151
|
Wanjare M, Huang NF. Regulation of the microenvironment for cardiac tissue engineering. Regen Med 2017; 12:187-201. [PMID: 28244821 DOI: 10.2217/rme-2016-0132] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The microenvironment of myocardium plays an important role in the fate and function of cardiomyocytes (CMs). Cardiovascular tissue engineering strategies commonly utilize stem cell sources in conjunction with microenvironmental cues that often include biochemical, electrical, spatial and biomechanical factors. Microenvironmental stimulation of CMs, in addition to the incorporation of intercellular interactions from non-CMs, results in the generation of engineered cardiac constructs. Current studies suggest that use of these factors when engineering cardiac constructs improve cardiac function when implanted in vivo. In this review, we summarize the approaches to modulate biochemical, electrical, biomechanical and spatial factors to induce CM differentiation and their subsequent organization for cardiac tissue engineering application.
Collapse
Affiliation(s)
- Maureen Wanjare
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Ngan F Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
152
|
Mora C, Serzanti M, Consiglio A, Memo M, Dell'Era P. Clinical potentials of human pluripotent stem cells. Cell Biol Toxicol 2017; 33:351-360. [PMID: 28176010 DOI: 10.1007/s10565-017-9384-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022]
Abstract
Aging, injuries, and diseases can be considered as the result of malfunctioning or damaged cells. Regenerative medicine aims to restore tissue homeostasis by repairing or replacing cells, tissues, or damaged organs, by linking and combining different disciplines including engineering, technology, biology, and medicine. To pursue these goals, the discipline is taking advantage of pluripotent stem cells (PSCs), a peculiar type of cell possessing the ability to differentiate into every cell type of the body. Human PSCs can be isolated from the blastocysts and maintained in culture indefinitely, giving rise to the so-called embryonic stem cells (ESCs). However, since 2006, it is possible to restore in an adult cell a pluripotent ESC-like condition by forcing the expression of four transcription factors with the rejuvenating reprogramming technology invented by Yamanaka. Then the two types of PSC can be differentiated, using standardized protocols, towards the cell type necessary for the regeneration. Although the use of these derivatives for therapeutic transplantation is still in the preliminary phase of safety and efficacy studies, a lot of efforts are presently taking place to discover the biological mechanisms underlying genetic pathologies, by differentiating induced PSCs derived from patients, and new therapies by challenging PSC-derived cells in drug screening.
Collapse
Affiliation(s)
- Cristina Mora
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Marialaura Serzanti
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Antonella Consiglio
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Maurizio Memo
- Pharmacology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Patrizia Dell'Era
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy.
| |
Collapse
|
153
|
Abstract
PURPOSE OF REVIEW The article provides an overview of advances in the induced pluripotent stem cell field to model cardiomyopathies of inherited inborn errors of metabolism and acquired metabolic syndromes in vitro. RECENT FINDINGS Several inborn errors of metabolism have been studied using 'disease in a dish' models, including Pompe disease, Danon disease, Fabry disease, and Barth syndrome. Disease phenotypes of complex metabolic syndromes, such as diabetes mellitus and aldehyde dehydrogenase 2 deficiency, have also been observed. SUMMARY Differentiation of patient and disease-specific induced pluripotent stem cell-derived cardiomyocytes has provided the capacity to model deleterious cardiometabolic diseases to understand molecular mechanisms, perform drug screens, and identify novel drug targets.
Collapse
|
154
|
|
155
|
Kriegel AJ, Gartz M, Afzal MZ, de Lange WJ, Ralphe JC, Strande JL. Molecular Approaches in HFpEF: MicroRNAs and iPSC-Derived Cardiomyocytes. J Cardiovasc Transl Res 2016; 10:295-304. [PMID: 28032312 DOI: 10.1007/s12265-016-9723-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/15/2016] [Indexed: 01/04/2023]
Abstract
Heart failure with preserved left ventricular ejection fraction (HFpEF) has emerged as one of the largest unmet needs in cardiovascular medicine. HFpEF is increasing in prevalence and causes significant morbidity, mortality, and health care resource utilization. Patients have multiple co-morbidities which contribute to the disease complexity. To date, no effective treatment for HFpEF has been identified. The paucity of cardiac biopsies from this patient population and the absence of well-accepted animal models limit our understanding of the underlying molecular mechanisms of HFpEF. In this review, we discuss combining state-of-the-art technologies of microRNA profiling and human induced pluripotent cell-derived cardiomyocytes (iPSC-CMs) in order to uncover novel molecular pathways that may contribute to the development of HFpEF. Here, we focus the advantages and limitations of microRNA profiling and iPSC-CMs as a disease model system to discover molecular mechanisms in HFpEF.
Collapse
Affiliation(s)
- Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melanie Gartz
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Muhammad Z Afzal
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Willem J de Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jennifer L Strande
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
156
|
Pesl M, Pribyl J, Caluori G, Cmiel V, Acimovic I, Jelinkova S, Dvorak P, Starek Z, Skladal P, Rotrekl V. Phenotypic assays for analyses of pluripotent stem cell-derived cardiomyocytes. J Mol Recognit 2016; 30. [PMID: 27995655 DOI: 10.1002/jmr.2602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 12/27/2022]
Abstract
Stem cell-derived cardiomyocytes (CMs) hold great hopes for myocardium regeneration because of their ability to produce functional cardiac cells in large quantities. They also hold promise in dissecting the molecular principles involved in heart diseases and also in drug development, owing to their ability to model the diseases using patient-specific human pluripotent stem cell (hPSC)-derived CMs. The CM properties essential for the desired applications are frequently evaluated through morphologic and genotypic screenings. Even though these characterizations are necessary, they cannot in principle guarantee the CM functionality and their drug response. The CM functional characteristics can be quantified by phenotype assays, including electrophysiological, optical, and/or mechanical approaches implemented in the past decades, especially when used to investigate responses of the CMs to known stimuli (eg, adrenergic stimulation). Such methods can be used to indirectly determine the electrochemomechanics of the cardiac excitation-contraction coupling, which determines important functional properties of the hPSC-derived CMs, such as their differentiation efficacy, their maturation level, and their functionality. In this work, we aim to systematically review the techniques and methodologies implemented in the phenotype characterization of hPSC-derived CMs. Further, we introduce a novel approach combining atomic force microscopy, fluorescent microscopy, and external electrophysiology through microelectrode arrays. We demonstrate that this novel method can be used to gain unique information on the complex excitation-contraction coupling dynamics of the hPSC-derived CMs.
Collapse
Affiliation(s)
- Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Pribyl
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Guido Caluori
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Vratislav Cmiel
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Ivana Acimovic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Zdenek Starek
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Skladal
- CEITEC, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
157
|
Atmanli A, Domian IJ. Recreating the Cardiac Microenvironment in Pluripotent Stem Cell Models of Human Physiology and Disease. Trends Cell Biol 2016; 27:352-364. [PMID: 28007424 DOI: 10.1016/j.tcb.2016.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/18/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022]
Abstract
The advent of human pluripotent stem cell (hPSC) biology has opened unprecedented opportunities for the use of tissue engineering to generate human cardiac tissue for in vitro study. Engineering cardiac constructs that recapitulate human development and disease requires faithful recreation of the cardiac niche in vitro. Here we discuss recent progress in translating the in vivo cardiac microenvironment into PSC models of the human heart. We review three key physiologic features required to recreate the cardiac niche and facilitate normal cardiac differentiation and maturation: the biochemical, biophysical, and bioelectrical signaling cues. Finally, we discuss key barriers that must be overcome to fulfill the promise of stem cell biology in preclinical applications and ultimately in clinical practice.
Collapse
Affiliation(s)
- Ayhan Atmanli
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Ibrahim John Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
158
|
Pasqualini FS, Nesmith AP, Horton RE, Sheehy SP, Parker KK. Mechanotransduction and Metabolism in Cardiomyocyte Microdomains. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4081638. [PMID: 28044126 PMCID: PMC5164897 DOI: 10.1155/2016/4081638] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/11/2023]
Abstract
Efficient contractions of the left ventricle are ensured by the continuous transfer of adenosine triphosphate (ATP) from energy production sites, the mitochondria, to energy utilization sites, such as ionic pumps and the force-generating sarcomeres. To minimize the impact of intracellular ATP trafficking, sarcomeres and mitochondria are closely packed together and in proximity with other ultrastructures involved in excitation-contraction coupling, such as t-tubules and sarcoplasmic reticulum junctions. This complex microdomain has been referred to as the intracellular energetic unit. Here, we review the literature in support of the notion that cardiac homeostasis and disease are emergent properties of the hierarchical organization of these units. Specifically, we will focus on pathological alterations of this microdomain that result in cardiac diseases through energy imbalance and posttranslational modifications of the cytoskeletal proteins involved in mechanosensing and transduction.
Collapse
Affiliation(s)
- Francesco S. Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Institute for Regenerative Medicine (IREM), Wyss Translational Center, University and ETH Zurich, Zurich, Switzerland
| | - Alexander P. Nesmith
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Renita E. Horton
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- James Worth Bagley College of Engineering and College of Agriculture and Life Sciences, Mississippi State University, Starkville, MS, USA
| | - Sean P. Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
159
|
White MC, Pang L, Yang X. MicroRNA-mediated maturation of human pluripotent stem cell-derived cardiomyocytes: Towards a better model for cardiotoxicity? Food Chem Toxicol 2016; 98:17-24. [PMID: 27265266 DOI: 10.1016/j.fct.2016.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 01/20/2023]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) are a promising human cardiac model system for drug development and toxicity screening, along with cell therapy and mechanistic research. The scalable differentiation of human PSCs into CMs provides a renewable cell source that overcomes species differences present in rodent primary CMs. In addition, induced pluripotent stem cell (iPSC) technology allows for development of patient-specific CMs, representing a valuable tool that may lead to better prediction, prevention, and treatment of cardiovascular diseases in this new era of precision medicine. However, the utility of PSC-CMs as an in vitro model is currently limited by their immature phenotype when compared to adult CMs. Recent work has identified microRNAs (miRNAs) as critical regulators of heart development and function. These studies have shown that miRNAs are essential to key processes that span the life cycle of a cardiomyocyte, including proliferation, hypertrophy, beating rhythm, and apoptosis. Importantly, emerging evidence strongly suggests that modulation of select miRNAs can enhance the maturation of PSC-CMs. Here, we review key miRNAs associated with heart development and function, and discuss strategies to promote PSC-CM maturation, focusing on current knowledge surrounding miRNA-based approaches and the application of PSC-CMs with respect to drug screening and disease models. Ultimately, it is likely that combinations of both miRNA and non-miRNA maturation strategies may collectively provide the best path forward for producing mature cardiomyocytes in vitro.
Collapse
Affiliation(s)
- Matthew C White
- Division of Systems Biology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR 72079, USA
| | - Li Pang
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR 72079, USA
| | - Xi Yang
- Division of Systems Biology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR 72079, USA.
| |
Collapse
|
160
|
Zhang Q, Chen W, Tan S, Lin T. Stem Cells for Modeling and Therapy of Parkinson's Disease. Hum Gene Ther 2016; 28:85-98. [PMID: 27762639 DOI: 10.1089/hum.2016.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disease after Alzheimer's disease, which is characterized by a low level of dopamine being expressing in the striatum and a deterioration of dopaminergic neurons (DAn) in the substantia nigra pars compacta. Generation of PD-derived DAn, including differentiation of human embryonic stem cells, human neural stem cells, human-induced pluripotent stem cells, and direct reprogramming, provides an ideal tool to model PD, creating the possibility of mimicking key essential pathological processes and charactering single-cell changes in vitro. Furthermore, thanks to the understanding of molecular neuropathogenesis of PD and new advances in stem-cell technology, it is anticipated that optimal functionally transplanted DAn with targeted correction and transgene-free insertion will be generated for use in cell transplantation. This review elucidates stem-cell technology for modeling PD and offering desired safe cell resources for cell transplantation therapy.
Collapse
Affiliation(s)
- Qingxi Zhang
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Wanling Chen
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Sheng Tan
- 2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Tongxiang Lin
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,3 Stem Cell Research Center, Fujian Agriculture and Forestry University , Fuzhou, China
| |
Collapse
|
161
|
Lee J, Jung SM, Ebert AD, Wu H, Diecke S, Kim Y, Yi H, Park SH, Ju JH. Generation of Functional Cardiomyocytes from the Synoviocytes of Patients with Rheumatoid Arthritis via Induced Pluripotent Stem Cells. Sci Rep 2016; 6:32669. [PMID: 27609119 PMCID: PMC5016736 DOI: 10.1038/srep32669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/12/2016] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular disease is a leading cause of morbidity in rheumatoid arthritis (RA) patients. This study aimed to generate and characterise cardiomyocytes from induced pluripotent stem cells (iPSCs) of RA patients. Fibroblast-like synoviocytes (FLSs) from patients with RA and osteoarthritis (OA) were successfully reprogrammed into RA-iPSCs and OA-iPSCs, respectively. The pluripotency of iPSCs was confirmed by quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining. Established iPSCs were differentiated into cardiomyocytes using a small molecule-based monolayer differentiation protocol. Within 12 days of cardiac differentiation from patient-specific and control-iPSCs, spontaneously beating cardiomyocytes (iPSC-CMs) were observed. All iPSC-CMs exhibited a reliable sarcomeric structure stained with antibodies against cardiac markers and similar expression profiles of cardiac-specific genes. Intracellular calcium signalling was recorded to compare calcium-handling properties among cardiomyocytes differentiated from the three groups of iPSCs. RA-iPSC-CMs had a lower amplitude and a shorter duration of calcium transients than the control groups. Peak tangential stress and the maximum contractile rate were also decreased in RA-iPSC-CMs, suggesting that contractility was reduced. This study demonstrates the successful generation of functional cardiomyocytes from pathogenic synovial cells in RA patients through iPSC reprogramming. Research using RA-iPSC-CMs might provide an opportunity to investigate the pathophysiology of cardiac involvement in RA.
Collapse
Affiliation(s)
- Jaecheol Lee
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Antje D Ebert
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Cardiology and Pneumonology, Göttingen University Medical Center, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Haodi Wu
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian Diecke
- Max Delbrück Center, Berlin, Germany Berlin Institute of Health, Berlin, Germany
| | - Youngkyun Kim
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hyoju Yi
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
162
|
Magdy T, Burmeister BT, Burridge PW. Validating the pharmacogenomics of chemotherapy-induced cardiotoxicity: What is missing? Pharmacol Ther 2016; 168:113-125. [PMID: 27609196 DOI: 10.1016/j.pharmthera.2016.09.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cardiotoxicity of certain chemotherapeutic agents is now well-established, and has led to the development of the field of cardio-oncology, increased cardiac screening of cancer patients, and limitation of patients' maximum cumulative chemotherapeutic dose. The effect of chemotherapeutic regimes on the heart largely involves cardiomyocyte death, leading to cardiomyopathy and heart failure, or the induction of arrhythmias. Of these cardiotoxic drugs, those resulting in clinical cardiotoxicity can range from 8 to 26% for doxorubicin, 7-28% for trastuzumab, or 5-30% for paclitaxel. For tyrosine kinase inhibitors, QT prolongation and arrhythmia, ischemia and hypertension have been reported in 2-35% of patients. Furthermore, newly introduced chemotherapeutic agents are commonly used as part of changed combinational regimens with significantly increased incidence of cardiotoxicity. It is widely believed that the mechanism of action of these drugs is often independent of their cardiotoxicity, and the basis for why these drugs specifically affect the heart has yet to be established. The genetic rationale for why certain patients experience cardiotoxicity whilst other patients can tolerate high chemotherapy doses has proven highly illusive. This has led to significant genomic efforts using targeted and genome-wide association studies (GWAS) to divine the pharmacogenomic cause of this predilection. With the advent of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), the putative risk and protective role of single nucleotide polymorphisms (SNPs) can now be validated in a human model. Here we review the state of the art knowledge of the genetic predilection to chemotherapy-induced cardiotoxicity and discuss the future for establishing and validating the role of the genome in this disease.
Collapse
Affiliation(s)
- Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Brian T Burmeister
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, USA.
| |
Collapse
|
163
|
Comprehensive in vitro Proarrhythmia Assay (C i PA): Pending issues for successful validation and implementation. J Pharmacol Toxicol Methods 2016; 81:21-36. [DOI: 10.1016/j.vascn.2016.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 12/29/2022]
|
164
|
Kahraman S, Okawa ER, Kulkarni RN. Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes? Curr Diab Rep 2016; 16:70. [PMID: 27313072 PMCID: PMC5877461 DOI: 10.1007/s11892-016-0764-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes is a progressive disease affecting millions of people worldwide. There are several medications and treatment options to improve the life quality of people with diabetes. One of the strategies for the treatment of diabetes could be the use of human pluripotent stem cells or induced pluripotent stem cells. The recent advances in differentiation of stem cells into insulin-secreting beta-like cells in vitro make the transplantation of the stem cell-derived beta-like cells an attractive approach for treatment of type 1 and type 2 diabetes. While stem cell-derived beta-like cells provide an unlimited cell source for beta cell replacement therapies, these cells can also be used as a platform for drug screening or modeling diseases.
Collapse
Affiliation(s)
- Sevim Kahraman
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Erin R Okawa
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Boston, MA, 02215, USA
| | - Rohit N Kulkarni
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA.
- Harvard Stem Cell Institute, Boston, MA, 02215, USA.
| |
Collapse
|
165
|
Bellin M, Mummery CL. Inherited heart disease - what can we expect from the second decade of human iPS cell research? FEBS Lett 2016; 590:2482-93. [PMID: 27391414 PMCID: PMC5113704 DOI: 10.1002/1873-3468.12285] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022]
Abstract
Induced pluripotent stem cells (iPSCs) were first generated 10 years ago. Their ability to differentiate into any somatic cell type of the body including cardiomyocytes has already made them a valuable resource for modelling cardiac disease and drug screening. Initially human iPSCs were used mostly to model known disease phenotypes; more recently, and despite a number of recognised shortcomings, they have proven valuable in providing fundamental insights into the mechanisms of inherited heart disease with unknown genetic cause using surprisingly small cohorts. In this review, we summarise the progress made with human iPSCs as cardiac disease models with special focus on the latest mechanistic insights and related challenges. Furthermore, we suggest emerging solutions that will likely move the field forward.
Collapse
Affiliation(s)
- Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands.,Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands
| |
Collapse
|
166
|
Matsa E, Ahrens JH, Wu JC. Human Induced Pluripotent Stem Cells as a Platform for Personalized and Precision Cardiovascular Medicine. Physiol Rev 2016; 96:1093-126. [PMID: 27335446 PMCID: PMC6345246 DOI: 10.1152/physrev.00036.2015] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized the field of human disease modeling, with an enormous potential to serve as paradigm shifting platforms for preclinical trials, personalized clinical diagnosis, and drug treatment. In this review, we describe how hiPSCs could transition cardiac healthcare away from simple disease diagnosis to prediction and prevention, bridging the gap between basic and clinical research to bring the best science to every patient.
Collapse
Affiliation(s)
- Elena Matsa
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - John H Ahrens
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
167
|
Sabapathy V, Kumar S. hiPSC-derived iMSCs: NextGen MSCs as an advanced therapeutically active cell resource for regenerative medicine. J Cell Mol Med 2016; 20:1571-88. [PMID: 27097531 PMCID: PMC4956943 DOI: 10.1111/jcmm.12839] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/14/2016] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are being assessed for ameliorating the severity of graft‐versus‐host disease, autoimmune conditions, musculoskeletal injuries and cardiovascular diseases. While most of these clinical therapeutic applications require substantial cell quantities, the number of MSCs that can be obtained initially from a single donor remains limited. The utility of MSCs derived from human‐induced pluripotent stem cells (hiPSCs) has been shown in recent pre‐clinical studies. Since adult MSCs have limited capability regarding proliferation, the quantum of bioactive factor secretion and immunomodulation ability may be constrained. Hence, the alternate source of MSCs is being considered to replace the commonly used adult tissue‐derived MSCs. The MSCs have been obtained from various adult and foetal tissues. The hiPSC‐derived MSCs (iMSCs) are transpiring as an attractive source of MSCs because during reprogramming process, cells undergo rejuvination, exhibiting better cellular vitality such as survival, proliferation and differentiations potentials. The autologous iMSCs could be considered as an inexhaustible source of MSCs that could be used to meet the unmet clinical needs. Human‐induced PSC‐derived MSCs are reported to be superior when compared to the adult MSCs regarding cell proliferation, immunomodulation, cytokines profiles, microenvironment modulating exosomes and bioactive paracrine factors secretion. Strategies such as derivation and propagation of iMSCs in chemically defined culture conditions and use of footprint‐free safer reprogramming strategies have contributed towards the development of clinically relevant cell types. In this review, the role of iPSC‐derived mesenchymal stromal cells (iMSCs) as an alternate source of therapeutically active MSCs has been described. Additionally, we also describe the role of iMSCs in regenerative medical applications, the necessary strategies, and the regulatory policies that have to be enforced to render iMSC's effectiveness in translational medicine.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Center for Stem Cell Research, A Unit of inStem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sanjay Kumar
- Center for Stem Cell Research, A Unit of inStem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
168
|
Fraietta I, Gasparri F. The development of high-content screening (HCS) technology and its importance to drug discovery. Expert Opin Drug Discov 2016; 11:501-14. [PMID: 26971542 DOI: 10.1517/17460441.2016.1165203] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION High-content screening (HCS) was introduced about twenty years ago as a promising analytical approach to facilitate some critical aspects of drug discovery. Its application has spread progressively within the pharmaceutical industry and academia to the point that it today represents a fundamental tool in supporting drug discovery and development. AREAS COVERED Here, the authors review some of significant progress in the HCS field in terms of biological models and assay readouts. They highlight the importance of high-content screening in drug discovery, as testified by its numerous applications in a variety of therapeutic areas: oncology, infective diseases, cardiovascular and neurodegenerative diseases. They also dissect the role of HCS technology in different phases of the drug discovery pipeline: target identification, primary compound screening, secondary assays, mechanism of action studies and in vitro toxicology. EXPERT OPINION Recent advances in cellular assay technologies, such as the introduction of three-dimensional (3D) cultures, induced pluripotent stem cells (iPSCs) and genome editing technologies (e.g., CRISPR/Cas9), have tremendously expanded the potential of high-content assays to contribute to the drug discovery process. Increasingly predictive cellular models and readouts, together with the development of more sophisticated and affordable HCS readers, will further consolidate the role of HCS technology in drug discovery.
Collapse
Affiliation(s)
- Ivan Fraietta
- a Department of Biology , Nerviano Medical Sciences S.r.l ., Nerviano , Milano , Italy
| | - Fabio Gasparri
- a Department of Biology , Nerviano Medical Sciences S.r.l ., Nerviano , Milano , Italy
| |
Collapse
|
169
|
Chen IY, Matsa E, Wu JC. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat Rev Cardiol 2016; 13:333-49. [PMID: 27009425 DOI: 10.1038/nrcardio.2016.36] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of human induced pluripotent stem cell (hiPSC) technology has revitalized the efforts in the past decade to realize more fully the potential of human embryonic stem cells for scientific research. Adding to the possibility of generating an unlimited amount of any cell type of interest, hiPSC technology now enables the derivation of cells with patient-specific phenotypes. Given the introduction and implementation of the large-scale Precision Medicine Initiative, hiPSC technology will undoubtedly have a vital role in the advancement of cardiovascular research and medicine. In this Review, we summarize the progress that has been made in the field of hiPSC technology, with particular emphasis on cardiovascular disease modelling and drug development. The growing roles of hiPSC technology in the practice of precision medicine will also be discussed.
Collapse
Affiliation(s)
- Ian Y Chen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Elena Matsa
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joseph C Wu
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
170
|
Abstract
Insulin resistance, type 2 diabetes mellitus and associated hyperinsulinaemia can promote the development of a specific form of cardiomyopathy that is independent of coronary artery disease and hypertension. Termed diabetic cardiomyopathy, this form of cardiomyopathy is a major cause of morbidity and mortality in developed nations, and the prevalence of this condition is rising in parallel with increases in the incidence of obesity and type 2 diabetes mellitus. Of note, female patients seem to be particularly susceptible to the development of this complication of metabolic disease. The diabetic cardiomyopathy observed in insulin- resistant or hyperinsulinaemic states is characterized by impaired myocardial insulin signalling, mitochondrial dysfunction, endoplasmic reticulum stress, impaired calcium homeostasis, abnormal coronary microcirculation, activation of the sympathetic nervous system, activation of the renin-angiotensin-aldosterone system and maladaptive immune responses. These pathophysiological changes result in oxidative stress, fibrosis, hypertrophy, cardiac diastolic dysfunction and eventually systolic heart failure. This Review highlights a surge in diabetic cardiomyopathy research, summarizes current understanding of the molecular mechanisms underpinning this condition and explores potential preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Guanghong Jia
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, D109 Diabetes Center HSC, One Hospital Drive, Columbia, Missouri, 65212, USA
| | - Vincent G DeMarco
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, D109 Diabetes Center HSC, One Hospital Drive, Columbia, Missouri, 65212, USA
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, D109 Diabetes Center HSC, One Hospital Drive, Columbia, Missouri, 65212, USA
| |
Collapse
|
171
|
Ellen Kreipke R, Wang Y, Miklas JW, Mathieu J, Ruohola-Baker H. Metabolic remodeling in early development and cardiomyocyte maturation. Semin Cell Dev Biol 2016; 52:84-92. [PMID: 26912118 DOI: 10.1016/j.semcdb.2016.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
Aberrations in metabolism contribute to a large number of diseases, such as diabetes, obesity, cancer, and cardiovascular diseases, that have a substantial impact on the mortality rates and quality of life worldwide. However, the mechanisms leading to these changes in metabolic state--and whether they are conserved between diseases--is not well understood. Changes in metabolism similar to those seen in pathological conditions are observed during normal development in a number of different cell types. This provides hope that understanding the mechanism of these metabolic switches in normal development may provide useful insight in correcting them in pathological cases. Here, we focus on the metabolic remodeling observed both in early stage embryonic stem cells and during the maturation of cardiomyocytes.
Collapse
Affiliation(s)
- Rebecca Ellen Kreipke
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jason Wayne Miklas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Julie Mathieu
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
172
|
Zou Q, Wu M, Zhong L, Fan Z, Zhang B, Chen Q, Ma F. Development of a Xeno-Free Feeder-Layer System from Human Umbilical Cord Mesenchymal Stem Cells for Prolonged Expansion of Human Induced Pluripotent Stem Cells in Culture. PLoS One 2016; 11:e0149023. [PMID: 26882313 PMCID: PMC4755601 DOI: 10.1371/journal.pone.0149023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells.
Collapse
Affiliation(s)
- Qing Zou
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
- Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Mingjun Wu
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
| | - Liwu Zhong
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
| | - Zhaoxin Fan
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
| | - Bo Zhang
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
| | - Qiang Chen
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
- Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
- * E-mail: (FM); (QC)
| | - Feng Ma
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
- Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail: (FM); (QC)
| |
Collapse
|
173
|
Neves LS, Rodrigues MT, Reis RL, Gomes ME. Current approaches and future perspectives on strategies for the development of personalized tissue engineering therapies. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1140004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
174
|
Liensinine- and Neferine-Induced Cardiotoxicity in Primary Neonatal Rat Cardiomyocytes and Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2016; 17:ijms17020186. [PMID: 26840304 PMCID: PMC4783920 DOI: 10.3390/ijms17020186] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022] Open
Abstract
Due to drug-induced potential congestive heart failure and irreversible dilated cardiomyopathies, preclinical evaluation of cardiac dysfunction is important to assess the safety of traditional or novel treatments. The embryos of Nelumbo nucifera Gaertner seeds are a homology of traditional Chinese medicine and food. In this study, we applied the real time cellular analysis (RTCA) Cardio system, which can real-time monitor the contractility of cardiomyocytes (CMs), to evaluate drug safety in rat neonatal CMs and human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). This study showed detailed biomechanical CM contractility in vitro, and provided insights into the cardiac dysfunctions associated with liensinine and neferine treatment. These effects exhibited dose and time-dependent recovery. Neferine showed stronger blocking effect in rat neonatal CMs than liensinine. In addition, the effects of liensinine and neferine were further evaluated on hiPS-CMs. Our study also indicated that both liensinine and neferine can cause disruption of calcium homeostasis. For the first time, we demonstrated the potential cardiac side effects of liensinine or neferine. While the same inhibition was observed on hiPS-CMs, more importantly, this study introduced an efficient and effective approach to evaluate the cardiotoxicity of the existing and novel drug candidates.
Collapse
|
175
|
Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G. G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling. Front Cell Dev Biol 2015; 3:76. [PMID: 26697426 PMCID: PMC4673467 DOI: 10.3389/fcell.2015.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies.
Collapse
Affiliation(s)
- Nazanin F Dolatshad
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Nicola Hellen
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Richard J Jabbour
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Sian E Harding
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Gabor Földes
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK ; The Heart and Vascular Center of Semmelweis University, Semmelweis University Budapest, Hungary
| |
Collapse
|
176
|
Birket MJ, Ribeiro MC, Kosmidis G, Ward D, Leitoguinho AR, van de Pol V, Dambrot C, Devalla HD, Davis RP, Mastroberardino PG, Atsma DE, Passier R, Mummery CL. Contractile Defect Caused by Mutation in MYBPC3 Revealed under Conditions Optimized for Human PSC-Cardiomyocyte Function. Cell Rep 2015; 13:733-745. [PMID: 26489474 PMCID: PMC4644234 DOI: 10.1016/j.celrep.2015.09.025] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/31/2015] [Accepted: 09/05/2015] [Indexed: 12/23/2022] Open
Abstract
Maximizing baseline function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is essential for their effective application in models of cardiac toxicity and disease. Here, we aimed to identify factors that would promote an adequate level of function to permit robust single-cell contractility measurements in a human induced pluripotent stem cell (hiPSC) model of hypertrophic cardiomyopathy (HCM). A simple screen revealed the collaborative effects of thyroid hormone, IGF-1 and the glucocorticoid analog dexamethasone on the electrophysiology, bioenergetics, and contractile force generation of hPSC-CMs. In this optimized condition, hiPSC-CMs with mutations in MYBPC3, a gene encoding myosin-binding protein C, which, when mutated, causes HCM, showed significantly lower contractile force generation than controls. This was recapitulated by direct knockdown of MYBPC3 in control hPSC-CMs, supporting a mechanism of haploinsufficiency. Modeling this disease in vitro using human cells is an important step toward identifying therapeutic interventions for HCM.
Collapse
Affiliation(s)
- Matthew J Birket
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Marcelo C Ribeiro
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Georgios Kosmidis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Dorien Ward
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Ana Rita Leitoguinho
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Vera van de Pol
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Cheryl Dambrot
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Department of Cardiology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Harsha D Devalla
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | | | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
177
|
Liu Y, Deng W. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology. Brain Res 2015; 1638:30-41. [PMID: 26423934 DOI: 10.1016/j.brainres.2015.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/20/2015] [Accepted: 09/08/2015] [Indexed: 12/13/2022]
Abstract
With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control and to complement the iPSC-based approach for ALS disease modeling studies. Much knowledge has been generated from the study of both ALS iPSCs and ESCs. As these methods have advantages and disadvantages that should be balanced on experimental design in order for them to complement one another, combining the diverse methods would help build an expanded knowledge of ALS pathophysiology. The goals are to reverse engineer the human disease using ESCs and iPSCs, generate lineage reporter lines and in vitro disease models, target disease related genes, in order to better understand the molecular and cellular mechanisms of differentiation regulation along neural (neuronal versus glial) lineages, to unravel the pathogenesis of the neurodegenerative disease, and to provide appropriate cell sources for replacement therapy. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurosurgery, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA.
| |
Collapse
|
178
|
Kimbrel EA, Lanza R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov 2015; 14:681-92. [PMID: 26391880 DOI: 10.1038/nrd4738] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pluripotent stem cells (PSCs) hold great promise for drug discovery and regenerative medicine owing to their ability to differentiate into any cell type in the body. After more than three decades of research, including delays due to the potential tumorigenicity of PSCs and inefficiencies in differentiation methods, the field is at a turning point, with a number of clinical trials across the globe now testing PSC-derived products in humans. Ocular diseases dominate these first-in-man trials, and Phase l/ll results are showing promising safety data as well as possible efficacy. In addition, the advent of induced PSC (iPSC) technology is enabling the development of a wide range of cell-based disease models from genetically predisposed patients, thereby facilitating drug discovery. In this Review, we discuss the recent progress and remaining challenges for the use of PSCs in regenerative medicine and drug development.
Collapse
Affiliation(s)
- Erin A Kimbrel
- Ocata Therapeutics, 33 Locke Drive, Marlborough, Massachusetts 01752, USA
| | - Robert Lanza
- Ocata Therapeutics, 33 Locke Drive, Marlborough, Massachusetts 01752, USA
| |
Collapse
|
179
|
Tang S, Xie M, Cao N, Ding S. Patient-Specific Induced Pluripotent Stem Cells for Disease Modeling and Phenotypic Drug Discovery. J Med Chem 2015; 59:2-15. [PMID: 26322868 DOI: 10.1021/acs.jmedchem.5b00789] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In vitro cell models are invaluable tools for studying diseases and discovering drugs. Human induced pluripotent stem cells, particularly derived from patients, are an advantageous resource for generating ample supplies of cells to create unique platforms that model disease. This manuscript will review recent developments in modeling a variety of diseases (including their cellular phenotypes) with induced pluripotent stem cells derived from patients. It will also describe how researchers have exploited these models to validate drugs as potential therapeutics for these devastating diseases.
Collapse
Affiliation(s)
- Shibing Tang
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| | - Min Xie
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| | - Nan Cao
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| | - Sheng Ding
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| |
Collapse
|
180
|
Deng W, Cao X, Chen J, Zhang Z, Yu Q, Wang Y, Shao G, Zhou J, Gao X, Yu J, Xu X. MicroRNA Replacing Oncogenic Klf4 and c-Myc for Generating iPS Cells via Cationized Pleurotus eryngii Polysaccharide-based Nanotransfection. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18957-18966. [PMID: 26269400 DOI: 10.1021/acsami.5b06768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Induced pluripotent stem cells (iPSCs), resulting from the forced expression of cocktails out of transcription factors, such as Oct4, Sox2, Klf4, and c-Myc (OSKM), has shown tremendous potential in regenerative medicine. Although rapid progress has been made recently in the generation of iPSCs, the safety and efficiency remain key issues for further application. In this work, microRNA 302-367 was employed to substitute the oncogenic Klf4 and c-Myc in the OSKM combination as a safer strategy for successful iPSCs generation. The negatively charged plasmid mixture (encoding Oct4, Sox2, miR302-367) and the positively charged cationized Pleurotus eryngii polysaccharide (CPEPS) self-assembled into nanosized particles, named as CPEPS-OS-miR nanoparticles, which were applied to human umbilical cord mesenchymal stem cells for iPSCs generation after characterization of the physicochemical properties. The CPEPS-OS-miR nanoparticles possessed spherical shape, ultrasmall particle size, and positive surface charge. Importantly, the combination of plasmids Oct4, Sox2, and miR302-367 could not only minimize genetic modification but also show a more than 50 times higher reprogramming efficiency (0.044%) than any other single or possible double combinations of these factors (Oct4, Sox2, miR302-367). Altogether, the current study offers a simple, safe, and effective self-assembly approach for generating clinically applicable iPSCs.
Collapse
Affiliation(s)
- Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Jingjing Chen
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Zhijian Zhang
- Center for Drug/Gene Delivery and Tissue Engineering, and School of Medical Science and Laboratory Medicine, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Qingtong Yu
- School of Life Science & Technology, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Yan Wang
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Genbao Shao
- Center for Drug/Gene Delivery and Tissue Engineering, and School of Medical Science and Laboratory Medicine, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Jie Zhou
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Xiangdong Gao
- School of Life Science & Technology, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| |
Collapse
|
181
|
Karakikes I, Ameen M, Termglinchan V, Wu JC. Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res 2015; 117:80-8. [PMID: 26089365 DOI: 10.1161/circresaha.117.305365] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Disease models are essential for understanding cardiovascular disease pathogenesis and developing new therapeutics. The human induced pluripotent stem cell (iPSC) technology has generated significant enthusiasm for its potential application in basic and translational cardiac research. Patient-specific iPSC-derived cardiomyocytes offer an attractive experimental platform to model cardiovascular diseases, study the earliest stages of human development, accelerate predictive drug toxicology tests, and advance potential regenerative therapies. Harnessing the power of iPSC-derived cardiomyocytes could eliminate confounding species-specific and interpersonal variations and ultimately pave the way for the development of personalized medicine for cardiovascular diseases. However, the predictive power of iPSC-derived cardiomyocytes as a valuable model is contingent on comprehensive and rigorous molecular and functional characterization.
Collapse
Affiliation(s)
- Ioannis Karakikes
- From the Stanford Cardiovascular Institute (I.K., M.A., V.T., J.C.W.), Department of Medicine, Division of Cardiovascular Medicine (I.K., V.T., J.C.W.), and Institute of Stem Cell Biology and Regenerative Medicine (J.C.W.), Stanford University School of Medicine, CA.
| | - Mohamed Ameen
- From the Stanford Cardiovascular Institute (I.K., M.A., V.T., J.C.W.), Department of Medicine, Division of Cardiovascular Medicine (I.K., V.T., J.C.W.), and Institute of Stem Cell Biology and Regenerative Medicine (J.C.W.), Stanford University School of Medicine, CA
| | - Vittavat Termglinchan
- From the Stanford Cardiovascular Institute (I.K., M.A., V.T., J.C.W.), Department of Medicine, Division of Cardiovascular Medicine (I.K., V.T., J.C.W.), and Institute of Stem Cell Biology and Regenerative Medicine (J.C.W.), Stanford University School of Medicine, CA
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (I.K., M.A., V.T., J.C.W.), Department of Medicine, Division of Cardiovascular Medicine (I.K., V.T., J.C.W.), and Institute of Stem Cell Biology and Regenerative Medicine (J.C.W.), Stanford University School of Medicine, CA.
| |
Collapse
|
182
|
Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells. Int J Mol Sci 2015; 16:18894-922. [PMID: 26274955 PMCID: PMC4581278 DOI: 10.3390/ijms160818894] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) has opened up a new scientific frontier in medicine. This technology has made it possible to obtain pluripotent stem cells from individuals with genetic disorders. Because iPSCs carry the identical genetic anomalies related to those disorders, iPSCs are an ideal platform for medical research. The pathophysiological cellular phenotypes of genetically heritable heart diseases such as arrhythmias and cardiomyopathies, have been modeled on cell culture dishes using disease-specific iPSC-derived cardiomyocytes. These model systems can potentially provide new insights into disease mechanisms and drug discoveries. This review focuses on recent progress in cardiovascular disease modeling using iPSCs, and discusses problems and future perspectives concerning their use.
Collapse
|
183
|
Kim JJ. Applications of iPSCs in Cancer Research. Biomark Insights 2015; 10:125-31. [PMID: 26279620 PMCID: PMC4521640 DOI: 10.4137/bmi.s20065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) derived from reprogrammed somatic cells are emerging as one of the most versatile tools in biomedical research and pharmacological studies. Oncogenic transformation and somatic cell reprogramming are multistep processes that share some common features, and iPSCs generated from cancerous cells can help us better understand the molecular mechanisms underlying the initiation and progression of human cancers and overcome them. Aside from the mechanistic modeling of human tumorigenesis, immediate applications of this technology in cancer research include high-throughput drug screening, toxicological testing, early biomarker identification, and bioengineering of replacement tissues. Here, we review the current advances in generating iPSCs from cancer cell lines and patient-derived primary cancer tissues, and discuss their potential applications.
Collapse
Affiliation(s)
- Jean J Kim
- Department of Molecular and Cellular Biology, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
184
|
Quintana MT, He J, Sullivan J, Grevengoed T, Schisler J, Han Y, Hill JA, Yates CC, Stansfield WE, Mapanga RF, Essop MF, Muehlbauer MJ, Newgard CB, Bain JR, Willis MS. Muscle ring finger-3 protects against diabetic cardiomyopathy induced by a high fat diet. BMC Endocr Disord 2015; 15:36. [PMID: 26215257 PMCID: PMC4515942 DOI: 10.1186/s12902-015-0028-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The pathogenesis of diabetic cardiomyopathy (DCM) involves the enhanced activation of peroxisome proliferator activating receptor (PPAR) transcription factors, including the most prominent isoform in the heart, PPARα. In cancer cells and adipocytes, post-translational modification of PPARs have been identified, including ligand-dependent degradation of PPARs by specific ubiquitin ligases. However, the regulation of PPARs in cardiomyocytes and heart have not previously been identified. We recently identified that muscle ring finger-1 (MuRF1) and MuRF2 differentially inhibit PPAR activities by mono-ubiquitination, leading to the hypothesis that MuRF3 may regulate PPAR activity in vivo to regulate DCM. METHODS MuRF3-/- mice were challenged with 26 weeks 60% high fat diet to induce insulin resistance and DCM. Conscious echocardiography, blood glucose, tissue triglyceride, glycogen levels, immunoblot analysis of intracellular signaling, heart and skeletal muscle morphometrics, and PPARα, PPARβ, and PPARγ1 activities were assayed. RESULTS MuRF3-/- mice exhibited a premature systolic heart failure by 6 weeks high fat diet (vs. 12 weeks in MuRF3+/+). MuRF3-/- mice weighed significantly less than sibling-matched wildtype mice after 26 weeks HFD. These differences may be largely due to resistance to fat accumulation, as MRI analysis revealed MuRF3-/- mice had significantly less fat mass, but not lean body mass. In vitro ubiquitination assays identified MuRF3 mono-ubiquitinated PPARα and PPARγ1, but not PPARβ. CONCLUSIONS These findings suggest that MuRF3 helps stabilize cardiac PPARα and PPARγ1 in vivo to support resistance to the development of DCM. MuRF3 also plays an unexpected role in regulating fat storage despite being found only in striated muscle.
Collapse
Affiliation(s)
- Megan T Quintana
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA.
| | - Jun He
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.
| | - Jenyth Sullivan
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.
| | - Trisha Grevengoed
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.
| | - Jonathan Schisler
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA.
| | - Yipin Han
- North Carolina State University, Department of Engineering, Raleigh, NC, USA.
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Cecelia C Yates
- Department of Health Promotions and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Rudo F Mapanga
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| | - Monte S Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
185
|
Birket MJ, Ribeiro MC, Verkerk AO, Ward D, Leitoguinho AR, den Hartogh SC, Orlova VV, Devalla HD, Schwach V, Bellin M, Passier R, Mummery CL. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol 2015; 33:970-9. [PMID: 26192318 DOI: 10.1038/nbt.3271] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022]
Abstract
The inability of multipotent cardiovascular progenitor cells (CPCs) to undergo multiple divisions in culture has precluded stable expansion of precursors of cardiomyocytes and vascular cells. This contrasts with neural progenitors, which can be expanded robustly and are a renewable source of their derivatives. Here we use human pluripotent stem cells bearing a cardiac lineage reporter to show that regulated MYC expression enables robust expansion of CPCs with insulin-like growth factor-1 (IGF-1) and a hedgehog pathway agonist. The CPCs can be patterned with morphogens, recreating features of heart field assignment, and controllably differentiated to relatively pure populations of pacemaker-like or ventricular-like cardiomyocytes. The cells are clonogenic and can be expanded for >40 population doublings while retaining the ability to differentiate into cardiomyocytes and vascular cells. Access to CPCs will allow precise recreation of elements of heart development in vitro and facilitate investigation of the molecular basis of cardiac fate determination. This technology is applicable for cardiac disease modeling, toxicology studies and tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Dorien Ward
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | - Verena Schwach
- Leiden University Medical Center, Leiden, the Netherlands
| | - Milena Bellin
- Leiden University Medical Center, Leiden, the Netherlands
| | - Robert Passier
- Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
186
|
Teo AKK, Gupta MK, Doria A, Kulkarni RN. Dissecting diabetes/metabolic disease mechanisms using pluripotent stem cells and genome editing tools. Mol Metab 2015; 4:593-604. [PMID: 26413465 PMCID: PMC4563028 DOI: 10.1016/j.molmet.2015.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diabetes and metabolic syndromes are chronic, devastating diseases with increasing prevalence. Human pluripotent stem cells are gaining popularity in their usage for human in vitro disease modeling. With recent rapid advances in genome editing tools, these cells can now be genetically manipulated with relative ease to study how genes and gene variants contribute to diabetes and metabolic syndromes. SCOPE OF REVIEW We highlight the diabetes and metabolic genes and gene variants, which could potentially be studied, using two powerful technologies - human pluripotent stem cells (hPSCs) and genome editing tools - to aid the elucidation of yet elusive mechanisms underlying these complex diseases. MAJOR CONCLUSIONS hPSCs and the advancing genome editing tools appear to be a timely and potent combination for probing molecular mechanism(s) underlying diseases such as diabetes and metabolic syndromes. The knowledge gained from these hiPSC-based disease modeling studies can potentially be translated into the clinics by guiding clinicians on the appropriate type of medication to use for each condition based on the mechanism of action of the disease.
Collapse
Affiliation(s)
- Adrian Kee Keong Teo
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA ; Discovery Research Division, Institute of Molecular and Cell Biology, Proteos, Singapore 138673, Singapore ; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore ; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Manoj K Gupta
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA
| | - Alessandro Doria
- Section of Epidemiology and Genetics, Joslin Diabetes Center, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02215, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
187
|
Birket MJ, Mummery CL. Pluripotent stem cell derived cardiovascular progenitors--a developmental perspective. Dev Biol 2015; 400:169-79. [PMID: 25624264 DOI: 10.1016/j.ydbio.2015.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 12/15/2022]
Abstract
Human pluripotent stem cells can now be routinely differentiated into cardiac cell types including contractile cardiomyocytes, enabling the study of heart development and disease in vitro, and creating opportunities for the development of novel therapeutic interventions for patients. Our grasp of the system, however, remains partial, and a significant reason for this has been our inability to effectively purify and expand the intermediate cardiovascular progenitor cells (CPCs) equivalent to those studied in heart development. Doing so could facilitate the construction of a cardiac lineage cell fate map, boosting our capacity to more finely control stem cell lineage commitment to functionally distinct cardiac identities, as well as providing a model for identifying which genes confer cardiac potential on CPCs. This review offers a perspective on CPC development as understood from model organisms and pluripotent stem cell systems, focusing on issues of identity as well as the signalling implicated in inducing, expanding and patterning these cells.
Collapse
Affiliation(s)
- Matthew J Birket
- Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | |
Collapse
|