151
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
152
|
Vrijmoeth HD, Ursinus J, Botey-Bataller J, Kuijpers Y, Chu X, van de Schoor FR, Scicluna BP, Xu CJ, Netea MG, Kullberg BJ, van den Wijngaard CC, Li Y, Hovius JW, Joosten LAB. Genome-wide analyses in Lyme borreliosis: identification of a genetic variant associated with disease susceptibility and its immunological implications. BMC Infect Dis 2024; 24:337. [PMID: 38515037 PMCID: PMC10956190 DOI: 10.1186/s12879-024-09217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Genetic variation underly inter-individual variation in host immune responses to infectious diseases, and may affect susceptibility or the course of signs and symptoms. METHODS We performed genome-wide association studies in a prospective cohort of 1138 patients with physician-confirmed Lyme borreliosis (LB), the most common tick-borne disease in the Northern hemisphere caused by the bacterium Borrelia burgdorferi sensu lato. Genome-wide variants in LB patients-divided into a discovery and validation cohort-were compared to two healthy cohorts. Additionally, ex vivo monocyte-derived cytokine responses of peripheral blood mononuclear cells to several stimuli including Borrelia burgdorferi were performed in both LB patient and healthy control samples, as were stimulation experiments using mechanistic/mammalian target of rapamycin (mTOR) inhibitors. In addition, for LB patients, anti-Borrelia antibody responses were measured. Finally, in a subset of LB patients, gene expression was analysed using RNA-sequencing data from the ex vivo stimulation experiments. RESULTS We identified a previously unknown genetic variant, rs1061632, that was associated with enhanced LB susceptibility. This polymorphism was an eQTL for KCTD20 and ETV7 genes, and its major risk allele was associated with upregulation of the mTOR pathway and cytokine responses, and lower anti-Borrelia antibody production. In addition, we replicated the recently reported SCGB1D2 locus that was suggested to have a protective effect on B. burgdorferi infection, and associated this locus with higher Borrelia burgdorferi antibody indexes and lower IL-10 responses. CONCLUSIONS Susceptibility for LB was associated with higher anti-inflammatory responses and reduced anti-Borrelia antibody production, which in turn may negatively impact bacterial clearance. These findings provide important insights into the immunogenetic susceptibility for LB and may guide future studies on development of preventive or therapeutic measures. TRIAL REGISTRATION The LymeProspect study was registered with the International Clinical Trials Registry Platform (NTR4998, registration date 2015-02-13).
Collapse
Affiliation(s)
- Hedwig D Vrijmoeth
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Jeanine Ursinus
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam UMC, Location AMC, University of Amsterdam, P.O. Box 22660, Amsterdam, 1100 DD, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Javier Botey-Bataller
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
| | - Yunus Kuijpers
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
| | - Xiaojing Chu
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
| | - Freek R van de Schoor
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, University of Malta, MSD 2080, Msida, Malta
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences, University of Malta, MSD 2080, Msida, Malta
| | - Cheng-Jian Xu
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53113, Bonn, Germany
| | - Bart Jan Kullberg
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Cees C van den Wijngaard
- National Institute for Public Health and Environment (RIVM), Center for Infectious Disease Control, Bilthoven, 3720 BA, the Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
| | - Joppe W Hovius
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam UMC, Location AMC, University of Amsterdam, P.O. Box 22660, Amsterdam, 1100 DD, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands.
| |
Collapse
|
153
|
Vasilev G, Vasileva V, Ivanova M, Stanilova S, Manolova I, Miteva L. An Elevated IL10 mRNA Combined with Lower TNFA mRNA Level in Active Rheumatoid Arthritis Peripheral Blood. Curr Issues Mol Biol 2024; 46:2644-2657. [PMID: 38534783 DOI: 10.3390/cimb46030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
We aimed to investigate the expression of pro-inflammatory cytokine genes TNFA, IL6, IL12B, IL23, IL18 and immunoregulatory genes FOXP3, TGFB1, and IL10 in the peripheral blood of patients with rheumatoid arthritis (RA) at messenger ribonucleic acid (mRNA) level. The total RNA was isolated from peripheral blood samples. Real-time quantitative PCR was used to perform TaqMan-based assays to quantify mRNAs from 8 target genes. IL23A was upregulated (1.7-fold), whereas IL6 (5-fold), FOXP3 (4-fold), and IL12B (2.56-fold) were downregulated in patients compared to controls. In addition, we found a strong positive correlation between the expression of FOXP3 and TNFA and a moderate correlation between FOXP3 and TGFB1. These data showed the imbalance of the T helper (Th) 1/Th17/ T regulatory (Treg) axis at a systemic level in RA. In cases with active disease, the IL10 gene expression was approximately 2-fold higher; in contrast, the expression of FOXP3 was significantly decreased (3.38-fold). The main part of patients with higher disease activity expressed upregulation of IL10 and downregulation of TNFA. Different disease activity cohorts could be separated based on IL10, TNFA and IL12B expression combinations. In conclusion, our results showed that active disease is associated with an elevated IL10 and lower TNFA mRNA level in peripheral blood cells of RA patients.
Collapse
Affiliation(s)
- Georgi Vasilev
- Laboratory of Hematopathology and Immunology, National Specialized Hospital for Active Treatment of Hematological Diseases, Plovdivsko Pole Str. No. 6, 1756 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Viktoria Vasileva
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Armeiska Str. No. 11, 6000 Stara Zagora, Bulgaria
- Clinical Laboratory, Trakia Hospital, Dunav Str. No. 1, 6000 Stara Zagora, Bulgaria
| | - Mariana Ivanova
- Clinic of Rheumatology, University Hospital "St. Ivan Rilski", Urvich Str. No. 13, 1612 Sofia, Bulgaria
- Medical Faculty, Medical University-Sofia, Ivan Geshov Blvd. No. 15, 1431 Sofia, Bulgaria
| | - Spaska Stanilova
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Armeiska Str. No. 11, 6000 Stara Zagora, Bulgaria
| | - Irena Manolova
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Armeiska Str. No. 11, 6000 Stara Zagora, Bulgaria
| | - Lyuba Miteva
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Armeiska Str. No. 11, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
154
|
Qiao S, Li H, Cui C, Zhang C, Wang A, Jiang W, Zhang S. CSF Findings in Chinese Patients with NMDAR, LGI1 and GABABR Antibody-Associated Encephalitis. J Inflamm Res 2024; 17:1765-1776. [PMID: 38523682 PMCID: PMC10959177 DOI: 10.2147/jir.s383161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose CSF inflammation in subtypes of antibody-defined autoimmune encephalitis (AE) ranges in intensity from moderate to severe. In a retrospective, cross-sectional study, we characterized CSF findings in Chinese patients with anti-N-methyl-D-aspartate receptor encephalitis (NMDAR-E), anti-leucine-rich glioma-inactivated 1 encephalitis (LGI1-E), and anti-gamma aminobutyric acid-B receptor encephalitis (GABABR-E). Patients and Methods The AE cases, including 102 NMDAR-E, 68 LGI1-E and 15 GABABR-E, were included. CSF inflammatory parameters consisted primarily of CSF leukocytes, oligoclonal bands (OCBs), and CSF/serum albumin ratios (QAlb). Ten serum cytokines were evaluated in order to classify AE subtypes. Results 88% of NMDAR-E, 80% of GABABR-E, and 51% of LGI1-E patients had aberrant CSF features. In NMDAR-E, the CSF leukocyte count, CSF protein concentration, and age-adjusted QAlb were significantly higher than in LGI1-E, but did not differ from GABABR-E. Blood-CSF barrier dysfunction was less common in NMDAR-E patients with >40 years old. On admission, inflammatory CSF response was more prevalent in NMDAR-E patients with a higher CASE score. With age <60 years, CSF inflammatory changes were less frequent in LGI1-E patients, but more common in GABABR-E patients. MCP-1, IL-10, IL-1β, and IL-4 were potential classifiers for NMDAR-E, LGI1-E, and GABABR-E, and correlated substantially with CSF leukocyte count and QAlb. Conclusion Subtype-specific patterns are formed by the various inflammatory CSF parameters in NMDAR-E, LGI1-E, and GABABR-E, and their correlation with disease severity, age, and disease duration. CSF inflammatory characteristics associated with MCP-1, IL-10, IL-1β, and IL-4 may be potential immunopathogeneses targeting markers for these AE subtypes.
Collapse
Affiliation(s)
- Shan Qiao
- Department of Neurology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, People’s Republic of China
- Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Haiyun Li
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Caisan Cui
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Chong Zhang
- Department of Neurology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, People’s Republic of China
| | - Aihua Wang
- Department of Neurology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, People’s Republic of China
| | - Wenjing Jiang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Shanchao Zhang
- Department of Neurology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, People’s Republic of China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
155
|
Li R, Li W, Zhou Y, Liao G, Peng G, Zhou Y, Gou L, Zhu X, Hu L, Zheng X, Wang C, Tong N. A DNA-based and bifunctional nanomedicine for alleviating multi-organ injury in sepsis under diabetic conditions. Acta Biomater 2024; 177:377-387. [PMID: 38307477 DOI: 10.1016/j.actbio.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Sepsis, defined as a life-threatening organ dysfunction, is associated with increased mortality in individuals with diabetes mellitus. In sepsis under diabetic conditions (SUDC), the superimposed inflammatory response and excessive production of reactive oxygen species (ROS) can cause severe damage to the kidney and liver, making it challenging to effectively repair multi-organ injury. In this study, we report the development of a DNA-based bifunctional nanomedicine, termed IL10-rDON, generated by assembling interleukin 10 (IL10) with rectangular DNA origami nanostructures (rDON) to address multi-organ dysfunction in SUDC. IL10-rDON was shown to predominantly accumulate in the kidney and liver of diabetic mice in vivo and effectively alleviate inflammatory responses through its anti-inflammatory IL10 component. In addition, the consumption of rDON itself significantly reduced excessive ROS in the liver and kidney. Serum and histological examinations further confirmed that IL10-rDON treatment could effectively improve liver and kidney function, as well as the survival of mice with SUDC. This study demonstrates an attractive antioxidant and anti-inflammatory nanomedicine for addressing acute liver and renal failure. The integration of rDON with therapeutic agents using DNA nanotechnology is a promising strategy for generating multifunctional nanomedicine to treat multi-organ dysfunction and other complicated diseases. STATEMENT OF SIGNIFICANCE: Sepsis under diabetic conditions (SUDC) leads to high mortality due to multiple organ failure such as acute liver and kidney injury. The anti-inflammatory cytokine interleukin 10 (IL10) holds great potential to treat SUDC, while disadvantages of IL-10 such as short half-life, non-specific distribution and lack of antioxidant activities limit its wide clinical applications. In this study, we developed a DNA-based, bifunctional nanomedicine (IL10-rDON) by assembling IL10 with rectangular DNA origami nanostructures (rDON). We found that IL10-rDON preferentially accumulated and sufficiently attenuated the increased levels of ROS and inflammation in the kidney and liver injury sites, and eventually improved the survival rate of mice with SUDC. Our finding provides new insights into the application of DNA-based nanomedicine in treating multi-organ failure.
Collapse
Affiliation(s)
- Ruoqing Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China; Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yaojia Zhou
- Animal Experimental Center of West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal Experimental Center of West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Liqiang Hu
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
156
|
Ni A, Fang L, Xi M, Li J, Qian Q, Wang Z, Wang X, Wang H, Yan J. Neurotoxic effects of 2-ethylhexyl diphenyl phosphate exposure on zebrafish larvae: Insight into inflammation-driven changes in early motor behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170131. [PMID: 38246379 DOI: 10.1016/j.scitotenv.2024.170131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
The extensive utilization and potential adverse impacts of the replacement flame-retardant 2-Ethylhexyl Diphenyl Phosphate (EHDPP) have raised concerns. Currently, there is limited knowledge regarding the developmental, neurological, and immunotoxic consequences of EHDPP exposure, as well as its potential behavioral outcomes. In this study, we undertook a comprehensive examination and characterization of the toxic effects over the EHDPP concentration range of 14-1400 nM. Our findings unveiled that EHDPP, even at an environmentally relevant concentration of 14 nM, exhibited excitatory neurotoxicity, eliciting a 13.5 % increase in the swimming speed of zebrafish larvae. This effect might be attributed to the potential influence of EHDPP on the release of neurotransmitters like serotonin and dopamine, which, in turn, mediated anxiety-like behavior in the zebrafish larvae. Conversely, sublethal dose EHDPP (1400 nM) exposure significantly suppressed the swimming vigor of zebrafish larvae, accompanied by morphological changes, abnormal behaviors, and alterations in intracerebral molecules. Transcriptomics revealed the underlying mechanism. The utilization of pathway inhibitors reshaped the inflammatory homeostasis and alleviated the toxicity induced by EHDPP exposure, anchoring the pivotal role played by the TLR4/NF-κB signaling pathway in EHDPP-induced adverse changes in zebrafish behavior and neurophysiology. This study observed the detrimental effects of EHDPP on fish sustainability at environmentally relevant concentrations, highlighting the practical significance for EHDPP risk management. Elucidating the toxic mechanisms of EHDPP will contribute to a deeper comprehension of how environmental pollutants can intricately influence human health.
Collapse
Affiliation(s)
- Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinyun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
157
|
Fu Q, Shen N, Fang T, Zhang H, Di Y, Liu X, Du C, Guo J. ACT001 alleviates inflammation and pyroptosis through the PPAR-γ/NF-κB signaling pathway in LPS-induced alveolar macrophages. Genes Genomics 2024; 46:323-332. [PMID: 37831404 DOI: 10.1007/s13258-023-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND ACT001 is an anti-inflammatory agent that has been widely investigated for its role in tumors, intracranial diseases, and fibrotic diseases, but its effect on acute lung injury is less known. OBJECTIVE The purpose of this study was to investigate the effect and mechanism of ACT001 on regulating inflammation and pyroptosis in lipopolysaccharide (LPS)-induced alveolar macrophages. METHODS NR8383 alveolar macrophages treated with LPS were used to replicate the proinflammatory macrophage phenotype observed during acute lung injury. After ACT001 treatment, we measured the secretion and expression levels of critical inflammatory cytokines, the rate of pyroptosis, and the expression of NLRP3 inflammasome-associated proteins and pyroptosis-associated proteins. In addition, we assessed the role of the PPAR-γ/NF-κB signaling pathways and further validated the results with a PPAR-γ inhibitor. RESULTS Our findings confirmed that ACT001 reduced the expression and release of inflammatory factors, attenuated cell pyroptosis, and downregulated the expression of NLRP3, ASC, caspase-1 p20, and GSDMD-N. These effects may be achieved by activating PPAR-γ expression and then inhibiting the NF-κB signaling pathway. When macrophages were treated with the PPAR-γ inhibitor, the protective effects of ACT001 were reversed. CONCLUSION ACT001 significantly ameliorated inflammation and pyroptosis via the PPAR-γ/NF-κB signaling pathways in LPS-induced NR8383 alveolar macrophages.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Intensive Care Unit, Tianjin 4th Central Hospital, No.1 Zhongshan Road, Tianjin, 300140, China.
| | - Na Shen
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Tao Fang
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Hewei Zhang
- Department of Intensive Care Unit, Tianjin 4th Central Hospital, No.1 Zhongshan Road, Tianjin, 300140, China
| | - Yanbo Di
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Xuan Liu
- Pharmacy Department, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Chao Du
- Emergency Surgical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| |
Collapse
|
158
|
Duan R, Lyu D, Qin S, Liang J, Gu W, Duan Q, Wu W, Tang D, Han H, Zheng X, Xi J, Bukai A, Lu X, Zhang P, Zhang D, Xiao M, Jing H, Wang X. Pasteurella multocida strains of a novel capsular serotype and lethal to Marmota himalayana on Qinghai-Tibet plateau in China. Int J Med Microbiol 2024; 314:151597. [PMID: 38217947 DOI: 10.1016/j.ijmm.2024.151597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Pasteurella multocida is a zoonotic pathogen causing serious diseases in humans and animals. Here, we report P. multocida from wildlife on China's Qinghai-Tibet plateau with a novel capsular serotype, forming a single branch on the core-genome phylogenetic tree: four strains isolated from dead Himalayan marmot (Marmota himalayana) and one genome assembled from metagenomic sequencing of a dead Woolly hare (Lepus oiostolus). Four of the strains were identified as subspecies multocida and one was septica. The mouse model showed that the challenge strain killed mice within 24 h at an infectious dose of less than 300 bacteria. The short disease course is comparable to septicemic plague: the host has died before more severe pathological changes could take place. Though pathological changes were relatively mild, cytokine storm was obvious with a significant rise of IL-12p70, IL-6, TNF-αand IL-10 (P < 0.05). Our findings suggested P. multocida is a lethal pathogen for wildlife on Qinghai-Tibet plateau, in addition to Yersinia pestis. Individuals residing within the M. himalayana plague focus are at risk for P. multocida infection, and public health warnings are necessitated.
Collapse
Affiliation(s)
- Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongyue Lyu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Qin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junrong Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenpeng Gu
- Yunan Provincial Center for Disease Control and Prevention, Kunming, Yunnan Province, China
| | - Qun Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weiwei Wu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Deming Tang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haonan Han
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaojin Zheng
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu Province, China
| | - Jinxiao Xi
- Institute for Plague Prevention and Control, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu Province, China
| | - Asaiti Bukai
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu Province, China
| | - Xinmin Lu
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu Province, China
| | - Peng Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
159
|
Lezmi G, Poirault C, Grauso M, Dietrich C, Adel-Patient K, Leite-de-Moraes M. Identification of the major immune differences in severe asthmatic children according to their atopic dermatitis status. Cell Immunol 2024; 397-398:104815. [PMID: 38428350 DOI: 10.1016/j.cellimm.2024.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Severe asthma (SA) affects 2% to 5% of asthmatic children. Atopic dermatitis can affect up to 34% of children with SA (cwSA). Atopic dermatitis and asthma share common genetic and immunological features. However, not all children with SA suffer from AD, and it remains unclear whether the overall immune profiles of these children are similar. In this study, seventeen cwSA (9.8 [7.1-13.2] years; seven with and ten without AD) were enrolled. Bronchoalveolar lavage (BAL) and blood samples were collected from these patients. Seventy-three cytokines/chemokines and distinct immune T cell populations were evaluated in blood and BAL. We found that BAL and blood immune profiles of cwSA with and without AD were globally similar. However, specific differences were observed, namely lower frequency of Tc2, Th17 and IL-17-producing mucosal associated invariant T (MAIT-17) cells and higher CD8/CD4 ratio and IL-22 concentrations in BAL and of CCL19 concentrations in plasma from cwSA with AD. Further, in contrast with cwSA without AD, we found a positive correlation between a set of plasma cytokines and almost all cytokines in BAL in cwSA with AD. In conclusion, this study shows the major immune differences between cwSA with and without AD in BAL and blood suggesting that distinct endotypes may be implicated in the inflammatory responses observed in these pediatric patients.
Collapse
Affiliation(s)
- Guillaume Lezmi
- Université de Paris, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Inserm UMR1151, CNRS UMR8253, F-75015, Paris, France; AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, F-75015, Paris, France.
| | - Clément Poirault
- Université de Paris, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Inserm UMR1151, CNRS UMR8253, F-75015, Paris, France; AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, F-75015, Paris, France
| | - Marta Grauso
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Laboratoire d'Immuno-Allergie Alimentaire, F-91191, Gif-sur-Yvette, France
| | - Céline Dietrich
- Université de Paris, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Inserm UMR1151, CNRS UMR8253, F-75015, Paris, France
| | - Karine Adel-Patient
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Laboratoire d'Immuno-Allergie Alimentaire, F-91191, Gif-sur-Yvette, France
| | - Maria Leite-de-Moraes
- Université de Paris, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Inserm UMR1151, CNRS UMR8253, F-75015, Paris, France.
| |
Collapse
|
160
|
Zeng Q, Liu X, Tang Y, Li Z, Yang Y, Hu N, Liu Q, Zhou Z. Evolutionarily conserved IL-22 participates in gut mucosal barrier through its receptors IL-22BP, IL-10R2 and IL-22RA1 during bacterial infection in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105110. [PMID: 38081403 DOI: 10.1016/j.dci.2023.105110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
IL-22 is a critical cytokine of epithelial mucosal barrier. In humans, IL-22 signals through a heteroduplex receptor consisting of IL-22R and IL-10Rβ. In fish, IL-22 and its receptors homologues have been cloned in a number of species, however, no studies have been reported how the receptors are involved in IL-22 transduction. For this purpose, in this study we identified IL-22 and its soluble receptor IL-22BP and transmembrane receptors IL-22RA1 and IL-10R2 in Carassius cuvieri × Carassius auratus red var. (named WR-IL-22, WR-IL-22BP, WR-IL10R2 and WR-IL22RA1, respectively). WR-IL-22, WR-IL-22BP, WR-IL10R2 and WR-IL22RA1 were relatively conserved in the evolutionary process, sharing the same conserved domains as their higher vertebrate homologues. When the fish were infected with the Aeromonas hydrophila, the expression of WR-IL-22, WR-IL-22BP, WR-IL10R2 and WR-IL22RA1 were significantly induced in the gut. The co-IP assay showed that WR-IL-22 not only interacted with WR-IL-22BP, but also with WR-IL10R2 and WR-IL22RA1. When introduced in vivo, WR-IL-22 activated the JAK1-STAT3 axis and protected the gut mucosa from A. hydrophila infection. However, overexpression of WR-IL-22BP or knockdown of transmembrane receptors WR-IL10R2 and WR-IL22RA1 significantly inhibited the activation of WR-IL-22-mediated JAK1-STAT3 axis and promoted bacterial colonization in the gut. These results provided new insights into the role of IL-22 and its receptors in the gut mucosa barrier and immune response in teleost.
Collapse
Affiliation(s)
- Qiongyao Zeng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Liu
- Department of Nutrition, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yiyang Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhengwei Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ye Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Niewen Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511466, China.
| |
Collapse
|
161
|
Pei Y, Cui X, Wang Y. Regulation of IL-10 expression and function by JAK-STAT in CD8 + T cells. Int Immunopharmacol 2024; 128:111563. [PMID: 38246002 DOI: 10.1016/j.intimp.2024.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
IL-10 is a pleiotropic cytokine that plays a significant role in antiviral and antitumor immunity. Potent CD8+ T cells express IL-10 after stimulation by strong TCR signaling, which promotes the killing effect of CD8+ T cells. However, the regulation of IL-10 expression in CD8+ T cells and its signaling pathway to enhance CD8+ T cell function are largely unknown. In this study, we investigated the JAK-STAT signaling molecules that regulate IL-10 expression in CD8+ T cells and the JAK-STAT signaling pathway that IL-10 enhances the function of CD8+ T cells through its receptor, using small molecule inhibitors and CRISPR-Cas9 gene editing. Our findings provide new insights and a theoretical basis for the immunotherapy of tumors.
Collapse
Affiliation(s)
- Yu Pei
- Life Science Institute, Jinzhou Medical University, Jinzhou, China; Department of Clinical Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiuping Cui
- Life Science Institute, Jinzhou Medical University, Jinzhou, China
| | - Yu Wang
- Life Science Institute, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
162
|
Ruz-Maldonado I, Gonzalez JT, Zhang H, Sun J, Bort A, Kabir I, Kibbey RG, Suárez Y, Greif DM, Fernández-Hernando C. Heterogeneity of hepatocyte dynamics restores liver architecture after chemical, physical or viral damage. Nat Commun 2024; 15:1247. [PMID: 38341404 PMCID: PMC10858916 DOI: 10.1038/s41467-024-45439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Midlobular hepatocytes are proposed to be the most plastic hepatic cell, providing a reservoir for hepatocyte proliferation during homeostasis and regeneration. However, other mechanisms beyond hyperplasia have been little explored and the contribution of other hepatocyte subpopulations to regeneration has been controversial. Thus, re-examining hepatocyte dynamics during regeneration is critical for cell therapy and treatment of liver diseases. Using a mouse model of hepatocyte- and non-hepatocyte- multicolor lineage tracing, we demonstrate that midlobular hepatocytes also undergo hypertrophy in response to chemical, physical, and viral insults. Our study shows that this subpopulation also combats liver impairment after infection with coronavirus. Furthermore, we demonstrate that pericentral hepatocytes also expand in number and size during the repair process and Galectin-9-CD44 pathway may be critical for driving these processes. Notably, we also identified that transdifferentiation and cell fusion during regeneration after severe injury contribute to recover hepatic function.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - John T Gonzalez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hanming Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alicia Bort
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Richard G Kibbey
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
163
|
Sun T, Zhou C, Lu F, Dong Z, Gao J, Li B. Adipose-derived stem cells in immune-related skin disease: a review of current research and underlying mechanisms. Stem Cell Res Ther 2024; 15:37. [PMID: 38331803 PMCID: PMC10854049 DOI: 10.1186/s13287-023-03561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/06/2023] [Indexed: 02/10/2024] Open
Abstract
Adipose-derived stem cells (ASCs) are a critical adult stem cell subpopulation and are widely utilized in the fields of regenerative medicine and stem cell research due to their abundance, ease of harvest, and low immunogenicity. ASCs, which are homologous with skin by nature, can treat immune-related skin diseases by promoting skin regeneration and conferring immunosuppressive effects, with the latter being the most important therapeutic mechanism. ASCs regulate the immune response by direct cell-cell communication with immune cells, such as T cells, macrophages, and B cells. In addition to cell-cell interactions, ASCs modulate the immune response indirectly by secreting cytokines, interleukins, growth factors, and extracellular vesicles. The immunomodulatory effects of ASCs have been exploited to treat many immune-related skin diseases with good therapeutic outcomes. This article reviews the mechanisms underlying the immunomodulatory effects of ASCs, as well as progress in research on immune-related skin diseases.
Collapse
Affiliation(s)
- Tianyi Sun
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Cheng Zhou
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Ziqing Dong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Jianhua Gao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Bin Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
164
|
Wu S, Zhou Y. Monoclonal antibody precision therapy targeting inflammation for bipolar disorder: a narrative review. Ther Adv Psychopharmacol 2024; 14:20451253241227772. [PMID: 38322010 PMCID: PMC10846009 DOI: 10.1177/20451253241227772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024] Open
Abstract
Bipolar disorder (BD) is a severe mental disorder with various hypotheses regarding its pathogenesis. This article provides a summary of numerous studies on the variations in inflammatory cytokine levels in patients with BD and the effects of treatment with antipsychotics, mood stabilizers, and antidepressants on these levels. In addition, patients with autoimmune diseases who use anti-inflammatory monoclonal antibodies experience symptoms, such as depression, anxiety, and insomnia. These pieces of evidence suggest a potential association between immune inflammation and BD and offer new possibilities for therapy. Building upon this relationship, the authors propose an innovative approach for treating BD through individualized and precise therapy using anti-inflammatory monoclonal antibody drugs. To support this proposal, the authors compile information on pharmacological effects and relevant studies, including trials of various anti-inflammatory therapeutic monoclonal antibody drugs (e.g. infliximab, tocilizumab, and canakinumab) for the potential treatment of BD and its associated side effects in psychiatry. The authors categorize these anti-inflammatory monoclonal antibody drugs into levels I-IV through a comprehensive analysis of their advantages and disadvantages. Their potential is examined, and the need for further exploration of their pharmaceutical effects is established.
Collapse
Affiliation(s)
- Shijin Wu
- School of Clinical Pharmacy (School of integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuyang Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Waihuan East Road, Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| |
Collapse
|
165
|
Sun Y, Liu Y, Li R, Zhang C, Wu M, Zhang X, Xu H, Zeng R, Zeng Y, Liu X. Direct visualization of immune status for tumor-infiltrating lymphocytes by rolling circle amplification. JOURNAL OF BIOPHOTONICS 2024; 17:e202300374. [PMID: 37885324 DOI: 10.1002/jbio.202300374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
The immune status of tumor-infiltrating lymphocytes (TILs) is essential for the effectiveness of cancer immunotherapies. However, due to the diversity of immune status in TILs, cellular heterogeneity, and the applicability to the clinic, it is still lacking effective strategies to meet clinical needs. We developed a novel immuno-recognition-induced method based on rolling circle amplification (RCA), namely immunoRCA, to in situ visualize the immune status of TILs in actual clinical samples. This developed immunoRCA method, in which, feature mRNAs were used as the biomarkers for the immune status of TILs, has a low fluorescence background, high sensitivity, and specificity. The immunoRCA was able to efficiently evaluate the immune status of CD8+ T cells regulated by activating or inhibiting factors, track the T cell type and immune status during in vitro expansion, and in situ visualize the number, location, and immune status of TILs in clinical specimens.
Collapse
Affiliation(s)
- Yupeng Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Yan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, People's Republic of China
| | - Rui Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, People's Republic of China
| | - Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Haipo Xu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Rui Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, People's Republic of China
| |
Collapse
|
166
|
Zhang X, Wang J, Tan Y, Chen C, Tang S, Zhao S, Qin Q, Huang H, Duan S. Nanobodies in cytokine‑mediated immunotherapy and immunoimaging (Review). Int J Mol Med 2024; 53:12. [PMID: 38063273 DOI: 10.3892/ijmm.2023.5336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Cytokines are the main regulators of innate and adaptive immunity, mediating communications between the cells of the immune system and regulating biological functions, including cell motility, differentiation, growth and apoptosis. Cytokines and cytokine receptors have been used in the treatment of tumors and autoimmune diseases, and to intervene in cytokine storms. Indeed, the use of monoclonal antibodies to block cytokine‑receptor interactions, as well as antibody‑cytokine fusion proteins has exhibited immense potential for the treatment of tumors and autoimmune diseases. Compared with these traditional types of antibodies, nanobodies not only maintain a high affinity and specificity, but also have the advantages of high thermal stability, a high capacity for chemical manipulation, low immunogenicity, good tissue permeability, rapid clearance and economic production. Thus, nanobodies have extensive potential for use in the diagnosis and treatment of cytokine‑related diseases. The present review summarizes the application of nanobodies in cytokine‑mediated immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Jin Wang
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Ying Tan
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Chaoting Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shuang Tang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shimei Zhao
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Qiuhong Qin
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Hansheng Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Siliang Duan
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| |
Collapse
|
167
|
Yang H, Xiao T, Deng Y, Ding C, Zhang M, Li J, Lv Z. JunD functions as a transcription factor of IL-10 to regulate bacterial infectious inflammation in grass carp (Ctenopharyngodon idella). Int J Biol Macromol 2024; 258:129045. [PMID: 38159700 DOI: 10.1016/j.ijbiomac.2023.129045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/04/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
IL-10 is a key anti-inflammatory mediator ensuring the protection of a host from excessive inflammation in response to pathogen infections, whose transcription or expression levels are tightly linked to the onset and progression of infectious diseases. An AP-1 family member called CiJunD was shown to be a transcription factor of IL-10 in grass carp (Ctenopharyngodon idella) in the current study. CiJunD protein harbored the conserved Jun and bZIP domains. Mutant experiments demonstrated that CiJunD bound to three specific sites on IL-10 promoter, i.e., 5'-ATTATTCATA-3', 5'-AGATGAGACATCT-3', and 5'-ATTATTCATC-3', mainly relying on the bZIP domain, and initiated IL-10 transcription. Expression data from the grass carp spleen infected by Aeromonas hydrophila and lipopolysaccharide (LPS) challenged spleen leukocytes indicated that the expressions of CiJunD and IL-10 were positively correlated, while the expression of pro-inflammatory cytokines, such as IL-1β, IL-6, IL-8, IFN-γ, and TNF-α, showed an overall downward trend when CiJunD and IL-10 peaked. The ability of CiJunD to down-regulate the production of pro-inflammatory cytokines and up-regulate the expression of IL-10, both with and without LPS stimulation, was confirmed by overexpression experiments. Meanwhile, the subcellular fractionation assay revealed that the nuclear translocation of CiJunD was significantly enhanced after the LPS challenge. Moreover, in vivo administration of grass carp with Oxamflatin, a potent agonist of JunD activity, could promote IL-10 but suppress the expression of pro-inflammatory cytokines. Intriguingly, tissue inflammation lesions and the survival rates of grass carp infected with A. hydrophila were also significantly improved by Oxamflatin administration. This work sheds light on the regulation mechanism by JunD of IL-10 expression and bacterial infectious inflammation for the first time, and it may present a viable method for preventing infectious diseases in fish by regulating IL-10 expression and inflammatory response.
Collapse
Affiliation(s)
- Hong Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| | - Yadong Deng
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Mengyuan Zhang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Junhua Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
168
|
Zeng J, Yang Z, Xu D, Song J, Liu Y, Qin J, Weng Z. NMI Functions as Immuno-regulatory Molecule in Sepsis by Regulating Multiple Signaling Pathways. Inflammation 2024; 47:60-73. [PMID: 37679586 DOI: 10.1007/s10753-023-01893-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Sepsis-induced tissue and organ damage is caused by an overactive inflammatory response, immune dysfunction, and coagulation dysfunction. Danger-associated molecular pattern (DAMP) molecules play a critical role in the excessive inflammation observed in sepsis. In our previous research, we identified NMI as a new type of DAMP molecule that promotes inflammation in sepsis by binding to toll-like receptor 4 (TLR4) on macrophage surfaces, activating the NF-κB pathway, and releasing pro-inflammatory cytokines. However, it is still unknown whether NMI plays a significant role in other pathways. Our analysis of bulk and single-cell transcriptome data from the GEO database revealed a significant increase in NMI expression in neutrophils and monocytes in sepsis patients. It is likely that NMI functions through multiple receptors in sepsis, including IFNAR1, IFNAR2, TNFR1, TLR3, TLR1, IL9R, IL10RB, and TLR4. Furthermore, the correlation between NMI expression and the activation of NF-κB, MAPK, and JAK pathways, as well as the up-regulation of their downstream pro-inflammatory factors, demonstrates that NMI may exacerbate the inflammatory response through these signaling pathways. Finally, we demonstrated that STAT1 phosphorylation was enhanced in RAW cells upon stimulation with NMI, supporting the activation of JAK signaling pathway by NMI. Collectively, these findings shed new light on the functional mechanism of NMI in sepsis.
Collapse
Affiliation(s)
- Jinhua Zeng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zixin Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Dan Xu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jierong Song
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yingfang Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Zhuangfeng Weng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
169
|
Wilfahrt D, Delgoffe GM. Metabolic waypoints during T cell differentiation. Nat Immunol 2024; 25:206-217. [PMID: 38238609 DOI: 10.1038/s41590-023-01733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
This Review explores the interplay between T cell activation and cell metabolism and highlights how metabolites serve two pivotal functions in shaping the immune response. Traditionally, T cell activation has been characterized by T cell antigen receptor-major histocompatibility complex interaction (signal 1), co-stimulation (signal 2) and cytokine signaling (signal 3). However, recent research has unveiled the critical role of metabolites in this process. Firstly, metabolites act as signal propagators that aid in the transmission of core activation signals, such as specific lipid species that are crucial at the immune synapse. Secondly, metabolites also function as unique signals that influence immune differentiation pathways, such as amino acid-induced mTORC1 signaling. Metabolites also play a substantial role in epigenetic remodeling, by directly modifying histones, altering gene expression and influencing T cell behavior. This Review discusses how T cells integrate nutrient sensing with activating stimuli to shape their differentiation and sensitivity to metabolites. We underscore the integration of immunological and metabolic inputs in T cell function and suggest that metabolite availability is a fundamental determinant of adaptive immune responses.
Collapse
Affiliation(s)
- Drew Wilfahrt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center and Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
170
|
Li R, Zhang L, Peng C, Lu Y, Liu Z, Xu X, Wang C, Hu R, Tan W, Zhou L, Wang Y, Yu L, Wang Y, Tang B, Jiang H. Chronic Expression of Interleukin-10 Transgene Modulates Cardiac Sympathetic Ganglion Resulting in Reduced Ventricular Arrhythmia. Hum Gene Ther 2024; 35:114-122. [PMID: 38131291 DOI: 10.1089/hum.2023.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The cardiac autonomic nervous system (CANS) is intimately connected to the regulation of electrophysiology and arrhythmogenesis in cardiac systems. This work aimed at investigating whether interleukin-10 (IL-10) could effectively modulate CANS and suppress ischemia-induced ventricular arrhythmia (VA) through chronically acting on the cardiac sympathetic ganglion (CSG). Using an adeno-associated virus (AAV), we achieved local chronic overproduction of IL-10 in the CSG, left stellate ganglion (LSG). As a result, in the IL-10 group, we observed a decreased number of tyrosine hydroxylase-positive (TH+) cells in the LSG. IL-10 markedly downregulated the nerve growth factor, synaptophysin, as well as growth-associated protein 43 expression. In vivo, results from ambulatory electrocardiography showed that IL-10 overexpression significantly inhibited the cardiac sympathetic nervous system activity and improved heart rate variability. Meanwhile, we observed decreased LSG function as well as prolonged ventricular effective refractory period and suppressed VA after myocardial infarction (MI) in the IL-10 group. In addition, IL-10 overexpression attenuated inflammation and decreased norepinephrine levels in the myocardium after acute MI. In conclusion, our data suggest that chronic IL-10 overexpression modulates cardiac sympathetic nerve remodeling and suppresses VA induced by MI. Neuromodulation through AAV-mediated IL-10 overexpression may have the characteristics of and advantages as a potential neuroimmunotherapy for preventing MI-induced VAs.
Collapse
Affiliation(s)
- Rui Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan,P.R. China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China
| | - Ling Zhang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Chen Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan,P.R. China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China
| | - Yanmei Lu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan,P.R. China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China
| | - Xiao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan,P.R. China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China
| | - Changyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan,P.R. China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China
| | - Ruijie Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan,P.R. China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China
| | - Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan,P.R. China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan,P.R. China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan,P.R. China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan,P.R. China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China
| | - Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan,P.R. China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China
| | - Baopeng Tang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan,P.R. China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
171
|
de Souza S, Rosario Claudio J, Sim J, Inyang KE, Dagenais A, Monahan K, Lee B, Ramakrishnan H, Parmar V, Geron M, Scherrer G, Folger JK, Laumet G. Interleukin-10 signaling in somatosensory neurons controls CCL2 release and inflammatory response. Brain Behav Immun 2024; 116:193-202. [PMID: 38081433 PMCID: PMC10843623 DOI: 10.1016/j.bbi.2023.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Appropriate regulation of the inflammatory response is essential for survival. Interleukin-10 (IL-10), a well-known anti-inflammatory cytokine, plays a major role in controlling inflammation. In addition to immune cells, we previously demonstrated that the IL-10 receptor (IL-10R1) is expressed in dorsal root ganglion sensory neurons. There is emerging evidence that these sensory neurons contribute to immunoregulation, and we hypothesized that IL-10 signaling in dorsal root ganglion (DRG) neurons facilitates the regulation of the inflammatory response. We showed that mice that lack IL-10R1 specifically on advillin-positive neurons have exaggerated blood nitric oxide levels, spinal microglia activation, and cytokine upregulation in the spinal cord, liver, and gut compared to wild-type (WT) counterparts in response to systemic lipopolysaccharide (LPS) injection. Lack of IL-10R1 in DRG and trigeminal ganglion (TG) neurons also increased circulating and DRG levels of proinflammatory C-C motif chemokine ligand 2 (CCL2). Interestingly, analysis of published scRNA-seq data revealed that Ccl2 and Il10ra are expressed by similar types of DRG neurons; nonpeptidergic P2X purinoceptor (P2X3R + ) neurons. In primary cultures of DRG neurons, we demonstrated that IL-10R1 inhibits the production of CCL2, but not that of the neuropeptides substance P and calcitonin-gene related peptide (CGRP). Furthermore, our data indicate that ablation of Transient receptor potential vanilloid (TRPV)1 + neurons does not impact the regulation of CCL2 production by IL-10. In conclusion, we showed that IL-10 binds to its receptor on sensory neurons to downregulate CCL2 and contribute to immunoregulation by reducing the attraction of immune cells by DRG neuron-derived CCL2. This is the first evidence that anti-inflammatory cytokines limit inflammation through direct binding to receptors on sensory neurons. Our data also add to the growing literature that sensory neurons have immunomodulatory functions.
Collapse
Affiliation(s)
- Sabrina de Souza
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Jaewon Sim
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Andrew Dagenais
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Karli Monahan
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Beenhwa Lee
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Visha Parmar
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, Department of Pharmacology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, Department of Pharmacology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; New York Stem Cell Foundation - Robertson Investigator, University of North Carolina, Chapel Hill, NC, USA
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA; Department of Physiology, Michigan State University, Interdisciplinary Science and Technology Building, 766 Service Rd, East Lansing, MI 48826, USA.
| |
Collapse
|
172
|
Wu W, Luo Z, Shen D, Lan T, Xiao Z, Liu M, Hu L, Sun T, Wang Y, Zhang JN, Zhang C, Wang P, Lu Y, Yang F, Li Q. IL-10 protects against OPC ferroptosis by regulating lipid reactive oxygen species levels post stroke. Redox Biol 2024; 69:102982. [PMID: 38070317 PMCID: PMC10755589 DOI: 10.1016/j.redox.2023.102982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024] Open
Abstract
Accumulation of reactive oxygen species (ROS), especially on lipids, induces massive cell death in neurons and oligodendrocyte progenitor cells (OPCs) and causes severe neurologic deficits post stroke. While small compounds, such as deferoxamine, lipostatin-1, and ferrostatin-1, have been shown to be effective in reducing lipid ROS, the mechanisms by which endogenously protective molecules act against lipid ROS accumulation and subsequent cell death are still unclear, especially in OPCs, which are critical for maintaining white matter integrity and improving long-term outcomes after stroke. Here, using mouse primary OPC cultures, we demonstrate that interleukin-10 (IL-10), a cytokine playing roles in reducing neuroinflammation and promoting hematoma clearance, significantly reduced hemorrhage-induced lipid ROS accumulation and subsequent ferroptosis in OPCs. Mechanistically, IL-10 activated the IL-10R/STAT3 signaling pathway and upregulated the DLK1/AMPK/ACC axis. Subsequently, IL-10 reprogrammed lipid metabolism and reduced lipid ROS accumulation. In addition, in an autologous blood injection intracerebral hemorrhagic stroke (ICH) mouse model, deficiency of the endogenous Il-10, specific knocking out Il10r or Dlk1 in OPCs, or administration of ACC inhibitor was associated with increased OPC cell death, demyelination, axonal sprouting, and the cognitive deficits during the chronic phase of ICH and vice versa. These data suggest that IL-10 protects against OPC loss and white matter injury by reducing lipid ROS, supporting further development of potential clinical applications to benefit patients with stroke and related disorders.
Collapse
Affiliation(s)
- Weihua Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhaoli Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Danmin Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ting Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhongnan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Meng Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Liye Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Tingting Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yamei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jian-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chenguang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yabin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
173
|
Viana Silva M, Valente RS, Annes K, Marsico TV, Oliveira AM, Maiollo BAP, Lopes NJ, Tannura JH, Sudano MJ. Effect of IL-10 and TNF-α on the competence and cryosurvival of in vitro produced Bos indicus embryos. Theriogenology 2024; 215:170-176. [PMID: 38071763 DOI: 10.1016/j.theriogenology.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
In vitro-produced embryos are constantly exposed to stressful conditions that can lead to the activation of the apoptotic pathway. The nuclear Kappa B factor (NF-κB) is an inflammatory mediator that induces the expression of tumor necrosis factor (TNF-α), a pro-inflammatory cytokine, while interleukin-10 (IL-10), an anti-inflammatory cytokine, inhibits NF-κB activity. This study aimed to investigate the effects of IL-10 and TNF-α on the competence and cryosurvival of in vitro-produced bovine embryos. Embryos were produced in vitro using standard protocols, and Grade I blastocysts were vitrified using the Cryotop method. Non-vitrified and vitrified blastocysts were subjected to the TUNEL assay. In Experiment I, on day 6.5 (156 h post-insemination), the embryos were treated with PBS (control), 50 ng/mL of IL-10, or a combination of 25 ng/mL of TNF-α and 50 ng/mL of IL-10. Embryonic development and apoptotic rates were monitored. In Experiment II, the same groups were set up, with the addition of a group treated with 25 ng/mL of TNF-α alone. Grade I blastocysts were vitrified 5 h after treatment, and cryosurvival was monitored at until 48 h post-warming. The apoptosis rate and total cell number were investigated in the vitrified-hatched blastocysts. IL-10 alone did not affect developmental competence or cryosurvival (P > 0.05). The IL-10-treated embryos, when exposed in combination with TNF-α, presented a detrimental effect (P < 0.05) in the embryonic development of non-vitrified embryos. However, vitrified blastocysts had no negative effect (P > 0.05). The TNF-α treatment reduced (P < 0.05) the re-expansion rate at 6 h post-warming and increased (P < 0.05) the apoptosis rate in vitrified hatched blastocysts, whereas no effect (P > 0.05) of the treatments was detected in the hatching rate and total cell number post-warming. In conclusion, TNF-α has a detrimental effect on embryonic developmental competence and cryosurvival by compromising the development of non-vitrified embryos and apoptotic-related events of vitrified blastocysts, whereas IL-10, when in combination with TNF-α, appears to attenuate the detrimental effects of TNF-α.
Collapse
Affiliation(s)
- Mara Viana Silva
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Roniele Santana Valente
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Kelly Annes
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Thamiris Vieira Marsico
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Andressa Minozzo Oliveira
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| | | | | | | | - Mateus José Sudano
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil; Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
174
|
Du NN, Feng JM, Shao SJ, Wan H, Wu XQ. Construction of a Multi-Indicator Model for Abscess Prediction in Granulomatous Lobular Mastitis Using Inflammatory Indicators. J Inflamm Res 2024; 17:553-564. [PMID: 38323114 PMCID: PMC10844011 DOI: 10.2147/jir.s443765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
Background Granulomatous lobular mastitis (GLM) is a chronic inflammatory breast disease, and abscess formation is a common complication of GLM. The process of abscess formation is accompanied by changes in multiple inflammatory markers. The present study aimed to construct a diagnosis model for the early of GLM abscess formation based on multiple inflammatory parameters. Methods Based on the presence or absence of abscess formation on breast magnetic resonance imaging (MRI), 126 patients with GLM were categorised into an abscess group (85 patients) and a non-abscess group (41 patients). Demographic characteristics and the related laboratory results for the 9 inflammatory markers were collected. Logistics univariate analysis and collinearity test were used for selecting independent variables. A regression model to predict abscess formation was constructed using Logistics multivariate analysis. Results The univariate and multivariate analysis showed that the N, ESR, IL-4, IL-10 and INF-α were independent diagnostic factors of abscess formation in GLM (P<0. 05). The nomogram was drawn on the basis of the logistics regression model. The area under the curve (AUC) of the model was 0.890, which was significantly better than that of a single indicator and the sensitivity and specificity of the model were high (81.2% and 85.40%, respectively). These results predicted by the model were highly consistent with the actual diagnostic results. The results of this calibration curve indicated that the model had a good value and stability in predicting abscess formation in GLM. The decision curve analysis (DCA) demonstrated a satisfactory positive net benefit of the model. Conclusion A predictive model for abscess formation in GLM based on inflammatory markers was constructed in our study, which may provide a new strategy for early diagnosis and treatment of the abscess stage of GLM.
Collapse
Affiliation(s)
- Nan-Nan Du
- Breast Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Jia-Mei Feng
- Breast Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Shi-Jun Shao
- Breast Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Hua Wan
- Breast Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Xue-Qing Wu
- Breast Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| |
Collapse
|
175
|
Yang Y, Jin C, Yeo A, Jin B. Multiple Factors Determine the Oncolytic or Carcinogenic Effects of TLRs Activation in Cancer. J Immunol Res 2024; 2024:1-28. [DOI: 10.1155/2024/1111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Toll-like receptors (TLRs) belong to a germline-encoded protein family. These are pattern recognition receptors. They sense pathogen-associated molecular patterns (PAMPs). When this occurs, activation of the NF-ĸB pathway follows. This triggers the innate immune response of the host. The consequent inflammatory cytokine response usually contributes to the elimination of the pathogen. Activation of TLRs also induces an adaptive immune response by a cross-prime mechanism. This mechanism is employed in cancer immunotherapy. Using TLR ligands as adjuvants induces upregulation of costimulatory signals which in turn activates a cytotoxic leukocyte response against cancer cells. However, TLRs are also overexpressed in human cancer cells resulting in increased cell proliferation, migration, invasion, and angiogenesis. An intracellular adaptor, myeloid differentiation factor 88 (MyD88) probably mediates this process. MyD88 is intimately involved with all TLRs except TLR3. One consequence of the interaction between a TLR and MyD88 is activation of NF-ĸB. In this context of a variety of proinflammtory cytokines being produced, chronic inflammation may result. Inflammation is an important protective mechanism. However, chronic inflammation is also involved in carcinogenesis. Activation of NF-ĸB inhibits apoptosis and under certain circumstances, tumor cell survival. In this review, the potential therapeutic value of TLRs in immunotherapy and its role in oncogenesis are explored. The emerging use of artificial intelligence is mentioned.
Collapse
Affiliation(s)
- Yingxiang Yang
- Department of Hepato-Pancreato-Biliary Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Chengyue Jin
- Beijing Arion Cancer Center, Beijing 100070, China
| | | | - Bo Jin
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| |
Collapse
|
176
|
Xu L, Sun H, Lemoine NR, Xuan Y, Wang P. Oncolytic vaccinia virus and cancer immunotherapy. Front Immunol 2024; 14:1324744. [PMID: 38283361 PMCID: PMC10811104 DOI: 10.3389/fimmu.2023.1324744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Oncolytic virotherapy (OVT) is a promising form of cancer treatment that uses genetically engineered viruses to replicate within cancer cells and trigger anti-tumor immune response. In addition to killing cancer cells, oncolytic viruses can also remodel the tumor microenvironment and stimulate a long-term anti-tumor immune response. Despite achieving positive results in cellular and organismal studies, there are currently only a few approved oncolytic viruses for clinical use. Vaccinia virus (VACV) has emerged as a potential candidate due to its ability to infect a wide range of cancer cells. This review discusses the mechanisms, benefits, and clinical trials of oncolytic VACVs. The safety and efficacy of different viral backbones are explored, as well as the effects of oncolytic VACVs on the tumor microenvironment. The potential combination of oncolytic VACVs with immunotherapy or traditional therapies is also highlighted. The review concludes by addressing prospects and challenges in the field of oncolytic VACVs, with the aim of promoting further research and application in cancer therapy.
Collapse
Affiliation(s)
- Lihua Xu
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huihui Sun
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Nicholas R. Lemoine
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yujing Xuan
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
177
|
Wang X, Liang F, Dai Z, Feng X, Qiu F. Combination of Coptis chinensis polysaccharides and berberine ameliorates ulcerative colitis by regulating gut microbiota and activating AhR/IL-22 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117050. [PMID: 37595814 DOI: 10.1016/j.jep.2023.117050] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis Franch. polysaccharide (CCP) and berberine (BBR) are the primary active components of Coptis chinensis Franch. BBR is clinically used for the treatment of intestinal infections and gastroenteritis. CCP was also reported to be effective for the treatment of ulcerative colitis (UC). However, whether CCP combined with BBR shows a synergistic effect on the treatment of UC has not been elucidated yet. AIM OF THE STUDY This study aspired to investigate the therapeutic effect and the possible mechanisms of the combination of CCP with BBR on chronic UC. MATERIALS AND METHODS By periodic administration of dextran sulfate sodium (DSS) to C57BL/6J mice, chronic UC model mice were induced. CCP (15 mg/kg), BBR (50 mg/kg), and CCP.BBR (a combination of 15 mg/kg CCP and 50 mg/kg BBR) were orally administered to the model mice for 10 days. Changes of body weight, disease activity index, colon length, organ index, histopathological damage, expression of cytokines, and intestinal tight junction proteins were determined to evaluate the therapeutic effects. 16S rDNA sequencing, targeted short-chain fatty acid metabolomics, qPCR, and western blotting were performed to elucidate the potential mechanism. RESULTS Both CCP and BBR alleviated UC via improving colon pathological damage, inhibiting the inflammatory response, and regulating the expression of intestinal tight junction proteins. The combination of CCP with BBR showed a more substantial therapeutic effect via increasing the relative abundance of short-chain fatty acids (SCFAs) producing bacteria, thereby increasing the contents of SCFAs in vivo and activating AhR/IL-22 pathway. CONCLUSION The combination of CCP and BBR showed a synergistic effect on the therapy of chronic UC and the mechanism was associated with regulating gut microbiota and activating AhR/IL-22 pathway.
Collapse
Affiliation(s)
- Xuemei Wang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Fengni Liang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Zhaoyuan Dai
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
178
|
Yamazaki F, Kobayashi K, Mochizuki J, Sashihara T. Interleukin-22 enhanced the mucosal barrier and inhibited the invasion of Salmonella enterica in human-induced pluripotent stem cell-derived small intestinal epithelial cells. FEMS Microbiol Lett 2024; 371:fnae006. [PMID: 38268488 DOI: 10.1093/femsle/fnae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024] Open
Abstract
Human-induced pluripotent stem cell-derived small intestinal epithelial cell (hiPSC-SIEC) monolayers are useful in vitro models for evaluating the gut mucosal barrier; however, their reactivity to cytokines, which are closely related to the regulation of mucosal barrier function, remains unclear. Interleukin (IL)-22 is a cytokine that contributes to regulate the mucosal barrier in the intestinal epithelia. Using microarray and gene set enrichment analysis, we found that hiPSC-SIEC monolayers activate the immune response and enhance the mucosal barrier in response to IL-22. Moreover, hiPSC-SIEC monolayers induced the gene expression of antimicrobials, including the regenerating islet-derived protein 3 family. Furthermore, IL-22 stimulation upregulated Mucin 2 secretion and gene expression of an enzyme that modifies sugar chains, suggesting alteration of the state of the mucus layer of hiPSC-SIEC monolayers. To evaluate its physiological significance, we measured the protective activity against Salmonella enterica subsp. enterica infection in hiPSC-SIEC monolayers and found that prestimulation with IL-22 reduced the number of viable intracellular bacteria. Collectively, these results suggest that hiPSC-SIEC monolayers enhance the mucosal barrier and inhibit infection by pathogenic bacteria in response to IL-22, as previously reported. These results can contribute to the further application of hiPSC-SIECs in evaluating mucosal barriers.
Collapse
Affiliation(s)
- Fuka Yamazaki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Kyosuke Kobayashi
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Junko Mochizuki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| |
Collapse
|
179
|
Zhao Y, Wang H, Jin L, Zhang Z, Liu L, Zhou M, Zhang X, Zhang L. Targeting fusion proteins of the interleukin family: A promising new strategy for the treatment of autoinflammatory diseases. Eur J Pharm Sci 2024; 192:106647. [PMID: 37984595 DOI: 10.1016/j.ejps.2023.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
As a means of communication between immune cells and non-immune cells, Interleukins (ILs) has the main functions of stimulating the proliferation and activation of inflammatory immune cells such as dendritic cells and lymphocytes, promote the development of blood cells and so on. However, dysregulation of ILs expression is a major feature of autoinflammatory diseases. The drugs targeting ILs or IL-like biologics have played an important role in the clinical treatment of autoinflammatory diseases. Nevertheless, the widespread use of IL products may result in significant off-target adverse reactions. Thus, there is a clear need to develop next-generation ILs products in the biomedical field. Fusion proteins are proteins created through the joining of two or more genes that originally coded for separate proteins. Over the last 30 years, there has been increasing interest in the use of fusion protein technology for developing anti-inflammatory drugs. In comparison to single-target drugs, fusion proteins, as multiple targets drugs, have the ability to enhance the cytokine therapeutic index, resulting in improved efficacy over classical drugs. The strategy of preparing ILs or their receptors as fusion proteins is increasingly used in the treatment of autoimmune and chronic inflammation. This review focuses on the efficacy of several fusion protein drugs developed with ILs or their receptors in the treatment of autoinflammatory diseases, in order to illustrate the prospects of this new technology as an anti-inflammatory drug development protocol in the future.
Collapse
Affiliation(s)
- Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| |
Collapse
|
180
|
Dallazen JL, Ciapparini PG, Maria-Ferreira D, da Luz BB, Klosterhoff RR, Felipe LPG, Silva BJG, Cordeiro LMC, Werner MFDP. Arabinan-rich pectic polysaccharide fraction from Malpighia emarginata fruits alleviates inflammatory pain in mice. Food Res Int 2024; 176:113743. [PMID: 38163695 DOI: 10.1016/j.foodres.2023.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Malpighia emarginata (Malpighiaceae), popularly known as "acerola", is a tropical and subtropical fruit native to the Americas. Despite its high vitamin C content, which gives it a high antioxidant property, soluble dietary fibers, such as polysaccharides, are also abundant constituents of acerola (10% of the dried fruit). The acerola cold-water soluble (ACWS) fraction presented anti-fatigue and antioxidant effects in vivo and in vitro. To infer further systemic effects of ACWS, this study aimed to investigate the antinociceptive, anti-inflammatory, and antioxidant effects of ACWS in murine models of pain. In formalin-induced nociception, ACWS (0.1, 1, and 10 mg/kg) reduced only the inflammatory phase, and also (10 and 30 mg/kg) attenuated the acetic acid-induced writhing and leukocyte migration in the peritoneal cavity. The mechanical allodynia and paw edema induced by intraplantar injection of carrageenan were greatly reduced by ACWS (10 mg/kg). At the inflammatory pick induced by carrageenan (4 h), ACWS significantly reduced myeloperoxidase activity, TNF-α, IL-1β, and PGE2 levels, and restored IL-10 levels. ACWS also exhibited antioxidant properties by decreasing lipid hydroperoxides content, increasing GSH levels, and restoring superoxide dismutase and catalase activities in the carrageenan model and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay. Collectively, these results support the antinociceptive, anti-inflammatory, and antioxidant effects of ACWS and reveal a promising candidate for the treatment of inflammatory pain conditions.
Collapse
Affiliation(s)
| | | | - Daniele Maria-Ferreira
- Department of Pharmacology, Federal University of Parana, Curitiba, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | | | | | | | | | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, Brazil
| | | |
Collapse
|
181
|
He Z, Xie H, Xu H, Wu J, Zeng W, He Q, Jobin C, Jin S, Lan P. Chemotherapy-induced microbiota exacerbates the toxicity of chemotherapy through the suppression of interleukin-10 from macrophages. Gut Microbes 2024; 16:2319511. [PMID: 38400752 PMCID: PMC10896127 DOI: 10.1080/19490976.2024.2319511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
The gut microbiota has been shown to influence the efficacy and toxicity of chemotherapy, thereby affecting treatment outcomes. Understanding the mechanism by which microbiota affects chemotherapeutic toxicity would have a profound impact on cancer management. In this study, we report that fecal microbiota transplantation from oxaliplatin-exposed mice promotes toxicity in recipient mice. Splenic RNA sequencing and macrophage depletion experiment showed that the microbiota-induced toxicity of oxaliplatin in mice was dependent on macrophages. Furthermore, oxaliplatin-mediated toxicity was exacerbated in Il10-/- mice, but not attenuated in Rag1-/- mice. Adoptive transfer of macrophage into Il10-/- mice confirmed the role of macrophage-derived IL-10 in the improvement of oxaliplatin-induced toxicity. Depletion of fecal Lactobacillus and Bifidobacterium was associated with the exacerbation of oxaliplatin-mediated toxicity, whereas supplementation with these probiotics alleviated chemotherapy-induced toxicity. Importantly, IL-10 administration and probiotics supplementation did not attenuate the antitumor efficacy of chemotherapy. Clinically, patients with colorectal cancer exposed to oxaliplatin exhibited downregulation of peripheral CD45+IL-10+ cells. Collectively, our findings indicate that microbiota-mediated IL-10 production influences tolerance to chemotherapy, and thus represents a potential clinical target.
Collapse
Affiliation(s)
- Zhen He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Hongyu Xie
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Haoyang Xu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinjie Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Wanyi Zeng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangzhou, China
| | - Qilang He
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangzhou, China
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, University of Florida, Florida, USA
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Sanqing Jin
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| |
Collapse
|
182
|
Hu W, Huang K, Zhang L, Ni J, Xu W, Bi S. Immunomodulatory effect of Atractylodis macrocephala Koidz. polysaccharides in vitro. Poult Sci 2024; 103:103171. [PMID: 37925772 PMCID: PMC10652128 DOI: 10.1016/j.psj.2023.103171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Vaccination is still the main method of preventing most infectious diseases, but there are inefficiencies and inaccuracies in immunization. Studies have reported that Atractylodis macrocephalae Koidz. polysaccharides (RAMP) have immunomodulatory effects, but the mechanisms involved in whether they can modulate the immune response in chickens are not yet clear. The aim of this study was to investigate the effect of RAMP on lymphocytes functions by analyzing cell proliferation, cell cycle, mRNA expression of cytokines and CD4 +/CD8 + ratio. To identify potential molecules involved in immune regulation, we performed a comprehensive transcriptome profiling of chicken lymphocytes. In addition, the adjuvant effect of RAMP was evaluated by detecting indicators of hemagglutination inhibition. When lymphocytes were cultured with RAMP in vitro, the proliferation rate of lymphocytes was increased (P < 0.01), more cells in S phase and G2/M phase (P < 0.01) and the mRNA expression of IFN-γ was upregulated (P < 0.05), while the mRNA expression of TGF-β (P < 0.01) and IL-4 (P < 0.05) was downregulated and the CD4 +/CD8 + ratio was increased (P < 0.05). Transcriptomic results showed that RAMP increased the expression of HIST1H46 (P < 0.05) and CENPP (P < 0.05). Validation of qPCR showed that RAMP may play an important role in regulating cellular immunity by downregulating the Notch pathway. The results also showed that RAMP could increase the serum Newcastle disease virus antibody levels in chickens. These data suggest that RAMP could enhance immune function of lymphocytes and was a candidate vaccine adjuvant in chickens.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Kaiyue Huang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Li Zhang
- Immunology Research Center, Medical Research Institute, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Jingxuan Ni
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Wei Xu
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China.
| |
Collapse
|
183
|
Deng H, Li H, Liu Z, Shen N, Dong N, Deng C, Liu F. Pro-osteogenic role of interleukin-22 in calcific aortic valve disease. Atherosclerosis 2024; 388:117424. [PMID: 38104486 DOI: 10.1016/j.atherosclerosis.2023.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND AND AIMS Although calcific aortic valve disease (CAVD) is a common valvular disease among elderly populations and its incidence has markedly increased in recent decades, the pathogenesis of CAVD remains unclear. In this study, we explored the potential role of interleukin (IL)-22 and the underlying molecular mechanism in CAVD. METHODS AND RESULTS Our results showed that IL-22 was upregulated in calcific aortic valves from CAVD patients, and its main sources were CD3+ T cells and CD68+ macrophages. Human aortic valve interstitial cells (VICs) expressed the IL-22-specific receptor IL-22R1, and IL-22R1 expression also was elevated in calcified valves. Treatment of cultured human VICs with recombinant human IL-22 resulted in markedly increased expression of osteogenic proteins Runt-related transcription factor 2 (RUNX2) and alkaline phosphatase (ALP), as well as increased matrix calcium deposition. Moreover, siRNA silencing of IL-22R1 blocked the pro-osteogenic effect of IL-22 in VICs. In IL-22-treated VICs, we also observed increased phosphorylation of JAK3 and STAT3 and nuclear translocation of STAT3. Pretreatment with a specific JAK3 inhibitor, WHIP-154, or siRNA knockout of STAT3 effectively mitigated the IL-22-induced osteoblastic trans-differentiation of human VICs. CONCLUSIONS Together, these data indicate that IL-22 promotes osteogenic differentiation of VICs by activating JAK3/STAT3 signaling. Based on our results demonstrating a pro-osteogenic role of IL-22 in human aortic valves, pharmacological inhibition of IL-22 signaling may represent a potential strategy for alleviating CAVD.
Collapse
Affiliation(s)
- Huifang Deng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Huadong Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Department of Cardiovascular Surgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Na Shen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Cheng Deng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Fayuan Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
184
|
Vastert SJ, Canny SP, Canna SW, Schneider R, Mellins ED. Cytokine Storm Syndrome Associated with Systemic Juvenile Idiopathic Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:323-353. [PMID: 39117825 DOI: 10.1007/978-3-031-59815-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cytokine storm syndrome (CSS) associated with systemic juvenile idiopathic arthritis (sJIA) has widely been referred to as macrophage activation syndrome (MAS). In this chapter, we use the term sJIA-associated CSS (sJIA-CSS) when referring to this syndrome and use the term MAS when referencing publications that specifically report on sJIA-associated MAS.
Collapse
Affiliation(s)
- Sebastiaan J Vastert
- Department of Paediatric Rheumatology & Immunology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Susan P Canny
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Scott W Canna
- Department of Pediatrics and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rayfel Schneider
- Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth D Mellins
- Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
185
|
Wu C, Jiang ML, Pang T, Zhang CJ. T Cell Subsets and Immune Homeostasis. Methods Mol Biol 2024; 2782:39-63. [PMID: 38622391 DOI: 10.1007/978-1-0716-3754-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
T cells are a heterogeneous group of cells that can be classified into different subtypes according to different classification methods. The body's immune system has a highly complex and effective regulatory network that allows for the relative stability of immune system function. Maintaining proper T cell homeostasis is essential for promoting protective immunity and limiting autoimmunity and tumor formation. Among the T cell family members, more and more T cell subsets have gradually been characterized. In this chapter, we summarize the functions of some key T cell subsets and their impact on immune homeostasis.
Collapse
Affiliation(s)
- Chuyu Wu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Mei-Ling Jiang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Cun-Jin Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
186
|
Ozola L, Pilmane M. Local Defense Factors in Cleft-Affected Palate in Children before and during Milk Dentition Age: A Pilot Study. J Pers Med 2023; 14:27. [PMID: 38248728 PMCID: PMC10817640 DOI: 10.3390/jpm14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
One of the most frequent congenital orofacial defects is the cleft lip and palate. Local tissue defense factors are known to be important in immune response and inflammatory and healing processes in the cleft tissue; however, they have only been researched in older children during mixed dentition. Thus, the aim of this study is to assess the distribution of LL-37, CD-163, IL-10, HBD-2, HBD-3, and HBD-4 in children before and during milk dentition. The unique and rare material of palate tissue was obtained from 13 patients during veloplastic surgeries during the time span of 20 years. Immunohistochemistry, light microscopy, semi-quantitative evaluation, and non-parametric statistical analysis were used. A significant decrease in HBD-3 and HBD-4 in the connective tissue was found, as well as several mutual statistically significant and strong correlations between HBD-2, HBD-3, HBD-4, and LL-37. Deficiency of HBD-3 and HBD-4 suggests promotion of chronic inflammation. The scarcity of HBD-4 could be connected to the different signaling pathways of dental pulp cells. Mutual correlations imply changes in the epithelial barrier, amplified healing efficiency, and increased antibacterial line of defense. Deprivation of changes in IL-10 quantity points to possible suppression of the factor. The presence of similar CD-163 immunoreactive substances produced by M2 macrophages was also observed.
Collapse
Affiliation(s)
- Laura Ozola
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| |
Collapse
|
187
|
Zhang C, Lin X, Lin D, Liang T, Huang L, Zheng L, Xu Y. Study on toxicity responses and their mechanisms in Xenopus tropicalis long-term exposure to Shigella flexneri and ciprofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167040. [PMID: 37709083 DOI: 10.1016/j.scitotenv.2023.167040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The abuse and overuse of antibiotics increased not only the exposure of aquatic animals to antibiotics but also the development of resistance in pathogenic bacteria. To investigate the effects and mechanisms of exposure, a long-term experiment lasting 120 days was conducted in which Xenopus tropicalis was exposed to single and combined stress factors of multiresistant pathogenic Shigella flexneri and ciprofloxacin (CIP). The intestinal oxidative stress, immune factors and flora, as well as the brain-gut axis correlation factors of X. tropicalis, were tracked to account for the response of aquatic animals to the exogenous pollutants. SOD activity and MDA content were significantly increased in stressed X. tropicalis (p < 0.001), while the levels of proinflammatory factors (IL-1β, IFN-γ) were significantly reduced (p < 0.01). The content of intestinal beneficial bacteria decreased and that of harmful bacteria increased in the intestinal flora of the stressed X. tropicalis (p < 0.001). These results suggested that S. flexneri and CIP disturbed the intestinal flora and caused oxidative damage in the host, and the body produced a series of responses, such as oxidative stress responses and regulation of the expression of immune factors, to maintain the balance of antioxidant inflammation. Significant changes in the expression of intestinal neurotransmitters (5-HT, CGRP) and brain peptides (BDNF, NCAM, NPY) (p < 0.05) also indicated that the brain-gut axis interaction was disrupted. In addition, although the coexisting CIP could reduce intestinal toxicity caused by S. flexneri, the amount of intestinal pathogenic bacteria Desulfovibrio increased significantly. Moreover, compared with the single exposure group, SOD activity, CAT activity and MDA content were significantly reduced in the dual exposure group. Therefore, the health risks of multiresistant pathogenic bacteria on the intestinal and brain-gut axis interaction should be given more attention, and the interaction of brain-gut axis is more important when antibiotics coexist.
Collapse
Affiliation(s)
- Chaonan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dawu Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Taojie Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lu Huang
- Instrumental Analysis Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
188
|
Costa SO, Chaves WF, Lopes PKF, Silva IM, Burguer B, Ignácio-Souza LM, Torsoni AS, Milanski M, Rodrigues HG, Desai M, Ross MG, Torsoni MA. Maternal consumption of a high-fat diet modulates the inflammatory response in their offspring, mediated by the M1 muscarinic receptor. Front Immunol 2023; 14:1273556. [PMID: 38193079 PMCID: PMC10773672 DOI: 10.3389/fimmu.2023.1273556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction High-fat diet (HFD) consumption is associated with various metabolic disorders and diseases. Both pre-pregnancy and maternal obesity can have long-term consequences on offspring health. Furthermore, consuming an HFD in adulthood significantly increases the risk of obesity and metabolic disorders. However, an intriguing phenomenon known as the obesity paradox suggests that obesity may confer a protective effect on mortality outcomes in sepsis. In sepsis, activation of the cholinergic anti-inflammatory pathway (CAP) can help mitigate systemic inflammation. We employed a metabolic programming model to explore the relationship between maternal HFD consumption and offspring response to sepsis. Methods We fed female mice either a standard diet (SC) or an HFD during the pre-pregnancy, pregnancy, and lactation periods. Subsequently, we evaluated 28-day-old male offspring. Results Notably, we discovered that offspring from HFD-fed dams (HFD-O) exhibited a higher survival rate compared with offspring from SC-fed dams (SC-O). Importantly, inhibition of the m1 muscarinic acetylcholine receptor (m1mAChR), involved in the CAP, in the hypothalamus abolished this protection. The expression of m1mAChR in the hypothalamus was higher in HFD-O at different ages, peaking on day 28. Treatment with an m1mAChR agonist could modulate the inflammatory response in peripheral tissues. Specifically, CAP activation was greater in the liver of HFD-O following agonist treatment. Interestingly, lipopolysaccharide (LPS) challenge failed to induce a more inflammatory state in HFD-O, in contrast to SC-O, and agonist treatment had no additional effect. Analysis of spleen immune cells revealed a distinct phenotype in HFD-O, characterized by elevated levels of CD4+ lymphocytes rather than CD8+ lymphocytes. Moreover, basal Il17 messenger RNA (mRNA) levels were lower while Il22 mRNA levels were higher in HFD-O, and we observed the same pattern after LPS challenge. Discussion Further examination of myeloid cells isolated from bone marrow and allowed to differentiate showed that HFD-O macrophages displayed an anti-inflammatory phenotype. Additionally, treatment with the m1mAChR agonist contributed to reducing inflammatory marker levels in both groups. In summary, our findings demonstrate that HFD-O are protected against LPS-induced sepsis, and this protection is mediated by the central m1mAChR. Moreover, the inflammatory response in the liver, spleen, and bone marrow-differentiated macrophages is diminished. However, more extensive analysis is necessary to elucidate the specific mechanisms by which m1mAChR modulates the immune response during sepsis.
Collapse
Affiliation(s)
- Suleyma Oliveira Costa
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Wenicios Ferreira Chaves
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Iracema M. Silva
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Beatriz Burguer
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Leticia M. Ignácio-Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Hosana Gomes Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Mina Desai
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA, United States
| | - Michael Glenn Ross
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA, United States
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
189
|
Vebr M, Pomahačová R, Sýkora J, Schwarz J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Pathogenesis. Biomedicines 2023; 11:3229. [PMID: 38137450 PMCID: PMC10740682 DOI: 10.3390/biomedicines11123229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a lifelong inflammatory immune mediated disorder, encompassing Crohn's disease (CD) and ulcerative colitis (UC); however, the cause and specific pathogenesis of IBD is yet incompletely understood. Multiple cytokines produced by different immune cell types results in complex functional networks that constitute a highly regulated messaging network of signaling pathways. Applying biological mechanisms underlying IBD at the single omic level, technologies and genetic engineering enable the quantification of the pattern of released cytokines and new insights into the cytokine landscape of IBD. We focus on the existing literature dealing with the biology of pro- or anti-inflammatory cytokines and interactions that facilitate cell-based modulation of the immune system for IBD inflammation. We summarize the main roles of substantial cytokines in IBD related to homeostatic tissue functions and the remodeling of cytokine networks in IBD, which may be specifically valuable for successful cytokine-targeted therapies via marketed products. Cytokines and their receptors are validated targets for multiple therapeutic areas, we review the current strategies for therapeutic intervention and developing cytokine-targeted therapies. New biologics have shown efficacy in the last few decades for the management of IBD; unfortunately, many patients are nonresponsive or develop therapy resistance over time, creating a need for novel therapeutics. Thus, the treatment options for IBD beyond the immune-modifying anti-TNF agents or combination therapies are expanding rapidly. Further studies are needed to fully understand the immune response, networks of cytokines, and the direct pathogenetic relevance regarding individually tailored, safe and efficient targeted-biotherapeutics.
Collapse
Affiliation(s)
- Marek Vebr
- Departments of Pediatrics, Faculty Hospital, Faculty of Medicine in Pilsen, Charles University of Prague, 323 00 Pilsen, Czech Republic; (R.P.); (J.S.); (J.S.)
| | | | | | | |
Collapse
|
190
|
Kobaek-Larsen M, Deding U, Al-Najami I, Clausen BH, Christensen LP. Carrot Juice Intake Affects the Cytokine and Chemokine Response in Human Blood after Ex Vivo Lipopolysaccharide-Induced Inflammation. Nutrients 2023; 15:5002. [PMID: 38068860 PMCID: PMC10707883 DOI: 10.3390/nu15235002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
In vitro and animal studies have shown that carrot juice containing bioactive natural products, such as falcarinol (FaOH) and falcarindiol (FaDOH), can affect inflammation. The present study was designed to test whether oral intake of carrot juice containing the bioactive acetylenic oxylipins FaOH and FaDOH affects mediators of acute inflammation or the innate immune response in human blood. Carrot juice (500 mL) was administered orally to healthy volunteers, and blood samples were drawn before and 1 h after juice intake. Next, the blood samples were split in two, and one sample was stimulated ex vivo with lipopolysaccharide (LPS) and incubated at 37 °C for 24 h. The concentrations of 44 inflammatory cytokines and chemokines were examined using multiplex electrochemiluminescence analysis. In blood samples not stimulated with LPS, a significant increase in IL-15 was measured 1 h after carrot juice intake. Cytokines like IFN-ɣ, IL-12/IL-23(p40), IL-23, IL-17A, IL-17B, IL-17D, and IL-22 were significantly increased in LPS-stimulated blood samples after carrot juice intake. The upregulation of the immunostimulating cytokines belonging to the IL-23/IL-17 Th17 axis suggests that carrot juice intake could benefit diseases where inflammation plays a role, like in the early stages of diabetes or cancers.
Collapse
Affiliation(s)
- Morten Kobaek-Larsen
- Department of Surgery, Odense University Hospital, DK-5000 Odense C, Denmark; (M.K.-L.); (U.D.); (I.A.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ulrik Deding
- Department of Surgery, Odense University Hospital, DK-5000 Odense C, Denmark; (M.K.-L.); (U.D.); (I.A.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Issam Al-Najami
- Department of Surgery, Odense University Hospital, DK-5000 Odense C, Denmark; (M.K.-L.); (U.D.); (I.A.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark;
| | - Lars Porskjær Christensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
191
|
Xu Y, Zhao Z, Geng Z, Zhou H, Yang C, Wang Y, Kuerban B, Xiao Y, Luo G. Enhancement of recombinant human interleukin-22 production by fusing with human serum albumin and supplementing N-acetylcysteine in Pichia Pastoris. Protein Expr Purif 2023; 212:106360. [PMID: 37652392 DOI: 10.1016/j.pep.2023.106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Interleukin-22 (IL-22) plays an important role in the treatment of organ failure, which can induce anti-apoptotic and proliferative signaling pathways; Nevertheless, the practical utilization of IL-22 is hindered by the restricted efficacy of its production. Pichia pastoris presents a viable platform for both industrial and pharmaceutical applications. In this study, we successfully generated a fusion protein consisting of truncated human serum albumin and human IL-22 (HSA-hIL-22) using P. pastoris, and examined the impact of antioxidants on HSA-hIL-22 production. We have achieved the production of HSA-hIL-22 in the culture medium at a yield of approximately 2.25 mg/ml. Moreover, 0-40 mM ascorbic acid supplementation did not significantly affect HSA-hIL-22 production or the growth rate of the recombinant strain. However, 80 mM ascorbic acid treatment had a detrimental effect on the expression of HSA-hIL-22. In addition, 5-10 mM N-acetyl-l-cysteine (NAC) resulted in an increase of HSA-hIL-22 production, accompanied by a reduction in the growth rate of the recombinant strain. Conversely, 20-80 mM NAC supplementation inhibited the growth of the recombinant strains and reduced intact HSA-hIL-22 production. However, neither NAC nor ascorbic acid exhibited any effect on superoxide dismutase (SOD) and malondialdehyde (MDA) levels, except that NAC increased GSH content. Furthermore, our findings indicate that recombinant HSA-hIL-22, which demonstrated the ability to stimulate the proliferation of HepG2 cells, possesses bioactivity. In addition, NAC did not affect HSA-hIL-22 bioactivity. In conclusion, our study demonstrates that NAC supplementation can enhance the secretion of functional HSA-hIL-22 proteins produced in P. pastoris without compromising their activity.
Collapse
Affiliation(s)
- Yingqing Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Ziming Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Zijian Geng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Hongwei Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Chengxi Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Yixing Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Buayisham Kuerban
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Yimeng Xiao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Gang Luo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| |
Collapse
|
192
|
Zhi L, Gu L, Tong L, Liu X, Lu L, Guo R. Immune profile alterations of systemic lupus erythematosus patients with infections. Clin Exp Med 2023; 23:4765-4777. [PMID: 37938465 DOI: 10.1007/s10238-023-01220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
This study aimed to elucidate the immune status of systemic lupus erythematosus (SLE) patients with infections. We enrolled 253 SLE patients including 77 patients with infections. Clinical features and immunological parameters were analyzed, with particular reference to neutrophil CD64 (nCD64) expression, myeloid-derived suppressor cells (MDSCs), activated T cells and multiple cytokines. Among the 77 SLE patients with infections, 32 patients (41.56%) developed fever and 20 patients (25.97%) developed serositis, which were higher compared to the non-infection group. A considerably higher level of nCD64 was found in the infection group (4.65 vs 1.01, P < 0.001). In addition, the infection group exhibited higher percentages of total MDSCs (6.99 vs 4.30%, P = 0.003), polymorphonuclear MDSCs (PMN-MDSCs) (P = 0.032) and monocytic MDSCs (M-MDSCs) (P = 0.015). T cells were more activated during infections, with an elevated level of IL-2R (P < 0.001). Specifically, higher percentages of CD4+CD38+ T cells (55.73 vs 50.17%, P = 0.036), CD8+HLA-DR+ T cells (59.82 vs 47.99%, P < 0.001) and CD8+CD38+ T cells (68.59 vs 63.90%, P = 0.044) were identified in the infection group. Furthermore, the serum levels of IL-6, IL-8 and IL-10 were elevated in the infection group (all P < 0.001). Higher proportions of neutrophils, CD4+ and CD8+ T cells, and MDSCs were activated during infections in SLE patients. Additionally, the serum cytokines altered during infections, with noticeably elevated levels of IL-6, IL-8 and IL-10. Infections may lead to the amplification of immune alterations in SLE.
Collapse
Affiliation(s)
- Langxian Zhi
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Liyang Gu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Lei Tong
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Xuesong Liu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China.
| | - Ruru Guo
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China.
| |
Collapse
|
193
|
Guttman-Yassky E, Irvine AD, Brunner PM, Kim BS, Boguniewicz M, Parmentier J, Platt AM, Kabashima K. The role of Janus kinase signaling in the pathology of atopic dermatitis. J Allergy Clin Immunol 2023; 152:1394-1404. [PMID: 37536511 DOI: 10.1016/j.jaci.2023.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Atopic dermatitis (AD) is a heterogeneous, chronic, relapsing, inflammatory skin disease associated with considerable physical, psychological, and economic burden. The pathology of AD includes complex interactions involving abnormalities in immune and skin barrier genes, skin barrier disruption, immune dysregulation, microbiome disturbance, and other environmental factors. Many of the cytokines involved in AD pathology, including IL-4, IL-13, IL-22, IL-31, thymic stromal lymphopoietin, and IFN-γ, signal through the Janus kinase (JAK)-signal transducer and activation of transcription (STAT) pathway. The JAK family includes JAK1, JAK2, JAK3, and tyrosine kinase 2; the STAT family includes STAT1, STAT2, STAT3, STAT4, STAT5A/B, and STAT6. Activation of the JAK-STAT pathway has been implicated in the pathology of several immune-mediated inflammatory diseases, including AD. However, the exact mechanisms of JAK-STAT involvement in AD have not been fully characterized. This review aims to discuss current knowledge about the role of the JAK-STAT signaling pathway and, specifically, the role of JAK1 in the pathology and symptomology of AD.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York.
| | | | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York
| | - Brian S Kim
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York
| | - Mark Boguniewicz
- Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver
| | | | | | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto
| |
Collapse
|
194
|
Song Y, Tan Y, Deng M, Shan W, Zheng W, Zhang B, Cui J, Feng L, Shi L, Zhang M, Liu Y, Sun Y, Yi W. Epicardial adipose tissue, metabolic disorders, and cardiovascular diseases: recent advances classified by research methodologies. MedComm (Beijing) 2023; 4:e413. [PMID: 37881786 PMCID: PMC10594046 DOI: 10.1002/mco2.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Epicardial adipose tissue (EAT) is located between the myocardium and visceral pericardium. The unique anatomy and physiology of the EAT determines its great potential in locally influencing adjacent tissues such as the myocardium and coronary arteries. Classified by research methodologies, this study reviews the latest research progress on the role of EAT in cardiovascular diseases (CVDs), particularly in patients with metabolic disorders. Studies based on imaging techniques demonstrated that increased EAT amount in patients with metabolic disorders is associated with higher risk of CVDs and increased mortality. Then, in-depth profiling studies indicate that remodeled EAT may serve as a local mediator of the deleterious effects of cardiometabolic conditions and plays a crucial role in CVDs. Further, in vitro coculture studies provided preliminary evidence that the paracrine effect of remodeled EAT on adjacent cardiomyocytes can promote the occurrence and progression of CVDs. Considering the important role of EAT in CVDs, targeting EAT might be a potential strategy to reduce cardiovascular risks. Several interventions have been proved effective in reducing EAT amount. Our review provides valuable insights of the relationship between EAT, metabolic disorders, and CVDs, as well as an overview of the methodological constructs of EAT-related studies.
Collapse
Affiliation(s)
- Yujie Song
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yanzhen Tan
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Meng Deng
- Department of General MedicineXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Wenju Shan
- Department of General MedicineXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Wenying Zheng
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Bing Zhang
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Jun Cui
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Lele Feng
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Lei Shi
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Miao Zhang
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yingying Liu
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yang Sun
- Department of General MedicineXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Wei Yi
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
195
|
Dzamko N. Cytokine activity in Parkinson's disease. Neuronal Signal 2023; 7:NS20220063. [PMID: 38059210 PMCID: PMC10695743 DOI: 10.1042/ns20220063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
The contribution of the immune system to the pathophysiology of neurodegenerative Parkinson's disease (PD) is increasingly being recognised, with alterations in the innate and adaptive arms of the immune system underlying central and peripheral inflammation in PD. As chief modulators of the immune response, cytokines have been intensely studied in the field of PD both in terms of trying to understand their contribution to disease pathogenesis, and if they may comprise much needed therapeutic targets for a disease with no current modifying therapy. This review summarises current knowledge on key cytokines implicated in PD (TNFα, IL-6, IL-1β, IL-10, IL-4 and IL-1RA) that can modulate both pro-inflammatory and anti-inflammatory effects. Cytokine activity in PD is clearly a complicated process mediated by substantial cross-talk of signalling pathways and the need to balance pro- and anti-inflammatory effects. However, understanding cytokine activity may hold promise for unlocking new insight into PD and how it may be halted.
Collapse
Affiliation(s)
- Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
196
|
Xu Q, Fu X, Xiu Z, Yang H, Men X, Liu M, Xu C, Li B, Zhao S, Xu H. Interleukin‑22 alleviates arginine‑induced pancreatic acinar cell injury via the regulation of intracellular vesicle transport system: Evidence from proteomic analysis. Exp Ther Med 2023; 26:578. [PMID: 38023358 PMCID: PMC10655043 DOI: 10.3892/etm.2023.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
Acute pancreatitis (AP) is a severe inflammatory condition characterized by the activation of pancreatic enzymes within acinar cells, leading to tissue damage and inflammation. Interleukin (IL)-22 is a potential therapeutic agent for AP owing to its anti-inflammatory properties and ability to promote tissue repair. The present study evaluated the differentially expressed proteins in arginine-induced pancreatic acinar cell injury following treatment with IL-22, and the possible mechanisms involved in IL-22-mediated alleviation of AP. AR42J cells were stimulated using L-arginine to establish an acinar cell injury model in vitro and the damaged cells were subsequently treated with IL-22. The characteristics of the model and the potential therapeutic effects of IL-22 were examined by CCK-8 assay, flow cytometry, TUNEL assay, transmission electron microscopy and ELISA. Differentially expressed proteins in cells induced by arginine and treated with IL-22 were assessed using liquid chromatography-mass spectrometry. The identified proteins were further subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis to elucidate their functional roles. The present study demonstrated that arginine-stimulated cells showed significant pathological changes resembling those in AP, which were alleviated after IL-22 treatment. Proteomic analysis then demonstrated that in IL-22-treated cells, proteins related to the formation and fusion of autophagosomes with lysosomes were significantly downregulated, whereas endocytosis related proteins were enriched in the upregulated proteins. After IL-22 treatment, western blotting demonstrated reduced expression of autophagy-associated proteins. In conclusion, by inhibiting the formation and fusion of autophagosomes with lysosomes, IL-22 may have mitigated premature trypsinogen activation, subsequently minimizing acinar cell injury induced by L-arginine. This was accompanied by concurrent upregulation of endocytosis, which serves a pivotal role in sustaining regular cellular material transport and signal propagation. This research underscored the potential of IL-22 in mitigating arginine-induced AR42J injury, which could be valuable in refining treatment strategies for AP.
Collapse
Affiliation(s)
- Qianqian Xu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xinjuan Fu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Gastroenterology Center, Qingdao Hiser Hospital Affiliated to Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong 266033, P.R. China
| | - Zhigang Xiu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Hongli Yang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaoxiao Men
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Mingyue Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Changqin Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Bin Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Shulei Zhao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
197
|
Zhang Z, Li J, Wang G, Ling F. The oral protective efficacy of magnolol against Aeromonas hydrophila and A. veronii infection via enhancing anti-inflammatory ability in goldfish (Carassius auratus). JOURNAL OF FISH DISEASES 2023; 46:1413-1423. [PMID: 37705318 DOI: 10.1111/jfd.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Aeromonas hydrophila and A. veronii are widespread and important critical pathogenic bacteria in the aquaculture industry and cause severe economic damage. At present, magnolol has been proved to be a broad-spectrum antibacterial activity, such as A. hydrophila, Staphylococcus aureus and Streptococcus mutans. In order to explore the cause of in vivo disease resistance of magnolol and promote its safe application in aquaculture, the pathological detection and changes in immune indicators of fish after feeding with magnolol were conducted in this paper. Results showed that the diets supplemented with magnolol (3 g magnolol/kg commercial feed) significantly increase the expression level of anti-inflammatory cytokines (IL-10, TGF-β and IL-4) in the liver of goldfish (p < .05). Additionally, the expression levels of proinflammatory cytokines (IL-1β, IL-8 and IFN-γ) did not increase significantly. Subsequently, this study investigated the resistance of goldfish to A. hydrophila and A. veronii infection after feeding with magnolol. The results showed that the survival rates of treatment groups fed 3 g magnolol/kg commercial feed daily increased by 23.1% and 38.5% after 10 days post A. hydrophila and A. veronii (p = .0351) infection, respectively. Meanwhile, growth performance (body weight and length), major internal organs (liver, spleen, kidney and intestine) and the serum biochemistry indicators (ATL and AST) all exhibited no significant adverse effects after the goldfish fed with magnolol for 30 days. TP showed an increasing concentration in the treatment group (p < .05). Results of the mRNA expression of stress response indicated that the expression level of cyp1a and hsp70 was significantly down-regulated after a 30-day treatment (p < .05), and the two genes recovered to the similar level as the control group after a commercial feed diet. In brief, the diets supplemented with magnolol protected the host from the excessive immune response caused by A. hydrophila and A. veronii via enhancing its anti-inflammatory capacity and had no adverse effects with feeding.
Collapse
Affiliation(s)
- Zhao Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jing Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
198
|
Liu J, Ren H, Zhang C, Li J, Qiu Q, Zhang N, Jiang N, Lovell JF, Zhang Y. Orally-Delivered, Cytokine-Engineered Extracellular Vesicles for Targeted Treatment of Inflammatory Bowel Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304023. [PMID: 37728188 DOI: 10.1002/smll.202304023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/11/2023] [Indexed: 09/21/2023]
Abstract
The use of orally-administered therapeutic proteins for treatment of inflammatory bowel disease (IBD) has been limited due to the harsh gastrointestinal environment and low bioavailability that affects delivery to diseased sites. Here, a nested delivery system, termed Gal-IL10-EVs (C/A) that protects interleukin 10 (IL-10) from degradation in the stomach and enables targeted delivery of IL-10 to inflammatory macrophages infiltrating the colonic lamina propria, is reported. Extracellular vesicles (EVs) carrying IL-10 are designed to be secreted from genetically engineered mammalian cells by a plasmid system, and EVs are subsequently modified with galactose, endowing the targeted IL-10 delivery to inflammatory macrophages. Chitosan/alginate (C/A) hydrogel coating on Gal-IL10-EVs enables protection from harsh conditions in the gastrointestinal tract and favorable delivery to the colonic lumen, where the C/A hydrogel coating is removed at the diseased sites. Gal-IL10-EVs control the production of reactive oxygen species (ROS) and inhibit the expression of proinflammatory cytokines. In a murine model of colitis, Gal-IL10-EVs (C/A) alleviate IBD symptoms including inflammatory responses and disrupt colonic barriers. Taken together, Gal-IL10-EVs (C/A) features biocompatibility, pH-responsive drug release, and macrophage-targeting as a therapeutic platform for oral delivery of bioactive proteins for treating intestinal diseases.
Collapse
Affiliation(s)
- Jingang Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Chen Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Qian Qiu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Nan Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Ning Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
199
|
Cox LS, Alvarez-Martinez M, Wu X, Gabryšová L, Luisier R, Briscoe J, Luscombe NM, O'Garra A. Blimp-1 and c-Maf regulate Il10 and negatively regulate common and unique proinflammatory gene networks in IL-12 plus IL-27-driven T helper-1 cells. Wellcome Open Res 2023; 8:403. [PMID: 38074197 PMCID: PMC10709690 DOI: 10.12688/wellcomeopenres.19680.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Background CD4 + Th1 cells producing IFN-γ are required to eradicate intracellular pathogens, however if uncontrolled these cells can cause immunopathology. The cytokine IL-10 is produced by multiple immune cells including Th1 cells during infection and regulates the immune response to minimise collateral host damage. In this study we aimed to elucidate the transcriptional network of genes controlling the expression of Il10 and proinflammatory cytokines, including Ifng in Th1 cells differentiated from mouse naive CD4 + T cells. Methods We applied computational analysis of gene regulation derived from temporal profiling of gene expression clusters obtained from bulk RNA sequencing (RNA-seq) of flow cytometry sorted naïve CD4 + T cells from mouse spleens differentiated in vitro into Th1 effector cells with IL-12 and IL-27 to produce Ifng and Il10, compared to IL-27 alone which express Il10 only , or IL-12 alone which express Ifng and no Il10, or medium control driven-CD4 + T cells which do not express effector cytokines . Data were integrated with analysis of active genomic regions from these T cells using an assay for transposase-accessible chromatin with sequencing (ATAC)-seq, integrated with literature derived-Chromatin-immunoprecipitation (ChIP)-seq data and the RNA-seq data, to elucidate the transcriptional network of genes controlling expression of Il10 and pro-inflammatory effector genes in Th1 cells. The co-dominant role for the transcription factors, Prdm1 (encoding Blimp-1) and Maf (encoding c-Maf) , in cytokine gene regulation in Th1 cells, was confirmed using T cells obtained from mice with T-cell specific deletion of these transcription factors. Results We show that the transcription factors Blimp-1 and c-Maf each have unique and common effects on cytokine gene regulation and not only co-operate to induce Il10 gene expression in IL-12 plus IL-27 differentiated mouse Th1 cells, but additionally directly negatively regulate key proinflammatory cytokines including Ifng, thus providing mechanisms for reinforcement of regulated Th1 cell responses. Conclusions These data show that Blimp-1 and c-Maf positively and negatively regulate a network of both unique and common anti-inflammatory and pro-inflammatory genes to reinforce a Th1 response in mice that will eradicate pathogens with minimum immunopathology.
Collapse
Affiliation(s)
- Luke S. Cox
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Marisol Alvarez-Martinez
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Xuemei Wu
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Leona Gabryšová
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Raphaëlle Luisier
- Computational Biology Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - James Briscoe
- Developmental Dynamics Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Nicholas M. Luscombe
- Computational Biology Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, England, UK
| | - Anne O'Garra
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
- National Heart and Lung Institute, Imperial College London, London, England, UK
| |
Collapse
|
200
|
Guo J, Zhang H, Lin W, Lu L, Su J, Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther 2023; 8:437. [PMID: 38008779 PMCID: PMC10679229 DOI: 10.1038/s41392-023-01655-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/28/2023] Open
Abstract
Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Collapse
Affiliation(s)
- Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Wenrui Lin
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| |
Collapse
|