renault
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Robert D. Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.Y.); (M.M.M.); (R.D.H.)
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.Y.); (M.M.M.); (R.D.H.)
| |
Collapse
|
166
|
Factors Affecting Seed Germination of the Invasive Species Symphyotrichum lanceolatum and Their Implication for Invasion Success. PLANTS 2022; 11:plants11070969. [PMID: 35406949 PMCID: PMC9002578 DOI: 10.3390/plants11070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
Invasive species Symphyotrichum lanceolatum (Willd.) G. L. Nesom is spreading uncontrollably along wet habitats as well as in disturbed ecosystems. All those habitats function as corridors that facilitate seed dispersal. One way to prevent the spread of invasive species is to know their reproductive ecology. The present study evaluates the potential for generative reproduction of S. lanceolatum and determines how different temperatures, amounts of nutrients, and light regimes, affect seed germination. Seeds collected from 13 natural populations were germinated at four fluctuating temperature regimes (15/6, 20/10, 30/15, and 35/20 °C). To test the influence of nitrate on seed germination, two KNO3 concentrations were used (5 mM and 50 mM solution). For each treatment, three replicates of 30 seeds were placed in complete darkness or a 14 h photoperiod. The results showed that the germination increased with increasing temperature. The optimal temperature regimes were 30/15 °C and 35/20 °C with approximately 88% germination. The overall effect of KNO3 on germination was positive. The concentration of 50 mM KNO3 had a less stimulating effect compared to 5 mM KNO3. Seeds showed sensitivity to lack of light during germination but were able to germinate in a significant percentage in such conditions. Considering that S. lanceolatum often occurs in disturbed sites, these results suggest that seed reaction to alternating temperature, nutrients concentration, and light can be determining factors that affect seed germination of this species and, thus, its spread.
Collapse
|
167
|
Gupta A, Mishra R, Rai S, Bano A, Pathak N, Fujita M, Kumar M, Hasanuzzaman M. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. Int J Mol Sci 2022; 23:3741. [PMID: 35409104 PMCID: PMC8998651 DOI: 10.3390/ijms23073741] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022] Open
Abstract
Climate change has devastating effects on plant growth and yield. During ontogenesis, plants are subjected to a variety of abiotic stresses, including drought and salinity, affecting the crop loss (20-50%) and making them vulnerable in terms of survival. These stresses lead to the excessive production of reactive oxygen species (ROS) that damage nucleic acid, proteins, and lipids. Plant growth-promoting bacteria (PGPB) have remarkable capabilities in combating drought and salinity stress and improving plant growth, which enhances the crop productivity and contributes to food security. PGPB inoculation under abiotic stresses promotes plant growth through several modes of actions, such as the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophore, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, modulate antioxidants defense machinery, and abscisic acid, thereby preventing oxidative stress. These bacteria also provide osmotic balance; maintain ion homeostasis; and induce drought and salt-responsive genes, metabolic reprogramming, provide transcriptional changes in ion transporter genes, etc. Therefore, in this review, we summarize the effects of PGPB on drought and salinity stress to mitigate its detrimental effects. Furthermore, we also discuss the mechanistic insights of PGPB towards drought and salinity stress tolerance for sustainable agriculture.
Collapse
Affiliation(s)
- Anmol Gupta
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Richa Mishra
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Smita Rai
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Ambreen Bano
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
168
|
Stefanov MA, Rashkov GD, Apostolova EL. Assessment of the Photosynthetic Apparatus Functions by Chlorophyll Fluorescence and P 700 Absorbance in C3 and C4 Plants under Physiological Conditions and under Salt Stress. Int J Mol Sci 2022; 23:3768. [PMID: 35409126 PMCID: PMC8998893 DOI: 10.3390/ijms23073768] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 11/18/2022] Open
Abstract
Functions of the photosynthetic apparatus of C3 (Pisum sativum L.) and C4 (Zea mays L.) plants under physiological conditions and after treatment with different NaCl concentrations (0-200 mM) were investigated using chlorophyll a fluorescence (pulse-amplitude-modulated (PAM) and JIP test) and P700 photooxidation measurement. Data revealed lower density of the photosynthetic structures (RC/CSo), larger relative size of the plastoquinone (PQ) pool (N) and higher electron transport capacity and photosynthetic rate (parameter RFd) in C4 than in C3 plants. Furthermore, the differences were observed between the two studied species in the parameters characterizing the possibility of reduction in the photosystem (PSI) end acceptors (REo/RC, REo/CSo and δRo). Data revealed that NaCl treatment caused a decrease in the density of the photosynthetic structures and relative size of the PQ pool as well as decrease in the electron transport to the PSI end electron acceptors and the probability of their reduction as well as an increase in the thermal dissipation. The effects were stronger in pea than in maize. The enhanced energy losses after high salt treatment in maize were mainly from the increase in the regulated energy losses (ΦNPQ), while in pea from the increase in non-regulated energy losses (ΦNO). The reduction in the electron transport from QA to the PSI end electron acceptors influenced PSI activity. Analysis of the P700 photooxidation and its decay kinetics revealed an influence of two PSI populations in pea after treatment with 150 mM and 200 mM NaCl, while in maize the negligible changes were registered only at 200 mM NaCl. The experimental results clearly show less salt tolerance of pea than maize.
Collapse
Affiliation(s)
| | | | - Emilia L. Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (M.A.S.); (G.D.R.)
| |
Collapse
|
169
|
Jańczak-Pieniążek M, Migut D, Piechowiak T, Balawejder M. Assessment of the Impact of the Application of a Quercetin-Copper Complex on the Course of Physiological and Biochemical Processes in Wheat Plants ( Triticum aestivum L.) Growing under Saline Conditions. Cells 2022; 11:cells11071141. [PMID: 35406704 PMCID: PMC8997712 DOI: 10.3390/cells11071141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salt stress is one of the main stressors limiting plant growth and yield. As a result of salt stress, unfavorable changes in the photosynthesis process take place, leading to a decrease in plant productivity. Therefore, it is necessary to use biologically active substances that reduce the effects of this stress. An example of such a substance is quercetin, classified as a flavonoid, which plays an important role in alleviating the effects of salt stress, mainly by the inactivation of reactive oxygen species (ROS) and by improvement of the photosynthesis process. A study was made of the effect of the quercetin–copper complex (Q-Cu (II)), which has a stronger antioxidant effect than pure quercetin. By means of a pot experiment, the influence of solutions of the Q-Cu (II) complex (100 mg∙L−1 [Q1], 500 mg∙L−1 [Q2] and 1000 mg∙L−1 [Q3]) on the physiological and biochemical processes occurring in wheat plants subjected to salt stress was investigated. The plants were given two sprays of Q-Cu (II) solution, and their physiological parameters were examined both 1 and 7 days after each application of this solution. The level of ROS and the activity of antioxidant enzymes (catalase [CAT], superoxide dismutase [SOD] and guaiacol peroxidase [GPOX]) were also determined. It has been shown that spraying with Q2 and Q3 solutions improves the chlorophyll content, the values of chlorophyll fluorescence parameters (the photochemical efficiency of PS II [Fv/Fm], the maximum quantum yield of primary photochemistry [Fv/F0], and the performance index of PS II [PI]), and gas exchange (net photosynthetic rate [Pn], stomatal conductance [gs], transpiration rate [E] and intercellular CO2 concentration [Ci]). As a result of the application of Q2 and Q3 solutions, the level of ROS and the activity of the antioxidant enzymes tested decreased, which means that these concentrations are most effective in counteracting the effects of salt stress.
Collapse
Affiliation(s)
- Marta Jańczak-Pieniążek
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
- Correspondence:
| | - Dagmara Migut
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Tomasz Piechowiak
- Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland; (T.P.); (M.B.)
| | - Maciej Balawejder
- Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland; (T.P.); (M.B.)
| |
Collapse
|
170
|
Li Z, Zhu L, Zhao F, Li J, Zhang X, Kong X, Wu H, Zhang Z. Plant Salinity Stress Response and Nano-Enabled Plant Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:843994. [PMID: 35392516 PMCID: PMC8981240 DOI: 10.3389/fpls.2022.843994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
The area of salinized land is gradually expanding cross the globe. Salt stress seriously reduces the yield and quality of crops and endangers food supply to meet the demand of the increased population. The mechanisms underlying nano-enabled plant tolerance were discussed, including (1) maintaining ROS homeostasis, (2) improving plant's ability to exclude Na+ and to retain K+, (3) improving the production of nitric oxide, (4) increasing α-amylase activities to increase soluble sugar content, and (5) decreasing lipoxygenase activities to reduce membrane oxidative damage. The possible commonly employed mechanisms such as alleviating oxidative stress damage and maintaining ion homeostasis were highlighted. Further, the possible role of phytohormones and the molecular mechanisms in nano-enabled plant salt tolerance were discussed. Overall, this review paper aims to help the researchers from different field such as plant science and nanoscience to better understand possible new approaches to address salinity issues in agriculture.
Collapse
Affiliation(s)
- Zengqiang Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Lan Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fameng Zhao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xin Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiangjun Kong
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiyong Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
171
|
Cheng B, Hassan MJ, Feng G, Zhao J, Liu W, Peng Y, Li Z. Metabolites Reprogramming and Na +/K + Transportation Associated With Putrescine-Regulated White Clover Seed Germination and Seedling Tolerance to Salt Toxicity. FRONTIERS IN PLANT SCIENCE 2022; 13:856007. [PMID: 35392519 PMCID: PMC8981242 DOI: 10.3389/fpls.2022.856007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Soil salinization is a serious challenge to many countries worldwide. Putrescine (Put) is related to the improvement of seed germination under salt stress, but molecular and metabolic mechanisms are still not fully understood. The objectives of this study were to determine the effect of seed soaking with Put on germination characteristics under salt stress induced by 100 mm sodium chloride (NaCl) and to further analyze subsequent stress tolerance associated with amylolysis, oxidative damage, sodium (Na+)/ potassium (K+) accumulation and transportation, and metabolic homeostasis in white clover (Trifolium repens cv. Haifa) seedlings. The results showed that seed soaking with Put significantly alleviated salt-induced decreases in the endogenous Put content, germination rate, germination vigor, germination index, Rl/SL, and fresh/dry weight of seedlings. Put application also significantly promoted starch metabolism through activating α-amylase and β-amylase activities under salt stress. The metabolomic analysis showed that seed soaking with Put significantly increased the accumulation of polyamines (Put and spermidine), amino acids (γ-aminobutyric acid, glutamate, alanine, proline, citrulline, etc.), organic acids (ketopentanic acid, malonic acid, malic acid, ketopentanic acid, cis-sinapinic acid, etc.), lipids and fatty acids (glycerol, stearic acid, linoleic acid, palmitic acid, etc.), sugars (levoglucosan, fucose, and anhydro-D-galactose), alcohols (myo-inositol, allo-inositol, hexadecanol, and threitol), and other metabolites (thymine, xanthine, adenine, guanine, and glycerol 1-phosphate, etc.) associated with enhanced tricarboxylic acid (TCA) cycle and γ-aminobutyric acid (GABA) shunt contributing to better osmotic adjustment, cell membrane stability, energy supply, and metabolic homeostasis when seeds germinated under salt stress. In addition, Put significantly up-regulated the AsSOS1, NHX6, SKOR, HKT1, and HKT8 expression levels which played critical roles in Na+ rejection and K+ retention resulting in higher K+/Na+ ratio during seed germination under salt stress. The Put-induced up-regulation of HAL2 transcription level could reduce the toxicity of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) in cells. Current findings will provide an integrative understanding of Put-induced salt tolerance associated with amylolysis, metabolic regulation, and ionic homeostasis during seed germination.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
172
|
Putrescine: A Key Metabolite Involved in Plant Development, Tolerance and Resistance Responses to Stress. Int J Mol Sci 2022; 23:ijms23062971. [PMID: 35328394 PMCID: PMC8955586 DOI: 10.3390/ijms23062971] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Putrescine (Put) is the starting point of the polyamines (PAs) pathway and the most common PA in higher plants. It is synthesized by two main pathways (from ornithine and arginine), but recently a third pathway from citrulline was reported in sesame plants. There is strong evidence that Put may play a crucial role not only in plant growth and development but also in the tolerance responses to the major stresses affecting crop production. The main strategies to investigate the involvement of PA in plant systems are based on the application of competitive inhibitors, exogenous PAs treatments, and the most efficient approaches based on mutant and transgenic plants. Thus, in this article, the recent advances in understanding the role of this metabolite in plant growth promotion and protection against abiotic and biotic stresses will be discussed to provide an overview for future research.
Collapse
|
173
|
Liu Y, Wang L, Li X, Luo M. Detailed sphingolipid profile responded to salt stress in cotton root and the GhIPCS1 is involved in the regulation of plant salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111174. [PMID: 35151457 DOI: 10.1016/j.plantsci.2021.111174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 05/24/2023]
Abstract
Sphingolipids are major structural components of membrane and active signaling molecules and play an important role in plant developmental processes and stress responses. As land salinization has increased globally, salinity has compromised the growth and productivity of crops such as cotton. Understanding the mechanisms of plant adaptation to salt stress is essential for breeding salt-tolerant crops. In this study, we explored the comprehensive metabolic profile of sphingolipids in cotton root under salt stress using lipidomics. 118 sphingolipid molecular species were identified, of which PhytoSph, PhytoCer, PhytoCer-OHFA, IPC, and GIPC were relatively high in content, and PhytoSph, PhytoCer, PhytoCer-OHFA, Phyto-GluCer, and IPC showed significant changes after salt stress, especially inositol phosphatidyl ceramide (IPC), which was significantly upregulated after salt treatment. Subsequently, we identified the genes encoding IPC synthase (IPCS), and ectopic expression of GhIPCS1 enhanced salt sensitivity in Arabidopsis, which might result from the disruption on the balance between various sphingolipid classes and/or molecular species. Overall, this study reveals key lipids and genes response to salt stress in cotton and provides a theoretical basis for the use of genetic engineering to improve cotton stress resistance.
Collapse
Affiliation(s)
- Yujie Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Xing Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
| | - Ming Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; Key Laboratory of Biotechnology and Crop Quality, Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
174
|
Sousa B, Rodrigues F, Soares C, Martins M, Azenha M, Lino-Neto T, Santos C, Cunha A, Fidalgo F. Impact of Combined Heat and Salt Stresses on Tomato Plants-Insights into Nutrient Uptake and Redox Homeostasis. Antioxidants (Basel) 2022; 11:478. [PMID: 35326127 PMCID: PMC8944476 DOI: 10.3390/antiox11030478] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, salinity and heat are two critical threats to crop production and food security which are being aggravated by the global climatic instability. In this scenario, it is imperative to understand plant responses to simultaneous exposure to different stressors and the cross-talk between underlying functional mechanisms. Thus, in this study, the physiological and biochemical responses of tomato plants (Solanum lycopersicum L.) to the combination of salinity (100 mM NaCl) and heat (42 °C; 4 h/day) stress were evaluated. After 21 days of co-exposure, the accumulation of Na+ in plant tissues was superior when salt-treated plants were also exposed to high temperatures compared to the individual saline treatment, leading to the depletion of other nutrients and a harsher negative effect on plant growth. Despite that, neither oxidative damage nor a major accumulation of reactive oxygen species took place under stress conditions, mostly due to the accumulation of antioxidant (AOX) metabolites alongside the activation of several AOX enzymes. Nonetheless, the plausible allocation of resources towards the defense pathways related to oxidative and osmotic stress, along with severe Na toxicity, heavily compromised the ability of plants to grow properly when the combination of salinity and heat was imposed.
Collapse
Affiliation(s)
- Bruno Sousa
- GreenUPorto-Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.S.); (M.M.); (F.F.)
| | - Francisca Rodrigues
- GreenUPorto-Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.S.); (M.M.); (F.F.)
- Biology Department and CBMA-Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.L.-N.); (A.C.)
| | - Cristiano Soares
- GreenUPorto-Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.S.); (M.M.); (F.F.)
| | - Maria Martins
- GreenUPorto-Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.S.); (M.M.); (F.F.)
| | - Manuel Azenha
- CIQ-UP, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal;
| | - Teresa Lino-Neto
- Biology Department and CBMA-Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.L.-N.); (A.C.)
| | - Conceição Santos
- LAQV/REQUIMTE, Laboratory of Integrative Biology and Biotechnology (IB2), Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal;
| | - Ana Cunha
- Biology Department and CBMA-Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.L.-N.); (A.C.)
| | - Fernanda Fidalgo
- GreenUPorto-Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.S.); (M.M.); (F.F.)
| |
Collapse
|
175
|
Miransari M, Adham S, Miransari M, Miransari A. The physicochemical approaches of altering growth and biochemical properties of medicinal plants in saline soils. Appl Microbiol Biotechnol 2022; 106:1895-1904. [PMID: 35190845 DOI: 10.1007/s00253-022-11838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
Abstract
Medicinal plants are important sources of biochemical compounds affecting human health. However, because large areas of the world are subjected to different stresses including salinity, it is important to find methods, which may control the growth and biochemical properties of medicinal plants in such conditions. Another aspect of cropping medicinal plants in saline soils is the alteration of their biochemical properties by stress. Due to the significance of planting medicinal plants in saline soils, the objective of the present review article is to investigate and analyze the physicochemical approaches including soil leaching, organic fertilization, mineral nutrition, ozonated water, magnetism, superabsorbent polymers, and zeolite, which may control the effects of salinity stress on the growth and biochemical properties (production of secondary metabolites) of medicinal plants. In our just-published review article, we investigated the biological approaches, which may affect the growth and biochemical properties of medicinal properties in saline soils. Although salinity stress may induce the production of biochemical products in medicinal plants, the use of physicochemical approaches is also recommendable for the improved growth and biochemical properties of medicinal plants in saline soils. More has yet to be indicated on the use of the physicochemical approaches, which may affect the growth and biochemical properties of medicinal plants in salt stress conditions. KEY POINTS: • Growth and physiological alteration of medicinal plants in salt stress conditions. • The physicochemical approaches of such alteration have been reviewed. • More has yet to be indicated on the approaches, which may affect such properties.
Collapse
Affiliation(s)
- Mohammad Miransari
- Department of Book&Article, AbtinBerkeh Scientific Ltd. Company, Isfahan, Iran.
| | - Shirin Adham
- Department of Book&Article, AbtinBerkeh Scientific Ltd. Company, Isfahan, Iran
| | - Mahdiar Miransari
- Department of Book&Article, AbtinBerkeh Scientific Ltd. Company, Isfahan, Iran
| | - Arshia Miransari
- Department of Book&Article, AbtinBerkeh Scientific Ltd. Company, Isfahan, Iran
| |
Collapse
|
176
|
Abstract
On the world stage, the increase in temperatures due to global warming is already a reality that has become one of the main challenges faced by the scientific community. Since agriculture is highly dependent on climatic conditions, it may suffer a great impact in the short term if no measures are taken to adapt and mitigate the agricultural system. Plant responses to abiotic stresses have been the subject of research by numerous groups worldwide. Initially, these studies were concentrated on model plants, and, later, they expanded their studies in several economically important crops such as rice, corn, soybeans, coffee, and others. However, agronomic evaluations for the launching of cultivars and the classical genetic improvement process focus, above all, on productivity, historically leaving factors such as tolerance to abiotic stresses in the background. Considering the importance of the impact that abiotic stresses can have on agriculture in the short term, new strategies are currently being sought and adopted in breeding programs to understand the physiological, biochemical, and molecular responses to environmental disturbances in plants of agronomic interest, thus ensuring the world food security. Moreover, integration of these approaches is bringing new insights on breeding. We will discuss how water deficit, high temperatures, and salinity exert effects on plants.
Collapse
|
177
|
Wheat TaTIP4;1 Confers Enhanced Tolerance to Drought, Salt and Osmotic Stress in Arabidopsis and Rice. Int J Mol Sci 2022; 23:ijms23042085. [PMID: 35216200 PMCID: PMC8877497 DOI: 10.3390/ijms23042085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 01/03/2023] Open
Abstract
Tonoplast aquaporins (intrinsic proteins, TIPs) have been indicated to play important roles in plant tolerance to water deficit and salinity. However, the functions of wheat TIPs in response to the stresses are largely unknown. In this study, we observed that transgenic plants overexpressing wheat TaTIP4;1 in Arabidopsis and rice displayed clearly enhanced seed germination and seedling growth under drought, salt and osmotic stress. Compared with wild type plants, Arabidopsis and rice overexpression lines had heightened water contents, reduced leaf water loss, lowered levels of Na+, Na+/K+, H2O2 and malondialdehyde, and improved activities of catalase and/or superoxide dismutase, and increased accumulation of proline under drought, salinity and/or osmotic stresses. Moreover, the expression levels of multiple drought responsive genes clearly elevated upon water dehydration, and the transcription of some salt responsive genes was markedly induced by NaCl treatment in the overexpression lines. Also, the yeast cells containing TaTIP4;1 showed increased tolerance to NaCl and mannitol, and mutation in one of three serines of TaTIP4;1 caused decreased tolerance to the two stresses. These results suggest that TaTIP4;1 serves as an essential positive regulator of seed germination and seedling growth under drought, salt and/or osmotic stress through impacting water relations, ROS balance, the accumulation of Na+ and proline, and stimulating the expression of dozens of stress responsive genes in Arabidopsis and rice. Phosphorylation may modulate the activity of TaTIP4;1.
Collapse
|
178
|
Dong X. Evolution of Plant Niche Construction Traits in Biogeomorphic Landscapes. Am Nat 2022; 199:758-775. [DOI: 10.1086/719425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
179
|
Tripathi DK, Punj V, Singh NK, Guerriero G, Deshmukh R, Sharma S. Recent biotechnological avenues in crop improvement and stress management. J Biotechnol 2022; 349:21-24. [DOI: 10.1016/j.jbiotec.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
180
|
Mansour MMF, Hassan FAS. How salt stress-responsive proteins regulate plant adaptation to saline conditions. PLANT MOLECULAR BIOLOGY 2022; 108:175-224. [PMID: 34964081 DOI: 10.1007/s11103-021-01232-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/06/2021] [Indexed: 05/20/2023]
Abstract
An overview is presented of recent advances in our knowledge of candidate proteins that regulate various physiological and biochemical processes underpinning plant adaptation to saline conditions. Salt stress is one of the environmental constraints that restrict plant distribution, growth and yield in many parts of the world. Increased world population surely elevates food demands all over the globe, which anticipates to add a great challenge to humanity. These concerns have necessitated the scientists to understand and unmask the puzzle of plant salt tolerance mechanisms in order to utilize various strategies to develop salt tolerant crop plants. Salt tolerance is a complex trait involving alterations in physiological, biochemical, and molecular processes. These alterations are a result of genomic and proteomic complement readjustments that lead to tolerance mechanisms. Proteomics is a crucial molecular tool that indicates proteins expressed by the genome, and also identifies the functions of proteins accumulated in response to salt stress. Recently, proteomic studies have shed more light on a range of promising candidate proteins that regulate various processes rendering salt tolerance to plants. These proteins have been shown to be involved in photosynthesis and energy metabolism, ion homeostasis, gene transcription and protein biosynthesis, compatible solute production, hormone modulation, cell wall structure modification, cellular detoxification, membrane stabilization, and signal transduction. These candidate salt responsive proteins can be therefore used in biotechnological approaches to improve tolerance of crop plants to salt conditions. In this review, we provided comprehensive updated information on the proteomic data of plants/genotypes contrasting in salt tolerance in response to salt stress. The roles of salt responsive proteins that are potential determinants for plant salt adaptation are discussed. The relationship between changes in proteome composition and abundance, and alterations observed in physiological and biochemical features associated with salt tolerance are also addressed.
Collapse
Affiliation(s)
| | - Fahmy A S Hassan
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
181
|
Wang W, Pang J, Zhang F, Sun L, Yang L, Fu T, Guo L, Siddique KHM. Salt‑responsive transcriptome analysis of canola roots reveals candidate genes involved in the key metabolic pathway in response to salt stress. Sci Rep 2022; 12:1666. [PMID: 35102232 PMCID: PMC8803978 DOI: 10.1038/s41598-022-05700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Salinity is a major constraint on crop growth and productivity, limiting sustainable agriculture in arid regions. Understanding the molecular mechanisms of salt-stress adaptation in canola is important to improve salt tolerance and promote its cultivation in saline lands. In this study, roots of control (no salt) and 200 mM NaCl-stressed canola seedlings were collected for RNA-Seq analysis and qRT-PCR validation. A total of 5385, 4268, and 7105 DEGs at the three time points of salt treatment compared to the control were identified, respectively. Several DEGs enriched in plant signal transduction pathways were highly expressed under salt stress, and these genes play an important role in signaling and scavenging of ROS in response to salt stress. Transcript expression in canola roots differed at different stages of salt stress, with the early-stages (2 h) of salt stress mainly related to oxidative stress response and sugar metabolism, while the late-stages (72 h) of salt stress mainly related to transmembrane movement, amino acid metabolism, glycerol metabolism and structural components of the cell wall. Several families of TFs that may be associated with salt tolerance were identified, including ERF, MYB, NAC, WRKY, and bHLH. These results provide a basis for further studies on the regulatory mechanisms of salt stress adaptation in canola.
Collapse
|
182
|
Using Halothermal Time Model to Describe Barley (Hordeumvulgare L.) Seed Germination Response to Water Potential and Temperature. Life (Basel) 2022; 12:life12020209. [PMID: 35207497 PMCID: PMC8878096 DOI: 10.3390/life12020209] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 11/27/2022] Open
Abstract
Barley (Hordeum vulgare L.) is a salt-tolerant crop with considerable economic value in salinity-affected arid and semiarid areas. In the laboratory experiment, the halothermal time (HaloTT) model was used to examine barley seed germination (SG) at six constant cardinal temperatures (Ts) of 15, 20, 25, 30, 35, and 40 °C under five different water potentials (ψs) of 0, −0.5, −1.5, −1.0, and −2.0 MPa. Results showed that at optimum moisture (0 MPa), the highest germination percentage (GP) was recorded at 20 °C and the lowest at 40 °C. Moreover, GP increased with the accelerated aging period (AAP) and significantly (p ≤ 0.05) decreased with high T. In addition, with a decrease of ψ from 0 to −0.5, −1, 1.5, and −2.0 MPa, GP decreased by 93.33, 76.67, 46.67, and 33.33%, respectively, in comparison with 0 MPa. The maximum halftime constant (θHalo) and coefficient of determination (R2) values were recorded at 20 °C and 30 °C, respectively. The optimum temperature (To) for barley is 20 °C, base Ψ of 50th percentile (Ψb (50)) is −0.23 Mpa, and standard deviation of Ψb (σΨb) is 0.21 MPa. The cardinal Ts for germination is 15 °C (Tb), 20 °C (To), and 40 °C (Tc). The GP, germination rate index (GRI), germination index (GI), coefficient of the velocity of germination (CVG), germination energy (GE), seed vigor index I and II (SVI-I & II), Timson germination index (GI), and root shoot ratio (RSR) were recorded maximum at 0 MPa at 20 °C and minimum at −2.0 MPa at 40 °C. Mean germination time (MGT) and time to 50% germination (T 50%) were maximum at −2 MPa at 40 °C, and minimum at 20 °C, respectively. In conclusion, the HaloTT model accurately predicted the germination time course of barley in response to T, Ψ, or NaCl. Therefore, barley can be regarded as a salt-tolerant plant and suitable for cultivation in arid and semi-arid regions due to its high resistance to salinity.
Collapse
|
183
|
Dixit N. Salinity Induced Antioxidant Defense in Roots of Industrial Hemp (IH: Cannabis sativa L.) for Fiber during Seed Germination. Antioxidants (Basel) 2022; 11:antiox11020244. [PMID: 35204127 PMCID: PMC8868197 DOI: 10.3390/antiox11020244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
Global climate change induced sea level rise, rainfed agriculture, poor quality irrigation water, and seawater intrusion through interconnected ditches and inland waterways cause soil salinity in inland and coastal areas. To reclaim and prevent further soil erosion, salt tolerant crops are required. Industrial Hemp (IH: Cannabis sativa L.) is used for food, fiber, and medicinal purposes throughout the world. In spite of that, little is known about the salt tolerance mechanisms in IH. Seed germination and development of the roots are the primary events in the life cycle of a plant, which directly interact with soil salinity. Therefore, in vitro germination experiments were conducted on the roots of 5-day-old seedlings using four varieties (V1: CFX-2, V2: Joey, V3: Bialobrzeskie, and V4: Henola) of IH for fiber. Five salinity treatments (0, 50, 80, 100, 150, and 200 mM NaCl) were used to screen the IH varieties on the basis of I: seed germination percent (SGP), II: quantitative morphological observations (root length (RL) and root fresh weight (RFW)), III: oxidative stress indices (hydrogen peroxide (H2O2) and lipid peroxidation), and IV: antioxidant defense system comprises of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPOD), ascorbate peroxidase (APOD), glutathione reductase (GR). The varieties V1 and V3 showed salt tolerance up to 100 mM by maintaining higher SGP, less reduction in RL and RFW. These roots in V1 and V3 showed lower levels of H2O2 and lipid peroxidation by displaying higher activities of SOD, CAT, GPOD, APOD, and GR while a reciprocal trend was observed in V4. However, roots in V2 showed higher activities of antioxidant enzymes with lower levels of H2O2 and lipid peroxidation, but showed declines in RL and RFW at 80 mM NaCl onward. Roots in V4 were the most susceptible to NaCl stress at 50 mM and onward.
Collapse
Affiliation(s)
- Naveen Dixit
- Department of Agriculture Food and Resources Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| |
Collapse
|
184
|
Rangseekaew P, Barros-Rodríguez A, Pathom-aree W, Manzanera M. Plant Beneficial Deep-Sea Actinobacterium, Dermacoccus abyssi MT1.1T Promote Growth of Tomato (Solanum lycopersicum) under Salinity Stress. BIOLOGY 2022; 11:biology11020191. [PMID: 35205058 PMCID: PMC8869415 DOI: 10.3390/biology11020191] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/23/2022]
Abstract
Simple Summary Salt stress is an important environmental problem that negatively affects agricultural and food production in the world. Currently, the use of plant beneficial bacteria for plant growth promotion is attractive due to the demand for eco-friendly and sustainable agriculture. In this study, salt tolerant deep-sea actinobacterium, Dermacoccus abyssi MT1.1T was investigated plant growth promotion and salt stress mitigation in tomato seedlings. In addition, D. abyssi MT1.1T whole genome was analyzed for plant growth promoting traits and genes related to salt stress alleviation in plants. We also evaluated the biosafety of this strain on human health and organisms in the environment. Our results highlight that the inoculation of D. abyssi MT1.1T could reduce the negative effects of salt stress in tomato seedlings by growth improvement, total soluble sugars accumulation and hydrogen peroxide reduction. Moreover, this strain could survive and colonize tomato roots. Biosafety testing and genome analysis of D. abyssi MT1.1T showed no pathogenicity risk. In conclusion, we provide supporting evidence on the potential of D. abyssi MT1.1T as a safe strain for use in plant growth promotion under salt stress. Abstract Salt stress is a serious agricultural problem threatens plant growth and development resulted in productivity loss and global food security concerns. Salt tolerant plant growth promoting actinobacteria, especially deep-sea actinobacteria are an alternative strategy to mitigate deleterious effects of salt stress. In this study, we aimed to investigate the potential of deep-sea Dermacoccus abyssi MT1.1T to mitigate salt stress in tomato seedlings and identified genes related to plant growth promotion and salt stress mitigation. D. abyssi MT1.1T exhibited plant growth promoting traits namely indole-3-acetic acid (IAA) and siderophore production and phosphate solubilization under 0, 150, 300, and 450 mM NaCl in vitro. Inoculation of D. abyssi MT1.1T improved tomato seedlings growth in terms of shoot length and dry weight compared with non-inoculated seedlings under 150 mM NaCl. In addition, increased total soluble sugar and total chlorophyll content and decreased hydrogen peroxide content were observed in tomato inoculated with D. abyssi MT1.1T. These results suggested that this strain mitigated salt stress in tomatoes via osmoregulation by accumulation of soluble sugars and H2O2 scavenging activity. Genome analysis data supported plant growth promoting and salt stress mitigation potential of D. abyssi MT1.1T. Survival and colonization of D. abyssi MT1.1T were observed in roots of inoculated tomato seedlings. Biosafety testing on D. abyssi MT1.1T and in silico analysis of its whole genome sequence revealed no evidence of its pathogenicity. Our results demonstrate the potential of deep-sea D. abyssi MT1.1T to mitigate salt stress in tomato seedlings and as a candidate of eco-friendly bio-inoculants for sustainable agriculture.
Collapse
Affiliation(s)
- Pharada Rangseekaew
- Doctor of Philosophy Program in Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Adoración Barros-Rodríguez
- Department of Microbiology, Institute for Water Research, University of Granada, 18071 Granada, Spain; (A.B.-R.); (M.M.)
| | - Wasu Pathom-aree
- Research Center in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53943346-48
| | - Maximino Manzanera
- Department of Microbiology, Institute for Water Research, University of Granada, 18071 Granada, Spain; (A.B.-R.); (M.M.)
| |
Collapse
|
185
|
Stadnik B, Tobiasz-Salach R, Mazurek M. Physiological and Epigenetic Reaction of Barley ( Hordeum vulgare L.) to the Foliar Application of Silicon under Soil Salinity Conditions. Int J Mol Sci 2022; 23:ijms23031149. [PMID: 35163073 PMCID: PMC8835728 DOI: 10.3390/ijms23031149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
Soil salinity is an important environmental factor affecting physiological processes in plants. It is possible to limit the negative effects of salt through the exogenous application of microelements. Silicon (Si) is widely recognized as an element improving plant resistance to abiotic and biotic stresses. The aim of the research was to determine the impact of foliar application of Si on the photosynthetic apparatus, gas exchange and DNA methylation of barley (Hordeum vulgare L.) grown under salt stress. Plants grown under controlled pot experiment were exposed to sodium chloride (NaCl) in the soil at a concentration of 200 mM, and two foliar applications of Si were made at three concentrations (0.05%, 0.1% and 0.2%). Measurements were made of relative chlorophyll content in leaves (CCl), gas exchange parameters (Ci, E, gs, and PN), and selected chlorophyll fluorescence parameters (Fv/Fm, Fv/F0, PI and RC/ABS). Additionally, DNA methylation level based on cytosine methylation within the 3′CCGG 5′ sequence was analyzed. Salinity had a negative effect on the values of the parameters examined. Exogenous application of Si by spraying leaves increased the values of the measured parameters in plants. Plants treated with NaCl in combination with the moderate (0.1%) and highest (0.2%) dose of Si indicated the lowest methylation level. Decrease of methylation implicated with activation of gene expression resulted in better physiological parameters observed in this group of barley plants.
Collapse
Affiliation(s)
- Barbara Stadnik
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
- Correspondence:
| | - Renata Tobiasz-Salach
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Marzena Mazurek
- Department of Physiology and Plant Biotechnology, University of Rzeszow, Ćwiklińskiej 2, 35-601 Rzeszow, Poland;
| |
Collapse
|
186
|
Gao Z, Zhang J, Zhang J, Zhang W, Zheng L, Borjigin T, Wang Y. Nitric oxide alleviates salt-induced stress damage by regulating the ascorbate-glutathione cycle and Na +/K + homeostasis in Nitraria tangutorum Bobr. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:46-58. [PMID: 35093694 DOI: 10.1016/j.plaphy.2022.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule involved in mediation of salt stress induced physiological responses in plants. In this study, we investigated the effect of NO on Nitraria tangutorum seedlings exposed to salt stress. Exogenous application of NO donor, sodium nitroprusside (SNP) increased fresh weight, shoot and root elongation and decreased electrolyte leakage and malondialdehyde (MDA) content in N. tangutorum seedlings under salt stress. Simultaneously, leaf senescence and root damage induced by salt stress were alleviated. SNP effectively increased NO content both in leaves and roots of plants under salt stress. Meanwhile, SNP activated the ascorbate-glutathione (AsA-GSH) cycle by increasing antioxidants contents, antioxidant enzymes activities, and related genes expression, thereby scavenging reactive oxygen species (ROS) and alleviating oxidative damage caused by salt stress. SNP alleviated salt stress induced ion toxicity by promoting Na+ efflux and ion transporter gene expression and reducing Na+ content and the Na+/K+ ratio. In addition, application of NO specific scavenger cPTIO and mammalian NO synthase inhibitor L-NAME sifnificantly aggravated stress damage in plant under salt stress. These results show the beneficial impacts of NO as a stress-signaling molecule that positively regulates defense response in N. tangutorum to salt stress.
Collapse
Affiliation(s)
- Ziqi Gao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China
| | - Jiayuan Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China
| | - Jie Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China
| | - Wenxiu Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China
| | - Linlin Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China
| | - Tebuqin Borjigin
- School of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Yingchun Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| |
Collapse
|
187
|
Laoué J, Fernandez C, Ormeño E. Plant Flavonoids in Mediterranean Species: A Focus on Flavonols as Protective Metabolites under Climate Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020172. [PMID: 35050060 PMCID: PMC8781291 DOI: 10.3390/plants11020172] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Flavonoids are specialized metabolites largely widespread in plants where they play numerous roles including defense and signaling under stress conditions. These compounds encompass several chemical subgroups such as flavonols which are one the most represented classes. The most studied flavonols are kaempferol, quercetin and myricetin to which research attributes antioxidative properties and a potential role in UV-defense through UV-screening mechanisms making them critical for plant adaptation to climate change. Despite the great interest in flavonol functions in the last decades, some functional aspects remain under debate. This review summarizes the importance of flavonoids in plant defense against climate stressors and as signal molecules with a focus on flavonols in Mediterranean plant species. The review emphasizes the relationship between flavonol location (at the organ, tissue and cellular scales) and their function as defense metabolites against climate-related stresses. It also provides evidence that biosynthesis of flavonols, or flavonoids as a whole, could be a crucial process allowing plants to adapt to climate change, especially in the Mediterranean area which is considered as one of the most sensitive regions to climate change over the globe.
Collapse
|
188
|
Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods. REMOTE SENSING 2022. [DOI: 10.3390/rs14010226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on the soil surface. Although there have been some studies on the BPDF model based on traditional machine learning methods, there is a lack of research on the BPDF model based on deep learning, especially using laboratory measurement spectrum data as the processing object, with limited research results. In this paper, we collected saline-alkaline soil in the field as the observation object and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning methods (support vector regression, random forest, and deep neural networks regression) to simulate and predict the surface Rp of saline-alkaline soils and compare them with experimental results. The measured values of the laboratory are compared and fitted, and the root mean squared error, R-squared, and correlation coefficient are calculated to express the prediction effect. The results show that the predictions of the BPDF model based on machine learning methods are generally better than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at 865 nm. The results of this study also provide new ideas and methods based on deep learning for the prediction of Rp on the surface of saline-alkaline soils.
Collapse
|
189
|
Manzoor N, Ali L, Ahmed T, Noman M, Adrees M, Shahid MS, Ogunyemi SO, Radwan KSA, Wang G, Zaki HEM. Recent Advancements and Development in Nano-Enabled Agriculture for Improving Abiotic Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:951752. [PMID: 35898211 PMCID: PMC9310028 DOI: 10.3389/fpls.2022.951752] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 05/07/2023]
Abstract
Abiotic stresses, such as heavy metals (HMs), drought, salinity and water logging, are the foremost limiting factors that adversely affect the plant growth and crop productivity worldwide. The plants respond to such stresses by activating a series of intricate mechanisms that subsequently alter the morpho-physiological and biochemical processes. Over the past few decades, abiotic stresses in plants have been managed through marker-assisted breeding, conventional breeding, and genetic engineering approaches. With technological advancement, efficient strategies are required to cope with the harmful effects of abiotic environmental constraints to develop sustainable agriculture systems of crop production. Recently, nanotechnology has emerged as an attractive area of study with potential applications in the agricultural science, including mitigating the impacts of climate change, increasing nutrient utilization efficiency and abiotic stress management. Nanoparticles (NPs), as nanofertilizers, have gained significant attention due to their high surface area to volume ratio, eco-friendly nature, low cost, unique physicochemical properties, and improved plant productivity. Several studies have revealed the potential role of NPs in abiotic stress management. This review aims to emphasize the role of NPs in managing abiotic stresses and growth promotion to develop a cost-effective and environment friendly strategy for the future agricultural sustainability.
Collapse
Affiliation(s)
- Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing, China
| | - Liaqat Ali
- University of Agriculture, Faisalabad, Vehari, Pakistan
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Noman
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Adrees
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Khlode S. A. Radwan
- Plant Pathology Department, Faculty of Agriculture, Minia University, El-Minia, Egypt
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, China
- National Black Soil and Agriculture Research, China Agricultural University, Beijing, China
- *Correspondence: Gang Wang,
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur, Oman
- Haitham E. M. Zaki,
| |
Collapse
|
190
|
Wang W, Zhang F, Sun L, Yang L, Yang Y, Wang Y, Siddique KHM, Pang J. Alkaline Salt Inhibits Seed Germination and Seedling Growth of Canola More Than Neutral Salt. FRONTIERS IN PLANT SCIENCE 2022; 13:814755. [PMID: 35154227 PMCID: PMC8828734 DOI: 10.3389/fpls.2022.814755] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/04/2022] [Indexed: 05/05/2023]
Abstract
Salinity is a major constraint to crop growth and productivity, limiting sustainable agriculture production. Planting canola (Brassica napus L.) variety with salinity-alkalinity tolerance as a green manure on the large area of salinity-affected land in Xinjiang could alleviate feed shortage. To investigate the differential effects of neutral and alkaline salt stress on seed germination and seedling growth of canola, we used two salts at varying concentrations, i.e., NaCl (neutral salt at 100, 150, and 200 mM) and Na2CO3 (alkaline salt at 20, 30, and 40 mM). To further explore the effects of Na+ and pH on seed germination, we included combined of NaCl (0, 100, 150, and 200 mM) and pH (7.1, 8.0, 9.0, 10.0, and 11.0). Shoot growth was promoted by low concentrations of NaCl and Na2CO3 but inhibited at high salt concentrations. Given the same Na+ concentration, Na2CO3 inhibited seed germination and seedling growth more than NaCl. The results showed that the main factor affecting seed germination and seedling growth is not pH alone, but the interaction between pH and salt ions. Under NaCl stress, canola increased the absorption of K+, Ca2+, and Mg2+ in roots and K+ in leaves. However, under Na2CO3 stress, canola maintained a high K+ concentration and K+/Na+ ratio in leaves and increased Ca2+ and Mg2+ in roots. Our study showed that alkaline salts inhibit canola seed germination and seedling growth more significantly than neutral salts and salt species, salt concentration, and pH significantly affected on seed germination and seedling growth. However, pH affected seed germination and seedling growth mainly through an interaction with salt ions.
Collapse
Affiliation(s)
- Weichao Wang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, China
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Fenghua Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, China
- *Correspondence: Fenghua Zhang,
| | - Lupeng Sun
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, China
| | - Lei Yang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, China
| | - Yang Yang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, China
| | - Yajuan Wang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, China
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jiayin Pang
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
191
|
Chaudhry S, Sidhu GPS. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. PLANT CELL REPORTS 2022; 41:1-31. [PMID: 34351488 DOI: 10.1007/s00299-021-02759-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/18/2021] [Indexed: 05/20/2023]
Abstract
Global climate change is identified as a major threat to survival of natural ecosystems. Climate change is a dynamic, multifaceted system of alterations in environmental conditions that affect abiotic and biotic components of the world. It results in alteration in environmental conditions such as heat waves, intensity of rainfall, CO2 concentration and temperature that lead to rise in new pests, weeds and pathogens. Climate change is one of the major constraints limiting plant growth and development worldwide. It impairs growth, disturbs photosynthesis, and reduces physiological responses in plants. The variations in global climate have gained the attention of researchers worldwide, as these changes negatively affect the agriculture by reducing crop productivity and food security. With this background, this review focuses on the effects of elevated atmospheric CO2 concentration, temperature, drought and salinity on the morphology, physiology and biochemistry of plants. Furthermore, this paper outlines an overview on the reactive oxygen species (ROS) production and their impact on the biochemical and molecular status of plants with increased climatic variations. Also additionally, different tolerance strategies adopted by plants to combat environmental adversities have been discussed.
Collapse
Affiliation(s)
- Smita Chaudhry
- Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
192
|
Mohamadi Esboei M, Ebrahimi A, Amerian MR, Alipour H. Melatonin confers fenugreek tolerance to salinity stress by stimulating the biosynthesis processes of enzymatic, non-enzymatic antioxidants, and diosgenin content. FRONTIERS IN PLANT SCIENCE 2022; 13:890613. [PMID: 36003823 PMCID: PMC9394454 DOI: 10.3389/fpls.2022.890613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/28/2022] [Indexed: 05/10/2023]
Abstract
Salinity-induced stress is widely considered a main plant-growth-limiting factor. The positive effects of melatonin in modulating abiotic stresses have led this hormone to be referred to as a growth regulator in plants. This study aims to show how melatonin protects fenugreek against the negative effects of salt stress. Different amounts of melatonin (30, 60, and 90 ppm), salinity stress (150 mM and 300 mM), and the use of both salinity and melatonin were used as treatments. The results showed that applying different melatonin levels to salinity-treated fenugreek plants effectively prevented the degradation of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid contents compared with salinity treatment without melatonin application. Besides, melatonin increases the biosynthesis of enzymatic and non-enzymatic antioxidants, thereby adjusting the content of reactive oxygen species, free radicals, electrolyte leakage, and malondialdehyde content. It was observed that applying melatonin increased the activity of potassium-carrying channels leading to the maintenance of ionic homeostasis and increased intracellular water content under salinity stress. The results revealed that melatonin activates the defense signaling pathways in fenugreek through the nitric oxide, auxin, and abscisic acid-dependent pathways. Melatonin, in a similar vein, increased the expression of genes involved in the biosynthesis pathway of diosgenin, a highly important steroidal sapogenin in medical and food industries, and hence the diosgenin content. When 150 mM salinity stress and 60 ppm melatonin were coupled, the diosgenin concentration rose by more than 5.5 times compared to the control condition. In conclusion, our findings demonstrate the potential of melatonin to enhance the plant tolerance to salinity stress by stimulating biochemical and physiological changes.
Collapse
Affiliation(s)
- Maryam Mohamadi Esboei
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
- *Correspondence: Amin Ebrahimi,
| | - Mohamad Reza Amerian
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
193
|
Bae Y, Lim CW, Lee SC. Differential Functions of Pepper Stress-Associated Proteins in Response to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:756068. [PMID: 34956259 PMCID: PMC8702622 DOI: 10.3389/fpls.2021.756068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Stress-associated proteins (SAPs), a group of zinc-finger-type proteins, have been identified as novel regulators of plant abiotic and biotic stresses. However, although they have been discovered in different plant species, their precise functional roles remain unclear. Here, we identified 14 SAP subfamily genes in the pepper genome. An investigation of the promoter regions of these genes for cis-regulatory elements associated with abiotic stress responses revealed the presence of multiple stress-related elements. Domain and phylogenetic analyses using the corresponding protein sequences revealed that the CaSAP genes can be classified into six groups (I-VI) and sorted into two broad types. Expression levels of the CaSAP genes were found to be differentially induced by low temperature, the dehydration stress, or exogenous abscisic acid. Group II and IV genes were highly induced by the low temperature and dehydration treatments, respectively. Moreover, subcellular localization analysis indicated that the proteins in these two groups are distributed in the nucleus, cytoplasm, and plasma membrane. Among the pepper plants silenced with the three identified group II CaSAP genes, the CA02g10410-silenced plants showed tolerance to low temperature, whereas the CA03g17080-silenced plants were found to have temperature-sensitive phenotypes. Interestingly, group IV CaSAP-silenced pepper plants showed drought-tolerant phenotypes. These findings contribute to a preliminary characterization of CaSAP genes and provide directions for future research on the biological role of CaSAPs in response to different abiotic stresses.
Collapse
|
194
|
Naamala J, Smith DL. Microbial Derived Compounds Are a Promising Approach to Mitigating Salinity Stress in Agricultural Crops. Front Microbiol 2021; 12:765320. [PMID: 34867895 PMCID: PMC8640360 DOI: 10.3389/fmicb.2021.765320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
The use of microbial derived compounds is a technological approach currently gaining popularity among researchers, with hopes of complementing, supplementing and addressing key issues associated with use of microbial cells for enhancing plant growth. The new technology is a promising approach to mitigating effects of salinity stress in agricultural crops, given that these compounds could be less prone to effects of salt stress, are required in small quantities and are easier to store and handle than microbial cells. Microorganism derived compounds such as thuricin17, lipochitooligosaccharides, phytohormones and volatile organic compounds have been reported to mitigate the effects of salt stress in agricultural crops such as soybean and wheat. This mini-review compiles current knowledge regarding the use of microbe derived compounds in mitigating salinity stress in crops, the mechanisms they employ as well as future prospects.
Collapse
Affiliation(s)
- Judith Naamala
- Smith Laboratory, Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Donald L Smith
- Smith Laboratory, Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
195
|
Genome-wide association analysis of chickpea germplasms differing for salinity tolerance based on DArTseq markers. PLoS One 2021; 16:e0260709. [PMID: 34852014 PMCID: PMC8635330 DOI: 10.1371/journal.pone.0260709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022] Open
Abstract
Soil salinity is significant abiotic stress that severely limits global crop production. Chickpea (Cicer arietinum L.) is an important grain legume that plays a substantial role in nutritional food security, especially in the developing world. This study used a chickpea population collected from the International Center for Agricultural Research in the Dry Area (ICARDA) genebank using the focused identification of germplasm strategy. The germplasm included 186 genotypes with broad Asian and African origins and genotyped with 1856 DArTseq markers. We conducted phenotyping for salinity in the field (Arish, Sinai, Egypt) and greenhouse hydroponic experiments at 100 mM NaCl concentration. Based on the performance in both hydroponic and field experiments, we identified seven genotypes from Azerbaijan and Pakistan (IGs: 70782, 70430, 70764, 117703, 6057, 8447, and 70249) as potential sources for high salinity tolerance. Multi-trait genome-wide association analysis (mtGWAS) detected one locus on chromosome Ca4 at 10618070 bp associated with salinity tolerance under hydroponic and field conditions. In addition, we located another locus specific to the hydroponic system on chromosome Ca2 at 30537619 bp. Gene annotation analysis revealed the location of rs5825813 within the Embryogenesis-associated protein (EMB8-like), while the location of rs5825939 is within the Ribosomal Protein Large P0 (RPLP0). Utilizing such markers in practical breeding programs can effectively improve the adaptability of current chickpea cultivars in saline soil. Moreover, researchers can use our markers to facilitate the incorporation of new genes into commercial cultivars.
Collapse
|
196
|
Etesami H, Fatemi H, Rizwan M. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112769. [PMID: 34509968 DOI: 10.1016/j.ecoenv.2021.112769] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 05/19/2023]
Abstract
Salinity stress is one of the most destructive non-biological stresses in plants that has adversely affected many agricultural lands in the world. Salinity stress causes many morphological, physiological, epigenetic and genetic changes in plants by increasing sodium and chlorine ions in the plant cells. The plants can alleviate this disorder to some extent through various mechanisms and return the cell to its original state, but if the salt dose is high, the plants may not be able to provide a proper response and can die due to salt stress. Nowadays, scientists have offered many solutions to this problem. Nanotechnology is one of the most emerging and efficient technologies that has been entered in this field and has recorded very brilliant results. Although some studies have confirmed the positive effects of nontechnology on plants under salinity stress, there is no the complete understanding of the relationship and interaction of nanoparticles and intracellular mechanisms in the plants. In the review paper, we have tried to reach a conclusion from the latest articles that how NPs could help salt-stressed plants to recover their cells under salt stress so that we can take a step towards clearing the existing ambiguities for researchers in this field.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Karaj, Iran.
| | - Hamideh Fatemi
- Department of Horticulture, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000, Pakistan.
| |
Collapse
|
197
|
Frosi G, Ferreira-Neto JRC, Bezerra-Neto JP, Pandolfi V, da Silva MD, de Lima Morais DA, Benko-Iseppon AM, Santos MG. Transcriptome of Cenostigma pyramidale roots, a woody legume, under different salt stress times. PHYSIOLOGIA PLANTARUM 2021; 173:1463-1480. [PMID: 33973275 DOI: 10.1111/ppl.13456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 05/20/2023]
Abstract
Salinity stress has a significant impact on the gain of plant biomass. Our study provides the first root transcriptome of Cenostigma pyramidale, a tolerant woody legume from a tropical dry forest, under three different salt stress times (30 min, 2 h, and 11 days). The transcriptome was assembled using the RNA sequencing (RNA-Seq) de novo pipeline from GenPipes. We observed 932, 804, and 3157 upregulated differentially expressed genes (DEGs) and 164, 273, and 1332 downregulated DEGs for salt over 30 min, 2 h, and 11 days, respectively. For DEGs annotated with the Viridiplantae clade in the early stress periods, the response to salt stress was mainly achieved by stabilizing homeostasis of such ions like Na+ and K+ , signaling by Ca2+ , transcription factor modulation, water transport, and oxidative stress. For salt stress at 11 days, we observed a higher modulation of transcription factors including the WRKY, MYB, bHLH, NAC, HSF, and AP2-EREBP families, as well as DEGs involved in hormonal responses, water transport, sugar metabolism, proline, and reactive oxygen scavenging mechanisms. Five selected DEGs (K+ transporter, aquaporin, glutathione S-transferase, cyclic nucleotide-gated channel, and superoxide dismutase) were validated by qPCR. Our results indicated that C. pyramidale had an early perception of salt stress modulating ionic channels and transporters, and as the stress progressed, the focus turned to the antioxidant system, aquaporins, and complex hormone responses. The results of this first root transcriptome provide clues on how this native species modulate gene expression to achieve salt stress tolerance.
Collapse
Affiliation(s)
- Gabriella Frosi
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Faculté des Sciences, Départament de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | - Valesca Pandolfi
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | - Mauro Guida Santos
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
198
|
Nounjan N, Theerakulpisut P. Physiological evaluation for salt tolerance in green and purple leaf color rice cultivars at seedling stage. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2819-2832. [PMID: 35035138 PMCID: PMC8720124 DOI: 10.1007/s12298-021-01114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED Anthocyanin, a water-soluble pigment found in plants, has been reported to be associated with abiotic stress tolerance including salt stress. For a better understanding of the role of anthocyanin in response to salt stress, two salt-tolerant rice genotypes having different leaf anthocyanin content, one having green ('Pokkali'; PK) and the other purple leaves ('Niew Dam 019'; ND 019), were used in this study. After being subjected to salt stress (150 mM NaCl) for 5 d, the 3-week-old rice genotypes PK and ND 019 exhibited significant physiological responses (water content, Na+/K+ ratio, osmolyte accumulation, osmotic adjustment, antioxidant capacity, membrane damage and chlorophyll) and expression of ion transporter genes, indicating overall salt tolerance ability. However, the green-leaved rice variety, PK, had better root-to-shoot Na+ exclusion mechanism than the purple-leaved variety, ND 019 as evidenced by lower Na+ accumulation in leaves compared to ND 019 despite the fact that they accumulated the similar level of Na+ in roots. On the other hand, ND 019 accumulated higher concentration of osmolytes leading to more enhanced osmotic adjustment. These results revealed that Na+ ion exclusion was the prominent salt tolerance mechanism in the green-leaved PK whereas in the purple-leaved ND 019 osmotic adjustment was the more significant strategy. Under salt stress, there was no remarkable change in anthocyanin in PK while a reduction was found in ND 019. Thus, it could be proposed that anthocyanin did not play a vital role in protecting the purple-leaved rice, ND 019 from salt stress during seedling stage. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01114-y.
Collapse
Affiliation(s)
- Noppawan Nounjan
- Salt-Tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Nai Mueang, Mueang Khon Kaen, Khon Kaen, 40002 Thailand
| | - Piyada Theerakulpisut
- Salt-Tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Nai Mueang, Mueang Khon Kaen, Khon Kaen, 40002 Thailand
| |
Collapse
|
199
|
Huqe MAS, Haque MS, Sagar A, Uddin MN, Hossain MA, Hossain AKMZ, Rahman MM, Wang X, Al-Ashkar I, Ueda A, EL Sabagh A. Characterization of Maize Hybrids ( Zea mays L.) for Detecting Salt Tolerance Based on Morpho-Physiological Characteristics, Ion Accumulation and Genetic Variability at Early Vegetative Stage. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112549. [PMID: 34834912 PMCID: PMC8623748 DOI: 10.3390/plants10112549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 05/22/2023]
Abstract
Increasing soil salinity due to global warming severely restricts crop growth and yield. To select and recommend salt-tolerant cultivars, extensive genotypic screening and examination of plants' morpho-physiological responses to salt stress are required. In this study, 18 prescreened maize hybrid cultivars were examined at the early growth stage under a hydroponic system using multivariate analysis to demonstrate the genotypic and phenotypic variations of the selected cultivars under salt stress. The seedlings of all maize cultivars were evaluated with two salt levels: control (without NaCl) and salt stress (12 dS m-1 simulated with NaCl) for 28 d. A total of 18 morpho-physiological and ion accumulation traits were dissected using multivariate analysis, and salt tolerance index (STI) values of the examined traits were evaluated for grouping of cultivars into salt-tolerant and -sensitive groups. Salt stress significantly declined all measured traits except root-shoot ratio (RSR), while the cultivars responded differently. The cultivars were grouped into three clusters and the cultivars in Cluster-1 such as Prabhat, UniGreen NK41, Bisco 51, UniGreen UB100, Bharati 981 and Star Beej 7Star exhibited salt tolerance to a greater extent, accounting for higher STI in comparison to other cultivars grouped in Cluster-2 and Cluster-3. The high heritability (h2bs, >60%) and genetic advance (GAM, >20%) were recorded in 13 measured traits, indicating considerable genetic variations present in these traits. Therefore, using multivariate analysis based on the measured traits, six hybrid maize cultivars were selected as salt-tolerant and some traits such as Total Fresh Weight (TFW), Total Dry Weight (TDW), Total Na+, Total K+ contents and K+-Na+ Ratio could be effectively used for the selection criteria evaluating salt-tolerant maize genotypes at the early seedling stage.
Collapse
Affiliation(s)
- Md Al Samsul Huqe
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Md Sabibul Haque
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
- Correspondence: (M.S.H.); (X.W.); (A.E.S.)
| | - Ashaduzzaman Sagar
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Md Nesar Uddin
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Md Alamgir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - AKM Zakir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Md Mustafizur Rahman
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Xiukang Wang
- Department of Biology, College of Life Sciences, Yan’an University, Yan’an 716000, China
- Correspondence: (M.S.H.); (X.W.); (A.E.S.)
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Akihiro Ueda
- Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan;
| | - Ayman EL Sabagh
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (M.S.H.); (X.W.); (A.E.S.)
| |
Collapse
|
200
|
Hassani A, Azapagic A, Shokri N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat Commun 2021; 12:6663. [PMID: 34795219 PMCID: PMC8602669 DOI: 10.1038/s41467-021-26907-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
Soil salinization has become one of the major environmental and socioeconomic issues globally and this is expected to be exacerbated further with projected climatic change. Determining how climate change influences the dynamics of naturally-occurring soil salinization has scarcely been addressed due to highly complex processes influencing salinization. This paper sets out to address this long-standing challenge by developing data-driven models capable of predicting primary (naturally-occurring) soil salinity and its variations in the world's drylands up to the year 2100 under changing climate. Analysis of the future predictions made here identifies the dryland areas of South America, southern and western Australia, Mexico, southwest United States, and South Africa as the salinization hotspots. Conversely, we project a decrease in the soil salinity of the drylands in the northwest United States, the Horn of Africa, Eastern Europe, Turkmenistan, and west Kazakhstan in response to climate change over the same period.
Collapse
Affiliation(s)
- Amirhossein Hassani
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester, M13 9PL, UK. .,NILU - Norwegian Institute for Air Research, PO Box 100, Kjeller, 2027, Norway.
| | - Adisa Azapagic
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester, M13 9PL, UK.
| | - Nima Shokri
- Institute of Geo-Hydroinformatics, Hamburg University of Technology, Am Schwarzenberg-Campus 3 (E), 21073, Hamburg, Germany.
| |
Collapse
|