151
|
Rodrigues L, Radojčić Redovniković I, Duarte ARC, Matias AA, Paiva A. Low-Phytotoxic Deep Eutectic Systems as Alternative Extraction Media for the Recovery of Chitin from Brown Crab Shells. ACS OMEGA 2021; 6:28729-28741. [PMID: 34746567 PMCID: PMC8567356 DOI: 10.1021/acsomega.1c03402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The versatility of chitin and its derivatives has allowed their utilization in a wide range of applications, from wastewater treatment to pharmaceutical or biomedical industries. However, even though the extraction method used industrially is extremely efficient, it involves the use of strong acids and bases and results in the disposal of large quantities of toxic effluents. Deep eutectic systems (DESs) have emerged as a promising new class of alternative solvents, including for chitin recovery. Yet, the assessment of their toxicity has often been neglected. Therefore, in this work, the phytotoxicity of choline chloride (ChCl)/organic acid-based DESs toward wheat seeds was evaluated by measuring different growth parameters and stress biomarkers. DESs were then explored for the efficient recovery of chitin contained in brown crab shell residues at varying conditions of temperature and processing time as well as with and without water addition. The obtained chitin was then characterized through different analytical techniques and compared to a standard as well as to chitin obtained by a conventional acid/alkaline hydrolysis. Results have shown that by applying a ChCl/lactic acid-based DES (which was the system that showed the least phytotoxic effects on wheat; EC50 ≥ 1.6 mg/mL) at 130 °C, it was possible to obtain pure chitin (up to 98%) with characteristics similar to those presented by commercial chitin or chitin recovered by conventional hydrolysis in a shorter time (more than 8-fold faster), thus suggesting that ChCl/organic acid-based DESs can truly represent a low-phytotoxic alternative extraction media for the recovery of chitin from the crab shell biomass.
Collapse
Affiliation(s)
- Liliana
A. Rodrigues
- Food
and Health Division, Instituto de Biologia
Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ivana Radojčić Redovniković
- Laboratory
for Cell Technology, Application and Biotransformations, Faculty of
Food Technology and Biotechnology, University
of Zagreb, Pierottijeva
6, HR-10000 Zagreb, Croatia
| | - Ana Rita C. Duarte
- NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana A. Matias
- Food
and Health Division, Instituto de Biologia
Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Alexandre Paiva
- NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
152
|
Radulović O, Stanković S, Stanojević O, Vujčić Z, Dojnov B, Trifunović-Momčilov M, Marković M. Antioxidative Responses of Duckweed ( Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3. Antioxidants (Basel) 2021; 10:antiox10111719. [PMID: 34829590 PMCID: PMC8615135 DOI: 10.3390/antiox10111719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Duckweed (L. minor) is a cosmopolitan aquatic plant of simplified morphology and rapid vegetative reproduction. In this study, an H. paralvei bacterial strain and its influence on the antioxidative response of the duckweeds to phenol, a recalcitrant environmental pollutant, were investigated. Sterile duckweed cultures were inoculated with H. paralvei in vitro and cultivated in the presence or absence of phenol (500 mg L−1), in order to investigate bacterial effects on plant oxidative stress during 5 days. Total soluble proteins, guaiacol peroxidase expression, concentration of hydrogen peroxide and malondialdehyde as well as the total ascorbic acid of the plants were monitored. Moreover, bacterial production of indole-3-acetic acid (IAA) was measured in order to investigate H. paralvei’s influence on plant growth. In general, the addition of phenol elevated all biochemical parameters in L. minor except AsA and total soluble proteins. Phenol as well as bacteria influenced the expression of guaiacol peroxidase. Different isoforms were associated with phenol compared to isoforms expressed in phenol-free medium. Considering that duckweeds showed increased antioxidative parameters in the presence of phenol, it can be assumed that the measured parameters might be involved in the plant’s defense system. H. paralvei is an IAA producer and its presence in the rhizosphere of duckweeds decreased the oxidative stress of the plants, which can be taken as evidence that this bacterial strain acts protectively on the plants during phenol exposure.
Collapse
Affiliation(s)
- Olga Radulović
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11060 Belgrade, Serbia; (M.T.-M.); (M.M.)
- Correspondence:
| | - Slaviša Stanković
- Faculty of Biology, University of Belgrade, 16 Studentski Trg, 11000 Belgrade, Serbia; (S.S.); (O.S.)
| | - Olja Stanojević
- Faculty of Biology, University of Belgrade, 16 Studentski Trg, 11000 Belgrade, Serbia; (S.S.); (O.S.)
| | - Zoran Vujčić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 12-16 Studentski Trg, 11000 Belgrade, Serbia;
| | - Biljana Dojnov
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 12 Njegoševa, 11000 Belgrade, Serbia;
| | - Milana Trifunović-Momčilov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11060 Belgrade, Serbia; (M.T.-M.); (M.M.)
| | - Marija Marković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11060 Belgrade, Serbia; (M.T.-M.); (M.M.)
| |
Collapse
|
153
|
Soil Salinity, a Serious Environmental Issue and Plant Responses: A Metabolomics Perspective. Metabolites 2021; 11:metabo11110724. [PMID: 34822381 PMCID: PMC8620211 DOI: 10.3390/metabo11110724] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
The effects of global warming have increasingly led to devastating environmental stresses, such as heat, salinity, and drought. Soil salinization is a serious environmental issue and results in detrimental abiotic stress, affecting 7% of land area and 33% of irrigated lands worldwide. The proportion of arable land facing salinity is expected to rise due to increasing climate change fuelled by anthropogenic activities, exacerbating the threat to global food security for the exponentially growing populace. As sessile organisms, plants have evolutionarily developed mechanisms that allow ad hoc responses to salinity stress. The orchestrated mechanisms include signalling cascades involving phytohormones, kinases, reactive oxygen species (ROS), and calcium regulatory networks. As a pillar in a systems biology approach, metabolomics allows for comprehensive interrogation of the biochemistry and a deconvolution of molecular mechanisms involved in plant responses to salinity. Thus, this review highlights soil salinization as a serious environmental issue and points to the negative impacts of salinity on plants. Furthermore, the review summarises mechanisms regulating salinity tolerance on molecular, cellular, and biochemical levels with a focus on metabolomics perspectives. This critical synthesis of current literature is an opportunity to revisit the current models regarding plant responses to salinity, with an invitation to further fundamental research for novel and actionable insights.
Collapse
|
154
|
Harnessing Chlorophyll Fluorescence for Phenotyping Analysis of Wild and Cultivated Tomato for High Photochemical Efficiency under Water Deficit for Climate Change Resilience. CLIMATE 2021. [DOI: 10.3390/cli9110154] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluctuations of the weather conditions, due to global climate change, greatly influence plant growth and development, eventually affecting crop yield and quality, but also plant survival. Since water shortage is one of the key risks for the future of agriculture, exploring the capability of crop species to grow with limited water is therefore fundamental. By using chlorophyll fluorescence analysis, we evaluated the responses of wild tomato accession Solanum pennellii LA0716, Solanum lycopersicum cv. Μ82, the introgression line IL12-4 (from cv. M82 Χ LA0716), and the Greek tomato cultivars cv. Santorini and cv. Zakinthos, to moderate drought stress (MoDS) and severe drought stress (SDS), in order to identify the minimum irrigation level for efficient photosynthetic performance. Agronomic traits (plant height, number of leaves and root/shoot biomass), relative water content (RWC), and lipid peroxidation, were also measured. Under almost 50% deficit irrigation, S. pennellii exhibited an enhanced photosynthetic function by displaying a hormetic response of electron transport rate (ETR), due to an increased fraction of open reaction centers, it is suggested to be activated by the low increase of reactive oxygen species (ROS). A low increase of ROS is regarded to be beneficial by stimulating defense responses and also triggering a more oxidized redox state of quinone A (QA), corresponding in S. pennellii under 50% deficit irrigation, to the lowest stomatal opening, resulting in reduction of water loss. Solanumpennellii was the most tolerant to drought, as it was expected, and could manage to have an adequate photochemical function with almost 30% water regime of well-watered plants. With 50% deficit irrigation, cv. Μ82 and cv. Santorini did not show any difference in photochemical efficiency to control plants and are recommended to be cultivated under deficit irrigation as an effective strategy to enhance agricultural sustainability under a global climate change. We conclude that instead of the previously used Fv/Fm ratio, the redox state of QA, as it can be estimated by the chlorophyll fluorescence parameter 1 - qL, is a better indicator to evaluate photosynthetic efficiency and select drought tolerant cultivars under deficit irrigation.
Collapse
|
155
|
Wang T, Amee M, Wang G, Xie Y, Hu T, Xu H. FaHSP17.8-CII orchestrates lead tolerance and accumulation in shoots via enhancing antioxidant enzymatic response and PSII activity in tall fescue. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112568. [PMID: 34332250 DOI: 10.1016/j.ecoenv.2021.112568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/07/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Tall fescue (Festuca arundinacea Schreb.) shows huge potential for lead (Pb) phytoremediation, while little is known on the molecular mechanisms involved in Pb tolerance and accumulation. Here, genetic engineering strategy was firstly used to investigate Pb tolerance and accumulation in tall fescue. The transgenic tall fescue overexpressing a class II (CII) sHSP gene FaHSP17.8-CII was generated. After exposure to 1000 mg/L Pb(NO3)2, two FaHSP17.8-CII overexpressing lines, OE#3 and OE#7, showed higher tolerance to Pb as illustrated by the reduced levels of electrolyte leakage (EL) and malondialdehyde (MDA) as compared to the wild-type (WT) plants under Pb stress. Moreover, the FaHSP17.8-CII overexpression lines, OE#3 and OE#7, exhibited 36.3% and 46.6% higher shoot Pb accumulation relative to the WT grasses. When the grasses were exposed to Pb stress, the two OE lines had higher CAT, POD and SOD activities as compared to WT. Additionally, overexpression of FaHSP17.8-CII improved the synthesis of chlorophyll and transcript abundance of FapsbC, FapsbD and FapsbE, and alleviated the photoinhibition of PSII in tall fescue under Pb stress. This study provides an initial genetic engineering strategy to improve Pb phytoremediation efficiency in tall fescue by FaHSP17.8-CII overexpression.
Collapse
Affiliation(s)
- Tao Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Maurice Amee
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Guangyang Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
156
|
Fan X, Zhou X, Chen H, Tang M, Xie X. Cross-Talks Between Macro- and Micronutrient Uptake and Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:663477. [PMID: 34721446 PMCID: PMC8555580 DOI: 10.3389/fpls.2021.663477] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
In nature, land plants as sessile organisms are faced with multiple nutrient stresses that often occur simultaneously in soil. Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are five of the essential nutrients that affect plant growth and health. Although these minerals are relatively inaccessible to plants due to their low solubility and relative immobilization, plants have adopted coping mechanisms for survival under multiple nutrient stress conditions. The double interactions between N, Pi, S, Zn, and Fe have long been recognized in plants at the physiological level. However, the molecular mechanisms and signaling pathways underlying these cross-talks in plants remain poorly understood. This review preliminarily examined recent progress and current knowledge of the biochemical and physiological interactions between macro- and micro-mineral nutrients in plants and aimed to focus on the cross-talks between N, Pi, S, Zn, and Fe uptake and homeostasis in plants. More importantly, we further reviewed current studies on the molecular mechanisms underlying the cross-talks between N, Pi, S, Zn, and Fe homeostasis to better understand how these nutrient interactions affect the mineral uptake and signaling in plants. This review serves as a basis for further studies on multiple nutrient stress signaling in plants. Overall, the development of an integrative study of multiple nutrient signaling cross-talks in plants will be of important biological significance and crucial to sustainable agriculture.
Collapse
Affiliation(s)
| | | | | | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
157
|
Nie M, Hu C, Shi G, Cai M, Wang X, Zhao X. Selenium restores mitochondrial dysfunction to reduce Cr-induced cell apoptosis in Chinese cabbage (Brassica campestris L. ssp. Pekinensis) root tips. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112564. [PMID: 34340154 DOI: 10.1016/j.ecoenv.2021.112564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/18/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr) disrupts the growth and physiology of plants. Selenium (Se) is considered as a promising option to help plants ameliorate Cr toxicity. To investigate the effects of exogenous Se on reactive oxygen species (ROS) burst and programmed cell death (PCD) in root tip cells under Cr stress, hydroponic experiments were carried out with Chinese cabbage seedlings grown in Hoagland solution containing 1 mg L-1 Cr and 0.1 mg L-1 Se. Results showed that Se scavenged the overproduction of H2O2 and O2-·, and alleviated the level of lipid peroxidation in root tips stressed by Cr. Moreover, Se effectively prevented DNA degradation and reduced the number of apoptotic cells in root tips. Compared with Cr treatment, Se supplementation reduced the content of ROS and malondialdehyde in mitochondria by 38.23% and 17.52%, respectively. Se application decreased the opening degree of mitochondrial permeability transition pores by 32.30%, increased mitochondrial membrane potential by 40.91%, alleviated the release of cyt c from mitochondria into cytosol by 18.42% and caused 57.40% decrease of caspase 3-like protease activity, and thus restored mitochondrial dysfunction caused by Cr stress. In addition, the alteration of Se on mitochondrial physiological properties maintained calcium homeostasis between mitochondria and cytosol, which further contributed to reducing the appearance of Cr-induced PCD. Findings suggested that Se restored mitochondrial dysfunction, which further rescued root tip cells from PCD, consequently activating defense strategies to protect plants from Cr toxicity and maintaining plant growth.
Collapse
Affiliation(s)
- Min Nie
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaomiao Cai
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China.
| |
Collapse
|
158
|
Rahman MM, Mostofa MG, Keya SS, Siddiqui MN, Ansary MMU, Das AK, Rahman MA, Tran LSP. Adaptive Mechanisms of Halophytes and Their Potential in Improving Salinity Tolerance in Plants. Int J Mol Sci 2021; 22:ijms221910733. [PMID: 34639074 PMCID: PMC8509322 DOI: 10.3390/ijms221910733] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Soil salinization, which is aggravated by climate change and inappropriate anthropogenic activities, has emerged as a serious environmental problem, threatening sustainable agriculture and future food security. Although there has been considerable progress in developing crop varieties by introducing salt tolerance-associated traits, most crop cultivars grown in saline soils still exhibit a decline in yield, necessitating the search for alternatives. Halophytes, with their intrinsic salt tolerance characteristics, are known to have great potential in rehabilitating salt-contaminated soils to support plant growth in saline soils by employing various strategies, including phytoremediation. In addition, the recent identification and characterization of salt tolerance-related genes encoding signaling components from halophytes, which are naturally grown under high salinity, have paved the way for the development of transgenic crops with improved salt tolerance. In this review, we aim to provide a comprehensive update on salinity-induced negative effects on soils and plants, including alterations of physicochemical properties in soils, and changes in physiological and biochemical processes and ion disparities in plants. We also review the physiological and biochemical adaptation strategies that help halophytes grow and survive in salinity-affected areas. Furthermore, we illustrate the halophyte-mediated phytoremediation process in salinity-affected areas, as well as their potential impacts on soil properties. Importantly, based on the recent findings on salt tolerance mechanisms in halophytes, we also comprehensively discuss the potential of improving salt tolerance in crop plants by introducing candidate genes related to antiporters, ion transporters, antioxidants, and defense proteins from halophytes for conserving sustainable agriculture in salinity-prone areas.
Collapse
Affiliation(s)
- Md. Mezanur Rahman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.)
| | - Mohammad Golam Mostofa
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.)
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
- Correspondence: (M.G.M.); (L.S.-P.T.); Tel.: +1-806-5007763 (M.G.M.); +1-806-8347829 (L.S.-P.T.)
| | - Sanjida Sultana Keya
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.)
| | - Md. Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Md. Mesbah Uddin Ansary
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh;
| | - Ashim Kumar Das
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (A.K.D.); (M.A.R.)
| | - Md. Abiar Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (A.K.D.); (M.A.R.)
| | - Lam Son-Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.)
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Correspondence: (M.G.M.); (L.S.-P.T.); Tel.: +1-806-5007763 (M.G.M.); +1-806-8347829 (L.S.-P.T.)
| |
Collapse
|
159
|
Gallé Á, Czékus Z, Tóth L, Galgóczy L, Poór P. Pest and disease management by red light. PLANT, CELL & ENVIRONMENT 2021; 44:3197-3210. [PMID: 34191305 DOI: 10.1111/pce.14142] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 05/22/2023]
Abstract
Light is essential for plant life. It provides a source of energy through photosynthesis and regulates plant growth and development and other cellular processes, such as by controlling the endogenous circadian clock. Light intensity, quality, duration and timing are all important determinants of plant responses, especially to biotic stress. Red light can positively influence plant defence mechanisms against different pathogens, but the molecular mechanism behind this phenomenon is not fully understood. Therefore, we reviewed the impact of red light on plant biotic stress responses against viruses, bacteria, fungi and nematodes, with a focus on the physiological effects of red light treatment and hormonal crosstalk under biotic stress in plants. We found evidence suggesting that exposing plants to red light increases levels of salicylic acid (SA) and induces SA signalling mediating the production of reactive oxygen species, with substantial differences between species and plant organs. Such changes in SA levels could be vital for plants to survive infections. Therefore, the application of red light provides a multidimensional aspect to developing innovative and environmentally friendly approaches to plant and crop disease management.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Liliána Tóth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - László Galgóczy
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| |
Collapse
|
160
|
Gratz R, von der Mark C, Ivanov R, Brumbarova T. Fe acquisition at the crossroad of calcium and reactive oxygen species signaling. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102048. [PMID: 34015752 DOI: 10.1016/j.pbi.2021.102048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Due to its redox properties, iron is both essential and toxic. Therefore, soil iron availability variations pose a significant problem for plants. Recent evidence suggests that calcium and reactive oxygen species coordinate signaling events related to soil iron acquisition. Calcium was found to affect directly IRT1-mediated iron import through the lipid-binding protein EHB1 and to trigger a CBL-CIPK-mediated signaling influencing the activity of the key iron-acquisition transcription factor FIT. In parallel, under prolonged iron deficiency, reactive oxygen species both inhibit FIT function and depend on FIT through the function of the catalase CAT2. We discuss the role of calcium and reactive oxygen species signaling in iron acquisition, with post-translational mechanisms influencing the localization and activity of iron-acquisition regulators and effectors.
Collapse
Affiliation(s)
- Regina Gratz
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Claudia von der Mark
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | |
Collapse
|
161
|
Cotrozzi L, Conti B, Lorenzini G, Pellegrini E, Nali C. In the tripartite combination ozone-poplar-Chrysomela populi, the pollutant alters the plant-insect interaction via primary metabolites of foliage. ENVIRONMENTAL RESEARCH 2021; 201:111581. [PMID: 34174255 DOI: 10.1016/j.envres.2021.111581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Ozone (O3)-induced metabolic changes in leaves are relevant and may have several ecological significances. Here, variations in foliar chemistry of two poplar clones (Populus deltoides × maximowiczii, Eridano, and P. × euramericana, I-214) under a chronic O3 treatment (80 ppb, 5 h d-1 for 10 consecutive days) were investigated. The aim was to elucidate if leaf age and/or O3-sensitivity (considering Eridano and I-214 as O3-sensitive and O3-resistant, respectively) can affect suitability of poplar foliage for Chrysomela populi L. (Coleoptera Chrysomelidae), in terms of palatability. Comparing controls, only low amino acid (AA) contents were reported in Eridano [about 3- and 4-fold in mature and young leaves (ML and YL, respectively)], and all the investigated primary metabolites [i.e. water soluble carbohydrates (WSC), proteins (Prot) and AA] were higher in YL than in ML of I-214 (+23, +54 and + 20%, respectively). Ozone increased WSC only in YL of Eridano (+24%, i.e. highest values among samples; O3 effects are always reported comparing O3-treated plants with the related controls). A concomitant decrease of Prot was observed in both ML and YL of Eridano, while only in YL of I-214 (-41, -45 and -51%, respectively). In addition, O3 decreased AA in YL of Eridano and in ML of I-214 (-40 and -14%, respectively). Comparing plants maintained under charcoal-filtered air, total ascorbate (Asc) was lower in Eridano in both ML and YL (around -22%), and abscisic acid (ABA) was similar between clones; furthermore, higher levels of Asc were reported in YL than in ML of Eridano (+19%). Ozone increased Asc and ABA (about 2- and 3-fold, respectively) in both ML and YL of Eridano, as well as ABA in YL of I-214 (about 2-fold). Comparing leaves maintained under charcoal-filtered air, the choice feeding test showed that the 2nd instar larvae preferred YL, and the quantity of YL consumed was 9 and 4-fold higher than ML in Eridano and I-214, respectively. Comparing leaves exposed to O3-treatment, a significant feeding preference for YL disks was also observed, regardless of the clone. The no-choice feeding test showed that larval growth was slightly higher on untreated YL than on untreated ML (+19 and + 10% in Eridano and I-214, respectively). The body mass of larvae fed with O3-treated YL was also significantly higher than that of larvae fed with untreated YL (3- and 2-fold in Eridano and I-214). This study highlights that realistic O3 concentrations can significantly impact the host/insect interactions, a phenomenon dependent on leaf age and O3-sensitivity of the host.
Collapse
Affiliation(s)
- Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| | - Barbara Conti
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy.
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| |
Collapse
|
162
|
Costa JH, Roque ALM, Aziz S, Dos Santos CP, Germano TA, Batista MC, Thiers KLL, da Cruz Saraiva KD, Arnholdt-Schmitt B. Genome-wide identification of ascorbate-glutathione cycle gene families in soybean (Glycine max) reveals gene duplication events and specificity of gene members linked to development and stress conditions. Int J Biol Macromol 2021; 187:528-543. [PMID: 34302870 DOI: 10.1016/j.ijbiomac.2021.07.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022]
Abstract
Ascorbate-glutathione (AsA-GSH) cycle plays an important role in tuning beneficial ROS accumulation for intracellular signals and imparts plant tolerance to oxidative stress by detoxifying excess of ROS. Here, we present genome-wide identification of AsA-GSH cycle genes (APX, MDHAR, DHAR, and GR) in several leguminous species and expression analyses in G. max during stress, germination and tissue development. Our data revealed 24 genes in Glycine genus against the maximum of 15 in other leguminous species, which was due to 9 pars of duplicated genes mostly originated from sub/neofunctionalization. Cytosolic APX and MDHAR genes were highly expressed in different tissues and physiological conditions. Germination induced genes encoding AsA-GSH proteins from different cell compartments, whereas vegetative phase (leaves) stimulated predominantly genes related to chloroplast/mitochondria proteins. Moreover, cytosolic APX-1, 2, MDHAR-1a, 1b and GR genes were the primary genes linked to senescence and biotic stresses, while stAPX-a, b and GR (from organelles) were the most abiotic stress related genes. Biotic and abiotic stress tolerant genotypes generally showed increased MDHAR, DHAR and/or GR mRNA levels compared to susceptible genotypes. Overall, these data clarified evolutionary events in leguminous plants and point to the functional specificity of duplicated genes of the AsA-GSH cycle in G. max.
Collapse
Affiliation(s)
- José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal.
| | - André Luiz Maia Roque
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Shahid Aziz
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Clesivan Pereira Dos Santos
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Thais Andrade Germano
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Mathias Coelho Batista
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Federal Institute of Education, Science and Technology, Paraíba, Brazil
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| |
Collapse
|
163
|
Differential Regulation of NAPDH Oxidases in Salt-Tolerant Eutrema salsugineum and Salt-Sensitive Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms221910341. [PMID: 34638681 PMCID: PMC8508936 DOI: 10.3390/ijms221910341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Reactive oxygen species (ROS) signalling is crucial in modulating stress responses in plants, and NADPH oxidases (NOXs) are an important component of signal transduction under salt stress. The goal of this research was to investigate whether the regulation of NOX-dependent signalling during mild and severe salinity differs between the halophyte Eutrema salsugineum and the glycophyte Arabidopsis thaliana. Gene expression analyses showed that salt-induced expression patterns of two NOX genes, RBOHD and RBOHF, varied between the halophyte and the glycophyte. Five days of salinity stimulated the expression of both genes in E. salsugineum leaves, while their expression in A. thaliana decreased. This was not accompanied by changes in the total NOX activity in E. salsugineum, while the activity in A. thaliana was reduced. The expression of the RBOHD and RBOHF genes in E. salsugineum leaves was induced by abscisic acid (ABA) and ethephon spraying. The in silico analyses of promoter sequences of RBOHD and RBOHF revealed multiple cis-acting elements related to hormone responses, and their distribution varied between E. salsugineum and A. thaliana. Our results indicate that, in the halophyte E. salsugineum, the maintenance of the basal activity of NOXs in leaves plays a role during acclimation responses to salt stress. The different expression patterns of the RBOHD and RBOHF genes under salinity in E. salsugineum and A. thaliana point to a modified regulation of these genes in the halophyte, possibly through ABA- and/or ethylene-dependent pathways.
Collapse
|
164
|
Ozel HB, Cetin M, Sevik H, Varol T, Isik B, Yaman B. The effects of base station as an electromagnetic radiation source on flower and cone yield and germination percentage in Pinus brutia Ten. Biol Futur 2021; 72:359-365. [PMID: 34554556 DOI: 10.1007/s42977-021-00085-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/19/2021] [Indexed: 12/26/2022]
Abstract
Electromagnetic radiation is a substantial pollution factor that most of the living things found almost everywhere are constantly exposed to with current technology. The number of studies conducted on the effects of this exposed radiation on the living things constantly is limited; and almost all of the studies conducted are aimed at measuring the effects of short-term exposure. In addition to this, most of the studies conducted on plants focus on herbaceous plant species. In this study, the effects of distance to base station on flower and cone yield and germination percentage were investigated in Pinus brutia individuals, one of the critical forest tree species. The study results revealed that being close to the base station significantly reduced the number of flowers and cones in P. brutia individuals, and that the values obtained in individuals at a distance of 800 m from the base station were 11 times more than the number of flowers and 7 times more than the number of cones compared to the individuals at a distance of 100 m. In the seeds subject to the study, there is a three-times difference in terms of the germination percentage among the individuals located at the furthest and closest distance to the base station. These results show that P. brutia individuals are considerably affected by the base station.
Collapse
Affiliation(s)
- Halil Baris Ozel
- Faculty of Forestry, Department of Forest Engineering, Bartin University, Bartin, Turkey
| | - Mehmet Cetin
- Faculty of Engineering and Architecture, Department of Landscape Architecture, Kastamonu University, Kuzeykent Campus, 37150, Kastamonu, Turkey.
| | - Hakan Sevik
- Faculty of Engineering and Architecture, Department of Environmental Engineering, Kastamonu University, Kuzeykent Campus, 37150, Kastamonu, Turkey
| | - Tugrul Varol
- Faculty of Forestry, Department of Forest Engineering, Bartin University, Bartin, Turkey
| | - Berkant Isik
- Faculty of Forestry, Department of Forest Engineering, Bartin University, Bartin, Turkey
| | - Barbaros Yaman
- Faculty of Forestry, Department of Forest Engineering, Bartin University, Bartin, Turkey
| |
Collapse
|
165
|
Mamenko TP. Regulation of Legume-Rhizobial Symbiosis: Molecular Genetic Aspects and Participation of Reactive Oxygen Species. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721050078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
166
|
Yang L, Wang X, He S, Luo Y, Chen S, Shan Y, Wang R, Ding S. Heat shock treatment maintains the quality attributes of postharvest jujube fruits and delays their senescence process during cold storage. J Food Biochem 2021; 45:e13937. [PMID: 34532870 DOI: 10.1111/jfbc.13937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/29/2021] [Accepted: 09/05/2021] [Indexed: 01/01/2023]
Abstract
The effects of heat shock (HT), 1-methylcyclopropene (1-MCP), or their combination (HT + 1-MCP) on the quality of fresh jujube fruits during cold storage were studied. Among them, HT showed the best preservation effect on jujube fruits, which was more effective than others in inhibiting the increase of red index, decay incidence, and weight loss and delaying the decrease of firmness, soluble solids content (SSC), titratable acidity (TA), and ascorbic acid (AsA) content. Besides, it could delay the degradation rate of the cell wall to maintain the integrity of cell membrane, and keep the high activity of active oxygen scavenging enzymes. During cold storage, malondialdehyde (MDA) content and relative electrolyte leakage (REL) of the HT group were significantly lower than those of the control group, 1-MCP, and HT + 1-MCP group (p < .05), while superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities were significantly higher than those of other groups (p < .05). It was concluded that the postharvest HT treatment could effectively delay the senescence and decay of jujube fruits. PRACTICAL APPLICATIONS: Jujube fruits have high nutritional value used for food and medicine. However, they are not tolerant to storage after harvest, resulting in high economic losses. Therefore, it is of great significance to find a suitable method to maintain the quality of jujube fruits. Our results revealed the effect of HT, 1-MCP, and their combination on the quality maintenance of jujube fruits, and found that HT could effectively maintain the quality of them, which could be used as an effective method for keeping jujube fruits fresh.
Collapse
Affiliation(s)
- Lvzhu Yang
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China.,Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Xinyu Wang
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China.,Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Shuang He
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Yaohua Luo
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China.,Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Sheng Chen
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China.,Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Yang Shan
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China.,Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shenghua Ding
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China.,Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| |
Collapse
|
167
|
Changes in Antioxidative Compounds and Enzymes in Small-Leaved Linden ( Tilia cordata Mill.) in Response to Mistletoe ( Viscum album L.) Infestation. PLANTS 2021; 10:plants10091871. [PMID: 34579405 PMCID: PMC8465490 DOI: 10.3390/plants10091871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/24/2023]
Abstract
Mistletoe infestation leads to a decrease in the growth of woody plants, their longevity, and partial or complete drying of the top, as well as premature death. Various environmental stress factors, both abiotic and biotic, stimulate the formation of reactive oxygen species and the development of oxidative stress in plant tissues. This study aimed to investigate the effect of mistletoe (Viscum album L.) infestation on the response of the antioxidative defense system in leaves of small-leaved linden (Tilia cordata Mill.). Leaves from infested trees were taken from branches (i) without mistletoe, (ii) with 1–2 mistletoe bushes (low degree of infestation), and (iii) with 5–7 mistletoe bushes (high degree of infestation). The relative water content and the chlorophyll a and b contents in leaves from linden branches affected by mistletoe were significantly lower than those in leaves from non-infested trees and from host-tree branches with no mistletoe. At the same time, leaves from branches with low and high degrees of infestation had significantly higher electrolyte leakage, malondialdehyde and hydrogen peroxide content, oxidized forms of ascorbic acid (dehydroascorbic and 2,3-diketogulonic acids), and oxidized glutathione. The results of principal component analysis show that the development of oxidative stress was accompanied by an increase in proline content and in superoxide dismutase, ascorbate peroxidase, glutathione peroxidase, and glutathione reductase activity. Several biochemical parameters (proline, ascorbic acid, dehydroascorbic acid, glutathione, glutathione peroxidase, ascorbate peroxidase, and dehydroascorbate reductase) were found to be altered in leaves from host-tree branches with no mistletoe. This result indicates that the mistletoe infestation of trees not only causes local changes in the locations of hemiparasite attachment, but also affects the redox metabolism in leaves from other parts of the infested tree.
Collapse
|
168
|
Hu T, Wang T, Wang G, Bi A, Wassie M, Xie Y, Xu H, Chen L. Overexpression of FaHSP17.8-CII improves cadmium accumulation and tolerance in tall fescue shoots by promoting chloroplast stability and photosynthetic electron transfer of PSII. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125932. [PMID: 34020353 DOI: 10.1016/j.jhazmat.2021.125932] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Genetic improvement could play a significant role in enhancing the Cd accumulation, translocation and tolerance in plants. In this study, for the first time, we constructed transgenic tall fescue overexpressing a class II (CII) sHSP gene FaHSP17.8-CII, which enhanced Cd tolerance and the root-to-shoot Cd translocation. After exposed to 400 μM CdCl2, two FaHSP17.8-CII overexpressing lines (OE#3 and OE#7) exhibited 30% and 40% more shoot fresh weight, respectively, relative to the wild-type (WT). Both transgenic lines showed higher tolerance to Cd, as evidenced by lower levels of electrolyte leakage and malondialdehyde compared to the WT plants under Cd stress. FaHSP17.8-CII overexpression increased shoot Cd contents 49-59% over the WT plants. The Cd translocation factor of root-to-shoot in OE grasses was 69-85% greater than WT under Cd stress. Furthermore, overexpression of FaHSP17.8-CII reduced Cd-induced damages of chloroplast ultra-structure and chlorophyll synthesis, and then improved photosystem II (PSII) function under Cd stress, which resulted in less reactive oxygen species (ROS) accumulation in OE grasses than that in WT exposed to Cd stress. The study suggests a novel FaHSP17.8-CII-PSII-ROS module to understand the mechanisms of Cd detoxification and tolerance, which provides a new strategy to improve phytoremediation efficiency in Cd-stressed grasses.
Collapse
Affiliation(s)
- Tao Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Guangyang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Aoyue Bi
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
169
|
Ma Q, Wu C, Liang S, Yuan Y, Liu C, Liu J, Feng B. The Alkali Tolerance of Broomcorn Millet ( Panicum miliaceum L.) at the Germination and Seedling Stage: The Case of 296 Broomcorn Millet Genotypes. FRONTIERS IN PLANT SCIENCE 2021; 12:711429. [PMID: 34497625 PMCID: PMC8419447 DOI: 10.3389/fpls.2021.711429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Broomcorn millet (BM), one of the earliest domesticated cereal crops originating in northern China, can tolerate extreme conditions, such as drought and high temperatures, which are prevalent in saline-alkali, arid, and barren landscapes. However, its adaptive mechanism to alkali stress is yet to be comprehensively understood. In this study, 80 and 40 mM standard alkali stress concentrations were used to, respectively, evaluate the alkali tolerance at the germination and seedling stages of 296 BM genotypes. Principal component analysis (PCA), Pearson's correlation analysis, and F-value comprehensive analysis were performed on the germination parameters (germination potential, germination index, germination rate, vigor index, root length/weight, sprout length/weight, and alkali damage rate). Based on their respective F-values, the BM genotypes were divided into five categories ranging from highly alkali resistant to alkali sensitive. To study the response of seedlings to alkaline stress, we investigated the phenotypic parameters (plant height, green leaf area, biomass, and root structure) of 111 genotypes from the above five categories. Combining the parameters of alkali tolerance at the germination and seedling stages, these 111 genotypes were further subdivided into three groups with different alkali tolerances. Variations in physiological responses of the different alkali-tolerant genotypes were further investigated for antioxidant enzyme activity, soluble substances, malondialdehyde (MDA) content, electrolyte leakage rate, and leaf structure. Compared with alkali-sensitive genotypes, alkali-tolerant genotypes had high antioxidant enzyme activity and soluble osmolyte content, low MDA content and electrolyte leakage rate, and a more complete stomata structure. Taken together, this study provides a comprehensive and reliable method for evaluating alkali tolerance and will contribute to the improvement and restoration of saline-alkaline soils by BM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baili Feng
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
170
|
Role of Reactive Oxygen Species and Hormones in Plant Responses to Temperature Changes. Int J Mol Sci 2021; 22:ijms22168843. [PMID: 34445546 PMCID: PMC8396215 DOI: 10.3390/ijms22168843] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Temperature stress is one of the major abiotic stresses that adversely affect agricultural productivity worldwide. Temperatures beyond a plant's physiological optimum can trigger significant physiological and biochemical perturbations, reducing plant growth and tolerance to stress. Improving a plant's tolerance to these temperature fluctuations requires a deep understanding of its responses to environmental change. To adapt to temperature fluctuations, plants tailor their acclimatory signal transduction events, and specifically, cellular redox state, that are governed by plant hormones, reactive oxygen species (ROS) regulatory systems, and other molecular components. The role of ROS in plants as important signaling molecules during stress acclimation has recently been established. Here, hormone-triggered ROS produced by NADPH oxidases, feedback regulation, and integrated signaling events during temperature stress activate stress-response pathways and induce acclimation or defense mechanisms. At the other extreme, excess ROS accumulation, following temperature-induced oxidative stress, can have negative consequences on plant growth and stress acclimation. The excessive ROS is regulated by the ROS scavenging system, which subsequently promotes plant tolerance. All these signaling events, including crosstalk between hormones and ROS, modify the plant's transcriptomic, metabolomic, and biochemical states and promote plant acclimation, tolerance, and survival. Here, we provide a comprehensive review of the ROS, hormones, and their joint role in shaping a plant's responses to high and low temperatures, and we conclude by outlining hormone/ROS-regulated plant responsive strategies for developing stress-tolerant crops to combat temperature changes.
Collapse
|
171
|
Rahimi Y, Ingvarsson PK, Bihamta MR, Alipour H, Taleei A, Khoshnoodi Jabar Abadi S. Characterization of Dynamic Regulatory Gene and Protein Networks in Wheat Roots Upon Perceiving Water Deficit Through Comparative Transcriptomics Survey. FRONTIERS IN PLANT SCIENCE 2021; 12:710867. [PMID: 34484273 PMCID: PMC8415571 DOI: 10.3389/fpls.2021.710867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
A well-developed root system benefits host plants by optimizing water absorption and nutrient uptake and thereby increases plant productivity. In this study we have characterized the root transcriptome using RNA-seq and subsequential functional analysis in a set of drought tolerant and susceptible genotypes. The goal of the study was to elucidate and characterize water deficit-responsive genes in wheat landraces that had been through long-term field and biochemical screening for drought tolerance. The results confirm genotype differences in water-deficit tolerance in line with earlier results from field trials. The transcriptomics survey highlighted a total of 14,187 differentially expressed genes (DEGs) that responded to water deficit. The characterization of these genes shows that all chromosomes contribute to water-deficit tolerance, but to different degrees, and the B genome showed higher involvement than the A and D genomes. The DEGs were mainly mapped to flavonoid, phenylpropanoid, and diterpenoid biosynthesis pathways, as well as glutathione metabolism and hormone signaling. Furthermore, extracellular region, apoplast, cell periphery, and external encapsulating structure were the main water deficit-responsive cellular components in roots. A total of 1,377 DEGs were also predicted to function as transcription factors (TFs) from different families regulating downstream cascades. TFs from the AP2/ERF-ERF, MYB-related, B3, WRKY, Tify, and NAC families were the main genotype-specific regulatory factors. To further characterize the dynamic biosynthetic pathways, protein-protein interaction (PPI) networks were constructed using significant KEGG proteins and putative TFs. In PPIs, enzymes from the CYP450, TaABA8OH2, PAL, and GST families play important roles in water-deficit tolerance in connection with MYB13-1, MADS-box, and NAC transcription factors.
Collapse
Affiliation(s)
- Yousef Rahimi
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pär K. Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Alireza Taleei
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | | |
Collapse
|
172
|
Mostofa MG, Rahman MM, Nguyen KH, Li W, Watanabe Y, Tran CD, Zhang M, Itouga M, Fujita M, Tran LSP. Strigolactones regulate arsenate uptake, vacuolar-sequestration and antioxidant defense responses to resist arsenic toxicity in rice roots. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125589. [PMID: 34088170 DOI: 10.1016/j.jhazmat.2021.125589] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/26/2020] [Accepted: 03/01/2021] [Indexed: 05/23/2023]
Abstract
We explored genetic evidence for strigolactones' role in rice tolerance to arsenate-stress. Comparative analyses of roots of wild-type (WT) and strigolactone-deficient mutants d10 and d17 in response to sodium arsenate (Na2AsO4) revealed differential growth inhibition [WT (11.28%) vs. d10 (19.76%) and d17 (18.03%)], biomass reduction [(WT (33.65%) vs. d10 (74.86%) and d17 (60.65%)] and membrane damage (WT < d10 and d17) at 250 μM Na2AsO4. Microscopic and biochemical analyses showed that roots of WT accumulated lower levels of arsenic and oxidative stress indicators like reactive oxygen species and malondialdehyde than those of strigolactone-deficient mutants. qRT-PCR data indicated lower expression levels of genes (OsPT1, OsPT2, OsPT4 and OsPT8) encoding phosphate-transporters in WT roots than mutant roots, explaining the decreased arsenate and phosphate uptake by WT roots. Increased levels of glutathione and OsPCS1 and OsABCC1 transcripts indicated an efficient vacuolar-sequestration of arsenic in WT roots. Furthermore, higher activities (transcript levels) of SOD (OsCuZnSOD1 and OsCuZnSOD2), APX (OsAPX1 and OsAPX2) and CAT (OsCATA) corresponded to lower oxidative damage in WT roots compared with strigolactone-mutant roots. Collectively, these results highlight that strigolactones are involved in arsenic-stress mitigation by regulating arsenate-uptake, glutathione-biosynthesis, vacuolar-sequestration of arsenic and antioxidant defense responses in rice roots.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Kien Huu Nguyen
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong St., Ha noi 100000, Vietnam.
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | - Cuong Duy Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | - Minghui Zhang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China.
| | - Misao Itouga
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Kanagawa 230-0045, Japan; Japan Moss Factory Co., Ltd., WRIP408, 2-3-13, Minami, Wako, Saitama 351-0104, Japan.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock 79409, TX, USA.
| |
Collapse
|
173
|
Czékus Z, Iqbal N, Pollák B, Martics A, Ördög A, Poór P. Role of ethylene and light in chitosan-induced local and systemic defence responses of tomato plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153461. [PMID: 34217837 DOI: 10.1016/j.jplph.2021.153461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Plant defence responses can be triggered by the application of elicitors for example chitosan (β-1,4-linked glucosamine; CHT). It is well-known that CHT induces rapid, local production of reactive oxygen species (ROS) and nitric oxide (NO) resulting in fast stomatal closure. Systemic defence responses are based primarily on phytohormones such as ethylene (ET) and salicylic acid (SA), moreover on the expression of hormone-mediated defence genes and proteins. At the same time, these responses can be dependent also on external factors, such as light but its role was less-investigated. Based on our result in intact tomato plants (Solanum lycopersicum L.), CHT treatment not only induced significant ET emission and stomatal closure locally but also promoted significant production of superoxide which was also detectable in the distal, systemic leaves. However, these changes in ET and superoxide accumulation were detected only in wild type (WT) plants kept in light and were inhibited under darkness as well as in ET receptor Never ripe (Nr) mutants suggesting pivotal importance of ET and light in inducing resistance both locally and systemically upon CHT. Interestingly, CHT-induced NO production was mostly independent of ET or light. At the same time, expression of Pathogenesis-related 3 (PR3) was increased locally in both genotypes in the light and in WT leaves under darkness. This was also observed in distal leaves of WT plants. The CHT-induced endoplasmic reticulum (ER) stress, as well as unfolded protein response (UPR) were examined for the first time, via analysis of the lumenal binding protein (BiP). Whereas local expression of BiP was not dependent on the availability of light or ET, systemically it was mediated by ET.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Boglárka Pollák
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| | - Atina Martics
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| | - Péter Poór
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| |
Collapse
|
174
|
Rodrigues LA, Cardeira M, Leonardo IC, Gaspar FB, Radojčić Redovniković I, Duarte ARC, Paiva A, Matias AA. Deep eutectic systems from betaine and polyols – Physicochemical and toxicological properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116201] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
175
|
Homayoonzadeh M, Hosseininaveh V, Haghighi SR, Talebi K, Roessner U, Maali-Amiri R. Evaluation of physiological and biochemical responses of pistachio plants (Pistacia vera L.) exposed to pesticides. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1084-1097. [PMID: 34101048 DOI: 10.1007/s10646-021-02434-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Pesticides may manipulate plant physiology as non-target organisms. In this study, we examined biochemical responses of pistachio plants (Pistacia vera L.) to imidacloprid and phosalone as common pesticides used to control pistachio psyllids. Enzymatic characterization in treated plants with pesticides showed greater specific activities of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, phenylalanine ammonia-lyase, glutathione reductase, and glutathione S-transferase compared with untreated plants during 14 days after treatment. Further experiments displayed elevated levels of total phenols and total proteins coupled with significant increases in proline and total soluble carbohydrate contents in treated plants in comparison to untreated plants. Moreover, pesticide treatment leads to a significant decrease in polyphenol oxidase activity. Nevertheless, no significant changes in contents of hydrogen peroxide, malondialdehyde, total chlorophyll, and electrolyte leakage index were obtained in treated plants. Pesticides' impacts on host plant physiology resulted in similar responses between two pesticides with differences in peak days. Overall, the findings of this study provide an insight into the side effects of phosalone and imidacloprid, chemicals with no specific target site in plants, on the physiology and biochemistry of pistachio plants at recommended rates.
Collapse
Affiliation(s)
- Mohammad Homayoonzadeh
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Vahid Hosseininaveh
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Sajjad Reyhani Haghighi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Khalil Talebi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran.
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| |
Collapse
|
176
|
Engineering Climate-Change-Resilient Crops: New Tools and Approaches. Int J Mol Sci 2021; 22:ijms22157877. [PMID: 34360645 PMCID: PMC8346029 DOI: 10.3390/ijms22157877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world's population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect plant growth and thus enhance crop yield. In recent decades, engineering strategies have been successfully developed with the aim to improve growth and stress tolerance in plants. Most strategies applied so far have relied on transgenic approaches and/or chemical treatments. However, to cope with rapid climate change and the need to secure sustainable agriculture and biomass production, innovative approaches need to be developed to effectively meet these challenges and demands. In this review, we summarize recent and advanced strategies that involve the use of plant-related cyanobacterial proteins, macro- and micronutrient management, nutrient-coated nanoparticles, and phytopathogenic organisms, all of which offer promise as protective resources to shield plants from climate challenges and to boost stress tolerance in crops.
Collapse
|
177
|
Leaf Age-Dependent Photosystem II Photochemistry and Oxidative Stress Responses to Drought Stress in Arabidopsis thaliana Are Modulated by Flavonoid Accumulation. Molecules 2021; 26:molecules26144157. [PMID: 34299433 PMCID: PMC8307756 DOI: 10.3390/molecules26144157] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
We investigated flavonoid accumulation and lipid peroxidation in young leaves (YL) and mature leaves (ML) of Arabidopsis thaliana plants, whose watering stopped 24 h before sampling, characterized as onset of drought stress (OnDS), six days before sampling, characterized as mild drought stress (MiDS), and ten days before sampling, characterized as moderate drought stress (MoDS). The response to drought stress (DS) of photosystem II (PSII) photochemistry, in both leaf types, was evaluated by estimating the allocation of absorbed light to photochemistry (ΦPSII), to heat dissipation by regulated non-photochemical energy loss (ΦNPQ) and to non-regulated energy dissipated in PSII (ΦNO). Young leaves were better protected at MoDS than ML leaves, by having higher concentration of flavonoids that promote acclimation of YL PSII photochemistry to MoDS, showing lower lipid peroxidation and excitation pressure (1 - qp). Young leaves at MoDS possessed lower 1 - qp values and lower excess excitation energy (EXC), not only compared to MoDS ML, but even to MiDS YL. They also possessed a higher capacity to maintain low ΦNO, suggesting a lower singlet oxygen (1O2) generation. Our results highlight that leaves of different developmental stage may display different responses to DS, due to differential accumulation of metabolites, and imply that PSII photochemistry in Arabidopsis thaliana may not show a dose dependent DS response.
Collapse
|
178
|
Umamaheswari S, Priyadarshinee S, Kadirvelu K, Ramesh M. Polystyrene microplastics induce apoptosis via ROS-mediated p53 signaling pathway in zebrafish. Chem Biol Interact 2021; 345:109550. [PMID: 34126101 DOI: 10.1016/j.cbi.2021.109550] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
Microplastic (MP) pollution is ubiquitous and has become an emerging threat to aquatic biota. Recent scientific reports have recorded their toxic impacts at the cellular and organism levels, but the underlying molecular mechanism of their toxicity remains unclear. The present study elucidates an array of molecular events underlying apoptosis in the gills of polystyrene microplastics (PS-MPs) exposed zebrafish (Danio rerio). PS-MPs at different concentrations (10 and 100 μg L-1) induced the reactive oxygen species (ROS) generation, in turn affecting the oxidative and immune defense mechanism. The expression profile of antioxidant genes cat, sod1, gpx1a and gstp1 were altered significantly. PS-MPs also significantly inhibited the neurotransmission in zebrafish. In addition, the PS-MPs exposure upregulated the expression of p53, gadd45ba, and casp3b resulting in apoptosis. We demonstrate that PS-MPs significantly upregulate the transcriptional pattern of tnfa and ptgs2a which are essential gene markers in inflammatory mechanism. Further, the oxidative damage induced by PS-MPs exposure could lead to cytological damage resulting in altered lamellar structures, capillary dilation, and necrosis in gill histomaps. In conclusion, the findings of this work strongly suggest that PS-MPs induce dose-and time-dependent ROS mediated apoptotic responses in zebrafish. Furthermore, the physiological responses observed in the gills correlate with the above observations and helps in unravelling the potential molecular mechanism underpinning the PS-MPs toxicity in zebrafish.
Collapse
Affiliation(s)
- Sathisaran Umamaheswari
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, India
| | - Sheela Priyadarshinee
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, India
| | - Krishna Kadirvelu
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641 046, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
179
|
Effect of Oxidative Stress on Physicochemical Quality of Taiwanese Seagrape (Caulerpa lentillifera) with the Application of Alternating Current Electric Field (ACEF) during Post-Harvest Storage. Processes (Basel) 2021. [DOI: 10.3390/pr9061011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This study aims to determine the physicochemical quality of seagrape (Caulerpa lentillifera) as a freshness label for products cultivated in different seasons. The applied post-harvest storage experiments compared between, within and without seawater that led to oxidative stress conditions. Water content, malondialdehyde (MDA) compound, total phenolic content (TPC), and chlorophyll content were observed at 0, 3, 6, and 9 days of storage. The storage without seawater showed sharper quality reductions by reaching 20–40% of water loss, 70–90% of MDA production, 15–25% of TPC reduction, and 40–60% of total chlorophyll degradation. The storage within seawater showed lower quality reductions due to the specific growth rates still reaching 5–10%. This study found that the greater the physicochemical quality, the slower the decomposition rates of the stored seagrape during storage. Therefore, the seagrapes’ obvious discoloration occurred earlier in winter, followed by summer and spring. Kinetics of chlorophyll degradation on seagrape in different seasons meet different order-reactions during storage. Furthermore, alternating current electric field (ACEF) treatment with 125 kV/m of intensity for 60 min can lower the spring seagrapes’ physicochemical quality by reaching 10–30% of inhibition, resulting in the shelf-life extension for up to 12 days of post-harvest storage.
Collapse
|
180
|
Rahman M, Mostofa MG, Keya SS, Rahman A, Das AK, Islam R, Abdelrahman M, Bhuiyan SU, Naznin T, Ansary MU, Tran LSP. Acetic acid improves drought acclimation in soybean: an integrative response of photosynthesis, osmoregulation, mineral uptake and antioxidant defense. PHYSIOLOGIA PLANTARUM 2021; 172:334-350. [PMID: 32797626 DOI: 10.1111/ppl.13191] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/14/2020] [Accepted: 08/12/2020] [Indexed: 05/08/2023]
Abstract
Exposure to drought stress negatively affects plant productivity and consequently threatens global food security. As global climates change, identifying solutions to increase the resilience of plants to drought is increasingly important. Several chemical treatments have recently emerged as promising techniques for various individual and combined abiotic stresses. This study shows compelling evidence on how acetic acid application promotes drought acclimation responses in soybean by investigating several morphological, physiological and biochemical attributes. Foliar applications of acetic acid to drought-exposed soybean resulted in improvements in root biomass, leaf area, photosynthetic rate and water use efficiency; leading to improved growth performance. Drought-induced accumulation of reactive oxygen species, and the resultant increased levels of malondialdehyde and electrolyte leakage, were considerably reverted by acetic acid treatment. Acetic acid-sprayed plants suffered less oxidative stress due to the enhancement of antioxidant defense mechanisms, as evidenced by the increased activities of superoxide dismutase, ascorbate peroxidase, catalase, glutathione peroxidase and glutathione S-transferase. Improved shoot relative water content was also linked to the increased levels of soluble sugars and free amino acids, indicating a better osmotic adjustment following acetic acid treatment in drought-exposed plants. Acetic acid also increased stem/root, leaf/stem and leaf/root mineral ratios and improved overall mineral status in drought-stressed plants. Taken together, our results demonstrated that acetic acid treatment enabled soybean plants to positively regulate photosynthetic ability, water balance, mineral homeostasis and antioxidant responses; thereby suggesting acetic acid as a cost-effective and easily accessible chemical for the management of soybean growth and productivity in drought-prone areas.
Collapse
Affiliation(s)
- Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Sanjida Sultana Keya
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Abiar Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Ashim Kumar Das
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Robyul Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Shahab Uddin Bhuiyan
- Department of Entomology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Tahia Naznin
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mesbah Uddin Ansary
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| |
Collapse
|
181
|
Van Aken O. Mitochondrial redox systems as central hubs in plant metabolism and signaling. PLANT PHYSIOLOGY 2021; 186:36-52. [PMID: 33624829 PMCID: PMC8154082 DOI: 10.1093/plphys/kiab101] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/11/2021] [Indexed: 05/06/2023]
Abstract
Plant mitochondria are indispensable for plant metabolism and are tightly integrated into cellular homeostasis. This review provides an update on the latest research concerning the organization and operation of plant mitochondrial redox systems, and how they affect cellular metabolism and signaling, plant development, and stress responses. New insights into the organization and operation of mitochondrial energy systems such as the tricarboxylic acid cycle and mitochondrial electron transport chain (mtETC) are discussed. The mtETC produces reactive oxygen and nitrogen species, which can act as signals or lead to cellular damage, and are thus efficiently removed by mitochondrial antioxidant systems, including Mn-superoxide dismutase, ascorbate-glutathione cycle, and thioredoxin-dependent peroxidases. Plant mitochondria are tightly connected with photosynthesis, photorespiration, and cytosolic metabolism, thereby providing redox-balancing. Mitochondrial proteins are targets of extensive post-translational modifications, but their functional significance and how they are added or removed remains unclear. To operate in sync with the whole cell, mitochondria can communicate their functional status via mitochondrial retrograde signaling to change nuclear gene expression, and several recent breakthroughs here are discussed. At a whole organism level, plant mitochondria thus play crucial roles from the first minutes after seed imbibition, supporting meristem activity, growth, and fertility, until senescence of darkened and aged tissue. Finally, plant mitochondria are tightly integrated with cellular and organismal responses to environmental challenges such as drought, salinity, heat, and submergence, but also threats posed by pathogens. Both the major recent advances and outstanding questions are reviewed, which may help future research efforts on plant mitochondria.
Collapse
Affiliation(s)
- Olivier Van Aken
- Department of Biology, Lund University, Lund, Sweden
- Author for communication:
| |
Collapse
|
182
|
Welchen E, Canal MV, Gras DE, Gonzalez DH. Cross-talk between mitochondrial function, growth, and stress signalling pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4102-4118. [PMID: 33369668 DOI: 10.1093/jxb/eraa608] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 05/16/2023]
Abstract
Plant mitochondria harbour complex metabolic routes that are interconnected with those of other cell compartments, and changes in mitochondrial function remotely influence processes in different parts of the cell. This implies the existence of signals that convey information about mitochondrial function to the rest of the cell. Increasing evidence indicates that metabolic and redox signals are important for this process, but changes in ion fluxes, protein relocalization, and physical contacts with other organelles are probably also involved. Besides possible direct effects of these signalling molecules on cellular functions, changes in mitochondrial physiology also affect the activity of different signalling pathways that modulate plant growth and stress responses. As a consequence, mitochondria influence the responses to internal and external factors that modify the activity of these pathways and associated biological processes. Acting through the activity of hormonal signalling pathways, mitochondria may also exert remote control over distant organs or plant tissues. In addition, an intimate cross-talk of mitochondria with energy signalling pathways, such as those represented by TARGET OF RAPAMYCIN and SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASE 1, can be envisaged. This review discusses available evidence on the role of mitochondria in shaping plant growth and stress responses through various signalling pathways.
Collapse
Affiliation(s)
- Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - María Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
183
|
Bian X, Zhao Y, Xiao S, Yang H, Han Y, Zhang L. Metabolome and transcriptome analysis reveals the molecular profiles underlying the ginseng response to rusty root symptoms. BMC PLANT BIOLOGY 2021; 21:215. [PMID: 33985437 PMCID: PMC8117609 DOI: 10.1186/s12870-021-03001-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/27/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Ginseng rusty root symptoms (GRS) is one of the primary diseases of ginseng. This disease leads to a severe decline in the quality of ginseng. It has been shown that the occurrence of GRS is associated with soil environmental degradation, which may involve changes in soil microbiology and physicochemical properties. RESULTS In this study, GRS and healthy ginseng (HG) samples were used as experimental materials for comparative analysis of transcriptome and metabolome. Compared with those in HG samples, 949 metabolites and 9451 genes were significantly changed at the metabolic and transcriptional levels in diseased samples. The diseased tissues' metabolic patterns changed, and the accumulation of various organic acids, alkaloids, alcohols and phenols in diseased tissues increased significantly. There were significant differences in the expression of genes involved in plant hormone signal transduction, phenylpropanoid biosynthesis, the peroxidase pathway, and the plant-pathogen interaction pathway. CONCLUSION The current study involved a comparative metabolome and transcriptome analysis of GRS and HG samples. Based on the findings at the transcriptional and metabolic levels, a mechanism model of the ginseng response to GRS was established. Our results provide new insights into ginseng's response to GRS, which will reveal the potential molecular mechanisms of this disease in ginseng.
Collapse
Affiliation(s)
- Xingbo Bian
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Shengyuan Xiao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, China.
| | - He Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, China
| | - Yongzhong Han
- Jilin Provincial Ginseng and Pilose Antler Office, Changchun, China
| | - Lianxue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, China.
| |
Collapse
|
184
|
Selinski J, Scheibe R. Central Metabolism in Mammals and Plants as a Hub for Controlling Cell Fate. Antioxid Redox Signal 2021; 34:1025-1047. [PMID: 32620064 PMCID: PMC8060724 DOI: 10.1089/ars.2020.8121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Significance: The importance of oxidoreductases in energy metabolism together with the occurrence of enzymes of central metabolism in the nucleus gave rise to the active research field aiming to understand moonlighting enzymes that undergo post-translational modifications (PTMs) before carrying out new tasks. Recent Advances: Cytosolic enzymes were shown to induce gene transcription after PTM and concomitant translocation to the nucleus. Changed properties of the oxidized forms of cytosolic glyceraldehyde 3-phosphate dehydrogenase, and also malate dehydrogenases and others, are the basis for a hypothesis suggesting moonlighting functions that directly link energy metabolism to adaptive responses required for maintenance of redox-homeostasis in all eukaryotes. Critical Issues: Small molecules, such as metabolic intermediates, coenzymes, or reduced glutathione, were shown to fine-tune the redox switches, interlinking redox state, metabolism, and induction of new functions via nuclear gene expression. The cytosol with its metabolic enzymes connecting energy fluxes between the various cell compartments can be seen as a hub for redox signaling, integrating the different signals for graded and directed responses in stressful situations. Future Directions: Enzymes of central metabolism were shown to interact with p53 or the assumed plant homologue suppressor of gamma response 1 (SOG1), an NAM, ATAF, and CUC transcription factor involved in the stress response upon ultraviolet exposure. Metabolic enzymes serve as sensors for imbalances, their inhibition leading to changed energy metabolism, and the adoption of transcriptional coactivator activities. Depending on the intensity of the impact, rerouting of energy metabolism, proliferation, DNA repair, cell cycle arrest, immune responses, or cell death will be induced. Antioxid. Redox Signal. 34, 1025-1047.
Collapse
Affiliation(s)
- Jennifer Selinski
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Renate Scheibe
- Department of Plant Physiology, Faculty of Biology/Chemistry, Osnabrueck University, Osnabrueck, Germany
| |
Collapse
|
185
|
Younes NA, Rahman MM, Wardany AA, Dawood MFA, Mostofa MG, Keya SS, Abdel Latef AAH, Tran LSP. Antioxidants and Bioactive Compounds in Licorice Root Extract Potentially Contribute to Improving Growth, Bulb Quality and Yield of Onion ( Allium cepa). Molecules 2021; 26:2633. [PMID: 33946396 PMCID: PMC8124151 DOI: 10.3390/molecules26092633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The increasing culinary use of onion (Alium cepa) raises pressure on the current production rate, demanding sustainable approaches for increasing its productivity worldwide. Here, we aimed to investigate the beneficial effects of licorice (Glycyrrhiza glabra) root extract (LRE) in improving growth, yield, nutritional status, and antioxidant properties of two high-yielding onion cultivars, Shandaweel and Giza 20, growing under field conditions in two consecutive years. Our results revealed that pretreatments of both onion cultivars with LRE exhibited improved growth indices (plant height and number of leaves) and yield-related features (bulb length, bulb diameter, and bulb weight) in comparison with the corresponding LRE-devoid control plants. Pretreatments with LRE also improved the nutritional and antioxidant properties of bulbs of both cultivars, which was linked to improved mineral (e.g., K+ and Ca2+) acquisition, and heightened activities of enzymatic antioxidants (e.g., superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase, and glutathione S-transferase) and increased levels of non-enzymatic antioxidants (e.g., ascorbic acid, reduced glutathione, phenolics, and flavonoids). LRE also elevated the contents of proline, total free amino acids, total soluble carbohydrates, and water-soluble proteins in both onion bulbs. In general, both cultivars displayed positive responses to LRE pretreatments; however, the Shandaweel cultivar performed better than the Giza 20 cultivar in terms of yield and, to some extent, bulb quality. Collectively, our findings suggest that the application of LRE as biostimulant might be an effective strategy to enhance bulb quality and ultimately the productivity of onion cultivars under field conditions.
Collapse
Affiliation(s)
- Nabil A. Younes
- Horticulture Department, Faculty of Agriculture, Al-Azhar University-Assiut Branch, Assiut 71524, Egypt;
| | - Md. Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.R.); (S.S.K.)
| | - Ahmed A. Wardany
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| | - Mona F. A. Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Sanjida Sultana Keya
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.R.); (S.S.K.)
| | - Arafat Abdel Hamed Abdel Latef
- Biology Department, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
186
|
Iqbal N, Czékus Z, Poór P, Ördög A. Plant defence mechanisms against mycotoxin Fumonisin B1. Chem Biol Interact 2021; 343:109494. [PMID: 33915161 DOI: 10.1016/j.cbi.2021.109494] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Fumonisin B1 (FB1) is the most harmful mycotoxin which prevails in several crops and affects the growth and yield as well. Hence, keeping the alarming consequences of FB1 under consideration, there is still a need to seek other more reliable approaches and scientific knowledge for FB1-induced cell death and a comprehensive understanding of the mechanisms of plant defence strategies. FB1-induced disturbance in sphingolipid metabolism initiates programmed cell death (PCD) through various modes such as the elevated generation of reactive oxygen species, lipid peroxidation, cytochrome c release from the mitochondria, and activation of specific proteases and nucleases causing DNA fragmentation. There is a close interaction between sphingolipids and defence phytohormones in response to FB1 exposure regulating PCD and defence. In this review, the model plant Arabidopsis and various crops have been presented with different levels of susceptibility and resistivity exposed to various concentration of FB1. In addition to this, regulation of PCD and defence mechanisms have been also demonstrated at the physiological, biochemical and molecular levels to help the understanding of the role and function of FB1-inducible molecules and genes and their expressions in plants against pathogen attacks which could provide molecular and biochemical markers for the detection of toxin exposure.
Collapse
Affiliation(s)
- Nadeem Iqbal
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary
| |
Collapse
|
187
|
Bernacki MJ, Rusaczonek A, Czarnocka W, Karpiński S. Salicylic Acid Accumulation Controlled by LSD1 Is Essential in Triggering Cell Death in Response to Abiotic Stress. Cells 2021; 10:962. [PMID: 33924244 PMCID: PMC8074770 DOI: 10.3390/cells10040962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Salicylic acid (SA) is well known hormonal molecule involved in cell death regulation. In response to a broad range of environmental factors (e.g., high light, UV, pathogens attack), plants accumulate SA, which participates in cell death induction and spread in some foliar cells. LESION SIMULATING DISEASE 1 (LSD1) is one of the best-known cell death regulators in Arabidopsis thaliana. The lsd1 mutant, lacking functional LSD1 protein, accumulates SA and is conditionally susceptible to many biotic and abiotic stresses. In order to get more insight into the role of LSD1-dependent regulation of SA accumulation during cell death, we crossed the lsd1 with the sid2 mutant, caring mutation in ISOCHORISMATE SYNTHASE 1(ICS1) gene and having deregulated SA synthesis, and with plants expressing the bacterial nahG gene and thus decomposing SA to catechol. In response to UV A+B irradiation, the lsd1 mutant exhibited clear cell death phenotype, which was reversed in lsd1/sid2 and lsd1/NahG plants. The expression of PR-genes and the H2O2 content in UV-treated lsd1 were significantly higher when compared with the wild type. In contrast, lsd1/sid2 and lsd1/NahG plants demonstrated comparability with the wild-type level of PR-genes expression and H2O2. Our results demonstrate that SA accumulation is crucial for triggering cell death in lsd1, while the reduction of excessive SA accumulation may lead to a greater tolerance toward abiotic stress.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Institute of Technology and Life Sciences, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland;
| | - Anna Rusaczonek
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (A.R.); (W.C.)
| | - Weronika Czarnocka
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (A.R.); (W.C.)
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| |
Collapse
|
188
|
Mostofa MG, Rahman MM, Ansary MMU, Keya SS, Abdelrahman M, Miah MG, Phan Tran LS. Silicon in mitigation of abiotic stress-induced oxidative damage in plants. Crit Rev Biotechnol 2021; 41:918-934. [PMID: 33784900 DOI: 10.1080/07388551.2021.1892582] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accumulation of reactive oxygen species (ROS), and their destructive effects on cellular organelles are the hallmark features of plants exposed to abiotic stresses. Plants are well-equipped with defensive mechanisms like antioxidant systems to deal with ROS-induced oxidative stress. Silicon has been emerged as an important regulator of plant protective mechanisms under environmental stresses, which can be up-taken from soil through a system of various silicon-transporters. In plants, silicon is deposited underneath of cuticles and in the cell wall, and help plant cells reduce deleterious effects of stresses. Furthermore, silicon can provide resistance to ROS-toxicity, which often accounts for silicon-mediated improvement of plant tolerance to different abiotic constraints, including salinity, drought, and metal toxicity. Silicon enhances the ROS-detoxification ability of treated plants by modulating the antioxidant defense systems, and the expression of key genes associated with oxidative stress mitigation and hormone metabolism. Silicon also displays additive roles in ROS-elimination when supplied with other external stimuli. Here, we discuss recent findings on how silicon is able to modulate antioxidant defense of plants in response to oxidative stress triggered by different abiotic constraints. We also review interactions of silicon with other signaling molecules, including nitric oxide, ROS, polyamines, and phytohormones in the mediation of plant protection against abiotic stress-induced oxidative damage.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Mesbah Uddin Ansary
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Sanjida Sultana Keya
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | | | - Md Giashuddin Miah
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.,Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
189
|
Liang G, He H, Nai G, Feng L, Li Y, Zhou Q, Ma Z, Yue Y, Chen B, Mao J. Genome-wide identification of BAM genes in grapevine (Vitis vinifera L.) and ectopic expression of VvBAM1 modulating soluble sugar levels to improve low-temperature tolerance in tomato. BMC PLANT BIOLOGY 2021; 21:156. [PMID: 33771117 PMCID: PMC8004407 DOI: 10.1186/s12870-021-02916-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Low temperature (LT) is one of the main limiting factors that affect growth and development in grape. Increasing soluble sugar and scavenging reactive oxygen species (ROS) play critical roles in grapevine resistance to cold stress. However, the mechanism of β-amylase (BAM) involved in the regulation of sugar levels and antioxidant enzyme activities in response to cold stress is unclear. RESULTS In this study, six BAM genes were identified and clustered into four groups. Multiple sequence alignment and gene structure analysis showed that VvBAM6 lacked the Glu380 residue and contained only an exon. The transcript abundance of VvBAM1 and VvBAM3 significantly increased as temperature decreased. After LT stress, VvBAM1 was highly expressed in the leaves, petioles, stems, and roots of overexpressing tomato lines. The total amylase and BAM activities increased by 6.5- and 6.01-fold in transgenic plants compared with those in wild-type tomato plants (WT) subjected to LT, respectively. The glucose and sucrose contents in transgenic plants were significantly higher than those in WT plants, whereas the starch contents in the former decreased by 1.5-fold compared with those in the latter under LT stress. The analysis of transcriptome sequencing data revealed that 541 genes were upregulated, and 663 genes were downregulated in transgenic plants. One sugar transporter protein gene (SlSTP10), two peroxidase (POD)-related genes (SlPER7 and SlPER5), and one catalase (CAT)-related gene (SlCAT1) were upregulated by 8.6-, 3.6-, 3.0-, and 2.3-fold in transgenic plants after LT stress, respectively. CONCLUSIONS Our results suggest that VvBAM1 overexpression promotes ROS scavenging and improves cold tolerance ability by modulating starch hydrolysis to affect soluble sugar levels in tomato plants.
Collapse
Affiliation(s)
- Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Honghong He
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Lidan Feng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Qi Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yuan Yue
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
190
|
von der Mark C, Ivanov R, Eutebach M, Maurino VG, Bauer P, Brumbarova T. Reactive oxygen species coordinate the transcriptional responses to iron availability in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2181-2195. [PMID: 33159788 PMCID: PMC7966954 DOI: 10.1093/jxb/eraa522] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/01/2020] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species play a central role in the regulation of plant responses to environmental stress. Under prolonged iron (Fe) deficiency, increased levels of hydrogen peroxide (H2O2) initiate signaling events, resulting in the attenuation of Fe acquisition through the inhibition of FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT). As this H2O2 increase occurs in a FIT-dependent manner, our aim was to understand the processes involved in maintaining H2O2 levels under prolonged Fe deficiency and the role of FIT. We identified the CAT2 gene, encoding one of the three Arabidopsis catalase isoforms, as regulated by FIT. CAT2 loss-of-function plants displayed severe susceptibility to Fe deficiency and greatly increased H2O2 levels in roots. Analysis of the Fe homeostasis transcription cascade revealed that H2O2 influences the gene expression of downstream regulators FIT, BHLH genes of group Ib, and POPEYE (PYE); however, H2O2 did not affect their upstream regulators, such as BHLH104 and ILR3. Our data shows that FIT and CAT2 participate in a regulatory loop between H2O2 and prolonged Fe deficiency.
Collapse
Affiliation(s)
- Claudia von der Mark
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Monique Eutebach
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Veronica G Maurino
- Department of Molecular Plant Physiology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschalle 1, D-53115 Bonn, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
- Correspondence: or
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- Correspondence: or
| |
Collapse
|
191
|
Shafiq F, Iqbal M, Ali M, Ashraf MA. Fullerenol regulates oxidative stress and tissue ionic homeostasis in spring wheat to improve net-primary productivity under salt-stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111901. [PMID: 33453640 DOI: 10.1016/j.ecoenv.2021.111901] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The effects of fullerenol nanopriming (0, 10, 40, 80 and 120 nM concentration) on salt stressed-wheat (0 and 150 mM NaCl) were investigated under natural conditions. Salinity resulted in a shift in wheat growth pattern in the form of LAR (+ 40.9% increase) and RGR (+ 13.4% increase) while decreased NAR (- 31.7%). It also disturbed shoot and root biomass, ion uptake and reduced chlorophyll contents. Despite increase in enzyme activities, higher ROS generation (+ 48.1% O2- anion; and + 62.2% H2O2) and lipid peroxidation (+ 40.8% MDA) were detected in salt-stressed wheat plants. Possibly, the increases in enzyme activities were not up to the level to completely counteract the salinity induced oxidative stress. Nanopriming with fullerenol improved NAR (+ 8.77% to 23.2%), ROS metabolism and decreased indicators of oxidative stress. Hydropriming treatment also promoted NAR recovery by 21.9% than control plants. Compared to Na+ ions, improvements in shoot relative concentrations of K+, Ca2+ and P also recorded along with soluble sugars and amino acids, which improved osmotic balance. These biochemical modifications contributed to improvements in grain yield attributes (+11.8% to 18.3% in 100 grain-weight) than salinity stressed control. Hydropriming also contributed to a recovery in grain yield attributes by 12.6%. Above all, the harvested seeds from fullerenol treated plants also showed better germination and seedlings growth traits. Conclusively, we report non-toxic, growth-promoting effects of fullerenol nanoparticles on wheat crop and as a way forward; we suggest its exogenous application to recover crop productivity under saline environments.
Collapse
Affiliation(s)
- Fahad Shafiq
- Department of Botany, Government College University Faisalabad, Pakistan.; Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Pakistan.
| | - Muhammad Iqbal
- Department of Botany, Government College University Faisalabad, Pakistan..
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
192
|
Nowicka B, Trela-Makowej A, Latowski D, Strzalka K, Szymańska R. Antioxidant and Signaling Role of Plastid-Derived Isoprenoid Quinones and Chromanols. Int J Mol Sci 2021; 22:2950. [PMID: 33799456 PMCID: PMC7999835 DOI: 10.3390/ijms22062950] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Plant prenyllipids, especially isoprenoid chromanols and quinols, are very efficient low-molecular-weight lipophilic antioxidants, protecting membranes and storage lipids from reactive oxygen species (ROS). ROS are byproducts of aerobic metabolism that can damage cell components, they are also known to play a role in signaling. Plants are particularly prone to oxidative damage because oxygenic photosynthesis results in O2 formation in their green tissues. In addition, the photosynthetic electron transfer chain is an important source of ROS. Therefore, chloroplasts are the main site of ROS generation in plant cells during the light reactions of photosynthesis, and plastidic antioxidants are crucial to prevent oxidative stress, which occurs when plants are exposed to various types of stress factors, both biotic and abiotic. The increase in antioxidant content during stress acclimation is a common phenomenon. In the present review, we describe the mechanisms of ROS (singlet oxygen, superoxide, hydrogen peroxide and hydroxyl radical) production in chloroplasts in general and during exposure to abiotic stress factors, such as high light, low temperature, drought and salinity. We highlight the dual role of their presence: negative (i.e., lipid peroxidation, pigment and protein oxidation) and positive (i.e., contribution in redox-based physiological processes). Then we provide a summary of current knowledge concerning plastidic prenyllipid antioxidants belonging to isoprenoid chromanols and quinols, as well as their structure, occurrence, biosynthesis and function both in ROS detoxification and signaling.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
| | - Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland;
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
| | - Kazimierz Strzalka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland;
| |
Collapse
|
193
|
Stamelou ML, Sperdouli I, Pyrri I, Adamakis IDS, Moustakas M. Hormetic Responses of Photosystem II in Tomato to Botrytis cinerea. PLANTS 2021; 10:plants10030521. [PMID: 33802218 PMCID: PMC8000511 DOI: 10.3390/plants10030521] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
Botrytis cinerea, a fungal pathogen that causes gray mold, is damaging more than 200 plant species, and especially tomato. Photosystem II (PSII) responses in tomato (Solanum lycopersicum L.) leaves to Botrytis cinerea spore suspension application were evaluated by chlorophyll fluorescence imaging analysis. Hydrogen peroxide (H2O2) that was detected 30 min after Botrytis application with an increasing trend up to 240 min, is possibly convening tolerance against B. cinerea at short-time exposure, but when increasing at relative longer exposure, is becoming a damaging molecule. In accordance, an enhanced photosystem II (PSII) functionality was observed 30 min after application of B. cinerea, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in a significant decrease in the dissipated non-regulated energy (ΦNO), indicating a possible decreased singlet oxygen (1O2) formation, thus specifying a modified reactive oxygen species (ROS) homeostasis. Therefore, 30 min after application of Botrytis spore suspension, before any visual symptoms appeared, defense response mechanisms were triggered, with PSII photochemistry to be adjusted by NPQ in a such way that PSII functionality to be enhanced, but being fully inhibited at the application spot and the adjacent area, after longer exposure (240 min). Hence, the response of tomato PSII to B. cinerea, indicates a hormetic temporal response in terms of “stress defense response” and “toxicity”, expanding the features of hormesis to biotic factors also. The enhanced PSII functionality 30 min after Botrytis application can possible be related with the need of an increased sugar production that is associated with a stronger plant defense potential through the induction of defense genes.
Collapse
Affiliation(s)
- Maria-Lavrentia Stamelou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece; (M.-L.S.); (I.-D.S.A.)
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, GR-57001 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, GR-57001 Thessaloniki, Greece;
| | - Ioanna Pyrri
- Section of Ecology & Systematics, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece;
| | - Ioannis-Dimosthenis S. Adamakis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece; (M.-L.S.); (I.-D.S.A.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
194
|
Tavanti TR, Melo AARD, Moreira LDK, Sanchez DEJ, Silva RDS, Silva RMD, Reis ARD. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:386-396. [PMID: 33556754 DOI: 10.1016/j.plaphy.2021.01.040] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/26/2021] [Indexed: 05/06/2023]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide at low concentrations act as signaling of several abiotic stresses. Overproduction of hydrogen peroxide causes the oxidation of plant cell lipid phosphate layer promoting senescence and cell death. To mitigate the effect of ROS, plants develop antioxidant defense mechanisms (superoxide dismutase, catalase, guaiacol peroxidase), ascorbate-glutathione cycle enzymes (ASA-GSH) (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase), which have the function of removing and transforming ROS into non-toxic substances to maintain cellular homeostasis. Foliar or soil application of fertilizers containing B, Cu, Fe, Mn, Mo, Ni, Se and Zn at low concentrations has the ability to elicit and activate antioxidative enzymes, non-oxidizing metabolism, as well as sugar metabolism to mitigate damage by oxidative stress. Plants treated with micronutrients show higher tolerance to abiotic stress and better nutritional status. In this review, we summarized results indicating micronutrient actions in order to reduce ROS resulting the increase of photosynthetic capacity of plants for greater crop yield. This meta-analysis provides information on the mechanism of action of micronutrients in combating ROS, which can make plants more tolerant to several types of abiotic stress such as extreme temperatures, salinity, heavy metals and excess light.
Collapse
Affiliation(s)
- Tauan Rimoldi Tavanti
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | | | | | | | - Rafael Dos Santos Silva
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | - Ricardo Messias da Silva
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | - André Rodrigues Dos Reis
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), Rua Domingos da Costa Lopes 780, 17602-496, Tupã, SP, Brazil.
| |
Collapse
|
195
|
Batova YV, Kaznina NM, Titov AF. Effect of Low Temperature on the Intensity of Oxidative Processes and the Activity of Antioxidant Enzymes in Wheat Plants at Optimal and Excessive Zinc Concentrations in the Root Medium. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
196
|
Tadaiesky LBA, da Silva BRS, Batista BL, Lobato AKDS. Brassinosteroids trigger tolerance to iron toxicity in rice. PHYSIOLOGIA PLANTARUM 2021; 171:371-387. [PMID: 33090462 DOI: 10.1111/ppl.13230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Iron (Fe) toxicity is one of the most frequent abiotic stresses in rice, as it affects from 15% to 30% of the total production. Brassinosteroids (BRs), including 24-epibrassinolide (EBR), regulate ion homeostasis and improve the antioxidant system. The aim of this research was to determine whether EBR can contribute to the tolerance of rice plants exposed to Fe toxicity and to evaluate the possible effect on anatomical characteristics, nutrient concentrations, the antioxidant system, and gas exchange. The experiment was randomized with four treatments, two with different concentrations of Fe (250 and 6250 μM, control and toxicity, respectively) and these were either supplied with EBR or not (0 and 10 nM EBR, described as -EBR and +EBR, respectively). Treating plants grown under Fe toxic conditions with EBR caused an 70% increase in root aerenchyma area, compared to plants without steroid treatment. Our results revealed that EBR treatment could mitigate the deleterious effects of Fe toxicity in rice plants, by modulating the aerenchyma area, which contributes to the formation of an oxidative barrier and reduce the Fe mobilization at the root surface. Plants that were exposed to Fe toxic concentrations and treated with EBR showed (1) an increase in the enzyme activities of superoxide dismutase, catalase, ascorbate peroxidase and peroxidase, (2) mitigation of oxidative damage and (3) increased scavenging of reactive oxygen species. Finally, EBR alleviated the negative impacts induced by excess Fe on the net photosynthetic rate and the instantaneous carboxylation efficiency. These benefits were directly related to higher electron transport and stomatal density and indirectly linked to the protection mechanism exercised by the antioxidant enzymes on photosynthetic machinery. We conclude that EBR is able to confer tolerance to Fe toxicity in rice plants.
Collapse
Affiliation(s)
- Lorene B A Tadaiesky
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Brazil
| | - Breno R S da Silva
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Brazil
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, Brazil
| | - Allan K da S Lobato
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Brazil
| |
Collapse
|
197
|
Matilla AJ. Cellular oxidative stress in programmed cell death: focusing on chloroplastic 1O 2 and mitochondrial cytochrome-c release. JOURNAL OF PLANT RESEARCH 2021; 134:179-194. [PMID: 33569718 DOI: 10.1007/s10265-021-01259-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The programmed cell death (PCD) occurs when the targeted cells have fulfilled their task or under conditions as oxidative stress generated by ROS species. Thus, plants have to deal with the singlet oxygen 1O2 produced in chloroplasts. 1O2 is unlikely to act as a primary retrograde signal owing to its high reactivity and short half-life. In addition to its high toxicity, the 1O2 generated under an excess or low excitation energy might also act as a highly versatile signal triggering chloroplast-to-nucleus retrograde signaling (ChNRS) and nuclear reprogramming or cell death. Molecular and biochemical studies with the flu mutant, which accumulates protochlorophyllide in the dark, demonstrated that chloroplastic 1O2-driven EXECUTER-1 (EX1) and EX2 proteins are involved in the 1O2-dependent response. Both EX1 and EX2 are necessary for full suppression of 1O2-induced gene expression. That is, EXECUTER proteolysis via the ATP-dependent zinc protease (FtsH) is an integral part of 1O2-triggered retrograde signaling. The existence of at least two independent ChNRS involving EX1 and β-cyclocitral, and dihydroactinidiolide and OXI1, respectively, seem clear. Besides, this update also focuses on plant PCD and its relation with mitochondrial cytochrome-c (Cytc) release to cytosol. Changes in the dynamics and morphology of mitochondria were shown during the onset of cell death. The mitochondrial damage and translocation of Cytc may be one of the major causes of PCD triggering. Together, this current overview illustrates the complexity of the cellular response to oxidative stress development. A puzzle with the majority of its pieces still not placed.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional, Facultad de Farmacia, Universidad de Santiago de Compostela (USC), Campus Vida, 15782, Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
198
|
Stephan OOH. Implications of ionizing radiation on pollen performance in comparison with diverse models of polar cell growth. PLANT, CELL & ENVIRONMENT 2021; 44:665-691. [PMID: 33124689 DOI: 10.1111/pce.13929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Research concerning the effects of ionizing radiation (IR) on plant systems is essential for numerous aspects of human society, as for instance, in terms of agriculture and plant breeding, but additionally for elucidating consequences of radioactive contamination of the ecosphere. This comprehensive survey analyses effects of x- and γ-irradiation on male gametophytes comprising primarily in vitro but also in vivo data of diverse plant species. The IR-dose range for pollen performance was compiled and 50% inhibition doses (ID50 ) for germination and tube growth were comparatively related to physiological characteristics of the microgametophyte. Factors influencing IR-susceptibility of mature pollen and polarized tube growth were evaluated, such as dose-rate, environmental conditions, or species-related variations. In addition, all available reports suggesting bio-positive IR-effects particularly on pollen performance were examined. Most importantly, for the first time influences of IR specifically on diverse phylogenetic models of polar cell growth were comparatively analysed, and thus demonstrated that the gametophytic system of pollen is extremely resistant to IR, more than plant sporophytes and especially much more than comparable animal cells. Beyond that, this study develops hypotheses regarding a molecular basis for the extreme IR-resistance of the plant microgametophyte and highlights its unique rank among organismal systems.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
199
|
Pucciariello C, Perata P. The Oxidative Paradox in Low Oxygen Stress in Plants. Antioxidants (Basel) 2021; 10:332. [PMID: 33672303 PMCID: PMC7926446 DOI: 10.3390/antiox10020332] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/07/2023] Open
Abstract
Reactive oxygen species (ROS) are part of aerobic environments, and variations in the availability of oxygen (O2) in the environment can lead to altered ROS levels. In plants, the O2 sensing machinery guides the molecular response to low O2, regulating a subset of genes involved in metabolic adaptations to hypoxia, including proteins involved in ROS homeostasis and acclimation. In addition, nitric oxide (NO) participates in signaling events that modulate the low O2 stress response. In this review, we summarize recent findings that highlight the roles of ROS and NO under environmentally or developmentally defined low O2 conditions. We conclude that ROS and NO are emerging regulators during low O2 signalling and key molecules in plant adaptation to flooding conditions.
Collapse
Affiliation(s)
- Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| | | |
Collapse
|
200
|
Palma JM, Corpas FJ. Editorial: Subcellular Compartmentalization of Plant Antioxidants and ROS Generating Systems. FRONTIERS IN PLANT SCIENCE 2021; 12:643239. [PMID: 33679860 PMCID: PMC7935501 DOI: 10.3389/fpls.2021.643239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
|