151
|
Ishak CA, Marshall AE, Passos DT, White CR, Kim SJ, Cecchini MJ, Ferwati S, MacDonald WA, Howlett CJ, Welch ID, Rubin SM, Mann MRW, Dick FA. An RB-EZH2 Complex Mediates Silencing of Repetitive DNA Sequences. Mol Cell 2016; 64:1074-1087. [PMID: 27889452 DOI: 10.1016/j.molcel.2016.10.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/17/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
Repetitive genomic regions include tandem sequence repeats and interspersed repeats, such as endogenous retroviruses and LINE-1 elements. Repressive heterochromatin domains silence expression of these sequences through mechanisms that remain poorly understood. Here, we present evidence that the retinoblastoma protein (pRB) utilizes a cell-cycle-independent interaction with E2F1 to recruit enhancer of zeste homolog 2 (EZH2) to diverse repeat sequences. These include simple repeats, satellites, LINEs, and endogenous retroviruses as well as transposon fragments. We generated a mutant mouse strain carrying an F832A mutation in Rb1 that is defective for recruitment to repetitive sequences. Loss of pRB-EZH2 complexes from repeats disperses H3K27me3 from these genomic locations and permits repeat expression. Consistent with maintenance of H3K27me3 at the Hox clusters, these mice are developmentally normal. However, susceptibility to lymphoma suggests that pRB-EZH2 recruitment to repetitive elements may be cancer relevant.
Collapse
Affiliation(s)
- Charles A Ishak
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Aren E Marshall
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Daniel T Passos
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Carlee R White
- Children's Health Research Institute, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Seung J Kim
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Matthew J Cecchini
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Sara Ferwati
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - William A MacDonald
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Christopher J Howlett
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Ian D Welch
- Animal Care Services, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mellissa R W Mann
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Frederick A Dick
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Children's Health Research Institute, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada.
| |
Collapse
|
152
|
Liu S, Du T, Liu Z, Shen Y, Xiu J, Xu Q. Inverse changes in L1 retrotransposons between blood and brain in major depressive disorder. Sci Rep 2016; 6:37530. [PMID: 27874048 PMCID: PMC5118746 DOI: 10.1038/srep37530] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022] Open
Abstract
Long interspersed nuclear element-1 (LINE-1 or L1) is a type of retrotransposons comprising 17% of the human and mouse genome, and has been found to be associated with several types of neurological disorders. Previous post-mortem brain studies reveal increased L1 copy number in the prefrontal cortex from schizophrenia patients. However, whether L1 retrotransposition occurs similarly in major depressive disorder (MDD) is unknown. Here, L1 copy number was measured by quantitative PCR analysis in peripheral blood of MDD patients (n = 105) and healthy controls (n = 105). The results showed that L1 copy number was increased in MDD patients possibly due to its hypomethylation. Furthermore, L1 copy number in peripheral blood and five brain regions (prefrontal cortex, hippocampus, amygdala, nucleus accumbens and paraventricular hypothalamic nucleus) was measured in the chronic unpredictable mild stress (CUMS) model of depression in mice. Intriguingly, increased L1 copy number in blood and the decreased L1 copy number in the prefrontal cortex were observed in stressed mice, while no change was found in other brain regions. Our results suggest that the changes of L1 may be associated with the pathophysiology of MDD, but the biological mechanism behind dysfunction of L1 retrotransposition in MDD remains to be further investigated.
Collapse
Affiliation(s)
- Shu Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences &Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, 10005, China
| | - Tingfu Du
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences &Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, 10005, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Zeyue Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences &Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, 10005, China
| | - Yan Shen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences &Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, 10005, China
| | - Jianbo Xiu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences &Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, 10005, China
| | - Qi Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences &Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, 10005, China
| |
Collapse
|
153
|
Clayton EA, Wang L, Rishishwar L, Wang J, McDonald JF, Jordan IK. Patterns of Transposable Element Expression and Insertion in Cancer. Front Mol Biosci 2016; 3:76. [PMID: 27900322 PMCID: PMC5110550 DOI: 10.3389/fmolb.2016.00076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/31/2016] [Indexed: 11/20/2022] Open
Abstract
Human transposable element (TE) activity in somatic tissues causes mutations that can contribute to tumorigenesis. Indeed, TE insertion mutations have been implicated in the etiology of a number of different cancer types. Nevertheless, the full extent of somatic TE activity, along with its relationship to tumorigenesis, have yet to be fully explored. Recent developments in bioinformatics software make it possible to analyze TE expression levels and TE insertional activity directly from transcriptome (RNA-seq) and whole genome (DNA-seq) next-generation sequence data. We applied these new sequence analysis techniques to matched normal and primary tumor patient samples from the Cancer Genome Atlas (TCGA) in order to analyze the patterns of TE expression and insertion for three cancer types: breast invasive carcinoma, head and neck squamous cell carcinoma, and lung adenocarcinoma. Our analysis focused on the three most abundant families of active human TEs: Alu, SVA, and L1. We found evidence for high levels of somatic TE activity for these three families in normal and cancer samples across diverse tissue types. Abundant transcripts for all three TE families were detected in both normal and cancer tissues along with an average of ~80 unique TE insertions per individual patient/tissue. We observed an increase in L1 transcript expression and L1 insertional activity in primary tumor samples for all three cancer types. Tumor-specific TE insertions are enriched for private mutations, consistent with a potentially causal role in tumorigenesis. We used genome feature analysis to investigate two specific cases of putative cancer-causing TE mutations in further detail. An Alu insertion in an upstream enhancer of the CBL tumor suppressor gene is associated with down-regulation of the gene in a single breast cancer patient, and an L1 insertion in the first exon of the BAALC gene also disrupts its expression in head and neck squamous cell carcinoma. Our results are consistent with widespread somatic activity of human TEs leading to numerous insertion mutations that can contribute to tumorigenesis in a variety of tissues.
Collapse
Affiliation(s)
- Evan A Clayton
- Integrated Cancer Research Center, School of Biology, Georgia Institute of TechnologyAtlanta, GA, USA; Ovarian Cancer InstituteAtlanta, GA, USA
| | - Lu Wang
- School of Biology, Georgia Institute of TechnologyAtlanta, GA, USA; PanAmerican Bioinformatics InstituteCali, Colombia
| | - Lavanya Rishishwar
- School of Biology, Georgia Institute of TechnologyAtlanta, GA, USA; PanAmerican Bioinformatics InstituteCali, Colombia; Applied Bioinformatics LaboratoryAtlanta, GA, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University East Lansing, MI, USA
| | - John F McDonald
- Integrated Cancer Research Center, School of Biology, Georgia Institute of TechnologyAtlanta, GA, USA; Ovarian Cancer InstituteAtlanta, GA, USA
| | - I King Jordan
- School of Biology, Georgia Institute of TechnologyAtlanta, GA, USA; PanAmerican Bioinformatics InstituteCali, Colombia; Applied Bioinformatics LaboratoryAtlanta, GA, USA
| |
Collapse
|
154
|
Onozawa M, Aplan PD. Templated Sequence Insertion Polymorphisms in the Human Genome. Front Chem 2016; 4:43. [PMID: 27900318 PMCID: PMC5110952 DOI: 10.3389/fchem.2016.00043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/27/2016] [Indexed: 12/26/2022] Open
Abstract
Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including (1) target-site duplication (TSD), (2) polyadenylation 10–30 nucleotides downstream of a “cryptic” polyadenylation signal, and (3) preference for insertion at a 5′-TTTT/A-3′ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break (DSB) via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25–30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.
Collapse
Affiliation(s)
- Masahiro Onozawa
- Genetics Branch, National Cancer Institute, National Institutes of HealthBethesda, MD, USA; Department of Hematology, Hokkaido University Graduate School of MedicineSapporo, Japan
| | - Peter D Aplan
- Genetics Branch, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
155
|
Carreira PE, Ewing AD, Li G, Schauer SN, Upton KR, Fagg AC, Morell S, Kindlova M, Gerdes P, Richardson SR, Li B, Gerhardt DJ, Wang J, Brennan PM, Faulkner GJ. Evidence for L1-associated DNA rearrangements and negligible L1 retrotransposition in glioblastoma multiforme. Mob DNA 2016; 7:21. [PMID: 27843499 PMCID: PMC5105311 DOI: 10.1186/s13100-016-0076-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/13/2016] [Indexed: 01/23/2023] Open
Abstract
Background LINE-1 (L1) retrotransposons are a notable endogenous source of mutagenesis in mammals. Notably, cancer cells can support unusual L1 retrotransposition and L1-associated sequence rearrangement mechanisms following DNA damage. Recent reports suggest that L1 is mobile in epithelial tumours and neural cells but, paradoxically, not in brain cancers. Results Here, using retrotransposon capture sequencing (RC-seq), we surveyed L1 mutations in 14 tumours classified as glioblastoma multiforme (GBM) or as a lower grade glioma. In four GBM tumours, we characterised one probable endonuclease-independent L1 insertion, two L1-associated rearrangements and one likely Alu-Alu recombination event adjacent to an L1. These mutations included PCR validated intronic events in MeCP2 and EGFR. Despite sequencing L1 integration sites at up to 250× depth by RC-seq, we found no tumour-specific, endonuclease-dependent L1 insertions. Whole genome sequencing analysis of the tumours carrying the MeCP2 and EGFR L1 mutations also revealed no endonuclease-dependent L1 insertions. In a complementary in vitro assay, wild-type and endonuclease mutant L1 reporter constructs each mobilised very inefficiently in four cultured GBM cell lines. Conclusions These experiments altogether highlight the consistent absence of canonical L1 retrotransposition in GBM tumours and cultured cell lines, as well as atypical L1-associated sequence rearrangements following DNA damage in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0076-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia E Carreira
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Adam D Ewing
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Guibo Li
- BGI-Shenzhen, Shenzhen, 518083 China.,Department of Biology and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 1599 Denmark
| | - Stephanie N Schauer
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Kyle R Upton
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072 Australia
| | - Allister C Fagg
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Santiago Morell
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Michaela Kindlova
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Patricia Gerdes
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Sandra R Richardson
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Daniel J Gerhardt
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, 518083 China.,Department of Biology and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 1599 Denmark
| | - Paul M Brennan
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, EH42XR UK
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia.,Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
156
|
Achanta P, Steranka JP, Tang Z, Rodić N, Sharma R, Yang WR, Ma S, Grivainis M, Huang CRL, Schneider AM, Gallia GL, Riggins GJ, Quinones-Hinojosa A, Fenyö D, Boeke JD, Burns KH. Somatic retrotransposition is infrequent in glioblastomas. Mob DNA 2016; 7:22. [PMID: 27843500 PMCID: PMC5105304 DOI: 10.1186/s13100-016-0077-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background Gliomas are the most common primary brain tumors in adults. We sought to understand the roles of endogenous transposable elements in these malignancies by identifying evidence of somatic retrotransposition in glioblastomas (GBM). We performed transposon insertion profiling of the active subfamily of Long INterspersed Element-1 (LINE-1) elements by deep sequencing (TIPseq) on genomic DNA of low passage oncosphere cell lines derived from 7 primary GBM biopsies, 3 secondary GBM tissue samples, and matched normal intravenous blood samples from the same individuals. Results We found and PCR validated one somatically acquired tumor-specific insertion in a case of secondary GBM. No LINE-1 insertions present in primary GBM oncosphere cultures were missing from corresponding blood samples. However, several copies of the element (11) were found in genomic DNA from blood and not in the oncosphere cultures. SNP 6.0 microarray analysis revealed deletions or loss of heterozygosity in the tumor genomes over the intervals corresponding to these LINE-1 insertions. Conclusions These findings indicate that LINE-1 retrotransposon can act as an infrequent insertional mutagen in secondary GBM, but that retrotransposition is uncommon in these central nervous system tumors as compared to other neoplasias. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0077-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pragathi Achanta
- Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA
| | - Zuojian Tang
- Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY USA.,Institute for Systems Genetics, New York University Langone Medical Center, ACLSW Room 503, 430 East 29th Street, New York, NY 10016 USA
| | - Nemanja Rodić
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA.,Present address: Yale University, New Haven, CT USA
| | - Reema Sharma
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA
| | - Wan Rou Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA
| | - Sisi Ma
- Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY USA
| | - Mark Grivainis
- Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY USA.,Institute for Systems Genetics, New York University Langone Medical Center, ACLSW Room 503, 430 East 29th Street, New York, NY 10016 USA
| | - Cheng Ran Lisa Huang
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA.,Present address: L.E.K. Consulting, Boston, MA USA
| | - Anna M Schneider
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA.,Present address: BioNTech AG, Mainz, Germany
| | - Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Gregory J Riggins
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD USA.,Present address: Mayo Clinic, Jacksonville, FL USA
| | - David Fenyö
- Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY USA.,Institute for Systems Genetics, New York University Langone Medical Center, ACLSW Room 503, 430 East 29th Street, New York, NY 10016 USA
| | - Jef D Boeke
- Institute for Systems Genetics, New York University Langone Medical Center, ACLSW Room 503, 430 East 29th Street, New York, NY 10016 USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA
| |
Collapse
|
157
|
De Luca C, Guadagni F, Sinibaldi-Vallebona P, Sentinelli S, Gallucci M, Hoffmann A, Schumann GG, Spadafora C, Sciamanna I. Enhanced expression of LINE-1-encoded ORF2 protein in early stages of colon and prostate transformation. Oncotarget 2016; 7:4048-61. [PMID: 26716650 PMCID: PMC4826189 DOI: 10.18632/oncotarget.6767] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022] Open
Abstract
LINE-1 (L1) retrotransposons are a source of endogenous reverse transcriptase (RT) activity, which is expressed as part of the L1-encoded ORF2 protein (L1-ORF2p). L1 elements are highly expressed in many cancer types, while being silenced in most differentiated somatic tissues. We previously found that RT inhibition reduces cell proliferation and promotes differentiation in neoplastic cells, indicating that high endogenous RT activity promotes cancer growth. Here we investigate the expression of L1-ORF2p in several human types of cancer. We have developed a highly specific monoclonal antibody (mAb chA1-L1) to study ORF2p expression and localization in human cancer cells and tissues. We uncover new evidence for high levels of L1-ORF2p in transformed cell lines and staged epithelial cancer tissues (colon, prostate, lung and breast) while no or only basal ORF2p expression was detected in non-transformed cells. An in-depth analysis of colon and prostate tissues shows ORF2p expression in preneoplastic stages, namely transitional mucosa and prostate intraepithelial neoplasia (PIN), respectively. Our results show that L1-ORF2p is overexpressed in tumor and in preneoplastic colon and prostate tissues; this latter finding suggests that ORF2p could be considered as a potential early diagnostic biomarker.
Collapse
Affiliation(s)
| | - Fiorella Guadagni
- Laboratory BioDAT SR Research, IRCCS San Raffaele Pisana, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Rome, Italy.,Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Steno Sentinelli
- I.F.O. Regina Elena, UOC Pathological Anatomy/Urology, Rome, Italy
| | - Michele Gallucci
- I.F.O. Regina Elena, UOC Pathological Anatomy/Urology, Rome, Italy
| | - Andreas Hoffmann
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Gerald G Schumann
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | | |
Collapse
|
158
|
Zampella JG, Rodić N, Yang WR, Huang CRL, Welch J, Gnanakkan VP, Cornish TC, Boeke JD, Burns KH. A map of mobile DNA insertions in the NCI-60 human cancer cell panel. Mob DNA 2016; 7:20. [PMID: 27807467 PMCID: PMC5087121 DOI: 10.1186/s13100-016-0078-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/21/2016] [Indexed: 11/13/2022] Open
Abstract
Background The National Cancer Institute-60 (NCI-60) cell lines are among the most widely used models of human cancer. They provide a platform to integrate DNA sequence information, epigenetic data, RNA and protein expression, and pharmacologic susceptibilities in studies of cancer cell biology. Genome-wide studies of the complete panel have included exome sequencing, karyotyping, and copy number analyses but have not targeted repetitive sequences. Interspersed repeats derived from mobile DNAs are a significant source of heritable genetic variation, and insertions of active elements can occur somatically in malignancy. Method We used Transposon Insertion Profiling by microarray (TIP-chip) to map Long INterspersed Element-1 (LINE-1, L1) and Alu Short INterspersed Element (SINE) insertions in cancer genes in NCI-60 cells. We focused this discovery effort on annotated Cancer Gene Index loci. Results We catalogued a total of 749 and 2,100 loci corresponding to candidate LINE-1 and Alu insertion sites, respectively. As expected, these numbers encompass previously known insertions, polymorphisms shared in unrelated tumor cell lines, as well as unique, potentially tumor-specific insertions. We also conducted association analyses relating individual insertions to a variety of cellular phenotypes. Conclusions These data provide a resource for investigators with interests in specific cancer gene loci or mobile element insertion effects more broadly. Our data underscore that significant genetic variation in cancer genomes is owed to LINE-1 and Alu retrotransposons. Our findings also indicate that as large numbers of cancer genomes become available, it will be possible to associate individual transposable element insertion variants with molecular and phenotypic features of these malignancies. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0078-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John G Zampella
- Department of Dermatology, Johns Hopkins University School of Medicine, 733 North Broadway, Miller Research Building Room 469, Baltimore, MD 21205 USA
| | - Nemanja Rodić
- Department of Pathology, Johns Hopkins University School of Medicine, 733 North Broadway, Miller Research Building Room 469, Baltimore, MD 21205 USA
| | - Wan Rou Yang
- Department of Pathology, Johns Hopkins University School of Medicine, 733 North Broadway, Miller Research Building Room 469, Baltimore, MD 21205 USA
| | - Cheng Ran Lisa Huang
- McKusick-Nathans Institute of Genetic Medicine, 733 North Broadway, Miller Research Building Room 469, Baltimore, MD 21205 USA
| | - Jane Welch
- McKusick-Nathans Institute of Genetic Medicine, 733 North Broadway, Miller Research Building Room 469, Baltimore, MD 21205 USA
| | - Veena P Gnanakkan
- McKusick-Nathans Institute of Genetic Medicine, 733 North Broadway, Miller Research Building Room 469, Baltimore, MD 21205 USA
| | - Toby C Cornish
- Department of Pathology, Johns Hopkins University School of Medicine, 733 North Broadway, Miller Research Building Room 469, Baltimore, MD 21205 USA
| | - Jef D Boeke
- McKusick-Nathans Institute of Genetic Medicine, 733 North Broadway, Miller Research Building Room 469, Baltimore, MD 21205 USA ; High Throughput (HiT) Biology Center, 733 North Broadway, Miller Research Building Room 469, Baltimore, MD 21205 USA ; Present address: Institute for Systems Genetics, NYU Langone University School of Medicine, New York, NY 10016 USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, 733 North Broadway, Miller Research Building Room 469, Baltimore, MD 21205 USA ; McKusick-Nathans Institute of Genetic Medicine, 733 North Broadway, Miller Research Building Room 469, Baltimore, MD 21205 USA ; High Throughput (HiT) Biology Center, 733 North Broadway, Miller Research Building Room 469, Baltimore, MD 21205 USA ; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 733 North Broadway, Miller Research Building Room 469, Baltimore, MD 21205 USA
| |
Collapse
|
159
|
Willis RE. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment. Int J Mol Sci 2016; 17:ijms17091552. [PMID: 27649156 PMCID: PMC5037825 DOI: 10.3390/ijms17091552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis.
Collapse
Affiliation(s)
- Rudolph E Willis
- OncoStem Biotherapeutics LLC, 423 W 127th St., New York, NY 10027, USA.
| |
Collapse
|
160
|
Erwin JA, Paquola ACM, Singer T, Gallina I, Novotny M, Quayle C, Bedrosian TA, Alves FIA, Butcher CR, Herdy JR, Sarkar A, Lasken RS, Muotri AR, Gage FH. L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci 2016; 19:1583-1591. [PMID: 27618310 DOI: 10.1038/nn.4388] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/09/2016] [Indexed: 02/08/2023]
Abstract
The healthy human brain is a mosaic of varied genomes. Long interspersed element-1 (LINE-1 or L1) retrotransposition is known to create mosaicism by inserting L1 sequences into new locations of somatic cell genomes. Using a machine learning-based, single-cell sequencing approach, we discovered that somatic L1-associated variants (SLAVs) are composed of two classes: L1 retrotransposition insertions and retrotransposition-independent L1-associated variants. We demonstrate that a subset of SLAVs comprises somatic deletions generated by L1 endonuclease cutting activity. Retrotransposition-independent rearrangements in inherited L1s resulted in the deletion of proximal genomic regions. These rearrangements were resolved by microhomology-mediated repair, which suggests that L1-associated genomic regions are hotspots for somatic copy number variants in the brain and therefore a heritable genetic contributor to somatic mosaicism. We demonstrate that SLAVs are present in crucial neural genes, such as DLG2 (also called PSD93), and affect 44-63% of cells of the cells in the healthy brain.
Collapse
Affiliation(s)
- Jennifer A Erwin
- The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Apuã C M Paquola
- The Salk Institute for Biological Studies, La Jolla, California, USA.,Department of Cellular &Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, California, USA
| | - Tatjana Singer
- The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Iryna Gallina
- The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Mark Novotny
- J. Craig Venter Institute, La Jolla, California, USA
| | - Carolina Quayle
- The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Tracy A Bedrosian
- The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Francisco I A Alves
- University of São Paulo, Departamento de Microbiologia, Instituto de Ciências Biomédicas, São Paulo, Brazil
| | | | - Joseph R Herdy
- The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Anindita Sarkar
- The Salk Institute for Biological Studies, La Jolla, California, USA
| | | | - Alysson R Muotri
- Department of Cellular &Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, California, USA.,Department of Pediatrics, Rady Children's Hospital, San Diego, California, USA
| | - Fred H Gage
- The Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
161
|
Abstract
Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 212051
| |
Collapse
|
162
|
Ha H, Loh JW, Xing J. Identification of polymorphic SVA retrotransposons using a mobile element scanning method for SVA (ME-Scan-SVA). Mob DNA 2016; 7:15. [PMID: 27478512 PMCID: PMC4967303 DOI: 10.1186/s13100-016-0072-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/21/2016] [Indexed: 12/28/2022] Open
Abstract
Background Mobile element insertions are a major source of human genomic variation. SVA (SINE-R/VNTR/Alu) is the youngest retrotransposon family in the human genome and a number of diseases are known to be caused by SVA insertions. However, inter-individual genomic variations generated by SVA insertions and their impacts have not been studied extensively due to the difficulty in identifying polymorphic SVA insertions. Results To systematically identify SVA insertions at the population level and assess their genomic impact, we developed a mobile element scanning (ME-Scan) protocol we called ME-Scan-SVA. Using a nested SVA-specific PCR enrichment method, ME-Scan-SVA selectively amplify the 5′ end of SVA elements and their flanking genomic regions. To demonstrate the utility of the protocol, we constructed and sequenced a ME-Scan-SVA library of 21 individuals and analyzed the data using a new analysis pipeline designed for the protocol. Overall, the method achieved high SVA-specificity and over >90 % of the sequenced reads are from SVA insertions. The method also had high sensitivity (>90 %) for fixed SVA insertions that contain the SVA-specific primer-binding sites in the reference genome. Using candidate locus selection criteria that are expected to have a 90 % sensitivity, we identified 151 and 29 novel polymorphic SVA candidates under relaxed and stringent cutoffs, respectively (average 12 and 2 per individual). For six polymorphic SVAs that we were able to validate by PCR, the average individual genotype accuracy is 92 %, demonstrating a high accuracy of the computational genotype calling pipeline. Conclusions The new approach allows identifying novel SVA insertions using high-throughput sequencing. It is cost-effective and can be applied in large-scale population study. It also can be applied for detecting potential active SVA elements, and somatic SVA retrotransposition events in different tissues or developmental stages. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0072-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongseok Ha
- Department of Genetics, The State University of New Jersey, Piscataway, 08854 NJ USA ; Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, 08854 NJ USA
| | - Jui Wan Loh
- Department of Genetics, The State University of New Jersey, Piscataway, 08854 NJ USA
| | - Jinchuan Xing
- Department of Genetics, The State University of New Jersey, Piscataway, 08854 NJ USA ; Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, 08854 NJ USA
| |
Collapse
|
163
|
Gaudi S, Guffanti G, Fallon J, Macciardi F. Epigenetic mechanisms and associated brain circuits in the regulation of positive emotions: A role for transposable elements. J Comp Neurol 2016; 524:2944-54. [PMID: 27224878 DOI: 10.1002/cne.24046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/21/2015] [Accepted: 05/23/2016] [Indexed: 01/12/2023]
Abstract
Epigenetic programming and reprogramming are at the heart of cellular differentiation and represent developmental and evolutionary mechanisms in both germline and somatic cell lines. Only about 2% of our genome is composed of protein-coding genes, while the remaining 98%, once considered "junk" DNA, codes for regulatory/epigenetic elements that control how genes are expressed in different tissues and across time from conception to death. While we already know that epigenetic mechanisms are at play in cancer development and in regulating metabolism (cellular and whole body), the role of epigenetics in the developing prenatal and postnatal brain, and in maintaining a proper brain activity throughout the various stages of life, in addition to having played a critical role in human evolution, is a relatively new domain of knowledge. Here we present the current state-of-the-art techniques and results of these studies within the domain of emotions, and then speculate on how genomic and epigenetic mechanisms can modify and potentially alter our emotional (limbic) brain and affect our social interactions. J. Comp. Neurol. 524:2944-2954, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Simona Gaudi
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Italian National Institute of Health, 00161, Rome, Italy
| | - Guia Guffanti
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, 02478, MA
| | - James Fallon
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, 92617, California
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, 92617, California.,Center for Autism Research and Treatment (CART), University of California Irvine, Irvine, 92617, California.,Center for Epigenetics and Metabolism, University of California Irvine, Irvine, 92617, California.,Department of Health Sciences, University of Milan, 20133, Milan, Italy
| |
Collapse
|
164
|
Ardeljan D, Taylor MS, Burns KH, Boeke JD, Espey MG, Woodhouse EC, Howcroft TK. Meeting Report: The Role of the Mobilome in Cancer. Cancer Res 2016; 76:4316-9. [PMID: 27527733 DOI: 10.1158/0008-5472.can-15-3421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/13/2016] [Indexed: 11/16/2022]
Abstract
Approximately half of the human genome consists of repetitive sequence attributed to the activities of mobile DNAs, including DNA transposons, RNA transposons, and endogenous retroviruses. Of these, only long interspersed elements (LINE-1 or L1) and sequences copied by LINE-1 remain mobile in our species today. Although cells restrict L1 activity by both transcriptional and posttranscriptional mechanisms, L1 derepression occurs in developmental and pathologic contexts, including many types of cancers. However, we have limited knowledge of the extent and consequences of L1 expression in premalignancies and cancer. Participants in this NIH strategic workshop considered key questions to enhance our understanding of mechanisms and roles the mobilome may play in cancer biology. Cancer Res; 76(15); 4316-9. ©2016 AACR.
Collapse
Affiliation(s)
- Daniel Ardeljan
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland. Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathleen H Burns
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jef D Boeke
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York
| | | | | | | |
Collapse
|
165
|
Doucet-O'Hare TT, Sharma R, Rodić N, Anders RA, Burns KH, Kazazian HH. Somatically Acquired LINE-1 Insertions in Normal Esophagus Undergo Clonal Expansion in Esophageal Squamous Cell Carcinoma. Hum Mutat 2016; 37:942-54. [PMID: 27319353 DOI: 10.1002/humu.23027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/01/2016] [Indexed: 12/16/2022]
Abstract
Squamous cell carcinoma of the esophagus (SCC) is the most common form of esophageal cancer in the world and is typically diagnosed at an advanced stage when successful treatment is challenging. Understanding the mutational profile of this cancer may identify new treatment strategies. Because somatic retrotransposition has been shown in tumors of the gastrointestinal system, we focused on LINE-1 (L1) mobilization as a source of genetic instability in this cancer. We hypothesized that retrotransposition is ongoing in SCC patients. The expression of L1 encoded proteins is necessary for retrotransposition to occur; therefore, we evaluated the expression of L1 open reading frame 1 protein (ORF1p). Using immunohistochemistry, we detected ORF1p expression in all four SCC cases evaluated. Using L1-seq, we identified and validated 74 somatic insertions in eight tumors of the nine evaluated. Of these, 12 insertions appeared to be somatic, not genetically inherited, and sub-clonal (i.e., present in less than one copy per genome equivalent) in the adjacent normal esophagus (NE), while clonal in the tumor. Our results indicate that L1 retrotransposition is active in SCC of the esophagus and that insertion events are present in histologically NE that expands clonally in the subsequent tumor.
Collapse
Affiliation(s)
- Tara T Doucet-O'Hare
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland.,National Institutes of Health: National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Reema Sharma
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nemanja Rodić
- Dermatology Department, Yale School of Medicine, New Haven, Connecticut
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen H Burns
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Haig H Kazazian
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
166
|
Göke J, Ng HH. CTRL+INSERT: retrotransposons and their contribution to regulation and innovation of the transcriptome. EMBO Rep 2016; 17:1131-44. [PMID: 27402545 DOI: 10.15252/embr.201642743] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022] Open
Abstract
The human genome contains millions of fragments from retrotransposons-highly repetitive DNA sequences that were once able to "copy and paste" themselves to other regions in the genome. However, the majority of retrotransposons have lost this capacity through acquisition of mutations or through endogenous silencing mechanisms. Without this imminent threat of transposition, retrotransposons have the potential to act as a major source of genomic innovation. Indeed, large numbers of retrotransposons have been found to be active in specific contexts: as gene regulatory elements and promoters for protein-coding genes or long noncoding RNAs, among others. In this review, we summarise recent findings about retrotransposons, with implications in gene expression regulation, the expansion of gene isoform diversity and the generation of long noncoding RNAs. We highlight key examples that demonstrate their role in cellular identity and their versatility as markers of cell states, and we discuss how their dysregulation may contribute to the formation of and possibly therapeutic response in human cancers.
Collapse
Affiliation(s)
- Jonathan Göke
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Huck Hui Ng
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore Department of Biochemistry, National University of Singapore, Singapore Department of Biological Sciences, National University of Singapore, Singapore School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
167
|
Ariumi Y. Guardian of the Human Genome: Host Defense Mechanisms against LINE-1 Retrotransposition. Front Chem 2016; 4:28. [PMID: 27446907 PMCID: PMC4924340 DOI: 10.3389/fchem.2016.00028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/14/2016] [Indexed: 11/13/2022] Open
Abstract
Long interspersed element type 1 (LINE-1, L1) is a mobile genetic element comprising about 17% of the human genome, encoding a newly identified ORF0 with unknown function, ORF1p with RNA-binding activity and ORF2p with endonuclease and reverse transcriptase activities required for L1 retrotransposition. L1 utilizes an endonuclease (EN) to insert L1 cDNA into target DNA, which induces DNA double-strand breaks (DSBs). The ataxia-telangiectasia mutated (ATM) is activated by DSBs and subsequently the ATM-signaling pathway plays a role in regulating L1 retrotransposition. In addition, the host DNA repair machinery such as non-homologous end-joining (NHEJ) repair pathway is also involved in L1 retrotransposition. On the other hand, L1 is an insertional mutagenic agent, which contributes to genetic change, genomic instability, and tumorigenesis. Indeed, high-throughput sequencing-based approaches identified numerous tumor-specific somatic L1 insertions in variety of cancers, such as colon cancer, breast cancer, and hepatocellular carcinoma (HCC). In fact, L1 retrotransposition seems to be a potential factor to reduce the tumor suppressive property in HCC. Furthermore, recent study demonstrated that a specific viral-human chimeric transcript, HBx-L1, contributes to hepatitis B virus (HBV)-associated HCC. In contrast, host cells have evolved several defense mechanisms protecting cells against retrotransposition including epigenetic regulation through DNA methylation and host defense factors, such as APOBEC3, MOV10, and SAMHD1, which restrict L1 mobility as a guardian of the human genome. In this review, I focus on somatic L1 insertions into the human genome in cancers and host defense mechanisms against deleterious L1 insertions.
Collapse
Affiliation(s)
- Yasuo Ariumi
- Ariumi Project Laboratory, Center for AIDS Research and International Research Center for Medical Sciences, Kumamoto University Kumamoto, Japan
| |
Collapse
|
168
|
Rangasamy D, Lenka N, Ohms S, Dahlstrom JE, Blackburn AC, Board PG. Activation of LINE-1 Retrotransposon Increases the Risk of Epithelial-Mesenchymal Transition and Metastasis in Epithelial Cancer. Curr Mol Med 2016; 15:588-97. [PMID: 26321759 PMCID: PMC5384359 DOI: 10.2174/1566524015666150831130827] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/31/2015] [Accepted: 08/27/2015] [Indexed: 12/12/2022]
Abstract
Epithelial cancers comprise 80-90% of human cancers. During the process of cancer progression, cells lose their epithelial characteristics and acquire stem-like mesenchymal features that are resistant to chemotherapy. This process, termed the epithelial-mesenchymal transition (EMT), plays a critical role in the development of metastases. Because of the unique migratory and invasive properties of cells undergoing the EMT, therapeutic control of the EMT offers great hope and new opportunities for treating cancer. In recent years, a plethora of genes and noncoding RNAs, including miRNAs, have been linked to the EMT and the acquisition of stem cell-like properties. Despite these advances, questions remain unanswered about the molecular processes underlying such a cellular transition. In this article, we discuss how expression of the normally repressed LINE-1 (or L1) retrotransposons activates the process of EMT and the development of metastases. L1 is rarely expressed in differentiated stem cells or adult somatic tissues. However, its expression is widespread in almost all epithelial cancers and in stem cells in their undifferentiated state, suggesting a link between L1 activity and the proliferative and metastatic behaviour of cancer cells. We present an overview of L1 activity in cancer cells including how genes involved in proliferation, invasive and metastasis are modulated by L1 expression. The role of L1 in the differential expression of the let-7 family of miRNAs (that regulate genes involved in the EMT and metastasis) is also discussed. We also summarize recent novel insights into the role of the L1-encoded reverse transcriptase enzyme in epithelial cell plasticity that suggest it might be a potential therapeutic target that could reverse the EMT and the metastasis-associated stem cell-like properties of cancer cells.
Collapse
Affiliation(s)
- D Rangasamy
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | | | |
Collapse
|
169
|
Guffanti G, Gaudi S, Klengel T, Fallon JH, Mangalam H, Madduri R, Rodriguez A, DeCrescenzo P, Glovienka E, Sobell J, Klengel C, Pato M, Ressler KJ, Pato C, Macciardi F. LINE1 insertions as a genomic risk factor for schizophrenia: Preliminary evidence from an affected family. Am J Med Genet B Neuropsychiatr Genet 2016; 171:534-45. [PMID: 26990047 DOI: 10.1002/ajmg.b.32437] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 02/11/2016] [Indexed: 02/02/2023]
Abstract
Recent studies show that human-specific LINE1s (L1HS) play a key role in the development of the central nervous system (CNS) and its disorders, and that their transpositions within the human genome are more common than previously thought. Many polymorphic L1HS, that is, present or absent across individuals, are not annotated in the current release of the genome and are customarily termed "non-reference L1s." We developed an analytical workflow to identify L1 polymorphic insertions with next-generation sequencing (NGS) using data from a family in which SZ segregates. Our workflow exploits two independent algorithms to detect non-reference L1 insertions, performs local de novo alignment of the regions harboring predicted L1 insertions and resolves the L1 subfamily designation from the de novo assembled sequence. We found 110 non-reference L1 polymorphic loci exhibiting Mendelian inheritance, the vast majority of which are already reported in dbRIP and/or euL1db, thus, confirming their status as non-reference L1 polymorphic insertions. Four previously undetected L1 polymorphic loci were confirmed by PCR amplification and direct sequencing of the insert. A large fraction of our non-reference L1s is located within the open reading frame of protein-coding genes that belong to pathways already implicated in the pathogenesis of schizophrenia. The finding of these polymorphic variants among SZ offsprings is intriguing and suggestive of putative pathogenic role. Our data show the utility of NGS to uncover L1 polymorphic insertions, a neglected type of genetic variants with the potential to influence the risk to develop schizophrenia like SNVs and CNVs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guia Guffanti
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Simona Gaudi
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Italian National Institute of Health, Rome, Italy
| | - Torsten Klengel
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - James H Fallon
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California
| | - Harry Mangalam
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California
| | - Ravi Madduri
- Division of Mathematics and Computer Science, Argonne National Laboratory, Lemont, Illinois.,Computation Institute, University of Chicago, Chicago, Illinois
| | - Alex Rodriguez
- Division of Mathematics and Computer Science, Argonne National Laboratory, Lemont, Illinois.,Computation Institute, University of Chicago, Chicago, Illinois
| | - Paula DeCrescenzo
- Department of Psychiatry, Columbia University Medical Center and New York State Psychiatric Institute, New York, New York
| | - Emily Glovienka
- Department of Psychiatry, Columbia University Medical Center and New York State Psychiatric Institute, New York, New York
| | - Janet Sobell
- SUNY Downstate, College of Medicine, Brooklyn, New York
| | - Claudia Klengel
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Michele Pato
- SUNY Downstate, College of Medicine, Brooklyn, New York
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Carlos Pato
- SUNY Downstate, College of Medicine, Brooklyn, New York
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California.,Center for Autism Research and Treatment (CART), University of California, Irvine, California.,Center for Epigenetics and Metabolism, University of California, Irvine, California
| |
Collapse
|
170
|
Levine AJ, Ting DT, Greenbaum BD. P53 and the defenses against genome instability caused by transposons and repetitive elements. Bioessays 2016; 38:508-13. [PMID: 27172878 PMCID: PMC5031199 DOI: 10.1002/bies.201600031] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recent publication by Wylie et al. is reviewed, demonstrating that the p53 protein regulates the movement of transposons. While this work presents genetic evidence for a piRNA‐mediated p53 interaction with transposons in Drosophila and zebrafish, it is herein placed in the context of a decade or so of additional work that demonstrated a role for p53 in regulating transposons and other repetitive elements. The line of thought in those studies began with the observation that transposons damage DNA and p53 regulates DNA damage. The presence of transposon movement can increase the rate of evolution in the germ line and alter genes involved in signal transduction pathways. Transposition can also play an important role in cancers where the p53 gene function is often mutated. This is particularly interesting as recent work has shown that de‐repression of repetitive elements in cancer has important consequences for the immune system and tumor microenvironment.
Collapse
Affiliation(s)
- Arnold J Levine
- Institute for Advanced Study, School of Natural Sciences, The Simons Center for Systems Biology, Princeton, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin D Greenbaum
- Department of Medicine, Hematology, and Medical Oncology, and Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
171
|
Honda T. Links between Human LINE-1 Retrotransposons and Hepatitis Virus-Related Hepatocellular Carcinoma. Front Chem 2016; 4:21. [PMID: 27242996 PMCID: PMC4863659 DOI: 10.3389/fchem.2016.00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/22/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 80% of liver cancers, the third most frequent cause of cancer mortality. The most prevalent risk factors for HCC are infections by hepatitis B or hepatitis C virus. Findings suggest that hepatitis virus-related HCC might be a cancer in which LINE-1 retrotransposon, often termed L1, activity plays a potential role. Firstly, hepatitis viruses can suppress host defense factors that also control L1 mobilization. Secondly, many recent studies also have indicated that hypomethylation of L1 affects the prognosis of HCC patients. Thirdly, endogenous L1 retrotransposition was demonstrated to activate oncogenic pathways in HCC. Fourthly, several L1 chimeric transcripts with host or viral genes are found in hepatitis virus-related HCC. Such lines of evidence suggest a linkage between L1 retrotransposons and hepatitis virus-related HCC. Here, I briefly summarize current understandings of the association between hepatitis virus-related HCC and L1. Then, I discuss potential mechanisms of how hepatitis viruses drive the development of HCC via L1 retrotransposons. An increased understanding of the contribution of L1 to hepatitis virus-related HCC may provide unique insights related to the development of novel therapeutics for this disease.
Collapse
Affiliation(s)
- Tomoyuki Honda
- Department of Viral Oncology, Institute for Virus Research, Kyoto UniversityKyoto, Japan; Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of MedicineSuita, Japan
| |
Collapse
|
172
|
Scott EC, Gardner EJ, Masood A, Chuang NT, Vertino PM, Devine SE. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res 2016; 26:745-55. [PMID: 27197217 PMCID: PMC4889970 DOI: 10.1101/gr.201814.115] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/19/2016] [Indexed: 01/16/2023]
Abstract
Although human LINE-1 (L1) elements are actively mobilized in many cancers, a role for somatic L1 retrotransposition in tumor initiation has not been conclusively demonstrated. Here, we identify a novel somatic L1 insertion in the APC tumor suppressor gene that provided us with a unique opportunity to determine whether such insertions can actually initiate colorectal cancer (CRC), and if so, how this might occur. Our data support a model whereby a hot L1 source element on Chromosome 17 of the patient's genome evaded somatic repression in normal colon tissues and thereby initiated CRC by mutating the APC gene. This insertion worked together with a point mutation in the second APC allele to initiate tumorigenesis through the classic two-hit CRC pathway. We also show that L1 source profiles vary considerably depending on the ancestry of an individual, and that population-specific hot L1 elements represent a novel form of cancer risk.
Collapse
Affiliation(s)
- Emma C Scott
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Eugene J Gardner
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Ashiq Masood
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Nelson T Chuang
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Division of Gastroenterology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Paula M Vertino
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| | - Scott E Devine
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
173
|
Reyes-Reyes EM, Ramos IN, Tavera-Garcia MA, Ramos KS. The aryl hydrocarbon receptor agonist benzo(a)pyrene reactivates LINE-1 in HepG2 cells through canonical TGF-β1 signaling: implications in hepatocellular carcinogenesis. Am J Cancer Res 2016; 6:1066-1077. [PMID: 27293999 PMCID: PMC4889720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 06/06/2023] Open
Abstract
Long interspersed nuclear element-1 (L1) is a genetic element that mobilizes throughout the mammalian genome via retrotransposition and damages host DNA via mutational insertions, chromosomal rearrangements, and reprogramming of gene expression. The cellular mechanisms responsible for aberrant L1 expression during cancer pathogenesis are unclear. Previously, we have shown that L1 reactivation in several human cell lines is dependent upon the activation of aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor member of the PAS superfamily of proteins. We also showed that ectopic expression of L1 reprograms the HepG2 genome leading to epithelial-to-mesenchymal transition (EMT). Here we present evidence that reactivation of L1 and modulation of EMT in HepG2 cells by the AhR ligand benzo(a)pyrene (BaP) is effected through the canonical TGF-β1 signaling pathway. BaP increased TGF-β1 mRNA, SMAD2 phosphorylation and decreased expression of E-Cadherin. The functional relevance of these interactions and the involvement of TGFBR1/ALK5 and SMAD2/3 were confirmed by siRNA interference. Furthermore, expression of L1-encoded ORF1p was positively correlated with the activation of TGF-β1 signaling in human hepatocarcinoma samples at various stages of malignant progression. These results indicate that ligand-mediated AhR activation regulates L1 via canonical TGF-β1 signaling and raise important questions about the molecular etiology of human hepatocarcinomas.
Collapse
Affiliation(s)
- Elsa M Reyes-Reyes
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine Tucson, Arizona 85721, USA
| | - Irma N Ramos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine Tucson, Arizona 85721, USA
| | - Marco A Tavera-Garcia
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine Tucson, Arizona 85721, USA
| | - Kenneth S Ramos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine Tucson, Arizona 85721, USA
| |
Collapse
|
174
|
Pedersen IM, Zisoulis DG. Transposable elements and miRNA: Regulation of genomic stability and plasticity. Mob Genet Elements 2016; 6:e1175537. [PMID: 27511122 DOI: 10.1080/2159256x.2016.1175537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/28/2016] [Accepted: 04/04/2016] [Indexed: 01/12/2023] Open
Abstract
Transposable elements, the class of mobile DNA sequences that change their copies or positions within the genome have an ever increasing role in shaping the genetic and evolutionary landscape. Approximately half of the mammalian genome is composed of repetitive elements, including LINE-1 (L1) elements. Because of their ability to "copy and paste" into other regions of the genome, their activation represent an opportunity as well as a threat, as L1-induced mutations results in genomic instability and plasticity. On one hand L1 retrotransposition and integration fosters genomic diversity and on the other, de-repressed L1 functions as a driver of diseases such as cancer. The regulation of L1 is an area of intense research and novel epigenetic mechanisms have recently been discovered to now include DNA methylation, histone modifications, and miR-induced L1 silencing. During development, reprogramming and in transformed cells, specific classes of repetitive elements are upregulated, presumably due to the loss of epigenetic regulation in this process, increasing the risk of L1-induced mutations. Here we discuss how miR regulation of L1 activation fits into the complex picture of L1 repression in somatic cells and touch on some of the possible implications.
Collapse
Affiliation(s)
- Irene Munk Pedersen
- Department of Molecular Biology and Biochemistry, Francisco J. Ayala School of Biological Sciences, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Dimitrios G Zisoulis
- Department of Molecular Biology and Biochemistry, Francisco J. Ayala School of Biological Sciences, University of California , Irvine, Irvine, CA, USA
| |
Collapse
|
175
|
Philippe C, Vargas-Landin DB, Doucet AJ, van Essen D, Vera-Otarola J, Kuciak M, Corbin A, Nigumann P, Cristofari G. Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci. eLife 2016; 5. [PMID: 27016617 PMCID: PMC4866827 DOI: 10.7554/elife.13926] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/25/2016] [Indexed: 12/26/2022] Open
Abstract
LINE-1 (L1) retrotransposons represent approximately one sixth of the human genome, but only the human-specific L1HS-Ta subfamily acts as an endogenous mutagen in modern humans, reshaping both somatic and germline genomes. Due to their high levels of sequence identity and the existence of many polymorphic insertions absent from the reference genome, the transcriptional activation of individual genomic L1HS-Ta copies remains poorly understood. Here we comprehensively mapped fixed and polymorphic L1HS-Ta copies in 12 commonly-used somatic cell lines, and identified transcriptional and epigenetic signatures allowing the unambiguous identification of active L1HS-Ta copies in their genomic context. Strikingly, only a very restricted subset of L1HS-Ta loci - some being polymorphic among individuals - significantly contributes to the bulk of L1 expression, and these loci are differentially regulated among distinct cell lines. Thus, our data support a local model of L1 transcriptional activation in somatic cells, governed by individual-, locus-, and cell-type-specific determinants. DOI:http://dx.doi.org/10.7554/eLife.13926.001 Retrotransposons, also known as jumping genes, have invaded the genomes of most living organisms. These fragments of DNA have the ability to move or copy themselves from one location of a chromosome to another. Depending on where they insert themselves, retrotransposons can modify the sequence of nearby genes, which can alter or even abolish their activity. Although these genetic modifications have contributed significantly to the evolution of different species, retrotransposons can also have detrimental effects; for example, by causing new cases of genetic diseases. Adult human cells have a number of mechanisms that work to keep the activity of retrotransposons at a very low level. However, in many types of cancers retrotransposons escape these defense mechanisms and ‘jump’ actively. This is thought to contribute to the development and spread of cancerous tumors. To understand how jumping genes are mobilized, a fundamental question must be answered: is the high jumping gene activity observed in some cell types a result of activating many copies of the retrotransposons, or only a few of them? This question has been difficult to address because there are more than one hundred copies of retrotransposons that could potentially move in humans, many of which have not even been referenced in the human genome map. Furthermore, each copy is almost identical to another one, making it difficult to discriminate between them. Philippe et al. have now developed an approach that can map where individual retrotransposons are located in the genome of normal and cancerous cells and measure how active these jumping genes are. This revealed that only a very restricted number of them are active in any given cell type. Moreover, different subsets of jumping genes are active in different cell types, and their locations in the genome often do not overlap. Thus, whether jumping genes are activated depends on the cell type and their position in the genome. These results are in contrast to the prevalent view that retrotransposons are activated in a more widespread manner across the genome, at least in cancerous cells. Overall, Philippe et al.’s findings pave the way towards characterizing the chromosome regions in which retrotransposons are frequently activated and understanding how they contribute to cancer and other diseases. DOI:http://dx.doi.org/10.7554/eLife.13926.002
Collapse
Affiliation(s)
- Claude Philippe
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,FHU OncoAge, University of Nice-Sophia Antipolis, Nice, France
| | - Dulce B Vargas-Landin
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,Ecole Normale Supérieure, Paris, France
| | - Aurélien J Doucet
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,FHU OncoAge, University of Nice-Sophia Antipolis, Nice, France
| | - Dominic van Essen
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France
| | - Jorge Vera-Otarola
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France
| | - Monika Kuciak
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| | | | - Pilvi Nigumann
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France
| | - Gaël Cristofari
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,FHU OncoAge, University of Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
176
|
Abstract
The recognition of functional roles for transcribed long non-coding RNA (lncRNA) has provided a new dimension to our understanding of cellular physiology and disease pathogenesis. LncRNAs are a large group of structurally complex RNA genes that can interact with DNA, RNA, or protein molecules to modulate gene expression and to exert cellular effects through diverse mechanisms. The emerging knowledge regarding their functional roles and their aberrant expression in disease states emphasizes the potential for lncRNA to serve as targets for therapeutic intervention. In this concise review, we outline the mechanisms of action of lncRNAs, their functional cellular roles, and their involvement in disease. Using liver cancer as an example, we provide an overview of the emerging opportunities and potential approaches to target lncRNA-dependent mechanisms for therapeutic purposes.
Collapse
|
177
|
Abstract
Transposable elements have had a profound impact on the structure and function of mammalian genomes. The retrotransposon Long INterspersed Element-1 (LINE-1 or L1), by virtue of its replicative mobilization mechanism, comprises ∼17% of the human genome. Although the vast majority of human LINE-1 sequences are inactive molecular fossils, an estimated 80-100 copies per individual retain the ability to mobilize by a process termed retrotransposition. Indeed, LINE-1 is the only active, autonomous retrotransposon in humans and its retrotransposition continues to generate both intra-individual and inter-individual genetic diversity. Here, we briefly review the types of transposable elements that reside in mammalian genomes. We will focus our discussion on LINE-1 retrotransposons and the non-autonomous Short INterspersed Elements (SINEs) that rely on the proteins encoded by LINE-1 for their mobilization. We review cases where LINE-1-mediated retrotransposition events have resulted in genetic disease and discuss how the characterization of these mutagenic insertions led to the identification of retrotransposition-competent LINE-1s in the human and mouse genomes. We then discuss how the integration of molecular genetic, biochemical, and modern genomic technologies have yielded insight into the mechanism of LINE-1 retrotransposition, the impact of LINE-1-mediated retrotransposition events on mammalian genomes, and the host cellular mechanisms that protect the genome from unabated LINE-1-mediated retrotransposition events. Throughout this review, we highlight unanswered questions in LINE-1 biology that provide exciting opportunities for future research. Clearly, much has been learned about LINE-1 and SINE biology since the publication of Mobile DNA II thirteen years ago. Future studies should continue to yield exciting discoveries about how these retrotransposons contribute to genetic diversity in mammalian genomes.
Collapse
|
178
|
Doi A, Iijima K, Kano S, Ishizaka Y. Viral protein R of HIV type-1 induces retrotransposition and upregulates glutamate synthesis by the signal transducer and activator of transcription 1 signaling pathway. Microbiol Immunol 2016; 59:398-409. [PMID: 25990091 DOI: 10.1111/1348-0421.12266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 02/05/2023]
Abstract
Viral protein R (Vpr) of HIV-1 plays an important role in viral replication in macrophages. Various lines of evidence suggest that expression of Vpr in macrophages causes immunopathogenesis; however, the underlying mechanism is not yet fully understood. In this study, it was shown that recombinant Vpr (rVpr) induces retrotransposition of long interspersed element-1 in RAW264.7, a macrophage-like cell line, and activates reverse transcriptase-dependent immunotoxic cascades including production of IFN-β and phosphorylation of signal transducer and activator of transcription 1 (STAT1). Knockout experiments based on the CRISPR/Cas9 nickase system further demonstrated that cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and stimulator of interferon gene (STING) are responsible for IFN-β production and STAT1 phosphorylation, respectively. Moreover, rVpr was found to increase production of glutaminase C, a regulator of glutamate synthesis, which is also dependent on the cGAS-STING pathway. Taken together with reports that glutaminase C is involved in the pathogenesis of HIV-associated neurocognitive disorder (HAND) and that Vpr is detectable in the cerebrospinal fluid of HIV-1-positive patients, a possible role of Vpr-induced L1-RTP and immunotoxic cascades in the development of HAND is discussed.
Collapse
Affiliation(s)
- Akihiro Doi
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, 305-0006.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083
| | - Kenta Iijima
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052
| | - Shigeyuki Kano
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, 305-0006.,Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052
| |
Collapse
|
179
|
Pizarro JG, Cristofari G. Post-Transcriptional Control of LINE-1 Retrotransposition by Cellular Host Factors in Somatic Cells. Front Cell Dev Biol 2016; 4:14. [PMID: 27014690 PMCID: PMC4782638 DOI: 10.3389/fcell.2016.00014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Abstract
Long INterspersed Element-1 (LINE-1 or L1) retrotransposons form the only autonomously active family of transposable elements in humans. They are expressed and mobile in the germline, in embryonic stem cells and in the early embryo, but are silenced in most somatic tissues. Consistently, they play an important role in individual genome variations through insertional mutagenesis and sequence transduction, which occasionally lead to novel genetic diseases. In addition, they are reactivated in nearly half of the human epithelial cancers, contributing to tumor genome dynamics. The L1 element codes for two proteins, ORF1p and ORF2p, which are essential for its mobility. ORF1p is an RNA-binding protein with nucleic acid chaperone activity and ORF2p possesses endonuclease and reverse transcriptase activities. These proteins and the L1 RNA assemble into a ribonucleoprotein particle (L1 RNP), considered as the core of the retrotransposition machinery. The L1 RNP mediates the synthesis of new L1 copies upon cleavage of the target DNA and reverse transcription of the L1 RNA at the target site. The L1 element takes benefit of cellular host factors to complete its life cycle, however several cellular pathways also limit the cellular accumulation of L1 RNPs and their deleterious activities. Here, we review the known cellular host factors and pathways that regulate positively or negatively L1 retrotransposition at post-transcriptional level, in particular by interacting with the L1 machinery or L1 replication intermediates; and how they contribute to control L1 activity in somatic cells.
Collapse
Affiliation(s)
- Javier G Pizarro
- Institute for Research on Cancer and Aging of Nice (IRCAN), Faculty of Medicine, CNRS UMR7284, INSERM U1081, University of Nice Sophia Antipolis Nice, France
| | - Gaël Cristofari
- Institute for Research on Cancer and Aging of Nice (IRCAN), Faculty of Medicine, CNRS UMR7284, INSERM U1081, University of Nice Sophia Antipolis Nice, France
| |
Collapse
|
180
|
Evrony GD, Lee E, Park PJ, Walsh CA. Resolving rates of mutation in the brain using single-neuron genomics. eLife 2016; 5. [PMID: 26901440 PMCID: PMC4805530 DOI: 10.7554/elife.12966] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/01/2016] [Indexed: 12/28/2022] Open
Abstract
Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and suggested that these events preferentially impact genes important for neuronal function. We identify aspects of the single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than reported, confirming that L1 elements mobilize in some human neurons but indicating that L1 mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a foundation and framework for designing single-cell genomics studies.
Collapse
Affiliation(s)
- Gilad D Evrony
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, United States.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurology, Harvard Medical School, Boston, United States.,Department of Pediatrics, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Eunjung Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, United States.,Division of Genetics, Brigham and Women's Hospital, Boston, United States
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, United States.,Division of Genetics, Brigham and Women's Hospital, Boston, United States
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, United States.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurology, Harvard Medical School, Boston, United States.,Department of Pediatrics, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
181
|
Lee JK, Choi YL, Kwon M, Park PJ. Mechanisms and Consequences of Cancer Genome Instability: Lessons from Genome Sequencing Studies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:283-312. [PMID: 26907526 DOI: 10.1146/annurev-pathol-012615-044446] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During tumor evolution, cancer cells can accumulate numerous genetic alterations, ranging from single nucleotide mutations to whole-chromosomal changes. Although a great deal of progress has been made in the past decades in characterizing genomic alterations, recent cancer genome sequencing studies have provided a wealth of information on the detailed molecular profiles of such alterations in various types of cancers. Here, we review our current understanding of the mechanisms and consequences of cancer genome instability, focusing on the findings uncovered through analysis of exome and whole-genome sequencing data. These analyses have shown that most cancers have evidence of genome instability, and the degree of instability is variable within and between cancer types. Importantly, we describe some recent evidence supporting the idea that chromosomal instability could be a major driving force in tumorigenesis and cancer evolution, actively shaping the genomes of cancer cells to maximize their survival advantage.
Collapse
Affiliation(s)
- June-Koo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea;
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul 06351, South Korea;
| | - Mijung Kwon
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115;
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
182
|
Sciamanna I, De Luca C, Spadafora C. The Reverse Transcriptase Encoded by LINE-1 Retrotransposons in the Genesis, Progression, and Therapy of Cancer. Front Chem 2016; 4:6. [PMID: 26904537 PMCID: PMC4749692 DOI: 10.3389/fchem.2016.00006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/26/2016] [Indexed: 12/24/2022] Open
Abstract
In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons represent a large family of repeated genomic elements. They transpose using a reverse transcriptase (RT), which they encode as part of the ORF2p product. RT inhibition in cancer cells, either via RNA interference-dependent silencing of active LINE-1 elements, or using RT inhibitory drugs, reduces cancer cell proliferation, promotes their differentiation and antagonizes tumor progression in animal models. Indeed, the non-nucleoside RT inhibitor efavirenz has recently been tested in a phase II clinical trial with metastatic prostate cancer patients. An in-depth analysis of ORF2p in a mouse model of breast cancer showed ORF2p to be precociously expressed in precancerous lesions and highly abundant in advanced cancer stages, while being barely detectable in normal breast tissue, providing a rationale for the finding that RT-expressing tumors are therapeutically sensitive to RT inhibitors. We summarize mechanistic and gene profiling studies indicating that abundant LINE-1-derived RT can “sequester” RNA substrates for reverse transcription in tumor cells, entailing the formation of RNA:DNA hybrid molecules and impairing the overall production of regulatory miRNAs, with a global impact on the cell transcriptome. Based on these data, LINE-1-ORF2 encoded RT has a tumor-promoting potential that is exerted at an epigenetic level. We propose a model whereby LINE1-RT drives a previously unrecognized global regulatory process, the deregulation of which drives cell transformation and tumorigenesis with possible implications for cancer cell heterogeneity.
Collapse
Affiliation(s)
| | | | - Corrado Spadafora
- Institute of Translational Pharmacology, National Resarch Council of Italy Rome, Italy
| |
Collapse
|
183
|
Nazaryan-Petersen L, Bertelsen B, Bak M, Jønson L, Tommerup N, Hancks DC, Tümer Z. Germline Chromothripsis Driven by L1-Mediated Retrotransposition and Alu/Alu Homologous Recombination. Hum Mutat 2016; 37:385-95. [PMID: 26929209 DOI: 10.1002/humu.22953] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/03/2016] [Indexed: 12/20/2022]
Abstract
Chromothripsis (CTH) is a phenomenon where multiple localized double-stranded DNA breaks result in complex genomic rearrangements. Although the DNA-repair mechanisms involved in CTH have been described, the mechanisms driving the localized "shattering" process remain unclear. High-throughput sequence analysis of a familial germline CTH revealed an inserted SVAE retrotransposon associated with a 110-kb deletion displaying hallmarks of L1-mediated retrotransposition. Our analysis suggests that the SVAE insertion did not occur prior to or after, but concurrent with the CTH event. We also observed L1-endonuclease potential target sites in other breakpoints. In addition, we found four Alu elements flanking the 110-kb deletion and associated with an inversion. We suggest that chromatin looping mediated by homologous Alu elements may have brought distal DNA regions into close proximity facilitating DNA cleavage by catalytically active L1-endonuclease. Our data provide the first evidence that active and inactive human retrotransposons can serve as endogenous mutagens driving CTH in the germline.
Collapse
Affiliation(s)
- Lusine Nazaryan-Petersen
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, 2600, Denmark.,Department of Cellular and Molecular Medicine (ICMM), Faculty of Health Science, University of Copenhagen, Copenhagen, N. 2200, Denmark
| | - Birgitte Bertelsen
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, 2600, Denmark
| | - Mads Bak
- Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, N. 2200, Denmark
| | - Lars Jønson
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, O. 2100, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, N. 2200, Denmark
| | - Dustin C Hancks
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, 84112
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, 2600, Denmark
| |
Collapse
|
184
|
Klawitter S, Fuchs NV, Upton KR, Muñoz-Lopez M, Shukla R, Wang J, Garcia-Cañadas M, Lopez-Ruiz C, Gerhardt DJ, Sebe A, Grabundzija I, Merkert S, Gerdes P, Pulgarin JA, Bock A, Held U, Witthuhn A, Haase A, Sarkadi B, Löwer J, Wolvetang EJ, Martin U, Ivics Z, Izsvák Z, Garcia-Perez JL, Faulkner GJ, Schumann GG. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat Commun 2016; 7:10286. [PMID: 26743714 PMCID: PMC4729875 DOI: 10.1038/ncomms10286] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/26/2015] [Indexed: 02/08/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs. Genetic and epigenetic abnormalities have been found to result from reprogramming of differentiated cells into human induced pluripotent stem cells (hiPSCs). Here, Klawitter et al. identify endogenous L1, Alu and SVA mobilization during reprogramming, highlighting the risk of insertional mutagens in hiPSCs.
Collapse
Affiliation(s)
- Sabine Klawitter
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, D-63225 Langen, Germany
| | - Nina V Fuchs
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, D-63225 Langen, Germany.,Max-Delbrück-Center for Molecular Medicine, D-13125 Berlin, Germany
| | - Kyle R Upton
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Martin Muñoz-Lopez
- Department of Human DNA Variability, Pfizer/University of Granada and Andalusian Regional Government Center for Genomics and Oncology (GENYO), PTS Granada, 18016 Granada, Spain
| | - Ruchi Shukla
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Jichang Wang
- Max-Delbrück-Center for Molecular Medicine, D-13125 Berlin, Germany
| | - Marta Garcia-Cañadas
- Department of Human DNA Variability, Pfizer/University of Granada and Andalusian Regional Government Center for Genomics and Oncology (GENYO), PTS Granada, 18016 Granada, Spain
| | - Cesar Lopez-Ruiz
- Department of Human DNA Variability, Pfizer/University of Granada and Andalusian Regional Government Center for Genomics and Oncology (GENYO), PTS Granada, 18016 Granada, Spain
| | - Daniel J Gerhardt
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Attila Sebe
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, D-63225 Langen, Germany
| | | | - Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery; REBIRTH, Cluster of Excellence, Hannover Medical School, D-30625 Hannover, Germany
| | - Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - J Andres Pulgarin
- Department of Human DNA Variability, Pfizer/University of Granada and Andalusian Regional Government Center for Genomics and Oncology (GENYO), PTS Granada, 18016 Granada, Spain
| | - Anja Bock
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, D-63225 Langen, Germany
| | - Ulrike Held
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, D-63225 Langen, Germany
| | - Anett Witthuhn
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery; REBIRTH, Cluster of Excellence, Hannover Medical School, D-30625 Hannover, Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery; REBIRTH, Cluster of Excellence, Hannover Medical School, D-30625 Hannover, Germany
| | - Balázs Sarkadi
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary
| | - Johannes Löwer
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, D-63225 Langen, Germany
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery; REBIRTH, Cluster of Excellence, Hannover Medical School, D-30625 Hannover, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, D-63225 Langen, Germany
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine, D-13125 Berlin, Germany
| | - Jose L Garcia-Perez
- Department of Human DNA Variability, Pfizer/University of Granada and Andalusian Regional Government Center for Genomics and Oncology (GENYO), PTS Granada, 18016 Granada, Spain
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, Brisbane, Queensland 4102, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, D-63225 Langen, Germany
| |
Collapse
|
185
|
Servant G, Deininger PL. Insertion of Retrotransposons at Chromosome Ends: Adaptive Response to Chromosome Maintenance. Front Genet 2016; 6:358. [PMID: 26779254 PMCID: PMC4700185 DOI: 10.3389/fgene.2015.00358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023] Open
Abstract
The telomerase complex is a specialized reverse transcriptase (RT) that inserts tandem DNA arrays at the linear chromosome ends and contributes to the protection of the genetic information in eukaryotic genomes. Telomerases are phylogenetically related to retrotransposons, encoding also the RT activity required for the amplification of their sequences throughout the genome. Intriguingly the telomerase gene is lost from the Drosophila genome and tandem retrotransposons replace telomeric sequences at the chromosome extremities. This observation suggests the versatility of RT activity in counteracting the chromosome shortening associated with genome replication and that retrotransposons can provide this activity in case of a dysfunctional telomerase. In this review paper, we describe the major classes of retroelements present in eukaryotic genomes in order to point out the differences and similarities with the telomerase complex. In a second part, we discuss the insertion of retroelements at the ends of chromosomes as an adaptive response for dysfunctional telomeres.
Collapse
Affiliation(s)
| | - Prescott L. Deininger
- Tulane Cancer Center, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LAUSA
| |
Collapse
|
186
|
Abstract
Mammalian genomes harbor autonomous retrotransposons coding for the proteins required for their own mobilization, and nonautonomous retrotransposons, such as the human SVA element, which are transcribed but do not have any coding capacity. Mobilization of nonautonomous retrotransposons depends on the recruitment of the protein machinery encoded by autonomous retrotransposons. Here, we summarize the experimental details of SVA trans-mobilization assays which address multiple questions regarding the biology of both nonautonomous SVA elements and autonomous LINE-1 (L1) retrotransposons. The assay evaluates if and to what extent a noncoding SVA element is mobilized in trans by the L1-encoded protein machinery, the structural organization of the resulting marked de novo insertions, if they mimic endogenous SVA insertions and what the roles of individual domains of the nonautonomous retrotransposon for SVA mobilization are. Furthermore, the highly sensitive trans-mobilization assay can be used to verify the presence of otherwise barely detectable endogenously expressed functional L1 proteins via their marked SVA trans-mobilizing activity.
Collapse
Affiliation(s)
- Anja Bock
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225, Langen, Germany
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225, Langen, Germany.
| |
Collapse
|
187
|
Kemp JR, Longworth MS. Crossing the LINE Toward Genomic Instability: LINE-1 Retrotransposition in Cancer. Front Chem 2015; 3:68. [PMID: 26734601 PMCID: PMC4679865 DOI: 10.3389/fchem.2015.00068] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/27/2015] [Indexed: 12/17/2022] Open
Abstract
Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises~17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.
Collapse
Affiliation(s)
- Jacqueline R Kemp
- Department of Cellular and Molecular Medicine, Lerner Research Institute of Cleveland Clinic Cleveland, OH, USA
| | - Michelle S Longworth
- Department of Cellular and Molecular Medicine, Lerner Research Institute of Cleveland Clinic Cleveland, OH, USA
| |
Collapse
|
188
|
Naufer MN, Callahan KE, Cook PR, Perez-Gonzalez CE, Williams MC, Furano AV. L1 retrotransposition requires rapid ORF1p oligomerization, a novel coiled coil-dependent property conserved despite extensive remodeling. Nucleic Acids Res 2015; 44:281-93. [PMID: 26673717 PMCID: PMC4705668 DOI: 10.1093/nar/gkv1342] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 12/16/2022] Open
Abstract
Detailed mechanistic understanding of L1 retrotransposition is sparse, particularly with respect to ORF1p, a coiled coil-mediated homotrimeric nucleic acid chaperone that can form tightly packed oligomers on nucleic acids. Although the coiled coil motif is highly conserved, it is uniquely susceptible to evolutionary change. Here we studied three ORF1 proteins: a modern human one (111p), its resuscitated primate ancestor (555p) and a mosaic modern protein (151p) wherein 9 of the 30 coiled coil substitutions retain their ancestral state. While 111p and 555p equally supported retrotransposition, 151p was inactive. Nonetheless, they were fully active in bulk assays of nucleic acid interactions including chaperone activity. However, single molecule assays showed that 151p trimers form stably bound oligomers on ssDNA at <1/10th the rate of the active proteins, revealing that oligomerization rate is a novel critical parameter of ORF1p activity in retrotransposition conserved for at least the last 25 Myr of primate evolution.
Collapse
Affiliation(s)
- M Nabuan Naufer
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Kathryn E Callahan
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pamela R Cook
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cesar E Perez-Gonzalez
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark C Williams
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Anthony V Furano
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
189
|
Furano AV, Cook PR. The challenge of ORF1p phosphorylation: Effects on L1 activity and its host. Mob Genet Elements 2015; 6:e1119927. [PMID: 27066302 DOI: 10.1080/2159256x.2015.1119927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 01/09/2023] Open
Abstract
L1 non-LTR retrotransposons are autonomously replicating genetic elements that profoundly affected their mammalian hosts having generated upwards of 40% or more of their genomes. Although deleterious, they remain active in most mammalian species, and thus the nature and consequences of the interaction between L1 and its host remain major issues for mammalian biology. We recently showed that L1 activity requires phosphorylation of one of its 2 encoded proteins, ORF1p, a nucleic acid chaperone and the major component of the L1RNP retrotransposition intermediate. Reversible protein phosphorylation, which is effected by interacting cascades of protein kinases, phosphatases, and ancillary proteins, is a mainstay in the regulation and coordination of many basic biological processes. Therefore, demonstrating phosphorylation-dependence of L1 activity substantially enlarged our knowledge of the scope of L1 / host interaction. However, developing a mechanistic understanding of what this means for L1 or its host is a formidable challenge, which we discuss here.
Collapse
Affiliation(s)
- Anthony V Furano
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health , Bethesda, MD, USA
| | - Pamela R Cook
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
190
|
Nzabarushimana E, Prior S, Miousse IR, Pathak R, Allen AR, Latendresse J, Olsen RHJ, Raber J, Hauer-Jensen M, Nelson GA, Koturbash I. Combined exposure to protons and (56)Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung. LIFE SCIENCES IN SPACE RESEARCH 2015; 7:1-8. [PMID: 26553631 PMCID: PMC4641818 DOI: 10.1016/j.lssr.2015.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/08/2015] [Accepted: 08/15/2015] [Indexed: 05/15/2023]
Abstract
Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions ((56)Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and (56)Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation. Exposure to (56)Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and (56)Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed.
Collapse
Affiliation(s)
- Etienne Nzabarushimana
- Department of Environmental Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Sara Prior
- Department of Environmental Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Isabelle R Miousse
- Department of Environmental Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Antiño R Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | | - Reid H J Olsen
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, 97239, USA
| | - Jacob Raber
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University Portland, OR, 97239, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Gregory A Nelson
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Igor Koturbash
- Department of Environmental Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
191
|
Dhivya S, Premkumar K. Nomadic genetic elements contribute to oncogenic translocations: Implications in carcinogenesis. Crit Rev Oncol Hematol 2015; 98:81-93. [PMID: 26548742 DOI: 10.1016/j.critrevonc.2015.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022] Open
Abstract
Chromosomal translocations as molecular signatures have been reported in various malignancies but, the mechanism behind which is largely unknown. Swapping of chromosomal fragments occurs by induction of double strand breaks (DSBs), most of which were initially assumed de novo. However, decoding of human genome proved that transposable elements (TE) might have profound influence on genome integrity. TEs are highly conserved mobile genetic elements that generate DSBs, subsequently resulting in large chromosomal rearrangements. Previously TE insertions were thought to be harmless, but recently gains attention due to the origin of spectrum of post-insertional genomic alterations and subsequent transcriptional alterations leading to development of deleterious effects mainly carcinogenesis. Though the existing knowledge on the cancer-associated TE dynamics is very primitive, exploration of underlying mechanism promises better therapeutic strategies for cancer. Thus, this review focuses on the prevalence of TE in the genome, associated genomic instability upon transposition activation and impact on tumorigenesis.
Collapse
Affiliation(s)
- Sridaran Dhivya
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Kumpati Premkumar
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
192
|
Thung DT, de Ligt J, Vissers LEM, Steehouwer M, Kroon M, de Vries P, Slagboom EP, Ye K, Veltman JA, Hehir-Kwa JY. Mobster: accurate detection of mobile element insertions in next generation sequencing data. Genome Biol 2015; 15:488. [PMID: 25348035 PMCID: PMC4228151 DOI: 10.1186/s13059-014-0488-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Indexed: 01/15/2023] Open
Abstract
Mobile elements are major drivers in changing genomic architecture and can cause disease. The detection of mobile elements is hindered due to the low mappability of their highly repetitive sequences. We have developed an algorithm, called Mobster, to detect non-reference mobile element insertions in next generation sequencing data from both whole genome and whole exome studies. Mobster uses discordant read pairs and clipped reads in combination with consensus sequences of known active mobile elements. Mobster has a low false discovery rate and high recall rate for both L1 and Alu elements. Mobster is available at http://sourceforge.net/projects/mobster.
Collapse
Affiliation(s)
- Djie Tjwan Thung
- Department of Human Genetics, RadboudUMC, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Wildschutte JH, Baron A, Diroff NM, Kidd JM. Discovery and characterization of Alu repeat sequences via precise local read assembly. Nucleic Acids Res 2015; 43:10292-307. [PMID: 26503250 PMCID: PMC4666360 DOI: 10.1093/nar/gkv1089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/08/2015] [Indexed: 12/03/2022] Open
Abstract
Alu insertions have contributed to >11% of the human genome and ∼30–35 Alu subfamilies remain actively mobile, yet the characterization of polymorphic Alu insertions from short-read data remains a challenge. We build on existing computational methods to combine Alu detection and de novo assembly of WGS data as a means to reconstruct the full sequence of insertion events from Illumina paired end reads. Comparison with published calls obtained using PacBio long-reads indicates a false discovery rate below 5%, at the cost of reduced sensitivity due to the colocation of reference and non-reference repeats. We generate a highly accurate call set of 1614 completely assembled Alu variants from 53 samples from the Human Genome Diversity Project (HGDP) panel. We utilize the reconstructed alternative insertion haplotypes to genotype 1010 fully assembled insertions, obtaining >99% agreement with genotypes obtained by PCR. In our assembled sequences, we find evidence of premature insertion mechanisms and observe 5′ truncation in 16% of AluYa5 and AluYb8 insertions. The sites of truncation coincide with stem-loop structures and SRP9/14 binding sites in the Alu RNA, implicating L1 ORF2p pausing in the generation of 5′ truncations. Additionally, we identified variable AluJ and AluS elements that likely arose due to non-retrotransposition mechanisms.
Collapse
Affiliation(s)
- Julia H Wildschutte
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alayna Baron
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicolette M Diroff
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
194
|
Sherrill-Mix S, Ocwieja KE, Bushman FD. Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats. Retrovirology 2015; 12:79. [PMID: 26377088 PMCID: PMC4574318 DOI: 10.1186/s12977-015-0205-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023] Open
Abstract
Background HIV infection has been reported to alter cellular gene activity, but published studies have commonly assayed transformed cell lines and lab-adapted HIV strains, yielding inconsistent results. Here we carried out a deep RNA-Seq analysis of primary human T cells infected with the low passage HIV isolate HIV89.6. Results Seventeen percent of cellular genes showed altered activity 48 h after infection. In a meta-analysis including four other studies, our data differed from studies of HIV infection in cell lines but showed more parallels with infections of primary cells. We found a global trend toward retention of introns after infection, suggestive of a novel cellular response to infection. HIV89.6 infection was also associated with activation of several human endogenous retroviruses (HERVs) and retrotransposons, of interest as possible novel antigens that could serve as vaccine targets. The most highly activated group of HERVs was a subset of the ERV-9. Analysis showed that activation was associated with a particular variant of ERV-9 long terminal repeats that contains an indel near the U3-R border. These data also allowed quantification of >70 splice forms of the HIV89.6 RNA and specified the main types of chimeric HIV89.6-host RNAs. Comparison to over 100,000 integration site sequences from the same infected cell populations allowed quantification of authentic versus artifactual chimeric reads, showing that 5′ read-in, splicing out of HIV89.6 from the D4 donor and 3′ read-through were the most common HIV89.6-host cell chimeric RNA forms. Conclusions Analysis of RNA abundance after infection of primary T cells with the low passage HIV89.6 isolate disclosed multiple novel features of HIV-host interactions, notably intron retention and induction of transcription of retrotransposons and endogenous retroviruses. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0205-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, 425 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | - Karen E Ocwieja
- Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, 425 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
195
|
The Fine LINE: Methylation Drawing the Cancer Landscape. BIOMED RESEARCH INTERNATIONAL 2015; 2015:131547. [PMID: 26448926 PMCID: PMC4584040 DOI: 10.1155/2015/131547] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/17/2014] [Accepted: 11/25/2014] [Indexed: 01/08/2023]
Abstract
LINE-1 (L1) is the most abundant mammalian transposable element that comprises nearly 20% of the genome, and nearly half of the mammalian genome has stemmed from L1-mediated mobilization. Expression and retrotransposition of L1 are suppressed by complex mechanisms, where the key role belongs to DNA methylation. Alterations in L1 methylation may lead to aberrant expression of L1 and have been described in numerous diseases. Accumulating evidence clearly indicates that loss of global DNA methylation observed in cancer development and progression is tightly associated with hypomethylation of L1 elements. Significant progress achieved in the last several years suggests that such parameters as L1 methylation status can be potentially utilized as clinical biomarkers for determination of the disease stage and in predicting the disease-free survival in cancer patients. In this paper, we summarize the current knowledge on L1 methylation, with specific emphasis given to success and challenges on the way of introduction of L1 into clinical practice.
Collapse
|
196
|
Griffiths BB, Hunter RG. Addendum to stress and the dynamic genome: Steroids, epigenetics, and the transposome. Commun Integr Biol 2015. [PMCID: PMC4802794 DOI: 10.1080/19420889.2015.1035847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Retrotransposons constitute a majority of mammalian DNA, but their role in the cell is still poorly understood. Long thought to be useless, new evidence links retrotransposon expression to a variety of negative consequences. Furthermore, through interactions with steroid hormone receptors, retrotransposons are proposed to play a role in the pathology of psychological stress.
Collapse
Affiliation(s)
- Brian B Griffiths
- University of Massachusetts Boston; Department of Psychology and Developmental Brain Sciences Program; Boston, MA USA
| | - Richard G Hunter
- University of Massachusetts Boston; Department of Psychology and Developmental Brain Sciences Program; Boston, MA USA
| |
Collapse
|
197
|
Rodić N, Steranka JP, Makohon-Moore A, Moyer A, Shen P, Sharma R, Kohutek ZA, Huang CR, Ahn D, Mita P, Taylor MS, Barker NJ, Hruban RH, Iacobuzio-Donahue CA, Boeke JD, Burns KH. Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma. Nat Med 2015; 21:1060-4. [PMID: 26259033 PMCID: PMC4775273 DOI: 10.1038/nm.3919] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/12/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Nemanja Rodić
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alvin Makohon-Moore
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Allison Moyer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peilin Shen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Reema Sharma
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zachary A Kohutek
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cheng Ran Huang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Ahn
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paolo Mita
- Department of Molecular Biology &Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,High Throughput (HiT) Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Martin S Taylor
- High Throughput (HiT) Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Norman J Barker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland, USA.,The Sol Goldman Center for Pancreatic Cancer Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland, USA.,The Sol Goldman Center for Pancreatic Cancer Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Jef D Boeke
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Molecular Biology &Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,High Throughput (HiT) Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland, USA.,Institute for Systems Genetics, New York University Langone School of Medicine, New York, New York, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,High Throughput (HiT) Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
198
|
Ewing AD, Gacita A, Wood LD, Ma F, Xing D, Kim MS, Manda SS, Abril G, Pereira G, Makohon-Moore A, Looijenga LHJ, Gillis AJM, Hruban RH, Anders RA, Romans KE, Pandey A, Iacobuzio-Donahue CA, Vogelstein B, Kinzler KW, Kazazian HH, Solyom S. Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution. Genome Res 2015; 25:1536-45. [PMID: 26260970 PMCID: PMC4579339 DOI: 10.1101/gr.196238.115] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/10/2015] [Indexed: 01/27/2023]
Abstract
Somatic L1 retrotransposition events have been shown to occur in epithelial cancers. Here, we attempted to determine how early somatic L1 insertions occurred during the development of gastrointestinal (GI) cancers. Using L1-targeted resequencing (L1-seq), we studied different stages of four colorectal cancers arising from colonic polyps, seven pancreatic carcinomas, as well as seven gastric cancers. Surprisingly, we found somatic L1 insertions not only in all cancer types and metastases but also in colonic adenomas, well-known cancer precursors. Some insertions were also present in low quantities in normal GI tissues, occasionally caught in the act of being clonally fixed in the adjacent tumors. Insertions in adenomas and cancers numbered in the hundreds, and many were present in multiple tumor sections, implying clonal distribution. Our results demonstrate that extensive somatic insertional mutagenesis occurs very early during the development of GI tumors, probably before dysplastic growth.
Collapse
Affiliation(s)
- Adam D Ewing
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Anthony Gacita
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | - Florence Ma
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Dongmei Xing
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | - Min-Sik Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Srikanth S Manda
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Gabriela Abril
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Gavin Pereira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Alvin Makohon-Moore
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Ad J M Gillis
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | - Robert A Anders
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | - Katharine E Romans
- The Johns Hopkins University School of Medicine Cancer Biology, Baltimore, Maryland 21205, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | - Bert Vogelstein
- The Ludwig Center and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland 21287, USA
| | - Kenneth W Kinzler
- The Ludwig Center and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland 21287, USA
| | - Haig H Kazazian
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Szilvia Solyom
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
199
|
Pendleton M, Sebra R, Pang AWC, Ummat A, Franzen O, Rausch T, Stütz AM, Stedman W, Anantharaman T, Hastie A, Dai H, Fritz MHY, Cao H, Cohain A, Deikus G, Durrett RE, Blanchard SC, Altman R, Chin CS, Guo Y, Paxinos EE, Korbel JO, Darnell RB, McCombie WR, Kwok PY, Mason CE, Schadt EE, Bashir A. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat Methods 2015; 12:780-6. [PMID: 26121404 PMCID: PMC4646949 DOI: 10.1038/nmeth.3454] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/28/2015] [Indexed: 12/30/2022]
Abstract
We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality.
Collapse
Affiliation(s)
- Matthew Pendleton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Ajay Ummat
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Oscar Franzen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tobias Rausch
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Adrian M Stütz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | - Alex Hastie
- BioNano Genomics, San Diego, California, USA
| | - Heng Dai
- BioNano Genomics, San Diego, California, USA
| | | | - Han Cao
- BioNano Genomics, San Diego, California, USA
| | - Ariella Cohain
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Russell E Durrett
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - Roger Altman
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | | | - Yan Guo
- Pacific Biosciences, Menlo Park, California, USA
| | | | - Jan O Korbel
- 1] Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. [2] European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK
| | - Robert B Darnell
- 1] Laboratory of Neuro-Oncology, The Rockefeller University, New York, New York, USA. [2] Howard Hughes Medical Institute, New York, New York, USA
| | - W Richard McCombie
- 1] The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA. [2] The Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California-San Francisco, San Francisco, California, USA
| | - Christopher E Mason
- 1] The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA. [2] Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medical College, New York, New York, USA. [3] The Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ali Bashir
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
200
|
Paterson AL, Weaver JMJ, Eldridge MD, Tavaré S, Fitzgerald RC, Edwards PAW. Mobile element insertions are frequent in oesophageal adenocarcinomas and can mislead paired-end sequencing analysis. BMC Genomics 2015; 16:473. [PMID: 26159513 PMCID: PMC4498532 DOI: 10.1186/s12864-015-1685-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/05/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mobile elements are active in the human genome, both in the germline and cancers, where they can mutate driver genes. RESULTS While analysing whole genome paired-end sequencing of oesophageal adenocarcinomas to find genomic rearrangements, we identified three ways in which new mobile element insertions appear in the data, resembling translocation or insertion junctions: inserts where unique sequence has been transduced by an L1 (Long interspersed element 1) mobile element; novel inserts that are confidently, but often incorrectly, mapped by alignment software to L1s or polyA tracts in the reference sequence; and a combination of these two ways, where different sequences within one insert are mapped to different loci. We identified nine unique sequences that were transduced by neighbouring L1s, both L1s in the reference genome and L1s not present in the reference. Many of the resulting inserts were small fragments that include little or no recognisable mobile element sequence. We found 6 loci in the reference genome to which sequence reads from inserts were frequently mapped, probably erroneously, by alignment software: these were either L1 sequence or particularly long polyA runs. Inserts identified from such apparent rearrangement junctions averaged 16 inserts/tumour, range 0-153 insertions in 43 tumours. However, many inserts would not be detected by mapping the sequences to the reference genome, because they do not include sufficient mappable sequence. To estimate total somatic inserts we searched for polyA sequences that were not present in the matched normal or other normals from the same tumour batch, and were not associated with known polymorphisms. Samples of these candidate inserts were verified by sequencing across them or manual inspection of surrounding reads: at least 85 % were somatic and resembled L1-mediated events, most including L1Hs sequence. Approximately 100 such inserts were detected per tumour on average (range zero to approximately 700). CONCLUSIONS Somatic mobile elements insertions are abundant in these tumours, with over 75 % of cases having a number of novel inserts detected. The inserts create a variety of problems for the interpretation of paired-end sequencing data.
Collapse
Affiliation(s)
- Anna L Paterson
- Department of Pathology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK.
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK.
- Department of Pathology, Addenbrookes Hospital, Cambridge, UK.
| | - Jamie M J Weaver
- Department of Pathology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK.
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK.
| | - Matthew D Eldridge
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Simon Tavaré
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK.
| | - Paul A W Edwards
- Department of Pathology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK.
| |
Collapse
|