151
|
Liu J, Ren H, Zhang C, Li J, Qiu Q, Zhang N, Jiang N, Lovell JF, Zhang Y. Orally-Delivered, Cytokine-Engineered Extracellular Vesicles for Targeted Treatment of Inflammatory Bowel Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304023. [PMID: 37728188 DOI: 10.1002/smll.202304023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/11/2023] [Indexed: 09/21/2023]
Abstract
The use of orally-administered therapeutic proteins for treatment of inflammatory bowel disease (IBD) has been limited due to the harsh gastrointestinal environment and low bioavailability that affects delivery to diseased sites. Here, a nested delivery system, termed Gal-IL10-EVs (C/A) that protects interleukin 10 (IL-10) from degradation in the stomach and enables targeted delivery of IL-10 to inflammatory macrophages infiltrating the colonic lamina propria, is reported. Extracellular vesicles (EVs) carrying IL-10 are designed to be secreted from genetically engineered mammalian cells by a plasmid system, and EVs are subsequently modified with galactose, endowing the targeted IL-10 delivery to inflammatory macrophages. Chitosan/alginate (C/A) hydrogel coating on Gal-IL10-EVs enables protection from harsh conditions in the gastrointestinal tract and favorable delivery to the colonic lumen, where the C/A hydrogel coating is removed at the diseased sites. Gal-IL10-EVs control the production of reactive oxygen species (ROS) and inhibit the expression of proinflammatory cytokines. In a murine model of colitis, Gal-IL10-EVs (C/A) alleviate IBD symptoms including inflammatory responses and disrupt colonic barriers. Taken together, Gal-IL10-EVs (C/A) features biocompatibility, pH-responsive drug release, and macrophage-targeting as a therapeutic platform for oral delivery of bioactive proteins for treating intestinal diseases.
Collapse
Affiliation(s)
- Jingang Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Chen Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Qian Qiu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Nan Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Ning Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
152
|
Cox LS, Alvarez-Martinez M, Wu X, Gabryšová L, Luisier R, Briscoe J, Luscombe NM, O'Garra A. Blimp-1 and c-Maf regulate Il10 and negatively regulate common and unique proinflammatory gene networks in IL-12 plus IL-27-driven T helper-1 cells. Wellcome Open Res 2023; 8:403. [PMID: 38074197 PMCID: PMC10709690 DOI: 10.12688/wellcomeopenres.19680.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Background CD4 + Th1 cells producing IFN-γ are required to eradicate intracellular pathogens, however if uncontrolled these cells can cause immunopathology. The cytokine IL-10 is produced by multiple immune cells including Th1 cells during infection and regulates the immune response to minimise collateral host damage. In this study we aimed to elucidate the transcriptional network of genes controlling the expression of Il10 and proinflammatory cytokines, including Ifng in Th1 cells differentiated from mouse naive CD4 + T cells. Methods We applied computational analysis of gene regulation derived from temporal profiling of gene expression clusters obtained from bulk RNA sequencing (RNA-seq) of flow cytometry sorted naïve CD4 + T cells from mouse spleens differentiated in vitro into Th1 effector cells with IL-12 and IL-27 to produce Ifng and Il10, compared to IL-27 alone which express Il10 only , or IL-12 alone which express Ifng and no Il10, or medium control driven-CD4 + T cells which do not express effector cytokines . Data were integrated with analysis of active genomic regions from these T cells using an assay for transposase-accessible chromatin with sequencing (ATAC)-seq, integrated with literature derived-Chromatin-immunoprecipitation (ChIP)-seq data and the RNA-seq data, to elucidate the transcriptional network of genes controlling expression of Il10 and pro-inflammatory effector genes in Th1 cells. The co-dominant role for the transcription factors, Prdm1 (encoding Blimp-1) and Maf (encoding c-Maf) , in cytokine gene regulation in Th1 cells, was confirmed using T cells obtained from mice with T-cell specific deletion of these transcription factors. Results We show that the transcription factors Blimp-1 and c-Maf each have unique and common effects on cytokine gene regulation and not only co-operate to induce Il10 gene expression in IL-12 plus IL-27 differentiated mouse Th1 cells, but additionally directly negatively regulate key proinflammatory cytokines including Ifng, thus providing mechanisms for reinforcement of regulated Th1 cell responses. Conclusions These data show that Blimp-1 and c-Maf positively and negatively regulate a network of both unique and common anti-inflammatory and pro-inflammatory genes to reinforce a Th1 response in mice that will eradicate pathogens with minimum immunopathology.
Collapse
Affiliation(s)
- Luke S. Cox
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Marisol Alvarez-Martinez
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Xuemei Wu
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Leona Gabryšová
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Raphaëlle Luisier
- Computational Biology Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - James Briscoe
- Developmental Dynamics Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Nicholas M. Luscombe
- Computational Biology Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, England, UK
| | - Anne O'Garra
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
- National Heart and Lung Institute, Imperial College London, London, England, UK
| |
Collapse
|
153
|
Guo J, Zhang H, Lin W, Lu L, Su J, Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther 2023; 8:437. [PMID: 38008779 PMCID: PMC10679229 DOI: 10.1038/s41392-023-01655-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/28/2023] Open
Abstract
Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Collapse
Affiliation(s)
- Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Wenrui Lin
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| |
Collapse
|
154
|
Jones MA, Hanison J, Apreutesei R, Allarakia B, Namvar S, Ramaswamy DS, Horner D, Smyth L, Body R, Columb M, Nirmalan M, Nirmalan N. Plasma interleukin responses as predictors of outcome stratification in patients after major trauma: a prospective observational two centre study. Front Immunol 2023; 14:1276171. [PMID: 38077362 PMCID: PMC10702136 DOI: 10.3389/fimmu.2023.1276171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Background and objectives There is a need to develop objective risk stratification tools to define efficient care pathways for trauma patients. Biomarker-based point of care testing may strengthen existing clinical tools currently available for this purpose. The dysregulation of pro- and anti-inflammatory cytokines in the pathogenesis of organ failure is well recognised. This study was carried out to evaluate whether blood concentrations of IL-6, IL-10, and IL-6:IL-10 ratios in the early stages of the illness are significantly different in patients with worsening organ function. Materials and methods In this prospective observational cohort study, plasma concentrations of IL-6 and IL-10 on days 1, 3 and 5 were measured in 91 major trauma patients using a multiplexed cytometric bead array approach. A composite measure of adverse outcome - defined as SOFA ≥ 2 or mortality at 7 days, was the primary outcome. IL-6 and IL-10 concentrations in early samples (days 1, 3 & 5) in patients who developed SOFA ≥ 2 on day 7 were compared against those who did not. Similar composite outcome groups at day 5 and in groups with worsening or improving SOFA scores (ΔSOFA) at days 7 and 5 were undertaken as secondary analyses. Results Stratification on day 7, 44 (48%) patients showed adverse outcomes. These adverse outcomes associated with significantly greater IL-6 concentrations on days 1 and 5 (Day 1: 47.65 [23.24-78.68] Vs 73.69 [39.93 - 118.07] pg/mL, P = 0.040 and Day 5: 12.85 [5.80-19.51] Vs 28.90 [8.78-74.08] pg/mL; P = 0.0019). Similarly, IL-10 levels were significantly greater in the adverse outcome group on days 3 and 5 (Day 3: 2.54 [1.76-3.19] Vs 3.16 [2.68-4.21] pg/mL; P = 0.044 and Day 5: 2.03 [1.65-2.55] Vs 2.90 [2.00-5.06] pg/mL; P <0.001). IL-6 and IL-10 concentrations were also significantly elevated in the adverse outcome groups at day 3 and day 5 when stratified on day 5 outcomes. Both IL-6 and IL-6:IL-10 were found to be significantly elevated on days 1 and 3 when stratified based on ΔSOFA at day 5. This significance was lost when stratified on day 7 scores. Conclusions Early IL-6 and IL-10 concentrations are significantly greater in patients who develop worsening organ functions downstream. These differences may provide an alternate biomarker-based approach to strengthen risk stratification in trauma patients.
Collapse
Affiliation(s)
- Matthew Allan Jones
- Biomedical Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| | - James Hanison
- Critical Care Unit, Manchester University National Health Service (NHS) Foundation Trust (MFT), Manchester, United Kingdom
| | - Renata Apreutesei
- Biomedical Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| | - Basmah Allarakia
- Biomedical Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| | - Sara Namvar
- Biomedical Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Deepa Shruthi Ramaswamy
- Biomedical Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| | - Daniel Horner
- Critical Care Unit, Salford Royal Foundation Trust (SRFT), Salford, United Kingdom
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Lucy Smyth
- Biomedical Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| | - Richard Body
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Malachy Columb
- Critical Care Unit, Manchester University National Health Service (NHS) Foundation Trust (MFT), Manchester, United Kingdom
| | - Mahesan Nirmalan
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Niroshini Nirmalan
- Biomedical Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
155
|
Liu K, Yuan S, Wang C, Zhu H. Resistance to immune checkpoint inhibitors in gastric cancer. Front Pharmacol 2023; 14:1285343. [PMID: 38026944 PMCID: PMC10679741 DOI: 10.3389/fphar.2023.1285343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal malignancies worldwide. In the past decade, with the development of early diagnostic techniques, a clear decline in GC incidence has been observed, but its mortality remains high. The emergence of new immunotherapies such as immune checkpoint inhibitors (ICIs) has changed the treatment of GC patients to some extent. However, only a small number of patients with advanced GC have a durable response to ICI treatment, and the efficacy of ICIs is very limited. Existing studies have shown that the failure of immunotherapy is mainly related to the development of ICI resistance in patients, but the understanding of the resistance mechanism is still insufficient. Therefore, clarifying the mechanism of GC immune resistance is critical to improve its treatment and clinical benefit. In this review, we focus on summarizing the mechanisms of primary or acquired resistance to ICI immunotherapy in GC from both internal and external aspects of the tumor. At the same time, we also briefly discuss some other possible resistance mechanisms in light of current studies.
Collapse
Affiliation(s)
- Kai Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Shiman Yuan
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hong Zhu
- Cancer Center, Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
156
|
Silva FS, Barros-Lima A, Souza-Barros M, Crespo-Neto JA, Santos VGR, Pereira DS, Alves-Hanna FS, Magalhães-Gama F, Faria JAQA, Costa AG. A dual-role for IL-10: From leukemogenesis to the tumor progression in acute lymphoblastic leukemia. Cytokine 2023; 171:156371. [PMID: 37725872 DOI: 10.1016/j.cyto.2023.156371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer in the world, and accounts for 25% of all childhood cancers among children under 15 years of age. Longitudinal studies have shown that children with ALL are born with a deregulated immune response that, together with postnatal environmental exposures, favor the onset of the disease. In this context, IL-10, a key cytokine in the regulation of the immune response, presents itself as a paradoxical mediator, initially influencing the development of ALL through the regulation of inflammatory processes and later on the progression of malignancy, with the increase of this molecule in the leukemia microenvironment. According to the literature, this cytokine plays a critical role in the natural history of the disease and plays an important role in two different though complex scenarios. Thus, in this review, we explore the dual role of IL-10 in ALL, and describe its biological characteristics, immunological mechanisms and genetics, as well as its impact on the leukemia microenvironment and its clinical implications.
Collapse
Affiliation(s)
- Flavio Souza Silva
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Amanda Barros-Lima
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Mateus Souza-Barros
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Juniel Assis Crespo-Neto
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | | | - Daniele Sá Pereira
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Fabíola Silva Alves-Hanna
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Jerusa Araújo Quintão Arantes Faria
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil.
| |
Collapse
|
157
|
Wu M, Xiao Y, Huang J, Wang Y, Zhang Y, Xu J, Dai H, Lv C, Hu Y, Chen B, Fu Q, Le W, Xue C. Liquid nitrogen frozen cells for chemotherapy drug delivery and vaccination of melanoma. J Cancer Res Clin Oncol 2023; 149:13705-13716. [PMID: 37522925 DOI: 10.1007/s00432-023-05117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE Cancer vaccine (CV) has thrived as a promising tool for cancer prevention and treatment. However, how to maintain the integrity and diversity of individualized vaccine antigens and activate the adaptive immune system is still challenging. METHODS Herein, a preventive and therapeutic vaccine platform for in situ effective multi-model synergistic therapy is developed. In our study, we process B16F10 cells by liquid nitrogen frozen (LNF) to obtain LNF cells, the characterization of LNF cells were conducted. Moreover, the anti-tumor effect and immune activation ability were studied, and the role as a CV were investigated. RESULTS The LNF cells preserve intact cellular structure and tumor-associated self-antigen gp100. Moreover, LNF cells have the ability of loading and releasing doxorubicin (DOX). Except for the anti-tumor effect of chemotherapy brought by DOX, the LNF cells can promote the maturation of dendritic cells (DCs) and induce immune response by activating CD4+ and CD8+ T cells, particularly with the existence of adjuvant, R848. Specifically, the CD8+ T cells of mice in LNF-DOX/R848 group are 6 times of that in PBS group in tumor microenvironment, and twice in spleen. Therefore, LNF cells can also be utilized as a CV. Vaccination with LNF/R848 cells effectively suppress the tumor growth in mice by fivefold as compared to the control group. CONCLUSION In this work, we obtain the LNF cells with a simple procedure. The LNF cells not only provides a tumor cells-based multi-modal system for cancer therapy but inspires new insights into future development of individualized CVs strategies. This study processes live B16F10 cells by liquid nitrogen frozen to obtain LNF cells, which preserve cell integrity and homologous targeting ability. The LNF cells can load and deliver drug and can serve as tumor vaccine. Results demonstrated the LNF cells have effective prophylactic ability, and ideal anti-tumor ability with the loaded drug and adjuvant.
Collapse
Affiliation(s)
- Minliang Wu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuai Xiao
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jianguo Huang
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuchong Wang
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yifan Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jianguo Xu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Haiying Dai
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chuan Lv
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yihui Hu
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qingge Fu
- Department of Orthopedic Trauma, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Chunyu Xue
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
158
|
Wu H, Sun HC, Ouyang GF. Effect of T-regulatory cells and interleukin-35, interleukin-10, and transforming growth factor-beta on diffuse large B-cell lymphoma. World J Clin Cases 2023; 11:7075-7081. [PMID: 37946782 PMCID: PMC10631411 DOI: 10.12998/wjcc.v11.i29.7075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is an aggressive non-Hodgkin lymphoma that affects B lymphocytes. It can develop in the lymph nodes and can be localized or generalized. Despite DLBCL being considered potentially curable, little research has been conducted on the relationship between the body's immune response and DLBCL. AIM To study the expression and significance of T-regulatory cells (Tregs) interleukin (IL)-35, IL-10, and transforming growth factor-beta (TGF-β) in DLBCL. METHODS Data from 82 patients with DLBCL who were initially admitted to The First Affiliated Hospital of Ningbo University (Zhejiang Province, China) between January 2017 and June 2022 and treated with standard first-line regimens were reviewed. Three patients were lost to follow-up; thus, 79 patients were included in the statistical analysis and then divided into three groups according to the evaluation of clinical efficacy: Incipient (new-onset and treatment-naïve), effectively treated, and relapsed-refractory. Thirty healthy individuals were included in the control group. The expression of peripheral blood T lymphocytes and their associated factors IL-35, IL-10, and TGF-β in the four groups were observed. RESULTS In contrast to the successfully treated and normal control groups, both the incipient and relapse-refractory groups exhibited greater proportions of CD4-positive (+) Tregs (P < 0.05), whereas the proportion of CD8+ Tregs did not differ substantially between the groups. Serum levels of IL-35 and IL-10 in the incipient and relapsed-refractory groups were higher than those in the effectively treated and normal control groups (P < 0.05). There was no statistically significant distinction in the expression level of TGF-β between the groups (P > 0.05). The correlation between IL-35 and IL-10 concentrations was significantly positive, with a correlation coefficient of 0.531 (P < 0.05). The correlation between IL-35 and TGF-β concentration was significantly positive, with a correlation coefficient of 0.375 (P < 0.05). The correlation between IL-10 and TGF-β concentration was significantly positive, with a correlation coefficient of 0.185 (P < 0.05). The expression concentrations of IL-35, IL-10 and TGF-β were apparently and positively correlated (P < 0.05). CONCLUSION Tregs IL-35, and IL-10 may be closely associated with the occurrence and development of DLBCL and the detection of related indices may be helpful in the analysis of disease prognosis.
Collapse
Affiliation(s)
- Hao Wu
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang Province, China
| | - Hui-Cong Sun
- Adult Internal Medicine, Ningbo Women and Children's Hospital, Ningbo 315012, Zhejiang Province, China
| | - Gui-Fang Ouyang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang Province, China
| |
Collapse
|
159
|
Barada O, Salomé-Desnoulez S, Madouri F, Deslée G, Coraux C, Gosset P, Pichavant M. IL-20 Cytokines Are Involved in the Repair of Airway Epithelial Barrier: Implication in Exposure to Cigarette Smoke and in COPD Pathology. Cells 2023; 12:2464. [PMID: 37887308 PMCID: PMC10604979 DOI: 10.3390/cells12202464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Dysregulated inflammation as seen in chronic obstructive pulmonary disease (COPD) is associated with impaired wound healing. IL-20 cytokines are known to be involved in wound healing processes. The purpose of this study was to use ex vivo and in vitro approaches mimicking COPD to evaluate the potential modulatory role of interleukin-20 (IL-20) on the inflammatory and healing responses to epithelial wounding. METHODS The expression of IL-20 cytokines and their receptors was investigated in lung-derived samples collected from non-COPD and COPD patients, from mice chronically exposed to cigarette smoke and from airway epithelial cells from humans and mice exposed in vitro to cigarette smoke. To investigate the role of IL-20 cytokines in wound healing, experiments were performed using a blocking anti-IL-20Rb antibody. RESULTS Of interest, IL-20 cytokines and their receptors were expressed in bronchial mucosa, especially on airway epithelial cells. Their expression correlated with the disease severity. Blocking these cytokines in a COPD context improved the repair processes after a lesion induced by scratching the epithelial layer. CONCLUSIONS Collectively, this study highlights the implication of IL-20 cytokines in the repair of the airway epithelium and in the pathology of COPD. IL-20 subfamily cytokines might provide therapeutic benefit for patients with COPD to improve epithelial healing.
Collapse
Affiliation(s)
- Olivia Barada
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille; Université Lille Nord de France; Centre National de la Recherche Scientifique UMR 9017; Institut National de la Santé et de la Recherche Médicale U1019, 59019 Lille, France; (O.B.); (F.M.); (P.G.)
| | - Sophie Salomé-Desnoulez
- Institut Pasteur de Lille, Université de Lille, CNRS UMR9017, Inserm U1019, CHU Lille, US 41—UAR 2014—PLBS, 59000 Lille, France;
| | - Fahima Madouri
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille; Université Lille Nord de France; Centre National de la Recherche Scientifique UMR 9017; Institut National de la Santé et de la Recherche Médicale U1019, 59019 Lille, France; (O.B.); (F.M.); (P.G.)
| | - Gaëtan Deslée
- Service de Pneumologie, Centre Hospitalier Universitaire de Reims, 51092 Reims, France;
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1250, Université de Reims Champagne-Ardenne (URCA), SFR Cap-Santé, 51100 Reims, France;
| | - Christelle Coraux
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1250, Université de Reims Champagne-Ardenne (URCA), SFR Cap-Santé, 51100 Reims, France;
| | - Philippe Gosset
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille; Université Lille Nord de France; Centre National de la Recherche Scientifique UMR 9017; Institut National de la Santé et de la Recherche Médicale U1019, 59019 Lille, France; (O.B.); (F.M.); (P.G.)
| | - Muriel Pichavant
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille; Université Lille Nord de France; Centre National de la Recherche Scientifique UMR 9017; Institut National de la Santé et de la Recherche Médicale U1019, 59019 Lille, France; (O.B.); (F.M.); (P.G.)
| |
Collapse
|
160
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
161
|
Abascal J, Oh MS, Liclican EL, Dubinett SM, Salehi-Rad R, Liu B. Dendritic Cell Vaccination in Non-Small Cell Lung Cancer: Remodeling the Tumor Immune Microenvironment. Cells 2023; 12:2404. [PMID: 37830618 PMCID: PMC10571973 DOI: 10.3390/cells12192404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) remains one of the leading causes of death worldwide. While NSCLCs possess antigens that can potentially elicit T cell responses, defective tumor antigen presentation and T cell activation hinder host anti-tumor immune responses. The NSCLC tumor microenvironment (TME) is composed of cellular and soluble mediators that can promote or combat tumor growth. The composition of the TME plays a critical role in promoting tumorigenesis and dictating anti-tumor immune responses to immunotherapy. Dendritic cells (DCs) are critical immune cells that activate anti-tumor T cell responses and sustain effector responses. DC vaccination is a promising cellular immunotherapy that has the potential to facilitate anti-tumor immune responses and transform the composition of the NSCLC TME via tumor antigen presentation and cell-cell communication. Here, we will review the features of the NSCLC TME with an emphasis on the immune cell phenotypes that directly interact with DCs. Additionally, we will summarize the major preclinical and clinical approaches for DC vaccine generation and examine how effective DC vaccination can transform the NSCLC TME toward a state of sustained anti-tumor immune signaling.
Collapse
Affiliation(s)
- Jensen Abascal
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Michael S. Oh
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Elvira L. Liclican
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Steven M. Dubinett
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095-1690, USA
| | - Ramin Salehi-Rad
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Bin Liu
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| |
Collapse
|
162
|
Pereira RDD, Rabelo RAN, Oliveira NFDM, Porto SLT, Andrade ACDSP, Queiroz-Junior CM, Barbosa CLN, de Souza-Costa LP, Santos FRDS, Oliveira FBR, da Silva BLV, Umezu HL, Ferreira R, da Silva GSF, Cruz JS, Teixeira MM, Costa VV, Machado FS. A 5-Lipoxygenase Inhibitor, Zileuton, Modulates Host Immune Responses and Improves Lung Function in a Model of Severe Acute Respiratory Syndrome (SARS) Induced by Betacoronavirus. Viruses 2023; 15:2049. [PMID: 37896826 PMCID: PMC10611395 DOI: 10.3390/v15102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Exacerbated inflammatory responses are a hallmark of severe coronavirus disease 2019 (COVID-19). Zileuton (Zi) is a selective inhibitor of 5-lipoxygenase, an enzyme involved in the production of several inflammatory/pro-resolving lipid mediators. Herein, we investigated the effect of Zi treatment in a severe acute respiratory syndrome (SARS) model. Mouse hepatitis virus (MHV)3-infected mice treated with Zi significantly improved the clinical score, weight loss, cardiopulmonary function, and survival rates compared with infected untreated animals. The protection observed in Zi-treated mice was associated with a lower inflammatory score, reduced dendritic cell-producing tumor necrosis factor (TNF), and increased neutrophil-producing interleukin (IL)-10 in the lungs three days after infection (dpi). At 5 dpi, the lungs of treated mice showed an increase in Th2-, Treg CD4+-, and Treg CD8+-producing IL-10 and reduced Th1 infiltrating cells. Furthermore, similar results were found upon Zi treatment after SARS-CoV-2 infection in transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2), significantly improving the clinical score, weight loss, and lung inflammatory score compared with untreated animals. Our data suggest that Zi protects against developing severe lung disease during SARS induced by betacoronavirus without affecting the host's capacity to deal with infection.
Collapse
Affiliation(s)
- Rafaela das Dores Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Rayane Aparecida Nonato Rabelo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Natália Fernanda de Melo Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Samuel Luiz Teixeira Porto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Ana Claudia dos Santos Pereira Andrade
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.C.d.S.P.A.); (C.M.Q.-J.); (B.L.V.d.S.)
| | - Celso M. Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.C.d.S.P.A.); (C.M.Q.-J.); (B.L.V.d.S.)
| | - César Luís Nascimento Barbosa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Luiz Pedro de Souza-Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Felipe Rocha da Silva Santos
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Fernando Bento Rodrigues Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Bárbara Luísa Vieira da Silva
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.C.d.S.P.A.); (C.M.Q.-J.); (B.L.V.d.S.)
| | - Hanna L. Umezu
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (H.L.U.); (G.S.F.d.S.)
| | - Raquel Ferreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Glauber S. F. da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (H.L.U.); (G.S.F.d.S.)
| | - Jader Santos Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.C.d.S.P.A.); (C.M.Q.-J.); (B.L.V.d.S.)
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
163
|
Huang Y, Zhang L, Tan L, Zhang C, Li X, Wang P, Gao L, Zhao C. Interleukin-22 Inhibits Apoptosis of Gingival Epithelial Cells Through TGF-β Signaling Pathway During Periodontitis. Inflammation 2023; 46:1871-1886. [PMID: 37310646 DOI: 10.1007/s10753-023-01847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Periodontitis is a chronic inflammatory disease characterized by the destruction of tooth-supporting tissues. The gingival epithelium is the first barrier of periodontal tissue against oral pathogens and harmful substances. The structure and function of epithelial lining are essential for maintaining the integrity of the epithelial barrier. Abnormal apoptosis can lead to the decrease of functional keratinocytes and break homeostasis in gingival epithelium. Interleukin-22 is a cytokine that plays an important role in epithelial homeostasis in intestinal epithelium, inducing proliferation and inhibiting apoptosis, but its role in gingival epithelium is poorly understood. In this study, we investigated the effect of interleukin-22 on apoptosis of gingival epithelial cells during periodontitis. Interleukin-22 topical injection and Il22 gene knockout were performed in experimental periodontitis mice. Human gingival epithelial cells were co-cultured with Porphyromonas gingivalis with interleukin-22 treatment. We found that interleukin-22 inhibited apoptosis of gingival epithelial cells during periodontitis in vivo and in vitro, decreasing Bax expression and increasing Bcl-xL expression. As for the underlying mechanisms, we found that interleukin-22 reduced the expression of TGF-β receptor type II and inhibited the phosphorylation of Smad2 in gingival epithelial cells during periodontitis. Blockage of TGF-β receptors attenuated apoptosis induced by Porphyromonas gingivalis and increased Bcl-xL expression stimulated by interleukin-22. These results confirmed the inhibitory effect of interleukin-22 on apoptosis of gingival epithelial cells and revealed the involvement of TGF-β signaling pathway in gingival epithelial cell apoptosis during periodontitis.
Collapse
Affiliation(s)
- Yina Huang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lu Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lingping Tan
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Panpan Wang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
164
|
Li K, Wei X, Yang J. Cytokine networks that suppress fish cellular immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104769. [PMID: 37423553 DOI: 10.1016/j.dci.2023.104769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Immunosuppressive cytokines are a class of cytokines produced by immune cells and certain non-immune cells that have a suppressive effect on immune function. Currently known immunosuppressive cytokines include interleukin (IL)-10, transforming growth factor beta (TGF-β), IL-35, and IL-37. Although latest sequencing technologies have facilitated the identification of immunosuppressive cytokines in fish, IL-10 and TGF-β were the most well-known ones that have been widely studied and received continuous attention. Fish IL-10 and TGF-β have been identified as anti-inflammatory and immunosuppressive factors, acting on both innate and adaptive immune systems. However, unlike mammals, teleost fish underwent a third or fourth whole-genome duplication event, which significantly expanded the gene family associated with the cytokine signaling pathway, making the function and mechanism of these molecules need further investigation. In this review, we summarize the advances of studies on fish immunosuppressive cytokines IL-10 and TGF-β since their identification, mainly focusing on production, signaling transduction, and effects on the immunological function. This review aims to expand the understanding of the immunosuppressive cytokine network in fish.
Collapse
Affiliation(s)
- Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
165
|
Rajamanickam A, Nathella PK, Selvaraj N, Manoj M, Thangaraj JWV, Muthusamy SK, Chethrapilly Purushothaman GK, Bhatnagar T, Ponnaiah M, Ramasamy S, Velusamy S, Babu S. Characterization of IL-10 Family of Cytokines in Acute and Convalescent COVID-19 Individuals. J Interferon Cytokine Res 2023; 43:469-477. [PMID: 37708007 DOI: 10.1089/jir.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Cytokines are major players in orchestrating inflammation, disease pathogenesis, and severity during COVID-19. Members of the interleukin (IL)-10 family of cytokines play important roles in regulating immune responses to various inflammatory and infectious diseases. However, the role of the IL-10 family of cytokines in COVID-19 remains elusive. Hence, we determined the plasma levels of the IL-10 family of cytokines (IL-10, IL-19, IL-20, IL-22, and IL-24) in 7 groups of COVID-19 individuals, based on days since real-time reverse transcriptase-polymerase chain reaction confirmation of SARS-CoV-2 infection. Our data show that the levels of IL-10, IL-19, IL-20, IL-22, and IL-24 cytokines decreased from days 15-30 to days 61-90 and plateaued thereafter. Severe COVID-19 patients exhibit increased plasma levels of IL-10, IL-19, IL-20, IL-22, and IL-24 compared to mild patients. Thus, our study provides evidence of alterations in the plasma levels of the IL-10 family of cytokines in convalescent COVID-19 individuals.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institutes of Health-International Center for Excellence in Research, Chennai, India
| | | | - Nandhini Selvaraj
- National Institutes of Health-International Center for Excellence in Research, Chennai, India
| | | | | | | | | | | | | | | | | | - Subash Babu
- National Institutes of Health-International Center for Excellence in Research, Chennai, India
| |
Collapse
|
166
|
da Silva Nascimento M, Dos Santos PH, de Abreu FF, Shan AYKV, Amaral RG, Andrade LN, Souto EB, Santos MIS, de Souza Graça A, Souza JB, Raimundo E Silva JP, Tavares JF, de Oliveira E Silva AM, Correa CB, Montalvão MM, Piacente S, Pizza C, Camargo EA, Dos Santos Estevam C. Schinus terebinthifolius Raddi (Brazilian pepper) leaves extract: in vitro and in vivo evidence of anti-inflammatory and antioxidant properties. Inflammopharmacology 2023; 31:2505-2519. [PMID: 37639162 PMCID: PMC10518276 DOI: 10.1007/s10787-023-01316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
The aim of this work was to evaluate the anti-inflammatory and antioxidant effects of ethyl acetate extract obtained from the leaves of Brazilian peppertree Schinus terebinthifolius Raddi (EAELSt). Total phenols and flavonoids, chemical constituents, in vitro antioxidant activity (DPPH and lipoperoxidation assays), and cytotoxicity in L929 fibroblasts were determined. In vivo anti-inflammatory and antioxidant properties were evaluated using TPA-induced ear inflammation model in mice. Phenol and flavonoid contents were 19.2 ± 0.4 and 93.8 ± 5.2 of gallic acid or quercetin equivalents/g, respectively. LC-MS analysis identified 43 compounds, of which myricetin-O-pentoside and quercetin-O-rhamnoside were major peaks of chromatogram. Incubation with EAELSt decreased the amount of DPPH radical (EC50 of 54.5 ± 2.4 µg/mL) and lipoperoxidation at 200-500 µg/mL. The incubation with EAELSt did not change fibroblast viability up to 100 µg/mL. Topical treatment with EAELSt significantly reduced edema and myeloperoxidase activity at 0.3, 1, and 3 mg/ear when compared to the vehicle-treated group. In addition, EAELSt decreased IL-6 and TNF-α levels and increased IL-10 levels. Besides, it modulated markers of oxidative stress (reduced total hydroperoxides and increased sulfhydryl contents and ferrium reduction potential) and increased the activity of catalase and superoxide dismutase, without altering GPx activity.
Collapse
Affiliation(s)
- Marcel da Silva Nascimento
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Péligris H Dos Santos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Fabiula F de Abreu
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Andrea Y K V Shan
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Ricardo G Amaral
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil.
| | - Luciana N Andrade
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Eliana B Souto
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Matheus I S Santos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Ariel de Souza Graça
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Jesica B Souza
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Joanda P Raimundo E Silva
- Health Sciences Center, Postgraduate Program in Natural and Synthetic Bioactive Products, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, 58051-970, Brazil
| | - Josean F Tavares
- Health Sciences Center, Postgraduate Program in Natural and Synthetic Bioactive Products, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, 58051-970, Brazil
| | | | - Cristiane B Correa
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Monalisa M Montalvão
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Sonia Piacente
- Department of Pharmacy, University of the Study of Salerno, Via Giovanni Paolo II n. 132, 84084, Fisciano, Salerno, Italy
| | - Cosimo Pizza
- Department of Pharmacy, University of the Study of Salerno, Via Giovanni Paolo II n. 132, 84084, Fisciano, Salerno, Italy
| | - Enilton A Camargo
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Charles Dos Santos Estevam
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| |
Collapse
|
167
|
Hamaguchi A, Fukuda H, Fujiwara K, Harada T, Fukushima K, Shuto S, Fujino H. Individual resolvin E family members work distinctly and in a coordinated manner in the resolution of inflammation. Prostaglandins Other Lipid Mediat 2023; 168:106759. [PMID: 37327943 DOI: 10.1016/j.prostaglandins.2023.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Three main E-type resolvins (RvEs): RvE1, RvE2, and RvE3, have roles in the resolution of inflammation as anti-inflammatory activities. To investigate the roles of each RvE in the resolution of inflammation, timing of interleukin (IL)- 10 release and IL-10 receptor expressions, and phagocytosis evoked by each RvE in differentiated human monocytes, macrophage-like U937 cells were examined. Here, we show that RvEs enhance the expression of IL-10, and IL-10 receptor-mediated signaling pathways and IL-10-mediated-signaling-independent resolution of inflammatory effects by activating the phagocytotic function. Thus, RvE2 mainly evoked an IL-10-mediated anti-inflammatory function, whereas RvE3 principally activated phagocytotic activity of macrophages, which may be involved in tissue repair. On the other hand, RvE1 showed both functions, although not prominent but rather acting as a relief mediator that takes over the RvE2 function and passes over to the RvE3 function. Therefore, each RvE may act as an important role/stage-specific mediator in a coordinated manner with other RvEs in the processes of the resolution of inflammation.
Collapse
Affiliation(s)
- Ayaka Hamaguchi
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Hayato Fukuda
- Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Koichi Fujiwara
- Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tomofumi Harada
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Satoshi Shuto
- Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan.
| |
Collapse
|
168
|
Tanaka F, Mazzardo G, Salm DC, de Oliveira BH, Joaquim L, Machado RS, Cidreira T, Petronilho FC, Bittencourt EB, Bianco G, Bobinski F, Piovezan AP, Srbely JZ, Shah JP, Moré AOO, Mazzardo-Martins L, Martins DF. Peripheral Activation of Formyl Peptide Receptor 2/ALX by Electroacupuncture Alleviates Inflammatory Pain by Increasing Interleukin-10 Levels and Catalase Activity in Mice. Neuroscience 2023; 529:1-15. [PMID: 37572879 DOI: 10.1016/j.neuroscience.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
In the context of the electroacupuncture (EA) neurobiological mechanisms, we have previously demonstrated the involvement of formyl peptide receptor 2 (FPR2/ALX) in the antihyperalgesic effect of EA. The present study investigated the involvement of peripheral FPR2/ALX in the antihyperalgesic effect of EA on inflammatory cytokines levels, oxidative stress markers and antioxidant enzymes in an animal model of persistent inflammatory pain. Male Swiss mice underwent intraplantar (i.pl.) injection with complete Freund's adjuvant (CFA). Mechanical hyperalgesia was assessed with von Frey monofilaments. Animals were treated with EA (2/10 Hz, ST36-SP6, 20 minutes) for 4 consecutive days. From the first to the fourth day after CFA injection, animals received i.pl. WRW4 (FPR2/ALX antagonist) or saline before EA. Levels of inflammatory cytokines (TNF, IL-6, IL-4 and IL-10), antioxidant enzymes (catalase and superoxide dismutase), oxidative stress markers (TBARS, protein carbonyl, nitrite/nitrate ratio), and myeloperoxidase activity were measured in paw tissue samples. As previously demonstrated, i.pl. injection of the FPR2/ALX antagonist prevented the antihyperalgesic effect induced by EA. Furthermore, animals treated with EA showed higher levels of IL-10 and catalase activity in the inflamed paw, and these effects were prevented by the antagonist WRW4. EA did not change levels of TNF and IL-6, SOD and MPO activity, and oxidative stress markers. Our work demonstrates that the antihyperalgesic effect of EA on CFA-induced inflammatory pain could be partially associated with higher IL-10 levels and catalase activity, and that these effects may be dependent, at least in part, on the activation of peripheral FPR2/ALX.
Collapse
Affiliation(s)
- Fernanda Tanaka
- Postgraduate Program in Neuroscience, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Gustavo Mazzardo
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Faculty of Medicine, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna H de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Postgraduate Program in Health Science, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Richard S Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Postgraduate Program in Health Science, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Thaina Cidreira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Postgraduate Program in Health Science, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Fabrícia C Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Postgraduate Program in Health Science, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | | | - Gianluca Bianco
- Research Laboratory of Posturology and Neuromodulation RELPON, Department of Human Neuroscience, Sapienza University, Italy; Istituto di Formazione in Agopuntura e Neuromodulazione IFAN, Roma, Italy
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Anna Paula Piovezan
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - John Z Srbely
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Jay P Shah
- Rehabilitation Medicine Department, National Institutes of Health, Rockville Pike, Bethesda, MD, USA
| | - Ari O O Moré
- Integrative Medicine and Acupuncture Service, University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Leidiane Mazzardo-Martins
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
169
|
Khiter F, Kherrouche Z, Dubois V, Slupek S, Petit E, Debrie AS, Cauchi S, Barois N, Rouanet C, Mielcarek N. Combined regulation of pro-inflammatory cytokines production by STAT3 and STAT5 in a model of B. pertussis infection of alveolar macrophages. Front Immunol 2023; 14:1254276. [PMID: 37841236 PMCID: PMC10569487 DOI: 10.3389/fimmu.2023.1254276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Bordetella pertussis is a highly contagious respiratory pathogen responsible for whooping-cough or pertussis. Despite high vaccination coverage worldwide, this gram-negative bacterium continues to spread among the population. B. pertussis is transmitted by aerosol droplets from an infected individual to a new host and will colonize its upper respiratory tract. Alveolar macrophages (AMs) are effector cells of the innate immune system that phagocytose B. pertussis and secrete both pro-inflammatory and antimicrobial mediators in the lungs. However, understanding their role in B. pertussis pathogenesis at the molecular level is hampered by the limited number of primary AMs that can be collected in vivo. In order to decipher the regulation of innate response induced by B. pertussis infection, we used for the first time self-renewing, non-transformed cells, called Max Planck Institute (MPI) cells, which are phenotypically and functionally very close to pulmonary AMs. Using optimized infection conditions, we characterized the entry and the clearance of B. pertussis within MPI macrophages. We showed that under these conditions, MPI cells exhibit a pro-inflammatory phenotype with the production of TNF, IL-1β, IL-6 and MIP-2α, similarly to primary AMs purified from broncho-alveolar fluids of mice. In addition, we explored the yet uncharacterized role of the signal transduction activator of transcription (STAT) proteins family in the innate immune response to B. pertussis infection and showed for the first time the parallel regulation of pro-inflammatory cytokines by STAT3 and STAT5 in MPI macrophages infected by B. pertussis. Altogether, this work highlights the interest of using MPI cells for experiments optimization and preliminary data acquisition to understand B. pertussis interaction with AMs, and thus significantly reduce the number of animals to be sacrificed.
Collapse
Affiliation(s)
- Fethi Khiter
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Zoulika Kherrouche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Violaine Dubois
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Stéphanie Slupek
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Emmanuelle Petit
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Anne-Sophie Debrie
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Stéphane Cauchi
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Nicolas Barois
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Carine Rouanet
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Nathalie Mielcarek
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
170
|
Poto R, Pecoraro A, Ferrara AL, Punziano A, Lagnese G, Messuri C, Loffredo S, Spadaro G, Varricchi G. Cytokine dysregulation despite immunoglobulin replacement therapy in common variable immunodeficiency (CVID). Front Immunol 2023; 14:1257398. [PMID: 37841257 PMCID: PMC10568625 DOI: 10.3389/fimmu.2023.1257398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency. CVID is a heterogeneous disorder with a presumed multifactorial etiology. Intravenous or subcutaneous immunoglobulin replacement therapy (IgRT) can prevent severe infections but not underlying immune dysregulation. Methods In this study, we evaluated the serum concentrations of proinflammatory (TNF-α, IL-1β, IL-6) and immunoregulatory cytokines (IL-10), as well as lipopolysaccharide (LPS) and soluble CD14 (sCD14) in CVID individuals with infectious only (INF-CVID), and those with additional systemic autoimmune and inflammatory disorders (NIC-CVID), and healthy donors (HD). Results Our results showed increased serum concentrations of TNF-α, IL-1β, IL-6, and IL-10 in both INF-CVID and NIC-CVID subjects compared to HD. However, elevations of TNF-α, IL-1β, IL-6, and IL-10 were significantly more marked in NIC-CVID than INF-CVID. Additionally, LPS concentrations were increased only in NIC-CVID but not in INF-CVID compared to HD. Circulating levels of sCD14 were significantly increased in NIC-CVID compared to both INF-CVID and HD. Discussion These findings indicate persistent cytokine dysregulation despite IgRT in individuals with CVID. Moreover, the circulating cytokine profile reveals the heterogeneity of immune dysregulation in different subgroups of CVID subjects.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Unità Operativa (UO) Medicina Trasfusionale, Azienda Sanitaria Territoriale, Ascoli Piceno, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Carla Messuri
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy
| |
Collapse
|
171
|
Wang X, Tang Q, Bergquist R, Zhou X, Qin Z. The Cytokine Profile in Different Stages of Schistosomiasis Japonica. Pathogens 2023; 12:1201. [PMID: 37887717 PMCID: PMC10610117 DOI: 10.3390/pathogens12101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
To explore and profile the level of cytokines in the sera of patients infected with Schistosoma japonicum to explore the helper T-cell response of patients either at the chronic or advanced stage of the disease. We randomly selected 58 subjects from several areas endemic for schistosomiasis japonica in China and collected serum samples to be tested for 18 different cytokines secreted by (1) Th1/Th2 cells (GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-12p70, IL-10, IL-13, IL-18 and TNF-α) and (2) Th9/Th17/Th22/Treg cells (IL-9, IL-17A, IL-21, IL-22, IL-23 and IL-27). The Th1/Th2 cytokines in chronic patients were not significantly different from those in healthy people, while patients with advanced schistosomiasis had higher levels of IL-2, IL-23 and IL-27 and lower levels of IL-18 and IFN-γ. With respect to the Th9/Th17/Th22/Treg cell cytokines, there were higher levels of IL-23. Thus, a limited variation of the cytokine response between the three patient groups was evident, but only in those with advanced infection, while there was no difference between chronic schistosomiasis infection and healthy subjects in this respect. The cytokine expression should be followed in patients with advanced schistosomiasis who show a cytokine pattern of a weakened Th1 cell response and an increased Th17 response.
Collapse
Affiliation(s)
- Xi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.W.); (Q.T.)
| | - Qi Tang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.W.); (Q.T.)
| | | | - Xiaorong Zhou
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China;
| | - Zhiqiang Qin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.W.); (Q.T.)
| |
Collapse
|
172
|
Ijinu TP, De Lellis LF, Shanmugarama S, Pérez-Gregorio R, Sasikumar P, Ullah H, Buccato DG, Di Minno A, Baldi A, Daglia M. Anthocyanins as Immunomodulatory Dietary Supplements: A Nutraceutical Perspective and Micro-/Nano-Strategies for Enhanced Bioavailability. Nutrients 2023; 15:4152. [PMID: 37836436 PMCID: PMC10574533 DOI: 10.3390/nu15194152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Anthocyanins (ACNs) have attracted considerable attention for their potential to modulate the immune system. Research has revealed their antioxidant and anti-inflammatory properties, which play a crucial role in immune regulation by influencing key immune cells, such as lymphocytes, macrophages, and dendritic cells. Moreover, ACNs contribute towards maintaining a balance between proinflammatory and anti-inflammatory cytokines, thus promoting immune health. Beyond their direct effects on immune cells, ACNs significantly impact gut health and the microbiota, essential factors in immune regulation. Emerging evidence suggests that they positively influence the composition of the gut microbiome, enhancing their immunomodulatory effects. Furthermore, these compounds synergize with other bioactive substances, such as vitamins and minerals, further enhancing their potential as immune-supporting dietary supplements. However, detailed clinical studies must fully validate these findings and determine safe dosages across varied populations. Incorporating these natural compounds into functional foods or supplements could revolutionize the management of immune-related conditions. Personalized nutrition and healthcare strategies may be developed to enhance overall well-being and immune resilience by fully understanding the mechanisms underlying the actions of their components. Recent advancements in delivery methods have focused on improving the bioavailability and effectiveness of ACNs, providing promising avenues for future applications.
Collapse
Affiliation(s)
- Thadiyan Parambil Ijinu
- Naturæ Scientific, Kerala University-Business Innovation and Incubation Centre, Kariavattom Campus, University of Kerala, Thiruvananthapuram 695581, India;
- The National Society of Ethnopharmacology, VRA-179, Mannamoola, Peroorkada P.O., Thiruvananthapuram 695005, India
| | - Lorenza Francesca De Lellis
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Rosa Pérez-Gregorio
- Food and Health Omics Group, Institute of Agroecology and Food, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain;
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Department of Analytical and Food Chemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| | | | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Alessandra Baldi
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
173
|
Liu L, Xiao N, Chen P, Zhu X. IL-10 predicts the prognosis of patients with hepatitis B virus-related acute-on-chronic liver failure combined with spontaneous bacterial peritonitis. Front Med (Lausanne) 2023; 10:1188300. [PMID: 37822472 PMCID: PMC10562642 DOI: 10.3389/fmed.2023.1188300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Background Spontaneous bacterial peritonitis (SBP) is common in patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). The prognostic value of interleukin-related serum markers for patients with ACLF is coming to the fore. However, there is an unmet need to predict the survival of such patients. We aimed to analyze the independent predictors of 28- and 90-day mortality in HBV-ACLF patients with SBP. Methods This was a retrospective study that included 368 patients with HBV-ACLF. In the SBP group, logistic regression analysis was used to understand the independent predictors of mortality at 28-day and 90-day. The accuracy of prediction was analyzed using the area under the receiver operating characteristic curve (AUROC). Finally, decision curve analysis (DCA) was used to determine the clinical utility value. Results Interleukin 10 (IL-10) levels were statistically significantly different between the HBV-ACLF group with SBP and without. Aspartate aminotransferase (AST), serum sodium, IL-10 and vasoactive drug treatment were independent risk factors for 28-day mortality. International normalized ratio (INR), AST and IL-10 were independent risk factors for 90-day mortality. IL-10 combined with the Chinese Severe Hepatitis B Study Group-ACLF II score (COSH-ACLF IIs) had excellent performance in predicting 28- and 90-day mortality (AUCs: 0.848 and 0.823, respectively). DCA analysis suggests promising clinical utility. Conclusion IL-10 is an independent predictor of mortality at 28- and 90-day in HBV-ACLF patients with SBP and predictive performance is improved when combined with COSH-ACLF IIs.
Collapse
Affiliation(s)
- Linxiang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Nanxi Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Peng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Xuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| |
Collapse
|
174
|
Li W, Xie H, Gou L, Zhou Y, Wang H, Li R, Zhang Y, Liu S, Liu J, Lu Y, He ZE, Chen N, Li J, Zhu Y, Wang C, Lv M. DNA-Based Hydrogels with Multidrug Sequential Release for Promoting Diabetic Wound Regeneration. JACS AU 2023; 3:2597-2608. [PMID: 37772175 PMCID: PMC10523493 DOI: 10.1021/jacsau.3c00408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
Diabetic wound (DW) regeneration is highly challenging due to persistent bacterial infection, excessive production of reactive oxygen species (ROS), prolonged inflammatory response, and insufficient angiogenesis. Ideal management requires the integration and sequential release of bactericidal, antioxidative, anti-inflammatory, and angiogenic agents during DW repair. Here, we develop a DNA-based multidrug hydrogel, termed Agilegel, to promote the efficient healing of DW. Hierarchically structured Agilegel can precisely control the sequential release of vascular endothelial growth factor-alpha (VEGF-α), silver nanoclusters (AgNCs), and interleukin-10 (IL-10) through covalent bonds in its primary structure (phosphate backbone), noncovalent bonds in its secondary structure (base pairs), and physical encapsulation in its advanced structure (pores), respectively. We demonstrate that Agilegel can effectively eliminate bacterial infection through AgNCs and mitigate ROS production through DNA scaffolds. Moreover, during the inflammatory phase, Agilegel promotes the polarization of macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotype using IL-10. Subsequently, Agilegel stimulates cell proliferation, angiogenesis, and extracellular matrix formation through the action of VEGF-α, thereby accelerating the closure of DW. Our results indicate that DNA hydrogels confer the capacity to regulate the sequential release of drugs, enabling them to effectively manage the phased intervention of multiple drugs in the treatment of complex diseases within physiological environments.
Collapse
Affiliation(s)
- Wei Li
- Department
of Endocrinology and Metabolism, Center for Diabetes and Metabolism
Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Xie
- College
of Chemistry and Materials Science, Shanghai
Normal University, Shanghai 200234, China
| | - Liping Gou
- Department
of Endocrinology and Metabolism, Center for Diabetes and Metabolism
Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Zhou
- Department
of Endocrinology and Metabolism, Center for Diabetes and Metabolism
Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Wang
- Laboratory
of Dermatology, West China Hospital, Sichuan
University, Chengdu 610041, China
| | - Ruoqing Li
- Department
of Endocrinology and Metabolism, Center for Diabetes and Metabolism
Research, West China Hospital, Sichuan University, Chengdu 610041, China
- Department
of General Medicine, Chongqing University
Central Hospital, Chongqing Emergency Medical Center, Chongqing Key
Laboratory of Emergency Medicine, Chongqing 400014, China
| | - Yong Zhang
- Key
Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuyun Liu
- Key
Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingping Liu
- Key
Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Key
Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | - Nan Chen
- College
of Chemistry and Materials Science, Shanghai
Normal University, Shanghai 200234, China
| | - Jiang Li
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
| | - Ying Zhu
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
| | - Chengshi Wang
- Department
of Endocrinology and Metabolism, Center for Diabetes and Metabolism
Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Lv
- College
of Chemistry and Materials Science, Shanghai
Normal University, Shanghai 200234, China
| |
Collapse
|
175
|
Zhi W, Wang Y, Jiang C, Gong Y, Chen Q, Mao X, Deng W, Zhao S. PLEKHA4 is a novel prognostic biomarker that reshapes the tumor microenvironment in lower-grade glioma. Front Immunol 2023; 14:1128244. [PMID: 37818357 PMCID: PMC10560889 DOI: 10.3389/fimmu.2023.1128244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Background Lower-grade glioma (LGG) is a primary intracranial tumor that carry a high risk of malignant transformation and limited therapeutic options. Emerging evidence indicates that the tumor microenvironment (TME) is a superior predictor for tumor progression and therapy response. PLEKHA4 has been demonstrated to be a biomarker for LGG that correlate with immune infiltration. However, the fundamental mechanism by which PLEKHA4 contributes to LGG is still poorly understood. Methods Multiple bioinformatic tools, including Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA2), Shiny Methylation Analysis Resource Tool (SMART), etc., were incorporated to analyze the PLEKHA4. ESTIMATE, ssGSEA, CIBERSORT, TIDE and CellMiner algorithms were employed to determine the association of PLEKHA4 with TME, immunotherapy response and drug sensitivities. Immunohistochemistry (IHC)-based tissue microarrays and M2 macrophage infiltration assay were conducted to verify their associations. Results PLEKHA4 expression was found to be dramatically upregulated and strongly associated with unfavorable overall survival (OS) and disease-specific survival (DSS) in LGG patients, as well as their poor clinicopathological characteristics. Cox regression analysis identified that PLEKHA4 was an independent prognostic factor. Methylation analysis revealed that DNA methylation correlates with PLEKHA4 expression and indicates a better outcome in LGG. Moreover, PLEKHA4 was remarkably correlated with immune responses and TME remodeling, as evidenced by its positive correlation with particular immune marker subsets and the putative infiltration of immune cells. Surprisingly, the proportion of M2 macrophages in TME was strikingly higher than others, inferring that PLEKHA4 may regulate the infiltration and polarization of M2 macrophages. Evidence provided by IHC-based tissue microarrays and M2 macrophage infiltration assay further validated our findings. Moreover, PLEKHA4 expression was found to be significantly correlated with chemokines, interleukins, and their receptors, further supporting the critical role of PLEKHA4 in reshaping the TME. Additionally, we found that PLEKHA4 expression was closely associated with drug sensitivities and immunotherapy responses, indicating that PLEKHA4 expression also had potential clinical significance in guiding immunotherapy and chemotherapy in LGG. Conclusion PLEKHA4 plays a pivotal role in reshaping the TME of LGG patients, and may serve as a potential predictor for LGG prognosis and therapy.
Collapse
Affiliation(s)
- Wenqian Zhi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ye Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Chenyu Jiang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yuqin Gong
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qiuyan Chen
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Mao
- Institute of Hygiene Toxicology, Wuhan Centre for Disease Prevention and Control, Wuhan, Hubei, China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
176
|
Miguelena Chamorro B, De Luca K, Swaminathan G, Longet S, Mundt E, Paul S. Bordetella bronchiseptica and Bordetella pertussis: Similarities and Differences in Infection, Immuno-Modulation, and Vaccine Considerations. Clin Microbiol Rev 2023; 36:e0016422. [PMID: 37306571 PMCID: PMC10512794 DOI: 10.1128/cmr.00164-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Bordetella pertussis and Bordetella bronchiseptica belong to the genus Bordetella, which comprises 14 other species. B. pertussis is responsible for whooping cough in humans, a severe infection in children and less severe or chronic in adults. These infections are restricted to humans and currently increasing worldwide. B. bronchiseptica is involved in diverse respiratory infections in a wide range of mammals. For instance, the canine infectious respiratory disease complex (CIRDC), characterized by a chronic cough in dogs. At the same time, it is increasingly implicated in human infections, while remaining an important pathogen in the veterinary field. Both Bordetella can evade and modulate host immune responses to support their persistence, although it is more pronounced in B. bronchiseptica infection. The protective immune responses elicited by both pathogens are comparable, while there are important characteristics in the mechanisms that differ. However, B. pertussis pathogenesis is more difficult to decipher in animal models than those of B. bronchiseptica because of its restriction to humans. Nevertheless, the licensed vaccines for each Bordetella are different in terms of formulation, route of administration and immune responses induced, with no known cross-reaction between them. Moreover, the target of the mucosal tissues and the induction of long-lasting cellular and humoral responses are required to control and eliminate Bordetella. In addition, the interaction between both veterinary and human fields are essential for the control of this genus, by preventing the infections in animals and the subsequent zoonotic transmission to humans.
Collapse
Affiliation(s)
- Beatriz Miguelena Chamorro
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Karelle De Luca
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | | | - Stéphanie Longet
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| | - Egbert Mundt
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Stéphane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
177
|
Xu Y, Wang F, Mi K, Wang X, Wang D, Zhao Q, Wang J, Liu Z, Zhang Q, Liu Y, Zhang X, Liu X. Biglycan regulated colorectal cancer progress by modulating enteric neuron-derived IL-10 and abundance of Bacteroides thetaiotaomicron. iScience 2023; 26:107515. [PMID: 37664615 PMCID: PMC10469580 DOI: 10.1016/j.isci.2023.107515] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/01/2022] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Biglycan (BGN) is a proteoglycan with branch chains and highly expressed in enteric neurons in the tumor tissue of colorectal cancer (CRC), which is negatively associated with survival rates in patients with CRC. However, how the proteoglycan promotes the progress of CRC through interacting with bacteria and regulating the immune response of enteric neurons remains largely unknown. In the present study, we found that biglycan deficiency changed tumor distribution in a colitis-associated colon cancer model. Furthermore, we revealed that BGN deficiency inhibits tumor growth in an allograft tumor model and the migration of cancer cell by upregulating interleukin-10 expression in enteric neurons. Significantly, we demonstrated that biglycan deficiency enriched the abundance of Bacteroides thetaiotaomicron through competing with it for chondroitin sulfate to inhibit CRC progress. Our work provided new insights into the interaction between host proteoglycan and gut microbiota as well as the role of enteric neurons in the tumor microenvironment.
Collapse
Affiliation(s)
- Yuyu Xu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Fei Wang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Kai Mi
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinyuan Wang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Danlei Wang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Qing Zhao
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jingjing Wang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhi Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Qingqing Zhang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yang Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Xuemei Zhang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| |
Collapse
|
178
|
Khanolkar A, Liu G, Simpson Schneider BM. Defining the Basal and Immunomodulatory Mediator-Induced Phosphoprotein Signature in Pediatric B Cell Acute Lymphoblastic Leukemia (B-ALL) Diagnostic Samples. Int J Mol Sci 2023; 24:13937. [PMID: 37762241 PMCID: PMC10531382 DOI: 10.3390/ijms241813937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
It is theorized that dysregulated immune responses to infectious insults contribute to the development of pediatric B-ALL. In this context, our understanding of the immunomodulatory-mediator-induced signaling responses of leukemic blasts in pediatric B-ALL diagnostic samples is rather limited. Hence, in this study, we defined the signaling landscape of leukemic blasts, as well as normal mature B cells and T cells residing in diagnostic samples from 63 pediatric B-ALL patients. These samples were interrogated with a range of immunomodulatory-mediators within 24 h of collection, and phosflow analyses of downstream proximal signaling nodes were performed. Our data reveal evidence of basal hyperphosphorylation across a broad swath of these signaling nodes in leukemic blasts in contrast to normal mature B cells and T cells in the same sample. We also detected similarities in the phosphoprotein signature between blasts and mature B cells in response to IFNγ and IL-2 treatment, but significant divergence in the phosphoprotein signature was observed between blasts and mature B cells in response to IL-4, IL-7, IL-10, IL-21 and CD40 ligand treatment. Our results demonstrate the existence of both symmetry and asymmetry in the phosphoprotein signature between leukemic and non-leukemic cells in pediatric B-ALL diagnostic samples.
Collapse
Affiliation(s)
- Aaruni Khanolkar
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| | - Guorong Liu
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | | |
Collapse
|
179
|
Fiedorczuk P, Olszewska E, Polecka A, Walasek M, Mroczko B, Kulczyńska-Przybik A. Investigating the Role of Serum and Plasma IL-6, IL-8, IL-10, TNF-alpha, CRP, and S100B Concentrations in Obstructive Sleep Apnea Diagnosis. Int J Mol Sci 2023; 24:13875. [PMID: 37762178 PMCID: PMC10530258 DOI: 10.3390/ijms241813875] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a prevalent and underdiagnosed condition associated with cardiovascular diseases, depression, accidents, and stroke. There is an increasing need for alternative diagnostic tools beyond overnight sleep studies that measure the Apnea/Hypopnea Index (AHI). In this single-center, case-control study, we evaluated serum and plasma concentrations of IL-6, IL-8, IL-10, TNF-α, CRP, and S100B in 80 subjects, including 52 OSA patients (27 moderate [15 ≤ AHI ˂ 30], 25 severe [AHI ≥ 30]) and 28 non-OSA controls (AHI 0-5). Participants with OSA showed approximately 2 times higher median concentrations of CRP in plasma, and IL-6 in serum, as well as 1.3 to 1.7 times higher concentrations of TNF-α and IL-8 in plasma compared with the control group. Receiver Operator Characteristic (ROC) curve analysis was performed to evaluate the predictive capabilities of these serum and plasma biomarkers in distinguishing between the OSA and control groups, revealing varying sensitivity and specificity. In summary, in this study, serum and plasma biomarkers CRP, S100B, IL-6, TNF-α, and IL-8 have been shown to be elevated in patients with OSA, correlated positively with disease severity, age, and BMI. These results support the potential role of these biomarkers in diagnosing OSA, supplementing traditional methods such as overnight sleep studies.
Collapse
Affiliation(s)
- Piotr Fiedorczuk
- Department of Otolaryngology, Medical University of Bialystok, 15-089 Bialystok, Poland; (P.F.); (M.W.)
| | - Ewa Olszewska
- Department of Otolaryngology, Medical University of Bialystok, 15-089 Bialystok, Poland; (P.F.); (M.W.)
| | - Agnieszka Polecka
- Doctoral School of the Medical, University of Bialystok, 15-089 Bialystok, Poland;
| | - Marzena Walasek
- Department of Otolaryngology, Medical University of Bialystok, 15-089 Bialystok, Poland; (P.F.); (M.W.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok 15-089 Bialystok, Poland; (B.M.); (A.K.-P.)
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok 15-089 Bialystok, Poland; (B.M.); (A.K.-P.)
| |
Collapse
|
180
|
Macis D, Briata IM, D’Ecclesiis O, Johansson H, Aristarco V, Buttiron Webber T, Oppezzi M, Gandini S, Bonanni B, DeCensi A. Inflammatory and Metabolic Biomarker Assessment in a Randomized Presurgical Trial of Curcumin and Anthocyanin Supplements in Patients with Colorectal Adenomas. Nutrients 2023; 15:3894. [PMID: 37764678 PMCID: PMC10537228 DOI: 10.3390/nu15183894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer prevention is crucial for public health, given its high mortality rates, particularly in young adults. The early detection and treatment of precancerous lesions is key to preventing carcinogenesis progression. Natural compounds like curcumin and anthocyanins show promise in impeding adenomatous polyp progression in preclinical models. We conducted a randomized, double-blind, placebo-controlled, phase II presurgical trial in 35 patients with adenomatous polyps to explore the biological effects of curcumin and anthocyanins on circulating biomarkers of inflammation and metabolism. No significant difference in biomarker changes by treatment arm was observed. However, the network analysis before treatment revealed inverse correlations between adiponectin and BMI and glycemia, as well as direct links between inflammatory biomarkers and leptin and BMI. In addition, a considerable inverse relationship between adiponectin and grade of dysplasia was detected after treatment (corr = -0.45). Finally, a significant increase in IL-6 at the end of treatment in subjects with high-grade dysplasia was also observed (p = 0.02). The combined treatment of anthocyanins and curcumin did not result in the direct modulation of circulating biomarkers of inflammation and metabolism, but revealed a complex modulation of inflammatory and metabolic biomarkers of colon carcinogenesis.
Collapse
Affiliation(s)
- Debora Macis
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (H.J.); (V.A.); (B.B.)
| | - Irene Maria Briata
- Division of Medical Oncology, E.O. Galliera Hospital, 16128 Genoa, Italy; (I.M.B.); (T.B.W.)
| | - Oriana D’Ecclesiis
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (O.D.); (S.G.)
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (H.J.); (V.A.); (B.B.)
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (H.J.); (V.A.); (B.B.)
| | - Tania Buttiron Webber
- Division of Medical Oncology, E.O. Galliera Hospital, 16128 Genoa, Italy; (I.M.B.); (T.B.W.)
| | - Massimo Oppezzi
- Division of Gastroenterology, E.O. Galliera Hospital, 16128 Genoa, Italy;
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (O.D.); (S.G.)
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (H.J.); (V.A.); (B.B.)
| | - Andrea DeCensi
- Division of Medical Oncology, E.O. Galliera Hospital, 16128 Genoa, Italy; (I.M.B.); (T.B.W.)
| |
Collapse
|
181
|
He L, Zhao L, Li Q, Huang L, Qin Y, Zhuang Z, Wang X, Huang H, Zhang J, Zhang J, Yan Q. Pseudomonas plecoglossicida fliP gene affects the immune response of Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂ to infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108971. [PMID: 37481102 DOI: 10.1016/j.fsi.2023.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Pseudomonas plecoglossicida is a pathogen that causes visceral white spot disease in a variety of teleosts. The protein encoded by fliP gene is involved in the assembly of bacterial flagella, which plays a vital role in bacterial pathogenicity. However, the roles of the fliP gene on the host immune response remain unclear. Here, we compared the pathogenicity of fliP gene-deleted (ΔfliP) strain, fliP gene-complemented (C-ΔfliP) strain and wild-type (NZBD9) strain of P. plecoglossicida to hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂), and explored the impacts of fliP gene on the immune response of hybrid grouper to P. plecoglossicida infection by using RNA-seq. In this study, the grouper in the ΔfliP strain-infected group had a 30% higher survival rate than those in the NZBD9 strain-infected group. In addition, the deletion of fliP gene decreased bacterial load in the spleen, intestine, liver as well as head kidney of hybrid grouper and the tissues damage were weakened. Moreover, the infection of hybrid grouper spleen by the ΔfliP strain induced 1,189 differential expression genes compared with the counterpart infected by NZBD9 strain. KEGG enrichment analysis showed that 9 immune-related pathways, 5 signal transduction pathways, and 3 signaling molecules and interaction pathways were significantly enriched. qRT-PCR analysis revealed that the ΔfliP strain mainly up-regulated the expression of inflammation related genes (IL-6, IL-12, IL-1β, IL-10, CXCL8, CXCL10) and immune regulation related genes (TLR2, P65, MyD88, P85, AKT), but down-regulated the expression of cell death related genes (FoxO1, Bim, PLK2 and LDHA) during infection. Based on the above results, fliP gene contributed to the pathogenicity of P. plecoglossicida to hybrid grouper (E. fuscoguttatus ♀ × E. lanceolatus ♂), deletion of fliP gene promoted the inflammation and immune response of hybrid grouper to P. plecoglossicida infection, which accelerating host clearance of pathogen and reducing tissue damages.
Collapse
Affiliation(s)
- Li He
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
182
|
Li Z, Fan X, Fan J, Zhang W, Liu J, Liu B, Zhang H. Delivering drugs to tubular cells and organelles: the application of nanodrugs in acute kidney injury. Nanomedicine (Lond) 2023; 18:1477-1493. [PMID: 37721160 DOI: 10.2217/nnm-2023-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome with limited treatment options and high mortality rates. Proximal tubular epithelial cells (PTECs) play a key role in AKI progression. Subcellular dysfunctions, including mitochondrial, nuclear, endoplasmic reticulum and lysosomal dysfunctions, are extensively studied in PTECs. These studies have led to the development of potential therapeutic drugs. However, clinical development of those drugs faces challenges such as low solubility, short circulation time and severe systemic side effects. Nanotechnology provides a promising solution by improving drug properties through nanocrystallization and enabling targeted delivery to specific sites. This review summarizes advancements and limitations of nanoparticle-based drug-delivery systems in targeting PTECs and subcellular organelles, particularly mitochondria, for AKI treatment.
Collapse
Affiliation(s)
- Zhi Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Xiao Fan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, 410082, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Jun Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China
- Department of Physiology & Pathophysiology, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| |
Collapse
|
183
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
184
|
Sheng W, Ji G, Zhang L. Immunomodulatory effects of inulin and its intestinal metabolites. Front Immunol 2023; 14:1224092. [PMID: 37638034 PMCID: PMC10449545 DOI: 10.3389/fimmu.2023.1224092] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
"Dietary fiber" (DF) refers to a type of carbohydrate that cannot be digested fully. DF is not an essential nutrient, but it plays an important part in enhancing digestive capacity and maintaining intestinal health. Therefore, DF supplementation in the daily diet is highly recommended. Inulin is a soluble DF, and commonly added to foods. Recently, several studies have found that dietary supplementation of inulin can improve metabolic function and regulate intestinal immunity. Inulin is fermented in the colon by the gut microbiota and a series of metabolites is generated. Among these metabolites, short-chain fatty acids provide energy to intestinal epithelial cells and participate in regulating the differentiation of immune cells. Inulin and its intestinal metabolites contribute to host immunity. This review summarizes the effect of inulin and its metabolites on intestinal immunity, and the underlying mechanisms of inulin in preventing diseases such as type 2 diabetes mellitus, inflammatory bowel disease, chronic kidney disease, and certain cancer types.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
185
|
Mitsui Y, Suzuki T, Kuniyoshi K, Inamo J, Yamaguchi K, Komuro M, Watanabe J, Edamoto M, Li S, Kouno T, Oba S, Hosoya T, Masuhiro K, Naito Y, Koyama S, Sakaguchi N, Standley DM, Shin JW, Akira S, Yasuda S, Miyazaki Y, Kochi Y, Kumanogoh A, Okamoto T, Satoh T. Expression of the readthrough transcript CiDRE in alveolar macrophages boosts SARS-CoV-2 susceptibility and promotes COVID-19 severity. Immunity 2023; 56:1939-1954.e12. [PMID: 37442134 DOI: 10.1016/j.immuni.2023.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/25/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Lung infection during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via the angiotensin-I-converting enzyme 2 (ACE2) receptor induces a cytokine storm. However, the precise mechanisms involved in severe COVID-19 pneumonia are unknown. Here, we showed that interleukin-10 (IL-10) induced the expression of ACE2 in normal alveolar macrophages, causing them to become vectors for SARS-CoV-2. The inhibition of this system in hamster models attenuated SARS-CoV-2 pathogenicity. Genome-wide association and quantitative trait locus analyses identified a IFNAR2-IL10RB readthrough transcript, COVID-19 infectivity-enhancing dual receptor (CiDRE), which was highly expressed in patients harboring COVID-19 risk variants at the IFNAR2 locus. We showed that CiDRE exerted synergistic effects via the IL-10-ACE2 axis in alveolar macrophages and functioned as a decoy receptor for type I interferons. Collectively, our data show that high IL-10 and CiDRE expression are potential risk factors for severe COVID-19. Thus, IL-10R and CiDRE inhibitors might be useful COVID-19 therapies.
Collapse
Affiliation(s)
- Yuichi Mitsui
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kanako Kuniyoshi
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Jun Inamo
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Kensuke Yamaguchi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Mariko Komuro
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Junya Watanabe
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Mio Edamoto
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Songling Li
- Laboratory of Systems Immunology, World Premier Institute Immunology Frontier Research Center, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Tsukasa Kouno
- RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Seiya Oba
- Department of Rheumatology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Tadashi Hosoya
- Department of Rheumatology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Kentaro Masuhiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | - Daron M Standley
- Laboratory of Systems Immunology, World Premier Institute Immunology Frontier Research Center, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Shizuo Akira
- Innate Cell Therapy Inc., Osaka 530-0017, Japan; Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan; Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Satoh
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Innate Cell Therapy Inc., Osaka 530-0017, Japan.
| |
Collapse
|
186
|
Bugbee E, Wang AA, Gommerman JL. Under the influence: environmental factors as modulators of neuroinflammation through the IL-10/IL-10R axis. Front Immunol 2023; 14:1188750. [PMID: 37600781 PMCID: PMC10435745 DOI: 10.3389/fimmu.2023.1188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The IL-10/IL-10 receptor (IL-10R) axis plays an important role in attenuating neuroinflammation in animal models of Multiple Sclerosis (MS) and increased IL-10 has been associated with a positive response to MS disease modifying therapy. Because environmental factors play an important role in MS susceptibility and disease course, identification of environmental factors that impact the IL-10/IL-10R axis has therapeutic potential. In this review, we provide historical and updated perspectives of how IL-10R signaling impacts neuroinflammation, discuss environmental factors and intestinal microbes with known impacts on the IL-10/IL-10R axis, and provide a hypothetical model for how B cells, via their production of IL-10, may be important in conveying environmental "information" to the inflamed central nervous system.
Collapse
|
187
|
Ronizi RR, Namavari M, Moazamian E. Evaluation of the protective immune response of an attenuated strain of Toxoplasma gondii with long-term passages on the Gecko cell line. Vet Parasitol 2023; 320:109969. [PMID: 37301090 DOI: 10.1016/j.vetpar.2023.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes the zoonoses disease, named toxoplasmosis, with global prevalence. Until now, no cost-effective treatment method has been found to deal with toxoplasma, and vaccination is the best way to deal with the infection. In the case of pathogenic protozoa, mainly live vaccines have had successful results compared to other vaccine platforms. This study evaluated the efficacy of a live experimental vaccine through long-term passages on the Gecko cell line (Z1) in inducing a protective immune response in BALB/c mice. Thirty mice were divided into three equal groups; G1: the immunized/challenged group (injection of attenuated strain), G2: the immunized/unchallenged group (injection of attenuated strain), and G3: the control group (injection of culture medium).One month after immunization, the studied mice were challenged with 1ₓ103 live tachyzoites of Toxoplasma acute RH strain. We performed Serological investigations, including evaluating antibodies, interferon-gamma (IFN-γ), and interleukins 2, 4, 10, and 12 (IL-2,4,10,12). At the study's end, a molecular test was performed on brain and liver tissues in the immunized groups to check the presence of parasites. The results from the serological tests for the evaluation of antibodies, interferon-gamma (IFN-γ), and interleukins 10 and 12 (IL-10, 12) show a significant difference (p < 0.05) between the vaccinated group and the control group, which are essential indicators of protective immunity against toxoplasma infection. Thus, in the vaccinated group, the survival rate of mice against the challenge was 70%. Also, in group two (G2), the attenuated strain of Toxoplasma gondii had no pathogenicity, and all mice survived until the end of the study period. Molecular results also showed the absence of parasites in the brain and liver tissues in this immunized group and the parasite was found in only one case of liver tissue in G1. Therefore, the attenuated strain has caused significant and protective humoral and cellular immune responses in vaccinated groups. This study showed that with the long-term passage of the acute strain on the Gecko cell line, it is possible to quickly obtain a non-diseased attenuated strain with the ability to induce protective immunity. This successful finding can introduce further research to achieve a promising vaccine in the target animals.
Collapse
Affiliation(s)
- Roghayeh Ramezanpoor Ronizi
- Department of Microbiology, Faculty of Sciences, Agriculture and Modern Technology, Shiraz branch, Islamic Azad University, Shiraz, Iran
| | - Mehdi Namavari
- Razi Vaccine and Serum Research Institute; Agricultural Research, Agricultural and Extension Organization, Shiraz, Iran.
| | - Elham Moazamian
- Department of Microbiology, Faculty of Sciences, Agriculture and Modern Technology, Shiraz branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
188
|
Dos Santos Lima A, Novaes RD, Pinheiro LC, de Almeida LA, Martino HSD, Giusti-Paiva A, Pap N, Granato D, Azevedo L. From waste to the gut: Can blackcurrant press cake be a new functional ingredient? Insights on in vivo microbiota modulation, oxidative stress, and inflammation. Food Res Int 2023; 170:112917. [PMID: 37316039 DOI: 10.1016/j.foodres.2023.112917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023]
Abstract
Blackcurrant press cake (BPC) is a source of anthocyanins, and this study evaluated the bioactivity and gut microbiota modulation of blackcurrant diets with or without 1,2 dimethylhydrazine (DMH)-induced colon carcinogenesis in rats. In colon cancer-induced rats (CRC), BPC at the highest dosages increased pro-inflammatory parameters and the expression of anti-apoptotic cytokines, accentuating colon cancer initiation by aberrant crypts and morphological changes. Fecal microbiome analysis showed that BPC altered the composition and function of the gut microbiome. This evidence suggests that high doses of BPC act as a pro-oxidant, accentuating the inflammatory environment and CRC progression.
Collapse
Affiliation(s)
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Lucas Cezar Pinheiro
- Department of Pharmacology, Federal University Santa Catarina, Santa Catarina, Brazil; Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | - Alexandre Giusti-Paiva
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Nora Pap
- Biorefinery and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland
| | - Daniel Granato
- Bioactivity & Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
189
|
Huang Z, de Vries S, Fogliano V, Wells JM, van der Wielen N, Capuano E. Effect of whole foods on the microbial production of tryptophan-derived aryl hydrocarbon receptor agonists in growing pigs. Food Chem 2023; 416:135804. [PMID: 36893645 DOI: 10.1016/j.foodchem.2023.135804] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Effects of whole foods on the microbial production of tryptophan-derived aryl hydrocarbon receptor (AhR) ligands in the intestine were investigated in a pig model. Ileal digesta and faeces of pigs after feeding of eighteen different foods were analyzed. Indole, indole-3-propionic acid, indole-3-acetic acid, indole-3-lactic acid, kynurenine, tryptamine, and indole-3-aldehyde were identified in ileal digesta, which were also identified in faeces but at higher concentrations except indole-3-lactic acid, together with skatole, oxindole, serotonin, and indoleacrylic acid. The panel of tryptophan catabolites in ileal digesta and faeces varied across different foods. Eggs induced the highest overall concentration of catabolites in ileal digesta dominated by indole. Amaranth induced the highest overall concentration of catabolites in faeces dominated by skatole. Using a reporter cell line, we observed many faecal samples but not ileal samples retained AhR activity. Collectively, these findings contribute to food selection targeting AhR ligands production from dietary tryptophan in the intestine.
Collapse
Affiliation(s)
- Zhan Huang
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Sonja de Vries
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Nikkie van der Wielen
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
190
|
Dickerson LK, Carter JA, Kohli K, Pillarisetty VG. Emerging interleukin targets in the tumour microenvironment: implications for the treatment of gastrointestinal tumours. Gut 2023; 72:1592-1606. [PMID: 37258094 DOI: 10.1136/gutjnl-2023-329650] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
The effectiveness of antitumour immunity is dependent on intricate cytokine networks. Interleukins (ILs) are important mediators of complex interactions within the tumour microenvironment, including regulation of tumour-infiltrating lymphocyte proliferation, differentiation, migration and activation. Our evolving and increasingly nuanced understanding of the cell type-specific and heterogeneous effects of IL signalling has presented unique opportunities to fine-tune elaborate IL networks and engineer new targeted immunotherapeutics. In this review, we provide a primer for clinicians on the challenges and potential of IL-based treatment. We specifically detail the roles of IL-2, IL-10, IL-12 and IL-15 in shaping the tumour-immune landscape of gastrointestinal malignancies, paying particular attention to promising preclinical findings, early-stage clinical research and innovative therapeutic approaches that may properly place ILs to the forefront of immunotherapy regimens.
Collapse
Affiliation(s)
| | - Jason A Carter
- Hepatopancreatobiliary Surgery, University of Washington, Seattle, Washington, USA
| | - Karan Kohli
- Hepatopancreatobiliary Surgery, University of Washington, Seattle, Washington, USA
- Flatiron Bio, Palo Alto, California, USA
| | - Venu G Pillarisetty
- Hepatopancreatobiliary Surgery, University of Washington, Seattle, Washington, USA
| |
Collapse
|
191
|
Geng Y, Liu Z, Hu R, Ma W, Wu X, Dong H, Song K, Xu X, Huang Y, Li F, Song Y, Zhang M. Opportunities and challenges: interleukin-22 comprehensively regulates polycystic ovary syndrome from metabolic and immune aspects. J Ovarian Res 2023; 16:149. [PMID: 37525285 PMCID: PMC10388558 DOI: 10.1186/s13048-023-01236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is known as a prevalent but complicated gynecologic disease throughout the reproductive period. Typically, it is characterized by phenotypic manifestations of hyperandrogenism, polycystic ovary morphology, and persistent anovulation. For now, the therapeutic modality of PCOS is still a formidable challenge. Metabolic aberrations and immune challenge of chronic low-grade inflammatory state are significant in PCOS individuals. Recently, interleukin-22 (IL-22) has been shown to be therapeutically effective in immunological dysfunction and metabolic diseases, which suggests a role in the treatment of PCOS. In this review, we outline the potential mechanisms and limitations of IL-22 therapy in PCOS-related metabolic disorders including its regulation of insulin resistance, gut barrier, systemic inflammation, and hepatic steatosis to generate insights into developing novel strategies in clinical practice.
Collapse
Affiliation(s)
- Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Wenwen Ma
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xiao Wu
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Haoxu Dong
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Kunkun Song
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xiaohu Xu
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Mingmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| |
Collapse
|
192
|
Li CX, Wang YM, Zhang WJ, Zhang S, Li JP, Zhou T, Duan JA, Guo JM. IL-10-dependent Effect of Chinese Medicine Abelmoschus manihot on Alleviating Intestinal Inflammation and Modulating Gut Microbiota. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1527-1546. [PMID: 37518098 DOI: 10.1142/s0192415x23500696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Inflammatory bowel disease (IBD) is a recurrent disease associated with a potential risk of colorectal cancer. Abelmoschus manihot (AM), a Chinese herbal medicine, is known to alleviate IBD. However, its mechanism of action requires further clarification. Here, we focused on the role of IL-10 and the gut microbiota in the mechanism of action of AM. The effects of AM on intestinal inflammation, mucus production, and gut microbes were evaluated in dextran sodium sulfate (DSS)-induced acute and chronic IBD models and in IL-10-deficient mice (IL-10[Formula: see text]). AM exhibited protective effects on acute and chronic models of IBD in wild-type mice by restoring body weight and colon length, promoting IL-10 secretion, and decreasing TNF-[Formula: see text] levels. Moreover, AM alleviated inflammatory infiltration, increased mucin 2 transcription, and increased the number of goblet cells in the colon. On the contrary, these effects were diminished in IL-10[Formula: see text] mice, which implied that the effect of AM on intestinal inflammation is IL-10-dependent. A gut microbial sequencing analysis showed that gut microbial dysbiosis was modulated by AM intervention. The regulatory effects of AM on Eggerthellaceae, Sutterellaceae, Erysipelotrichaceae, Burkholderiaceae, Desulfovibrionaceae, and Enterococcaceae were dependent on IL-10. These results revealed that AM ameliorated IBD and modulated gut microbes by promoting IL-10 secretion, indicating that AM has the potential to improve IBD and that AM is IL-10-dependent.
Collapse
Affiliation(s)
- Cheng-Xi Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Yu-Meng Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Wen-Jing Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Shu Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Jian-Ping Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Tong Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Jian-Ming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
193
|
Schultz AB, Kugler DG, Nivelo L, Vitari N, Doyle LP, Ristin S, Hennighausen L, O’Shea JJ, Jankovic D, Villarino AV. T cell intrinsic STAT1 signaling prevents aberrant Th1 responses during acute toxoplasmosis. Front Immunol 2023; 14:1212190. [PMID: 37559725 PMCID: PMC10407301 DOI: 10.3389/fimmu.2023.1212190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Infection-induced T cell responses must be properly tempered and terminated to prevent immuno-pathology. Using transgenic mice, we demonstrate that T cell intrinsic STAT1 signaling is required to curb inflammation during acute infection with Toxoplasma gondii. Specifically, we report that mice lacking STAT1 selectively in T cells expel parasites but ultimately succumb to lethal immuno-pathology characterized by aberrant Th1-type responses with reduced IL-10 and increased IL-13 production. We also find that, unlike STAT1, STAT3 is not required for induction of IL-10 or suppression of IL-13 during acute toxoplasmosis. Each of these findings was confirmed in vitro and ChIP-seq data mining showed that STAT1 and STAT3 co-localize at the Il10 locus, as well as loci encoding other transcription factors that regulate IL-10 production, most notably Maf and Irf4. These data advance basic understanding of how infection-induced T cell responses are managed to prevent immuno-pathology and provide specific insights on the anti-inflammatory properties of STAT1, highlighting its role in shaping the character of Th1-type responses.
Collapse
Affiliation(s)
- Aaron B. Schultz
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - David G. Kugler
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Luis Nivelo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Nicolas Vitari
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Laura P. Doyle
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Svetlana Ristin
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Lothar Hennighausen
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John J. O’Shea
- Lymphocyte Cell Biology Section, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dragana Jankovic
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alejandro V. Villarino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| |
Collapse
|
194
|
Zhan C, Zhou Z, Huang Y, Huang S, Lin Z, He F, Song Z. Exploration of the shared gene signatures and molecular mechanisms between periodontitis and inflammatory bowel disease: evidence from transcriptome data. Gastroenterol Rep (Oxf) 2023; 11:goad041. [PMID: 37456714 PMCID: PMC10348870 DOI: 10.1093/gastro/goad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 07/18/2023] Open
Abstract
Background Periodontitis disease (PD) is associated with a systemic disorder of inflammatory bowel disease (IBD). The immune response is the common feature of the two conditions, but the more precise mechanisms remain unclear. Methods Differential expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA) were performed on PD and Crohn's disease (CD) data sets to identify crosstalk genes linking the two diseases. The proportions of infiltrating immune cells were calculated by using Single-sample Gene Set Enrichment Analysis. In addition, a data set of isolated neutrophils from the circulation was performed via WGCNA to obtain PD-related key modules. Then, single-cell gene set enrichment scores were computed for the key module and grouped neutrophils according to score order in the IBD scRNA-seq data set. Single-cell gene enrichment analysis was used to further explore the biological process of the neutrophils. Results A total of 13 crosstalk genes (IL1B, CSF3, CXCL1, CXCL6, FPR1, FCGR3B, SELE, MMP7, PROK2, SRGN, FCN1, TDO2 and CYP24A1) were identified via DEGs analysis and WGCNA by combining PD and CD data sets. The enrichment analysis showed that these genes were involved in interleukin-10 signaling and inflammatory response. The immune infiltration analysis showed a significant difference in the proportion of neutrophils in PD and CD compared with healthy patients. Neutrophils were scored based on the expression of a periodontitis-related gene set in the scRNA-seq data set of IBD. The enrichment analysis demonstrated that inflammatory response, TNFα signaling via NF-κB and interferon-gamma response were upregulated in the high-score group, which expressed more pro-inflammatory cytokines and chemokines compared with the low-score group. Conclusions This study reveals a previously unrecognized mechanism linking periodontitis and IBD through crosstalk genes and neutrophils, which provides a theoretical framework for future research.
Collapse
Affiliation(s)
| | | | | | - Shuheng Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Feng He
- Corresponding authors. Feng He, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P. R. China. Tel: +86-20-81048181; ; Zhi Song, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56, Lingyuan West Road, Guangzhou, Guangdong 510055, P. R. China. Tel: +86-20-83861544; Fax: +86-20-83822807;
| | - Zhi Song
- Corresponding authors. Feng He, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P. R. China. Tel: +86-20-81048181; ; Zhi Song, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56, Lingyuan West Road, Guangzhou, Guangdong 510055, P. R. China. Tel: +86-20-83861544; Fax: +86-20-83822807;
| |
Collapse
|
195
|
Fu Y, Tang R, Zhao X. Engineering cytokines for cancer immunotherapy: a systematic review. Front Immunol 2023; 14:1218082. [PMID: 37483629 PMCID: PMC10357296 DOI: 10.3389/fimmu.2023.1218082] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Cytokines are pivotal mediators of cell communication in the tumor microenvironment. Multiple cytokines are involved in the host antitumor response, but the production and function of these cytokines are usually dysregulated during malignant tumor progression. Considering their clinical potential and the early successful use of cytokines in cancer immunotherapy, such as interferon alpha-2b (IFNα-2b; IntronA®) and IL-2 (Proleukin®), cytokine-based therapeutics have been extensively evaluated in many follow-up clinical trials. Following these initial breakthroughs, however, clinical translation of these natural messenger molecules has been greatly limited owing to their high-degree pleiotropic features and complex biological properties in many cell types. These characteristics, coupled with poor pharmacokinetics (a short half-life), have hampered the delivery of cytokines via systemic administration, particularly because of severe dose-limiting toxicities. New engineering approaches have been developed to widen the therapeutic window, prolong pharmacokinetic effects, enhance tumor targeting and reduce adverse effects, thereby improving therapeutic efficacy. In this review, we focus on the recent progress and competitive landscape in cytokine engineering strategies and preclinical/clinical therapeutics for cancer. In addition, aiming to promote engineered cytokine-based cancer immunotherapy, we present a profound discussion about the feasibility of recently developed methods in clinical medicine translation.
Collapse
Affiliation(s)
- Yong Fu
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Jiangsu Simcere Pharmaceutical Co, Ltd., Nanjing, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Simcere Zaiming Pharmaceutical Co, Ltd., Nanjing, China
| | - Xiaofeng Zhao
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Jiangsu Simcere Pharmaceutical Co, Ltd., Nanjing, China
| |
Collapse
|
196
|
Bierer J, Stanzel R, Henderson M, Sett S, Sapp J, Andreou P, Marshall JS, Horne D. Novel inflammatory mediator profile observed during pediatric heart surgery with cardiopulmonary bypass and continuous ultrafiltration. J Transl Med 2023; 21:439. [PMID: 37408044 DOI: 10.1186/s12967-023-04255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) is associated with systemic inflammation, featuring increased levels of circulating pro-inflammatory cytokines. Intra-operative ultrafiltration extracts fluid and inflammatory factors potentially dampening inflammation-related organ dysfunction and enhancing post-operative recovery. This study aimed to define the impact of continuous subzero-balance ultrafiltration (SBUF) on circulating levels of major inflammatory mediators. METHODS Twenty pediatric patients undergoing cardiac surgery, CPB and SBUF were prospectively enrolled. Blood samples were collected prior to CPB initiation (Pre-CPB Plasma) and immediately before weaning off CPB (End-CPB Plasma). Ultrafiltrate effluent samples were also collected at the End-CPB time-point (End-CPB Effluent). The concentrations of thirty-nine inflammatory factors were assessed and sieving coefficients were calculated. RESULTS A profound increase in inflammatory cytokines and activated complement products were noted in plasma following CBP. Twenty-two inflammatory mediators were detected in the ultrafiltrate effluent. Novel mediators removed by ultrafiltration included cytokines IL1-Ra, IL-2, IL-12, IL-17A, IL-33, TRAIL, GM-CSF, ET-1, and the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL2 and CXCL10. Mediator extraction by SBUF was significantly associated with molecular mass < 66 kDa (Chi2 statistic = 18.8, Chi2 with Yates' correction = 16.0, p < 0.0001). There was a moderate negative linear correlation between molecular mass and sieving coefficient (Spearman R = - 0.45 and p = 0.02). Notably, the anti-inflammatory cytokine IL-10 was not efficiently extracted by SBUF. CONCLUSIONS CPB is associated with a burden of circulating inflammatory mediators, and SBUF selectively extracts twenty of these pro-inflammatory factors while preserving the key anti-inflammatory regulator IL-10. Ultrafiltration could potentially function as an immunomodulatory therapy during pediatric cardiac surgery. Trial registration ClinicalTrials.gov, NCT05154864. Registered retrospectively on December 13, 2021. https://clinicaltrials.gov/ct2/show/record/NCT05154864 .
Collapse
Affiliation(s)
- Joel Bierer
- Division of Cardiac Surgery, Dalhousie University, Halifax, Canada.
| | - Roger Stanzel
- Department of Clinical Perfusion, Nova Scotia Health Authority, Halifax, Canada
| | - Mark Henderson
- Department of Clinical Perfusion, Nova Scotia Health Authority, Halifax, Canada
| | - Suvro Sett
- Division of Cardiac Surgery, Dalhousie University, Halifax, Canada
| | - John Sapp
- Division of Cardiology, Dalhousie University, Halifax, Canada
| | - Pantelis Andreou
- Department of Community Health & Epidemiology, Dalhousie University, Halifax, Canada
| | - Jean S Marshall
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
| | - David Horne
- Division of Cardiac Surgery, Dalhousie University, Halifax, Canada
| |
Collapse
|
197
|
Zhao H, Dong J, Zhang J, Wang N, Liu Z, Yan X, Wang F, Ji H, Hu S. Expression of intra-tumoral necrosis-associated cytokine pattern correlated with prognosis and immune status in glioma. Front Mol Neurosci 2023; 16:1117237. [PMID: 37465363 PMCID: PMC10352027 DOI: 10.3389/fnmol.2023.1117237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Intra-tumoral necrosis (ITN) is reported to be an independent prognostic factor in glioma. However, knowledge of ITN is mainly limited to pseudopalisadwe, while its other aspects were neglected. Therefore, a deeper understanding of ITN could be valuable for understanding its exact role in glioma. The only reliable ITN model was time-dependently achieved with the GL261 syngeneic mouse model. The ITN-associated expression pattern was enriched from RNA sequencing. TCGA glioma samples were clustered into a high-expression group (HEG) and a low-expression group (LEG) based on their pattern and their association with prognosis, clinical status, immune status, and therapeutic responsiveness were compared. Mouse glioma with ITN demonstrated invasive histology. Cytokine signaling was significantly enriched in necrotic mouse glioma compared with non-necrotic glioma tissues. Nine pro-inflammatory (IL6, PPBP, IL1A, TNFSF11, CXCL11, CXCL9, CXCL10, CXCL3, and CCL8) and two anti-inflammatory cytokine (IL1RN and IL10) genes were found to be related to ITN-associated cytokine patterns. Comparative analysis showed that HEG had a significantly shorter survival time, five differentially distributed clinical statuses, more infiltrated immune cells, greater expression of immune checkpoints, and better therapeutic responsiveness than LEG. In conclusion, the ITN-associated cytokine pattern is characteristically expressed in glioma with ITN and might indicate necrosis missed in histology diagnosis. Its expression pattern could predict the prognosis, tumor grade, immune status, and therapeutic responsiveness of glioma patients.
Collapse
Affiliation(s)
- Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiawei Dong
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiheng Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhihui Liu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiuwei Yan
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fang Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hang Ji
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
198
|
Li Y, Wang J, Xing H, Bao J. Selenium Mitigates Ammonia-Induced Neurotoxicity by Suppressing Apoptosis, Immune Imbalance, and Gut Microbiota-Driven Metabolic Disturbance in Fattening Pigs. Biol Trace Elem Res 2023; 201:3341-3355. [PMID: 36224318 PMCID: PMC9556289 DOI: 10.1007/s12011-022-03434-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
Abstract
Ammonia could be regarded as one detrimental pollutant with an acrid smell in livestock sheds. So far, the pig breeding industry became the main source of atmospheric ammonia. Previous literature demonstrated that excessive ammonia inhalation might cause a series of physiological damage to multiple organs. Unfortunately, the toxicity mechanisms of gaseous ammonia to the porcine nervous system need further research to elucidate. Selenium (Se) involves in many essential physiological processes and has a mitigative effect on the exogenous toxicant. There were scant references that corroborated whether organic Se could intervene in the underlying toxicity of ammonia to the hypothalamus. In the present study, multi-omics tools, ethology, and molecular biological techniques were performed to clarify the detailed mechanisms of relaxation effects of L-selenomethionine on ammonia poisoning. Our results showed that ammonia inhalation caused the clinical symptoms and the increment of positive apoptosis rate in the hypothalamus with the dysfunction of mitochondrial dynamics factors, while obvious mitochondria structure defects were observed. In parallel, the inflammation medium levels and gut microbes-driven metabolism function were altered to mediate the neurotoxicity in fattening pigs through the initiation of inflammation development. Interestingly, L-selenomethionine could attenuate ammonia toxicity by activating the PI3K/Akt/PPAR-γ pathway to inhibit the mitochondria-mediated apoptosis process, blocking the abnormal immune response and the accumulation of reactive oxygen species in the nucleus. Meanwhile, Se could enhance the production performance of fattening sows. Taken together, our study verified the novel hypothesis for the toxicity identification of aerial ammonia and provided a therapeutic strategy for the treatment of occupational poisoning.
Collapse
Affiliation(s)
- Yutao Li
- College of Life Science, Northeast Normal University, Changchun, 130117, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China.
| | - Jun Bao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China.
| |
Collapse
|
199
|
Guo C, Liu W, Liu Z, Cai J, Yu X, Wang H, Li X, Zuo D, Jiang X, Zhang B, Liu J, Sanyal AJ, Puri P, Zhou H, Wang XY. Scavenger receptor a is a major homeostatic regulator that restrains drug-induced liver injury. Hepatology 2023; 78:45-57. [PMID: 36632993 PMCID: PMC10410742 DOI: 10.1097/hep.0000000000000044] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/11/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIM Drug-induced liver injury occurs frequently and can be life threatening. Although drug-induced liver injury is mainly caused by the direct drug cytotoxicity, increasing evidence suggests that the interplay between hepatocytes and immune cells can define this pathogenic process. Here, we interrogate the role of the pattern recognition scavenger receptor A (SRA) for regulating hepatic inflammation and drug-induced liver injury. APPROACH AND RESULTS Using acetaminophen (APAP) or halothane-induced liver injury models, we showed that SRA loss renders mice highly susceptible to drug hepatotoxicity, indicated by the increased mortality and liver pathology. Mechanistic studies revealed that APAP-induced liver injury exaggerated in the absence of SRA was associated with the decreased anti-inflammatory and prosurvival cytokine IL-10 concomitant with excessive hepatic inflammation. The similar correlation between SRA and IL-10 expression was also seen in human following APAP uptake. Bone marrow reconstitution and liposomal clodronate depletion studies established that the hepatoprotective activity of SRA mostly resized in the immune sentinel KCs. Furthermore, SRA-facilitated IL-10 production by KCs in response to injured hepatocytes mitigated activation of the Jun N-terminal kinase-mediated signaling pathway in hepatocytes. In addition, supplemental use of IL-10 with N -acetylcysteine, only approved treatment of APAP overdose, conferred mice improved protection from APAP-induced liver injury. CONCLUSION We identify a novel hepatocyte-extrinsic pathway governed by the immune receptor SRA that maintains liver homeostasis upon drug insult. Giving that drug (ie, APAP) overdose is the leading cause of acute liver failure, targeting this hepatoprotective SRA-IL-10 axis may provide new opportunities to optimize the current management of drug-induced liver injury.
Collapse
Affiliation(s)
- Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Wenjie Liu
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Zheng Liu
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jinyang Cai
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Xiaofei Yu
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Hongxia Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Xia Li
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xixian Jiang
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Bei Zhang
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Arun J. Sanyal
- Division of Gastroenterology, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Puneet Puri
- Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| |
Collapse
|
200
|
Gronke K, Nguyen M, Santamaria N, Schumacher J, Yang Y, Sonnert N, Leopold S, Martin AL, Hallet R, Richter K, Schubert DA, Daniel GM, Dylus D, Forkel M, Vieira SM, Schwinge D, Schramm C, Lassen KG, Piali L, Palm NW, Bieniossek C, Kriegel MA. Human Th17- and IgG3-associated autoimmunity induced by a translocating gut pathobiont. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.546430. [PMID: 37425769 PMCID: PMC10327010 DOI: 10.1101/2023.06.29.546430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Extraintestinal autoimmune diseases are multifactorial with translocating gut pathobionts implicated as instigators and perpetuators in mice. However, the microbial contributions to autoimmunity in humans remain largely unclear, including whether specific pathological human adaptive immune responses are triggered by such pathobionts. We show here that the translocating pathobiont Enterococcus gallinarum induces human IFNγ + Th17 differentiation and IgG3 subclass switch of anti- E. gallinarum RNA and correlating anti-human RNA autoantibody responses in patients with systemic lupus erythematosus and autoimmune hepatitis. Human Th17 induction by E. gallinarum is cell-contact dependent and involves TLR8-mediated human monocyte activation. In murine gnotobiotic lupus models, E. gallinarum translocation triggers IgG3 anti-RNA autoantibody titers that correlate with renal autoimmune pathophysiology and with disease activity in patients. Overall, we define cellular mechanisms of how a translocating pathobiont induces human T- and B-cell-dependent autoimmune responses, providing a framework for developing host- and microbiota-derived biomarkers and targeted therapies in extraintestinal autoimmune diseases. One Sentence Summary Translocating pathobiont Enterococcus gallinarum promotes human Th17 and IgG3 autoantibody responses linked to disease activity in autoimmune patients.
Collapse
|