151
|
Li Y, Zhang J, Sun H, Yu X, Chen Y, Ma C, Zheng X, Zhang L, Zhao X, Jiang Y, Xin W, Wang S, Hu J, Wang M, Zhu D. RPS4XL encoded by lnc-Rps4l inhibits hypoxia-induced pyroptosis by binding HSC70 glycosylation site. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:920-934. [PMID: 35757299 PMCID: PMC9185019 DOI: 10.1016/j.omtn.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 05/18/2022] [Indexed: 10/25/2022]
|
152
|
Shi J, Tang Y, Liang F, Liu L, Liang N, Yang X, Zhang N, Yi Z, Zhong Y, Wang W, Zhao K. NLRP3 inflammasome contributes to endotoxin-induced coagulation. Thromb Res 2022; 214:8-15. [PMID: 35421682 DOI: 10.1016/j.thromres.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
|
153
|
Chen X, Tian PC, Wang K, Wang M, Wang K. Pyroptosis: Role and Mechanisms in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:897815. [PMID: 35647057 PMCID: PMC9130572 DOI: 10.3389/fcvm.2022.897815] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular disease (CVD) is a common disease that poses a huge threat to human health. Irreversible cardiac damage due to cardiomyocyte death and lack of regenerative capacity under stressful conditions, ultimately leading to impaired cardiac function, is the leading cause of death worldwide. The regulation of cardiomyocyte death plays a crucial role in CVD. Previous studies have shown that the modes of cardiomyocyte death include apoptosis and necrosis. However, another new form of death, pyroptosis, plays an important role in CVD pathogenesis. Pyroptosis induces the amplification of inflammatory response, increases myocardial infarct size, and accelerates the occurrence of cardiovascular disease, and the control of cardiomyocyte pyroptosis holds great promise for the treatment of cardiovascular disease. In this paper, we summarized the characteristics, occurrence and regulation mechanism of pyroptosis are reviewed, and also discussed its role and mechanisms in CVD, such as atherosclerosis (AS), myocardial infarction (MI), arrhythmia and cardiac hypertrophy.
Collapse
Affiliation(s)
- Xinzhe Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peng-Chao Tian
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Man Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
154
|
Yuan F, Cai J, Wu J, Tang Y, Zhao K, Liang F, Li F, Yang X, He Z, Billiar TR, Wang H, Su L, Lu B. Z-DNA binding protein 1 promotes heatstroke-induced cell death. Science 2022; 376:609-615. [PMID: 35511979 DOI: 10.1126/science.abg5251] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heatstroke is a heat stress-induced, life-threatening condition associated with circulatory failure and multiple organ dysfunctions. If global warming continues, heatstroke might become a more prominent cause of mortality worldwide, but its pathogenic mechanism is not well understood. We found that Z-DNA binding protein 1 (ZBP1), a Z-nucleic acid receptor, mediated heatstroke by triggering receptor-interacting protein kinase 3 (RIPK3)-dependent cell death. Heat stress increased the expression of ZBP1 through heat shock transcription factor 1 (HSF1) and activated ZBP1 through a mechanism independent of the nucleic acid sensing action. Deletion of ZBP1, RIPK3, or both mixed lineage kinase domain-like (MLKL) and caspase-8 decreased heat stress-induced circulatory failure, organ injury, and lethality. Thus, ZBP1 appears to have a second function that orchestrates host responses to heat stress.
Collapse
Affiliation(s)
- Fangfang Yuan
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, P.R. China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410000, P.R. China
| | - Jizhen Cai
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, P.R. China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410000, P.R. China
| | - Jianfeng Wu
- Laboratory Animal Research Center, Xiamen University, Xiamen 361102, P.R. China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361000, P.R. China
| | - Yiting Tang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410000, P.R. China
| | - Kai Zhao
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, P.R. China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410000, P.R. China
| | - Fang Liang
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, P.R. China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410000, P.R. China
| | - Fanglin Li
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, P.R. China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410000, P.R. China
| | - Xinyu Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410000, P.R. China
| | - Zhihui He
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, P.R. China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410000, P.R. China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Haichao Wang
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Lei Su
- Department of Intensive Care Unit, General Hospital of Guangzhou Command, Guangzhou 510000, P.R. China
| | - Ben Lu
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, P.R. China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410000, P.R. China
| |
Collapse
|
155
|
Vasudevan SO, Russo AJ, Kumari P, Vanaja SK, Rathinam VA. A TLR4-independent critical role for CD14 in intracellular LPS sensing. Cell Rep 2022; 39:110755. [PMID: 35508125 PMCID: PMC9376664 DOI: 10.1016/j.celrep.2022.110755] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Intracellular lipopolysaccharide (LPS) sensing by the noncanonical inflammasome comprising caspase-4 or −11 governs antibacterial host defense. How LPS gains intracellular access in vivo is largely unknown. Here, we show that CD14—an LPS-binding protein with a well-documented role in TLR4 activation—plays a vital role in intracellular LPS sensing in vivo. By generating Cd14−/− and Casp11−/− mice strains on a Tlr4−/− background, we dissociate CD14’s known role in TLR4 signaling from its role in caspase-11 activation and show a TLR4-independent role for CD14 in GSDMD activation, pyroptosis, alarmin release, and the lethality driven by cytosolic LPS. Mechanistically, CD14 enables caspase-11 activation by mediating cytosolic localization of LPS in a TLR4-independent manner. Overall, our findings attribute a critical role for CD14 in noncanonical inflammasome sensing of LPS in vivo and establish—together with previous literature—CD14 as an essential proximal component of both TLR4-based extracellular and caspase-11-based intracellular LPS surveillance. How LPS attains cytosolic access in vivo is unclear. Vasudevan et al. define a TLR4-independent role for CD14 in the cytosolic localization of LPS, triggering noncanonical inflammasome activation and pyroptosis in vivo. This finding positions CD14 as an integral component of both extracellular and intracellular LPS surveillance pathways.
Collapse
Affiliation(s)
- Swathy O Vasudevan
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Ashley J Russo
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Puja Kumari
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Sivapriya Kailasan Vanaja
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
156
|
Ou Q, Tan L, Shao Y, Lei F, Huang W, Yang N, Qu Y, Cao Z, Niu L, Liu Y, Kou X, Shi S. Electrostatic Charge-Mediated Apoptotic Vesicle Biodistribution Attenuates Sepsis by Switching Neutrophil NETosis to Apoptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200306. [PMID: 35481721 DOI: 10.1002/smll.202200306] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/08/2022] [Indexed: 05/16/2023]
Abstract
Mesenchymal stem cell (MSC) therapy can attenuate organ damage and reduce mortality in sepsis; however, the detailed mechanism is not fully elucidated. In this study, it is shown that MSC-derived apoptotic vesicles (apoVs) can ameliorate multiple organ dysfunction and improve survival in septic mice. Mechanistically, it is found that tail vein-infused apoVs mainly accumulate in the bone marrow of septic mice via electrostatic charge interactions with positively charged neutrophil extracellular traps (NETs). Moreover, apoVs switch neutrophils NETosis to apoptosis via the apoV-Fas ligand (FasL)-activated Fas pathway. In summary, these findings uncover a previously unknown role of apoVs in sepsis treatment and an electrostatic charge-directed target therapeutic mechanism, suggesting that cell death is associated with disease development and therapy.
Collapse
Affiliation(s)
- Qianmin Ou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Lingping Tan
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Yiting Shao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Fangcao Lei
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Weiying Huang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, 110122, P. R. China
| | - Yan Qu
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Zeyuan Cao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Luhan Niu
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, 110122, P. R. China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| |
Collapse
|
157
|
Abstract
Oxidized phospholipids that result from tissue injury operate as immunomodulatory signals that, depending on the context, lead to proinflammatory or anti-inflammatory responses. In this Perspective, we posit that cells of the innate immune system use the presence of oxidized lipids as a generic indicator of threat to the host. Similarly to how pathogen-associated molecular patterns represent general indicators of microbial encounters, oxidized lipids may be the most common molecular feature of an injured tissue. Therefore, microbial detection in the absence of oxidized lipids may indicate encounters with avirulent microorganisms. By contrast, microbial detection and detection of oxidized lipids would indicate encounters with replicating microorganisms, thereby inducing a heightened inflammatory and defensive response. Here we review recent studies supporting this idea. We focus on the biology of oxidized phosphocholines, which have emerged as context-dependent regulators of immunity. We highlight emerging functions of oxidized phosphocholines in dendritic cells and macrophages that drive unique inflammasome and migratory activities and hypermetabolic states. We describe how these lipids hyperactivate dendritic cells to stimulate antitumour CD8+ T cell immunity and discuss the potential implications of the newly described activities of oxidized phosphocholines in host defence.
Collapse
Affiliation(s)
- Dania Zhivaki
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
158
|
Reprogramming of Cell Death Pathways by Bacterial Effectors as a Widespread Virulence Strategy. Infect Immun 2022; 90:e0061421. [PMID: 35467397 DOI: 10.1128/iai.00614-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The modulation of programmed cell death (PCD) processes during bacterial infections is an evolving arms race between pathogens and their hosts. The initiation of apoptosis, necroptosis, and pyroptosis pathways are essential to immunity against many intracellular and extracellular bacteria. These cellular self-destructive mechanisms are used by the infected host to restrict and eliminate bacterial pathogens. Without a tight regulatory control, host cell death can become a double-edged sword. Inflammatory PCDs contribute to an effective immune response against pathogens, but unregulated inflammation aggravates the damage caused by bacterial infections. Thus, fine-tuning of these pathways is required to resolve infection while preserving the host immune homeostasis. In turn, bacterial pathogens have evolved secreted virulence factors or effector proteins that manipulate PCD pathways to promote infection. In this review, we discuss the importance of controlled cell death in immunity to bacterial infection. We also detail the mechanisms employed by type 3 secreted bacterial effectors to bypass these pathways and their importance in bacterial pathogenesis.
Collapse
|
159
|
Pilard M, Ollivier EL, Gourdou-Latyszenok V, Couturaud F, Lemarié CA. Endothelial Cell Phenotype, a Major Determinant of Venous Thrombo-Inflammation. Front Cardiovasc Med 2022; 9:864735. [PMID: 35528838 PMCID: PMC9068971 DOI: 10.3389/fcvm.2022.864735] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
Reduced blood flow velocity in the vein triggers inflammation and is associated with the release into the extracellular space of alarmins or damage-associated molecular patterns (DAMPs). These molecules include extracellular nucleic acids, extracellular purinergic nucleotides (ATP, ADP), cytokines and extracellular HMGB1. They are recognized as a danger signal by immune cells, platelets and endothelial cells. Hence, endothelial cells are capable of sensing environmental cues through a wide variety of receptors expressed at the plasma membrane. The endothelium is then responding by expressing pro-coagulant proteins, including tissue factor, and inflammatory molecules such as cytokines and chemokines involved in the recruitment and activation of platelets and leukocytes. This ultimately leads to thrombosis, which is an active pro-inflammatory process, tightly regulated, that needs to be properly resolved to avoid further vascular damages. These mechanisms are often dysregulated, which promote fibrinolysis defects, activation of the immune system and irreversible vascular damages further contributing to thrombotic and inflammatory processes. The concept of thrombo-inflammation is now widely used to describe the complex interactions between the coagulation and inflammation in various cardiovascular diseases. In endothelial cells, activating signals converge to multiple intracellular pathways leading to phenotypical changes turning them into inflammatory-like cells. Accumulating evidence suggest that endothelial to mesenchymal transition (EndMT) may be a major mechanism of endothelial dysfunction induced during inflammation and thrombosis. EndMT is a biological process where endothelial cells lose their endothelial characteristics and acquire mesenchymal markers and functions. Endothelial dysfunction might play a central role in orchestrating and amplifying thrombo-inflammation thought induction of EndMT processes. Mechanisms regulating endothelial dysfunction have been only partially uncovered in the context of thrombotic diseases. In the present review, we focus on the importance of the endothelial phenotype and discuss how endothelial plasticity may regulate the interplay between thrombosis and inflammation. We discuss how the endothelial cells are sensing and responding to environmental cues and contribute to thrombo-inflammation with a particular focus on venous thromboembolism (VTE). A better understanding of the precise mechanisms involved and the specific role of endothelial cells is needed to characterize VTE incidence and address the risk of recurrent VTE and its sequelae.
Collapse
|
160
|
Demarco B, Danielli S, Fischer FA, Bezbradica JS. How Pyroptosis Contributes to Inflammation and Fibroblast-Macrophage Cross-Talk in Rheumatoid Arthritis. Cells 2022; 11:1307. [PMID: 35455985 PMCID: PMC9028325 DOI: 10.3390/cells11081307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
About thirty years ago, a new form of pro-inflammatory lytic cell death was observed and termed pyroptosis. Only in 2015, gasdermins were defined as molecules that create pores at the plasma membrane and drive pyroptosis. Today, we know that gasdermin-mediated death is an important antimicrobial defence mechanism in bacteria, yeast and mammals as it destroys the intracellular niche for pathogen replication. However, excessive and uncontrolled cell death also contributes to immunopathology in several chronic inflammatory diseases, including arthritis. In this review, we discuss recent findings where pyroptosis contributes to tissue damage and inflammation with a main focus on injury-induced and autoimmune arthritis. We also review novel functions and regulatory mechanisms of the pyroptotic executors gasdermins. Finally, we discuss possible models of how pyroptosis may contribute to the cross-talk between fibroblast and macrophages, and also how this cross-talk may regulate inflammation by modulating inflammasome activation and pyroptosis induction.
Collapse
Affiliation(s)
- Benjamin Demarco
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (S.D.); (F.A.F.)
| | | | | | - Jelena S. Bezbradica
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (S.D.); (F.A.F.)
| |
Collapse
|
161
|
Díaz-García E, García-Tovar S, Alfaro E, Jaureguizar A, Casitas R, Sánchez-Sánchez B, Zamarrón E, Fernández-Lahera J, López-Collazo E, Cubillos-Zapata C, García-Río F. Inflammasome Activation: A Keystone of Proinflammatory Response in Obstructive Sleep Apnea. Am J Respir Crit Care Med 2022; 205:1337-1348. [PMID: 35363597 DOI: 10.1164/rccm.202106-1445oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE As the mechanism that links obstructive sleep apnea (OSA) with the regulation of inflammatory response is not well known, it is important to understand the inflammasome activation, mainly of nucleotide-binding oligomerization domain-like receptor 3 (NLRP3). OBJECTIVES To assess the NLRP3 activity in severe OSA patients and to identify its role in the systemic inflammatory response of OSA patients. METHODS We analyzed the NLRP3 activity as well as key components of the inflammasome cascade, such as adaptor molecule apoptosis-associated speck-like protein (ASC), caspase-1, Gasdermin D (GSDMD), interleukin (IL)-1β, IL-18 and tissue factor (TF), in monocytes and plasma from patients with severe OSA and non-apneic healthy subjects. We explored the association of the different key markers with inflammatory comorbidities. MAIN RESULTS Monocytes from patients with severe OSA presented higher NLRP3 activity than those from non-apneic control subjects, which directly correlated with the apnea-hypopnea index and hypoxemic indices. NLRP3 over-activity triggered inflammatory cytokines (Il-1β and IL-18) via caspase-1 and increased Gasdermin D, allowing for tissue factor to be released. In vitro models confirmed that monocytes increase NLRP3 signaling under intermittent hypoxia (IH) in an HIF-1α-dependent manner, and/or in combination with plasma from OSA patients. Plasma levels of TF were higher in OSA patients with systemic inflammatory comorbidities than in those without them. CONCLUSIONS In severe OSA patients, NLRP3 activation might be a linking mechanism between intermittent hypoxia and other OSA-induced immediate changes with the development of systemic inflammatory response.
Collapse
Affiliation(s)
- Elena Díaz-García
- Hospital Universitario La Paz-IdiPAZ, Grupo de Enfermedades Respiratorias, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | | | - Ana Jaureguizar
- Hospital Universitario La Paz-IdiPAZ, Respiratory Diseases Research Group.Servicio de Neumología, Madrid, Spain
| | | | - Begoña Sánchez-Sánchez
- Hospital Universitario La Paz-IdiPAZ, Respiratory Diseases Research Group.Servicio de Neumología, Madrid, Spain
| | - Ester Zamarrón
- Hospital Universitario La Paz-IdiPAZ, Servicio de Neumología, Madrid, Spain
| | | | - Eduardo López-Collazo
- IdiPAZ, La PAZ Hospital , Innate Immune Response and Laboratory of TumorImmunology, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Hospital Universitario La Paz-IdiPAZ, Grupo de Enfermedades Respiratorias, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Francisco García-Río
- Hospital Universitario La Paz, IdiPAZ, Servicio de Neumología, Madrid, Spain.,Centro de Investigación Integrada en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Universidad Autónoma de Madrid, Medicina, Madrid, Spain;
| |
Collapse
|
162
|
Immunothrombosis and the molecular control of tissue factor by pyroptosis: prospects for new anticoagulants. Biochem J 2022; 479:731-750. [PMID: 35344028 DOI: 10.1042/bcj20210522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
The interplay between innate immunity and coagulation after infection or injury, termed immunothrombosis, is the primary cause of disseminated intravascular coagulation (DIC), a condition that occurs in sepsis. Thrombosis associated with DIC is the leading cause of death worldwide. Interest in immunothrombosis has grown because of COVID-19, the respiratory disease caused by SARS-CoV-2, which has been termed a syndrome of dysregulated immunothrombosis. As the relatively new field of immunothrombosis expands at a rapid pace, the focus of academic and pharmacological research has shifted from generating treatments targeted at the traditional 'waterfall' model of coagulation to therapies better directed towards immune components that drive coagulopathies. Immunothrombosis can be initiated in macrophages by cleavage of the non-canonical inflammasome which contains caspase-11. This leads to release of tissue factor (TF), a membrane glycoprotein receptor that forms a high-affinity complex with coagulation factor VII/VIIa to proteolytically activate factors IX to IXa and X to Xa, generating thrombin and leading to fibrin formation and platelet activation. The mechanism involves the post-translational activation of TF, termed decryption, and release of decrypted TF via caspase-11-mediated pyroptosis. During aberrant immunothrombosis, decryption of TF leads to thromboinflammation, sepsis, and DIC. Therefore, developing therapies to target pyroptosis have emerged as an attractive concept to counteract dysregulated immunothrombosis. In this review, we detail the three mechanisms of TF control: concurrent induction of TF, caspase-11, and NLRP3 (signal 1); TF decryption, which increases its procoagulant activity (signal 2); and accelerated release of TF into the intravascular space via pyroptosis (signal 3). In this way, decryption of TF is analogous to the two signals of NLRP3 inflammasome activation, whereby induction of pro-IL-1β and NLRP3 (signal 1) is followed by activation of NLRP3 (signal 2). We describe in detail TF decryption, which involves pathogen-induced alterations in the composition of the plasma membrane and modification of key cysteines on TF, particularly at the location of the critical, allosterically regulated disulfide bond of TF in its 219-residue extracellular domain. In addition, we speculate towards the importance of identifying new therapeutics to block immunothrombotic triggering of TF, which can involve inhibition of pyroptosis to limit TF release, or the direct targeting of TF decryption using cysteine-modifying therapeutics.
Collapse
|
163
|
Popescu NI, Lupu C, Lupu F. Disseminated intravascular coagulation and its immune mechanisms. Blood 2022; 139:1973-1986. [PMID: 34428280 PMCID: PMC8972096 DOI: 10.1182/blood.2020007208] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022] Open
Abstract
Disseminated intravascular coagulation (DIC) is a syndrome triggered by infectious and noninfectious pathologies characterized by excessive generation of thrombin within the vasculature and widespread proteolytic conversion of fibrinogen. Despite diverse clinical manifestations ranging from thrombo-occlusive damage to bleeding diathesis, DIC etiology commonly involves excessive activation of blood coagulation and overlapping dysregulation of anticoagulants and fibrinolysis. Initiation of blood coagulation follows intravascular expression of tissue factor or activation of the contact pathway in response to pathogen-associated or host-derived, damage-associated molecular patterns. The process is further amplified through inflammatory and immunothrombotic mechanisms. Consumption of anticoagulants and disruption of endothelial homeostasis lower the regulatory control and disseminate microvascular thrombosis. Clinical DIC development in patients is associated with worsening morbidities and increased mortality, regardless of the underlying pathology; therefore, timely recognition of DIC is critical for reducing the pathologic burden. Due to the diversity of triggers and pathogenic mechanisms leading to DIC, diagnosis is based on algorithms that quantify hemostatic imbalance, thrombocytopenia, and fibrinogen conversion. Because current diagnosis primarily assesses overt consumptive coagulopathies, there is a critical need for better recognition of nonovert DIC and/or pre-DIC states. Therapeutic strategies for patients with DIC involve resolution of the eliciting triggers and supportive care for the hemostatic imbalance. Despite medical care, mortality in patients with DIC remains high, and new strategies, tailored to the underlying pathologic mechanisms, are needed.
Collapse
Affiliation(s)
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
- Department of Cell Biology
- Department of Pathology, and
- Department of Internal Medicine, Oklahoma University Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
164
|
Shen L, Li Y, Li N, Zhao Y, Zhou Q, Shen L, Li Z. Integrative analysis reveals the functional implications and clinical relevance of pyroptosis in low-grade glioma. Sci Rep 2022; 12:4527. [PMID: 35296768 PMCID: PMC8925295 DOI: 10.1038/s41598-022-08619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Using the Chinese Glioma Genome Atlas (training dataset) and The Cancer Genome Atlas (validation dataset), we found that low-grade gliomas can be divided into two molecular subclasses based on 30 pyroptosis genes. Cluster 1 presented higher immune cell and immune function scores and poorer prognosis than Cluster 2. We established a prognostic model based on 10 pyroptosis genes; the model could predict overall survival in glioma and was well validated in an independent dataset. The high-risk group had relatively higher immune cell and immune function scores and lower DNA methylation levels in pyroptosis genes than the low-risk group. There were no marked differences in pyroptosis gene alterations between the high- and low-risk groups. The competing endogenous RNA (ceRNA) regulatory network uncovered the lncRNA-miRNA-mRNA regulation patterns of the different risk groups in low-grade glioma. Five pairs of target genes and drugs were identified. In vitro, CASP8 silencing inhibited the migration and invasion of glioma cells. The expression of pyroptosis genes can reflect the molecular biological and clinical features of low-grade glioma subclasses. The developed prognostic model can predict overall survival and distinguish molecular alterations in patients. Our integrated analyses could provide valuable guidelines for improving risk management and therapy for low-grade glioma patients.
Collapse
Affiliation(s)
- Lin Shen
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Yanyan Li
- Department of Nursing, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Yajie Zhao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Qin Zhou
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
165
|
Friedrich B, Lyer S, Janko C, Unterweger H, Brox R, Cunningham S, Dutz S, Taccardi N, Bikker FJ, Hurle K, Sebald H, Lenz M, Spiecker E, Fester L, Hackstein H, Strauß R, Boccaccini AR, Bogdan C, Alexiou C, Tietze R. Scavenging of bacteria or bacterial products by magnetic particles functionalized with a broad-spectrum pathogen recognition receptor motif offers diagnostic and therapeutic applications. Acta Biomater 2022; 141:418-428. [PMID: 34999260 DOI: 10.1016/j.actbio.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
Sepsis is a dysregulated host response of severe bloodstream infections, and given its frequency of occurrence and high mortality rate, therapeutic improvements are imperative. A reliable biomimetic strategy for the targeting and separation of bacterial pathogens in bloodstream infections involves the use of the broad-spectrum binding motif of human GP-340, a pattern-recognition receptor of the scavenger receptor cysteine rich (SRCR) superfamily that is expressed on epithelial surfaces but not found in blood. Here we show that these peptides, when conjugated to superparamagnetic iron oxide nanoparticles (SPIONs), can separate various bacterial endotoxins and intact microbes (E. coli, S. aureus, P. aeruginosa and S. marcescens) with high efficiency, especially at low and thus clinically relevant concentrations. This is accompanied by a subsequent strong depletion in cytokine release (TNF, IL-6, IL-1β, Il-10 and IFN-γ), which could have a direct therapeutic impact since escalating immune responses complicates severe bloodstream infections and sepsis courses. SPIONs are coated with aminoalkylsilane and capture peptides are orthogonally ligated to this surface. The particles behave fully cyto- and hemocompatible and do not interfere with host structures. Thus, this approach additionally aims to dramatically reduce diagnostic times for patients with suspected bloodstream infections and accelerate targeted antibiotic therapy. STATEMENT OF SIGNIFICANCE: Sepsis is often associated with excessive release of cytokines. This aspect and slow diagnostic procedures are the major therapeutic obstacles. The use of magnetic particles conjugated with small peptides derived from the binding motif of a broad-spectrum mucosal pathogen recognition protein GP-340 provides a highly efficient scavenging platform. These peptides are not found in blood and therefore are not subject to inhibitory mechanisms like in other concepts (mannose binding lectine, aptamers, antibodies). In this work, data are shown on the broad bacterial binding spectrum, highly efficient toxin depletion, which directly reduces the release of cytokines. Host cells are not affected and antibiotics not adsorbed. The particle bound microbes can be recultured without restriction and thus be used directly for diagnostics.
Collapse
Affiliation(s)
- Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Regine Brox
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Germany
| | - Nicola Taccardi
- Institute of Chemical Reaction Engineering, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), the Netherlands
| | - Katrin Hurle
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Heidi Sebald
- Immunologie und Hygiene, Mikrobiologisches Institut - Klinische Mikrobiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Malte Lenz
- Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Interdisciplinary Center for Nanostructure Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Interdisciplinary Center for Nanostructure Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Lars Fester
- Institute of Anatomy and Cell Biology Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Richard Strauß
- Department of Medicine 1, Universitätsklinikum Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Christian Bogdan
- Immunologie und Hygiene, Mikrobiologisches Institut - Klinische Mikrobiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany.
| |
Collapse
|
166
|
Cai Z, Yuan S, Luan X, Feng J, Deng L, Zuo Y, Li J. Pyroptosis-Related Inflammasome Pathway: A New Therapeutic Target for Diabetic Cardiomyopathy. Front Pharmacol 2022; 13:842313. [PMID: 35355717 PMCID: PMC8959892 DOI: 10.3389/fphar.2022.842313] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pyroptosis is a highly specific type of inflammatory programmed cell death that is mediated by Gasdermine (GSDM). It is characterized by inflammasome activation, caspase activation, and cell membrane pore formation. Diabetic cardiomyopathy (DCM) is one of the leading diabetic complications and is a critical cause of fatalities in chronic diabetic patients, it is defined as a clinical condition of abnormal myocardial structure and performance in diabetic patients without other cardiac risk factors, such as hypertension, significant valvular disease, etc. There are no specific drugs in treating DCM despite decades of basic and clinical investigations. Although the relationship between DCM and pyroptosis is not well established yet, current studies provided the impetus for us to clarify the significance of pyroptosis in DCM. In this review, we summarize the recent literature addressing the role of pyroptosis and the inflammasome in the development of DCM and summary the potential use of approaches targeting this pathway which may be future anti-DCM strategies.
Collapse
Affiliation(s)
- Zhengyao Cai
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Suxin Yuan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Feng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
- *Correspondence: Jian Feng,
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yumei Zuo
- Department of outpatient, The 13th Retired Cadre Recuperation Clinic Of Chengdu, Institute of Cardiovascular Research, Chengdu, China
| | - Jiafu Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| |
Collapse
|
167
|
Pharmacologically targeting inflammation and improving cerebrospinal fluid circulation improves outcome after subarachnoid haemorrhage. EBioMedicine 2022; 77:103937. [PMID: 35290830 PMCID: PMC8921540 DOI: 10.1016/j.ebiom.2022.103937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
|
168
|
Ryder CB, Kondolf HC, O’Keefe ME, Zhou B, Abbott DW. Chemical Modulation of Gasdermin-Mediated Pyroptosis and Therapeutic Potential. J Mol Biol 2022; 434:167183. [PMID: 34358546 PMCID: PMC8810912 DOI: 10.1016/j.jmb.2021.167183] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Pyroptosis, a lytic form of programmed cell death, both stimulates effective immune responses and causes tissue damage. Gasdermin (GSDM) proteins are a family of pore-forming executors of pyroptosis. While the most-studied member, GSDMD, exerts critical functions in inflammasome biology, emerging evidence demonstrates potential broad relevance for GSDM-mediated pyroptosis across diverse pathologies. In this review, we describe GSDM biology, outline conditions where inflammasomes and GSDM-mediated pyroptosis represent rational therapeutic targets, and delineate strategies to manipulate these central immunologic processes for the treatment of human disease.
Collapse
Affiliation(s)
- Christopher B. Ryder
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA 44106,Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA 44106
| | - Hannah C. Kondolf
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA 44106
| | - Meghan E. O’Keefe
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA 44106
| | - Bowen Zhou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA 44106
| | - Derek W. Abbott
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA 44106,Corresponding author: ()
| |
Collapse
|
169
|
Mechanisms and Consequences of Noncanonical Inflammasome-Mediated Pyroptosis. J Mol Biol 2022; 434:167245. [PMID: 34537239 PMCID: PMC8844060 DOI: 10.1016/j.jmb.2021.167245] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
The noncanonical inflammasome, comprising inflammatory caspases 4, 5, or 11, monitors the cytosol for bacterial lipopolysaccharide (LPS). Intracellular LPS-elicited autoproteolysis of these inflammatory caspases leads to the cleavage of the pore-forming protein gasdermin D (GSDMD). GSDMD pore formation induces a lytic form of cell death known as pyroptosis and the release of inflammatory cytokines and DAMPs, thereby promoting inflammation. The noncanonical inflammasome-dependent innate sensing of cytosolic LPS plays important roles in bacterial infections and sepsis pathogenesis. Exciting studies in the recent past have significantly furthered our understanding of the biochemical and structural basis of the caspase-4/11 activation of GSDMD, caspase-4/11's substrate specificity, and the biological consequences of noncanonical inflammasome activation of GSDMD. This review will discuss these recent advances and highlight the remaining gaps in our understanding of the noncanonical inflammasome and pyroptosis.
Collapse
|
170
|
Beltrán-García J, Osca-Verdegal R, Jávega B, Herrera G, O’Connor JE, García-López E, Casabó-Vallés G, Rodriguez-Gimillo M, Ferreres J, Carbonell N, Pallardó FV, García-Giménez JL. Characterization of Early Peripheral Immune Responses in Patients with Sepsis and Septic Shock. Biomedicines 2022; 10:525. [PMID: 35327327 PMCID: PMC8945007 DOI: 10.3390/biomedicines10030525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Sepsis is a life-threatening condition caused by an abnormal host response to infection that produces altered physiological responses causing tissue damage and can result in organ dysfunction and, in some cases, death. Although sepsis is characterized by a malfunction of the immune system leading to an altered immune response and immunosuppression, the high complexity of the pathophysiology of sepsis requires further investigation to characterize the immune response in sepsis and septic shock. (2) Methods: This study analyzes the immune-related responses occurring during the early stages of sepsis by comparing the amounts of cytokines, immune modulators and other endothelial mediators of a control group and three types of severe patients: critically ill non-septic patients, septic and septic shock patients. (3) Results: We showed that in the early stages of sepsis the innate immune system attempts to counteract infection, probably via neutrophils. Conversely, the adaptive immune system is not yet fully activated, either in septic or in septic shock patients. In addition, immunosuppressive responses and pro-coagulation signals are active in patients with septic shock. (4) Conclusions: The highest levels of IL-6 and pyroptosis-related cytokines (IL-18 and IL-1α) were found in septic shock patients, which correlated with D-dimer. Moreover, endothelial function may be affected as shown by the overexpression of adhesion molecules such as s-ICAM1 and E-Selectin during septic shock.
Collapse
Affiliation(s)
- Jesús Beltrán-García
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Rebeca Osca-Verdegal
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, University of Valencia, 46010 Valencia, Spain; (B.J.); (J.-E.O.)
| | - Guadalupe Herrera
- Flow Cytometry Unit, IIS INCLIVA, Fundación Investigación Hospital Clínico Valencia, 46010 Valencia, Spain;
| | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, University of Valencia, 46010 Valencia, Spain; (B.J.); (J.-E.O.)
| | - Eva García-López
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, 46980 Paterna, Spain;
| | - Germán Casabó-Vallés
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, 46980 Paterna, Spain;
| | - María Rodriguez-Gimillo
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Intensive Care Unit, Clinical University Hospital of Valencia (HCUV), 46010 Valencia, Spain
| | - José Ferreres
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Intensive Care Unit, Clinical University Hospital of Valencia (HCUV), 46010 Valencia, Spain
| | - Nieves Carbonell
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Intensive Care Unit, Clinical University Hospital of Valencia (HCUV), 46010 Valencia, Spain
| | - Federico V. Pallardó
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
171
|
Wu R, Kang R, Tang D. Mitochondrial ACOD1/IRG1 in infection and sterile inflammation. JOURNAL OF INTENSIVE MEDICINE 2022; 2:78-88. [PMID: 36789185 PMCID: PMC9924012 DOI: 10.1016/j.jointm.2022.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/31/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Immunometabolism is a dynamic process involving the interplay of metabolism and immune response in health and diseases. Increasing evidence suggests that impaired immunometabolism contributes to infectious and inflammatory diseases. In particular, the mitochondrial enzyme aconitate decarboxylase 1 (ACOD1, best known as immunoresponsive gene 1 [IRG1]) is upregulated under various inflammatory conditions and serves as a pivotal regulator of immunometabolism involved in itaconate production, macrophage polarization, inflammasome activation, and oxidative stress. Consequently, the activation of the ACOD1 pathway is implicated in regulating the pathogenic process of sepsis and septic shock, which are part of a clinical syndrome of life-threatening organ failure caused by a dysregulated host response to pathogen infection. In this review, we discuss the latest research advances in ACOD1 expression and function, with particular attention to how the ACOD1-itaconate pathway affects infection and sterile inflammation diseases. These new insights may give us a deeper understanding of the role of immunometabolism in innate immunity.
Collapse
Affiliation(s)
- Runliu Wu
- Department of Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA,Corresponding author: Daolin Tang, Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
172
|
Poli V, Di Gioia M, Sola-Visner M, Granucci F, Frelinger AL, Michelson AD, Zanoni I. Inhibition of transcription factor NFAT activity in activated platelets enhances their aggregation and exacerbates gram-negative bacterial septicemia. Immunity 2022; 55:224-236.e5. [PMID: 34995475 PMCID: PMC11318314 DOI: 10.1016/j.immuni.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/09/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022]
Abstract
During gram-negative septicemia, interactions between platelets and neutrophils initiate a detrimental feedback loop that sustains neutrophil extracellular trap (NET) induction, disseminated intravascular coagulation, and inflammation. Understanding intracellular pathways that control platelet-neutrophil interactions is essential for identifying new therapeutic targets. Here, we found that thrombin signaling induced activation of the transcription factor NFAT in platelets. Using genetic and pharmacologic approaches, as well as iNFATuation, a newly developed mouse model in which NFAT activation can be abrogated in a cell-specific manner, we demonstrated that NFAT inhibition in activated murine and human platelets enhanced their activation and aggregation, as well as their interactions with neutrophils and NET induction. During gram-negative septicemia, NFAT inhibition in platelets promoted disease severity by increasing disseminated coagulation and NETosis. NFAT inhibition also partially restored coagulation ex vivo in patients with hypoactive platelets. Our results define non-transcriptional roles for NFAT that could be harnessed to address pressing clinical needs.
Collapse
Affiliation(s)
- Valentina Poli
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, MA, USA
| | - Marco Di Gioia
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, MA, USA
| | - Martha Sola-Visner
- Harvard Medical School, Boston Children's Hospital, Division of Newborn Medicine, Boston, MA, USA
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andrew L Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Alan D Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, MA, USA; Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, MA, USA.
| |
Collapse
|
173
|
Fang Y, Wang X, Lu J, Shi H, Huang L, Shao A, Zhang A, Liu Y, Ren R, Lenahan C, Tang J, Zhang J, Zhang JH, Chen S. Inhibition of caspase-1-mediated inflammasome activation reduced blood coagulation in cerebrospinal fluid after subarachnoid haemorrhage. EBioMedicine 2022; 76:103843. [PMID: 35101655 PMCID: PMC8822177 DOI: 10.1016/j.ebiom.2022.103843] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 12/03/2022] Open
Abstract
Background Neuroinflammation and blood coagulation responses in cerebrospinal fluid (CSF) contribute to the poor outcome associated with subarachnoid haemorrhage (SAH). We explored the role of caspase-1-mediated inflammasome activation on extrinsic blood coagulation in CSF after SAH. Methods Post-SAH proteomic changes and correlation between caspase-1 with extrinsic coagulation factors in human CSF after SAH were analysed. Time course and cell localisation of brain inflammasome and extrinsic coagulation proteins after SAH were explored in a rat SAH model. Pharmacological inhibition of caspase-1 via VX-765 was used to explore the role of caspase-1 in blood clearance and CSF circulation after SAH in rats. Primary astrocytes were used to evaluate the role of caspase-1 in haemoglobin-induced pyroptosis and tissue factor (TF) production/release. Findings Neuroinflammation and blood coagulation activated after SAH in human CSF. The caspase-1 levels significantly correlated with the extrinsic coagulation factors. The activated caspase-1 and extrinsic coagulation initiator TF was increased on astrocytes after SAH in rats. VX-765 attenuated neurological deficits by accelerating CSF circulation and blood clearance through inhibiting pyroptotic neuroinflammation and TF-induced fibrin deposition in the short-term, and improved learning and memory capacity by preventing hippocampal neuronal loss and hydrocephalus in the long-term after SAH in rats. VX-765 reduced haemoglobin-induced pyroptosis and TF production/release in primary astrocytes. Interpretation Inhibition of caspase-1 by VX-765 appears to be a potential treatment against neuroinflammation and blood coagulation in CSF after SAH. Funding This study was supported by National Institutes of Health of United States of America, and National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Hui Shi
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354, United States; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Reng Ren
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Cameron Lenahan
- Department of Neurosurgery, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354, United States; Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Jiping Tang
- Department of Neurosurgery, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354, United States; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, United States
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354, United States; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, United States.
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
174
|
Díaz-García E, García-Tovar S, Alfaro E, Zamarrón E, Mangas A, Galera R, Ruíz-Hernández JJ, Solé-Violán J, Rodríguez-Gallego C, Van-Den-Rym A, Pérez-de-Diego R, Nanwani-Nanwani K, López-Collazo E, García-Rio F, Cubillos-Zapata C. Role of CD39 in COVID-19 Severity: Dysregulation of Purinergic Signaling and Thromboinflammation. Front Immunol 2022; 13:847894. [PMID: 35173744 PMCID: PMC8841513 DOI: 10.3389/fimmu.2022.847894] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
CD39/NTPDase1 has emerged as an important molecule that contributes to maintain inflammatory and coagulatory homeostasis. Various studies have hypothesized the possible role of CD39 in COVID-19 pathophysiology since no confirmatory data shed light in this regard. Therefore, we aimed to quantify CD39 expression on COVID-19 patients exploring its association with severity clinical parameters and ICU admission, while unraveling the role of purinergic signaling on thromboinflammation in COVID-19 patients. We selected a prospective cohort of patients hospitalized due to severe COVID-19 pneumonia (n=75), a historical cohort of Influenza A pneumonia patients (n=18) and sex/age-matched healthy controls (n=30). CD39 was overexpressed in COVID-19 patients’ plasma and immune cell subsets and related to hypoxemia. Plasma soluble form of CD39 (sCD39) was related to length of hospital stay and independently associated with intensive care unit admission (adjusted odds ratio 1.04, 95%CI 1.0-1.08, p=0.038), with a net reclassification index of 0.229 (0.118-0.287; p=0.036). COVID-19 patients showed extracellular accumulation of adenosine nucleotides (ATP and ADP), resulting in systemic inflammation and pro-coagulant state, as a consequence of purinergic pathway dysregulation. Interestingly, we found that COVID-19 plasma caused platelet activation, which was successfully blocked by the P2Y12 receptor inhibitor, ticagrelor. Therefore, sCD39 is suggested as a promising biomarker for COVID-19 severity. As a conclusion, our study indicates that CD39 overexpression in COVID-19 patients could be indicating purinergic signaling dysregulation, which might be at the basis of COVID-19 thromboinflammation disorder.
Collapse
Affiliation(s)
- Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
| | - Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
| | - Ester Zamarrón
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Alberto Mangas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
| | - Raúl Galera
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - José Juan Ruíz-Hernández
- Department of Internal Medicine, Gran Canaria Dr Negrín University Hospital, Gran Canaria, Spain
| | - Jordi Solé-Violán
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Intensitive Care Medicine, Gran Canaria Dr Negrín University Hospital, Gran Canaria, Spain
| | - Carlos Rodríguez-Gallego
- Departament of Immunology, Gran Canaria Dr Negrín University Hospital, Gran Canaria, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Ana Van-Den-Rym
- Laboratory of Immunogenetics of Human Diseases, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Rebeca Pérez-de-Diego
- Laboratory of Immunogenetics of Human Diseases, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | | | - Eduardo López-Collazo
- The Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
| | - Francisco García-Rio
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- *Correspondence: Francisco García-Rio, ; Carolina Cubillos-Zapata,
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- *Correspondence: Francisco García-Rio, ; Carolina Cubillos-Zapata,
| |
Collapse
|
175
|
Bellanti F, Lo Buglio A, Vendemiale G. Redox Homeostasis and Immune Alterations in Coronavirus Disease-19. BIOLOGY 2022; 11:159. [PMID: 35205026 PMCID: PMC8869285 DOI: 10.3390/biology11020159] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023]
Abstract
The global Coronavirus Disease 2019 (COVID-19) pandemic is characterized by a wide variety of clinical features, from no or moderate symptoms to severe illness. COVID-19 is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that first affects the respiratory tract. Other than being limited to lungs, SARS-CoV-2 may lead to a multisystem disease that can even be durable (long COVID). The clinical spectrum of COVID-19 depends on variability in the immune regulation. Indeed, disease progression is consequent to failure in the immune regulation, characterized by an intensification of the pro-inflammatory response. Disturbance of systemic and organ-related redox balance may be a further mechanism underlying variability in COVID-19 severity. Other than being determinant for SARS-CoV-2 entry and fusion to the host cell, reactive species and redox signaling are deeply involved in the immune response. This review sums up the present knowledge on the role of redox balance in the regulation of susceptibility to SARS-CoV-2 infection and related immune response, debating the effectiveness of antioxidant compounds in the management of COVID-19.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy; (A.L.B.); (G.V.)
| | | | | |
Collapse
|
176
|
Savateev KV, Fedotov VV, Rusinov VL, Kotovskaya SK, Spasov AA, Kucheryavenko AF, Vasiliev PM, Kosolapov VA, Sirotenko VS, Gaidukova KA, Uskov GM. Azolo[1,5- a]pyrimidines and Their Condensed Analogs with Anticoagulant Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010274. [PMID: 35011506 PMCID: PMC8746358 DOI: 10.3390/molecules27010274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/23/2022]
Abstract
Hypercytokinemia, or cytokine storm, is one of the severe complications of viral and bacterial infections, involving the release of abnormal amounts of cytokines, resulting in a massive inflammatory response. Cytokine storm is associated with COVID-19 and sepsis high mortality rate by developing epithelial dysfunction and coagulopathy, leading to thromboembolism and multiple organ dysfunction syndrome. Anticoagulant therapy is an important tactic to prevent thrombosis in sepsis and COVID-19, but recent data show the incompatibility of modern direct oral anticoagulants and antiviral agents. It seems relevant to develop dual-action drugs with antiviral and anticoagulant properties. At the same time, it was shown that azolo[1,5-a]pyrimidines are heterocycles with a broad spectrum of antiviral activity. We have synthesized a new family of azolo[1,5-a]pyrimidines and their condensed polycyclic analogs by cyclocondensation reactions and direct CH-functionalization and studied their anticoagulant properties. Five compounds among 1,2,4-triazolo[1,5-a]pyrimidin-7-ones and 5-alkyl-1,3,4-thiadiazolo[3,2-a]purin-8-ones demonstrated higher anticoagulant activity than the reference drug, dabigatran etexilate. Antithrombin activity of most active compounds was confirmed using lipopolysaccharide (LPS)-treated blood to mimic the conditions of cytokine release syndrome. The studied compounds affected only the thrombin time value, reliably increasing it 6.5–15.2 times as compared to LPS-treated blood.
Collapse
Affiliation(s)
- Konstantin V. Savateev
- Department of Organic and Biomolecular Chemistry, Ural Federal University Named after the First President of Russia B.N. Eltsin, Mira St. 19, 620002 Yekaterinburg, Russia; (V.V.F.); (V.L.R.); (S.K.K.)
- Correspondence:
| | - Victor V. Fedotov
- Department of Organic and Biomolecular Chemistry, Ural Federal University Named after the First President of Russia B.N. Eltsin, Mira St. 19, 620002 Yekaterinburg, Russia; (V.V.F.); (V.L.R.); (S.K.K.)
| | - Vladimir L. Rusinov
- Department of Organic and Biomolecular Chemistry, Ural Federal University Named after the First President of Russia B.N. Eltsin, Mira St. 19, 620002 Yekaterinburg, Russia; (V.V.F.); (V.L.R.); (S.K.K.)
| | - Svetlana K. Kotovskaya
- Department of Organic and Biomolecular Chemistry, Ural Federal University Named after the First President of Russia B.N. Eltsin, Mira St. 19, 620002 Yekaterinburg, Russia; (V.V.F.); (V.L.R.); (S.K.K.)
| | - Alexandr A. Spasov
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov Sq. 1, 400131 Volgograd, Russia; (A.A.S.); (A.F.K.); (P.M.V.); (V.A.K.); (V.S.S.); (K.A.G.); (G.M.U.)
| | - Aida F. Kucheryavenko
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov Sq. 1, 400131 Volgograd, Russia; (A.A.S.); (A.F.K.); (P.M.V.); (V.A.K.); (V.S.S.); (K.A.G.); (G.M.U.)
| | - Pavel M. Vasiliev
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov Sq. 1, 400131 Volgograd, Russia; (A.A.S.); (A.F.K.); (P.M.V.); (V.A.K.); (V.S.S.); (K.A.G.); (G.M.U.)
| | - Vadim A. Kosolapov
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov Sq. 1, 400131 Volgograd, Russia; (A.A.S.); (A.F.K.); (P.M.V.); (V.A.K.); (V.S.S.); (K.A.G.); (G.M.U.)
| | - Victor S. Sirotenko
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov Sq. 1, 400131 Volgograd, Russia; (A.A.S.); (A.F.K.); (P.M.V.); (V.A.K.); (V.S.S.); (K.A.G.); (G.M.U.)
| | - Kseniya A. Gaidukova
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov Sq. 1, 400131 Volgograd, Russia; (A.A.S.); (A.F.K.); (P.M.V.); (V.A.K.); (V.S.S.); (K.A.G.); (G.M.U.)
| | - Georgiy M. Uskov
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov Sq. 1, 400131 Volgograd, Russia; (A.A.S.); (A.F.K.); (P.M.V.); (V.A.K.); (V.S.S.); (K.A.G.); (G.M.U.)
| |
Collapse
|
177
|
Page MJ, Kell DB, Pretorius E. The Role of Lipopolysaccharide-Induced Cell Signalling in Chronic Inflammation. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221076390. [PMID: 35155966 PMCID: PMC8829728 DOI: 10.1177/24705470221076390] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022]
Abstract
Lipopolysaccharide (LPS) is the main structural component of the outer membrane of most Gram-negative bacteria and has diverse immunostimulatory and procoagulant effects. Even though LPS is well described for its role in the pathology of sepsis, considerable evidence demonstrates that LPS-induced signalling and immune dysregulation are also relevant in the pathophysiology of many diseases, characteristically where endotoxaemia is less severe. These diseases are typically chronic and progressive in nature and span broad classifications, including neurodegenerative, metabolic, and cardiovascular diseases. This Review reappraises the mechanisms of LPS-induced signalling and emphasises the crucial contribution of LPS to the pathology of multiple chronic diseases, beyond conventional sepsis. This perspective asserts that new ways of approaching chronic diseases by targeting LPS-driven pathways may be of therapeutic benefit in a wide range of chronic inflammatory conditions.
Collapse
Affiliation(s)
| | - Douglas B Kell
- Stellenbosch University, Stellenbosch, South Africa.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
178
|
Kantarcioglu B, Darki A, Siddiqui F, Krupa E, Vural M, Kacmaz M, Hoppensteadt D, Iqbal O, Jeske W, Walenga J, Adiguzel C, Fareed J. Predictive Role of Blood Cellular Indices and Their Relationship with Endogenous Glycosaminoglycans as Determinants of Inflammatory Biomarkers in Pulmonary Embolism. Clin Appl Thromb Hemost 2022; 28:10760296221104801. [PMID: 35733366 PMCID: PMC9234831 DOI: 10.1177/10760296221104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION In this study, we profiled the levels of blood cellular indices, endogenous glycosaminoglycans (GAGs) and inflammatory biomarkers in a cohort comprised of pulmonary embolism (PE) patients, to determine their inter-relationships. Identification of this relationship may provide insight to the complex pathophysiology of PE and the predictive role of blood cellular indices in acute PE patients. MATERIALS AND METHODS Plasma samples from PE patients and healthy controls were analyzed for thrombo-inflammatory biomarkers (IL-2, IL-4, IL-6, IL-8, IL-10, VEGF, IFN-ɣ, TNF-α, IL-1α, IL-1β, MCP-1, EGF, D-dimer, CRP and MMP-9) using biochip array and ELISA methods. The endogenous GAG levels were quantified using a fluorescence quenching method. The data regarding the blood cellular indices were collected through the review of patient medical records and analyzed to demonstrate their relationship. RESULTS The levels of inflammatory biomarkers and endogenous GAGs were elevated in acute PE patients compared to controls (P < .05). Most of the blood cellular indices have shown significant differences in acute PE patients compared to controls (P < .05). The levels of inflammatory biomarkers, endogenous GAGs and the blood cellular indices have shown significant associations in correlation and multivariable analysis. While NLR, PLR and SII were significantly predicting the 30-day mortality, PNR, ELR and EMR were not sufficient to predict 30-day mortality in acute PE. CONCLUSION Our results show that the increased thrombo-inflammatory response is associated with the release of GAGs and the changes in blood cellular indices. The predictive role of the blood cellular indices for mortality is dependent on their relationship with the inflammatory response.
Collapse
Affiliation(s)
- Bulent Kantarcioglu
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, 2456Loyola University Chicago, Maywood, IL, USA
| | - Amir Darki
- Division of Cardiovascular Disease, Loyola Stritch School of Medicine, 25815Loyola University Medical Center, Maywood, Illinois, USA
| | - Fakiha Siddiqui
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, 2456Loyola University Chicago, Maywood, IL, USA.,Program in Health Sciences. UCAM - Universidad Católica San Antonio de Murcia, Spain
| | - Emily Krupa
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, 2456Loyola University Chicago, Maywood, IL, USA
| | - Mehmet Vural
- Department of Internal Medicine, Loyola Stritch School of Medicine, 25815Loyola University Medical Center, Maywood, Illinois, USA.,Department of Internal Medicine, 24558Weiss Memorial Hospital, Chicago, USA
| | - Murat Kacmaz
- Department of Internal Medicine, Division of Hematology, 52987Hatay Mustafa Kemal University, Hatay, Turkey
| | - Debra Hoppensteadt
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, 2456Loyola University Chicago, Maywood, IL, USA
| | - Omer Iqbal
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, 2456Loyola University Chicago, Maywood, IL, USA
| | - Walter Jeske
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, 2456Loyola University Chicago, Maywood, IL, USA
| | - Jeanine Walenga
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, 2456Loyola University Chicago, Maywood, IL, USA
| | - Cafer Adiguzel
- Department of Internal Medicine, Division of Hematology, Bahcesehir University, Istanbul, Turkey
| | - Jawed Fareed
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, 2456Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
179
|
Zhang RX, Kang R, Tang DL. STING1 in sepsis: Mechanisms, functions, and implications. Chin J Traumatol 2022; 25:1-10. [PMID: 34334261 PMCID: PMC8787237 DOI: 10.1016/j.cjtee.2021.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Sepsis is a life-threatening clinical syndrome and one of the most challenging health problems in the world. Pathologically, sepsis and septic shock are caused by a dysregulated host immune response to infection, which can eventually lead to multiple organ failure and even death. As an adaptor transporter between the endoplasmic reticulum and Golgi apparatus, stimulator of interferon response cGAMP interactor 1 (STING1, also known as STING or TMEM173) has been found to play a vital role at the intersection of innate immunity, inflammation, autophagy, and cell death in response to invading microbial pathogens or endogenous host damage. There is ample evidence that impaired STING1, through its immune and non-immune functions, is involved in the pathological process of sepsis. In this review, we discuss the regulation and function of the STING1 pathway in sepsis and highlight it as a suitable drug target for the treatment of lethal infection.
Collapse
Affiliation(s)
- Ruo-Xi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dao-Lin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
180
|
Shi Y, Zou Y, Xiong Y, Zhang S, Song M, An X, Liu C, Zhang W, Chen S. Host Gasdermin D restrains systemic endotoxemia by capturing Proteobacteria in the colon of high-fat diet-feeding mice. Gut Microbes 2021; 13:1946369. [PMID: 34275417 PMCID: PMC8288038 DOI: 10.1080/19490976.2021.1946369] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gasdermin D (GSDMD) functions as a key pyroptotic executor through its secreted N-terminal domain (GSDMD-N). However, the functional relevance and mechanistic basis of the precise roles of host colonic GSDMD in high-fat diet (HFD)-induced gut dysbiosis and systemic endotoxemia remain elusive. In this study, we demonstrate that HFD feeding triggers GSDMD-N secretion of both T-lymphocytes and enterocytes in mouse colons. GSDMD deficiency aggravates HFD-induced systemic endotoxemia, gut barrier impairment, and colonic inflammation. More importantly, active GSDMD-N kills the Proteobacteria phylum via directly interacting with Cardiolipin. Mechanistically, we identify that the Glu236 (a known residue for GSDMD protein cleavage) is a bona fide important site for the bacterial recognition of GSDMD. Collectively, our findings explain the mechanism by which colonic GSDMD-N maintains low levels of HFD-induced metabolic endotoxemia. A GSDMD-N mimetic containing an exposed Glu236 site could be an attractive strategy for the treatment of HFD-induced metabolic endotoxemia.
Collapse
Affiliation(s)
- Yujie Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yixin Zou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yonghong Xiong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shiyao Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China,Wenxiang Zhang State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Avenue, Nanjing211198, China
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China,Wenxiang Zhang State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Avenue, Nanjing211198, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China,CONTACT Siyu Chen
| |
Collapse
|
181
|
Mizurini DM, Hottz ED, Bozza PT, Monteiro RQ. Fundamentals in Covid-19-Associated Thrombosis: Molecular and Cellular Aspects. Front Cardiovasc Med 2021; 8:785738. [PMID: 34977191 PMCID: PMC8718518 DOI: 10.3389/fcvm.2021.785738] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus disease (COVID-19) is associated with a high incidence of coagulopathy and venous thromboembolism that may contribute to the worsening of the clinical outcome in affected patients. Marked increased D-dimer levels are the most common laboratory finding and have been repeatedly reported in critically ill COVID-19 patients. The infection caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is followed by a massive release of pro-inflammatory cytokines, which mediate the activation of endothelial cells, platelets, monocytes, and neutrophils in the vasculature. In this context, COVID-19-associated thrombosis is a complex process that seems to engage vascular cells along with soluble plasma factors, including the coagulation cascade, and complement system that contribute to the establishment of the prothrombotic state. In this review, we summarize the main findings concerning the cellular mechanisms proposed for the establishment of COVID-19-associated thrombosis.
Collapse
Affiliation(s)
- Daniella M. Mizurini
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Oswaldo Cruz Foundation, Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Patrícia T. Bozza
- Oswaldo Cruz Foundation, Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
182
|
Toldo S, Mezzaroma E, Buckley LF, Potere N, Di Nisio M, Biondi-Zoccai G, Van Tassell BW, Abbate A. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Ther 2021; 236:108053. [PMID: 34906598 PMCID: PMC9187780 DOI: 10.1016/j.pharmthera.2021.108053] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023]
Abstract
The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that plays a major role in innate immunity. Following tissue injury, activation of the NLRP3 inflammasome results in cytokine production, primarily interleukin(IL)-1β and IL-18, and, eventually, inflammatory cell death - pyroptosis. While a balanced inflammatory response favors damage resolution and tissue healing, excessive NLRP3 activation causes detrimental effects. A key involvement of the NLRP3 inflammasome has been reported across a wide range of cardiovascular diseases (CVDs). Several pharmacological agents selectively targeting the NLRP3 inflammasome system have been developed and tested in animals and early phase human studies with overall promising results. While the NLRP3 inhibitors are in clinical development, multiple randomized trials have demonstrated the safety and efficacy of IL-1 blockade in atherothrombosis, heart failure and recurrent pericarditis. Furthermore, the non-selective NLRP3 inhibitor colchicine has been recently shown to significantly reduce cardiovascular events in patients with chronic coronary disease. In this review, we will outline the mechanisms driving NLRP3 assembly and activation, and discuss the pathogenetic role of the NLRP3 inflammasome in CVDs, providing an overview of the current and future therapeutic approaches targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Eleonora Mezzaroma
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Leo F Buckley
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicola Potere
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | - Benjamin W Van Tassell
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
183
|
Hooftman A, O'Neill LAJ. Can NLRP3 inhibitors improve on dexamethasone for the treatment of COVID-19? CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100048. [PMID: 34870152 PMCID: PMC8390447 DOI: 10.1016/j.crphar.2021.100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
Dexamethasone, a corticosteroid, has been approved for use in the treatment of severe COVID-19, which is characterised by hyperinflammation and associated lung damage. However, dexamethasone shows no clinical benefit in the treatment of less severe disease, and prolonged treatment may lead to immunosuppression and an increased risk of opportunistic infections. Hence there is a need for more specific anti-inflammatory therapies which also prevent severe disease. The NLRP3 inflammasome is an intracellular signalling complex which is responsible for the cleavage and release of the cytokines IL-1β and IL-18 and has also been shown to be inhibited by dexamethasone. NLRP3 inflammasome activation is strongly correlated with COVID-19 severity and part of dexamethasone's clinical effect in COVID-19 may be via NLRP3 inhibition. Specific NLRP3 inhibitors are currently undergoing clinical trials for the treatment of COVID-19. In this review, we evaluate the evidence supporting the use of dexamethasone and speculate on the potential use of NLRP3 inhibitors to treat COVID-19 as a more specific approach that may not have the liabilities of dexamethasone.
Collapse
Affiliation(s)
- Alexander Hooftman
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
184
|
Zou J, Zheng Y, Huang Y, Tang D, Kang R, Chen R. The Versatile Gasdermin Family: Their Function and Roles in Diseases. Front Immunol 2021; 12:751533. [PMID: 34858408 PMCID: PMC8632255 DOI: 10.3389/fimmu.2021.751533] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
The gasdermin (GSDM) family, a novel group of structure-related proteins, consists of GSDMA, GSDMB, GSDMC, GSDMD, GSDME/DNFA5, and PVJK/GSDMF. GSDMs possess a C-terminal repressor domain, cytotoxic N-terminal domain, and flexible linker domain (except for GSDMF). The GSDM-NT domain can be cleaved and released to form large oligomeric pores in the membrane that facilitate pyroptosis. The emerging roles of GSDMs include the regulation of various physiological and pathological processes, such as cell differentiation, coagulation, inflammation, and tumorigenesis. Here, we introduce the basic structure, activation, and expression patterns of GSDMs, summarize their biological and pathological functions, and explore their regulatory mechanisms in health and disease. This review provides a reference for the development of GSDM-targeted drugs to treat various inflammatory and tissue damage-related conditions.
Collapse
Affiliation(s)
- Ju Zou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiang Zheng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
185
|
Groarke EM, Dulau-Florea AE, Kanthi Y. Thrombotic manifestations of VEXAS syndrome. Semin Hematol 2021; 58:230-238. [PMID: 34802545 DOI: 10.1053/j.seminhematol.2021.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/11/2022]
Abstract
VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is a recently described autoinflammatory syndrome characterized by diffuse inflammatory manifestations, predisposition to hematological malignancy, and an association with a high rate of thrombosis. VEXAS is attributed to somatic mutations in the UBA1 gene in hematopoietic stem and progenitor cells with myeloid restriction in mature forms. The rate of thrombosis in VEXAS patients is approximately 40% in all reported cases to date. Venous thromboembolism predominates thrombotic events in VEXAS. These are classified as unprovoked in etiology, although systemic and vascular inflammation are implicated. Here, we review the clinical and laboratory characteristics in VEXAS that provide insight into the possible mechanisms leading to thrombosis. We present knowledge gaps in the mechanisms and management of VEXAS-associated thromboinflammation and propose areas for future investigation in the field.
Collapse
Affiliation(s)
- Emma M Groarke
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Alina E Dulau-Florea
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
186
|
Poli V, Pui-Yan Ma V, Di Gioia M, Broggi A, Benamar M, Chen Q, Mazitschek R, Haggarty SJ, Chatila TA, Karp JM, Zanoni I. Zinc-dependent histone deacetylases drive neutrophil extracellular trap formation and potentiate local and systemic inflammation. iScience 2021; 24:103256. [PMID: 34761180 PMCID: PMC8567386 DOI: 10.1016/j.isci.2021.103256] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS) driven by viruses or bacteria, as well as in numerous immune-mediated disorders. Histone citrullination by the enzyme peptidylarginine deiminase 4 (PAD4) and the consequent decondensation of chromatin are hallmarks in the induction of NETs. Nevertheless, additional histone modifications that may govern NETosis are largely overlooked. Herein, we show that histone deacetylases (HDACs) play critical roles in driving NET formation in human and mouse neutrophils. HDACs belonging to the zinc-dependent lysine deacetylases family are necessary to deacetylate histone H3, thus allowing the activity of PAD4 and NETosis. Of note, HDAC inhibition in mice protects against microbial-induced pneumonia and septic shock, decreasing NETosis and inflammation. Collectively, our findings illustrate a new fundamental step that governs the release of NETs and points to HDAC inhibitors as therapeutic agents that may be used to protect against ARDS and sepsis.
Collapse
Affiliation(s)
- Valentina Poli
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, 02115 MA, USA
| | - Victor Pui-Yan Ma
- Center for Nanomedicine, Department Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, 02115 MA, USA
| | - Marco Di Gioia
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, 02115 MA, USA
| | - Achille Broggi
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, 02115 MA, USA
| | - Mehdi Benamar
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, 02115 MA, USA
| | - Qian Chen
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, 02115 MA, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, 02114 MA, USA
- Harvard T.H. Chan School of Public Health, Boston, 02115 MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142 MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, 02114 MA, USA
| | - Talal A. Chatila
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, 02115 MA, USA
| | - Jeffrey M. Karp
- Center for Nanomedicine, Department Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, 02115 MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142 MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, 02139 MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, 02138 MA, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, 02115 MA, USA
- Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, 02115 MA, USA
| |
Collapse
|
187
|
Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. Immunity 2021; 54:2578-2594.e5. [PMID: 34717795 DOI: 10.1016/j.immuni.2021.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/13/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
Peritoneal immune cells reside unanchored within the peritoneal fluid in homeostasis. Here, we examined the mechanisms that control bacterial infection in the peritoneum using a mouse model of abdominal sepsis following intraperitoneal Escherichia coli infection. Whole-mount immunofluorescence and confocal microscopy of the peritoneal wall and omentum revealed that large peritoneal macrophages (LPMs) rapidly cleared bacteria and adhered to the mesothelium, forming multilayered cellular aggregates composed by sequentially recruited LPMs, B1 cells, neutrophils, and monocyte-derived cells (moCs). The formation of resident macrophage aggregates (resMφ-aggregates) required LPMs and thrombin-dependent fibrin polymerization. E. coli infection triggered LPM pyroptosis and release of inflammatory mediators. Resolution of these potentially inflammatory aggregates required LPM-mediated recruitment of moCs, which were essential for fibrinolysis-mediated resMφ-aggregate disaggregation and the prevention of peritoneal overt inflammation. Thus, resMφ-aggregates provide a physical scaffold that enables the efficient control of peritoneal infection, with implications for antimicrobial immunity in other body cavities, such as the pleural cavity or brain ventricles.
Collapse
|
188
|
van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity 2021; 54:2450-2464. [PMID: 34758337 DOI: 10.1016/j.immuni.2021.10.012] [Citation(s) in RCA: 393] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to an infection. This recently implemented definition does not capture the heterogeneity or the underlying pathophysiology of the syndrome, which is characterized by concurrent unbalanced hyperinflammation and immune suppression. Here, we review current knowledge of aberrant immune responses during sepsis and recent initiatives to stratify patients with sepsis into subgroups that are more alike from a clinical and/or pathobiological perspective, which could be key for identification of patients who are more likely to benefit from specific immune interventions.
Collapse
Affiliation(s)
- Tom van der Poll
- Amsterdam University Medical Centers, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.
| | - Manu Shankar-Hari
- King's College London, Department of Infectious Diseases, School of Immunology and Microbial Sciences, London, UK; Guy's and St Thomas' NHS Foundation Trust, Department of Intensive Care Medicine, London, UK
| | - W Joost Wiersinga
- Amsterdam University Medical Centers, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
189
|
Brain D, Plant-Hately A, Heaton B, Arshad U, David C, Hedrich C, Owen A, Liptrott NJ. Drug delivery systems as immunomodulators for therapy of infectious disease: Relevance to COVID-19. Adv Drug Deliv Rev 2021; 178:113848. [PMID: 34182016 PMCID: PMC8233062 DOI: 10.1016/j.addr.2021.113848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
The emergence of SARS-CoV-2, and the ensuing global pandemic, has resulted in an unprecedented response to identify therapies that can limit uncontrolled inflammation observed in patients with moderate to severe COVID-19. The immune pathology behind COVID-19 is complex and involves the activation and interaction of multiple systems including, but not limited to, complement, inflammasomes, endothelial as well as innate and adaptive immune cells to bring about a convoluted profile of inflammation, coagulation and tissue damage. To date, therapeutic approaches have focussed on inhibition of coagulation, untargeted immune suppression and/or cytokine-directed blocking agents. Regardless of recently achieved improvements in individual patient outcomes and survival rates, improved and focussed approaches targeting individual systems involved is needed to further improve prognosis and wellbeing. This review summarizes the current understanding of molecular and cellular systems involved in the pathophysiology of COVID-19, and their contribution to pathogen clearance and damage to then discuss possible therapeutic options involving immunomodulatory drug delivery systems as well as summarising the complex interplay between them.
Collapse
Affiliation(s)
- Danielle Brain
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Alex Plant-Hately
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Bethany Heaton
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Usman Arshad
- Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christopher David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christian Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Andrew Owen
- Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
190
|
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), results in life-threatening disease in a minority of patients, especially elderly people and those with co-morbidities such as obesity and diabetes. Severe disease is characterized by dysregulated cytokine release, pneumonia and acute lung injury, which can rapidly progress to acute respiratory distress syndrome, disseminated intravascular coagulation, multisystem failure and death. However, a mechanistic understanding of COVID-19 progression remains unclear. Here we review evidence that SARS-CoV-2 directly or indirectly activates inflammasomes, which are large multiprotein assemblies that are broadly responsive to pathogen-associated and stress-associated cellular insults, leading to secretion of the pleiotropic IL-1 family cytokines (IL-1β and IL-18), and pyroptosis, an inflammatory form of cell death. We further discuss potential mechanisms of inflammasome activation and clinical efforts currently under way to suppress inflammation to prevent or ameliorate severe COVID-19.
Collapse
Affiliation(s)
- Setu M Vora
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
191
|
Long Y, Tong Y, Miao R, Fan R, Cao X, Wang J, Sun J, Day JD, Liu C, Li G. Early Coagulation Disorder Is Associated With an Increased Risk of Atrial Fibrillation in Septic Patients. Front Cardiovasc Med 2021; 8:724942. [PMID: 34660726 PMCID: PMC8514978 DOI: 10.3389/fcvm.2021.724942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Atrial fibrillation (AF) and coagulation disorder, two common complications of sepsis, are associated with the mortality. However, the relationship between early coagulation disorder and AF in sepsis remains elusive. This study aimed to evaluate the interaction between AF and early coagulation disorder on mortality. Methods: In this retrospective study, all data were extracted from the Medical Information Mart for Intensive Care III (MIMIC-III) database. Septic patients with coagulation tests during the first 24 h after admission to intensive care units (ICUs) meeting study criteria were included in the analysis. Early coagulation disorder is defined by abnormalities in platelet count (PLT), international normalized ratio (INR) and activated partial thromboplastin time (APTT) within the first 24 h after admission, whose score was defined with reference to sepsis-induced coagulopathy (SIC) and coagulopathy. Patients meeting study criteria were divided into AF and non-AF groups. Results: In total, 7,528 septic patients were enrolled, including 1,243 (16.51%) with AF and 5,112 (67.91%) with early coagulation disorder. Compared with patients in the non-AF group, patients in the AF group had higher levels of INR and APTT (P < 0.001). Multivariable logistic regression analyses showed that stroke, early coagulation disorder, age, gender, congestive heart failure (CHF), chronic pulmonary disease, renal failure, and chronic liver disease were independent risk factors for AF. In addition, AF was related to in-hospital mortality and 90-day mortality. In the subgroup analysis stratified by the scores of early coagulation disorder, AF was associated with an increased risk of 90-day mortality when the scores of early coagulation disorder were 1 or 2 and 3 or 4. Conclusion: In sepsis, coagulation disorder within the first 24 h after admission to the ICUs is an independent risk factor for AF. The effect of AF on 90-day mortality varies with the severity of early coagulation disorder.
Collapse
Affiliation(s)
- Yunxiang Long
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingmu Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Runchen Miao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rong Fan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiangqi Cao
- Stroke Centre and Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingjing Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - John D Day
- Department of Cardiology, St. Mark's Hospital, Salt Lake City, UT, United States
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guoliang Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
192
|
Sheng B, Chen Y, Sun L, Xu P, Han B, Li X, Yin J, Li T, Guan H, Chen S, Wang Q, Li C, Li S, Jiang X, Wang P, He Q, Wang Y, Xiao W, Yang H. Antifungal Treatment Aggravates Sepsis through the Elimination of Intestinal Fungi. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2796700. [PMID: 34707775 PMCID: PMC8545547 DOI: 10.1155/2021/2796700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
Prophylactic antifungal therapy is widely adopted clinically for critical patients and effective in reducing the morbidity of invasive fungal infection and improves outcomes of those diagnosed patients; however, it is not associated with higher overall survival. As intestinal commensal fungi play a fundamental role in the host immune response in health and disease, we propose that antifungal therapy may eliminate intestinal fungi and aggravate another critical syndrome, sepsis. Here, with murine sepsis model, we found that antifungal therapy with fluconazole dismissed intestinal fungal burden and aggravated endotoxin-induced but no gram-positive bacteria-induced sepsis. Nevertheless, antifungal therapy did not exert its detrimental effect on germ-free mice. Moreover, colonizing more commensal fungi in the mouse intestine or administration of fungal cell wall component mannan protected the mice from endotoxin-induced sepsis. On the molecular level, we demonstrated that antifungal therapy aggravated endotoxin sepsis through promoting Gasdermin D cleavage in the distal small intestine. Intestinal colonization with commensal fungi inhibited Gasdermin D cleavage in response to lipopolysaccharide challenge. These findings show that intestinal fungi inhibit Gasdermin D-mediated pyroptosis and protect the mice from endotoxin-induced sepsis. This study demonstrates the protective role of intestinal fungi in the pathogenesis of endotoxin-induced sepsis in the laboratory. It will undoubtedly prompt us to study the relationship between antifungal therapy and sepsis in critical patients who are susceptible to endotoxin-induced sepsis in the future.
Collapse
Affiliation(s)
- Baifa Sheng
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- Department of Emergency Medicine, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Yihui Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- Department of General Surgery, The First Mobile Corps Hospital of PAP, Dingzhou City, 073000 Hebei Province, China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Peng Xu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ben Han
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xiaolong Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jiuheng Yin
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Teming Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Haidi Guan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Shuaishuai Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Qi Wang
- Division of Hematology-Oncology, Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chuangen Li
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing 400038, China
| | - Shiqiang Li
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing 400038, China
| | - Xianhong Jiang
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing 400038, China
| | - Peng Wang
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing 400038, China
| | - Qiuyue He
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing 400038, China
| | - Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing 400038, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
193
|
Feng D, Guo L, Liu J, Song Y, Ma X, Hu H, Liu J, Hao E. DDX3X deficiency alleviates LPS-induced H9c2 cardiomyocytes pyroptosis by suppressing activation of NLRP3 inflammasome. Exp Ther Med 2021; 22:1389. [PMID: 34650637 PMCID: PMC8506920 DOI: 10.3892/etm.2021.10825] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggest that NOD-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis may be the underlying pathological mechanism of sepsis-induced cardiomyopathy. DDX3X, an ATP-dependent RNA helicase, plays a vital role in the formation of the NLRP3 inflammasome by directly interacting with cytoplasmic NLRP3. However, whether DDX3X has a direct impact on lipopolysaccharide (LPS)-induced cardiomyocyte injury by regulating NLRP3 inflammasome assembly remains unclear. The present study aimed to investigate the role of DDX3X in the activation of the NLRP3 inflammasome and determine the molecular mechanism of DDX3X action in LPS-induced pyroptosis in H9c2 cardiomyocytes. H9c2 cardiomyocytes were treated with LPS to simulate sepsis in vitro. The results demonstrated that LPS stimulation upregulated DDX3X expression in H9c2 cardiomyocytes. Furthermore, Ddx3x knockdown significantly attenuated pyroptosis and cell injury in LPS-treated H9c2 cells by suppressing NLRP3 inflammasome activation. Taken together, these results suggest that DDX3X is involved in LPS-induced cardiomyocyte pyroptosis, and DDX3X deficiency mitigates cardiomyocyte damage induced by LPS treatment.
Collapse
Affiliation(s)
- Dandan Feng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liang Guo
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Jing Liu
- Laboratory of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Yunxuan Song
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Xiuyuan Ma
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haiyang Hu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Enkui Hao
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
194
|
Singh A, Strobbe D, Campanella M. Pyroptosis targeting via mitochondria: An educated guess to innovate COVID-19 therapies. Br J Pharmacol 2021; 179:2081-2085. [PMID: 34632567 PMCID: PMC8653109 DOI: 10.1111/bph.15670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 01/30/2023] Open
Abstract
Pyroptosis is a specialized form of inflammatory cell death which aids the defensive response against invading pathogens. Its normally tight regulation is lost during infection by the severe acute respiratory coronavirus 2 (SARS‐CoV‐2), and thus, uncontrolled pyroptosis disrupts the immune system and the integrity of organs defining the critical conditions in patients with high viral load. Molecular pathways engaged downstream of the formation and stabilization of the inflammasome, which are necessary to execute the process, have been uncovered and drugs are available for their regulation. However, the pharmacology of the upstream events, which are critical to sense and interpret the initial damage by the pathogen, is far from being elucidated. This limits our capacity to identify early markers and targets to ameliorate SARS‐CoV‐2 linked pyroptosis. Here, we focus attention on the mitochondria and pathways leading to their dysfunction, in order to elucidate the early steps of inflammasome formation and devise tools to predict and counter pathological states induced by SARS‐CoV‐2.
Collapse
Affiliation(s)
- Aarti Singh
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Daniela Strobbe
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,Department of Cell and Developmental Biology, Consortium for Mitochondrial Research (CfMR), University College London, London, UK
| |
Collapse
|
195
|
Zhang S, Fu B, Xiong Y, Zhao Q, Xu S, Lin X, Wu H. Tgm2 alleviates LPS-induced apoptosis by inhibiting JNK/BCL-2 signaling pathway through interacting with Aga in macrophages. Int Immunopharmacol 2021; 101:108178. [PMID: 34607226 DOI: 10.1016/j.intimp.2021.108178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022]
Abstract
Sepsis is an unusual systemic infection caused by bacteria, which is a life-threatening organ dysfunction. The innate immune system plays an important role in this process; however, the specific mechanisms remain unclear. Using the LPS + treated mouse model, we found that the survival rate of Tgm2-/- mice was lower than that of the control group, while the inflammation was much higher. We further showed that Tgm2 suppressed apoptosis by inhibiting the JNK/BCL-2 signaling pathway. More importantly, Tgm2 interacted with Aga and regulated mitochondria-mediated apoptosis induced by LPS. Our findings elucidated a protective mechanism of Tgm2 during LPS stimulation and may provide a new reference target for the development of novel anti-infective drugs from the perspective of host immunity.
Collapse
Affiliation(s)
- Shanfu Zhang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Qingting Zhao
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Shiyao Xu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
196
|
Ye X, Liu X, Wei W, Yu H, Jin X, Yu J, Li C, Xu B, Guo X, Mao J. Volume-activated chloride channels contribute to lipopolysaccharide plus nigericin-induced pyroptosis in bone marrow-derived macrophages. Biochem Pharmacol 2021; 193:114791. [PMID: 34582774 DOI: 10.1016/j.bcp.2021.114791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 01/15/2023]
Abstract
The representative morphological features of pyroptosis are excessive cell swelling and subsequent membrane rupture. However, the mechanism underlying the cell's inherent inability to regulate volume during the progression of pyroptosis is poorly understood. In the current study, we found that both volume-activated chloride currents (Icl, vol) and the regulatory volume decrease (RVD) were markedly decreased in bone marrow-derived macrophages (BMDMs) undergoing pyroptosis induced by lipopolysaccharides (LPS) and nigericin. The inhibition of ICl, vol and RVD by the chloride channel blockers, tamoxifen or DCPIB, led to the emergence of pyroptosis-like phenotypes such as activated-caspase-1, pyroptotic-body-like bubbles, and a fried-egg-like appearance. Moreover, the expression of the volume-activated chloride channel (VRAC) constituent protein Leucine-Rich Repeat-Containing 8A (LRRC8A) was significantly down-regulated in pyroptotic BMDMs treated with LPS and nigericin. The silencing of LRRC8A expression by small interfering RNA (si)-LRRC8A transfection not only reduced ICl, vol and RVD, but also caused BMDMs to show pyroptosis-like manifestations such as activated-caspase-1, membrane bubbles, and have a fried-egg-like appearance. These results reveal a new mechanism for the loss of volume regulation in the process of pyroptotic cell swelling and strongly suggest that a functional deficiency of VRAC/LRRC8A plays a key role in this disorder.
Collapse
Affiliation(s)
- Xiaomin Ye
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaoyong Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenjun Wei
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiping Yu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jinwei Yu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunmei Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xinmin Guo
- Department of Ultrasound, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, PR China.
| | - Jianwen Mao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
197
|
Immune Responses against SARS-CoV-2-Questions and Experiences. Biomedicines 2021; 9:biomedicines9101342. [PMID: 34680460 PMCID: PMC8533170 DOI: 10.3390/biomedicines9101342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding immune reactivity against SARS-CoV-2 is essential for coping with the COVID-19 pandemic. Herein, we discuss experiences and open questions about the complex immune responses to SARS-CoV-2. Some people react excellently without experiencing any clinical symptoms, they do not get sick, and they do not pass the virus on to anyone else ("sterilizing" immunity). Others produce antibodies and do not get COVID-19 but transmit the virus to others ("protective" immunity). Some people get sick but recover. A varying percentage develops respiratory failure, systemic symptoms, clotting disorders, cytokine storms, or multi-organ failure; they subsequently decease. Some develop long COVID, a new pathologic entity similar to fatigue syndrome or autoimmunity. In reality, COVID-19 is considered more of a systemic immune-vascular disease than a pulmonic disease, involving many tissues and the central nervous system. To fully comprehend the complex clinical manifestations, a profound understanding of the immune responses to SARS-CoV-2 is a good way to improve clinical management of COVID-19. Although neutralizing antibodies are an established approach to recognize an immune status, cellular immunity plays at least an equivalent or an even more important role. However, reliable methods to estimate the SARS-CoV-2-specific T cell capacity are not available for clinical routines. This deficit is important because an unknown percentage of people may exist with good memory T cell responsibility but a low number of or completely lacking peripheral antibodies against SARS-CoV-2. Apart from natural immune responses, vaccination against SARS-CoV-2 turned out to be very effective and much safer than naturally acquired immunity. Nevertheless, besides unwanted side effects of the currently available vector and mRNA preparations, concerns remain whether these vaccines will be strong enough to defeat the pandemic. Altogether, herein we discuss important questions, and try to give answers based on the current knowledge and preliminary data from our laboratories.
Collapse
|
198
|
Calado MB, da Silva Santana CE, Crovella S. Do inflammasome impact COVID-19 severity? Virusdisease 2021; 32:410-420. [PMID: 34337108 PMCID: PMC8312707 DOI: 10.1007/s13337-021-00705-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 pandemic has proven to be a dramatic challenge, introducing huge clinical differences that demand extensive investigations. Severe and critical patients may present coagulopathies and microthrombi, which results in varied complications, or acute respiratory distress syndrome that leads to fatality. Although the lung to be the major site of clinical manifestations, COVID-19 has shown extrapulmonary manifestations, especially on the heart and kidney, directly linked to worse disease outcomes. According to the fast-moving of clinical description and scientific publications, the injuries in multiple organs and systemic inflammation appear to be caused by a deregulated immune response, and the NLRP3 inflammasome could be a relevant influencer in this imbalance. However, until now, the precise drivers of the pathophysiology of these injuries remain unknown. In this review, we discuss how inflammasome seems to be directly involved in the clinical profile of patients infected with SARS-CoV-2 and shed light on the mechanisms that lead to fatality.
Collapse
Affiliation(s)
| | | | - Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, State of Qatar
| |
Collapse
|
199
|
Burdette BE, Esparza AN, Zhu H, Wang S. Gasdermin D in pyroptosis. Acta Pharm Sin B 2021; 11:2768-2782. [PMID: 34589396 PMCID: PMC8463274 DOI: 10.1016/j.apsb.2021.02.006] [Citation(s) in RCA: 345] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis is the process of inflammatory cell death. The primary function of pyroptosis is to induce strong inflammatory responses that defend the host against microbe infection. Excessive pyroptosis, however, leads to several inflammatory diseases, including sepsis and autoimmune disorders. Pyroptosis can be canonical or noncanonical. Upon microbe infection, the canonical pathway responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), while the noncanonical pathway responds to intracellular lipopolysaccharides (LPS) of Gram-negative bacteria. The last step of pyroptosis requires the cleavage of gasdermin D (GsdmD) at D275 (numbering after human GSDMD) into N- and C-termini by caspase 1 in the canonical pathway and caspase 4/5/11 (caspase 4/5 in humans, caspase 11 in mice) in the noncanonical pathway. Upon cleavage, the N-terminus of GsdmD (GsdmD-N) forms a transmembrane pore that releases cytokines such as IL-1β and IL-18 and disturbs the regulation of ions and water, eventually resulting in strong inflammation and cell death. Since GsdmD is the effector of pyroptosis, promising inhibitors of GsdmD have been developed for inflammatory diseases. This review will focus on the roles of GsdmD during pyroptosis and in diseases.
Collapse
Key Words
- 7DG, 7-desacetoxy-6,7-dehydrogedunin
- ADRA2B, α-2B adrenergic receptor
- AIM, absent in melanoma
- ASC, associated speck-like protein
- Ac-FLTD-CMK, acetyl-FLTD-chloromethylketone
- BMDM, bone marrow-derived macrophages
- CARD, caspase activation
- CD, Crohn’s disease
- CTM, Chinese traditional medicine
- CTSG, cathepsin G
- Caspase
- DAMP, damage-associated molecular pattern
- DFNA5, deafness autosomal dominant 5
- DFNB59, deafness autosomal recessive type 59
- DKD, diabetic kidney disease
- DMF, dimethyl fumarate
- Damage-associated molecular patterns (DAMPs)
- ELANE, neutrophil expressed elastase
- ESCRT, endosomal sorting complexes required for transport
- FADD, FAS-associated death domain
- FDA, U.S. Food and Drug Administration
- FIIND, function to find domain
- FMF, familial Mediterranean fever
- GI, gastrointestinal
- GPX, glutathione peroxidase
- Gasdermin
- GsdmA/B/C/D/E, gasdermin A/B/C/D/E
- HAMP, homeostasis altering molecular pattern
- HIN, hematopoietic expression, interferon-inducible nature, and nuclear localization
- HIV, human immunodeficiency virus
- HMGB1, high mobility group protein B1
- IBD, inflammatory bowel disease
- IFN, interferon
- ITPR1, inositol 1,4,5-trisphosphate receptor type 1
- Inflammasome
- Inflammation
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- MAP3K7, mitogen-activated protein kinase kinase kinase 7
- MCC950, N-[[(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)amino]carbonyl]-4-(1-hydroxy-1-methylethyl)-2-furansulfonamide
- NAIP, NLR family apoptosis inhibitory protein
- NBD, nucleotide-binding domain
- NEK7, NIMA-related kinase 7
- NET, neutrophil extracellular trap
- NIK, NF-κB inducing kinase
- NLR, NOD-like receptor
- NLRP, NLR family pyrin domain containing
- NSAID, non-steroidal anti-inflammatory drug
- NSCLC, non-small cell lung cancer
- NSP, neutrophil specific serine protease
- PAMP, pathogen-associated molecular pattern
- PKA, protein kinase A
- PKN1/2, protein kinase1/2
- PKR, protein kinase-R
- PRR, pattern recognition receptors
- PYD, pyrin domain
- Pathogen-associated molecular patterns (PAMPs)
- Pyroptosis
- ROS, reactive oxygen species
- STING, stimulator of interferon genes
- Sepsis
- TLR, Toll-like receptor
- UC, ulcerative colitis
- cAMP, cyclic adenosine monophosphate
- cGAS, cyclic GMP–AMP synthase
- mtDNA, mitochondrial DNA
Collapse
Affiliation(s)
- Brandon E. Burdette
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Ashley N. Esparza
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Hua Zhu
- Department of Surgery, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shanzhi Wang
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| |
Collapse
|
200
|
Destructive Effects of Pyroptosis on Homeostasis of Neuron Survival Associated with the Dysfunctional BBB-Glymphatic System and Amyloid-Beta Accumulation after Cerebral Ischemia/Reperfusion in Rats. Neural Plast 2021; 2021:4504363. [PMID: 34434229 PMCID: PMC8382555 DOI: 10.1155/2021/4504363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/04/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation-related amyloid-beta peptide (Aβ) accumulation after cerebral ischemia/reperfusion (I/R) accounts for cerebral I/R injuries and poststroke dementia. Recently, pyroptosis, a proinflammatory cell death, has been identified as a crucial pathological link of cerebral I/R injuries. However, whether pyroptosis acts as a trigger of Aβ accumulation after cerebral I/R has not yet been demonstrated. Blood-brain barrier (BBB) and glymphatic system mediated by aquaporin-4 (AQP-4) on astrocytic endfeet are important pathways for the clearance of Aβ in the brain, and pyroptosis especially occurring in astrocytes after cerebral I/R potentially damages BBB integrity and glymphatic function and thus influences Aβ clearance and brain homeostasis. In present study, the method of middle cerebral artery occlusion/reperfusion (MCAO/R) was used for building models of focal cerebral I/R injuries in rats. Then, we used lipopolysaccharide and glycine as the agonist and inhibitor of pyroptosis, respectively, Western blotting for detections of pyroptosis, AQP-4, and Aβ1-42 oligomers, laser confocal microscopy for observations of pyroptosis and Aβ locations, and immunohistochemical stainings of SMI 71 (a specific marker for BBB integrity)/AQP-4 and Nissl staining for evaluating, respectively, BBB-glymphatic system and neuronal damage. The results showed that pyroptosis obviously promoted the loss of BBB integrity and AQP-4 polarization, brain edema, Aβ accumulation, and the formation of Aβ1-42 oligomers and thus increased neuronal damage after cerebral I/R. However, glycine could inhibit cerebral I/R-induced pyroptosis by alleviating cytomembrane damage and downregulating expression levels of cleaved caspase-11/1, N-terminal gasdermin D, NLRP3 (nucleotide-binding domain, leucine-rich repeat containing protein 3), interleukin-6 (IL-6) and IL-1β and markedly abate above pathological changes. Our study revealed that pyroptosis is a considerable factor causing toxic Aβ accumulation, dysfunctional BBB-glymphatic system, and neurological deficits after cerebral I/R, suggesting that targeting pyroptosis is a potential strategy for the prevention of ischemic stroke sequelae including dementia.
Collapse
|