151
|
Singh YS, Sawarynski LE, Michael HM, Ferrell RE, Murphey-Corb MA, Swain GM, Patel BA, Andrews AM. Boron-Doped Diamond Microelectrodes Reveal Reduced Serotonin Uptake Rates in Lymphocytes from Adult Rhesus Monkeys Carrying the Short Allele of the 5-HTTLPR. ACS Chem Neurosci 2010; 1:49-64. [PMID: 20352073 DOI: 10.1021/cn900012y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Uptake resolved by high-speed chronoamperometry on a second-by-second basis has revealed important differences in brain serotonin transporter function associated with genetic variability. Here, we use chronoamperometry to investigate variations in serotonin transport in primary lymphocytes associated with the rhesus serotonin transporter gene-linked polymorphism (rh5-HTTLPR), a promoter polymorphism whose orthologs occur only in higher order primates including humans. Serotonin clearance by lymphocytes is Na(+)-dependent and inhibited by the serotonin-selective reuptake inhibitor paroxetine (Paxil®), indicative of active uptake by serotonin transporters. Moreover, reductions in serotonin uptake rates are evident in lymphocytes from monkeys with one or two copies of the short 's' allele of the rh5-HTTLPR (s/s<s/l<l/l). These findings illustrate that rh5-HTTLPR-related alterations in serotonin uptake are present during adulthood in peripheral blood cells natively expressing serotonin transporters. Moreover, they suggest that lymphocytes can be used as peripheral biomarkers for investigating genetic or pharmacologic alterations in serotonin transporter function. Use of boron-doped diamond microelectrodes for measuring serotonin uptake, in contrast to carbon fiber microelectrodes used previously in the brain, enabled these high-sensitivity and high-resolution measurements. Boron-doped diamond microelectrodes show excellent signal-to-noise and signal-to-background ratios due mainly to low background currents and are highly resistant to fouling when exposed to lymphocytes or high concentrations of serotonin.
Collapse
Affiliation(s)
| | | | | | | | | | - Greg M. Swain
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Bhavik A. Patel
- Department of Bioengineering, Imperial College London, London, U.K. SE7 2AZ
| | - Anne M. Andrews
- Departments of Chemistry,
- Veterinary and Biomedical Sciences,
- Huck Institutes of Life Sciences
- Department of Psychiatry & Biobehavioral Sciences and California NanoSystems Institute, University of California, Los Angeles, California 90024
| |
Collapse
|
152
|
Altered sleep homeostasis after restraint stress in 5-HTT knock-out male mice: a role for hypocretins. J Neurosci 2010; 29:15575-85. [PMID: 20007481 DOI: 10.1523/jneurosci.3138-09.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Restraint stress produces changes in the sleep pattern that are mainly characterized by a delayed increase in rapid eye movement sleep (REMS) amounts. Because the serotonin (5-HT) and the hypocretin (hcrt) systems that regulate REMS are interconnected, we used mutant mice deficient in the 5-HT transporter (5-HTT(-/-)) to examine the role of 5-HT and hcrt neurotransmissions in the sleep response to stress. In contrast to wild-type mice, restraint stress did not induce a delayed increase in REMS amounts in 5-HTT(-/-) mice, indicating impaired sleep homeostasis in mutants. However, pharmacological blockade of the hcrt type 1 receptor (hcrt-R1) before restraint stress restored the REMS increase in 5-HTT(-/-) mice. In line with this finding, 5-HTT(-/-) mutants displayed after restraint stress higher long-lasting activation of hypothalamic preprohcrt neurons than wild-type mice and elevated levels of the hcrt-1 peptide and the hcrt-R1 mRNA in the anterior raphe area. Thus, hypocretinergic neurotransmission was enhanced by stress in 5-HTT(-/-) mice. Furthermore, in 5-HTT(-/-) but not wild-type mice, hypothalamic levels of the 5-HT metabolite 5-hydroxyindole acetic acid significantly increased after restraint stress, indicating a marked enhancement of serotonergic neurotransmission in mutants. Altogether, our data show that increased serotonergic -and in turn hypocretinergic- neurotransmissions exert an inhibitory influence on stress-induced delayed REMS. We propose that the direct interactions between hcrt neurons in the hypothalamus and 5-HT neurons in the anterior raphe nuclei account, at least in part, for the adaptive sleep-wakefulness regulations triggered by acute stress.
Collapse
|
153
|
Uçeyler N, Schütt M, Palm F, Vogel C, Meier M, Schmitt A, Lesch KP, Mössner R, Sommer C. Lack of the serotonin transporter in mice reduces locomotor activity and leads to gender-dependent late onset obesity. Int J Obes (Lond) 2010; 34:701-11. [PMID: 20084070 DOI: 10.1038/ijo.2009.289] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Mice deficient of the serotonin transporter (5-HTT ko) mice have a reduced brain serotonin content and develop late-onset obesity. To elucidate the pathophysiology of this obesity, we analyzed the expression of the interrelated weight-regulatory molecules: brain-derived neurotrophic factor (BDNF) and leptin receptor (LR) in brain areas associated with nutrition and activity. RESEARCH DESIGN AND METHODS We investigated feeding behavior, physical activity and metabolic parameters of 5-HTT ko and wild-type mice and measured the expression of BDNF and LR in brain areas associated with nutrition and activity using quantitative real-time PCR. The influence of age, gender and fasting was analyzed. RESULTS Male 5-HTT ko mice developed obesity without hyperphagia from the age of 5 months. Physical activity was reduced in old male, but not old female, 5-HTT ko mice. The BDNF gene expression in frontal cortex was elevated in young, but reduced in old 5-HTT ko mice. Fasting failed to increase the BDNF gene expression in frontal cortex of young 5 HTT ko mice and in the hypothalamus in old 5-HTT ko mice. The fasting-induced hypothalamic increase of LR was absent in both young and old 5-HTT ko mice. CONCLUSIONS We propose that low brain serotonin level due to the 5-HTT ko genotype leads to reduced physical activity and low BDNF, which together with the lack of fasting-induced hypothalamic BDNF and LR production results in late-onset obesity. Although lack of the 5-HTT is a genetic vulnerability factor for obesity, female gender is protective.
Collapse
Affiliation(s)
- N Uçeyler
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Borue X, Condron B, Venton BJ. Both synthesis and reuptake are critical for replenishing the releasable serotonin pool in Drosophila. J Neurochem 2010; 113:188-99. [PMID: 20070864 DOI: 10.1111/j.1471-4159.2010.06588.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The two main sources of serotonin available for release are expected to be newly synthesized serotonin and serotonin recycled after reuptake by the serotonin transporter. However, their relative importance for maintaining release and the time course of regulation are unknown. We studied serotonin signaling in the ventral nerve cord of the larval Drosophila CNS. Fast-scan cyclic voltammetry at implanted microelectrodes was used to detect serotonin elicited by channelrhodopsin2-mediated depolarization. The effects of reuptake were probed by incubating in cocaine, which is selective for the serotonin transporter in Drosophila. p-chlorophenylalanine, an inhibitor of tryptophan hydroxylase2, was used to investigate the effects of synthesis. Stimulations were repeated at various intervals to assess the time course of recovery of the releasable pool. Reuptake is important for the rapid replenishment of the releasable pool, on the 1 min time scale. Synthesis is critical to the longer-term replenishment (10 min) of the releasable pool, especially when reuptake is also inhibited. Concurrent synthesis and reuptake inhibition decreased both serotonin tissue content measured by immunohistochemistry (by 50%) and the initial amount of evoked serotonin (by 65%). Decreases in evoked serotonin are rescued by inhibiting action potential propagation with tetrodotoxin, implicating endogenous activity in the depletion. These results show synthesis is necessary to replenish part of the releasable serotonin pool that is depleted after reuptake inhibition, suggesting that regulation of synthesis may modulate the effects of serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Xenia Borue
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22904, USA
| | | | | |
Collapse
|
155
|
|
156
|
Guimarães FS, Zangrossi H, Del Ben CM, Graeff FG. Serotonin in Panic and Anxiety Disorders. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70105-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
157
|
Brigman JL, Mathur P, Harvey-White J, Izquierdo A, Saksida LM, Bussey TJ, Fox S, Deneris E, Murphy DL, Holmes A. Pharmacological or genetic inactivation of the serotonin transporter improves reversal learning in mice. Cereb Cortex 2009; 20:1955-63. [PMID: 20032063 DOI: 10.1093/cercor/bhp266] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Growing evidence supports a major contribution of cortical serotonin (5-hydroxytryptamine, 5-HT) to the modulation of cognitive flexibility and the cognitive inflexibility evident in neuropsychiatric disorders. The precise role of 5-HT and the influence of 5-HT gene variation in mediating this process is not fully understood. Using a touch screen-based operant system, we assessed reversal of a pairwise visual discrimination as an assay for cognitive flexibility. Effects of constitutive genetic or pharmacological inactivation of the 5-HT transporter (5-HTT) on reversal were examined by testing 5-HTT null mice and chronic fluoxetine-treated C57BL/6J mice, respectively. Effects of constitutive genetic loss or acute pharmacological depletion of 5-HT were assessed by testing Pet-1 null mice and para-chlorophenylalanine (PCPA)-treated C57BL/6J mice, respectively. Fluoxetine-treated C57BL/6J mice made fewer errors than controls during the early phase of reversal when perseverative behavior is relatively high. 5-HTT null mice made fewer errors than controls in completing the reversal task. However, reversal in Pet-1 null and PCPA-treated C57BL/6J mice was not different from controls. These data further support an important role for 5-HT in modulating reversal learning and provide novel evidence that inactivating the 5-HTT improves this process. These findings could have important implications for understanding and treating cognitive inflexibility in neuropsychiatric disease.
Collapse
Affiliation(s)
- Jonathan L Brigman
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, MD 20852-9411, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Dudok JJ, Groffen AJA, Witter MP, Voorn P, Verhage M. Chronic activation of the 5-HT(2) receptor reduces 5-HT neurite density as studied in organotypic slice cultures. Brain Res 2009; 1302:1-9. [PMID: 19728996 DOI: 10.1016/j.brainres.2009.08.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/27/2009] [Accepted: 08/21/2009] [Indexed: 11/19/2022]
Abstract
The serotonin system densely innervates the brain and is implicated in psychopathological processes. Here we studied the effect of serotonin and serotonin pharmacological compounds on the outgrowth of serotonergic projections using organotypic slice co-cultures of hippocampus and dorsal raphe nuclei. Immunocytochemical analysis showed that several serotonergic neurites had grown into the target slice within 7 days in culture, after which the neurite density stabilized. These projections expressed the serotonin-synthesizing enzyme Tryptophan hydroxylase and the serotonin transporter and contained several serotonin-positive varicosities that also accumulated presynaptic markers. Chronic application of a 5-HT(2) agonist reduced the serotonergic neurite density, without effects on survival of serotonergic neurons. In contrast, application of a 5-HT(1A) agonist or the serotonin transporter inhibitor fluoxetine did not affect serotonergic neurite density. We conclude that serotonergic connectivity was reproduced in vitro and that the serotonin neurite density is inhibited by chronic activation of the 5-HT(2) receptor.
Collapse
Affiliation(s)
- Jacobus J Dudok
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
159
|
Honig G, Jongsma ME, van der Hart MCG, Tecott LH. Chronic citalopram administration causes a sustained suppression of serotonin synthesis in the mouse forebrain. PLoS One 2009; 4:e6797. [PMID: 19710918 PMCID: PMC2728775 DOI: 10.1371/journal.pone.0006797] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/04/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Serotonin (5-HT) is a neurotransmitter with important roles in the regulation of neurobehavioral processes, particularly those regulating affect in humans. Drugs that potentiate serotonergic neurotransmission by selectively inhibiting the reuptake of serotonin (SSRIs) are widely used for the treatment of psychiatric disorders. Although the regulation of serotonin synthesis may be an factor in SSRI efficacy, the effect of chronic SSRI administration on 5-HT synthesis is not well understood. Here, we describe effects of chronic administration of the SSRI citalopram (CIT) on 5-HT synthesis and content in the mouse forebrain. METHODOLOGY/PRINCIPAL FINDINGS Citalopram was administered continuously to adult male C57BL/6J mice via osmotic minipump for 2 days, 14 days or 28 days. Plasma citalopram levels were found to be within the clinical range. 5-HT synthesis was assessed using the decarboxylase inhibition method. Citalopram administration caused a suppression of 5-HT synthesis at all time points. CIT treatment also caused a reduction in forebrain 5-HIAA content. Following chronic CIT treatment, forebrain 5-HT stores were more sensitive to the depleting effects of acute decarboxylase inhibition. CONCLUSIONS/SIGNIFICANCE Taken together, these results demonstrate that chronic citalopram administration causes a sustained suppression of serotonin synthesis in the mouse forebrain. Furthermore, our results indicate that chronic 5-HT reuptake inhibition renders 5-HT brain stores more sensitive to alterations in serotonin synthesis. These results suggest that the regulation of 5-HT synthesis warrants consideration in efforts to develop novel antidepressant strategies.
Collapse
Affiliation(s)
- Gerard Honig
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA.
| | | | | | | |
Collapse
|
160
|
Kalueff AV, Olivier JDA, Nonkes LJP, Homberg JR. Conserved role for the serotonin transporter gene in rat and mouse neurobehavioral endophenotypes. Neurosci Biobehav Rev 2009; 34:373-86. [PMID: 19698744 DOI: 10.1016/j.neubiorev.2009.08.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
The serotonin transporter knockout (SERT(-/-)) mouse, generated in 1998, was followed by the SERT(-/-) rat, developed in 2006. The availability of SERT(-/-) rodents creates the unique possibility to study the conservation of gene function across species. Here we summarize SERT(-/-) mouse and rat data, and discuss species (dis)similarities in neurobehavioral endophenotypes. Both SERT(-/-) rodent models show a disturbed serotonergic system, altered nociception, higher anxiety, decreased social behavior, as well as increased negative emotionality, behavioral inhibition and decision making. Used to model a wide range of psychiatric disorders, SERT(-/-) rodents may be particularly valuable in research on neurodevelopmental disorders such as depression, anxiety, and possibly autism. We conclude that SERT function is conserved across mice and rats and that their behavioral profile arises from common neurodevelopmental alterations. Because mice and rats have species-specific characteristics that confer differential research advantages, a comparison of the two models has heuristic value in understanding the mechanisms and behavioral outcome of SERT genetic variation in humans.
Collapse
Affiliation(s)
- A V Kalueff
- Department of Pharmacology, Tulane University Medical School, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
161
|
Koskela A, Kauppinen T, Keski‐Rahkonen A, Sihvola E, Kaprio J, Rissanen A, Ahonen A. Brain Serotonin Transporter Binding of [123I]ADAM: Within‐Subject Variation between Summer and Winter Data. Chronobiol Int 2009; 25:657-65. [DOI: 10.1080/07420520802380000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
162
|
Babu DK, Diaz A, Samikkannu T, Rao KVK, Saiyed ZM, Rodriguez JW, Nair MPN. Upregulation of serotonin transporter by alcohol in human dendritic cells: possible implication in neuroimmune deregulation. Alcohol Clin Exp Res 2009; 33:1731-8. [PMID: 19572987 DOI: 10.1111/j.1530-0277.2009.01010.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Alcohol is the most widely abused substance and its chronic consumption causes neurobehavioral disorders. It has been shown that alcohol affects the function of immune cells. Dendritic cells (DC) serve as the first line of defense against infections and are known to accumulate neurotransmitters such as 5-hydroxytryptamine (5-HT). The enzyme monoamine oxidase-A (MAO-A) degrades 5-HT that is associated with clinical depression and other neurological disorders. 5-HT is selectively transported into neurons through the serotonin transporter (SERT), which is a member of the sodium- and chloride-dependent neurotransmitter transporter (SLC6) family. SERT also serves as a receptor for psychostimulant recreational drugs. It has been demonstrated that several drugs of abuse such as amphetamine and cocaine inhibit the SERT expression; however, the role of alcohol is yet to be elucidated. We hypothesize that alcohol can modulate SERT and MAO-A expression in DC, leading to reciprocal downregulation of 5-HT in extracellular medium. METHODS Dendritic cells were treated with different concentrations (0.05% to 0.2%v/v) of alcohol for 24-72 hours and processed for SERT and MAO-A expression using Q-PCR and Western blots analysis. In addition, SERT function in DC treated with alcohol both in the presence and absence of imipramine, a SERT inhibitor was measured using 4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide uptake assay. 5-HT levels in culture supernatant and intracellular 5-hydroxy indole acetic acid (5-HIAA) and cyclic AMP were also quantitated using ELISA. RESULTS Dendritic cells treated with 0.1% alcohol for 24 hours showed significant upregulation of SERT and MAO-A expression compared with untreated DC. We also observed that 0.1% alcohol enhanced the function of SERT and decreased extracellular 5-HT levels compared with untreated DC cultures, and this was associated with the elevation of intracellular 5-HIAA and cyclic AMP levels. CONCLUSIONS Our study suggests that alcohol upregulates SERT and MAO-A by elevating cyclic AMP, which may lead to decreased concentration of 5-HT in the extracellular medium. As 5-HT is a major neurotransmitter and an inflammatory mediator, its alcohol-mediated depletion may cause both neurological and immunological deregulation.
Collapse
Affiliation(s)
- Dakshayani Kadiyala Babu
- Department of Immunology, College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, Florida 33199, USA
| | | | | | | | | | | | | |
Collapse
|
163
|
Gardier AM, Guiard BP, Guilloux JP, Repérant C, Coudoré F, David DJ. Interest of using genetically manipulated mice as models of depression to evaluate antidepressant drugs activity: a review. Fundam Clin Pharmacol 2009; 23:23-42. [PMID: 19267769 DOI: 10.1111/j.1472-8206.2008.00640.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Among the multiple possibilities to study human depressive disorders, animal models remain important preclinical tools. They allow the understanding of the mechanisms of action of antidepressant drugs. Primarily developed in rat, animal models of depression have been adapted to the mouse, an easy-to-use mammal with better genetic possibilities than rats. As an example, genetic manipulation of the serotoninergic 5-hydroxytryptamine-HT; (5-HT) system provided important opportunities to investigate the role of this monoamine in mood disorders. The contribution of either constitutive knockout (KO), tissue specific, or inducible KO mice and animal models in the current knowledge of the pathophysiology and treatment of depression is unanimously recognized. The phenotype of genetically manipulated animals is strongly influenced by both the genetic background of the animal as well as environmental factors. For these reasons, it is necessary to underline that KO mice have been generated on various genetic backgrounds, which strongly influence the behavioral and neurochemical responses to the tests. The present review will thus focus on KO mice lacking G protein-coupled monoaminergic receptors (e.g; 5-HT1B, 5-HT1A, and 5-HT4 receptors) and the 5-HT serotonin transporter, which is the main target of antidepressant drugs (or strategies). The importance of KO mice for neurotrophic factors, particularly for brain-derived neurotrophic factor and its main receptor displaying a tyrosine kinase activity, will also be addressed to illustrate the fact that in preclinical studies, combination of genetic manipulations with pharmacological ones should allow further progress in the field of neuropsychopharmacology.
Collapse
Affiliation(s)
- Alain M Gardier
- Fac. Pharmacie, Univ. Paris Sud, EA 3544, Chatenay-Malabry Cedex F-92296, France.
| | | | | | | | | | | |
Collapse
|
164
|
Basselin M, Fox MA, Chang L, Bell JM, Greenstein D, Chen M, Murphy DL, Rapoport SI. Imaging elevated brain arachidonic acid signaling in unanesthetized serotonin transporter (5-HTT)-deficient mice. Neuropsychopharmacology 2009; 34:1695-709. [PMID: 19145225 PMCID: PMC2700347 DOI: 10.1038/npp.2008.227] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Certain polymorphisms reduce serotonin (5-HT) reuptake transporter (5-HTT) function and increase susceptibility to psychiatric disorders. Heterozygous (5-HTT(+/-))-deficient mice, models for humans with these polymorphisms, have elevated brain 5-HT concentrations and behavioral abnormalities. As postsynaptic 5-HT(2A/2C) receptors are coupled to cytosolic phospholipase A(2) (cPLA(2)), which releases arachidonic acid (AA) from membrane phospholipid, 5-HTT-deficient mice may have altered brain AA signaling and metabolism. To test this hypothesis, signaling was imaged as an AA incorporation coefficient k(*) in unanesthetized homozygous knockout (5-HTT(-/-)), 5-HTT(+/-) and wild-type (5-HTT(+/+)), mice following saline (baseline) or 1.5 mg/kg s.c. DOI, a partial 5-HT(2A/2C) receptor agonist. Enzyme activities, metabolite concentrations, and head-twitch responses to DOI were also measured. Baseline k(*) was widely elevated by 20-70% in brains of 5-HTT(+/-) and 5-HTT(-/-) compared to 5-HTT(+/+) mice. DOI increased k(*) in 5-HTT(+/+) mice, but decreased k(*) in 5-HTT-deficient mice. Brain cPLA(2) activity was elevated in 5-HTT-deficient mice; cyclooxygenase activity and prostaglandin E(2) and F(2alpha) and thromboxane B(2) concentrations were reduced. Head-twitch responses to DOI, although robust in 5-HTT(+/+) and 5-HTT(+/-) mice, were markedly fewer in 5-HTT(-/-) mice. Pretreatment with para-chlorophenylalanine, a 5-HT synthesis inhibitor, restored head twitches in 5-HTT(-/-) mice to levels in 5-HTT(+/+) mice. We propose that increased baseline values of k(*) in 5-HTT-deficient mice reflect tonic cPLA(2) stimulation through 5-HT(2A/2C) receptors occupied by excess 5-HT, and that reduced k(*) and head-twitch responses to DOI reflected displacement of receptor-bound 5-HT by DOI with a lower affinity. Increased baseline AA signaling in humans having polymorphisms with reduced 5-HTT function might be identified using positron emission tomography.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Meredith A. Fox
- Laboratory of Clinical Science, National Institute of Mental Health. National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisa Chang
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jane M. Bell
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dede Greenstein
- Child Psychiatry Branch, National Institute of Mental Health. National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mei Chen
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dennis L. Murphy
- Laboratory of Clinical Science, National Institute of Mental Health. National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
165
|
Hall FS, Li XF, Randall-Thompson J, Sora I, Murphy DL, Lesch KP, Caron M, Uhl GR. Cocaine-conditioned locomotion in dopamine transporter, norepinephrine transporter and 5-HT transporter knockout mice. Neuroscience 2009; 162:870-80. [PMID: 19482066 DOI: 10.1016/j.neuroscience.2009.05.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/06/2009] [Accepted: 05/26/2009] [Indexed: 01/09/2023]
Abstract
The behavioral effects of cocaine are affected by gene knockout (KO) of the dopamine transporter (DAT), the serotonin transporter (SERT) and the norepinephrine transporter (NET). The relative involvement of each of these transporters varies depending on the particular behavioral response to cocaine considered, as well as on other factors such as genetic background of the subjects. Interestingly, the effects of these gene knockouts on cocaine-induced locomotion are quite different from those on reward assessed in the conditioned place preference paradigm. To further explore the role of these genes in the rewarding effects of cocaine, the ability of five daily injections of cocaine to induce conditioned locomotion was assessed in DAT, SERT and NET KO mice. Cocaine increased locomotor activity acutely during the initial conditioning session in SERT KO and NET KO, but not DAT KO, mice. Surprisingly, locomotor responses in the cocaine-paired subjects diminished over the five conditioning sessions in SERT KO mice, while locomotor responses increased in DAT KO mice, despite the fact that they did not demonstrate any initial locomotor responses to cocaine. Cocaine-induced locomotion was unchanged over the course of conditioning in NET KO mice. In the post-conditioning assessment, conditioned locomotion was not observed in DAT KO mice, and was reduced in SERT KO and NET KO mice. These data reaffirm the central role of dopamine and DAT in the behavioral effects of cocaine. Furthermore, they emphasize the polygenic basis of cocaine-mediated behavior and the non-unitary nature of drug reward mechanisms, particularly in the context of previous studies that have shown normal cocaine-conditioned place preference in DAT KO mice.
Collapse
Affiliation(s)
- F S Hall
- Molecular Neurobiology Branch, NIDA-IRP/NIH/DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Lothe A, Boni C, Costes N, Gorwood P, Bouvard S, Le Bars D, Lavenne F, Ryvlin P. Association between triallelic polymorphism of the serotonin transporter and [18F]MPPF binding potential at 5-HT1A receptors in healthy subjects. Neuroimage 2009; 47:482-92. [PMID: 19409499 DOI: 10.1016/j.neuroimage.2009.04.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 04/11/2009] [Accepted: 04/15/2009] [Indexed: 12/30/2022] Open
Abstract
Previous [(11)C]WAY100-635 PET studies have demonstrated that the short (S) and long (L) alleles of the serotonin transporter gene-linked polymorphic region (5-HTTLPR) were associated with distinct patterns of 5-HT(1A) receptor distribution in human. However, these studies reported discordant findings and did not take into account the recent description of two functional variants of the L allele (L(A)/L(G)). To further explore this issue, we investigated the triallelic functional polymorphism of the 5-HTTLPR in 38 healthy volunteers who underwent a [(18)F]MPPF PET study of 5-HT1A receptors. We used a simplified reference tissue model to generate parametric images of [(18)F]MPPF binding potential (BP(ND)), and compared these data among the different genotypes using statistical parametric mapping and region of interest of the raphe nuclei. Homozygote carriers of the S allele demonstrated greater [(18)F]MPPF BP(ND) than carriers of the L(A) allele, but this association was only found in women. Differences in [(18)F]MPPF BP(ND) between women with and without L(A) allele were observed over large clusters encompassing the right and left temporal lobes, cingulate and perisylvian regions, as well as the right precuneus and frontal dorso-lateral cortex, and the left orbitofrontal cortex. In contrast, no difference was found between groups in the raphe nuclei. The greater [(18)F]MPPF BP(ND) observed in women homozygote carriers of the S allele could either reflect a greater 5-HT1A receptor density or a lower extracellular concentration of 5-HT. Our data suggest that any future PET studies of 5-HT1A receptors should incorporate the 5-HTTLPR polymorphism status of the population studied.
Collapse
|
167
|
Bearer EL, Zhang X, Janvelyan D, Boulat B, Jacobs RE. Reward circuitry is perturbed in the absence of the serotonin transporter. Neuroimage 2009; 46:1091-104. [PMID: 19306930 DOI: 10.1016/j.neuroimage.2009.03.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022] Open
Abstract
The serotonin transporter (SERT) modulates the entire serotonergic system in the brain and influences both the dopaminergic and norepinephrinergic systems. These three systems are intimately involved in normal physiological functioning of the brain and implicated in numerous pathological conditions. Here we use high-resolution magnetic resonance imaging (MRI) and spectroscopy to elucidate the effects of disruption of the serotonin transporter in an animal model system: the SERT knock-out mouse. Employing manganese-enhanced MRI, we injected Mn(2+) into the prefrontal cortex and obtained 3D MR images at specific time points in cohorts of SERT and normal mice. Statistical analysis of co-registered datasets demonstrated that active circuitry originating in the prefrontal cortex in the SERT knock-out is dramatically altered, with a bias towards more posterior areas (substantia nigra, ventral tegmental area, and Raphé nuclei) directly involved in the reward circuit. Injection site and tracing were confirmed with traditional track tracers by optical microscopy. In contrast, metabolite levels were essentially normal in the SERT knock-out by in vivo magnetic resonance spectroscopy and little or no anatomical differences between SERT knock-out and normal mice were detected by MRI. These findings point to modulation of the limbic cortical-ventral striatopallidal by disruption of SERT function. Thus, molecular disruptions of SERT that produce behavioral changes also alter the functional anatomy of the reward circuitry in which all the monoamine systems are involved.
Collapse
Affiliation(s)
- Elaine L Bearer
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
168
|
Rivera HM, Oberbeck DR, Kwon B, Houpt TA, Eckel LA. Estradiol increases Pet-1 and serotonin transporter mRNA in the midbrain raphe nuclei of ovariectomized rats. Brain Res 2009; 1259:51-8. [PMID: 19168037 PMCID: PMC2957819 DOI: 10.1016/j.brainres.2008.12.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/29/2008] [Accepted: 12/31/2008] [Indexed: 01/04/2023]
Abstract
Previous research has shown that estradiol increases the anorexia associated with serotonin (5-HT) neurotransmission. To examine further the putative relationship between estradiol and 5-HT, we investigated whether estradiol increases the expression of Pet-1 and the 5-HT transporter (5-HTT), two genes implicated in the development and regulation of the 5-HT system. Ovariectomized (OVX) rats (n=5-6/group) were treated with 0, 2, or 10 microg estradiol benzoate (EB) in sesame oil on 2 consecutive days. Food intake and body weight were recorded 2 days later when EB-treated rats typically display signs of behavioral estrus (e.g., reduced feeding). Following the collection of behavioral data, rats were perfused, brains were removed, and coronal sections were cut through the midbrain raphe nuclei. Pet-1 and 5-HTT mRNA levels were quantified throughout the dorsal and median raphe nuclei (DRN and MRN) by conducting in situ hybridization on free-floating tissue sections using (35)S-labeled cDNA probes. As expected, EB treatment decreased food intake and body weight on the day that modeled estrus. At this same time, EB treatment increased Pet-1 and 5-HTT mRNA levels within the DRN and MRN. We conclude that a physiologically relevant regimen of estradiol treatment in OVX rats increases Pet-1 and 5-HTT mRNA levels in the midbrain raphe nuclei at a time when the anorexigenic effect of estradiol is apparent. Further studies are required to determine whether the increased expression of Pet-1 and 5-HTT mRNA plays a causal role in the anorexigenic effect of estradiol.
Collapse
Affiliation(s)
- Heidi M. Rivera
- Department of Psychology, Florida State University, Tallahassee, FL 32306-4301
| | - Denesa R. Oberbeck
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4340, USA
| | - Bumsup Kwon
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4340, USA
| | - Thomas A. Houpt
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4340, USA
| | - Lisa A. Eckel
- Department of Psychology, Florida State University, Tallahassee, FL 32306-4301
| |
Collapse
|
169
|
Mutant mouse models and antidepressant drug research: focus on serotonin and brain-derived neurotrophic factor. Behav Pharmacol 2009; 20:18-32. [PMID: 19179848 DOI: 10.1097/fbp.0b013e3283243fcd] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several lines of knockout (KO) mice have been evaluated as models of depression-related behavioral and neurobiological changes, and used to investigate molecular and cellular mechanisms underlying the activity of antidepressant drugs. Adult neurogenesis and brain 5-hydroxytryptamine (5-HT)/neurotrophic factor interactions have recently attracted great interest in relation to the mechanism of action of antidepressant drugs. The present review focuses primarily on genetic manipulation of the serotoninergic (5-HT) system. Basal neurochemical and behavioral changes occurring in mice lacking the 5-HT transporter (SERT), which is the main target of antidepressant drugs, as well as in those lacking G protein-coupled serotonin receptors (e.g. 5-HT1B, 5-HT1A, and 5-HT4 receptors) are described and evaluated. The importance of KO mice for neurotrophic factors, particularly for brain-derived neurotrophic factor and its high-affinity receptor (R-TrkB), is also addressed. Constitutive KO, tissue specific, or inducible KO mice targeting both 5-HT and brain-derived neurotrophic factor systems may potentially make an important contribution to knowledge of the pathophysiology and treatment of depression.
Collapse
|
170
|
Excess of serotonin affects embryonic interneuron migration through activation of the serotonin receptor 6. Mol Psychiatry 2009; 14:280-90. [PMID: 18663366 DOI: 10.1038/mp.2008.89] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The discovery that a common polymorphism (5-HTTLPR, short variant) in the human serotonin transporter gene (SLC6A4) can influence personality traits and increase the risk for depression in adulthood has led to the hypothesis that a relative increase in the extracellular levels of serotonin (5-HT) during development could be critical for the establishment of brain circuits. Consistent with this idea, a large body of data demonstrate that 5-HT is a strong neurodevelopmental signal that can modulate a wide variety of cellular processes. In humans, serotonergic fibers appear in the developing cortex as early as the 10th gestational week, a period of intense neuronal migration. In this study we hypothesized that an excess of 5-HT could affect embryonic cortical interneuron migration. Using time-lapse videometry to monitor the migration of interneurons in embryonic mouse cortical slices, we discovered that the application of 5-HT decreased interneuron migration in a reversible and dose-dependent manner. We next found that 5-HT6 receptors were expressed in cortical interneurons and that 5-HT6 receptor activation decreased interneuron migration, whereas 5-HT6 receptor blockade prevented the migratory effects induced by 5-HT. Finally, we observed that interneurons were abnormally distributed in the cerebral cortex of serotonin transporter gene (Slc6a4) knockout mice that have high levels of extracellular 5-HT. These results shed new light on the neurodevelopmental alterations caused by an excess of 5-HT during the embryonic period and contribute to a better understanding of the cellular processes that could be modulated by genetically controlled differences in human 5-HT homeostasis.
Collapse
|
171
|
Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions. Behav Pharmacol 2008; 19:566-74. [PMID: 18690111 DOI: 10.1097/fbp.0b013e32830cd80f] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antidepressant drugs produce therapeutic actions and many of their side effects via blockade of the plasma membrane transporters for serotonin (SERT/SLC6A2), norepinephrine (NET/SLC6A1), and dopamine (DAT/SLC6A3). Many antidepressants block several of these transporters; some are more selective. Mouse gene knockouts of these transporters provide interesting models for possible effects of chronic antidepressant treatments. To examine the role of monoamine transporters in models of depression DAT, NET, and SERT knockout (KO) mice and wild-type littermates were studied in the forced swim test (FST), the tail suspension test, and for sucrose consumption. To dissociate general activity from potential antidepressant effects three types of behavior were assessed in the FST: immobility, climbing, and swimming. In confirmation of earlier reports, both DAT KO and NET KO mice exhibited less immobility than wild-type littermates whereas SERT KO mice did not. Effects of DAT deletion were not simply because of hyperactivity, as decreased immobility was observed in DAT+/- mice that were not hyperactive as well as in DAT-/- mice that displayed profound hyperactivity. Climbing was increased, whereas swimming was almost eliminated in DAT-/- mice, and a modest but similar effect was seen in NET KO mice, which showed a modest decrease in locomotor activity. Combined increases in climbing and decreases in immobility are characteristic of FST results in antidepressant animal models, whereas selective effects on swimming are associated with the effects of stimulant drugs. Therefore, an effect on climbing is thought to more specifically reflect antidepressant effects, as has been observed in several other proposed animal models of reduced depressive phenotypes. A similar profile was observed in the tail suspension test, where DAT, NET, and SERT knockouts were all found to reduce immobility, but much greater effects were observed in DAT KO mice. However, to further determine whether these effects of DAT KO in animal models of depression may be because of the confounding effects of hyperactivity, mice were also assessed in a sucrose consumption test. Sucrose consumption was increased in DAT KO mice consistent with reduced anhedonia, and inconsistent with competitive hyperactivity; no increases were observed in SERT KO or NET KO mice. In summary, the effects of DAT KO in animal models of depression are larger than those produced by NET or SERT KO, and unlikely to be simply the result of the confounding effects of locomotor hyperactivity; thus, these data support reevaluation of the role that DAT expression could play in depression and the potential antidepressant effects of DAT blockade.
Collapse
|
172
|
Neurochemical, behavioral, and physiological effects of pharmacologically enhanced serotonin levels in serotonin transporter (SERT)-deficient mice. Psychopharmacology (Berl) 2008; 201:203-18. [PMID: 18712364 PMCID: PMC2584159 DOI: 10.1007/s00213-008-1268-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 07/17/2008] [Indexed: 02/07/2023]
Abstract
RATIONALE Serotonin transporter (SERT) knockout (-/-) mice have an altered phenotype in adulthood, including high baseline anxiety and depressive-like behaviors, associated with increased baseline extracellular serotonin levels throughout life. OBJECTIVES To examine the effects of increases in serotonin following the administration of the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) in SERT wild-type (+/+), heterozygous (+/-), and -/- mice. RESULTS 5-HTP increased serotonin in all five brain areas examined with approximately 2- to 5-fold increases in SERT+/+ and +/- mice, and with greater 4.5- to 11.7-fold increases in SERT-/- mice. Behaviorally, 5-HTP induced exaggerated serotonin syndrome behaviors in SERT-/-, mice with similar effects in male and female mice. Studies suggest promiscuous serotonin uptake by the dopamine transporter (DAT) in SERT-/- mice, and here, the DAT blocker GBR 12909 enhanced 5-HTP-induced behaviors in SERT-/- mice. Physiologically, 5-HTP induced exaggerated temperature effects in SERT-deficient mice. The 5-HT1A antagonist WAY 100635 decreased 5-HTP-induced hypothermia in SERT+/+ and +/- mice with no effect in SERT-/- mice, whereas the 5-HT7 antagonist SB 269970 decreased this exaggerated response in SERT-/- mice only. WAY 100635 and SB 269970 together completely blocked 5-HTP-induced hypothermia in SERT+/- and -/- mice. CONCLUSIONS These studies demonstrate that SERT-/- mice have exaggerated neurochemical, behavioral, and physiological responses to further increases in serotonin, and provide the first evidence of intact 5-HT7 receptor function in SERT-/- mice, with interesting interactions between 5-HT1A and 5-HT7 receptors. As roles for 5-HT7 receptors in anxiety and depression were recently established, the current findings have implications for understanding the high anxiety and depressive-like phenotype of SERT-deficient mice.
Collapse
|
173
|
Murphy DL, Fox MA, Timpano KR, Moya PR, Ren-Patterson R, Andrews AM, Holmes A, Lesch KP, Wendland JR. How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology 2008; 55:932-60. [PMID: 18824000 PMCID: PMC2730952 DOI: 10.1016/j.neuropharm.2008.08.034] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 08/15/2008] [Accepted: 08/15/2008] [Indexed: 12/19/2022]
Abstract
Discovered and crystallized over sixty years ago, serotonin's important functions in the brain and body were identified over the ensuing years by neurochemical, physiological and pharmacological investigations. This 2008 M. Rapport Memorial Serotonin Review focuses on some of the most recent discoveries involving serotonin that are based on genetic methodologies. These include examples of the consequences that result from direct serotonergic gene manipulation (gene deletion or overexpression) in mice and other species; an evaluation of some phenotypes related to functional human serotonergic gene variants, particularly in SLC6A4, the serotonin transporter gene; and finally, a consideration of the pharmacogenomics of serotonergic drugs with respect to both their therapeutic actions and side effects. The serotonin transporter (SERT) has been the most comprehensively studied of the serotonin system molecular components, and will be the primary focus of this review. We provide in-depth examples of gene-based discoveries primarily related to SLC6A4 that have clarified serotonin's many important homeostatic functions in humans, non-human primates, mice and other species.
Collapse
Affiliation(s)
- Dennis L Murphy
- Laboratory of Clinical Science, NIMH Intramural Research Program, NIH, Building 10, Room 3D41, 10 Center Drive, MSC 1264, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Unfaithful neurotransmitter transporters: focus on serotonin uptake and implications for antidepressant efficacy. Pharmacol Ther 2008; 121:89-99. [PMID: 19022290 DOI: 10.1016/j.pharmthera.2008.10.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 01/11/2023]
Abstract
Biogenic amine transporters for serotonin, norepinephrine and dopamine (SERT, NET and DAT respectively), are the key players terminating transmission of these amines in the central nervous system by their high-affinity uptake. They are also major targets for many antidepressant drugs. Interestingly however, drugs targeted to a specific transporter do not appear to be as clinically efficacious as those that block two or all three of these transporters. A growing body of literature, reviewed here, supports the idea that promiscuity among these transporters (the uptake of multiple amines in addition to their "native" transmitter) may account for improved therapeutic effects of dual and triple uptake blockers. However, even these drugs do not provide effective treatment outcomes for all individuals. An emerging literature suggests that "non-traditional" transporters such as organic cation transporters (OCT) and the plasma membrane monoamine transporter (PMAT) may contribute to the less than hoped for efficacy of currently prescribed uptake inhibitors. OCT and PMAT are capable of clearing biogenic amines from extracellular fluid and may serve to buffer the effects of frontline antidepressants, such as selective serotonin reuptake inhibitors. In addition, polymorphisms that occur in the genes encoding the transporters can lead to variation in transporter expression and function (e.g. the serotonin transporter linked polymorphic region; 5-HTTLPR) and can have profound effects on treatment outcome. This may be accounted for, in part, by compensatory adaptations in other transporters. This review synthesizes the existing literature, focusing on serotonin to illustrate and revive a model for the rationale design of improved antidepressants.
Collapse
|
175
|
Abstract
Obsessive–compulsive disorder (OCD) is a psychiatric disorder consisting of obsessions and compulsions. Over the past two decades, it has been suggested that OCD might be related to the functioning of brain serotonin systems, mainly because of the antiobsessional efficacy of selective serotonin-reuptake inhibitors (SSRIs). Although the efficacy of SSRIs suggests a role of the serotonergic system in OCD, the exact function of serotonin is still unclear. Is the serotonergic system implicated in the pathophysiology of OCD, or is it implicated in the treatment effect in OCD? Do SSRIs compensate for a fundamental abnormality of the serotonergic system, or do SSRIs modulate an intact serotonergic system to compensate for another neurotransmitter mechanism? This review summarizes evidence supporting a role for the serotonin transporter and serotonin receptor subtypes in the pathophysiology and treatment of OCD.
Collapse
Affiliation(s)
- Addy van Dijk
- University of Amsterdam, Department of Psychiatry, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Andre Klompmakers
- University of Amsterdam, Department of Psychiatry, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Damiaan Denys
- University of Amsterdam, PA.2–179, PO Box 75867, 1070 AW Amsterdam, The Netherlands
| |
Collapse
|
176
|
Holmes A. Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci Biobehav Rev 2008; 32:1293-314. [PMID: 18439676 DOI: 10.1016/j.neubiorev.2008.03.006] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 02/20/2008] [Indexed: 01/09/2023]
Abstract
The serotonin system is strongly implicated in the pathophysiology and therapeutic alleviation of stress-related disorders such as anxiety and depression. Serotonergic modulation of the acute response to stress and the adaptation to chronic stress is mediated by a myriad of molecules controlling serotonin neuron development (Pet-1), synthesis (tryptophan hydroxylase 1 and 2 isozymes), packaging (vesicular monoamine transporter 2), actions at presynaptic and postsynaptic receptors (5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C, 5-HT3A, 5-HT4, 5-HT5A, 5-HT6, 5-HT7), reuptake (serotonin transporter), and degradation (monoamine oxidase A). A growing body of evidence from preclinical rodents models, and especially genetically modified mice and inbred mouse strains, has provided significant insight into how genetic variation in these molecules can affect the development and function of a key neural circuit between the dorsal raphe nucleus, medial prefrontal cortex and amygdala. By extension, such variation is hypothesized to have a major influence on individual differences in the stress response and risk for stress-related disease in humans. The current article provides an update on this rapidly evolving field of research.
Collapse
Affiliation(s)
- Andrew Holmes
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, 5625 Fishers Lane Room 2N09, Rockville, MD 20852-9411, USA.
| |
Collapse
|
177
|
Li A, Nattie E. Serotonin transporter knockout mice have a reduced ventilatory response to hypercapnia (predominantly in males) but not to hypoxia. J Physiol 2008; 586:2321-9. [PMID: 18356199 DOI: 10.1113/jphysiol.2008.152231] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Medullary serotonergic (5-HT) neurons are implicated in central chemoreception and 5-HT abnormalities are present in many cases of the sudden infant death syndrome (SIDS). Mice with a targeted disruption of the serotonin transporter (5-HTT) develop in the presence of excess 5-HT in brain extracellular fluid (ECF). As adults they exhibit reduced 5-HT neuron activity and 5-HT1A receptor binding with varying changes in postsynaptic 5-HT receptor function. They exhibit behavioural phenotypes (anxiety, reduced aggression) but little is known about their control of breathing. We show that conscious adult male and female 5-HTT knockout mice breathing air at room temperature have a higher resting (.)VO2, breathing frequency and (.)VE but a normal body temperature and (.)VE/ (.)VO2 ratio (the ventilatory equivalent) compared to wild-type (WT) controls. In hypercapnia, there is a reduced ventilatory response (expressed as the (.)VE/ (.)VO2 ratio) that is much more prominent in males (-68%) than females (-22%). In hypoxia, both males and females exhibit a higher (.)VE, (.)VO2 and body temperature but their (.)VE/ (.)VO2 ratio is normal. We conclude that 5-HTT knockout mice have a diminished function of the medullary 5-HT system, which is manifest most remarkably in a substantial loss of CO2 sensitivity predominantly in males. This finding supports the importance of medullary 5-HT neurons in central chemoreception. Females either rely less on 5-HT neurons in chemoreception or adapt more readily to the loss of 5-HT function. This genetic model allows examination of the role of excess 5-HT in ECF in the development of the control of breathing and central chemoreception, which may be pertinent to SIDS.
Collapse
Affiliation(s)
- Aihua Li
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756-0001, USA.
| | | |
Collapse
|
178
|
Koskela AK, Kaurijoki S, Pietiläinen KH, Karhunen L, Pesonen U, Kuikka JT, Kaprio J, Rissanen A. Serotonin transporter binding and acquired obesity — An imaging study of monozygotic twin pairs. Physiol Behav 2008; 93:724-32. [PMID: 18177905 DOI: 10.1016/j.physbeh.2007.11.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 10/02/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
|
179
|
Perspectives on genetic animal models of serotonin toxicity. Neurochem Int 2008; 52:649-58. [DOI: 10.1016/j.neuint.2007.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 08/23/2007] [Accepted: 08/29/2007] [Indexed: 12/28/2022]
|
180
|
Murphy DL, Lesch KP. Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 2008; 9:85-96. [DOI: 10.1038/nrn2284] [Citation(s) in RCA: 344] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
181
|
Guiard BP, David DJP, Deltheil T, Chenu F, Le Maître E, Renoir T, Leroux-Nicollet I, Sokoloff P, Lanfumey L, Hamon M, Andrews AM, Hen R, Gardier AM. Brain-derived neurotrophic factor-deficient mice exhibit a hippocampal hyperserotonergic phenotype. Int J Neuropsychopharmacol 2008; 11:79-92. [PMID: 17559709 DOI: 10.1017/s1461145707007857] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growing evidence supports the involvement of brain-derived neurotrophic factor (BDNF) in mood disorders and the mechanism of action of antidepressant drugs. However, the relationship between BDNF and serotonergic signalling is poorly understood. Heterozygous mutants BDNF +/- mice were utilized to investigate the influence of BDNF on the serotonin (5-HT) system and the activity of the serotonin transporter (SERT) in the hippocampus. The zero net flux method of quantitative microdialysis revealed that BDNF +/- heterozygous mice have increased basal extracellular 5-HT levels in the hippocampus and decreased 5-HT reuptake capacity. In keeping with these results, the selective serotonin reuptake inhibitor paroxetine failed to increase hippocampal extracellular 5-HT levels in BDNF +/- mice while it produced robust effects in wild-type littermates. Using in-vitro autoradiography and synaptosome techniques, we investigated the causes of attenuated 5-HT reuptake in BDNF +/- mice. A significant decrease in [3H]citalopram-binding-site density in the CA3 subregion of the ventral hippocampus and a significant reduction in [3H]5-HT uptake in hippocampal synaptosomes, revealed mainly a decrease in SERT function. However, 5-HT1A autoreceptors were not desensitized in BDNF +/- mice. These results provide evidence that constitutive reductions in BDNF modulate SERT function reuptake in the hippocampus.
Collapse
Affiliation(s)
- Bruno P Guiard
- Université Paris-Sud, EA3544, Faculté de Pharmacie, Chatenay-Malabry, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Guimarães FS, Carobrez AP, Graeff FG. Chapter 4.3 Modulation of anxiety behaviors by 5-HT-interacting drugs. HANDBOOK OF ANXIETY AND FEAR 2008. [DOI: 10.1016/s1569-7339(07)00012-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
183
|
Olivier JDA, Van Der Hart MGC, Van Swelm RPL, Dederen PJ, Homberg JR, Cremers T, Deen PMT, Cuppen E, Cools AR, Ellenbroek BA. A study in male and female 5-HT transporter knockout rats: an animal model for anxiety and depression disorders. Neuroscience 2008; 152:573-84. [PMID: 18295409 DOI: 10.1016/j.neuroscience.2007.12.032] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/24/2007] [Accepted: 12/28/2007] [Indexed: 12/16/2022]
Abstract
Human studies have shown that a reduction of 5-HT transporter (SERT) increases the vulnerability for anxiety and depression. Moreover, women are more vulnerable to develop depression and anxiety disorders than men. For that reason we hypothesized that homozygous 5-HT transporter knockout rat (SERT(-/-)) models, especially female, are valuable and reliable animal models for humans with an increased vulnerability for anxiety- and depression-related disorders. As rats are extensively used in neuroscience research, we used the unique 5-HT transporter knockout rat, that was recently generated using N-ethyl-N-nitrosurea (ENU) -driven mutagenesis, to test this hypothesis. Behavioral testing revealed that male and female SERT(-/-) rats spent less time in the center of the open field and spent less time on the open arm of the elevated plus maze compared with wild-type 5-HT transporter knockout rats (SERT(+/+)). In the novelty suppressed feeding test, only male SERT(-/-) rats showed a higher latency before starting to eat in a bright novel arena compared with SERT(+/+) controls. Both male and female SERT(-/-) rats showed a higher escape latency from their home cage than SERT(+/+) littermates. Moreover, SERT(-/-) rats were less mobile in the forced swim test, and sucrose consumption was reduced in SERT(-/-) rats relative to SERT(+/+) rats. Both effects were sex-independent. Neurochemically, basal extracellular 5-HT levels were elevated to a similar extent in male and female SERT(-/-) rats, which was not influenced by the selective 5-HT reuptake inhibitor citalopram. 5-HT immunostaining revealed no difference between SERT(+/+) and SERT(-/-) rats in the dorsal raphe nuclei, in both males and females. These findings demonstrate that SERT(-/-) rats show anxiety and depression-related behavior, independent of sex. Genetic inactivation of the SERT has apparently such a great impact on behavior, that hardly any differences are found between male and female rats. This knockout rat model may provide a valuable model to study anxiety- and depression-related disorders in male and female rats.
Collapse
Affiliation(s)
- J D A Olivier
- Department of Cognitive Neuroscience: Psychoneuropharmacology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Jennings KA, Sheward WJ, Harmar AJ, Sharp T. Evidence that genetic variation in 5-HT transporter expression is linked to changes in 5-HT2A receptor function. Neuropharmacology 2007; 54:776-83. [PMID: 18241894 DOI: 10.1016/j.neuropharm.2007.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/06/2007] [Accepted: 12/06/2007] [Indexed: 01/05/2023]
Abstract
Variability in expression of the 5-HT transporter (5-HTT) gene in the human population has been associated with a range of behavioural phenotypes. The underlying mechanisms are unclear but may involve changes in 5-HT receptor levels and/or signalling. The present study used a novel 5-HTT overexpressing transgenic mouse to test the hypothesis that variability in 5-HTT expression may alter 5-HT(2A) receptor function. In wildtype mice, the 5-HT(2) receptor agonist DOI increased regional brain mRNA expression of two immediate early genes (c-fos and Arc), and induced head twitches, and both effects were abolished by pre-treatment with the 5-HT(2A) receptor antagonist MDL 100907. In 5-HTT overexpressing mice, DOI induced a greater increase in both c-fos and Arc mRNA expression in cortical brain regions, and more head twitches, compared to wildtype mice. Autoradiographic and in situ hybridisation experiments showed that 5-HT(2A) receptor binding sites and 5-HT(2A) receptor mRNA did not differ between transgenic and wildtype mice. Finally, the transgenic mice had lower regional brain 5-HT levels compared to wildtype mice. This depletion of 5-HT may underpin the increase in 5-HT(2A) receptor function because in wildtype mice 5-HT depletion using the 5-HT synthesis inhibitor, p-chlorophenylalanine, enhanced the head twitch response to DOI. These data demonstrate that elevated 5-HTT expression is accompanied by increased 5-HT(2A) receptor function, an effect possibly mediated by decreased availability of synaptic 5-HT. Variation in levels of 5-HTT expression may therefore be a source of variability in 5-HT(2A) receptor function, which may be an important modifier of 5-HTT-linked phenotypes.
Collapse
Affiliation(s)
- K A Jennings
- University Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, UK.
| | | | | | | |
Collapse
|
185
|
Fox MA, Andrews AM, Wendland JR, Lesch KP, Holmes A, Murphy DL. A pharmacological analysis of mice with a targeted disruption of the serotonin transporter. Psychopharmacology (Berl) 2007; 195:147-66. [PMID: 17712549 DOI: 10.1007/s00213-007-0910-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 06/28/2007] [Indexed: 12/16/2022]
Abstract
RATIONALE Partial or complete ablation of serotonin transporter (SERT) expression in mice leads to altered responses to serotonin receptor agonists and other classes of drugs. OBJECTIVES In the current report, we review and integrate many of the major behavioral, physiological, and neurochemical findings in the current literature regarding pharmacological assessments made in SERT mutant mice. RESULTS The absence of normal responses to serotonin reuptake inhibiting (SRI) antidepressants in SERT knockout (-/-) mice demonstrates that actions on SERT are a critical principle mechanism of action of members of this class of antidepressants. Drugs transported by SERT, (+)-3,4-methylenedioxymethamphetamine (MDMA) and 1-methyl-4-(2'-aminophenyl)-1,2,3,6-tetrahydropyridine (2'-NH(2)-MPTP), are also inactive in SERT -/- mice. Temperature, locomotor, and electrophysiological responses to various serotonin receptor agonists, including 8-hydroxy-2-(di-n-propylamino)-tetraline (8-OH-DPAT), ipsapirone, and RU24969, are reduced in SERT -/- mice, despite comparatively lesser reductions in Htr1a and Htr1b binding sites, G-proteins, and other signaling molecules. SERT -/- mice exhibit an approximately 90% reduction in head twitches in response to the Htr2a/2c agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), associated with a profound reduction in arachidonic acid signaling, yet only modest changes in Htr2a and Htr2c binding sites. SERT -/- mice also exhibit altered behavioral responses to cocaine and ethanol, related to abnormal serotonin, and possibly dopamine and norepinephrine, homeostasis. CONCLUSIONS Together, these studies demonstrate a complex and varied array of modified drug responses after constitutive deletion of SERT and provide insight into the role of serotonin, and in particular, its transporter, in the modulation of complex behavior and in the pharmacological actions of therapeutic agents and drugs of abuse.
Collapse
Affiliation(s)
- Meredith A Fox
- Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Building 10, Room 3D41, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
186
|
O'Reilly KC, Trent S, Bailey SJ, Lane MA. 13-cis-Retinoic acid alters intracellular serotonin, increases 5-HT1A receptor, and serotonin reuptake transporter levels in vitro. Exp Biol Med (Maywood) 2007; 232:1195-203. [PMID: 17895527 DOI: 10.3181/0703-rm-83] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In addition to their established role in nervous system development, vitamin A and related retinoids are emerging as regulators of adult brain function. Accutane (13-cis-retinoic acid, isotretinoin) treatment has been reported to increase depression in humans. Recently, we showed that chronic administration of 13-cis-retinoic acid (13-cis-RA) to adolescent male mice increased depression-related behaviors. Here, we have examined whether 13-cis-RA regulates components involved in serotonergic neurotransmission in vitro. We used the RN46A-B14 cell line, derived from rat embryonic raphe nuclei. This cell line synthesizes serotonin (5-hydroxytryptamine, 5-HT) and expresses the 5-HT(1A) receptor and the serotonin reuptake transporter (SERT). Cells were treated with 0, 2.5, or 10 microM 13-cis-RA for 48 or 96 hrs, and the levels of 5-HT; its metabolite, 5-hydroxyindoleacetic acid (5HIAA); 5-HT(1A) receptor; and SERT were determined. Treatment with 13-cis-RA for 96 hrs increased the intracellular levels of 5-HT and tended to increase intra-cellular 5HIAA levels. Furthermore, 48 hrs of treatment with 2.5 and 10 microM 13-cis-RA significantly increased 5-HT(1A) protein to 168.5 +/- 20.0% and 148.7 +/- 2.2% of control respectively. SERT protein levels were significantly increased to 142.5 +/- 11.1% and 119.2 +/- 3.6% of control by 48 hrs of treatment with 2.5 and 10 microM of 13-cis-RA respectively. Increases in both 5-HT(1A) receptor and SERT proteins may lead to decreased serotonin availability at synapses. Such an effect of 13-cis-RA could contribute to the increased depression-related behaviors we have shown in mice.
Collapse
Affiliation(s)
- Kally C O'Reilly
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
187
|
Homberg JR, Pattij T, Janssen MCW, Ronken E, De Boer SF, Schoffelmeer ANM, Cuppen E. Serotonin transporter deficiency in rats improves inhibitory control but not behavioural flexibility. Eur J Neurosci 2007; 26:2066-73. [PMID: 17897403 DOI: 10.1111/j.1460-9568.2007.05839.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Impulsivity and aggression have been suggested to inversely correlate with central serotonin (5-HT) levels in a trait-like manner. However, this relationship is far from straightforward. In the present study we addressed the effect of lifelong reduced or absent serotonin transporter (SERT) function, which is associated with constitutively increased extracellular 5-HT levels, on impulsivity and aggression. We used unique SERT knockout rats in a resident-intruder test, five-choice serial reaction time task and serial reversal learning task to assay aggression, inhibitory control and behavioural flexibility, respectively. Homozygous SERT knockout rats (SERT( -/-)) displayed reduced aggression and improved inhibitory control, but unchanged behavioural flexibility. The behavioural phenotype of heterozygous SERT knockout rats (SERT( +/-)) was not different from that of wild-type controls in any of the behavioural paradigms. We determined monoamine (metabolite) tissue levels in the medial prefrontal cortex, orbitofrontal cortex, lateral hypothalamus, raphe nuclei and cerebrospinal fluid, and found that the 5-HT levels, but not other monoamine tissue levels, were reduced in SERT( -/-) rats. In addition, the 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio in cerebrospinal fluid was increased in these rats. In conclusion, our data show that the absence of the SERT affects aggression and inhibitory control, but not behavioural flexibility, characteristics that may reflect the trait-like consequences of constitutive changes in central 5-HT levels.
Collapse
Affiliation(s)
- Judith R Homberg
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
188
|
Trigo JM, Renoir T, Lanfumey L, Hamon M, Lesch KP, Robledo P, Maldonado R. 3,4-methylenedioxymethamphetamine self-administration is abolished in serotonin transporter knockout mice. Biol Psychiatry 2007; 62:669-79. [PMID: 17306775 DOI: 10.1016/j.biopsych.2006.11.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 11/06/2006] [Accepted: 11/08/2006] [Indexed: 11/15/2022]
Abstract
BACKGROUND The neurobiological mechanism underlying the reinforcing effects of 3,4-methylenedioxymethamphetamine (MDMA) remains unclear. The aim of the present study was to determine the contribution of the serotonin transporter (SERT) in MDMA self-administration behavior by using knockout (KO) mice deficient in SERT. METHODS Knockout mice and wild-type (WT) littermates were trained to acquire intravenous self-administration of MDMA (0, .03, .06, .125, and .25 mg/kg/infusion) on a fixed ratio 1 (FR1) schedule of reinforcement. Additional groups of mice were trained to obtain food and water to rule out operant responding impairments. Microdialysis studies were performed to evaluate dopamine (DA) and serotonin (5-HT) extracellular levels in the nucleus accumbens (NAC) and prefrontal cortex (PFC), respectively, after acute MDMA (10 mg/kg). RESULTS None of the MDMA doses tested maintained intravenous self-administration in KO animals, whereas WT mice acquired responding for MDMA. Acquisition of operant responding for food and water was delayed in KO mice, but no differences between genotypes were observed on the last day of training. MDMA increased DA extracellular levels to a similar extent in the NAC of WT and KO mice. Conversely, extracellular concentrations of 5-HT in the PFC were increased following MDMA only in WT mice. CONCLUSIONS These findings provide evidence for the specific involvement of SERT in MDMA reinforcing properties.
Collapse
Affiliation(s)
- José Manuel Trigo
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
189
|
Krall CM, Richards JB, Rabin RA, Winter JC. Marked decrease of LSD-induced stimulus control in serotonin transporter knockout mice. Pharmacol Biochem Behav 2007; 88:349-57. [PMID: 17935763 DOI: 10.1016/j.pbb.2007.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 02/05/2023]
Abstract
RATIONALE Based upon extensive studies in the rat, it has been suggested that stimulus control by LSD is mediated by 5-HT2A receptors, with serotonergic receptors of the 5-HT1A and 5-HT2C subtypes playing modulatory roles. In genetically modified mice lacking the serotonin transporter (SERT), 5-HT2A receptor density is decreased and, at a functional level, the head-twitch response following the administration of DOI, an index of activation of 5-HT2A receptors, is reduced. Taken together, these studies led us to hypothesize that the efficacy of LSD in establishing stimulus control is diminished or abolished in mice lacking the serotonin transporter. OBJECTIVE Determine the efficacy of LSD for establishing stimulus control in SERT knockout (KO) mice. METHODS SERT KO mice and wildtype (WT) littermates were trained in a visual discrimination on a progressive fixed ratio (FR) water-reinforced task and subsequently trained on a FR10 schedule with LSD (0.17 or 0.30 mg/kg) or vehicle. To control for general deficiencies in drug discrimination, mice were trained with pentobarbital (15 or 30 mg/kg) or vehicle. RESULTS The visual stimulus exerted control in both genotypes. LSD-induced stimulus control in 90% of WT mice but only 31% of SERT KO mice. In contrast, pentobarbital-induced stimulus control in 80% of WT mice and 54% of knockout mice. CONCLUSIONS Although SERT KO mice exhibited stimulus control by the non-serotonergic drug, pentobarbital, the efficacy of LSD in these animals was markedly decreased, suggesting that reduced density of 5-HT1A and/or 5-HT2A receptors underlies the absence of stimulus control by LSD.
Collapse
Affiliation(s)
- C M Krall
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, 102 Farber Hall, SUNY-Buffalo, NY 14214-3000, USA
| | | | | | | |
Collapse
|
190
|
Borue X, Chen J, Condron BG. Developmental effects of SSRIs: lessons learned from animal studies. Int J Dev Neurosci 2007; 25:341-7. [PMID: 17706396 PMCID: PMC2277509 DOI: 10.1016/j.ijdevneu.2007.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are utilized in the treatment of depression in pregnant and lactating women. SSRIs may be passed to the fetus through the placenta and the neonate through breastfeeding, potentially exposing them to SSRIs during peri- and postnatal development. However, the long-term effects of this SSRI exposure are still largely unknown. The simplicity and genetic amenability of model organisms provides a critical experimental advantage compared to studies with humans. This review will assess the current research done in animals that sheds light on the role of serotonin during development and the possible effects of SSRIs. Experimental studies in rodents show that administration of SSRIs during a key developmental window creates changes in brain circuitry and maladaptive behaviors that persist into adulthood. Similar changes result from the inhibition of the serotonin transporter or monoamine oxidase, implicating these two regulators of serotonin signaling in developmental changes. Understanding the role of serotonin in brain development is critical to identifying the possible effects of SSRI exposure.
Collapse
Affiliation(s)
- Xenia Borue
- University of Virginia Medical Scientist Training Program and University of Virginia, Neuroscience Graduate Program, Charlottesville, VA 22904
- University of Virginia Department of Biology, Charlottesville, VA 22904
| | - John Chen
- University of Virginia Medical Scientist Training Program and University of Virginia, Neuroscience Graduate Program, Charlottesville, VA 22904
- University of Virginia Department of Biology, Charlottesville, VA 22904
| | - Barry G. Condron
- University of Virginia Department of Biology, Charlottesville, VA 22904
- * Corresponding author: Barry G. Condron, University of Virginia, Department of Biology, Gilmer Hall 071, Box 400328, Charlottesville, VA 22904, Phone (434)243-6794, FAX (434)243-5315,
| |
Collapse
|
191
|
Luellen BA, Bianco LE, Schneider LM, Andrews AM. Reduced brain-derived neurotrophic factor is associated with a loss of serotonergic innervation in the hippocampus of aging mice. GENES BRAIN AND BEHAVIOR 2007; 6:482-90. [PMID: 17156118 DOI: 10.1111/j.1601-183x.2006.00279.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates monoamine neuronal growth, survival and function in development and throughout adulthood. At 18 months of age, mice with constitutive reductions in BDNF expression show decreased serotonin innervation in the hippocampus compared with age-matched wildtype mice. It is not known, however, whether age-accelerated loss of serotonergic innervation in BDNF(+/-) mice occurs in other brain regions, advances beyond 18 months or is associated with alterations in other neurotransmitter systems. In this study, immunocytochemistry was used to assess serotonergic and catecholaminergic innervation in 26-month-old BDNF(+/-) mice. Age-related loss of serotonin axons in the hippocampus was potentiated in BDNF(+/-) mice compared with wildtype mice at this late age, particularly in the CA1 subregion. By contrast, aging BDNF(+/-) mice showed increased serotonin innervation of the basomedial nucleus of the amygdala. In the noradrenergic system, BDNF(+/-) mice showed reduced numbers of cell bodies and fibers in the locus coeruleus compared with age-matched wildtype mice, whereas no changes were observed in dopaminergic innervation with respect to genotype. In vivo zero net flux microdialysis in awake mice showed a significant decrease in extracellular serotonin levels in the hippocampus in BDNF(+/-) mice at 20 months of age. Thus, reduced BDNF is associated with altered serotonergic and noradrenergic innervation in aging mice and, in particular, with accelerated loss of serotonergic innervation to the hippocampus that is manifest as a decrease in basal neurotransmission.
Collapse
Affiliation(s)
- B A Luellen
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802-4615, USA
| | | | | | | |
Collapse
|
192
|
O'Hara R, Schröder CM, Mahadevan R, Schatzberg AF, Lindley S, Fox S, Weiner M, Kraemer HC, Noda A, Lin X, Gray HL, Hallmayer JF. Serotonin transporter polymorphism, memory and hippocampal volume in the elderly: association and interaction with cortisol. Mol Psychiatry 2007; 12:544-55. [PMID: 17353910 PMCID: PMC2084475 DOI: 10.1038/sj.mp.4001978] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The s allele variant of the serotonin transporter gene (5-HTT) has recently been observed to moderate the relationship of stress to depression and anxiety. To date no study has considered interactive effects of 5-HTT genotype, stress and hypothalamic-pituitary-adrenal (HPA) function on cognition in healthy, older adults, which may reflect developmental, functional or neurodegenerative effects of the serotonin transporter polymorphism. We investigated whether 5-HTT genotype interacts with cumulative life stress and HPA-axis measures of waking and diurnal cortisol slope to impact cognition in 154 non-depressed, older adults. Structural images of hippocampal volume were acquired on a subsample of 56 participants. The 5-HTT s allele was associated with both significantly lower delayed recall and higher waking cortisol levels. Presence of the s allele interacted with higher waking cortisol to negatively impact memory. We also observed a significant interaction of higher waking cortisol and the s allele on lower hippocampal volume. Smaller hippocampi and higher cortisol were associated with lower delayed recall only in s allele carriers. No impact or interactions of cumulative life stress with 5-HTT or cortisol were observed. This is the first investigation to identify an association of the 5-HTT s allele with poorer memory function in older adults. The interactive effects of the s allele and waking cortisol levels on reduced hippocampal volume and lower memory suggest that the negative effect of the serotonin polymorphism on memory is mediated by the HPA axis. Further, given the significant association of the s allele with higher waking cortisol in our investigation, future studies may be needed to evaluate the impact of the serotonin transporter polymorphism on any neuropsychiatric or behavioral outcome which is influenced by HPA axis function in older adults.
Collapse
Affiliation(s)
- R O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA 94305-5550, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Kalueff AV, Fox MA, Gallagher PS, Murphy DL. Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice. GENES BRAIN AND BEHAVIOR 2007; 6:389-400. [PMID: 16939636 DOI: 10.1111/j.1601-183x.2006.00270.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.
Collapse
Affiliation(s)
- A V Kalueff
- Laboratory of Clinical Science, Intramural Research Program, National Institute of Mental Health (NIMH), Bethesda, MD, USA.
| | | | | | | |
Collapse
|
194
|
Homberg JR, Olivier JDA, Smits BMG, Mul JD, Mudde J, Verheul M, Nieuwenhuizen OFM, Cools AR, Ronken E, Cremers T, Schoffelmeer ANM, Ellenbroek BA, Cuppen E. Characterization of the serotonin transporter knockout rat: a selective change in the functioning of the serotonergic system. Neuroscience 2007; 146:1662-76. [PMID: 17467186 DOI: 10.1016/j.neuroscience.2007.03.030] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 03/14/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
Serotonergic signaling is involved in many neurobiological processes and disturbed 5-HT homeostasis is implicated in a variety of psychiatric and addictive disorders. Here, we describe the functional characterization of the serotonin transporter (SERT) knockout rat model, that is generated by N-ethyl-N-nitrosurea (ENU)-driven target-selected mutagenesis. Biochemical characterization revealed that SERT mRNA and functional protein are completely absent in homozygous knockout (SERT-/-) rats, and that there is a gene dose-dependent reduction in the expression and function of the SERT in heterozygous knockout rats. As a result, 5-HT homeostasis was found to be severely affected in SERT-/- rats: 5-HT tissue levels and depolarization-induced 5-HT release were significantly reduced, and basal extracellular 5-HT levels in the hippocampus were ninefold increased. Interestingly, we found no compensatory changes in in vitro activity of tryptophan hydroxylase and monoamine oxidase, the primary enzymes involved in 5-HT synthesis and degradation, respectively. Similarly, no major adaptations in non-serotonergic systems were found, as determined by dopamine and noradrenaline transporter binding, monoamine tissue levels, and depolarization-induced release of dopamine, noradrenaline, glutamate and GABA. In conclusion, neurochemical changes in the SERT knockout rat are primarily limited to the serotonergic system, making this novel rat model potentially very useful for studying the behavioral and neurobiological consequences of disturbed 5-HT homeostasis.
Collapse
Affiliation(s)
- J R Homberg
- Hubrecht Laboratory, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Hoffman JB, Kaplan JR, Kinkead B, Berga SL, Wilson ME. Metabolic and reproductive consequences of the serotonin transporter promoter polymorphism (5-HTTLPR) in adult female rhesus monkeys (Macaca mulatta). Endocrine 2007; 31:202-11. [PMID: 17873333 DOI: 10.1007/s12020-007-0017-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/12/2007] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
The serotonin (5HT) reuptake transporter (SERT) plays a key role in 5HT homeostasis by recycling 5HT into the presynaptic neurons. Recently, polymorphisms in the length of the promoter region of the gene that encodes SERT have been linked to functional differences in reactivity to psychosocial stress, as the short (s) promoter length allele shows reduced transcriptionally activity in vitro and is associated with reduced 5HT activity and increased vulnerability to affective disorders. Given 5HT's important role in appetite regulation, polymorphisms in the SERT gene could also affect metabolic parameters. In addition, since reduced 5HT activity may also predispose females to reproductive deficits, polymorphisms in the SERT gene may help explain individual differences in ovulatory function. The present study, using a rhesus monkey model, tested the hypothesis that the presence of the s-variant allele would be associated with altered metabolic regulation and impaired ovulatory cycles compared with the l/l genotype. Females homozygous for the long allele in the SERT gene (l/l, n = 19) were compared to those with the s-variant allele (l/s or s/s, n = 20). All females had similar social histories. Body weights (P = 0.026) but not heights (P = 0.618) were significantly lower in s-variant compared to l/l females. In addition, both BMI (P = 0.032) and sagittal abdominal diameters (SAD) (P = 0.031), as indices of adiposity, were significantly lower in s-variant females. Consistent with these differences, fasting and non-fasting levels of leptin were significantly lower in s-variant females (P = 0.002). While there were no genotype differences in non-fasting levels of insulin, s-variant females had significantly lower concentrations of insulin during a fast than did l/l females (P = 0.052). Neither glucose, T 3, T 4, nor ghrelin varied significantly between groups during either the fasted or non-fasted condition (P > 0.05). Analysis of a subset of females indicated that significantly fewer s-variant females (62.5%) exhibited ovulatory cycles than l/l females (100%, P < 0.05). However, there were no differences in serum estradiol or progesterone in l/l females and those s-variant females that did ovulate (P > 0.05). In addition, females with the s-variant genotype also had reduced 5HT activity (P = 0.030), assessed from the acute increase in serum prolactin following the administration of the 5HT reuptake inhibitor, citalopram. Finally, s-variant females were significantly less responsive to glucocorticoid negative feedback (P = 0.030) yet more responsive to corticotropin releasing hormone (CRH, P = 0.016) in terms of plasma cortisol than were l/l females. These data indicate that adult female rhesus monkeys with the s-variant polymorphism in the SERT gene exhibit metabolic and reproductive alterations in conjunction with reduced serotonergic responsivity and increased LHPA activity and suggest the possibility that this genotype may predispose females exposed to psychosocial stressors to further metabolic and reproductive deficits.
Collapse
Affiliation(s)
- J B Hoffman
- Division of Psychobiology, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | | | | | | | | |
Collapse
|
196
|
Wellman CL, Izquierdo A, Garrett JE, Martin KP, Carroll J, Millstein R, Lesch KP, Murphy DL, Holmes A. Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J Neurosci 2007; 27:684-91. [PMID: 17234600 PMCID: PMC6672805 DOI: 10.1523/jneurosci.4595-06.2007] [Citation(s) in RCA: 285] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A lesser-expressing form of the human 5-HT transporter (5-HTT) gene has been associated with increased fear and anxiety and vulnerability to the effects of stress. These phenotypic abnormalities are linked to functional and anatomical disturbances in a neural pathway connecting the prefrontal cortex (PFC) and amygdala. Likewise, rodent and nonhuman primate studies indicate a major role for PFC and amygdala in the mediation of fear- and stress-related behaviors. We used a 5-HTT knock-out (KO) mouse to examine the effects of genetically driven loss of 5-HTT function for the following: (1) depression-related behavior in response to repeated stress, and pavlovian fear conditioning, extinction, and extinction recall; and (2) dendritic morphology and spine density of Golgi-stained pyramidal neurons in the infralimbic cortex (IL) and the basolateral amygdala (BLA). 5-HTT KO mice exhibited increased depressive-like immobility after repeated exposure to forced swim stress, compared with wild-type (WT) controls. Whereas fear conditioning and fear extinction was normal, 5-HTT KO mice exhibited a significant deficit in extinction recall. The apical dendritic branches of IL pyramidal neurons in 5-HTT KO mice were significantly increased in length relative to WT mice. Pyramidal neurons in BLA had normal dendritic morphology but significantly greater spine density in 5-HT KO mice compared with WT mice. Together, the present findings demonstrate a specific phenotypic profile of fear- and stress-related deficits in 5-HTT KO mice, accompanied by morphological abnormalities in two key neural loci. These data provide insight into the behavioral sequelae of loss of 5-HTT gene function and identify potential neural substrates underlying these phenotypes.
Collapse
Affiliation(s)
- C. L. Wellman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405
| | - A. Izquierdo
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, Maryland 20852
| | - J. E. Garrett
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405
| | - K. P. Martin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405
| | - J. Carroll
- Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, and
| | - R. Millstein
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, Maryland 20852
| | - K.-P. Lesch
- Molecular and Clinical Psychobiology, Department of Psychiatry and Psychotherapy, University of Würzburg, Würzberg 97080, Germany
| | - D. L. Murphy
- Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, and
| | - A. Holmes
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, Maryland 20852
| |
Collapse
|
197
|
Boyce-Rustay JM, Wiedholz LM, Millstein RA, Carroll J, Murphy DL, Daws LC, Holmes A. Ethanol-related behaviors in serotonin transporter knockout mice. Alcohol Clin Exp Res 2007; 30:1957-65. [PMID: 17117959 DOI: 10.1111/j.1530-0277.2006.00241.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Increasing evidence supports a role for 5-hydroxytryptamine (5-HT) and the 5-HT transporter (5-HTT) in modulating the neural and behavioral actions of ethanol (EtOH) and other drugs of abuse. METHODS We used a 5-HTT knockout (KO) mouse model to further study this relationship. 5-Hydroxytryptamine transporter KO mice were tested for the sedative/hypnotic, hypothermia-inducing, motor-incoordinating (via accelerating rotarod), and depression-related (via tail suspension test) effects of acute EtOH administration. Reward-related effects of EtOH were assessed in 5-HTT KO mice using the conditioned place preference (CPP) paradigm. 5-Hydroxytryptamine transporter KO mice were tested for voluntary consumption of EtOH in a modified 2-bottle choice test that measured the temporal organization of drinking over the circadian cycle via "lickometers." RESULTS Replicating previous findings, 5-HTT KO mice exhibited significantly increased sensitivity to EtOH-induced sedation/hypnosis relative to wild-type controls. Additionally, 5-HTT KO mice showed motor-coordination deficits at baseline and in response to EtOH. Hypothermic, pro-depressive-like, and reward-related effects of EtOH were no different across genotypes. Gross EtOH consumption was modestly reduced in 5-HTT KO mice, due to significantly lesser consumption during the peak period of drinking in the early dark phase. CONCLUSIONS Data extend the finding that loss of 5-HTT gene function alters certain neural and behavioral effects of EtOH, with implications for better understanding the pathophysiology and treatment of alcoholism.
Collapse
Affiliation(s)
- Janel M Boyce-Rustay
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
198
|
Qu Y, Chang L, Klaff J, Seemann R, Greenstein D, Rapoport SI. Chronic fluoxetine upregulates arachidonic acid incorporation into the brain of unanesthetized rats. Eur Neuropsychopharmacol 2006; 16:561-71. [PMID: 16517130 DOI: 10.1016/j.euroneuro.2006.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Revised: 10/29/2005] [Accepted: 01/17/2006] [Indexed: 11/15/2022]
Abstract
Serotonergic 5-HT(2A/2C) receptors can be coupled to phospholipase A(2) (PLA(2)) activation to release the second messenger, arachidonic acid (AA), from membrane phospholipids. We wished to see if this signaling process in rat brain would be altered by chronic administration followed by 3days of washout of the selective serotonin reuptake inhibitor, fluoxetine. We injected [(3)H]AA intravenously in unanesthetized rats and used quantitative autoradiography to determine the incorporation coefficient k() for AA (regional brain radioactivity/integrated plasma radioactivity), a marker of PLA(2) activation, in each of 86 brain regions. k() was measured following acute i.p. saline or (+/-)-2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI, 1.0mg/kg i.p.), a 5-HT(2A/2C) receptor agonist, in rats injected for 21days with 10mg/kg i.p. fluoxetine or saline daily, followed by 3days without injection. Acute DOI produced statistically significant increments in k() in brain regions with high densities of 5-HT(2A/2C) receptors, but the increments did not differ significantly between the chronic fluoxetine- and saline-treated rats. Additionally, chronic fluoxetine compared with saline widely and significantly increased baseline values of k(). These results suggest that 5-HT(2A/2C) receptor-initiated AA signaling is unaffected by chronic fluoxetine plus 3days of washout in the rat, but that baseline AA signaling is nevertheless upregulated. This upregulation likely occurs independently of significant active drug in brain, considering the short brain half-lives of it and its norfluoxetine metabolite. Such upregulation may contribute to fluoxetine's efficacy against human depression.
Collapse
Affiliation(s)
- Ying Qu
- Brain Physiology and Metabolism Section, Building 9, Room 1S128, National Institute on Aging, National Institutes of Health, 9 Memorial Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
199
|
Brown SM, Hariri AR. Neuroimaging studies of serotonin gene polymorphisms: exploring the interplay of genes, brain, and behavior. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2006; 6:44-52. [PMID: 16869228 DOI: 10.3758/cabn.6.1.44] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Because of the unique ability it provides to investigate information processing at the level of neural systems, functional neuroimaging is a powerful tool to explore the relationship between genes, brain, and behavior. Recently, functional neuroimaging has provided dramatic illustrations of how a promoter polymorphism in the human serotonin transporter gene, which has been weakly related to several dimensions of emotional behaviors (such as neuroticism and anxiety traits), is strongly related to the engagement of neural systems--namely, the amygdala and subgenual prefrontal cortex, subserving emotional information processing. This review will outline the experimental strategy by which these genetic effects on brain function have been explored and highlight the effectiveness of this strategy to delineate biological pathways and mechanisms contributing to the emergence of individual differences in brain function that potentially bias behavior and risk for psychiatric illness.
Collapse
Affiliation(s)
- Sarah M Brown
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Room E-729, Pittsburgh, PA 15213-2593, USA
| | | |
Collapse
|
200
|
Altamura C, Dell'Acqua ML, Moessner R, Murphy DL, Lesch KP, Persico AM. Altered Neocortical Cell Density and Layer Thickness in Serotonin Transporter Knockout Mice: A Quantitation Study. Cereb Cortex 2006; 17:1394-401. [PMID: 16905592 DOI: 10.1093/cercor/bhl051] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The neurotransmitter serotonin (5-HT) plays morphogenetic roles during development, and their alteration could contribute to autism pathogenesis in humans. To further characterize 5-HT's contributions to neocortical development, we assessed the thickness and neuronal cell density of various cerebral cortical areas in serotonin transporter (5-HTT) knockout (ko) mice, characterized by elevated extracellular 5-HT levels. The thickness of layer IV is decreased in 5-HTT ko mice compared with wild-type (wt) mice. The overall effect on cortical thickness, however, depends on the genetic background of the mice. Overall cortical thickness is decreased in many cortical areas of 5-HTT ko mice with a mixed c129-CD1-C57BL/6J background. Instead, 5-HTT ko mice backcrossed into the C57BL/6J background display increases in supragranular and infragranular layers, which compensate entirely for decreased layer IV thickness, resulting in unchanged or even enhanced cortical thickness. Moreover, significant increases in neuronal cell density are found in 5-HTT ko mice with a C57BL/6J background (wt:hz:ko ratio = 1.00:1.04:1.17) but not in the mixed c129-CD1-C57BL/6J 5-HTT ko animals. These results provide evidence of 5-HTT gene effects on neocortical morphology in epistatic interaction with genetic variants at other loci and may model the effect of functional 5-HTT gene variants on neocortical development in autism.
Collapse
Affiliation(s)
- C Altamura
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Via Longoni 83, I-00155 Rome, Italy
| | | | | | | | | | | |
Collapse
|