151
|
Ropio J, Chebly A, Ferrer J, Prochazkova‐Carlotti M, Idrissi Y, Azzi‐Martin L, Cappellen D, Pham‐Ledard A, Soares P, Merlio J, Chevret E. Reliable blood cancer cells' telomere length evaluation by qPCR. Cancer Med 2020; 9:3153-3162. [PMID: 32142223 PMCID: PMC7196062 DOI: 10.1002/cam4.2816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Telomere shortening is linked to a range of different human diseases, hence reliable measurement methods are needed to uncover such associations. Among the plethora of telomere length measurement methods, qPCR is reported as easy to conduct and a cost-effective approach to study samples with low DNA amounts. METHODS Cancer cells' telomere length was evaluated by relative and absolute qPCR methods. RESULTS Robust and reproducible telomere length measurements were optimized taking into account a careful reference gene selection and by knowing the cancer cells ploidy. qPCR data were compared to "gold standard" measurement from terminal restriction fragment (TRF). CONCLUSIONS Our study provides guidance and recommendations for accurate telomere length measurement by qPCR in cancer cells, taking advantage of our expertise in telomere homeostasis investigation in primary cutaneous T-cell lymphomas. Furthermore, our data emphasize the requirement of samples with both, high DNA quality and high tumor cells representation.
Collapse
Affiliation(s)
- Joana Ropio
- Bordeaux UniversityINSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn)Cutaneous Lymphoma Oncogenesis TeamBordeauxFrance
- Porto UniversityInstitute of Biomedical Sciences of Abel SalazarPortoPortugal
- Instituto de Investigação e Inovação em SaúdePortoPortugal
- Institute of Molecular Pathology and ImmunologyUniversity of Porto (Ipatimup)Cancer Biology groupPortoPortugal
| | - Alain Chebly
- Bordeaux UniversityINSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn)Cutaneous Lymphoma Oncogenesis TeamBordeauxFrance
- Faculty of MedicineMedical Genetics UnitSaint Joseph UniversityBeirutLebanon
| | - Jacky Ferrer
- Bordeaux UniversityINSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn)Cutaneous Lymphoma Oncogenesis TeamBordeauxFrance
| | - Martina Prochazkova‐Carlotti
- Bordeaux UniversityINSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn)Cutaneous Lymphoma Oncogenesis TeamBordeauxFrance
| | - Yamina Idrissi
- Bordeaux UniversityINSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn)Cutaneous Lymphoma Oncogenesis TeamBordeauxFrance
| | - Lamia Azzi‐Martin
- Bordeaux UniversityUFR des Sciences MédicalesINSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn)BordeauxFrance
| | - David Cappellen
- Bordeaux UniversityINSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn)Cutaneous Lymphoma Oncogenesis TeamBordeauxFrance
- Bordeaux University Hospital CenterTumor Bank and Tumor Biology LaboratoryPessacFrance
| | - Anne Pham‐Ledard
- Bordeaux UniversityINSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn)Cutaneous Lymphoma Oncogenesis TeamBordeauxFrance
- Bordeaux University Hospital CenterDermatology DepartmentBordeauxFrance
| | - Paula Soares
- Instituto de Investigação e Inovação em SaúdePortoPortugal
- Institute of Molecular Pathology and ImmunologyUniversity of Porto (Ipatimup)Cancer Biology groupPortoPortugal
- Department of PathologyFaculty of MedicineUniversity of PortoPortoPortugal
| | - Jean‐Philippe Merlio
- Bordeaux UniversityINSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn)Cutaneous Lymphoma Oncogenesis TeamBordeauxFrance
- Bordeaux University Hospital CenterTumor Bank and Tumor Biology LaboratoryPessacFrance
| | - Edith Chevret
- Bordeaux UniversityINSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn)Cutaneous Lymphoma Oncogenesis TeamBordeauxFrance
| |
Collapse
|
152
|
Rentscher KE, Carroll JE, Mitchell C. Psychosocial Stressors and Telomere Length: A Current Review of the Science. Annu Rev Public Health 2020; 41:223-245. [DOI: 10.1146/annurev-publhealth-040119-094239] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A growing literature suggests that exposure to adverse social conditions may accelerate biological aging, offering one mechanism through which adversity may increase risk for age-related disease. As one of the most extensively studied biological markers of aging, telomere length (TL) provides a valuable tool to understand potential influences of social adversity on the aging process. Indeed, a sizeable literature now links a wide range of stressors to TL across the life span. The aim of this article is to review and evaluate this extant literature with a focus on studies that investigate psychosocial stress exposures and experiences in early life and adulthood. We conclude by outlining potential biological and behavioral mechanisms through which psychosocial stress may influence TL, and we discuss directions for future research in this area.
Collapse
Affiliation(s)
- Kelly E. Rentscher
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90095, USA;,
| | - Judith E. Carroll
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90095, USA;,
| | - Colter Mitchell
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan 48106, USA
| |
Collapse
|
153
|
Ock J, Kim J, Choi YH. Organophosphate insecticide exposure and telomere length in U.S. adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:135990. [PMID: 31905589 DOI: 10.1016/j.scitotenv.2019.135990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Organophosphate insecticides have been widely used for >30 years, and are reported to be associated with various age-related chronic diseases. While shortening of telomere length has been considered as a marker of cellular aging, only a few small studies have been conducted to examine any difference of telomere length in workers exposed to organophosphates versus controls. Epidemiologic studies of the dose-response associations between environmental organophosphate exposure and telomere length in the general population are few. OBJECTIVE This study aimed to evaluate the association between levels of organophosphate insecticide exposure and telomere length in the general population. METHODS We analyzed data for 1724 participants aged 20 years or more from the National Health and Nutrition Examination Survey 1999-2002. Organophosphate insecticide exposure was estimated using measures of urinary concentrations for 3,5,6-trichloro-2-pyridinol (TCPY) and six non-specific dialkyl phosphate metabolites, e.g., diethyl thiophosphate (DETP). Multiple linear regression was conducted to assess the association between organophosphate exposure and telomere length. RESULTS After controlling for sociodemographic and physical factors and urinary creatinine, participants in the second quartile for urinary TCPY had 0.06 (95% CI: 0.02-0.10) T/S ratio shorter telomere length than those in the lowest quartile. By contrast, participants in the second and third tertiles of urinary DETP had 0.08 (95% CI: 0.02-0.14) and 0.06 (95% CI, 0.01-0.11) T/S ratio longer telomere length than those in the lowest tertile. For other five metabolites, there was no association with telomere length. CONCLUSIONS Levels of environmental exposures to certain organophosphate insecticides may be linked to altered telomere length in adults in the general population. Although our findings may need to be replicated, we provide the first evidence that environmental exposure to organophosphates may contribute to the alteration of telomere length, which is potentially related to biological aging and to the development of various chronic diseases.
Collapse
Affiliation(s)
- Jeongwon Ock
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Junghoon Kim
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yoon-Hyeong Choi
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Republic of Korea; Gachon Advanced Institute for Health Sciences and Technology, Incheon, Republic of Korea.
| |
Collapse
|
154
|
Bianconi V, Banach M, Pirro M. Why patients with familial hypercholesterolemia are at high cardiovascular risk? Beyond LDL-C levels. Trends Cardiovasc Med 2020; 31:205-215. [PMID: 32205033 DOI: 10.1016/j.tcm.2020.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 03/06/2020] [Indexed: 01/07/2023]
Abstract
Familial hypercholesterolemia (FH) is a common genetic cause of elevated low-density lipoprotein cholesterol (LDL-C) due to defective clearance of circulating LDL particles. All FH patients are at high risk for premature cardiovascular disease (CVD) events due to their genetically determined lifelong exposure to high LDL-C levels. However, different rates of CVD events have been reported in FH patients, even among those with the same genetic mutations and comparable LDL-C levels. Hence, additional CVD risk modifiers, beyond LDL-C, may contribute to increase CVD risk in the FH population. In this review, we discuss the overall CVD risk burden of the FH population. Additionally, we revise the prognostic impact of several traditional and emerging predictors of CVD risk and we provide an overview of the role of specific tools to stratify CVD risk in FH patients in order to ensure them a more personalized treatment approach.
Collapse
Affiliation(s)
- Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Hospital "Santa Maria della Misericordia", Piazzale Menghini, 1, 06129 Perugia, Italy
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Hospital "Santa Maria della Misericordia", Piazzale Menghini, 1, 06129 Perugia, Italy.
| | | |
Collapse
|
155
|
Kwapisz M, Morillon A. Subtelomeric Transcription and its Regulation. J Mol Biol 2020; 432:4199-4219. [PMID: 32035903 PMCID: PMC7374410 DOI: 10.1016/j.jmb.2020.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
The subtelomeres, highly heterogeneous repeated sequences neighboring telomeres, are transcribed into coding and noncoding RNAs in a variety of organisms. Telomereproximal subtelomeric regions produce non-coding transcripts i.e., ARRET, αARRET, subTERRA, and TERRA, which function in telomere maintenance. The role and molecular mechanisms of the majority of subtelomeric transcripts remain unknown. This review depicts the current knowledge and puts into perspective the results obtained in different models from yeasts to humans.
Collapse
Affiliation(s)
- Marta Kwapisz
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR 3244, Sorbonne Université, PSL University, Institut Curie, Centre de Recherche, 26 rue d'Ulm, 75248, Paris, France.
| |
Collapse
|
156
|
Ferreira MSV, Sørensen MD, Pusch S, Beier D, Bouillon AS, Kristensen BW, Brümmendorf TH, Beier CP, Beier F. Alternative lengthening of telomeres is the major telomere maintenance mechanism in astrocytoma with isocitrate dehydrogenase 1 mutation. J Neurooncol 2020; 147:1-14. [PMID: 31960234 PMCID: PMC7076064 DOI: 10.1007/s11060-020-03394-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/07/2020] [Indexed: 01/21/2023]
Abstract
Purpose Isocitrate dehydrogenase 1 (IDH1) mutations are associated with improved survival in gliomas. Depending on the IDH1 status, TERT promoter mutations affect prognosis. IDH1 mutations are associated with alpha-thalassemia/mental retardation syndrome X-linked (ATRX) mutations and alternative lengthening of telomeres (ALT), suggesting an interaction between IDH1 and telomeres. However, little is known how IDH1 mutations affect telomere maintenance.
Methods We analyzed cell-specific telomere length (CS-TL) on a single cell level in 46 astrocytoma samples (WHO II-IV) by modified immune-quantitative fluorescence in situ hybridization, using endothelial cells as internal reference. In the same samples, we determined IDH1/TERT promoter mutation status and ATRX expression. The interaction of IDH1R132H mutation and CS-TL was studied in vitro using an IDH1R132H doxycycline-inducible glioma cell line system. Results Virtually all ALTpositive astrocytomas had normal TERT promoter and lacked ATRX expression. Further, all ALTpositive samples had IDH1R132H mutations, resulting in a significantly longer CS-TL of IDH1R132H gliomas, when compared to their wildtype counterparts. Conversely, TERT promotor mutations were associated with IDHwildtype, ATRX expression, lack of ALT and short CS-TL. ALT, TERT promoter mutations, and CS-TL remained without prognostic significance, when correcting for IDH1 status. In vitro, overexpression of IDHR132H in the glioma cell line LN319 resulted in downregulation of ATRX and rapid TERT-independent telomere lengthening consistent with ALT.
Conclusion ALT is the major telomere maintenance mechanism in IDHR132H mutated astrocytomas, while TERT promoter mutations were associated with IDHwildtype glioma. IDH1R132H downregulates ATRX expression in vitro resulting in ALT, which may contribute to the strong association of IDH1R132H mutations, ATRX loss, and ALT.
Electronic supplementary material The online version of this article (10.1007/s11060-020-03394-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Mia Dahl Sørensen
- Department of Pathology, University Hospital Odense, Sdr. Boulevard 29, 5000, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Stefan Pusch
- Department of Neuropathology, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dagmar Beier
- Department of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense, Denmark.,Department of Neurology, University Hospital Odense, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Anne-Sophie Bouillon
- Department of Haematology, Oncology, Medical Faculty, RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Bjarne Winther Kristensen
- Department of Pathology, University Hospital Odense, Sdr. Boulevard 29, 5000, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Tim Henrik Brümmendorf
- Department of Haematology, Oncology, Medical Faculty, RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Christoph Patrick Beier
- Department of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense, Denmark.,Department of Neurology, University Hospital Odense, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Fabian Beier
- Department of Haematology, Oncology, Medical Faculty, RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
157
|
de Pedro N, Díez M, García I, García J, Otero L, Fernández L, García B, González R, Rincón S, Pérez D, Rodríguez E, Segovia E, Najarro P. Analytical Validation of Telomere Analysis Technology® for the High-Throughput Analysis of Multiple Telomere-Associated Variables. Biol Proced Online 2020; 22:2. [PMID: 31956299 PMCID: PMC6961256 DOI: 10.1186/s12575-019-0115-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background A large number of studies have suggested a correlation between the status of telomeres and disease risk. High-throughput quantitative fluorescence in situ hybridization (HT Q-FISH) is a highly accurate telomere measurement technique that can be applied to the study of large cell populations. Here we describe the analytical performance testing and validation of Telomere Analysis Technology (TAT®), a laboratory-developed HT Q-FISH-based methodology that includes HT imaging and software workflows that provide a highly detailed view of telomere populations. Methods TAT was developed for the analysis of telomeres in peripheral blood mononuclear cells (PBMCs). TAT was compared with Terminal Restriction Fragment (TRF) length analysis, and tested for accuracy, precision, limits of detection (LOD) and specificity, reportable range and reference range. Results Using 6 different lymphocyte cell lines, we found a high correlation between TAT and TRF for telomere length (R2 ≥ 0.99). The standard variation (assay error) of TAT was 454 base pairs, and the limit of detection of 800 base pairs. A standard curve was constructed to cover human median reportable range values and defined its lower limit at 4700 bp and upper limits at 14,400 bp. Using TAT, up to 223 telomere associated variables (TAVs) can be obtained from a single sample. A pilot, population study, of telomere analysis using TAT revealed high accuracy and reliability of the methodology. Conclusions Analytical validation of TAT shows that is a robust and reliable technique for the characterization of a detailed telomere profile in large cell populations. The combination of high-throughput imaging and software workflows allows for the collection of a large number of telomere-associated variables from each sample, which can then be used in epidemiological and clinical studies.
Collapse
Affiliation(s)
| | - María Díez
- Life Length SL, Miguel Ángel 11, 28010 Madrid, Spain
| | - Irene García
- Life Length SL, Miguel Ángel 11, 28010 Madrid, Spain
| | - Jorge García
- Life Length SL, Miguel Ángel 11, 28010 Madrid, Spain
| | | | | | | | - Rut González
- Life Length SL, Miguel Ángel 11, 28010 Madrid, Spain
| | - Sara Rincón
- Life Length SL, Miguel Ángel 11, 28010 Madrid, Spain
| | - Diego Pérez
- Life Length SL, Miguel Ángel 11, 28010 Madrid, Spain
| | | | | | - Pilar Najarro
- Life Length SL, Miguel Ángel 11, 28010 Madrid, Spain
| |
Collapse
|
158
|
Averbeck D, Candéias S, Chandna S, Foray N, Friedl AA, Haghdoost S, Jeggo PA, Lumniczky K, Paris F, Quintens R, Sabatier L. Establishing mechanisms affecting the individual response to ionizing radiation. Int J Radiat Biol 2020; 96:297-323. [PMID: 31852363 DOI: 10.1080/09553002.2019.1704908] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose: Humans are increasingly exposed to ionizing radiation (IR). Both low (<100 mGy) and high doses can cause stochastic effects, including cancer; whereas doses above 100 mGy are needed to promote tissue or cell damage. 10-15% of radiotherapy (RT) patients suffer adverse reactions, described as displaying radiosensitivity (RS). Sensitivity to IR's stochastic effects is termed radiosusceptibility (RSu). To optimize radiation protection we need to understand the range of individual variability and underlying mechanisms. We review the potential mechanisms contributing to RS/RSu focusing on RS following RT, the most tractable RS group.Conclusions: The IR-induced DNA damage response (DDR) has been well characterized. Patients with mutations in the DDR have been identified and display marked RS but they represent only a small percentage of the RT patients with adverse reactions. We review the impacting mechanisms and additional factors influencing RS/RSu. We discuss whether RS/RSu might be genetically determined. As a recommendation, we propose that a prospective study be established to assess RS following RT. The study should detail tumor site and encompass a well-defined grading system. Predictive assays should be independently validated. Detailed analysis of the inflammatory, stress and immune responses, mitochondrial function and life style factors should be included. Existing cohorts should also be optimally exploited.
Collapse
Affiliation(s)
| | - Serge Candéias
- CEA, CNRS, LCMB, University of Grenoble Alpes, Grenoble, France
| | - Sudhir Chandna
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Nicolas Foray
- Inserm UA8 Unit Radiations: Defense, Health and Environment, Lyon, France
| | - Anna A Friedl
- Department of Radiation Oncology, University Hospital, LMU, Munich, Germany
| | - Siamak Haghdoost
- Cimap-Laria, Advanced Resource Center for HADrontherapy in Europe (ARCHADE,), University of Caen Normandy, France.,Centre for Radiation Protection Research, Department of Molecular Bioscience, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Katalin Lumniczky
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary
| | | | | | | |
Collapse
|
159
|
Dantzer B, van Kesteren F, Westrick SE, Boutin S, McAdam AG, Lane JE, Gillespie R, Majer A, Haussmann MF, Monaghan P. Maternal glucocorticoids promote offspring growth without inducing oxidative stress or shortening telomeres in wild red squirrels. J Exp Biol 2020; 223:jeb212373. [PMID: 31796605 PMCID: PMC10668338 DOI: 10.1242/jeb.212373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
Elevations in glucocorticoid (GC) levels in breeding females may induce adaptive shifts in offspring life histories. Offspring produced by mothers with elevated GCs may be better prepared to face harsh environments, where a faster pace of life is beneficial. We examined how experimentally elevated GCs in pregnant or lactating North American red squirrels (Tamiasciurus hudsonicus) affected offspring postnatal growth, structural size and oxidative stress levels (two antioxidants and oxidative protein damage) in three different tissues (blood, heart and liver) and liver telomere lengths. We predicted that offspring from mothers treated with GCs would grow faster but would also have higher levels of oxidative stress and shorter telomeres, which may predict reduced longevity. Offspring from mothers treated with GCs during pregnancy were 8.3% lighter around birth but grew (in body mass) 17.0% faster than those from controls, whereas offspring from mothers treated with GCs during lactation grew 34.8% slower than those from controls and did not differ in body mass around birth. Treating mothers with GCs during pregnancy or lactation did not alter the oxidative stress levels or telomere lengths of their offspring. Fast-growing offspring from any of the treatment groups did not have higher oxidative stress levels or shorter telomere lengths, indicating that offspring that grew faster early in life did not exhibit oxidative costs after this period of growth. Our results indicate that elevations in maternal GCs may induce plasticity in offspring growth without long-term oxidative costs to the offspring that might result in a shortened lifespan.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Freya van Kesteren
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah E Westrick
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Andrew G McAdam
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E2
| | - Robert Gillespie
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ariana Majer
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Mark F Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
160
|
Esteves KC, Jones CW, Wade M, Callerame K, Smith AK, Theall KP, Drury SS. Adverse Childhood Experiences: Implications for Offspring Telomere Length and Psychopathology. Am J Psychiatry 2020; 177:47-57. [PMID: 31509004 PMCID: PMC7273739 DOI: 10.1176/appi.ajp.2019.18030335] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Adverse childhood experiences (ACEs) are associated with mental and physical health risks that, through biological and psychosocial pathways, likely span generations. Within an individual, telomere length (TL), an established marker of cellular stress and aging, is associated with both ACE exposure and psychopathology, providing the basis for an emerging literature suggesting that TL is a biomarker of the health risks linked to early-life adversity both within and across generations. The authors tested the effect of maternal ACEs on both the trajectory of infant TL and infant social-emotional problems at 18 months of age. METHODS Pregnant women were recruited, and maternal scores on the Adverse Childhood Experience questionnaire were obtained, along with demographic and prenatal stress measures. Postnatal visits with 155 mother-infant dyads occurred when infants were 4, 12, and 18 months of age. At each visit, infant buccal swabs were collected for TL measurement, and mothers completed measures of maternal depression. Mothers also completed the Child Behavior Checklist at the 18-month visit. Mixed-effects modeling was used to test how maternal ACEs influenced infant TL trajectory. Linear regression was used to test the association between maternal ACEs and infant internalizing and externalizing behaviors. Finally, the interaction between telomere attrition from 4 to 18 months and maternal ACEs was examined as a predictor of infant scores on the Child Behavior Checklist. RESULTS Higher maternal ACEs were associated with shorter infant TL across infancy and higher infant externalizing behavioral problems at 18 months. No associations were found with internalizing behavioral problems. Telomere attrition from 4 to 18 months interacted with maternal ACEs to predict externalizing behaviors. In infants whose mothers reported higher scores on the Adverse Childhood Experience questionnaire, greater telomere attrition predicted higher externalizing problems, even when accounting for maternal postnatal depression and prenatal stress. CONCLUSIONS These data demonstrate an interactive pathway between maternal early-life adversity and infant TL that predicts emerging behavioral problems in the next generations.
Collapse
Affiliation(s)
- Kyle C Esteves
- The Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans (Esteves, Drury); the Department of Neuroscience, Tulane Brain Institute, Tulane University, New Orleans (Jones, Drury); the Department of Applied Psychology and Human Development, University of Toronto (Wade); the Department of Cell and Molecular Biology, Tulane University, New Orleans (Callerame); the Department of Obstetrics and Gynecology, Emory University, Atlanta (Smith); and the Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans (Theall)
| | - Christopher W Jones
- The Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans (Esteves, Drury); the Department of Neuroscience, Tulane Brain Institute, Tulane University, New Orleans (Jones, Drury); the Department of Applied Psychology and Human Development, University of Toronto (Wade); the Department of Cell and Molecular Biology, Tulane University, New Orleans (Callerame); the Department of Obstetrics and Gynecology, Emory University, Atlanta (Smith); and the Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans (Theall)
| | - Mark Wade
- The Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans (Esteves, Drury); the Department of Neuroscience, Tulane Brain Institute, Tulane University, New Orleans (Jones, Drury); the Department of Applied Psychology and Human Development, University of Toronto (Wade); the Department of Cell and Molecular Biology, Tulane University, New Orleans (Callerame); the Department of Obstetrics and Gynecology, Emory University, Atlanta (Smith); and the Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans (Theall)
| | - Keegan Callerame
- The Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans (Esteves, Drury); the Department of Neuroscience, Tulane Brain Institute, Tulane University, New Orleans (Jones, Drury); the Department of Applied Psychology and Human Development, University of Toronto (Wade); the Department of Cell and Molecular Biology, Tulane University, New Orleans (Callerame); the Department of Obstetrics and Gynecology, Emory University, Atlanta (Smith); and the Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans (Theall)
| | - Alicia K Smith
- The Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans (Esteves, Drury); the Department of Neuroscience, Tulane Brain Institute, Tulane University, New Orleans (Jones, Drury); the Department of Applied Psychology and Human Development, University of Toronto (Wade); the Department of Cell and Molecular Biology, Tulane University, New Orleans (Callerame); the Department of Obstetrics and Gynecology, Emory University, Atlanta (Smith); and the Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans (Theall)
| | - Katherine P Theall
- The Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans (Esteves, Drury); the Department of Neuroscience, Tulane Brain Institute, Tulane University, New Orleans (Jones, Drury); the Department of Applied Psychology and Human Development, University of Toronto (Wade); the Department of Cell and Molecular Biology, Tulane University, New Orleans (Callerame); the Department of Obstetrics and Gynecology, Emory University, Atlanta (Smith); and the Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans (Theall)
| | - Stacy S Drury
- The Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans (Esteves, Drury); the Department of Neuroscience, Tulane Brain Institute, Tulane University, New Orleans (Jones, Drury); the Department of Applied Psychology and Human Development, University of Toronto (Wade); the Department of Cell and Molecular Biology, Tulane University, New Orleans (Callerame); the Department of Obstetrics and Gynecology, Emory University, Atlanta (Smith); and the Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans (Theall)
| |
Collapse
|
161
|
Hoekstra LA, Schwartz TS, Sparkman AM, Miller DAW, Bronikowski AM. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct Ecol 2020; 34:38-54. [PMID: 32921868 PMCID: PMC7480806 DOI: 10.1111/1365-2435.13450] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
1. The field of comparative aging biology has greatly expanded in the past 20 years. Longitudinal studies of populations of reptiles with a range of maximum lifespans have accumulated and been analyzed for evidence of mortality senescence and reproductive decline. While not as well represented in studies of amniote senescence, reptiles have been the subjects of many recent demographic and mechanistic studies of the biology of aging. 2. We review recent literature on reptile demographic senescence, mechanisms of senescence, and identify unanswered questions. Given the ecophysiological and demographic diversity of reptiles, what is the expected range of reptile senescence rates? Are known mechanisms of aging in reptiles consistent with canonical hallmarks of aging in model systems? What are the knowledge gaps in our understanding of reptile aging? 3. We find ample evidence of increasing mortality with advancing age in many reptiles. Testudines stand out as slower aging than other orders, but data on crocodilians and tuatara are sparse. Sex-specific analyses are generally not available. Studies of female reproduction suggest that reptiles are less likely to have reproductive decline with advancing age than mammals. 4. Reptiles share many physiological and molecular pathways of aging with mammals, birds, and laboratory model organisms. Adaptations related to stress physiology coupled with reptilian ectothermy suggest novel comparisons and contrasts that can be made with canonical aging phenotypes in mammals. These include stem cell and regeneration biology, homeostatic mechanisms, IIS/TOR signaling, and DNA repair. 5. To overcome challenges to the study of reptile aging, we recommend extending and expanding long-term monitoring of reptile populations, developing reptile cell lines to aid cellular biology, conducting more comparative studies of reptile morphology and physiology sampled along relevant life-history axes, and sequencing more reptile genomes for comparative genomics. Given the diversity of reptile life histories and adaptations, achieving these directives will likely greatly benefit all aging biology.
Collapse
Affiliation(s)
- Luke A Hoekstra
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Amanda M Sparkman
- Department of Biology, Westmont College, Santa Barbara, California, 93108, USA
| | - David A W Miller
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| |
Collapse
|
162
|
Giangaspero F, Minasi S, Gianno F, Alzoubi H, Antonelli M, Buttarelli F. Mechanisms of telomere maintenance in pediatric brain tumors: Promising targets for therapy – A narrative review. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_20_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
163
|
Guest PC, Martins-de-Souza D. Liquid Chromatography Tandem Mass Spectrometry Analysis of Proteins Associated with Age-Related Disorders in Human Pituitary Tissue. Methods Mol Biol 2020; 2138:263-276. [PMID: 32219755 DOI: 10.1007/978-1-0716-0471-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The pituitary gland is involved in multiple physiological functions, including growth, development, reproduction, stress adaptation, osmotic balance, body composition, skin pigmentation, and aging. Advancing age is characterized by dysfunctions in multiple physiological signaling mechanisms, concomitant with perturbed patterns of pituitary hormone release as well as disrupted rhythmic secretion of virtually all pituitary hormones. This chapter presents a liquid chromatography tandem mass spectrometry (LC-MS/MS) protocol for analysis of the protein content in post-mortem pituitary glands. It was of special interest to determine if proteins previously linked with aging and age-related disorders could be identified to support further studies in this field using proteomic profiling approaches. This included hormones, hormone-processing enzymes, histones, oxidation-reduction enzymes, and others.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, São Paulo, Brazil
- UNICAMP's Neurobiology Center, Campinas, Brazil
| |
Collapse
|
164
|
Abstract
Decades of research into stress responses have highlighted large variation among individuals, populations, and species, and the sources of this variation have been a center of research across disciplines. The most common measure of the vertebrate stress response is glucocorticoids. However, the predictive power of glucocorticoid responses to fitness is surprisingly low. This is partly because the hormone levels rapidly change in response to stressor exposure and elevated levels at one time point can indicate either that glucocorticoids are helping the organism cope with the stressor or that dysregulation of hormone release is harming the organism. Meaning, the fitness consequences of the stressor depends on how efficient the stress responses are at negating the harmful impacts of stressors to cells and tissues. To encompass the idea of the efficiency of stress responses and to integrate cellular and organismal stress responses, a new theoretical model called the Damage-Fitness Model was developed. The model focuses on the downstream effects of stress responses and predicts that the accumulation of damage in cells and tissues (e.g., persistent damage to proteins, lipids, and DNA) negatively impacts fitness components. In this mini-review, we examine evidence supporting the Damage-Fitness Model and explore new directions forward.
Collapse
Affiliation(s)
- Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Britt Heidinger
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
165
|
Markiewicz E, Idowu OC. DNA damage in human skin and the capacities of natural compounds to modulate the bystander signalling. Open Biol 2019; 9:190208. [PMID: 31847786 PMCID: PMC6936251 DOI: 10.1098/rsob.190208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Human skin is a stratified organ frequently exposed to sun-generated ultraviolet radiation (UVR), which is considered one of the major factors responsible for DNA damage. Such damage can be direct, through interactions of DNA with UV photons, or indirect, mainly through enhanced production of reactive oxygen species that introduce oxidative changes to the DNA. Oxidative stress and DNA damage also associate with profound changes at the cellular and molecular level involving several cell cycle and signal transduction factors responsible for DNA repair or irreversible changes linked to ageing. Crucially, some of these factors constitute part of the signalling known for the induction of biological changes in non-irradiated, neighbouring cells and defined as the bystander effect. Network interactions with a number of natural compounds, based on their known activity towards these biomarkers in the skin, reveal the capacity to inhibit both the bystander signalling and cell cycle/DNA damage molecules while increasing expression of the anti-oxidant enzymes. Based on this information, we discuss the likely polypharmacology applications of the natural compounds and next-generation screening technologies in improving the anti-oxidant and DNA repair capacities of the skin.
Collapse
|
166
|
Mizuno Y, Konishi S, Imai H, Fujimori E, Kojima N, Yoshinaga J. Cadmium Exposure and Blood Telomere Length in Female University Students in Japan. Biol Trace Elem Res 2019; 192:98-105. [PMID: 30721396 DOI: 10.1007/s12011-019-1656-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/29/2019] [Indexed: 01/07/2023]
Abstract
Cadmium is a toxic metal found ubiquitously throughout the world. Our study evaluated whether cadmium exposure was associated with telomere length in 73 female university students. Determination of telomere length was performed by quantitative polymerase chain reaction using DNA in blood. Urinary cadmium concentration was measured by inductively coupled plasma mass spectrometry. The students' physiological attributes and lifestyle were surveyed by means of a self-administered questionnaire. The geometric mean of urinary cadmium concentration was 0.312 μg/g creatinine, which was lower than the levels previously reported for Japan. Urinary cadmium concentration was not significantly associated with telomere length, though the exposure level of the present subjects was similar to that of previous study subjects which found significantly negative associations. It is possible that other factors affected telomere length in this study population.
Collapse
Affiliation(s)
- Yuki Mizuno
- Department of Human Ecology, School of International Health, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shoko Konishi
- Department of Human Ecology, School of International Health, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Anthropology, University of Washington, Seattle, USA
| | - Hideki Imai
- Department of Nursing, Tokyo Healthcare University, Tokyo, Japan
| | - Eiji Fujimori
- National Environmental Research and Training Institute, Tokorozawa City, Saitama, Japan
| | - Nobuhiko Kojima
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Ora, Gunma, 374-0193, Japan
| | - Jun Yoshinaga
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Ora, Gunma, 374-0193, Japan.
| |
Collapse
|
167
|
Association between spontaneous activity of the default mode network hubs and leukocyte telomere length in late childhood and early adolescence. J Psychosom Res 2019; 127:109864. [PMID: 31706071 DOI: 10.1016/j.jpsychores.2019.109864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022]
Abstract
The impact of early life stress on mental health and telomere length shortening have been reported. Changes in brain default mode network (DMN) were found to be related to a myriad of psychiatric conditions in which stress may play a role. In this context, family environment and adverse childhood experiences (ACEs) are potential causes of stress. This is a hypothesis-driven study focused on testing two hypotheses: (i) there is an association between telomere length and the function of two main hubs of DMN: the posterior cingulate cortex (PCC) and the medial prefrontal cortex (mPFC); (ii) this association is modulated by family environment and/or ACEs. To the best of our knowledge, this is the first study investigating these hypotheses. Resting-state functional magnetic resonance imaging data and blood sample were collected from 389 subjects (6-15 age range). We assessed DMN fractional amplitude of low-frequency fluctuations (fALFF) and leukocyte telomere length (LTL). We fitted general linear models to test the main effects of LTL on DMN hubs and the interaction effects with Family Environment Scale (FES) and ACEs. The results did not survive a strict Bonferroni correction. However, uncorrected p-values suggest that LTL was positively correlated with fALFF in PCC and a FES interaction between FES and LTL at mPFC. Although marginal, our results encourage further research on the interaction between DMN hubs, telomere length and family environment, which may play a role on the biological embedding of stress.
Collapse
|
168
|
Longitudinal changes in leukocyte telomere length and mortality in elderly Swedish men. Aging (Albany NY) 2019; 10:3005-3016. [PMID: 30375983 PMCID: PMC6224259 DOI: 10.18632/aging.101611] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/19/2018] [Indexed: 11/25/2022]
Abstract
Telomere length (TL) is considered an indicator of aging and age-related diseases, but longitudinal studies on TL changes and mortality are few. We therefore analyzed TL and longitudinal changes in TL in relation to all-cause, cardiovascular, and cancer mortality in 247 elderly Swedish men. TL was determined by the qPCR method at ages 71 and 81 and subsequent mortality cases were identified from the Swedish cause-of-death registry. Cox proportional hazard ratios were calculated during a mean follow-up of 7.4 years, during which 178 deaths occurred. Short telomeres at baseline was strongly associated with mortality risks, with a 40 to 70% increased risk of all-cause mortality, and a 2-fold increased risk of cancer mortality. Longitudinal changes in TL revealed shortening in 83% of individuals, whilst 10% extended their telomeres. TL attrition did not predict all-cause or cancer mortality, but we found a 60% decreased risk for cardiovascular mortality in those who shortened their telomeres. Our data show an increased risk of mortality in individuals with short baseline telomeres, but no relations to all-cause, and cancer mortality for changes in TL. Intriguingly, our data indicate lower risk of cardiovascular mortality with shortening of telomeres. The latter should be interpreted cautiously.
Collapse
|
169
|
POT1-TPP1 differentially regulates telomerase via POT1 His266 and as a function of single-stranded telomere DNA length. Proc Natl Acad Sci U S A 2019; 116:23527-23533. [PMID: 31685617 PMCID: PMC6876245 DOI: 10.1073/pnas.1905381116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Telomeres cap the ends of linear chromosomes and terminate in a single-stranded DNA (ssDNA) overhang recognized by POT1-TPP1 heterodimers to help regulate telomere length homeostasis. Here hydroxyl radical footprinting coupled with mass spectrometry was employed to probe protein-protein interactions and conformational changes involved in the assembly of telomere ssDNA substrates of differing lengths bound by POT1-TPP1 heterodimers. Our data identified environmental changes surrounding residue histidine 266 of POT1 that were dependent on telomere ssDNA substrate length. We further determined that the chronic lymphocytic leukemia-associated H266L substitution significantly reduced POT1-TPP1 binding to short ssDNA substrates; however, it only moderately impaired the heterodimer binding to long ssDNA substrates containing multiple protein binding sites. Additionally, we identified a telomerase inhibitory role when several native POT1-TPP1 proteins coat physiologically relevant lengths of telomere ssDNA. This POT1-TPP1 complex-mediated inhibition of telomerase is abrogated in the context of the POT1 H266L mutation, which leads to telomere overextension in a malignant cellular environment.
Collapse
|
170
|
The Dietary Inflammatory Index® and Alternative Healthy Eating Index 2010 in relation to leucocyte telomere length in postmenopausal women: a cross-sectional study. J Nutr Sci 2019; 8:e35. [PMID: 31723429 PMCID: PMC6842575 DOI: 10.1017/jns.2019.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Accepted: 09/20/2019] [Indexed: 12/23/2022] Open
Abstract
Telomeres are nucleoprotein complexes that form the ends of eukaryotic chromosomes where they protect DNA from genomic instability, prevent end-to-end fusion and limit cellular replicative capabilities. Increased telomere attrition rates, and relatively shorter telomere length, is associated with genomic instability and has been linked with several chronic diseases, malignancies and reduced longevity. Telomeric DNA is highly susceptible to oxidative damage and dietary habits may make an impact on telomere attrition rates through the mediation of oxidative stress and chronic inflammation. The aim of this study was to examine the association between leucocyte telomere length (LTL) with both the Dietary Inflammatory Index® 2014 (DII®) and the Alternative Healthy Eating Index 2010 (AHEI-2010). This is a cross-sectional analysis using baseline data from 263 postmenopausal women from the Alberta Physical Activity and Breast Cancer Prevention (ALPHA) Trial, in Calgary and Edmonton, Alberta, Canada. No statistically significant association was detected between LTL z-score and the AHEI-2010 (P = 0·20) or DII® (P = 0·91) in multivariable adjusted models. An exploratory analysis of AHEI-2010 and DII® parameters and LTL revealed anthocyanidin intake was associated with LTL (P < 0·01); however, this association was non-significant after a Bonferroni correction was applied (P = 0·27). No effect modification by age, smoking history, or recreational physical activity was detected for either relationship. Increased dietary antioxidant and decreased oxidant intake were not associated with LTL in this analysis.
Collapse
|
171
|
Lambert MW. The functional importance of lamins, actin, myosin, spectrin and the LINC complex in DNA repair. Exp Biol Med (Maywood) 2019; 244:1382-1406. [PMID: 31581813 PMCID: PMC6880146 DOI: 10.1177/1535370219876651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Three major proteins in the nucleoskeleton, lamins, actin, and spectrin, play essential roles in maintenance of nuclear architecture and the integrity of the nuclear envelope, in mechanotransduction and mechanical coupling between the nucleoskeleton and cytoskeleton, and in nuclear functions such as regulation of gene expression, transcription and DNA replication. Less well known, but critically important, are the role these proteins play in DNA repair. The A-type and B-type lamins, nuclear actin and myosin, spectrin and the LINC (linker of nucleoskeleton and cytoskeleton) complex each function in repair of DNA damage utilizing various repair pathways. The lamins play a role in repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) or homologous recombination (HR). Actin is involved in repair of DNA DSBs and interacts with myosin in facilitating relocalization of these DSBs in heterochromatin for HR repair. Nonerythroid alpha spectrin (αSpII) plays a critical role in repair of DNA interstrand cross-links (ICLs) where it acts as a scaffold in recruitment of repair proteins to sites of damage and is important in the initial damage recognition and incision steps of the repair process. The LINC complex contributes to the repair of DNA DSBs and ICLs. This review will address the important functions of these proteins in the DNA repair process, their mechanism of action, and the profound impact a defect or deficiency in these proteins has on cellular function. The critical roles of these proteins in DNA repair will be further emphasized by discussing the human disorders and the pathophysiological changes that result from or are related to deficiencies in these proteins. The demonstrated function for each of these proteins in the DNA repair process clearly indicates that there is another level of complexity that must be considered when mechanistically examining factors crucial for DNA repair.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology and Laboratory
Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
172
|
Indices of association between anxiety and mindfulness: a guide for future mindfulness studies. PERSONALITY NEUROSCIENCE 2019; 2:e9. [PMID: 32435744 PMCID: PMC7219893 DOI: 10.1017/pen.2019.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 09/03/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Mindfulness and anxiety are often linked as inversely related traits and there have been several theoretical and mediational models proposed suggesting such a relationship between these two traits. The current review report offers an account of self-report measures, behavioral, electrophysiological, hemodynamic, and biological studies, which provide converging evidence for an inverse relationship between mindfulness and anxiety. To our knowledge, there are no comprehensive accounts of empirical evidence that investigate this relationship. After reviewing several empirical studies, we propose a schematic model, where a stressor can trigger the activation of amygdala which activates the hypothalamic-pituitary-adrenal (HPA) pathway. This hyperactive HPA axis leads to a cascade of psychological, behavioral, electrophysiological, immunological, endocrine, and genetic reactions in the body, primarily mediated by a sympathetic pathway. Conversely, mindfulness protects from deleterious effects of these triggered reactions by downregulating the HPA axis activity via a parasympathetic pathway. Finally, we propose a model suggesting a comprehensive scheme through which mindfulness and anxiety may interact through emotion regulation. It is recommended that future mindfulness intervention studies should examine a broad spectrum of measurement indices where possible, keeping logistic feasibility in mind and look at mindfulness in conjunction with anxiety rather than independently.
Collapse
|
173
|
Park J, Zhu Q, Mirek E, Na L, Raduwan H, Anthony TG, Belden WJ. BMAL1 associates with chromosome ends to control rhythms in TERRA and telomeric heterochromatin. PLoS One 2019; 14:e0223803. [PMID: 31634367 PMCID: PMC6802832 DOI: 10.1371/journal.pone.0223803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/27/2019] [Indexed: 01/12/2023] Open
Abstract
The circadian clock and aging are intertwined. Disruption to the normal diurnal rhythm accelerates aging and corresponds with telomere shortening. Telomere attrition also correlates with increase cellular senescence and incidence of chronic disease. In this report, we examined diurnal association of White Collar 2 (WC-2) in Neurospora and BMAL1 in zebrafish and mice and found that these circadian transcription factors associate with telomere DNA in a rhythmic fashion. We also identified a circadian rhythm in Telomeric Repeat-containing RNA (TERRA), a lncRNA transcribed from the telomere. The diurnal rhythm in TERRA was lost in the liver of Bmal1-/- mice indicating it is a circadian regulated transcript. There was also a BMAL1-dependent rhythm in H3K9me3 at the telomere in zebrafish brain and mouse liver, and this rhythm was lost with increasing age. Taken together, these results provide evidence that BMAL1 plays a direct role in telomere homeostasis by regulating rhythms in TERRA and heterochromatin. Loss of these rhythms may contribute to telomere erosion during aging.
Collapse
Affiliation(s)
- Jinhee Park
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Qiaoqiao Zhu
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Emily Mirek
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Li Na
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Hamidah Raduwan
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Tracy G. Anthony
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - William J. Belden
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| |
Collapse
|
174
|
Marasco V, Boner W, Griffiths K, Heidinger B, Monaghan P. Intergenerational effects on offspring telomere length: interactions among maternal age, stress exposure and offspring sex. Proc Biol Sci 2019; 286:20191845. [PMID: 31575358 DOI: 10.1098/rspb.2019.1845] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Offspring produced by older parents often have reduced longevity, termed the Lansing effect. Because adults usually have similar-aged mates, it is difficult to separate effects of maternal and paternal age, and environmental circumstances are also likely to influence offspring outcomes. The mechanisms underlying the Lansing effect are poorly understood. Variation in telomere length and loss, particularly in early life, is linked to longevity in many vertebrates, and therefore changes in offspring telomere dynamics could be very important in this context. We examined the effect of maternal age and environment on offspring telomere length in zebra finches. We kept mothers under either control (ad libitum food) or more challenging (unpredictable food) circumstances and experimentally minimized paternal age and mate choice effects. Irrespective of the maternal environment, there was a substantial negative effect of maternal age on offspring telomere length, evident in longitudinal and cross-sectional comparisons (average of 39% shorter). Furthermore, in young mothers, sons reared by challenged mothers had significantly shorter telomere lengths than sons reared by control mothers. This effect disappeared when the mothers were old, and was absent in daughters. These findings highlight the importance of telomere dynamics as inter-generational mediators of the evolutionary processes determining optimal age-specific reproductive effort and sex allocation.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstraβe 1a, 1160 Vienna, Austria.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Britt Heidinger
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK.,Biological Sciences Department, North Dakota State University, Stevens Hall, Fargo, ND 58108, USA
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| |
Collapse
|
175
|
Li F, Deng Z, Zhang L, Wu C, Jin Y, Hwang I, Vladimirova O, Xu L, Yang L, Lu B, Dheekollu J, Li J, Feng H, Hu J, Vakoc CR, Ying H, Paik J, Lieberman PM, Zheng H. ATRX loss induces telomere dysfunction and necessitates induction of alternative lengthening of telomeres during human cell immortalization. EMBO J 2019; 38:e96659. [PMID: 31454099 PMCID: PMC6769380 DOI: 10.15252/embj.201796659] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 01/19/2023] Open
Abstract
Loss of the histone H3.3-specific chaperone component ATRX or its partner DAXX frequently occurs in human cancers that employ alternative lengthening of telomeres (ALT) for chromosomal end protection, yet the underlying mechanism remains unclear. Here, we report that ATRX/DAXX does not serve as an immediate repressive switch for ALT. Instead, ATRX or DAXX depletion gradually induces telomere DNA replication dysfunction that activates not only homology-directed DNA repair responses but also cell cycle checkpoint control. Mechanistically, we demonstrate that this process is contingent on ATRX/DAXX histone chaperone function, independently of telomere length. Combined ATAC-seq and telomere chromatin immunoprecipitation studies reveal that ATRX loss provokes progressive telomere decondensation that culminates in the inception of persistent telomere replication dysfunction. We further show that endogenous telomerase activity cannot overcome telomere dysfunction induced by ATRX loss, leaving telomere repair-based ALT as the only viable mechanism for telomere maintenance during immortalization. Together, these findings implicate ALT activation as an adaptive response to ATRX/DAXX loss-induced telomere replication dysfunction.
Collapse
Affiliation(s)
- Fei Li
- Department of NeurosurgerySouthwest HospitalChongqingChina
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | | | - Ling Zhang
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- Department of PathophysiologyNorman Bethune Medical School at Jilin UniversityChangchunChina
| | - Caizhi Wu
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - Ying Jin
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - Inah Hwang
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
| | | | - Libo Xu
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- Department of PathophysiologyNorman Bethune Medical School at Jilin UniversityChangchunChina
| | - Lynnie Yang
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - Bin Lu
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | | | - Jian‐Yi Li
- Department of Pathology and Lab MedicineNorth Shore University Hospital and Long Island Jewish Medical CenterNorthwell Health, Lake SuccessDonald and Barbara Zucker School of Medicine at Hofstra/NorthwellHempsteadNYUSA
| | - Hua Feng
- Department of NeurosurgerySouthwest HospitalChongqingChina
| | - Jian Hu
- Department of Cancer BiologyThe University of Texas M. D. Anderson Cancer CenterHoustonTXUSA
| | | | - Haoqiang Ying
- Department of Molecular and Cellular OncologyThe University of Texas M. D. Anderson Cancer CenterHoustonTXUSA
| | - Jihye Paik
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
| | | | - Hongwu Zheng
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
176
|
Le Nguyen KD, Lin J, Algoe SB, Brantley MM, Kim SL, Brantley J, Salzberg S, Fredrickson BL. Loving-kindness meditation slows biological aging in novices: Evidence from a 12-week randomized controlled trial. Psychoneuroendocrinology 2019; 108:20-27. [PMID: 31185369 DOI: 10.1016/j.psyneuen.2019.05.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022]
Abstract
Combinations of multiple meditation practices have been shown to reduce the attrition of telomeres, the protective caps of chromosomes (Carlson et al., 2015). Here, we probed the distinct effects on telomere length (TL) of mindfulness meditation (MM) and loving-kindness meditation (LKM). Midlife adults (N = 142) were randomized to be in a waitlist control condition or to learn either MM or LKM in a 6-week workshop. Telomere length was assessed 2 weeks before the start of the workshops and 3 weeks after their termination. After controlling for appropriate demographic covariates and baseline TL, we found TL decreased significantly in the MM group and the control group, but not in the LKM group. There was also significantly less TL attrition in the LKM group than the control group. The MM group showed changes in TL that were intermediate between the LKM and control groups yet not significantly different from either. Self-reported emotions and practice intensity (duration and frequency) did not mediate these observed group differences. This study is the first to disentangle the effects of LKM and MM on TL and suggests that LKM may buffer telomere attrition.
Collapse
Affiliation(s)
- Khoa D Le Nguyen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB #3270, Chapel Hill, NC, 27599, USA
| | - Jue Lin
- Department of Biochemistry & Biophysics, University of California, 600 16th St, San Francisco, CA, 94158, USA
| | - Sara B Algoe
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB #3270, Chapel Hill, NC, 27599, USA
| | | | - Sumi L Kim
- Office of Religious Life, Duke University, Durham, NC, USA
| | - Jeffrey Brantley
- Duke Integrative Medicine, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | | | - Barbara L Fredrickson
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB #3270, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
177
|
He G, Song T, Zhang Y, Chen X, Xiong W, Chen H, Sun C, Zhao C, Chen Y, Wu H. TERT rs10069690 polymorphism and cancers risk: A meta-analysis. Mol Genet Genomic Med 2019; 7:e00903. [PMID: 31454181 PMCID: PMC6785442 DOI: 10.1002/mgg3.903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Studies have identified that the telomerase reverse transcriptase (TERT) gene polymorphism rs10069690 (C>T) is associated with cancer risk, but the results remain inconclusive. METHODS To provide a more precise estimation of the relationship, we performed a meta-analysis of 45 published studies including 329,035 cases and 730,940 controls. We conducted a search in PubMed, Google Scholar and Web of Science to select studies on the association between rs10069690 and cancer risk. Stratification by ethnicity, cancer type, cancers' classification, source of control, sample size, and genotype method was used to explore the source of heterogeneity. The pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were evaluated using random effects models. Sensitivity, publication bias, false-positive report probability (FPRP) and statistical power were also assessed. RESULTS The result demonstrated that rs10069690 was significantly associated with an increased risk of cancer overall (OR = 1.09, 95% CI: 1.06-1.12, p < .001) under the allele model. Stratification analysis revealed an increased cancer risk in subgroups of breast cancer, ovarian cancer, lung cancer, thyroid cancer, and renal cell carcinoma (RCC). However, a significantly decreased association was observed in pancreatic cancer in the European population (OR = 0.93,95% CI: 0.87-0.99, p = .031). In the subgroup analysis based on cancer type, no significant association was found in prostate cancer, leukemia, colorectal cancer and glioma. CONCLUSIONS This meta-analysis suggested that the TERT rs10069690 polymorphism may be a risk factor for cancer, especially breast cancer, ovarian cancer, lung cancer, thyroid cancer, and RCC. Further functional studies are warranted to reveal the role of the polymorphism in carcinogenesis.
Collapse
Affiliation(s)
- Guisheng He
- Department of Surgical OncologySecond Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Tao Song
- Department of Surgical OncologySecond Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Yazhen Zhang
- Department of Surgical OncologySecond Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Xiuxiu Chen
- Department of Surgical OncologySecond Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Wei Xiong
- Department of Surgical OncologySecond Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Huamin Chen
- Department of Surgical OncologySecond Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Chuanwei Sun
- Department of Surgical OncologySecond Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Chaoyang Zhao
- Department of Surgical OncologySecond Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Yunjing Chen
- Department of Surgical OncologySecond Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Huangfu Wu
- Department of Surgical OncologySecond Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| |
Collapse
|
178
|
Brown L, García C, Ailshire J. Does Salivary Telomere Length Explain Race/Ethnic Differences in Aging? BIODEMOGRAPHY AND SOCIAL BIOLOGY 2019; 65:351-369. [PMID: 33335644 PMCID: PMC7740300 DOI: 10.1080/19485565.2020.1798736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Telomere length (TL) is a biomarker that can be used to characterize variability in aging and may explain race/ethnic differences in aging. Yet, it remains unclear if TL is related to aging-associated health risks in multi-ethnic populations or if it explains race/ethnic differences in health. We examine whether salivary TL (STL) explains any of the race/ethnic variability in 15 indicators of high-risk biological, physical and cognitive health among 4,074 white, black, and Latinx older adults ages 54+ in the 2008 Health and Retirement Study. TL was assayed from saliva using quantitative PCR (T/S ratio). Decomposition analyses from logistic regression models show variation in STL does not account for any of the observed race/ethnic differences health. In age-adjusted, race-stratified models, STL was associated with HDL, total cholesterol, and lung function among whites, but was not associated with any markers of health among black or Latinx groups. In this diverse national sample of older adults, STL does not account for race/ethnic differences in late life health, is associated with relatively few indicators of health among whites, and is not associated with indicators of health among black or Latinx groups. STL may not be a useful biomarker for understanding racial/ethnic differences in population aging among older adults.
Collapse
Affiliation(s)
- Lauren Brown
- Population Studies Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Catherine García
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jennifer Ailshire
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
179
|
Louzon M, Coeurdassier M, Gimbert F, Pauget B, de Vaufleury A. Telomere dynamic in humans and animals: Review and perspectives in environmental toxicology. ENVIRONMENT INTERNATIONAL 2019; 131:105025. [PMID: 31352262 DOI: 10.1016/j.envint.2019.105025] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Telomeres (TLs) play major roles in stabilizing the genome and are usually shortened with ageing. The maintenance of TLs is ensured by two mechanisms involving telomerase (TA) enzyme and alternative lengthening telomeres (ALT). TL shortening and/or TA inhibition have been related to health effects on organisms (leading to reduced reproductive lifespan and survival), suggesting that they could be key processes in toxicity mechanisms (at molecular and cellular levels) and relevant as an early warning of exposure and effect of chemicals on human health and animal population dynamics. Consequently, a critical analysis of knowledge about relationships between TL dynamic and environmental pollution is essential to highlight the relevance of TL measurement in environmental toxicology. The first objective of this review is to provide a survey on the basic knowledge about TL structure, roles, maintenance mechanisms and causes of shortening in both vertebrates (including humans) and invertebrates. Overall, TL length decreases with ageing but some unexpected exceptions are reported (e.g., in species with different lifespans, such as the nematode Caenorhabditis elegans or the crustacean Homarus americanus). Inconsistent results reported in various biological groups or even between species of the same genus (e.g., the microcrustacean Daphnia sp.) indicate that the relation usually proposed between TL shortening and a decrease in TA activity cannot be generalized and depends on the species, stage of development or lifespan. Although the scientific literature provides evidence of the effect of ageing on TL shortening, much less information on the relationships between shortening, maintenance of TLs, influence of other endogenous and environmental drivers, including exposure to chemical pollutants, is available, especially in invertebrates. The second objective of this review is to connect knowledge on TL dynamic and exposure to contaminants. Most of the studies published on humans rely on correlative epidemiological approaches and few in vitro experiments. They have shown TL attrition when exposed to contaminants, such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), pesticides and metallic elements (ME). In other vertebrates, the studies we found deals mainly with birds and, overall, report a disturbance of TL dynamic consecutively to exposure to chemicals, including metals and organic compounds. In invertebrates, no data are available and the potential of TL dynamic in environmental risk assessment remains to be explored. On the basis of the main gaps identified some research perspectives (e.g., impact of endogenous and environmental drivers, dose response effects, link between TL length, TA activity, longevity and ageing) are proposed to better understand the potential of TL and TA measurements in humans and animals in environmental toxicology.
Collapse
Affiliation(s)
- Maxime Louzon
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Michael Coeurdassier
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Frédéric Gimbert
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Benjamin Pauget
- TESORA, Le Visium, 22 avenue Aristide Briand, 94110 Arcueil, France
| | - Annette de Vaufleury
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France.
| |
Collapse
|
180
|
Lee TH, Jung WS, Cho HS, Lee MG. Effects of 16 weeks’ combined exercise on insulin resistance, inflammatory markers, oxidative stress, and leukocyte telomere length in elderly women with type 2 DM. KOREAN JOURNAL OF SPORT SCIENCE 2019; 30:470-485. [DOI: 10.24985/kjss.2019.30.3.470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2025]
Abstract
Purpose The purpose of this study was to examine the effects of 16 weeks’ combined exercise training on insulin resistance, inflammatory markers, oxidative stress, leukocyte telomere length, body composition, and daily living fitness in elderly women with type 2 diabetes mellitus (DM). Methods Twenty-eight participants were randomly assigned into one of two groups, i.e., exercise training group (EX: n=14) and control group (CON: n=14). Subjects in EX participated in 3 sessions of 60 min-combined exercise for 16 weeks, whereas subjects in CON were asked to maintain their normal life pattern during the same period. The variables regarding insulin resistance, inflammatory markers, oxidative stress, leukocyte telomere length, body composition, and daily living fitness were measured and compared between two groups as well as between pre-post test utilizing a repeated two-way ANOVA. Results Main results were as follows: 1) Fasting plasma insulin and HOMA-IR tended to decrease in EX, whereas increased significantly in CON. 2) IL-6, TNF-α, hs-CRP decreased in EX, but the changes were not statistically significant. 3) MDA increased significantly and GPx decreased significantly in both EX and CON. 4) Leukocyte telomere length increased significantly in EX. 5) Fat-free mass increased in EX, whereas fat mass and percent body fat decreased significantly in EX. 6) Arm curl, chair stand, sit & reach, tandem test, 10m walking speed, and up & go improved significantly in EX. Conclusion It was concluded that the combined exercise for 16 weeks had a positive effect on improving insulin resistance, increasing leukocyte telomere length, as well as enhancing body composition and daily living fitness in elderly women with type 2 diabetes.
Collapse
|
181
|
Parolini M, Possenti CD, Caprioli M, Rubolini D, Romano A, Saino N. Egg Testosterone Differentially Affects Telomere Length in Somatic Tissues of Yellow-Legged Gull Embryos. Physiol Biochem Zool 2019; 92:459-462. [DOI: 10.1086/705037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
182
|
Lee Y, Sun D, Ori AP, Lu AT, Seeboth A, Harris SE, Deary IJ, Marioni RE, Soerensen M, Mengel-From J, Hjelmborg J, Christensen K, Wilson JG, Levy D, Reiner AP, Chen W, Li S, Harris JR, Magnus P, Aviv A, Jugessur A, Horvath S. Epigenome-wide association study of leukocyte telomere length. Aging (Albany NY) 2019; 11:5876-5894. [PMID: 31461406 PMCID: PMC6738430 DOI: 10.18632/aging.102230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/18/2019] [Indexed: 12/24/2022]
Abstract
Telomere length is associated with age-related diseases and is highly heritable. It is unclear, however, to what extent epigenetic modifications are associated with leukocyte telomere length (LTL). In this study, we conducted a large-scale epigenome-wide association study (EWAS) of LTL using seven large cohorts (n=5,713) - the Framingham Heart Study, the Jackson Heart Study, the Women's Health Initiative, the Bogalusa Heart Study, the Lothian Birth Cohorts of 1921 and 1936, and the Longitudinal Study of Aging Danish Twins. Our stratified analysis suggests that EWAS findings for women of African ancestry may be distinct from those of three other groups: males of African ancestry, and males and females of European ancestry. Using a meta-analysis framework, we identified DNA methylation (DNAm) levels at 823 CpG sites to be significantly associated (P<1E-7) with LTL after adjusting for age, sex, ethnicity, and imputed white blood cell counts. Functional enrichment analyses revealed that these CpG sites are near genes that play a role in circadian rhythm, blood coagulation, and wound healing. Weighted correlation network analysis identified four co-methylation modules associated with LTL, age, and blood cell counts. Overall, this study reveals highly significant relationships between two hallmarks of aging: telomere biology and epigenetic changes.
Collapse
Affiliation(s)
- Yunsung Lee
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Department of Epidemiology, Tulane University, New Orleans, LA 70118, USA
| | - Anil P.S. Ori
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anne Seeboth
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Jacob Hjelmborg
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA 20892, USA
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Seattle, MD 20892, USA
| | - Alex P. Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University, New Orleans, LA 70118, USA
| | - Shengxu Li
- Children’s Minnesota Research Institute, Children’s Hospitals and Clinics of Minnesota, Minneapolis, MN 55404, USA
| | - Jennifer R. Harris
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Abraham Aviv
- Center of Development and Aging, New Jersey Medical School, Rutgers State University of New Jersey, Newark, NJ 07103, USA
| | - Astanand Jugessur
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
183
|
Marión RM, Montero JJ, López de Silanes I, Graña-Castro O, Martínez P, Schoeftner S, Palacios-Fábrega JA, Blasco MA. TERRA regulate the transcriptional landscape of pluripotent cells through TRF1-dependent recruitment of PRC2. eLife 2019; 8:44656. [PMID: 31426913 PMCID: PMC6701927 DOI: 10.7554/elife.44656] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that regulate pluripotency are still largely unknown. Here, we show that Telomere Repeat Binding Factor 1 (TRF1), a component of the shelterin complex, regulates the genome-wide binding of polycomb and polycomb H3K27me3 repressive marks to pluripotency genes, thereby exerting vast epigenetic changes that contribute to the maintenance of mouse ES cells in a naïve state. We further show that TRF1 mediates these effects by regulating TERRA, the lncRNAs transcribed from telomeres. We find that TERRAs are enriched at polycomb and stem cell genes in pluripotent cells and that TRF1 abrogation results in increased TERRA levels and in higher TERRA binding to those genes, coincidental with the induction of cell-fate programs and the loss of the naïve state. These results are consistent with a model in which TRF1-dependent changes in TERRA levels modulate polycomb recruitment to pluripotency and differentiation genes. These unprecedented findings explain why TRF1 is essential for the induction and maintenance of pluripotency.
Collapse
Affiliation(s)
- Rosa María Marión
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Juan J Montero
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Isabel López de Silanes
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Stefan Schoeftner
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | | | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| |
Collapse
|
184
|
Wang S, Chang E, Byanyima P, Huang P, Sanyu I, Musisi E, Sessolo A, Davis JL, Worodria W, Huang L, Lin J. Association between common telomere length genetic variants and telomere length in an African population and impacts of HIV and TB. J Hum Genet 2019; 64:1033-1040. [PMID: 31388112 DOI: 10.1038/s10038-019-0646-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/29/2023]
Abstract
Prior studies in predominantly European (Caucasian) populations have discovered common genetic variants (single nucleotide polymorphisms, SNPs) associated with leukocyte telomere length (LTL), but whether these same variants affect LTL in non-Caucasian populations are largely unknown. We investigated whether six genetic variants previously associated with LTL (TERC (rs10936599), TERT (rs2736100), NAF1 (7675998), OBFC1 (rs9420907), ZNF208 (rs8105767), and RTEL1 (rs755017)) are correlated with telomere length (TL) in peripheral blood mononuclear cells (PBMCs) in a cohort of Africans living with and without HIV and undergoing evaluation for tuberculosis (TB). We found OBFC1 and the genetic sum score of the effect alleles across all six loci to be associated with shorter TL (adjusted for age, gender, HIV status, and smoking pack-years (p < 0.02 for both OBFC1 and the genetic sum score). In an analysis stratified by HIV status, the genetic sum score is associated with LTL in both groups with and without HIV. On the contrary, a stratified analysis according to TB status revealed that in the TB-positive subgroup, the genetic sum score is not associated with LTL, whereas the relationship remains in the TB-negative subgroup. The different impacts of HIV and TB on the association between the genetic sum score and LTL indicate different modes of modification and suggest that the results found in this cohort with HIV and TB participants may not be applied to the African general population. Future studies need to carefully consider these confounding factors.
Collapse
Affiliation(s)
- Stephanie Wang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Emily Chang
- HIV, Infectious Diseases, and Global Medicine Division, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Peter Huang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ingvar Sanyu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Emmanuel Musisi
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Biochemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Abdul Sessolo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - J Lucian Davis
- Epidemiology of Microbial Diseases, Yale School of Public Health and Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - William Worodria
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Makerere University-University of California San Francisco (MU-UCSF) Research Collaboration, Kampala, Uganda
| | - Laurence Huang
- HIV, Infectious Diseases, and Global Medicine Division, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,Makerere University-University of California San Francisco (MU-UCSF) Research Collaboration, Kampala, Uganda.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
185
|
Xavier MJ, Roman SD, Aitken RJ, Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 2019; 25:518-540. [DOI: 10.1093/humupd/dmz017] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/19/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
BACKGROUND
A defining feature of sexual reproduction is the transmission of genomic information from both parents to the offspring. There is now compelling evidence that the inheritance of such genetic information is accompanied by additional epigenetic marks, or stable heritable information that is not accounted for by variations in DNA sequence. The reversible nature of epigenetic marks coupled with multiple rounds of epigenetic reprogramming that erase the majority of existing patterns have made the investigation of this phenomenon challenging. However, continual advances in molecular methods are allowing closer examination of the dynamic alterations to histone composition and DNA methylation patterns that accompany development and, in particular, how these modifications can occur in an individual’s germline and be transmitted to the following generation. While the underlying mechanisms that permit this form of transgenerational inheritance remain unclear, it is increasingly apparent that a combination of genetic and epigenetic modifications plays major roles in determining the phenotypes of individuals and their offspring.
OBJECTIVE AND RATIONALE
Information pertaining to transgenerational inheritance was systematically reviewed focusing primarily on mammalian cells to the exclusion of inheritance in plants, due to inherent differences in the means by which information is transmitted between generations. The effects of environmental factors and biological processes on both epigenetic and genetic information were reviewed to determine their contribution to modulating inheritable phenotypes.
SEARCH METHODS
Articles indexed in PubMed were searched using keywords related to transgenerational inheritance, epigenetic modifications, paternal and maternal inheritable traits and environmental and biological factors influencing transgenerational modifications. We sought to clarify the role of epigenetic reprogramming events during the life cycle of mammals and provide a comprehensive review of how the genomic and epigenomic make-up of progenitors may determine the phenotype of its descendants.
OUTCOMES
We found strong evidence supporting the role of DNA methylation patterns, histone modifications and even non-protein-coding RNA in altering the epigenetic composition of individuals and producing stable epigenetic effects that were transmitted from parents to offspring, in both humans and rodent species. Multiple genomic domains and several histone modification sites were found to resist demethylation and endure genome-wide reprogramming events. Epigenetic modifications integrated into the genome of individuals were shown to modulate gene expression and activity at enhancer and promoter domains, while genetic mutations were shown to alter sequence availability for methylation and histone binding. Fundamentally, alterations to the nuclear composition of the germline in response to environmental factors, ageing, diet and toxicant exposure have the potential to become hereditably transmitted.
WIDER IMPLICATIONS
The environment influences the health and well-being of progeny by working through the germline to introduce spontaneous genetic mutations as well as a variety of epigenetic changes, including alterations in DNA methylation status and the post-translational modification of histones. In evolutionary terms, these changes create the phenotypic diversity that fuels the fires of natural selection. However, rather than being adaptive, such variation may also generate a plethora of pathological disease states ranging from dominant genetic disorders to neurological conditions, including spontaneous schizophrenia and autism.
Collapse
Affiliation(s)
- Miguel João Xavier
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shaun D Roman
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
186
|
Maternal pro-inflammatory state during pregnancy and newborn leukocyte telomere length: A prospective investigation. Brain Behav Immun 2019; 80:419-426. [PMID: 30974172 PMCID: PMC7954441 DOI: 10.1016/j.bbi.2019.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/14/2019] [Accepted: 04/06/2019] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Telomere biology plays a fundamental role in maintaining the integrity of the genome and cell, and shortened telomeres have been linked to several age-related diseases. The initial (newborn) telomere length (TL) represents a critically important feature of the telomere biology system. Exposure to a variety of adverse prenatal conditions such as maternal stress, suboptimal diet, obesity, and obstetric complications, is associated with shorter offspring TL at birth and in adult life. Many, if not all, of these exposures are believed to have an inflammatory component. In this context, stress-related immunological processes during pregnancy may constitute a potential additional biological pathway because they can affect telomere length and telomerase activity via transcriptions factors such as cyclic adenosine monophosphate-dependent transcription factor (ATF7) and nuclear factor-kappa B (NF-κB). Thus, in the present study we examined the hypothesis that maternal pro-inflammatory state across pregnancy, operationalized as the balance between tumor necrosis factor (TNF)-α, a major pro-inflammatory cytokine, and interleukin-10 (IL-10), the major anti-inflammatory cytokine, is associated with newborn leukocyte telomere length (LTL) at birth. METHODS AND MATERIALS Participants were healthy women (N = 112) recruited in early pregnancy. Concentrations of TNF- α and IL-10 were quantified in early, mid and late pregnancy from maternal blood samples. Telomere length was assessed in newborn blood samples soon after birth. RESULTS After adjusting for maternal age, maternal pre-pregnancy BMI, birth weight percentile, and infant sex, a higher mean TNF-α/IL-10 ratio across pregnancy was significantly associated with shorter newborn TL (β = -.205, p = .030). Newborn TL was, on average, 10% shorter in offspring of women in the upper compared to lower quartile of the TNF-α/IL-10 ratio during pregnancy. DISCUSSION These findings provide new evidence in humans for a potential "programming" mechanism linking maternal systemic pro-inflammatory processes during pregnancy with the initial (newborn) setting of her offspring's telomere system.
Collapse
|
187
|
Molina-Molina M. Telomere Shortening Is behind the Harm of Immunosuppressive Therapy in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2019; 200:274-275. [PMID: 30624965 PMCID: PMC6680301 DOI: 10.1164/rccm.201812-2330ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Maria Molina-Molina
- 1Respiratory DepartmentBellvitge University Hospital-Bellvitge Institute for Biomedical ResearchBarcelona, Spainand
- 2CIBER of Respiratory DiseasesMadrid, Spain
| |
Collapse
|
188
|
Benetos A, Aviv A. Ancestry, Telomere Length, and Atherosclerosis Risk. ACTA ACUST UNITED AC 2019; 10:CIRCGENETICS.117.001718. [PMID: 28615296 DOI: 10.1161/circgenetics.117.001718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Athanase Benetos
- From the Département de Médecine Gériatrique, CHRU de Nancy, The Institut national de la santé et de la recherche médicale, Université de Lorraine, France (A.B.); and Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark (A.A.).
| | - Abraham Aviv
- From the Département de Médecine Gériatrique, CHRU de Nancy, The Institut national de la santé et de la recherche médicale, Université de Lorraine, France (A.B.); and Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark (A.A.)
| |
Collapse
|
189
|
Mazzolini R, Gonzàlez N, Garcia-Garijo A, Millanes-Romero A, Peiró S, Smith S, García de Herreros A, Canudas S. Snail1 transcription factor controls telomere transcription and integrity. Nucleic Acids Res 2019; 46:146-158. [PMID: 29059385 PMCID: PMC5758914 DOI: 10.1093/nar/gkx958] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Besides controlling epithelial-to-mesenchymal transition (EMT) and cell invasion, the Snail1 transcriptional factor also provides cells with cancer stem cell features. Since telomere maintenance is essential for stemness, we have examined the control of telomere integrity by Snail1. Fluorescence in situ hybridization (FISH) analysis indicates that Snail1-depleted mouse mesenchymal stem cells (MSC) have both a dramatic increase of telomere alterations and shorter telomeres. Remarkably, Snail1-deficient MSC present higher levels of both telomerase activity and the long non-coding RNA called telomeric repeat-containing RNA (TERRA), an RNA that controls telomere integrity. Accordingly, Snail1 expression downregulates expression of the telomerase gene (TERT) as well as of TERRA 2q, 11q and 18q. TERRA and TERT are transiently downregulated during TGFβ-induced EMT in NMuMG cells, correlating with Snail1 expression. Global transcriptome analysis indicates that ectopic expression of TERRA affects the transcription of some genes induced during EMT, such as fibronectin, whereas that of TERT does not modify those genes. We propose that Snail1 repression of TERRA is required not only for telomere maintenance but also for the expression of a subset of mesenchymal genes.
Collapse
Affiliation(s)
- Rocco Mazzolini
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Núria Gonzàlez
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Andrea Garcia-Garijo
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Alba Millanes-Romero
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Sandra Peiró
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Susan Smith
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Pathology, New York University School of Medicine, New York University, USA
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sílvia Canudas
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Unitat de Nutrició Humana, Facultat de Medicina i Ciències de la Salut, Institut d'Investigació Sanitaria Pere Virgili (IISPV), Reus, Spain.,CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
190
|
Heim CM, Entringer S, Buss C. Translating basic research knowledge on the biological embedding of early-life stress into novel approaches for the developmental programming of lifelong health. Psychoneuroendocrinology 2019; 105:123-137. [PMID: 30578047 PMCID: PMC6561839 DOI: 10.1016/j.psyneuen.2018.12.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/22/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
This review integrates scientific knowledge obtained over the past few decades on the biological mechanisms that contribute to the profound association between exposure to early adversity, including childhood trauma and prenatal stress, and the lifelong elevated risk to develop a broad range of diseases. We further discuss insights into gene-environment interactions moderating the association between early adversity and disease manifestation and we discuss the role of epigenetic and other molecular processes in the biological embedding of early adversity. Based on these findings, we propose potential mechanisms that may contribute to the intergenerational transmission of risk related to early adversity from the mother to the fetus. Finally, we argue that basic research knowledge on the biological embedding of early adversity must now be translated into novel intervention strategies that are mechanism-driven and sensitive to developmental timing. Indeed, to date, there are no diagnostic biomarkers of risk or mechanism-informed interventions that we can offer to victims of early adversity in order to efficiently prevent or reverse adverse health outcomes. Such translational efforts can be expected to have significant impact on both clinical practice and the public health system, and will promote precision medicine in pediatrics and across the lifespan.
Collapse
Affiliation(s)
- Christine M. Heim
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany,Department of Biobehavioral Health, College of Health & Human Development, The Pennsylvania State University, University Park, PA, USA,Corresponding authors at: Institute of Medical Psychology, Charité Universitätsmedizin Berlin, Luisenstr. 57, 10117 Berlin, Germany., (C.M. Heim), (S. Entringer), (C. Buss)
| | - Sonja Entringer
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; Development, Health, and Disease Research Program, University of California Irvine, Orange, CA, USA.
| | - Claudia Buss
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; Development, Health, and Disease Research Program, University of California Irvine, Orange, CA, USA.
| |
Collapse
|
191
|
Nie J, Li J, Cheng L, Deng Y, Li Y, Yan Z, Duan L, Niu Q, Tang D. Prenatal polycyclic aromatic hydrocarbons metabolites, cord blood telomere length, and neonatal neurobehavioral development. ENVIRONMENTAL RESEARCH 2019; 174:105-113. [PMID: 31055168 DOI: 10.1016/j.envres.2019.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/27/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Prenatal exposure to polycyclic aromatic hydrocarbon (PAH) is a potential risk factor for child neurobehavioral development. Telomere length (TL) has important implications for health over the life course. OBJECTIVE In this study, we aimed to investigate whether prenatal urinary PAH metabolites were associated with adverse neonatal neurobehavioral development and altered cord blood TL and to explore whether the change of TL was a predictor of neonatal neurobehavioral development. METHOD We enrolled 283 nonsmoking pregnant women in Taiyuan city. Eleven PAH metabolites were measured in maternal urine samples. TL in cord blood was measured by real time quantitative polymerase chain reaction. Neonatal behavioral neurological assessment (NBNA) tests were conducted when the infants were three days old. Multiple linear regression models were used to analyze the associations of maternal urinary PAH metabolites with NBNA scores and cord blood TL, and restricted cubic spline models were further used to examine the shapes of dose-response relationships. A mediation analysis was also conducted. RESULT We observed dose-response associations of maternal urinary 2-hydroxyfluorene (2-OHFlu) and 2-hydroxyphenanthrene (2-OH Phe) with decreased active tone scores, sum of NBNA scores, and cord blood TL (P for trend<0.05). Each 1 unit increase in urinary levels of Ln (2-OH Flu) or Ln (2-OH Phe) was associated with a 0.092 or 0.135 decrease in the active tone scores and a 0.174 or 0.199 decrease in the sum of NBNA scores. Mediation analysis showed TL could explained 21.74% of the effect of sum of NBNA scores change related to prenatal exposure to 2-OH Phe (P for mediator = 0.047). CONCLUSION Our data indicates maternal urinary specific PAH metabolites are inversely associated with neonatal neurobehavioral development and cord blood TL. TL mediates the associations of 2-OH Phe with neonatal neurobehavioral development and partly explains the effect of 2-OH Phe on neonatal neurobehavioral development.
Collapse
Affiliation(s)
- Jisheng Nie
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722W. 168th Street, New York, NY, 10032, USA.
| | - Jinyu Li
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China.
| | - Lin Cheng
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China.
| | - Yunjun Deng
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China.
| | - Yanning Li
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China.
| | - Zhiwei Yan
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China.
| | - Lei Duan
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China.
| | - Qiao Niu
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China.
| | - Deliang Tang
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722W. 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
192
|
Shin YA. How Does Obesity and Physical Activity Affect Aging?: Focused on Telomere as a Biomarker of Aging. J Obes Metab Syndr 2019; 28:92-104. [PMID: 31294341 PMCID: PMC6604845 DOI: 10.7570/jomes.2019.28.2.92] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity is known to continuously increase systemic inflammation and oxidative stress, leading to shorter telomere length. However, research regarding the correlation between physical activity, exercise, obesity, and telomere length is not consistent. Therefore, this review aims to summarize the effects of obesity, physical activity, and exercise on telomere length. Our search for effects of obesity, physical activity, and exercise, on telomeres was conducted using three computerized databases: Medline, PubMed, and EBSCO. Keywords in the search were “physical activity, exercise and obesity,” “physical activity, exercise and telomere,” and “obesity and telomere.” Improving chronic inflammation and oxidative stress levels can prevent telomere attrition due to obesity. In addition, differences in the anti-aging effects of physical activity and exercise are shown in the post-middle-age period, when telomere length changes, rather than in past exercise habits. Maintaining high cardiorespiratory fitness levels through regular exercise and physical activity in the post-middle-age period minimizes obesity-related diseases and helps maintain telomere length, which is an index of cell senescence.
Collapse
Affiliation(s)
- Yun-A Shin
- Department of Prescription and Rehabilitation of Exercise, College of Sport Science, Dankook University, Cheonan, Korea
| |
Collapse
|
193
|
A telomerase with novel non-canonical roles: TERT controls cellular aggregation and tissue size in Dictyostelium. PLoS Genet 2019; 15:e1008188. [PMID: 31237867 PMCID: PMC6592521 DOI: 10.1371/journal.pgen.1008188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/10/2019] [Indexed: 11/19/2022] Open
Abstract
Telomerase, particularly its main subunit, the reverse transcriptase, TERT, prevents DNA erosion during eukaryotic chromosomal replication, but also has poorly understood non-canonical functions. Here, in the model social amoeba Dictyostelium discoideum, we show that the protein encoded by tert has telomerase-like motifs, and regulates, non-canonically, important developmental processes. Expression levels of wild-type (WT) tert were biphasic, peaking at 8 and 12 h post-starvation, aligning with developmental events, such as the initiation of streaming (~7 h) and mound formation (~10 h). In tert KO mutants, however, aggregation was delayed until 16 h. Large, irregular streams formed, then broke up, forming small mounds. The mound-size defect was not induced when a KO mutant of countin (a master size-regulating gene) was treated with TERT inhibitors, but anti-countin antibodies did rescue size in the tert KO. Although, conditioned medium (CM) from countin mutants failed to rescue size in the tert KO, tert KO CM rescued the countin KO phenotype. These and additional observations indicate that TERT acts upstream of smlA/countin: (i) the observed expression levels of smlA and countin, being respectively lower and higher (than WT) in the tert KO; (ii) the levels of known size-regulation intermediates, glucose (low) and adenosine (high), in the tert mutant, and the size defect's rescue by supplemented glucose or the adenosine-antagonist, caffeine; (iii) the induction of the size defect in the WT by tert KO CM and TERT inhibitors. The tert KO's other defects (delayed aggregation, irregular streaming) were associated with changes to cAMP-regulated processes (e.g. chemotaxis, cAMP pulsing) and their regulatory factors (e.g. cAMP; acaA, carA expression). Overexpression of WT tert in the tert KO rescued these defects (and size), and restored a single cAMP signaling centre. Our results indicate that TERT acts in novel, non-canonical and upstream ways, regulating key developmental events in Dictyostelium.
Collapse
|
194
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
195
|
Gillis JC, Chang SC, Wang W, Simon NM, Normand SL, Rosner BA, Blacker D, DeVivo I, Okereke OI. The relation of telomere length at midlife to subsequent 20-year depression trajectories among women. Depress Anxiety 2019; 36:565-575. [PMID: 30958913 PMCID: PMC6548605 DOI: 10.1002/da.22892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Telomeres cap and protect DNA but shorten with each somatic cell division. Aging and environmental and lifestyle factors contribute to the speed of telomere attrition. Current evidence suggests a link between relative telomere length (RTL) and depression but the directionality of the relationship remains unclear. We prospectively examined associations between RTL and subsequent depressive symptom trajectories. METHODS Among 8,801 women of the Nurses' Health Study, depressive symptoms were measured every 4 years from 1992 to 2012; group-based trajectories of symptoms were identified using latent class growth-curve analysis. Multinomial logistic models were used to relate midlife RTLs to the probabilities of assignment to subsequent depressive symptom trajectory groups. RESULTS We identified four depressive symptom trajectory groups: minimal depressive symptoms (62%), worsening depressive symptoms (14%), improving depressive symptoms (19%), and persistent-severe depressive symptoms (5%). Longer midlife RTLs were related to significantly lower odds of being in the worsening symptoms trajectory versus minimal trajectory but not to other trajectories. In comparison with being in the minimal symptoms group, the multivariable-adjusted odds ratio of being in the worsening depressive symptoms group was 0.78 (95% confidence interval, 0.62-0.97; p = 0.02), for every standard deviation increase in baseline RTL. CONCLUSIONS In this large prospective study of generally healthy women, longer telomeres at midlife were associated with significantly lower risk of a subsequent trajectory of worsening mood symptoms over 20 years. The results raise the possibility of telomere shortening as a novel contributing factor to late-life depression.
Collapse
Affiliation(s)
- J. Cai Gillis
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA,,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Shun-Chiao Chang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Wei Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Naomi M. Simon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA,Department of Psychiatry, NYU School of Medicine, One Park Avenue, New York NY 10016
| | - Sharon-Lise Normand
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA,,Department of Health Care Policy, Harvard Medical School, 180 Longwood Avenue, Boston, MA, 02115, USA
| | - Bernard A. Rosner
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA,,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Deborah Blacker
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Immaculata DeVivo
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Olivia I. Okereke
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA,,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA,,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
196
|
Eckbo N, Le Bohec C, Planas-Bielsa V, Warner NA, Schull Q, Herzke D, Zahn S, Haarr A, Gabrielsen GW, Borgå K. Individual variability in contaminants and physiological status in a resident Arctic seabird species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:191-199. [PMID: 30889502 DOI: 10.1016/j.envpol.2019.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/08/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
While migratory seabirds dominate ecotoxicological studies within the Arctic, there is limited knowledge about exposure and potential effects from circulating legacy and emerging contaminants in species who reside in the high-Arctic all year round. Here, we focus on the case of the Mandt's Black guillemot (Cepphus grylle mandtii) breeding at Kongsfjorden, Svalbard (79.00°N, 11.66°E) and investigate exposure to legacy and emerging contaminants in relation to individual physiological status, i.e. body condition, oxidative stress and relative telomere length. Despite its benthic-inshore foraging strategy, the Black guillemot displayed overall similar contaminant concentrations in blood during incubation (∑PCB11 (15.7 ng/g w.w.) > ∑PFAS5 (9.9 ng/g w.w.) > ∑Pesticides9 (6.7 ng/g w.w.) > ∑PBDE4 (2.7 ng/g w.w.), and Hg (0.3 μg/g d.w.) compared to an Arctic migratory seabird in which several contaminant-related stress responses have been observed. Black guillemots in poorer condition tended to display higher levels of contaminants, higher levels of reactive oxygen metabolites, lower plasmatic antioxidant capacity, and shorter telomere lengths; however the low sample size restrict any strong conclusions. Nevertheless, our data suggests that nonlinear relationships with a threshold may exist between accumulated contaminant concentrations and physiological status of the birds. These findings were used to build a hypothesis to be applied in future modelling for describing how chronic exposure to contaminants may be linked to telomere dynamics.
Collapse
Affiliation(s)
- Norith Eckbo
- University of Oslo, Department of Biosciences, Problemveien 7, 0315, Oslo, Norway.
| | - Céline Le Bohec
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue Becquerel, F-67000, Strasbourg, France; Centre Scientifique de Monaco - Département de Biologie Polaire, 8, quai Antoine 1er, MC 98000, Monaco, Monaco; Laboratoire International Associé LIA 647 BioSensib (CSM-CNRS-Unistra), 8, quai Antoine 1er, MC 98000, Monaco, Monaco
| | - Victor Planas-Bielsa
- Centre Scientifique de Monaco - Département de Biologie Polaire, 8, quai Antoine 1er, MC 98000, Monaco, Monaco; Laboratoire International Associé LIA 647 BioSensib (CSM-CNRS-Unistra), 8, quai Antoine 1er, MC 98000, Monaco, Monaco
| | - Nicholas A Warner
- NILU, Norwegian Institute for Air Research, Fram Centre, Hjalmar Johansens Gate 14, 9007, Tromsø, Norway
| | - Quentin Schull
- MARBEC, Ifremer, Université de Montpellier, CNRS, IRD, Avenue Jean Monnet CS 30171, 34203, Sète, France
| | - Dorte Herzke
- NILU, Norwegian Institute for Air Research, Fram Centre, Hjalmar Johansens Gate 14, 9007, Tromsø, Norway
| | - Sandrine Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue Becquerel, F-67000, Strasbourg, France
| | - Ane Haarr
- University of Oslo, Department of Biosciences, Problemveien 7, 0315, Oslo, Norway
| | - Geir W Gabrielsen
- Norwegian Polar Institute, Fram Centre, Hjalmar Johansens Gate 14, 9007, Tromsø, Norway
| | - Katrine Borgå
- University of Oslo, Department of Biosciences, Problemveien 7, 0315, Oslo, Norway
| |
Collapse
|
197
|
LncRNAs Regulatory Networks in Cellular Senescence. Int J Mol Sci 2019; 20:ijms20112615. [PMID: 31141943 PMCID: PMC6600251 DOI: 10.3390/ijms20112615] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of transcripts longer than 200 nucleotides with no open reading frame. They play a key role in the regulation of cellular processes such as genome integrity, chromatin organization, gene expression, translation regulation, and signal transduction. Recent studies indicated that lncRNAs are not only dysregulated in different types of diseases but also function as direct effectors or mediators for many pathological symptoms. This review focuses on the current findings of the lncRNAs and their dysregulated signaling pathways in senescence. Different functional mechanisms of lncRNAs and their downstream signaling pathways are integrated to provide a bird’s-eye view of lncRNA networks in senescence. This review not only highlights the role of lncRNAs in cell fate decision but also discusses how several feedback loops are interconnected to execute persistent senescence response. Finally, the significance of lncRNAs in senescence-associated diseases and their therapeutic and diagnostic potentials are highlighted.
Collapse
|
198
|
Bürgin D, O'Donovan A, d'Huart D, di Gallo A, Eckert A, Fegert J, Schmeck K, Schmid M, Boonmann C. Adverse Childhood Experiences and Telomere Length a Look Into the Heterogeneity of Findings-A Narrative Review. Front Neurosci 2019; 13:490. [PMID: 31191214 PMCID: PMC6541108 DOI: 10.3389/fnins.2019.00490] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Adverse childhood experiences (ACEs) have been associated with poor mental and somatic health. Accumulating evidence indicates that accelerated biological aging-indexed by altered telomere-related markers-may contribute to associations between ACEs and negative long-term health outcomes. Telomeres are repeated, non-coding deoxyribonucleic acid (DNA) sequences at the end of chromosomes. Telomeres shorten during repeated cell divisions over time and are being used as a marker of biological aging. Objectives: The aim of the current paper is to review the literature on the relationship between ACEs and telomere length (TL), with a specific focus on how the heterogeneity of sample and ACEs characteristics lead to varying associations between ACEs and TL. Methods: Multiple databases were searched for relevant English peer-reviewed articles. Thirty-eight papers were found to be eligible for inclusion in the current review. Results: Overall, the studies indicated a negative association between ACEs and TL, although many papers presented mixed findings and about a quarter of eligible studies found no association. Studies with smaller sample sizes more often reported significant associations than studies with larger samples. Also, studies reporting on non-clinical and younger samples more often found associations between ACEs and TL compared to studies with clinical and older samples. Reviewing the included studies based on the "Stressor Exposure Characteristics" recently proposed by Epel et al. (2018) revealed a lack of detailed information regarding ACEs characteristics in many studies. Conclusion: Overall, it is difficult to achieve firm conclusions about associations of ACEs with TL due to the heterogeneity of study and ACE characteristics and the heterogeneity in reported findings. The field would benefit from more detailed descriptions of study samples and measurement of ACEs.
Collapse
Affiliation(s)
- David Bürgin
- Child and Adolescent Psychiatric Clinic, Psychiatric University Hospitals, University of Basel, Basel, Switzerland
| | - Aoife O'Donovan
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Delfine d'Huart
- Child and Adolescent Psychiatric Clinic, Psychiatric University Hospitals, University of Basel, Basel, Switzerland
| | - Alain di Gallo
- Child and Adolescent Psychiatric Clinic, Psychiatric University Hospitals, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Neurobiological Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, University of Basel, Basel, Switzerland
| | - Jörg Fegert
- Child and Adolescent Psychiatry/Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Klaus Schmeck
- Child and Adolescent Psychiatric Clinic, Psychiatric University Hospitals, University of Basel, Basel, Switzerland
| | - Marc Schmid
- Child and Adolescent Psychiatric Clinic, Psychiatric University Hospitals, University of Basel, Basel, Switzerland
| | - Cyril Boonmann
- Child and Adolescent Psychiatric Clinic, Psychiatric University Hospitals, University of Basel, Basel, Switzerland
| |
Collapse
|
199
|
Micronutrient status and leukocyte telomere length in school-age Colombian children. Eur J Nutr 2019; 59:1055-1065. [DOI: 10.1007/s00394-019-01966-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
|
200
|
Exploring telomere length in mother-newborn pairs in relation to exposure to multiple toxic metals and potential modifying effects by nutritional factors. BMC Med 2019; 17:77. [PMID: 30971237 PMCID: PMC6458832 DOI: 10.1186/s12916-019-1309-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/20/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The uterine environment may influence telomere length at birth, which is essential for cellular function, aging, and disease susceptibility over the lifespan. However, little is known about the impact of toxic chemicals on early-life telomeres. Therefore, we assessed the potential impact of multiple toxic metals on relative telomere length (rTL) in the maternal blood, cord blood, and placenta, as well as the potential modifying effects of pro-oxidants. METHOD In a mother-child cohort in northern Argentina (n = 169), we measured multiple toxic metals in the maternal blood or urine collected during late pregnancy, as well as the placenta and cord blood collected at delivery, using inductively coupled plasma mass spectrometry (ICP-MS). We assessed associations of log2-transformed metal concentrations with rTL, measured in maternal and cord blood leukocytes and the placenta by real-time PCR, using multivariable-adjusted linear regression. Additionally, we tested for modifications by antioxidants (zinc, selenium, folate, and vitamin D3). RESULTS Exposure to boron and antimony during pregnancy was associated with shorter maternal rTL, and lithium with longer maternal rTL; a doubling of exposure was associated with changes corresponding to 0.2-0.4 standard deviations (SD) of the rTL. Arsenic concentrations in the placenta (n = 98), blood, and urine were positively associated with placental rTL, about 0.2 SD by doubled arsenic. In the cord blood (n = 88), only lead was associated with rTL (inversely), particularly in boys (p for interaction 0.09). Stratifying by newborn sex showed ten times stronger association in boys (about 0.6 SD) than in girls. The studied antioxidants did not modify the associations, except that with antimony. CONCLUSIONS Elevated exposure to boron, lithium, arsenic, and antimony was associated with maternal or newborn rTL in a tissue-specific, for lead also sex-specific, manner. Nutritional antioxidants did not generally influence the associations.
Collapse
|