151
|
Decreased Axon Caliber Underlies Loss of Fiber Tract Integrity, Disproportional Reductions in White Matter Volume, and Microcephaly in Angelman Syndrome Model Mice. J Neurosci 2017; 37:7347-7361. [PMID: 28663201 DOI: 10.1523/jneurosci.0037-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/24/2017] [Accepted: 06/21/2017] [Indexed: 11/21/2022] Open
Abstract
Angelman syndrome (AS) is a debilitating neurodevelopmental disorder caused by loss of function of the maternally inherited UBE3A allele. It is currently unclear how the consequences of this genetic insult unfold to impair neurodevelopment. We reasoned that by elucidating the basis of microcephaly in AS, a highly penetrant syndromic feature with early postnatal onset, we would gain new insights into the mechanisms by which maternal UBE3A loss derails neurotypical brain growth and function. Detailed anatomical analysis of both male and female maternal Ube3a-null mice reveals that microcephaly in the AS mouse model is primarily driven by deficits in the growth of white matter tracts, which by adulthood are characterized by densely packed axons of disproportionately small caliber. Our results implicate impaired axon growth in the pathogenesis of AS and identify noninvasive structural neuroimaging as a potentially valuable tool for gauging therapeutic efficacy in the disorder.SIGNIFICANCE STATEMENT People who maternally inherit a deletion or nonfunctional copy of the UBE3A gene develop Angelman syndrome (AS), a severe neurodevelopmental disorder. To better understand how loss of maternal UBE3A function derails brain development, we analyzed brain structure in a maternal Ube3a knock-out mouse model of AS. We report that the volume of white matter (WM) is disproportionately reduced in AS mice, indicating that deficits in WM development are a major factor underlying impaired brain growth and microcephaly in the disorder. Notably, we find that axons within the WM pathways of AS model mice are abnormally small in caliber. This defect is associated with slowed nerve conduction, which could contribute to behavioral deficits in AS, including motor dysfunction.
Collapse
|
152
|
FU ZHENRONG, LIN LAN, TIAN MIAO, WANG JINGXUAN, ZHANG BAIWEN, CHU PINGPING, LI SHAOWU, PATHAN MUHAMMADMOHSIN, DENG YULIN, WU SHUICAI. Evaluation of five diffeomorphic image registration algorithms for mouse brain magnetic resonance microscopy. J Microsc 2017; 268:141-154. [DOI: 10.1111/jmi.12594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/10/2017] [Accepted: 05/29/2017] [Indexed: 12/12/2022]
Affiliation(s)
- ZHENRONG FU
- Biomedical Engineering Department; College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| | - LAN LIN
- Biomedical Engineering Department; College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| | - MIAO TIAN
- Biomedical Engineering Department; College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| | - JINGXUAN WANG
- Biomedical Engineering Department; College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| | - BAIWEN ZHANG
- Biomedical Engineering Department; College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| | - PINGPING CHU
- School of Life Science; Beijing Institute of Technology; Beijing China
| | - SHAOWU LI
- Neuroimaging Centre; Beijing Neurosurgical Institute; Beijing China
| | - MUHAMMAD MOHSIN PATHAN
- Biomedical Engineering Department; College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| | - YULIN DENG
- School of Life Science; Beijing Institute of Technology; Beijing China
| | - SHUICAI WU
- Biomedical Engineering Department; College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| |
Collapse
|
153
|
Kuhla A, Rühlmann C, Lindner T, Polei S, Hadlich S, Krause BJ, Vollmar B, Teipel SJ. APPswe/PS1dE9 mice with cortical amyloid pathology show a reduced NAA/Cr ratio without apparent brain atrophy: A MRS and MRI study. NEUROIMAGE-CLINICAL 2017; 15:581-586. [PMID: 28652970 PMCID: PMC5476467 DOI: 10.1016/j.nicl.2017.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/07/2017] [Accepted: 06/08/2017] [Indexed: 12/26/2022]
Abstract
Transgenic animal models of Aβ pathology provide mechanistic insight into some aspects of Alzheimer disease (AD) pathology related to Aβ accumulation. Quantitative neuroimaging is a possible aid to improve translation of mechanistic findings in transgenic models to human end phenotypes of brain morphology or function. Therefore, we combined MRI-based morphometry, MRS-based NAA-assessment and quantitative histology of neurons and amyloid plaque load in the APPswe/PS1dE9 mouse model to determine the interrelationship between morphological changes, changes in neuron numbers and amyloid plaque load with reductions of NAA levels as marker of neuronal functional viability. The APPswe/PS1dE9 mouse showed an increase of Aβ plaques, loss of neurons and an impairment of NAA/Cr ratio, which however was not accompanied with brain atrophy. As brain atrophy is one main characteristic in human AD, conclusions from murine to human AD pathology should be drawn with caution.
Collapse
Affiliation(s)
- Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.
| | - Claire Rühlmann
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
| | - Stefan Polei
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
| | - Stefan Hadlich
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany, Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
154
|
Pöttker B, Stöber F, Hummel R, Angenstein F, Radyushkin K, Goldschmidt J, Schäfer MKE. Traumatic brain injury causes long-term behavioral changes related to region-specific increases of cerebral blood flow. Brain Struct Funct 2017; 222:4005-4021. [DOI: 10.1007/s00429-017-1452-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/27/2017] [Indexed: 12/19/2022]
|
155
|
Watson C, Janke AL, Hamalainen C, Bagheri SM, Paxinos G, Reutens DC, Ullmann JFP. An ontologically consistent MRI-based atlas of the mouse diencephalon. Neuroimage 2017; 157:275-287. [PMID: 28578128 DOI: 10.1016/j.neuroimage.2017.05.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/01/2017] [Accepted: 05/27/2017] [Indexed: 11/19/2022] Open
Abstract
In topological terms, the diencephalon lies between the hypothalamus and the midbrain. It is made up of three segments, prosomere 1 (pretectum), prosomere 2 (thalamus), and prosomere 3 (the prethalamus). A number of MRI-based atlases of different parts of the mouse brain have already been published, but none of them displays the segments the diencephalon and their component nuclei. In this study we present a new volumetric atlas identifying 89 structures in the diencephalon of the male C57BL/6J 12 week mouse. This atlas is based on an average of MR scans of 18 mouse brains imaged with a 16.4T scanner. This atlas is available for download at www.imaging.org.au/AMBMC. Additionally, we have created an FSL package to enable nonlinear registration of novel data sets to the AMBMC model and subsequent automatic segmentation.
Collapse
Affiliation(s)
- Charles Watson
- The Australian Mouse Brain Mapping Consortium, The University of Queensland, Brisbane, Australia; Health Sciences, Curtin University, Perth, Western Australia, Australia; Neuroscience Research Australia and The University of New South Wales, Sydney, Australia.
| | - Andrew L Janke
- The Australian Mouse Brain Mapping Consortium, The University of Queensland, Brisbane, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Carlo Hamalainen
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Shahrzad M Bagheri
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - George Paxinos
- Neuroscience Research Australia and The University of New South Wales, Sydney, Australia
| | - David C Reutens
- The Australian Mouse Brain Mapping Consortium, The University of Queensland, Brisbane, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Jeremy F P Ullmann
- The Australian Mouse Brain Mapping Consortium, The University of Queensland, Brisbane, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
156
|
Ancora D, Zacharopoulos A, Ripoll J, Zacharakis G. Fluorescence Diffusion in the Presence of Optically Clear Tissues in a Mouse Head Model. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1086-1093. [PMID: 28055860 DOI: 10.1109/tmi.2016.2646518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Diffuse Optical Tomography commonly neglects or assumes as insignificant the presence of optically clear regions in biological tissues, estimating their contribution as a small perturbation to light transport. The inaccuracy introduced by this practice is examined in detail in the context of a complete, based on realistic geometry, virtual fluorescence Diffuse Optical Tomography experiment where a mouse head is imaged in the presence of cerebral spinal fluid. Despite the small thickness of such layer, we point out that an error is introduced when neglecting it from the model with possibly reduction in the accuracy of the reconstruction and localization of the fluorescence distribution within the brain. The results obtained in the extensive study presented here suggest that fluorescence diffuse neuroimaging studies can be improved in terms of quantitative and qualitative reconstruction by accurately taking into account optically transparent regions especially in the cases where the reconstruction is aided by the prior knowledge of the structural geometry of the specimen. Thus, this has only recently become an affordable choice, thanks to novel computation paradigms that allow to run Monte Carlo photon propagation on a simple graphic card, hence speeding up the process a thousand folds compared to CPU-based solutions.
Collapse
|
157
|
Complement C5aR1 Signaling Promotes Polarization and Proliferation of Embryonic Neural Progenitor Cells through PKCζ. J Neurosci 2017; 37:5395-5407. [PMID: 28455369 DOI: 10.1523/jneurosci.0525-17.2017] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/03/2017] [Accepted: 04/13/2017] [Indexed: 01/14/2023] Open
Abstract
The complement system, typically associated with innate immunity, is emerging as a key controller of nonimmune systems including in development, with recent studies linking complement mutations with neurodevelopmental disease. A key effector of the complement response is the activation fragment C5a, which, through its receptor C5aR1, is a potent driver of inflammation. Surprisingly, C5aR1 is also expressed during early mammalian embryogenesis; however, no clearly defined function is ascribed to C5aR1 in development. Here we demonstrate polarized expression of C5aR1 on the apical surface of mouse embryonic neural progenitor cells in vivo and on human embryonic stem cell-derived neural progenitors. We also show that signaling of endogenous C5a during mouse embryogenesis drives proliferation of neural progenitor cells within the ventricular zone and is required for normal brain histogenesis. C5aR1 signaling in neural progenitors was dependent on atypical protein kinase C ζ, a mediator of stem cell polarity, with C5aR1 inhibition reducing proliferation and symmetric division of apical neural progenitors in human and mouse models. C5aR1 signaling was shown to promote the maintenance of cell polarity, with exogenous C5a increasing the retention of polarized rosette architecture in human neural progenitors after physical or chemical disruption. Transient inhibition of C5aR1 during neurogenesis in developing mice led to behavioral abnormalities in both sexes and MRI-detected brain microstructural alterations, in studied males, demonstrating a requirement of C5aR1 signaling for appropriate brain development. This study thus identifies a functional role for C5a-C5aR1 signaling in mammalian neurogenesis and provides mechanistic insight into recently identified complement gene mutations and brain disorders.SIGNIFICANCE STATEMENT The complement system, traditionally known as a controller of innate immunity, now stands as a multifaceted signaling family with a broad range of physiological actions. These include roles in the brain, where complement activation is associated with diseases, including epilepsy and schizophrenia. This study has explored complement regulation of neurogenesis, identifying a novel relationship between the complement activation peptide C5a and the neural progenitor proliferation underpinning formation of the mammalian brain. C5a was identified as a regulator of cell polarity, with inhibition of C5a receptors during embryogenesis leading to abnormal brain development and behavioral deficits. This work demonstrates mechanisms through which dysregulation of complement causes developmental disease and highlights the potential risk of complement inhibition for therapeutic purposes in pregnancy.
Collapse
|
158
|
Perl K, Ushakov K, Pozniak Y, Yizhar-Barnea O, Bhonker Y, Shivatzki S, Geiger T, Avraham KB, Shamir R. Reduced changes in protein compared to mRNA levels across non-proliferating tissues. BMC Genomics 2017; 18:305. [PMID: 28420336 PMCID: PMC5395847 DOI: 10.1186/s12864-017-3683-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The quantitative relations between RNA and protein are fundamental to biology and are still not fully understood. Across taxa, it was demonstrated that the protein-to-mRNA ratio in steady state varies in a direction that lessens the change in protein levels as a result of changes in the transcript abundance. Evidence for this behavior in tissues is sparse. We tested this phenomenon in new data that we produced for the mouse auditory system, and in previously published tissue datasets. A joint analysis of the transcriptome and proteome was performed across four datasets: inner-ear mouse tissues, mouse organ tissues, lymphoblastoid primate samples and human cancer cell lines. RESULTS We show that the protein levels are more conserved than the mRNA levels in all datasets, and that changes in transcription are associated with translational changes that exert opposite effects on the final protein level, in all tissues except cancer. Finally, we observe that some functions are enriched in the inner ear on the mRNA level but not in protein. CONCLUSIONS We suggest that partial buffering between transcription and translation ensures that proteins can be made rapidly in response to a stimulus. Accounting for the buffering can improve the prediction of protein levels from mRNA levels.
Collapse
Affiliation(s)
- Kobi Perl
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yair Pozniak
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ofer Yizhar-Barnea
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yoni Bhonker
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shaked Shivatzki
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
159
|
Holmes HE, Powell NM, Ma D, Ismail O, Harrison IF, Wells JA, Colgan N, O'Callaghan JM, Johnson RA, Murray TK, Ahmed Z, Heggenes M, Fisher A, Cardoso MJ, Modat M, O'Neill MJ, Collins EC, Fisher EMC, Ourselin S, Lythgoe MF. Comparison of In Vivo and Ex Vivo MRI for the Detection of Structural Abnormalities in a Mouse Model of Tauopathy. Front Neuroinform 2017; 11:20. [PMID: 28408879 PMCID: PMC5374887 DOI: 10.3389/fninf.2017.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/27/2017] [Indexed: 11/15/2022] Open
Abstract
With increasingly large numbers of mouse models of human disease dedicated to MRI studies, compromises between in vivo and ex vivo MRI must be fully understood in order to inform the choice of imaging methodology. We investigate the application of high resolution in vivo and ex vivo MRI, in combination with tensor-based morphometry (TBM), to uncover morphological differences in the rTg4510 mouse model of tauopathy. The rTg4510 mouse also offers a novel paradigm by which the overexpression of mutant tau can be regulated by the administration of doxycycline, providing us with a platform on which to investigate more subtle alterations in morphology with morphometry. Both in vivo and ex vivo MRI allowed the detection of widespread bilateral patterns of atrophy in the rTg4510 mouse brain relative to wild-type controls. Regions of volume loss aligned with neuronal loss and pathological tau accumulation demonstrated by immunohistochemistry. When we sought to investigate more subtle structural alterations in the rTg4510 mice relative to a subset of doxycycline-treated rTg4510 mice, ex vivo imaging enabled the detection of more regions of morphological brain changes. The disadvantages of ex vivo MRI may however mitigate this increase in sensitivity: we observed a 10% global shrinkage in brain volume of the post-mortem tissues due to formalin fixation, which was most notable in the cerebellum and olfactory bulbs. However, many central brain regions were not adversely affected by the fixation protocol, perhaps due to our “in-skull” preparation. The disparity between our TBM findings from in vivo and ex vivo MRI underlines the importance of appropriate study design, given the trade-off between these two imaging approaches. We support the utility of in vivo MRI for morphological phenotyping of mouse models of disease; however, for subtler phenotypes, ex vivo offers enhanced sensitivity to discrete morphological changes.
Collapse
Affiliation(s)
- Holly E Holmes
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Nick M Powell
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK.,Centre for Medical Image Computing, University College LondonLondon, UK
| | - Da Ma
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK.,Centre for Medical Image Computing, University College LondonLondon, UK
| | - Ozama Ismail
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Ian F Harrison
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Jack A Wells
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Niall Colgan
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - James M O'Callaghan
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Ross A Johnson
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate CenterIndianapolis, IN, USA
| | | | - Zeshan Ahmed
- Molecular Pathology, Eli Lilly & Co. LtdWindlesham, UK
| | | | - Alice Fisher
- Molecular Pathology, Eli Lilly & Co. LtdWindlesham, UK
| | - M Jorge Cardoso
- Centre for Medical Image Computing, University College LondonLondon, UK
| | - Marc Modat
- Centre for Medical Image Computing, University College LondonLondon, UK
| | | | - Emily C Collins
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate CenterIndianapolis, IN, USA
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College LondonLondon, UK
| | | | - Mark F Lythgoe
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| |
Collapse
|
160
|
Chang H, Huang W, Wu C, Huang S, Guan C, Sekar S, Bhakoo KK, Duan Y. A New Variational Method for Bias Correction and Its Applications to Rodent Brain Extraction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:721-733. [PMID: 28114009 DOI: 10.1109/tmi.2016.2636026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Brain extraction is an important preprocessing step for further analysis of brain MR images. Significant intensity inhomogeneity can be observed in rodent brain images due to the high-field MRI technique. Unlike most existing brain extraction methods that require bias corrected MRI, we present a high-order and L0 regularized variational model for bias correction and brain extraction. The model is composed of a data fitting term, a piecewise constant regularization and a smooth regularization, which is constructed on a 3-D formulation for medical images with anisotropic voxel sizes. We propose an efficient multi-resolution algorithm for fast computation. At each resolution layer, we solve an alternating direction scheme, all subproblems of which have the closed-form solutions. The method is tested on three T2 weighted acquisition configurations comprising a total of 50 rodent brain volumes, which are with the acquisition field strengths of 4.7 Tesla, 9.4 Tesla and 17.6 Tesla, respectively. On one hand, we compare the results of bias correction with N3 and N4 in terms of the coefficient of variations on 20 different tissues of rodent brain. On the other hand, the results of brain extraction are compared against manually segmented gold standards, BET, BSE and 3-D PCNN based on a number of metrics. With the high accuracy and efficiency, our proposed method can facilitate automatic processing of large-scale brain studies.
Collapse
|
161
|
Targeting butyrylcholinesterase for preclinical single photon emission computed tomography (SPECT) imaging of Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2017; 3:166-176. [PMID: 29067326 PMCID: PMC5651425 DOI: 10.1016/j.trci.2017.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Diagnosis of Alzheimer's disease (AD) in vivo, by molecular imaging of amyloid or tau, is constrained because similar changes can be found in brains of cognitively normal individuals. Butyrylcholinesterase (BChE), which becomes associated with these structures in AD, could elevate the accuracy of AD diagnosis by focusing on BChE pathology in the cerebral cortex, a region of scant BChE activity in healthy brain. METHODS N-methylpiperidin-4-yl 4-[123I]iodobenzoate, a BChE radiotracer, was injected intravenously into B6SJL-Tg(APPSwFlLon, PSEN1∗M146 L∗L286 V) 6799Vas/Mmjax (5XFAD) mice and their wild-type (WT) counterparts for comparative single photon emission computed tomography (SPECT) studies. SPECT, computed tomography (CT), and magnetic resonance imaging (MRI) enabled comparison of whole brain and regional retention of the BChE radiotracer in both mouse strains. RESULTS Retention of the BChE radiotracer was consistently higher in the 5XFAD mouse than in WT, and differences were particularly evident in the cerebral cortex. DISCUSSION Cerebral cortical BChE imaging with SPECT can distinguish 5XFAD mouse model from the WT counterpart.
Collapse
|
162
|
Bhattacharya S, Herrera-Molina R, Sabanov V, Ahmed T, Iscru E, Stöber F, Richter K, Fischer KD, Angenstein F, Goldschmidt J, Beesley PW, Balschun D, Smalla KH, Gundelfinger ED, Montag D. Genetically Induced Retrograde Amnesia of Associative Memories After Neuroplastin Ablation. Biol Psychiatry 2017; 81:124-135. [PMID: 27215477 DOI: 10.1016/j.biopsych.2016.03.2107] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 03/12/2016] [Accepted: 03/21/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neuroplastin cell recognition molecules have been implicated in synaptic plasticity. Polymorphisms in the regulatory region of the human neuroplastin gene (NPTN) are correlated with cortical thickness and intellectual abilities in adolescents and in individuals with schizophrenia. METHODS We characterized behavioral and functional changes in inducible conditional neuroplastin-deficient mice. RESULTS We demonstrate that neuroplastins are required for associative learning in conditioning paradigms, e.g., two-way active avoidance and fear conditioning. Retrograde amnesia of learned associative memories is elicited by inducible neuron-specific ablation of Nptn gene expression in adult mice, which shows that neuroplastins are indispensable for the availability of previously acquired associative memories. Using single-photon emission computed tomography imaging in awake mice, we identified brain structures activated during memory recall. Constitutive neuroplastin deficiency or Nptn gene ablation in adult mice causes substantial electrophysiologic deficits such as reduced long-term potentiation. In addition, neuroplastin-deficient mice reveal profound physiologic and behavioral deficits, some of which are related to depression and schizophrenia, which illustrate neuroplastin's essential functions. CONCLUSIONS Neuroplastins are essential for learning and memory. Retrograde amnesia after an associative learning task can be induced by ablation of the neuroplastin gene. The inducible neuroplastin-deficient mouse model provides a new and unique means to analyze the molecular and cellular mechanisms underlying retrograde amnesia and memory.
Collapse
Affiliation(s)
- Soumee Bhattacharya
- Neurogenetics Special Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Rodrigo Herrera-Molina
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Special Laboratory Electron and Laserscanning Microscopy, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Victor Sabanov
- Laboratory of Biological Psychology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tariq Ahmed
- Laboratory of Biological Psychology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Emilia Iscru
- Laboratory of Biological Psychology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Franziska Stöber
- Research Group Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Karin Richter
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Angenstein
- Special Laboratory Noninvasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany; Helmholtz Center for Neurodegenerative Diseases, Magdeburg, Germany; Center for Behavioral Neurosciences and Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Jürgen Goldschmidt
- Department Systems Physiology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Philip W Beesley
- Special Laboratory for Molecular Biology Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany; School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | | | - Karl-Heinz Smalla
- Special Laboratory for Molecular Biology Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Neurosciences and Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Helmholtz Center for Neurodegenerative Diseases, Magdeburg, Germany; Center for Behavioral Neurosciences and Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Dirk Montag
- Neurogenetics Special Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
163
|
Kiss L, Holmes S, Chou CE, Dong X, Ross J, Brown D, Mendenhall B, Coronado V, De Silva D, Rockwood GA, Petrikovics I, Thompson DE. Method development for detecting the novel cyanide antidote dimethyl trisulfide from blood and brain, and its interaction with blood. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:149-157. [PMID: 28110144 DOI: 10.1016/j.jchromb.2017.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/05/2017] [Accepted: 01/08/2017] [Indexed: 12/15/2022]
Abstract
The antidotal potency of dimethyl trisulfide (DMTS) against cyanide poisoning was discovered and investigated in our previous studies. Based on our results it has better efficacy than the Cyanokit and the Nithiodote therapies that are presently used against cyanide intoxication in the US. Because of their absence in the literature, the goal of this work was to develop analytical methods for determining DMTS from blood and brain that could be employed in future pharmacokinetic studies. An HPLC-UV method for detection of DMTS from blood, a GC-MS method for detection of DMTS from brain, and associated validation experiments are described here. These analytical methods were developed using in vitro spiking of brain and blood, and are suitable for determining the in vivo DMTS concentrations in blood and brain in future pharmacokinetic and distribution studies. An important phenomenon was observed in the process of developing these methods. Specifically, recoveries from fresh blood spiked with DMTS were found to be significantly lower than recoveries from aged blood spiked in the same manner with DMTS. This decreased DMTS recovery from fresh blood is important, both because of the role it may play in the antidotal action of DMTS in the presence of cyanide, and because it adds the requirement of sample stabilization to the method development process. Mitigation procedures for stabilizing DMTS samples in blood are reported.
Collapse
Affiliation(s)
- Lóránd Kiss
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Secondra Holmes
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Ching-En Chou
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Xinmei Dong
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - James Ross
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Denise Brown
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Brooke Mendenhall
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Valerie Coronado
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Deepthika De Silva
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Gary A Rockwood
- U.S. Army Medical Research Institute of Chemical Defense, 2900 Rickets Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Ilona Petrikovics
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - David E Thompson
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA.
| |
Collapse
|
164
|
Syvänen S, Fang XT, Hultqvist G, Meier SR, Lannfelt L, Sehlin D. A bispecific Tribody PET radioligand for visualization of amyloid-beta protofibrils - a new concept for neuroimaging. Neuroimage 2017; 148:55-63. [PMID: 28069541 DOI: 10.1016/j.neuroimage.2017.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/07/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022] Open
Abstract
Antibodies are highly specific for their target molecules, but their poor brain penetrance has restricted their use as PET ligands for imaging of targets within the CNS. The aim of this study was to develop an antibody-based radioligand, using the TribodyTM format, for PET imaging of soluble amyloid-beta (Aβ) protofibrils, which are suggested to cause neurodegeneration in Alzheimer's disease. Antibodies, even when expressed in smaller engineered formats, are large molecules that do not enter the brain in sufficient amounts for imaging purposes. Hence, their transport across the blood-brain barrier (BBB) needs to be facilitated, for example through interaction with the transferrin receptor (TfR). Thus, a Fab fragment of the TfR antibody 8D3 was fused with two single chain variable fragments (scFv) of the Aβ protofibril selective antibody mAb158. Five TribodyTM proteins (A1-A5) were generated with different linkers between the Fab-8D3 and scFv-158. All proteins bound to TfR and Aβ protofibrils in vitro. Three of the proteins (A1-A3) were radiolabeled with iodine-125 and studied ex vivo in wild-type (wt) and transgenic mice overexpressing human Aβ. The systemic pharmacokinetics were similar with half-lives in blood of around 9h for all three ligands. Brain concentrations at 2h were around 1% of the injected dose per gram brain tissue, which is similar to what is observed for small molecular radioligands and at least 10-fold higher than antibodies in general. At 72h, transgenic mice showed higher concentrations of radioactivity in the brain than wt mice (12, 15- and 16-fold for A1, A2 and A3 respectively), except in the cerebellum, an area largely devoid of Aβ pathology. A3 was then labelled with iodine-124 for in vivo positron emission tomography (PET) imaging. Brain concentrations were quantified in six different regions showing a clear distinction both quantitatively and visually between wt and transgenic mice and a good correlation with Aβ pathology. We have thus produced a recombinant, bispecific protein, actively transported into the brain, for PET imaging within the CNS. In a longer perspective, this technique may enable imaging of other proteins involved in neurodegenerative diseases for which imaging agents are completely lacking today.
Collapse
Affiliation(s)
- Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| | - Xiaotian T Fang
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| | - Greta Hultqvist
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| | - Silvio R Meier
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| | - Dag Sehlin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| |
Collapse
|
165
|
Ossato A, Uccelli L, Bilel S, Canazza I, Di Domenico G, Pasquali M, Pupillo G, De Luca MA, Boschi A, Vincenzi F, Rimondo C, Beggiato S, Ferraro L, Varani K, Borea PA, Serpelloni G, De-Giorgio F, Marti M. Psychostimulant Effect of the Synthetic Cannabinoid JWH-018 and AKB48: Behavioral, Neurochemical, and Dopamine Transporter Scan Imaging Studies in Mice. Front Psychiatry 2017; 8:130. [PMID: 28824464 PMCID: PMC5543288 DOI: 10.3389/fpsyt.2017.00130] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022] Open
Abstract
JWH-018 and AKB48 are two synthetic cannabinoids (SCBs) belonging to different structural classes and illegally marketed as incense, herbal preparations, or chemical supply for theirs psychoactive cannabis-like effects. Clinical reports from emergency room reported psychomotor agitation as one of the most frequent effects in people assuming SCBs. This study aimed to investigate the psychostimulant properties of JWH-018 and AKB48 in male CD-1 mice and to compare their behavioral and biochemical effects with those caused by cocaine and amphetamine. In vivo studies showed that JWH-018 and AKB48, as cocaine and amphetamine, facilitated spontaneous locomotion in mice. These effects were prevented by CB1 receptor blockade and dopamine (DA) D1/5 and D2/3 receptors inhibition. SPECT-CT studies on dopamine transporter (DAT) revealed that, as cocaine and amphetamine, JWH-018 and AKB48 decreased the [123I]-FP-CIT binding in the mouse striatum. Conversely, in vitro competition binding studies revealed that, unlike cocaine and amphetamine, JWH-018 and AKB48 did not bind to mouse or human DAT. Moreover, microdialysis studies showed that the systemic administration of JWH-018, AKB48, cocaine, and amphetamine stimulated DA release in the nucleus accumbens (NAc) shell of freely moving mice. Finally, unlike amphetamine and cocaine, JWH-018 and AKB48 did not induce any changes on spontaneous [3H]-DA efflux from murine striatal synaptosomes. The present results suggest that SCBs facilitate striatal DA release possibly with different mechanisms than cocaine and amphetamine. Furthermore, they demonstrate, for the first time, that JWH-018 and AKB48 induce a psychostimulant effect in mice possibly by increasing NAc DA release. These data, according to clinical reports, outline the potential psychostimulant action of SCBs highlighting their possible danger to human health.
Collapse
Affiliation(s)
- Andrea Ossato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy.,Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Licia Uccelli
- Morphology, Surgery and Experimental Medicine Department, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Isabella Canazza
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy.,Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Micol Pasquali
- Physics and Hearth Science Department, University of Ferrara, Ferrara, Italy
| | - Gaia Pupillo
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Legnaro, Italy
| | | | - Alessandra Boschi
- Morphology, Surgery and Experimental Medicine Department, University of Ferrara, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Claudia Rimondo
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, United States
| | - Fabio De-Giorgio
- Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Matteo Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy.,Center for Neuroscience, Istituto Nazionale di Neuroscienze, Ferrara, Italy
| |
Collapse
|
166
|
Hultqvist G, Syvänen S, Fang XT, Lannfelt L, Sehlin D. Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor. Theranostics 2017; 7:308-318. [PMID: 28042336 PMCID: PMC5197066 DOI: 10.7150/thno.17155] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/19/2016] [Indexed: 02/04/2023] Open
Abstract
The blood-brain barrier (BBB) is an obstacle for antibody passage into the brain, impeding the development of immunotherapy and antibody-based diagnostics for brain disorders. In the present study, we have developed a brain shuttle for active transport of antibodies across the BBB by receptor-mediated transcytosis. We have thus recombinantly fused two single-chain variable fragments (scFv) of the transferrin receptor (TfR) antibody 8D3 to the light chains of mAb158, an antibody selectively binding to Aβ protofibrils, which are involved in the pathogenesis of Alzheimer's disease (AD). Despite the two TfR binders, a monovalent interaction with TfR was achieved due to the short linkers that sterically hinder bivalent binding to the TfR dimer. The design enabled efficient receptor-mediated brain uptake of the fusion protein. Two hours after administration, brain concentrations were 2-3% of the injected dose per gram brain, comparable to small molecular drugs and 80-fold higher than unmodified mAb158. After three days, fusion protein concentrations in AD transgenic mouse brains were 9-fold higher than in wild type mice, demonstrating high in vivo specificity. Thus, our innovative recombinant design markedly increases mAb158 brain uptake, which makes it a strong candidate for improved Aβ immunotherapy and as a PET radioligand for early diagnosis and evaluation of treatment effect in AD. Moreover, this approach could be applied to any target within the brain.
Collapse
|
167
|
Yanai S, Toyohara J, Ishiwata K, Ito H, Endo S. Long-term cilostazol administration ameliorates memory decline in senescence-accelerated mouse prone 8 (SAMP8) through a dual effect on cAMP and blood-brain barrier. Neuropharmacology 2016; 116:247-259. [PMID: 27979612 DOI: 10.1016/j.neuropharm.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/18/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022]
Abstract
Phosphodiesterases (PDEs), which hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), play an important role in synaptic plasticity that underlies memory. Recently, several PDE inhibitors were assessed for their possible therapeutic efficacy in treating cognitive disorders. Here, we examined how cilostazol, a selective PDE3 inhibitor, affects brain functions in senescence-accelerated mouse prone 8 (SAMP8), an animal model of age-related cognitive impairment. Long-term administration of cilostazol restored the impaired context-dependent conditioned fear memory of SAMP8 to match that in normal aging control substrain SAMR1. Cilostazol also increased the number of cells containing phosphorylated cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. Finally, cilostazol improves blood-brain barrier (BBB) integrity, demonstrated by reduced extravasation of 2-deoxy-2-18F-fluoro-d-glucose and Evans Blue dye in the brains of SAMP8. This improvement in BBB integrity was associated with an increased amount of zona occludens protein 1 (ZO-1) and occludin proteins, components of tight junctions integral to the BBB. The results suggest that long-term administration of cilostazol exerts its beneficial effects on age-related cognitive impairment through a dual mechanism: by enhancing the cAMP system in the brain and by maintaining or improving BBB integrity.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan; Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Fukushima 963-8052, Japan; Department of Biofunctional Imaging, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Ito
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0192, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan.
| |
Collapse
|
168
|
Wang A, Huen SC, Luan HH, Yu S, Zhang C, Gallezot JD, Booth CJ, Medzhitov R. Opposing Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral Inflammation. Cell 2016; 166:1512-1525.e12. [PMID: 27610573 DOI: 10.1016/j.cell.2016.07.026] [Citation(s) in RCA: 387] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
Acute infections are associated with a set of stereotypic behavioral responses, including anorexia, lethargy, and social withdrawal. Although these so-called sickness behaviors are the most common and familiar symptoms of infections, their roles in host defense are largely unknown. Here, we investigated the role of anorexia in models of bacterial and viral infections. We found that anorexia was protective while nutritional supplementation was detrimental in bacterial sepsis. Furthermore, glucose was necessary and sufficient for these effects. In contrast, nutritional supplementation protected against mortality from influenza infection and viral sepsis, whereas blocking glucose utilization was lethal. In both bacterial and viral models, these effects were largely independent of pathogen load and magnitude of inflammation. Instead, we identify opposing metabolic requirements tied to cellular stress adaptations critical for tolerance of differential inflammatory states. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Andrew Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sarah C Huen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Medicine (Nephrology), Yale University School of Medicine, New Haven, CT 06520, USA
| | - Harding H Luan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shuang Yu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cuiling Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jean-Dominique Gallezot
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Carmen J Booth
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
169
|
Vogel H, Wolf S, Rabasa C, Rodriguez-Pacheco F, Babaei CS, Stöber F, Goldschmidt J, DiMarchi RD, Finan B, Tschöp MH, Dickson SL, Schürmann A, Skibicka KP. GLP-1 and estrogen conjugate acts in the supramammillary nucleus to reduce food-reward and body weight. Neuropharmacology 2016; 110:396-406. [DOI: 10.1016/j.neuropharm.2016.07.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/26/2016] [Accepted: 07/31/2016] [Indexed: 01/09/2023]
|
170
|
Brain mGluR5 in mice with amyloid beta pathology studied with in vivo [ 11C]ABP688 PET imaging and ex vivo immunoblotting. Neuropharmacology 2016; 113:293-300. [PMID: 27743932 DOI: 10.1016/j.neuropharm.2016.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is characterized by aggregation of amyloid beta (Aβ) into insoluble plaques. Intermediates, Aβ oligomers (Aβo), appear to be the mechanistic cause of disease. The de facto PET AD ligand, [11C]PIB, binds and visualizes Aβ plaque load, which does not correlate well with disease severity. Therefore, finding a dynamic target that changes with pathology progression in AD is of great interest. Aβo alter synaptic plasticity, inhibit long-term potentiation, and facilitate long-term depression; key mechanisms involved in memory and learning. In order to convey these neurotoxic effects, Aβo requires interaction with the metabotropic glutamate 5 receptor (mGluR5). The aim was to investigate in vivo mGluR5 changes in an Aβ pathology model using PET. Wild type C57/BL6 (wt) and AβPP transgenic mice (tg-ArcSwe), 4, 8, and 16 months old, were PET scanned with [11C]ABP688, which is highly specific to mGluR5, to investigate changes in mGluR5. Mouse brains were extracted postscan and mGluR5 and Aβ protofibril levels were assessed with immunoblotting and ELISA respectively. Receptor-dense brain regions (hippocampus, thalamus, and striatum) displayed higher [11C]ABP688 concentrations corresponding to mGluR5 expression pattern. Mice had similar uptake levels of [11C]ABP688 regardless of genotype or age. Immunoblotting revealed general decline in mGluR5 expression and elevated levels of mGluR5 in 16 months old tg-ArcSwe compared with wt mice. [11C]ABP688 could visualize mGluR5 in the mouse brain. In conclusion, mGluR5 levels were found to decrease with age and tended to be higher in tg-ArcSwe compared with wt mice, however these changes could not be quantified with PET.
Collapse
|
171
|
Powell NM, Modat M, Cardoso MJ, Ma D, Holmes HE, Yu Y, O’Callaghan J, Cleary JO, Sinclair B, Wiseman FK, Tybulewicz VLJ, Fisher EMC, Lythgoe MF, Ourselin S. Fully-Automated μMRI Morphometric Phenotyping of the Tc1 Mouse Model of Down Syndrome. PLoS One 2016; 11:e0162974. [PMID: 27658297 PMCID: PMC5033246 DOI: 10.1371/journal.pone.0162974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/31/2016] [Indexed: 01/07/2023] Open
Abstract
We describe a fully automated pipeline for the morphometric phenotyping of mouse brains from μMRI data, and show its application to the Tc1 mouse model of Down syndrome, to identify new morphological phenotypes in the brain of this first transchromosomic animal carrying human chromosome 21. We incorporate an accessible approach for simultaneously scanning multiple ex vivo brains, requiring only a 3D-printed brain holder, and novel image processing steps for their separation and orientation. We employ clinically established multi-atlas techniques–superior to single-atlas methods–together with publicly-available atlas databases for automatic skull-stripping and tissue segmentation, providing high-quality, subject-specific tissue maps. We follow these steps with group-wise registration, structural parcellation and both Voxel- and Tensor-Based Morphometry–advantageous for their ability to highlight morphological differences without the laborious delineation of regions of interest. We show the application of freely available open-source software developed for clinical MRI analysis to mouse brain data: NiftySeg for segmentation and NiftyReg for registration, and discuss atlases and parameters suitable for the preclinical paradigm. We used this pipeline to compare 29 Tc1 brains with 26 wild-type littermate controls, imaged ex vivo at 9.4T. We show an unexpected increase in Tc1 total intracranial volume and, controlling for this, local volume and grey matter density reductions in the Tc1 brain compared to the wild-types, most prominently in the cerebellum, in agreement with human DS and previous histological findings.
Collapse
Affiliation(s)
- Nick M. Powell
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
- * E-mail:
| | - Marc Modat
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
| | - M. Jorge Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
| | - Da Ma
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Holly E. Holmes
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Yichao Yu
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - James O’Callaghan
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Jon O. Cleary
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
- Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ben Sinclair
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Frances K. Wiseman
- Department of Neurodegenerative Disease, Institute of Neurology, University College, London WC1N 3BG, United Kingdom
| | - Victor L. J. Tybulewicz
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
- Imperial College, London W12 0NN, United Kingdom
| | - Elizabeth M. C. Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College, London WC1N 3BG, United Kingdom
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Sébastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
| |
Collapse
|
172
|
Schmidt C, Dunn E, Lowery M, van Rienen U. Uncertainty Quantification of Oscillation Suppression During DBS in a Coupled Finite Element and Network Model. IEEE Trans Neural Syst Rehabil Eng 2016; 26:281-290. [PMID: 28113673 DOI: 10.1109/tnsre.2016.2608925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Models of the cortico-basal ganglia network and volume conductor models of the brain can provide insight into the mechanisms of action of deep brain stimulation (DBS). In this study, the coupling of a network model, under parkinsonian conditions, to the extracellular field distribution obtained from a three dimensional finite element model of a rodent's brain during DBS is presented. This coupled model is used to investigate the influence of uncertainty in the electrical properties of brain tissue and encapsulation tissue, formed around the electrode after implantation, on the suppression of oscillatory neural activity during DBS. The resulting uncertainty in this effect of DBS on the network activity is quantified using a computationally efficient and non-intrusive stochastic approach based on the generalized Polynomial Chaos. The results suggest that variations in the electrical properties of brain tissue may have a substantial influence on the level of suppression of oscillatory activity during DBS. Applying a global sensitivity analysis on the suppression of the simulated oscillatory activity showed that the influence of uncertainty in the electrical properties of the encapsulation tissue had only a minor influence, in agreement with previous experimental and computational studies investigating the mechanisms of current-controlled DBS in the literature.
Collapse
|
173
|
Barbeito-Andrés J, Bernal V, Gonzalez PN. Morphological asymmetries of mouse brain assessed by geometric morphometric analysis of MRI data. Magn Reson Imaging 2016; 34:980-9. [DOI: 10.1016/j.mri.2016.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/17/2016] [Indexed: 01/13/2023]
|
174
|
Hok V, Poucet B, Duvelle É, Save É, Sargolini F. Spatial cognition in mice and rats: similarities and differences in brain and behavior. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 7:406-421. [PMID: 27582415 DOI: 10.1002/wcs.1411] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 01/05/2023]
Abstract
The increasing use of mice models in cognitive tasks that were originally designed for rats raises crucial questions about cross-species comparison in the study of spatial cognition. The present review focuses on the major neuroethological differences existing between mice and rats, with particular attention given to the neurophysiological basis of space coding. While little difference is found in the basic properties of space representation in these two species, it appears that the stability of this representation changes more drastically over time in mice than in rats. We consider several hypotheses dealing with attentional, perceptual, and genetic aspects and offer some directions for future research that might help in deciphering hippocampal function in learning and memory processes. WIREs Cogn Sci 2016, 7:406-421. doi: 10.1002/wcs.1411 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Vincent Hok
- Laboratory of Cognitive Neuroscience, CNRS and Aix-Marseille University, Marseille, France.,Fédération 3C, CNRS and Aix-Marseille University, Marseille, France
| | - Bruno Poucet
- Laboratory of Cognitive Neuroscience, CNRS and Aix-Marseille University, Marseille, France. , .,Fédération 3C, CNRS and Aix-Marseille University, Marseille, France. ,
| | - Éléonore Duvelle
- Faculty of Brain Sciences, UCL Psychology and Language Sciences, London, UK
| | - Étienne Save
- Laboratory of Cognitive Neuroscience, CNRS and Aix-Marseille University, Marseille, France.,Fédération 3C, CNRS and Aix-Marseille University, Marseille, France
| | - Francesca Sargolini
- Laboratory of Cognitive Neuroscience, CNRS and Aix-Marseille University, Marseille, France.,Fédération 3C, CNRS and Aix-Marseille University, Marseille, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
175
|
Steventon JJ, Trueman RC, Ma D, Yhnell E, Bayram-Weston Z, Modat M, Cardoso J, Ourselin S, Lythgoe M, Stewart A, Rosser AE, Jones DK. Longitudinal in vivo MRI in a Huntington's disease mouse model: Global atrophy in the absence of white matter microstructural damage. Sci Rep 2016; 6:32423. [PMID: 27581950 PMCID: PMC5007531 DOI: 10.1038/srep32423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is a genetically-determined neurodegenerative disease. Characterising neuropathology in mouse models of HD is commonly restricted to cross-sectional ex vivo analyses, beset by tissue fixation issues. In vivo longitudinal magnetic resonance imaging (MRI) allows for disease progression to be probed non-invasively. In the HdhQ150 mouse model of HD, in vivo MRI was employed at two time points, before and after the onset of motor signs, to assess brain macrostructure and white matter microstructure. Ex vivo MRI, immunohistochemistry, transmission electron microscopy and behavioural testing were also conducted. Global brain atrophy was found in HdhQ150 mice at both time points, with no neuropathological progression across time and a selective sparing of the cerebellum. In contrast, no white matter abnormalities were detected from the MRI images or electron microscopy images alike. The relationship between motor function and MR-based structural measurements was different for the HdhQ150 and wild-type mice, although there was no relationship between motor deficits and histopathology. Widespread neuropathology prior to symptom onset is consistent with patient studies, whereas the absence of white matter abnormalities conflicts with patient data. The myriad reasons for this inconsistency require further attention to improve the translatability from mouse models of disease.
Collapse
Affiliation(s)
- Jessica J Steventon
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.,Brain Repair Group, Life Science Building, 3rd Floor, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,Experimental MRI Centre, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Rebecca C Trueman
- Brain Repair Group, Life Science Building, 3rd Floor, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.,School of Life Sciences, Queen's Medical Centre, Nottingham University, Nottingham, NG7 2UH, UK
| | - Da Ma
- Centre for Medical Imaging Computing, University College London, London, UK.,Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Emma Yhnell
- Brain Repair Group, Life Science Building, 3rd Floor, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - Zubeyde Bayram-Weston
- Brain Repair Group, Life Science Building, 3rd Floor, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - Marc Modat
- Centre for Medical Imaging Computing, University College London, London, UK
| | - Jorge Cardoso
- Centre for Medical Imaging Computing, University College London, London, UK
| | - Sebastian Ourselin
- Centre for Medical Imaging Computing, University College London, London, UK
| | - Mark Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Andrew Stewart
- Experimental MRI Centre, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Anne E Rosser
- Brain Repair Group, Life Science Building, 3rd Floor, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,Institute of Psychological Medicine and Neurology, School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff CF24 4HQ, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| |
Collapse
|
176
|
Ella A, Delgadillo JA, Chemineau P, Keller M. Computation of a high-resolution MRI 3D stereotaxic atlas of the sheep brain. J Comp Neurol 2016; 525:676-692. [PMID: 27503489 DOI: 10.1002/cne.24079] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/17/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022]
Abstract
The sheep model was first used in the fields of animal reproduction and veterinary sciences and then was utilized in fundamental and preclinical studies. For more than a decade, magnetic resonance (MR) studies performed on this model have been increasingly reported, especially in the field of neuroscience. To contribute to MR translational neuroscience research, a brain template and an atlas are necessary. We have recently generated the first complete T1-weighted (T1W) and T2W MR population average images (or templates) of in vivo sheep brains. In this study, we 1) defined a 3D stereotaxic coordinate system for previously established in vivo population average templates; 2) used deformation fields obtained during optimized nonlinear registrations to compute nonlinear tissues or prior probability maps (nlTPMs) of cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) tissues; 3) delineated 25 external and 28 internal sheep brain structures by segmenting both templates and nlTPMs; and 4) annotated and labeled these structures using an existing histological atlas. We built a quality high-resolution 3D atlas of average in vivo sheep brains linked to a reference stereotaxic space. The atlas and nlTPMs, associated with previously computed T1W and T2W in vivo sheep brain templates and nlTPMs, provide a complete set of imaging space that are able to be imported into other imaging software programs and could be used as standardized tools for neuroimaging studies or other neuroscience methods, such as image registration, image segmentation, identification of brain structures, implementation of recording devices, or neuronavigation. J. Comp. Neurol. 525:676-692, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arsène Ella
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR 7247, F-37380, Nouzilly, France.,Université François Rabelais, F-37041, Nouzilly, France
| | - José A Delgadillo
- Centro de Investigacion en Reproducion Caprina, Universidad Autonoma Agraria Antonio Narro, Torreon, Mexico
| | - Philippe Chemineau
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR 7247, F-37380, Nouzilly, France.,Université François Rabelais, F-37041, Nouzilly, France
| | - Matthieu Keller
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR 7247, F-37380, Nouzilly, France.,Université François Rabelais, F-37041, Nouzilly, France
| |
Collapse
|
177
|
Niedworok CJ, Brown APY, Jorge Cardoso M, Osten P, Ourselin S, Modat M, Margrie TW. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data. Nat Commun 2016; 7:11879. [PMID: 27384127 PMCID: PMC4941048 DOI: 10.1038/ncomms11879] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/09/2016] [Indexed: 01/16/2023] Open
Abstract
The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain.
Collapse
Affiliation(s)
- Christian J. Niedworok
- The Division of Neurophysiology, MRC National Institute for Medical Research, London NW7 1AA, UK
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London W1T 4JG, UK
| | - Alexander P. Y. Brown
- The Division of Neurophysiology, MRC National Institute for Medical Research, London NW7 1AA, UK
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London W1T 4JG, UK
| | - M. Jorge Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
| | - Marc Modat
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
| | - Troy W. Margrie
- The Division of Neurophysiology, MRC National Institute for Medical Research, London NW7 1AA, UK
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London W1T 4JG, UK
| |
Collapse
|
178
|
Abstract
Techniques based on imaging serial sections of brain tissue provide insight into brain structure and function. However, to compare or combine them with results from three dimensional imaging methods, reconstruction into a volumetric form is required. Currently, there are no tools for performing such a task in a streamlined way. Here we propose the Possum volumetric reconstruction framework which provides a selection of 2D to 3D image reconstruction routines allowing one to build workflows tailored to one's specific requirements. The main components include routines for reconstruction with or without using external reference and solutions for typical issues encountered during the reconstruction process, such as propagation of the registration errors due to distorted sections. We validate the implementation using synthetic datasets and actual experimental imaging data derived from publicly available resources. We also evaluate efficiency of a subset of the algorithms implemented. The Possum framework is distributed under MIT license and it provides researchers with a possibility of building reconstruction workflows from existing components, without the need for low-level implementation. As a consequence, it also facilitates sharing and data exchange between researchers and laboratories.
Collapse
Affiliation(s)
- Piotr Majka
- />Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
- />Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Daniel K. Wójcik
- />Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
179
|
Fish EW, Holloway HT, Rumple A, Baker LK, Wieczorek LA, Moy SS, Paniagua B, Parnell SE. Acute alcohol exposure during neurulation: Behavioral and brain structural consequences in adolescent C57BL/6J mice. Behav Brain Res 2016; 311:70-80. [PMID: 27185739 DOI: 10.1016/j.bbr.2016.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
Prenatal alcohol exposure (PAE) can induce physical malformations and behavioral abnormalities that depend in part on thedevelopmental timing of alcohol exposure. The current studies employed a mouse FASD model to characterize the long-term behavioral and brain structural consequences of a binge-like alcohol exposure during neurulation; a first-trimester stage when women are typically unaware that they are pregnant. Time-mated C57BL/6J female mice were administered two alcohol doses (2.8g/kg, four hours apart) or vehicle starting at gestational day 8.0. Male and female adolescent offspring (postnatal day 28-45) were then examined for motor activity (open field and elevated plus maze), coordination (rotarod), spatial learning and memory (Morris water maze), sensory motor gating (acoustic startle and prepulse inhibition), sociability (three-chambered social test), and nociceptive responses (hot plate). Regional brain volumes and shapes were determined using magnetic resonance imaging. In males, PAE increased activity on the elevated plus maze and reduced social novelty preference, while in females PAE increased exploratory behavior in the open field and transiently impaired rotarod performance. In both males and females, PAE modestly impaired Morris water maze performance and decreased the latency to respond on the hot plate. There were no brain volume differences; however, significant shape differences were found in the cerebellum, hypothalamus, striatum, and corpus callosum. These results demonstrate that alcohol exposure during neurulation can have functional consequences into adolescence, even in the absence of significant brain regional volumetric changes. However, PAE-induced regional shape changes provide evidence for persistent brain alterations and suggest alternative clinical diagnostic markers.
Collapse
Affiliation(s)
- E W Fish
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - H T Holloway
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - A Rumple
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - L K Baker
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - L A Wieczorek
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - S S Moy
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - B Paniagua
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - S E Parnell
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
180
|
Mukherjee J, Bajwa AK, Wooten DW, Hillmer AT, Pan ML, Pandey SK, Saigal N, Christian BT. Comparative assessment of (18) F-Mefway as a serotonin 5-HT1A receptor PET imaging agent across species: Rodents, nonhuman primates, and humans. J Comp Neurol 2016; 524:1457-71. [PMID: 26509362 PMCID: PMC4783179 DOI: 10.1002/cne.23919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/22/2015] [Accepted: 10/23/2015] [Indexed: 02/02/2023]
Abstract
We have developed (18) F-trans-Mefway ((18) F-Mefway) for positron emission tomography (PET) imaging studies of serotonin 5-HT1A receptors which are implicated in various brain functions. Translation of imaging the 5-HT1A receptor in animal models to humans will facilitate an understanding of the role of the receptor in human brain disorders. We report comparative brain distribution of (18) F-Mefway in normal mice, rats, monkeys, and healthy human volunteers. Mefway was found to be very selective, with subnanomolar affinity for the 5-HT1A receptor. Affinities of >55 nM were found for all other human-cloned receptor subtypes tested. Mefway was found to be a poor substrate (>30 μM) for the multidrug resistance 1 protein, suggesting low likelihood of brain uptake being affected by P-glycoprotein. Cerebellum was used as a reference region in all imaging studies across all species due to the low levels of (18) F-Mefway binding. Consistent binding of (18) F-Mefway in cortical regions, hippocampus, and raphe was observed across all species. (18) F-Mefway in the human brain regions correlated with the known postmortem distribution of 5-HT1A receptors. Quantitation of raphe was affected by the resolution of the PET scanners in rodents, whereas monkeys and humans showed a raphe to cerebellum ratio of approximately 3. (18) F-Mefway appears to be an effective 5-HT1A receptor imaging agent in all models, including humans. (18) F-Mefway therefore may be used to quantify 5-HT1A receptor distribution in brain regions for the study of various CNS disorders. J. Comp. Neurol. 524:1457-1471, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697-5000
| | - Alisha K Bajwa
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697-5000
| | - Dustin W Wooten
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin, 53705
| | - Ansel T Hillmer
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin, 53705
| | - Min-Liang Pan
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697-5000
| | - Suresh K Pandey
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697-5000
| | - Neil Saigal
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697-5000
| | - Bradley T Christian
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin, 53705
| |
Collapse
|
181
|
Lee J, Kim SH, Oguz I, Styner M. Enhanced Cortical Thickness Measurements for Rodent Brains via Lagrangian-based RK4 Streamline Computation. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9784. [PMID: 27065047 DOI: 10.1117/12.2216420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The cortical thickness of the mammalian brain is an important morphological characteristic that can be used to investigate and observe the brain's developmental changes that might be caused by biologically toxic substances such as ethanol or cocaine. Although various cortical thickness analysis methods have been proposed that are applicable for human brain and have developed into well-validated open-source software packages, cortical thickness analysis methods for rodent brains have not yet become as robust and accurate as those designed for human brains. Based on a previously proposed cortical thickness measurement pipeline for rodent brain analysis,1 we present an enhanced cortical thickness pipeline in terms of accuracy and anatomical consistency. First, we propose a Lagrangian-based computational approach in the thickness measurement step in order to minimize local truncation error using the fourth-order Runge-Kutta method. Second, by constructing a line object for each streamline of the thickness measurement, we can visualize the way the thickness is measured and achieve sub-voxel accuracy by performing geometric post-processing. Last, with emphasis on the importance of an anatomically consistent partial differential equation (PDE) boundary map, we propose an automatic PDE boundary map generation algorithm that is specific to rodent brain anatomy, which does not require manual labeling. The results show that the proposed cortical thickness pipeline can produce statistically significant regions that are not observed in the the previous cortical thickness analysis pipeline.
Collapse
Affiliation(s)
- Joohwi Lee
- University of North Carolina at Chapel Hill, Department of Computer Science, United States
| | - Sun Hyung Kim
- University of North Carolina at Chapel Hill, Department of Psychiatry, United States
| | - Ipek Oguz
- The University of Iowa, Department of Electrical and Computer Engineering, United States
| | - Martin Styner
- University of North Carolina at Chapel Hill, Department of Computer Science, United States; University of North Carolina at Chapel Hill, Department of Psychiatry, United States
| |
Collapse
|
182
|
Lee J, Kim SH, Styner M. Multi-Object Model-based Multi-Atlas Segmentation for Rodent Brains using Dense Discrete Correspondences. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9784:97840Q. [PMID: 27065200 PMCID: PMC4825178 DOI: 10.1117/12.2217709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The delineation of rodent brain structures is challenging due to low-contrast multiple cortical and subcortical organs that are closely interfacing to each other. Atlas-based segmentation has been widely employed due to its ability to delineate multiple organs at the same time via image registration. The use of multiple atlases and subsequent label fusion techniques has further improved the robustness and accuracy of atlas-based segmentation. However, the accuracy of atlas-based segmentation is still prone to registration errors; for example, the segmentation of in vivo MR images can be less accurate and robust against image artifacts than the segmentation of post mortem images. In order to improve the accuracy and robustness of atlas-based segmentation, we propose a multi-object, model-based, multi-atlas segmentation method. We first establish spatial correspondences across atlases using a set of dense pseudo-landmark particles. We build a multi-object point distribution model using those particles in order to capture inter- and intra-subject variation among brain structures. The segmentation is obtained by fitting the model into a subject image, followed by label fusion process. Our result shows that the proposed method resulted in greater accuracy than comparable segmentation methods, including a widely used ANTs registration tool.
Collapse
Affiliation(s)
- Joohwi Lee
- University of North Carolina at Chapel Hill, Department of Computer Science
| | - Sun Hyung Kim
- University of North Carolina at Chapel Hill, Department of Psychiatry
| | - Martin Styner
- University of North Carolina at Chapel Hill, Department of Computer Science
- University of North Carolina at Chapel Hill, Department of Psychiatry
| |
Collapse
|
183
|
Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer's disease. Nat Commun 2016; 7:10759. [PMID: 26892305 PMCID: PMC4762893 DOI: 10.1038/ncomms10759] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022] Open
Abstract
Owing to their specificity and high-affinity binding, monoclonal antibodies have potential as positron emission tomography (PET) radioligands and are currently used to image various targets in peripheral organs. However, in the central nervous system, antibody uptake is limited by the blood-brain barrier (BBB). Here we present a PET ligand to be used for diagnosis and evaluation of treatment effects in Alzheimer's disease. The amyloid β (Aβ) antibody mAb158 is radiolabelled and conjugated to a transferrin receptor antibody to enable receptor-mediated transcytosis across the BBB. PET imaging of two different mouse models with Aβ pathology clearly visualize Aβ in the brain. The PET signal increases with age and correlates closely with brain Aβ levels. Thus, we demonstrate that antibody-based PET ligands can be successfully used for brain imaging.
Collapse
|
184
|
Hoffmann A, Kunze R, Helluy X, Milford D, Heiland S, Bendszus M, Pham M, Marti HH. High-Field MRI Reveals a Drastic Increase of Hypoxia-Induced Microhemorrhages upon Tissue Reoxygenation in the Mouse Brain with Strong Predominance in the Olfactory Bulb. PLoS One 2016; 11:e0148441. [PMID: 26863147 PMCID: PMC4749302 DOI: 10.1371/journal.pone.0148441] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/18/2016] [Indexed: 11/19/2022] Open
Abstract
Human pathophysiology of high altitude hypoxic brain injury is not well understood and research on the underlying mechanisms is hampered by the lack of well-characterized animal models. In this study, we explored the evolution of brain injury by magnetic resonance imaging (MRI) and histological methods in mice exposed to normobaric hypoxia at 8% oxygen for 48 hours followed by rapid reoxygenation and incubation for further 24 h under normoxic conditions. T2*-, diffusion-weighted and T2-relaxometry MRI was performed before exposure, immediately after 48 hours of hypoxia and 24 hours after reoxygenation. Cerebral microhemorrhages, previously described in humans suffering from severe high altitude cerebral edema, were also detected in mice upon hypoxia-reoxygenation with a strong region-specific clustering in the olfactory bulb, and to a lesser extent, in the basal ganglia and cerebral white matter. The number of microhemorrhages determined immediately after hypoxia was low, but strongly increased 24 hours upon onset of reoxygenation. Histologically verified microhemorrhages were exclusively located around cerebral microvessels with disrupted interendothelial tight junction protein ZO-1. In contrast, quantitative T2 and apparent-diffusion-coefficient values immediately after hypoxia and after 24 hours of reoxygenation did not show any region-specific alteration, consistent with subtle multifocal but not with regional or global brain edema.
Collapse
Affiliation(s)
- Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Hospital, 69120, Heidelberg, Germany
- * E-mail: (AH); (HHM)
| | - Reiner Kunze
- Institute of Physiology and Pathophysiology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Xavier Helluy
- Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - David Milford
- Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Sabine Heiland
- Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Mirko Pham
- Department of Neuroradiology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, University of Heidelberg, 69120, Heidelberg, Germany
- * E-mail: (AH); (HHM)
| |
Collapse
|
185
|
Reimann RR, Sonati T, Hornemann S, Herrmann US, Arand M, Hawke S, Aguzzi A. Differential Toxicity of Antibodies to the Prion Protein. PLoS Pathog 2016; 12:e1005401. [PMID: 26821311 PMCID: PMC4731068 DOI: 10.1371/journal.ppat.1005401] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/22/2015] [Indexed: 11/25/2022] Open
Abstract
Antibodies against the prion protein PrPC can antagonize prion replication and neuroinvasion, and therefore hold promise as possible therapeutics against prion diseases. However, the safety profile of such antibodies is controversial. It was originally reported that the monoclonal antibody D13 exhibits strong target-related toxicity, yet a subsequent study contradicted these findings. We have reported that several antibodies against certain epitopes of PrPC, including antibody POM1, are profoundly neurotoxic, yet antibody ICSM18, with an epitope that overlaps with POM1, was reported to be innocuous when injected into mouse brains. In order to clarify this confusing situation, we assessed the neurotoxicity of antibodies D13 and ICSM18 with dose-escalation studies using diffusion-weighted magnetic resonance imaging and various histological techniques. We report that both D13 and ICSM18 induce rapid, dose-dependent, on-target neurotoxicity. We conclude that antibodies directed to this region may not be suitable as therapeutics. No such toxicity was found when antibodies against the flexible tail of PrPC were administered. Any attempt at immunotherapy or immunoprophylaxis of prion diseases should account for these potential untoward effects.
Collapse
Affiliation(s)
- Regina R. Reimann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Tiziana Sonati
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Uli S. Herrmann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Simon Hawke
- Vascular Immunology Laboratory, Department of Pathology, University of Sydney, Camperdown, Australia
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
186
|
Liu Y, Jacques SL, Azimipour M, Rogers JD, Pashaie R, Eliceiri KW. OptogenSIM: a 3D Monte Carlo simulation platform for light delivery design in optogenetics. BIOMEDICAL OPTICS EXPRESS 2015; 6:4859-70. [PMID: 26713200 PMCID: PMC4679260 DOI: 10.1364/boe.6.004859] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 05/07/2023]
Abstract
Optimizing light delivery for optogenetics is critical in order to accurately stimulate the neurons of interest while reducing nonspecific effects such as tissue heating or photodamage. Light distribution is typically predicted using the assumption of tissue homogeneity, which oversimplifies light transport in heterogeneous brain. Here, we present an open-source 3D simulation platform, OptogenSIM, which eliminates this assumption. This platform integrates a voxel-based 3D Monte Carlo model, generic optical property models of brain tissues, and a well-defined 3D mouse brain tissue atlas. The application of this platform in brain data models demonstrates that brain heterogeneity has moderate to significant impact depending on application conditions. Estimated light density contours can show the region of any specified power density in the 3D brain space and thus can help optimize the light delivery settings, such as the optical fiber position, fiber diameter, fiber numerical aperture, light wavelength and power. OptogenSIM is freely available and can be easily adapted to incorporate additional brain atlases.
Collapse
Affiliation(s)
- Yuming Liu
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin at Madison, 1675 Observatory Drive, Madison, WI 53706,
USA
| | - Steven L. Jacques
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239,
USA
- Department of Dermatology, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239,
USA
| | - Mehdi Azimipour
- Electrical Engineering Department, University of Wisconsin-Milwaukee, 3200 N Cramer St., Milwaukee, Wisconsin 53211,
USA
| | - Jeremy D. Rogers
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin at Madison, 1675 Observatory Drive, Madison, WI 53706,
USA
| | - Ramin Pashaie
- Electrical Engineering Department, University of Wisconsin-Milwaukee, 3200 N Cramer St., Milwaukee, Wisconsin 53211,
USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin at Madison, 1675 Observatory Drive, Madison, WI 53706,
USA
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715,
USA
| |
Collapse
|
187
|
Sajja BR, Bade AN, Zhou B, Uberti MG, Gorantla S, Gendelman HE, Boska MD, Liu Y. Generation and Disease Model Relevance of a Manganese Enhanced Magnetic Resonance Imaging-Based NOD/scid-IL-2Rγc(null) Mouse Brain Atlas. J Neuroimmune Pharmacol 2015; 11:133-41. [PMID: 26556033 DOI: 10.1007/s11481-015-9635-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
Abstract
Strain specific mouse brain magnetic resonance imaging (MRI) atlases provide coordinate space linked anatomical registration. This allows longitudinal quantitative analyses of neuroanatomical volumes and imaging metrics for assessing the role played by aging and disease to the central nervous system. As NOD/scid-IL-2Rγ(c)(null) (NSG) mice allow human cell transplantation to study human disease, these animals are used to assess brain morphology. Manganese enhanced MRI (MEMRI) improves contrasts amongst brain components and as such can greatly help identifying a broad number of structures on MRI. To this end, NSG adult mouse brains were imaged in vivo on a 7.0 Tesla MR scanner at an isotropic resolution of 100 μm. A population averaged brain of 19 mice was generated using an iterative alignment algorithm. MEMRI provided sufficient contrast permitting 41 brain structures to be manually labeled. Volumes of 7 humanized mice brain structures were measured by atlas-based segmentation and compared against non-humanized controls. The humanized NSG mice brain volumes were smaller than controls (p < 0.001). Many brain structures of humanized mice were significantly smaller than controls. We posit that the irradiation and cell grafting involved in the creation of humanized mice were responsible for the morphological differences. Six NSG mice without MnCl2 administration were scanned with high resolution T2-weighted MRI and segmented to test broad utility of the atlas.
Collapse
Affiliation(s)
- Balasrinivasa R Sajja
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Biyun Zhou
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA.,Anesthesiology, Tongji Medical College, Huanzhong University of Science and Technology, Wuhan, China
| | - Mariano G Uberti
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Michael D Boska
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA. .,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
188
|
Šarić A, Sobočanec S, Mačak Šafranko Ž, Popović Hadžija M, Bagarić R, Farkaš V, Švarc A, Marotti T, Balog T. Diminished Resistance to Hyperoxia in Brains of Reproductively Senescent Female CBA/H Mice. Med Sci Monit Basic Res 2015; 21:191-9. [PMID: 26373431 PMCID: PMC4588673 DOI: 10.12659/msmbr.895356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background We have explored sex differences in ability to maintain redox balance during acute oxidative stress in brains of mice. We aimed to determine if there were differences in oxidative/antioxidative status upon hyperoxia in brains of reproductively senescent CBA/H mice in order to elucidate some of the possible mechanisms of lifespan regulation. Material/Methods The brains of 12-month-old male and female CBA/H mice (n=9 per sex and treatment) subjected to 18-h hyperoxia were evaluated for lipid peroxidation (LPO), antioxidative enzyme expression and activity - superoxide dismutase 1 and 2 (Sod-1, Sod-2), catalase (Cat), glutathione peroxidase 1 (Gpx-1), heme-oxygenase 1 (Ho-1), nad NF-E2-related factor 2 (Nrf2), and for 2-deoxy-2-[18F] fluoro-D-glucose (18FDG) uptake. Results No increase in LPO was observed after hyperoxia, regardless of sex. Expression of Nrf-2 showed significant downregulation in hyperoxia-treated males (p=0.001), and upregulation in hyperoxia-treated females (p=0.023). Also, in females hyperoxia upregulated Sod-1 (p=0.046), and Ho-1 (p=0.014) genes. SOD1 protein was upregulated in both sexes after hyperoxia (p=0.009 for males and p=0.011 for females). SOD2 protein was upregulated only in females (p=0.008) while CAT (p=0.026) and HO-1 (p=0.042) proteins were increased after hyperoxia only in males. Uptake of 18FDG was decreased after hyperoxia in the back brain of females. Conclusions We found that females at their reproductive senescence are more susceptible to hyperoxia, compared to males. We propose this model of hyperoxia as a useful tool to assess sex differences in adaptive response to acute stress conditions, which may be partially responsible for observed sex differences in longevity of CBA/H mice.
Collapse
Affiliation(s)
- Ana Šarić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sandra Sobočanec
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | | | | | - Robert Bagarić
- Division of Experimental Physics, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vladimir Farkaš
- Division of Experimental Physics, Ruđer Bošković Institute, Zagreb, Croatia
| | - Alfred Švarc
- Division of Experimental Physics, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tatjana Marotti
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tihomir Balog
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
189
|
Xie Z, Liang X, Guo L, Kitamoto A, Tamura M, Shiroishi T, Gillies D. Automatic classification framework for ventricular septal defects: a pilot study on high-throughput mouse embryo cardiac phenotyping. J Med Imaging (Bellingham) 2015; 2:041003. [PMID: 26835488 DOI: 10.1117/1.jmi.2.4.041003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/30/2015] [Indexed: 12/30/2022] Open
Abstract
Intensive international efforts are underway toward phenotyping the entire mouse genome by modifying all its [Formula: see text] genes one-by-one for comparative studies. A workload of this scale has triggered numerous studies harnessing image informatics for the identification of morphological defects. However, existing work in this line primarily rests on abnormality detection via structural volumetrics between wild-type and gene-modified mice, which generally fails when the pathology involves no severe volume changes, such as ventricular septal defects (VSDs) in the heart. Furthermore, in embryo cardiac phenotyping, the lack of relevant work in embryonic heart segmentation, the limited availability of public atlases, and the general requirement of manual labor for the actual phenotype classification after abnormality detection, along with other limitations, have collectively restricted existing practices from meeting the high-throughput demands. This study proposes, to the best of our knowledge, the first fully automatic VSD classification framework in mouse embryo imaging. Our approach leverages a combination of atlas-based segmentation and snake evolution techniques to derive the segmentation of heart ventricles, where VSD classification is achieved by checking whether the left and right ventricles border or overlap with each other. A pilot study has validated our approach at a proof-of-concept level and achieved a classification accuracy of 100% through a series of empirical experiments on a database of 15 images.
Collapse
Affiliation(s)
- Zhongliu Xie
- Imperial College London, Department of Computing, South Kensington Campus, London SW7 2AZ, United Kingdom; National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
| | - Xi Liang
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan; University of Melbourne, Department of Computer Science and Software Engineering, Parkville Campus, Melbourne VIC 3010, Australia
| | - Liucheng Guo
- Imperial College London , Department of Electrical and Electronic Engineering, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Asanobu Kitamoto
- National Institute of Informatics , 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
| | - Masaru Tamura
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Toshihiko Shiroishi
- National Institute of Genetics , 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Duncan Gillies
- Imperial College London , Department of Computing, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
190
|
Apostolova I, Niedzielska D, Derlin T, Koziolek EJ, Amthauer H, Salmen B, Pahnke J, Brenner W, Mautner VF, Buchert R. Perfusion single photon emission computed tomography in a mouse model of neurofibromatosis type 1: towards a biomarker of neurologic deficits. J Cereb Blood Flow Metab 2015; 35:1304-12. [PMID: 25785829 PMCID: PMC4528004 DOI: 10.1038/jcbfm.2015.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/21/2015] [Accepted: 02/16/2015] [Indexed: 12/16/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a single-gene disorder affecting neurologic function in humans. The NF1+/- mouse model with germline mutation of the NF1 gene presents with deficits in learning, attention, and motor coordination, very similar to NF1 patients. The present study performed brain perfusion single-photon emission computed tomography (SPECT) in NF1+/- mice to identify possible perfusion differences as surrogate marker for altered cerebral activity in NF1. Cerebral perfusion was measured with hexamethyl-propyleneamine oxime (HMPAO) SPECT in NF1+/- mice and their wild-type littermates longitudinally at juvenile age and at young adulthood. Histology and immunohistochemistry were performed to test for structural changes. There was increased HMPAO uptake in NF1 mice in the amygdala at juvenile age, which reduced to normal levels at young adulthood. There was no genotype effect on thalamic HMPAO uptake, which was confirmed by ex vivo measurements of F-18-fluorodeoxyglucose uptake in the thalamus. Morphologic analyses showed no major structural abnormalities. However, there was some evidence of increased density of microglial somata in the amygdala of NF1-deficient mice. In conclusion, there is evidence of increased perfusion and increased density of microglia in juvenile NF1 mice specifically in the amygdala, both of which might be associated with altered synaptic plasticity and, therefore, with cognitive deficits in NF1.
Collapse
Affiliation(s)
- Ivayla Apostolova
- 1] Department of Nuclear Medicine, University Medicine Charité Berlin, Berlin, Germany [2] Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - Dagmara Niedzielska
- Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Eva J Koziolek
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Amthauer
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - Benedikt Salmen
- Neuroscience Research Center, University Medicine Charité Berlin, Berlin, Germany
| | - Jens Pahnke
- 1] Department of Neuropathology, Oslo University Hospital (OUS), University of Oslo (UiO), Oslo, Norway [2] LIED, University of Lübeck, Lübeck, Germany [3] Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, University Medicine Charité Berlin, Berlin, Germany
| | - Victor F Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralph Buchert
- Department of Nuclear Medicine, University Medicine Charité Berlin, Berlin, Germany
| |
Collapse
|
191
|
Lee C, Oostenveld R, Lee SH, Kim LH, Sung H, Choi JH. Cortical source localization of mouse extracranial electroencephalogram using the FieldTrip toolbox. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:3307-10. [PMID: 24110435 DOI: 10.1109/embc.2013.6610248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuronal source estimation is a general tool for analyzing spatiotemporal dynamics in human EEG. Despite rapidly-evolving interest in human brain, there are few EEG based source estimation tools in rodent brain. Therefore, we implemented source estimation tool in a mouse model, using the FieldTrip open-source software. High resolution EEGs with a known cortical source were recorded with a recently developed 40-channel polyimide-based microelectrode under optical stimulation on optogenetially engineered mice. To obtain realistic mouse head models, the volume conduction model was extracted from in vitro mouse brain MRIs. Segmented compartments (skin and outer/inner skull) were used to form triangular meshes and then applied to the boundary element method. The high-resolution EEGs recorded during various optogenetic stimulation of the mouse brain were inversely source reconstructed using minimum-norm estimate. Estimated source locations and strengths were reconstructed, and their error was calculated to evaluate FieldTrip-based source localization algorithm. In summary, source localization imaging of the mouse brain was successfully achieved, using freely-available open source software. This will be useful to investigate the functional dynamics of mouse brain in noninvasive measure.
Collapse
|
192
|
Savonenko AV, Melnikova T, Wang Y, Ravert H, Gao Y, Koppel J, Lee D, Pletnikova O, Cho E, Sayyida N, Hiatt A, Troncoso J, Davies P, Dannals RF, Pomper MG, Horti AG. Cannabinoid CB2 Receptors in a Mouse Model of Aβ Amyloidosis: Immunohistochemical Analysis and Suitability as a PET Biomarker of Neuroinflammation. PLoS One 2015; 10:e0129618. [PMID: 26086915 PMCID: PMC4472959 DOI: 10.1371/journal.pone.0129618] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/11/2015] [Indexed: 11/18/2022] Open
Abstract
In Alzheimer's disease (AD), one of the early responses to Aβ amyloidosis is recruitment of microglia to areas of new plaque. Microglial receptors such as cannabinoid receptor 2 (CB2) might be a suitable target for development of PET radiotracers that could serve as imaging biomarkers of Aβ-induced neuroinflammation. Mouse models of amyloidosis (J20APPswe/ind and APPswe/PS1ΔE9) were used to investigate the cellular distribution of CB2 receptors. Specificity of CB2 antibody (H60) was confirmed using J20APPswe/ind mice lacking CB2 receptors. APPswe/PS1ΔE9 mice were used in small animal PET with a CB2-targeting radiotracer, [11C]A836339. These studies revealed increased binding of [11C]A836339 in amyloid-bearing mice. Specificity of the PET signal was confirmed in a blockade study with a specific CB2 antagonist, AM630. Confocal microscopy revealed that CB2-receptor immunoreactivity was associated with astroglial (GFAP) and, predominantly, microglial (CD68) markers. CB2 receptors were observed, in particular, in microglial processes forming engulfment synapses with Aβ plaques. In contrast to glial cells, neuron (NeuN)-derived CB2 signal was equal between amyloid-bearing and control mice. The pattern of neuronal CB2 staining in amyloid-bearing mice was similar to that in human cases of AD. The data collected in this study indicate that Aβ amyloidosis without concomitant tau pathology is sufficient to activate CB2 receptors that are suitable as an imaging biomarker of neuroinflammation. The main source of enhanced CB2 PET binding in amyloid-bearing mice is increased CB2 immunoreactivity in activated microglia. The presence of CB2 immunoreactivity in neurons does not likely contribute to the enhanced CB2 PET signal in amyloid-bearing mice due to a lack of significant neuronal loss in this model. However, significant loss of neurons as seen at late stages of AD might decrease the CB2 PET signal due to loss of neuronally-derived CB2. Thus this study in mouse models of AD indicates that a CB2-specific radiotracer can be used as a biomarker of neuroinflammation in the early preclinical stages of AD, when no significant neuronal loss has yet developed.
Collapse
Affiliation(s)
- Alena V. Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Departments of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail: (AGH); (AS)
| | - Tatiana Melnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yuchuan Wang
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Hayden Ravert
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yongjun Gao
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jeremy Koppel
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, NY, United States of America
| | - Deidre Lee
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Olga Pletnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Eugenia Cho
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Nuzhat Sayyida
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Andrew Hiatt
- MAPP Biopharmaceutical Inc, San-Diego, CA, United States of America
| | - Juan Troncoso
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Departments of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Peter Davies
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, NY, United States of America
| | - Robert F. Dannals
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Andrew G. Horti
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail: (AGH); (AS)
| |
Collapse
|
193
|
Savolainen H, Cantore M, Colabufo NA, Elsinga PH, Windhorst AD, Luurtsema G. Synthesis and Preclinical Evaluation of Three Novel Fluorine-18 Labeled Radiopharmaceuticals for P-Glycoprotein PET Imaging at the Blood-Brain Barrier. Mol Pharm 2015; 12:2265-75. [PMID: 26043236 DOI: 10.1021/mp5008103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P-Glycoprotein (P-gp), along with other transporter proteins at the blood-brain barrier (BBB), limits the entry of many pharmaceuticals into the brain. Altered P-gp function has been found in several neurological diseases. To study the P-gp function, many positron emission tomography (PET) radiopharmaceuticals have been developed. Most P-gp radiopharmaceuticals are labeled with carbon-11, while labeling with fluorine-18 would increase their applicability due to longer half-life. Here we present the synthesis and in vivo evaluation of three novel fluorine-18 labeled radiopharmaceuticals: 4-((6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)methyl)-2-(4-fluorophenyl)oxazole (1a), 2-biphenyl-4-yl-2-fluoroethoxy-6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline (2), and 5-(1-(2-fluoroethoxy))-[3-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-propyl]-5,6,7,8-tetrahydronaphthalen (3). Compounds were characterized as P-gp substrates in vitro, and Mdr1a/b((-/-))Bcrp1((-/-)) and wild-type mice were used to assess the substrate potential in vivo. Comparison was made to (R)-[(11)C]verapamil, which is currently the most frequently used P-gp substrate. Compound [(18)F]3 was performing the best out of the new radiopharmaceuticals; it had 2-fold higher brain uptake in the Mdr1a/b((-/-))Bcrp1((-/-)) mice compared to wild-type and was metabolically quite stable. In the plasma, 69% of the parent compound was intact after 45 min and 96% in the brain. Selectivity of [(18)F]3 to P-gp was tested by comparing the uptake in Mdr1a/b((-/-)) mice to uptake in Mdr1a/b((-/-))Bcrp1((-/-)) mice, which was statistically not significantly different. Hence, [(18)F]3 was found to be selective for P-gp and is a promising new radiopharmaceutical for P-gp PET imaging at the BBB.
Collapse
Affiliation(s)
- Heli Savolainen
- †Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Mariangela Cantore
- ‡Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, via Orabona 4, 70125 Bari, Italy.,§Biofordrug slr, via Orabona 4, 70125 Bari, Italy
| | - Nicola A Colabufo
- ‡Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, via Orabona 4, 70125 Bari, Italy.,§Biofordrug slr, via Orabona 4, 70125 Bari, Italy
| | - Philip H Elsinga
- †Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Albert D Windhorst
- ∥Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, De Boelelaan 1085 C, 1081 HV Amsterdam, Netherlands
| | - Gert Luurtsema
- †Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| |
Collapse
|
194
|
Formation of functional areas in the cerebral cortex is disrupted in a mouse model of autism spectrum disorder. Neural Dev 2015; 10:10. [PMID: 25879444 PMCID: PMC4412039 DOI: 10.1186/s13064-015-0033-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/27/2015] [Indexed: 12/02/2022] Open
Abstract
Background Autism spectrum disorders (ASD) are a group of poorly understood behavioural disorders, which have increased in prevalence in the past two decades. Animal models offer the opportunity to understand the biological basis of these disorders. Studies comparing different mouse strains have identified the inbred BTBR T + tf/J (BTBR) strain as a mouse model of ASD based on its anti-social and repetitive behaviours. Adult BTBR mice have complete agenesis of the corpus callosum, reduced cortical thickness and changes in early neurogenesis. However, little is known about the development or ultimate organisation of cortical areas devoted to specific sensory and motor functions in these mice that may also contribute to their behavioural phenotype. Results In this study, we performed diffusion tensor imaging and tractography, together with histological analyses to investigate the emergence of functional areas in the cerebral cortex and their connections in BTBR mice and age-matched C57Bl/6 control mice. We found evidence that neither the anterior commissure nor the hippocampal commissure compensate for the loss of callosal connections, indicating that no interhemispheric neocortical connectivity is present in BTBR mice. We also found that both the primary visual and somatosensory cortical areas are shifted medially in BTBR mice compared to controls and that cortical thickness is differentially altered in BTBR mice between cortical areas and throughout development. Conclusions We demonstrate that interhemispheric connectivity and cortical area formation are altered in an age- and region-specific manner in BTBR mice, which may contribute to the behavioural deficits previously observed in this strain. Some of these developmental patterns of change are also present in human ASD patients, and elucidating the aetiology driving cortical changes in BTBR mice may therefore help to increase our understanding of this disorder. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0033-y) contains supplementary material, which is available to authorized users.
Collapse
|
195
|
Lin L, Fu Z, Xu X, Wu S. Mouse brain magnetic resonance microscopy: Applications in Alzheimer disease. Microsc Res Tech 2015; 78:416-24. [PMID: 25810274 DOI: 10.1002/jemt.22489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/23/2015] [Indexed: 01/26/2023]
Abstract
Over the past two decades, various Alzheimer's disease (AD) trangenetic mice models harboring genes with mutation known to cause familial AD have been created. Today, high-resolution magnetic resonance microscopy (MRM) technology is being widely used in the study of AD mouse models. It has greatly facilitated and advanced our knowledge of AD. In this review, most of the attention is paid to fundamental of MRM, the construction of standard mouse MRM brain template and atlas, the detection of amyloid plaques, following up on brain atrophy and the future applications of MRM in transgenic AD mice. It is believed that future testing of potential drugs in mouse models with MRM will greatly improve the predictability of drug effect in preclinical trials.
Collapse
Affiliation(s)
- Lan Lin
- Biomedical Engineering Department, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | | | | | | |
Collapse
|
196
|
Hashikawa T, Nakatomi R, Iriki A. Current models of the marmoset brain. Neurosci Res 2015; 93:116-27. [PMID: 25817023 DOI: 10.1016/j.neures.2015.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 01/25/2023]
Abstract
Since the availability of the common marmoset monkey as a primate model in neuroscience research has recently increased, much effort has been made to develop a reliable guide of the brain structures of this species. In this article, we review the development of the marmoset brain atlas and discuss a newly developed brain model, which was reconstructed from histological sections under volume-rendering technology. This kind of brain model allows virtual sections to be constructed on any axis, with nomenclatural annotations to structures in situ. This model is also applicable for the identification of structures revealed in magnetic resonance imaging studies. The brain model is accessible at the following web address: http://brainatlas.brain.riken.jp/marmoset/modules/xoonips/listitem.php?index_id=66.
Collapse
Affiliation(s)
- Tsutomu Hashikawa
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Reiko Nakatomi
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
197
|
De Groof G, George I, Touj S, Stacho M, Jonckers E, Cousillas H, Hausberger M, Güntürkün O, Van der Linden A. A three-dimensional digital atlas of the starling brain. Brain Struct Funct 2015; 221:1899-909. [PMID: 25690327 DOI: 10.1007/s00429-015-1011-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/10/2015] [Indexed: 12/31/2022]
Abstract
Because of their sophisticated vocal behaviour, their social nature, their high plasticity and their robustness, starlings have become an important model species that is widely used in studies of neuroethology of song production and perception. Since magnetic resonance imaging (MRI) represents an increasingly relevant tool for comparative neuroscience, a 3D MRI-based atlas of the starling brain becomes essential. Using multiple imaging protocols we delineated several sensory systems as well as the song control system. This starling brain atlas can easily be used to determine the stereotactic location of identified neural structures at any angle of the head. Additionally, the atlas is useful to find the optimal angle of sectioning for slice experiments, stereotactic injections and electrophysiological recordings. The starling brain atlas is freely available for the scientific community.
Collapse
Affiliation(s)
- Geert De Groof
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Isabelle George
- UMR6552-Ethologie Animale Et Humaine, Université Rennes 1-CNRS, Rennes, France
| | - Sara Touj
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Wilrijk, Belgium.,UMR6552-Ethologie Animale Et Humaine, Université Rennes 1-CNRS, Rennes, France
| | - Martin Stacho
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Elisabeth Jonckers
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Hugo Cousillas
- UMR6552-Ethologie Animale Et Humaine, Université Rennes 1-CNRS, Rennes, France
| | - Martine Hausberger
- UMR6552-Ethologie Animale Et Humaine, Université Rennes 1-CNRS, Rennes, France
| | - Onur Güntürkün
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
198
|
Macdonald IR, DeBay DR, Reid GA, O'Leary TP, Jollymore CT, Mawko G, Burrell S, Martin E, Bowen CV, Brown RE, Darvesh S. Early detection of cerebral glucose uptake changes in the 5XFAD mouse. Curr Alzheimer Res 2015; 11:450-60. [PMID: 24801216 PMCID: PMC4082185 DOI: 10.2174/1567205011666140505111354] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/13/2014] [Accepted: 04/15/2014] [Indexed: 01/06/2023]
Abstract
Brain glucose hypometabolism has been observed in Alzheimer’s disease (AD) patients, and is detected with 18F radiolabelled glucose, using positron emission tomography. A pathological hallmark of AD is deposition of brain β-amyloid plaques that may influence cerebral glucose metabolism. The five times familial AD (5XFAD) mouse is a model of brain amyloidosis exhibiting AD-like phenotypes. This study examines brain β-amyloid plaque deposition and 18FDG uptake, to search for an early biomarker distinguishing 5XFAD from wild-type mice. Thus, brain 18FDG uptake and plaque deposition was studied in these mice at age 2, 5 and 13 months. The 5XFAD mice demonstrated significantly reduced brain 18FDG uptake at 13 months relative to wild-type controls but not in younger mice, despite substantial β-amyloid plaque deposition. However, by comparing the ratio of uptake values for glucose in different regions in the same brain, 5XFAD mice could be distinguished from controls at age 2 months. This method of measuring altered glucose metabolism may represent an early biomarker for the progression of amyloid deposition in the brain. We conclude that brain 18FDG uptake can be a sensitive biomarker for early detection of abnormal metabolism in the 5XFAD mouse when alternative relative uptake values are utilized.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - S Darvesh
- Room 1308, Camp Hill Veterans' Memorial, 5955 Veterans' Memorial Lane, Halifax, Nova Scotia, B3H 2E1. Canada.
| |
Collapse
|
199
|
Ribera A, Haurigot V, Garcia M, Marcó S, Motas S, Villacampa P, Maggioni L, León X, Molas M, Sánchez V, Muñoz S, Leborgne C, Moll X, Pumarola M, Mingozzi F, Ruberte J, Añor S, Bosch F. Biochemical, histological and functional correction of mucopolysaccharidosis type IIIB by intra-cerebrospinal fluid gene therapy. Hum Mol Genet 2014; 24:2078-95. [PMID: 25524704 DOI: 10.1093/hmg/ddu727] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene therapy is an attractive tool for the treatment of monogenic disorders, in particular for lysosomal storage diseases (LSD) caused by deficiencies in secretable lysosomal enzymes in which neither full restoration of normal enzymatic activity nor transduction of all affected cells are necessary. However, some LSD such as Mucopolysaccharidosis Type IIIB (MPSIIIB) are challenging because the disease's main target organ is the brain and enzymes do not efficiently cross the blood-brain barrier even if present at very high concentration in circulation. To overcome these limitations, we delivered AAV9 vectors encoding for α-N-acetylglucosaminidase (NAGLU) to the Cerebrospinal Fluid (CSF) of MPSIIIB mice with the disease already detectable at biochemical, histological and functional level. Restoration of enzymatic activity in Central Nervous System (CNS) resulted in normalization of glycosaminoglycan content and lysosomal physiology, resolved neuroinflammation and restored the pattern of gene expression in brain similar to that of healthy animals. Additionally, transduction of the liver due to passage of vectors to the circulation led to whole-body disease correction. Treated animals also showed reversal of behavioural deficits and extended lifespan. Importantly, when the levels of enzymatic activity were monitored in the CSF of dogs following administration of canine NAGLU-coding vectors to animals that were either naïve or had pre-existing immunity against AAV9, similar levels of activity were achieved, suggesting that CNS efficacy would not be compromised in patients seropositive for AAV9. Our studies provide a strong rationale for the clinical development of this novel therapeutic approach as the treatment for MPSIIIB.
Collapse
Affiliation(s)
- Albert Ribera
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology
| | - Miguel Garcia
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology
| | - Sara Marcó
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology
| | - Sandra Motas
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology
| | - Pilar Villacampa
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology
| | - Luca Maggioni
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology
| | - Xavier León
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology
| | - Maria Molas
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology
| | - Víctor Sánchez
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology
| | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology
| | | | - Xavier Moll
- Department of Animal Medicine and Surgery and
| | - Martí Pumarola
- Center of Animal Biotechnology and Gene Therapy, Department of Animal Medicine and Surgery and
| | - Federico Mingozzi
- Généthon, 91000 Evry, France and University Pierre and Marie Curie, 75005 Paris, France
| | - Jesús Ruberte
- Center of Animal Biotechnology and Gene Therapy, Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Sònia Añor
- Department of Animal Medicine and Surgery and
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology,
| |
Collapse
|
200
|
Kolodziej A, Lippert M, Angenstein F, Neubert J, Pethe A, Grosser OS, Amthauer H, Schroeder UH, Reymann KG, Scheich H, Ohl FW, Goldschmidt J. SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice. Neuroimage 2014; 103:171-180. [DOI: 10.1016/j.neuroimage.2014.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/13/2014] [Accepted: 09/08/2014] [Indexed: 12/29/2022] Open
|