151
|
Mitochondrial health is enhanced in rats with higher vs. lower intrinsic exercise capacity and extended lifespan. NPJ Aging Mech Dis 2021; 7:1. [PMID: 33398019 PMCID: PMC7782588 DOI: 10.1038/s41514-020-00054-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/24/2020] [Indexed: 12/03/2022] Open
Abstract
The intrinsic aerobic capacity of an organism is thought to play a role in aging and longevity. Maximal respiratory rate capacity, a metabolic performance measure, is one of the best predictors of cardiovascular- and all-cause mortality. Rats selectively bred for high-(HCR) vs. low-(LCR) intrinsic running-endurance capacity have up to 31% longer lifespan. We found that positive changes in indices of mitochondrial health in cardiomyocytes (respiratory reserve, maximal respiratory capacity, resistance to mitochondrial permeability transition, autophagy/mitophagy, and higher lipids-over-glucose utilization) are uniformly associated with the extended longevity in HCR vs. LCR female rats. Cross-sectional heart metabolomics revealed pathways from lipid metabolism in the heart, which were significantly enriched by a select group of strain-dependent metabolites, consistent with enhanced lipids utilization by HCR cardiomyocytes. Heart–liver–serum metabolomics further revealed shunting of lipidic substrates between the liver and heart via serum during aging. Thus, mitochondrial health in cardiomyocytes is associated with extended longevity in rats with higher intrinsic exercise capacity and, probably, these findings can be translated to other populations as predictors of outcomes of health and survival.
Collapse
|
152
|
[Effect of omega-3 supplementation during pregnancy and lactation on the fatty acid composition of breast milk in the first months of life: a narrative review]. NUTR HOSP 2021; 38:848-870. [PMID: 34082564 DOI: 10.20960/nh.03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Omega-3 long-chain, polyunsaturated fatty acids are essential, so they must be provided through the diet, as their biological synthesis is limited, making it essential to meet their requirements during physiological stages such as pregnancy and lactation. A narrative review was conducted on the effects of omega-3 supplementation during pregnancy and lactation on the fatty acid composition of breast milk in the first months of life. Eight randomized clinical studies were analyzed, showing a significant increase in docosahexaenoic acid (DHA) concentration in breast milk (BM) post-supplementation, compared to control groups. One study evaluated the dose needed to achieve 8 % DHA in erythrocytes and 1 % DHA in BM, reaching these levels with a supplementation close to 1 g of docosahexaenoic acid + eicosapentaenoic acid (EPA). Finally, a trial was found that used supplementation with small lipid contributions (0,59 g α-linolenic acid (ALA)), without generating significant changes in the DHA composition of LM, but in the ALA content. Therefore, it is inferred that omega-3 supplementation beneficially modifies DHA and EPA levels in the composition of BM in pregnant women and during the lactation stage, although further studies are needed to identify doses, times, beneficial effects on development, and more efficient forms of delivery of omega-3 supplementation.
Collapse
|
153
|
Huang C, Chiba L, Bergen W. Bioavailability and metabolism of omega-3 polyunsaturated fatty acids in pigs and omega-3 polyunsaturated fatty acid-enriched pork: A review. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
154
|
Ilich JZ. Nutritional and Behavioral Approaches to Body Composition and Low-Grade Chronic Inflammation Management for Older Adults in the Ordinary and COVID-19 Times. Nutrients 2020; 12:E3898. [PMID: 33419325 PMCID: PMC7767148 DOI: 10.3390/nu12123898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
As more insight is gained into personalized health care, the importance of personalized nutritional and behavioral approaches is even more relevant in the COVID-19 era, in addition to the need for further elucidation regarding several diseases/conditions. One of these concerning body composition (in this context; bone, lean and adipose tissue) is osteosarcopenic adiposity (OSA) syndrome. OSA occurs most often with aging, but also in cases of some chronic diseases and is exacerbated with the presence of low-grade chronic inflammation (LGCI). OSA has been associated with poor nutrition, metabolic disorders and diminished functional abilities. This paper addresses various influences on OSA and LGCI, as well as their mutual action on each other, and provides nutritional and behavioral approaches which could be personalized to help with either preventing or managing OSA and LGCI in general, and specifically in the time of the COVID-19 pandemic. Addressed in more detail are nutritional recommendations for and roles of macro- and micronutrients and bioactive food components; the microbiome; and optimal physical activity regimens. Other issues, such as food insecurity and nutritional inadequacy, circadian misalignment and shift workers are addressed as well. Since there is still a lack of longer-term primary studies in COVID-19 patients (either acute or recovered) and interventions for OSA improvement, this discussion is based on the existing knowledge, scientific hypotheses and observations derived from similar conditions or studies just being published at the time of this writing.
Collapse
Affiliation(s)
- Jasminka Z Ilich
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
155
|
Di Francesco A, Choi Y, Bernier M, Zhang Y, Diaz-Ruiz A, Aon MA, Kalafut K, Ehrlich MR, Murt K, Ali A, Pearson KJ, Levan S, Preston JD, Martin-Montalvo A, Martindale JL, Abdelmohsen K, Michel CR, Willmes DM, Henke C, Navas P, Villalba JM, Siegel D, Gorospe M, Fritz K, Biswal S, Ross D, de Cabo R. NQO1 protects obese mice through improvements in glucose and lipid metabolism. NPJ Aging Mech Dis 2020; 6:13. [PMID: 33298924 PMCID: PMC7678866 DOI: 10.1038/s41514-020-00051-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic nutrient excess leads to metabolic disorders and insulin resistance. Activation of stress-responsive pathways via Nrf2 activation contributes to energy metabolism regulation. Here, inducible activation of Nrf2 in mice and transgenesis of the Nrf2 target, NQO1, conferred protection from diet-induced metabolic defects through preservation of glucose homeostasis, insulin sensitivity, and lipid handling with improved physiological outcomes. NQO1-RNA interaction mediated the association with and inhibition of the translational machinery in skeletal muscle of NQO1 transgenic mice. NQO1-Tg mice on high-fat diet had lower adipose tissue macrophages and enhanced expression of lipogenic enzymes coincident with reduction in circulating and hepatic lipids. Metabolomics data revealed a systemic metabolic signature of improved glucose handling, cellular redox, and NAD+ metabolism while label-free quantitative mass spectrometry in skeletal muscle uncovered a distinct diet- and genotype-dependent acetylation pattern of SIRT3 targets across the core of intermediary metabolism. Thus, under nutritional excess, NQO1 transgenesis preserves healthful benefits.
Collapse
Affiliation(s)
- Andrea Di Francesco
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Calico Life Sciences, South San Francisco, CA, USA
| | - Youngshim Choi
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yingchun Zhang
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 475004, People's Republic of China
| | - Alberto Diaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Nutritional Interventions Group, Precision Nutrition and Aging, Institute IMDEA Food, Crta. de Canto Blanco n° 8, 28049, Madrid, Spain
| | - Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Krystle Kalafut
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Margaux R Ehrlich
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Department Food Science, Cornell University, Ithaca, NY, 14850, USA
| | - Kelsey Murt
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Ahmed Ali
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Sophie Levan
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Joshua D Preston
- Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Emory University School of Medicine (MD/PhD program), Atlanta, GA, USA
| | - Alejandro Martin-Montalvo
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Diana M Willmes
- Molecular Diabetology, Paul Langerhans Institute Dresden of the Helmholtz German Center for Diabetes Research Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, 01307, Dresden, Germany
| | - Christine Henke
- Molecular Diabetology, Paul Langerhans Institute Dresden of the Helmholtz German Center for Diabetes Research Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, 01307, Dresden, Germany
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013, Sevilla, Spain
| | - Jose Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Sevilla, Spain
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kristofer Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Shyam Biswal
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - David Ross
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
156
|
Lyudinina AY, Bushmanova EA, Varlamova NG, Bojko ER. Dietary and plasma blood α-linolenic acid as modulators of fat oxidation and predictors of aerobic performance. J Int Soc Sports Nutr 2020; 17:57. [PMID: 33198755 PMCID: PMC7670702 DOI: 10.1186/s12970-020-00385-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background Among n-3 polyunsaturated fatty acids (PUFAs), the most important is α-linolenic acid (ALA). The biological activity of ALA is not equivalent to that of the long-chain n-3 PUFAs, and it has pleiotropic effects, such as functioning as an energy substrate during long-term training when carbohydrate reserves are depleted. The purpose of this investigation was to study the link between the essential dietary and plasma ALA and aerobic performance, which is estimated via maximal fat oxidation (MFO), among skiers. Methods Twenty-four highly trained male athletes from the Russian cross-country skiing team participated in the study. ALA intake was determined by an original program used to assess the actual amount and frequency of fat consumption. The plasma level of ALA was determined using gas-liquid chromatography. The skiers’ aerobic performance was estimated via MFO and determined by indirect calorimetry using the system “Oxycon Pro”. Results The consumption of ALA in the diet in half of the skiers was below the recommended level at 0.5 ± 0.2 g/day. The deficiency of plasma ALA levels was on average 0.2 ± 0.1 Mol% for almost all participants. The consumption of ALA in the diet and its level in plasma were associated with MFO (rs = 0.507, p = 0.011; rs = 0.460, p = 0.023). Levels of ALA in plasma (p = 0.0523) and the consumption of ALA in the diet (p = 0.0039) were associated with high aerobic performance. Conclusions ALA in the diet of the athletes may be used as nutritional support to increase MFO and aerobic performance.
Collapse
Affiliation(s)
- Aleksandra Y Lyudinina
- Department of Ecological and Medical Physiology, Institute of Physiology, Ural Branch, Russian Academy of Sciences, Pervomaiskaya str. 50, 167982, Syktyvkar, Russia.
| | - Ekaterina A Bushmanova
- Department of Ecological and Medical Physiology, Institute of Physiology, Ural Branch, Russian Academy of Sciences, Pervomaiskaya str. 50, 167982, Syktyvkar, Russia
| | - Nina G Varlamova
- Department of Ecological and Medical Physiology, Institute of Physiology, Ural Branch, Russian Academy of Sciences, Pervomaiskaya str. 50, 167982, Syktyvkar, Russia
| | - Evgeny R Bojko
- Department of Ecological and Medical Physiology, Institute of Physiology, Ural Branch, Russian Academy of Sciences, Pervomaiskaya str. 50, 167982, Syktyvkar, Russia
| |
Collapse
|
157
|
West AL, Miles EA, Lillycrop KA, Han L, Napier JA, Calder PC, Burdge GC. Dietary supplementation with seed oil from transgenic Camelina sativa induces similar increments in plasma and erythrocyte DHA and EPA to fish oil in healthy humans. Br J Nutr 2020; 124:922-930. [PMID: 32513312 PMCID: PMC7547888 DOI: 10.1017/s0007114520002044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023]
Abstract
EPA and DHA are required for normal cell function and can also induce health benefits. Oily fish are the main source of EPA and DHA for human consumption. However, food choices and concerns about the sustainability of marine fish stocks limit the effectiveness of dietary recommendations for EPA + DHA intakes. Seed oils from transgenic plants that contain EPA + DHA are a potential alternative source of EPA and DHA. The present study investigated whether dietary supplementation with transgenic Camelina sativa seed oil (CSO) that contained EPA and DHA was as effective as fish oil (FO) in increasing EPA and DHA concentrations when consumed as a dietary supplement in a blinded crossover study. Healthy men and women (n 31; age 53 (range 20-74) years) were randomised to consume 450 mg/d EPA + DHA provided either as either CSO or FO for 8 weeks, followed by 6 weeks washout and then switched to consuming the other test oil. Fasting venous blood samples were collected at the start and end of each supplementation period. Consuming the test oils significantly (P < 0·05) increased EPA and DHA concentrations in plasma TAG, phosphatidylcholine and cholesteryl esters. There were no significant differences between test oils in the increments of EPA and DHA. There was no significant difference between test oils in the increase in the proportion of erythrocyte EPA + DHA (CSO, 12 %; P < 0·0001 and FO, 8 %; P = 0·02). Together, these findings show that consuming CSO is as effective as FO for increasing EPA and DHA concentrations in humans.
Collapse
Affiliation(s)
- Annette L. West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, UK
| | - Elizabeth A. Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, UK
| | - Karen A. Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, SouthamptonSO17 1BJ, UK
| | - Lihua Han
- Department of Plant Sciences, Rothamsted Research, HarpendenAL5 2JQ, UK
| | | | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, SouthamptonSO16 6YD, UK
| | - Graham C. Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, UK
| |
Collapse
|
158
|
Tsuboi H, Sakakibara H, Matsunaga M, Tatsumi A, Yamakawa-Kobayashi K, Yoshida N, Shimoi K. Omega-3 Eicosapentaenoic Acid Is Related to Happiness and a Sense of Fulfillment-A Study among Female Nursing Workers. Nutrients 2020; 12:nu12113462. [PMID: 33187281 PMCID: PMC7696953 DOI: 10.3390/nu12113462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Omega (ω) 3 fatty acid (FA) is a polyunsaturated FA (PUFA) that can modulate some mental statuses. However, most studies have not considered the functional differences between eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We investigated associations among happiness, a sense of fulfillment and serum ω3 PUFA levels. Methods: Participants were 133 female staff from a hospital and nursing homes. Happiness was measured using the Japanese version of the subjective happiness scale (SHS); a sense of fulfillment was assessed using a visual analogue scale. Serum FA concentrations were measured. A partial correlation test and a regression model were applied. Results: The SHS scores showed significantly positive correlations with a sense of fulfillment, DHA% and EPA% (p < 0.05, < 0.05 and < 0.005, respectively), after controlling for age, BMI, menopause, snacking habits and leisure-time physical activities. A sense of fulfillment was significantly negatively correlated with α-linoleic acid%, and positively correlated with DHA% and EPA% (p < 0.05, < 0.05 and < 0.005, respectively), after controlling for the confounders. A regression model showed that a sense of fulfillment, EPA, and not stopping menstruation explained happiness (standardised beta, B = 0.18, p < 0.05; B = 0.24, p < 0.01; and B = 0.32, and p < 0.05, respectively), whereas age, BMI and snacking habits could not. Simultaneously, a regression model could not explain the association between DHA and happiness. Conclusion: Happiness was related with serum EPA%, a sense of fulfillment, and premenopause.
Collapse
Affiliation(s)
- Hirohito Tsuboi
- Institute of Medical, Pharmaceutical & Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan;
- Department of Neurology and Internal Psychosomatic Medicine, Bantane Hospital, Fujita Health University School of Medicine, Nagoya 454-8509, Japan;
- Correspondence:
| | - Hiroyuki Sakakibara
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.Y.-K.); (K.S.)
| | - Masahiro Matsunaga
- Department of Neurology and Internal Psychosomatic Medicine, Bantane Hospital, Fujita Health University School of Medicine, Nagoya 454-8509, Japan;
- Department of Health and Psychosocial Medicine, School of Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| | - Asami Tatsumi
- Department of Nursing, University of Human Environments, Obu 474-0035, Japan;
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.Y.-K.); (K.S.)
| | - Naoko Yoshida
- Institute of Medical, Pharmaceutical & Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Kayoko Shimoi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.Y.-K.); (K.S.)
| |
Collapse
|
159
|
Cui J, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. Δ6 fatty acid desaturases in polyunsaturated fatty acid biosynthesis: insights into the evolution, function with substrate specificities and biotechnological use. Appl Microbiol Biotechnol 2020; 104:9947-9963. [PMID: 33094384 DOI: 10.1007/s00253-020-10958-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Δ6 fatty acid desaturases (FADS6) have different substrate specificities that impact the ratio of omega-6/omega-3 polyunsaturated fatty acids, which are involved in regulating multiple signalling pathways associated with various diseases. For decades, FADS6 with different substrate specificities have been characterized and the functions of these crucial enzymes have been investigated, while it remains enigmatic that the substrate specificities of FADS6 from various species have a huge difference. This review summarizes the substrate specificities of FADS6 in different species and reveals the underlying relationship. Further evaluation of biochemical properties has revealed that the FADS6 prefer linoleic acid that is more hydrophilic and stable. Domain-swapping and site-directed mutagenesis have been employed to delineate the regions and sites that affect the substrate specificities of FADS6. These analyses improve our understanding of the functions of FADS6 and offer information for the discovery of novel biological resources. KEY POINTS: • Outline of the excavation and identification of Δ6 fatty acid desaturases. • Overview of methods used to determine the pivotal resides of desaturases. • Application of substrate properties to generate specific fatty acids.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, People's Republic of China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,Department of Cancer Biology, Wake Forest School of Medicine, 5, Winston-Salem, NC, 27127, USA
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| |
Collapse
|
160
|
Sahin E, Orhan C, Uckun FM, Sahin K. Clinical Impact Potential of Supplemental Nutrients as Adjuncts of Therapy in High-Risk COVID-19 for Obese Patients. Front Nutr 2020; 7:580504. [PMID: 33195370 PMCID: PMC7642511 DOI: 10.3389/fnut.2020.580504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China at the end of 2019 caused a major global pandemic and continues to be an unresolved global health crisis. The supportive care interventions for reducing the severity of symptoms along with participation in clinical trials of investigational treatments are the mainstay of COVID-19 management because there is no effective standard therapy for COVID-19. The comorbidity of COVID-19 rises in obese patients. Micronutrients may boost the host immunity against viral infections, including COVID-19. In this review, we discuss the clinical impact potential of supplemental nutrients as adjuncts of therapy in high-risk COVID-19 for obese patients.
Collapse
Affiliation(s)
- Emre Sahin
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Fatih M. Uckun
- COVID-19 Task Force, Reven Pharmaceuticals, Golden, CO, United States
- Department of Developmental Therapeutics, Immunology and Integrative Medicine, Ares Pharmaceuticals, St. Paul, MN, United States
| | - Kazim Sahin
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
161
|
Yamagata K. Dietary docosahexaenoic acid inhibits neurodegeneration and prevents stroke. J Neurosci Res 2020; 99:561-572. [PMID: 32964457 DOI: 10.1002/jnr.24728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/11/2020] [Accepted: 08/30/2020] [Indexed: 01/07/2023]
Abstract
Stroke severely impairs quality of life and has a high mortality rate. On the other hand, dietary docosahexaenoic acid (DHA) prevents neuronal damage. In this review, we describe the effects of dietary DHA on ischemic stroke-associated neuronal damage and its role in stroke prevention. Recent epidemiological studies have been conducted to analyze stroke prevention through DHA intake. The effects of dietary intake and supply of DHA to neuronal cells, DHA-mediated inhibition of neuronal damage, and its mechanism, including the effects of the DHA metabolite, neuroprotectin D1 (NPD1), were investigated. These studies revealed that DHA intake was associated with a reduced risk of stroke. Moreover, studies have shown that DHA intake may reduce stroke mortality rates. DHA, which is abundant in fish oil, passes through the blood-brain barrier to accumulate as a constituent of phospholipids in the cell membranes of neuronal cells and astrocytes. Astrocytes supply DHA to neuronal cells, and neuronal DHA, in turn, activates Akt and Raf-1 to prevent neuronal death or damage. Therefore, DHA indirectly prevents neuronal damage. Furthermore, NDP1 blocks neuronal apoptosis. DHA, together with NPD1, may block neuronal damage and prevent stroke. The inhibitory effect on neuronal damage is achieved through the antioxidant (via inducing the Nrf2/HO-1 system) and anti-inflammatory effects (via promoting JNK/AP-1 signaling) of DHA.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Bioscience & Biotechnology, College of Bioresource Science, Nihon University (UNBS), Fujisawa, Japan
| |
Collapse
|
162
|
Liquid molecular model explains discontinuity between site uniformity among three N−3 fatty acids and their 13C and 1H NMR spectra. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
163
|
Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease. Food Chem Toxicol 2020; 143:111558. [PMID: 32640331 PMCID: PMC7335494 DOI: 10.1016/j.fct.2020.111558] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
Prevention and treatment of non-communicable diseases (NCDs), including cardiovascular disease, diabetes, obesity, cancer, Alzheimer's and Parkinson's disease, arthritis, non-alcoholic fatty liver disease and various infectious diseases; lately most notably COVID-19 have been in the front line of research worldwide. Although targeting different organs, these pathologies have common biochemical impairments - redox disparity and, prominently, dysregulation of the inflammatory pathways. Research data have shown that diet components like polyphenols, poly-unsaturated fatty acids (PUFAs), fibres as well as lifestyle (fasting, physical exercise) are important factors influencing signalling pathways with a significant potential to improve metabolic homeostasis and immune cells' functions. In the present manuscript we have reviewed scientific data from recent publications regarding the beneficial cellular and molecular effects induced by dietary plant products, mainly polyphenolic compounds and PUFAs, and summarize the clinical outcomes expected from these types of interventions, in a search for effective long-term approaches to improve the immune system response.
Collapse
|
164
|
Calder PC. Eicosapentaenoic and docosahexaenoic acid derived specialised pro-resolving mediators: Concentrations in humans and the effects of age, sex, disease and increased omega-3 fatty acid intake. Biochimie 2020; 178:105-123. [PMID: 32860894 DOI: 10.1016/j.biochi.2020.08.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/02/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022]
Abstract
Although inflammation has a physiological role, unrestrained inflammation can be detrimental, causing tissue damage and disease. Under normal circumstances inflammation is self-limiting with induction of active resolution processes. Central to these is the generation of specialised pro-resolving lipid mediators (SPMs) from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These include resolvins, protectins and maresins whose activities have been well described in cell and animal models. A number of SPMs have been reported in plasma or serum in infants, children, healthy adults and individuals with various diseases, as well as in human sputum, saliva, tears, breast milk, urine, synovial fluid and cerebrospinal fluid and in human adipose tissue, skeletal muscle, hippocampus, skin, placenta, lymphoid tissues and atherosclerotic plaques. Differences in SPM concentrations have been reported between health and disease, as would be expected. However, sometimes SPM concentrations are lower in disease and sometimes they are higher. Human studies report that plasma or serum concentrations of some SPMs can be increased by increasing intake of EPA and DHA. However, the relationship of specific intakes of EPA and DHA to enhancement in the appearance of specific SPMs is not clear and needs a more thorough investigation. This is important because of the potential for EPA and DHA to be used more effectively in prevention and treatment of inflammatory conditions. If generation of SPMs represents an important mechanism of action of EPA and DHA, then more needs to be known about the most effective strategies by which EPA and DHA can increase SPM concentrations.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
165
|
Troesch B, Eggersdorfer M, Laviano A, Rolland Y, Smith AD, Warnke I, Weimann A, Calder PC. Expert Opinion on Benefits of Long-Chain Omega-3 Fatty Acids (DHA and EPA) in Aging and Clinical Nutrition. Nutrients 2020; 12:E2555. [PMID: 32846900 PMCID: PMC7551800 DOI: 10.3390/nu12092555] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Life expectancy is increasing and so is the prevalence of age-related non-communicable diseases (NCDs). Consequently, older people and patients present with multi-morbidities and more complex needs, putting significant pressure on healthcare systems. Effective nutrition interventions could be an important tool to address patient needs, improve clinical outcomes and reduce healthcare costs. Inflammation plays a central role in NCDs, so targeting it is relevant to disease prevention and treatment. The long-chain omega-3 polyunsaturated fatty acids (omega-3 LCPUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are known to reduce inflammation and promote its resolution, suggesting a beneficial role in various therapeutic areas. An expert group reviewed the data on omega-3 LCPUFAs in specific patient populations and medical conditions. Evidence for benefits in cognitive health, age- and disease-related decline in muscle mass, cancer treatment, surgical patients and critical illness was identified. Use of DHA and EPA in some conditions is already included in some relevant guidelines. However, it is important to note that data on the effects of omega-3 LCPUFAs are still inconsistent in many areas (e.g., cognitive decline) due to a range of factors that vary amongst the trials performed to date; these factors include dose, timing and duration; baseline omega-3 LCPUFA status; and intake of other nutrients. Well-designed intervention studies are required to optimize the effects of DHA and EPA in specific patient populations and to develop more personalized strategies for their use.
Collapse
Affiliation(s)
- Barbara Troesch
- Nutrition Science and Advocacy, DSM Nutritional Products, 4303 Kaiseraugst, Switzerland; (B.T.); (I.W.)
| | - Manfred Eggersdorfer
- Department of Internal Medicine, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Alessandro Laviano
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy;
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, INSERM 1027, Centre Hospitalo-Universitaire de Toulouse, 31300 Toulouse, France;
| | - A. David Smith
- Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Ines Warnke
- Nutrition Science and Advocacy, DSM Nutritional Products, 4303 Kaiseraugst, Switzerland; (B.T.); (I.W.)
| | - Arved Weimann
- Clinic for General, Visceral and Oncological Surgery, St. Georg gGmbH Clinic, 04129 Leipzig, Germany;
| | - Philip C. Calder
- Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
166
|
Hirata S, Nagatake T, Sawane K, Hosomi K, Honda T, Ono S, Shibuya N, Saito E, Adachi J, Abe Y, Isoyama J, Suzuki H, Matsunaga A, Tomonaga T, Kiyono H, Kabashima K, Arita M, Kunisawa J. Maternal ω3 docosapentaenoic acid inhibits infant allergic dermatitis through TRAIL-expressing plasmacytoid dendritic cells in mice. Allergy 2020; 75:1939-1955. [PMID: 32027039 PMCID: PMC7496639 DOI: 10.1111/all.14217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Background Maternal dietary exposures are considered to influence the development of infant allergies through changes in the composition of breast milk. Cohort studies have shown that ω3 polyunsaturated fatty acids (PUFAs) in breast milk may have a beneficial effect on the preventing of allergies in infants; however, the underlying mechanisms remain to be investigated. We investigated how the maternal intake of dietary ω3 PUFAs affects fatty acid profiles in the breast milk and their pups and reduced the incidence of allergic diseases in the pups. Methods Contact hypersensitivity (CHS) induced by 2,4‐dinitrofluorobenzene (DNFB) and fluorescein isothiocyanate was applied to the skin in pups reared by mother maintained with diets mainly containing ω3 or ω6 PUFAs. Skin inflammation, immune cell populations, and expression levels of immunomodulatory molecules in pups and/or human cell line were investigated by using flow cytometric, immunohistologic, and quantitative RT‐PCR analyses. ω3 PUFA metabolites in breast milk and infant's serum were evaluated by lipidomics analysis using LC‐MS/MS. Results We show that maternal intake of linseed oil, containing abundant ω3 α‐linolenic acid, resulted in the increased levels of ω3 docosapentaenoic acid (DPA) and its 14‐lipoxygenation products in the breast milk of mouse dams; these metabolites increased the expression of TNF‐related apoptosis‐inducing ligand (TRAIL) on plasmacytoid dendritic cells (pDCs) in their pups and thus inhibited infant CHS. Indeed, the administration of DPA‐derived 14‐lipoxygenation products to mouse pups ameliorated their DNFB CHS. Conclusion These findings suggest that an inhibitory mechanism in infant skin allergy is induced through maternal metabolism of dietary ω3 PUFAs in mice.
Collapse
Affiliation(s)
- So‐ichiro Hirata
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
- Department of Microbiology and Immunology Kobe University Graduate School of Medicine Kobe‐city Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
- Nippon Flour Mills Co., Ltd., Innovation Center Atsugi‐city Japan
- Graduate School of Pharmaceutical Sciences Osaka University Suita‐city Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Tetsuya Honda
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto‐city Japan
| | - Sachiko Ono
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto‐city Japan
| | - Noriko Shibuya
- Department of Pediatrics Maternal & Child Health Center, Aiiku Clinic Tokyo Japan
| | - Emiko Saito
- Department of Human Nutrition Tokyo Kasei Gakuin University Tokyo Japan
| | - Jun Adachi
- Laboratory of Proteome Research National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Yuichi Abe
- Laboratory of Proteome Research National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Junko Isoyama
- Laboratory of Proteome Research National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines The Institute of Medical ScienceThe University of Tokyo Tokyo Japan
- Division of Gastroenterology Department of Medicine University of California San Diego (UCSD) San Diego CA USA
- Chiba University (CU)‐UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV) UCSD San Diego CA USA
- Department of Immunology Graduate School of Medicine Chiba University Chiba‐city Japan
| | - Kenji Kabashima
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto‐city Japan
| | - Makoto Arita
- Laboratory for Metabolomics RIKEN Center for Integrative Medical Sciences Yokohama‐city Japan
- Division of Physiological Chemistry and Metabolism Graduate School of Pharmaceutical Sciences Keio University Tokyo Japan
- Graduate School of Medical Life Science Yokohama City University Yokohama‐city Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
- Department of Microbiology and Immunology Kobe University Graduate School of Medicine Kobe‐city Japan
- Graduate School of Pharmaceutical Sciences Osaka University Suita‐city Japan
- International Research and Development Center for Mucosal Vaccines The Institute of Medical ScienceThe University of Tokyo Tokyo Japan
- Graduate School of Medicine and Graduate School of Dentistry Osaka University Suita‐city Japan
| |
Collapse
|
167
|
Aon MA, Bernier M, Mitchell SJ, Di Germanio C, Mattison JA, Ehrlich MR, Colman RJ, Anderson RM, de Cabo R. Untangling Determinants of Enhanced Health and Lifespan through a Multi-omics Approach in Mice. Cell Metab 2020; 32:100-116.e4. [PMID: 32413334 PMCID: PMC8214079 DOI: 10.1016/j.cmet.2020.04.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/20/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
The impact of chronic caloric restriction (CR) on health and survival is complex with poorly understood underlying molecular mechanisms. A recent study in mice addressing the diets used in nonhuman primate CR studies found that while diet composition did not impact longevity, fasting time and total calorie intake were determinant for increased survival. Here, integrated analysis of physiological and multi-omics data from ad libitum, meal-fed, or CR animals was used to gain insight into pathways associated with improved health and survival. We identified a potential involvement of the glycine-serine-threonine metabolic axis in longevity and related molecular mechanisms. Direct comparison of the different feeding strategies unveiled a pattern of shared pathways of improved health that included short-chain fatty acids and essential PUFA metabolism. These findings were recapitulated in the serum metabolome from nonhuman primates. We propose that the pathways identified might be targeted for their potential role in healthy aging.
Collapse
Affiliation(s)
- Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Clara Di Germanio
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Margaux R Ehrlich
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53715, USA; Geriatric Research, Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
168
|
Başyiğit B, Sağlam H, Köroğlu K, Karaaslan M. Compositional analysis, biological activity, and food protecting ability of ethanolic extract of
Quercus infectoria
gall. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bülent Başyiğit
- Engineering Faculty, Food Engineering Department Harran University Şanlıurfa Turkey
| | - Hidayet Sağlam
- Engineering‐Architecture Faculty, Food Engineering Department Kilis 7 Aralık University Kilis Turkey
| | - Kübra Köroğlu
- Engineering Faculty, Food Engineering Department Harran University Şanlıurfa Turkey
| | - Mehmet Karaaslan
- Engineering Faculty, Food Engineering Department Harran University Şanlıurfa Turkey
| |
Collapse
|
169
|
Luo J, Wang Z, Deng S, Zhang F, Bao G, Mao J, Yang W.
Na
2
SiO
3
‐Catalyzed Glycerolysis of Sacha Inchi (
Plukenetia volubilis
L.) Oil into Di‐ and Monoacylglycerols. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia Luo
- National Engineering Laboratory of Wheat & Corn Further ProcessingHenan University of Technology Zhengzhou, Henan 450001 China
- Kunming Branch, CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical GardenChinese Academy of Sciences Kunming Yunnan 650223 China
- Center of Economic Botany, Core Botanical GardensChinese Academy of Sciences Menglun Mengla Yunnan 666303 China
| | - Zeping Wang
- College of Biology and ChemistryPu'er University Pu'er Yunnan 665000 China
| | - Shangzhi Deng
- Faculty of Metallurgical and Energy EngineeringKunming University of Science and Technology Kunming, Yunnan, 650093 China
| | - Fan Zhang
- Kunming Branch, CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical GardenChinese Academy of Sciences Kunming Yunnan 650223 China
- Center of Economic Botany, Core Botanical GardensChinese Academy of Sciences Menglun Mengla Yunnan 666303 China
| | - Guirong Bao
- Faculty of Metallurgical and Energy EngineeringKunming University of Science and Technology Kunming, Yunnan, 650093 China
| | - Junni Mao
- Kunming Branch, CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical GardenChinese Academy of Sciences Kunming Yunnan 650223 China
- Center of Economic Botany, Core Botanical GardensChinese Academy of Sciences Menglun Mengla Yunnan 666303 China
| | - Wenjing Yang
- Kunming Branch, CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical GardenChinese Academy of Sciences Kunming Yunnan 650223 China
- Center of Economic Botany, Core Botanical GardensChinese Academy of Sciences Menglun Mengla Yunnan 666303 China
| |
Collapse
|
170
|
Comparative anti-inflammatory effects of plant- and marine-derived omega-3 fatty acids explored in an endothelial cell line. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158662. [DOI: 10.1016/j.bbalip.2020.158662] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/19/2022]
|
171
|
de Groot RHM, Meyer BJ. ISSFAL Official Statement Number 6: The importance of measuring blood omega-3 long chain polyunsaturated fatty acid levels in research. Prostaglandins Leukot Essent Fatty Acids 2020; 157:102029. [PMID: 31740196 DOI: 10.1016/j.plefa.2019.102029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 11/21/2022]
Abstract
A statement on measuring blood omega-3 long chain polyunsaturated fatty acid levels was developed and edited based on input from ISSFAL members and accepted by vote of the ISSFAL Board of Directors. Summary of Statement: Omega-3 long chain polyunsaturated fatty acid (n-3 LCPUFA) levels at baseline and post-intervention should be assessed and reported in future research to evaluate the efficacy of n-3 LCPUFA supplementation: b ecause; 1. there are numerous factors that affect n-3 LCPUFA levels in humans as described in the systematic literature review [1]; 2. assessing intake of n-3 LCPUFA from the diet and/or supplements is not sufficient to accurately determine n-3 LCPUFA levels in humans; 3. some studies do not provide sufficient doses of n-3 LCPUFA to produce a significant impact on bloodstream/organ content and there is substantial variability in the uptake of n-3 LPCUFA into tissues between individuals. In secondary analyses, clinical trials should consider the influence of fatty acid status (baseline, endpoint and change from baseline to endpoint) on the outcome variables.
Collapse
Affiliation(s)
- Renate H M de Groot
- Faculty of Psychology and Educational Sciences, Welten Institute, Research Centre for Learning, Teaching and Technology, Open University of the Netherlands, Valkenburgerweg 177, 6419AT Heerlen, the Netherlands
| | - Barbara J Meyer
- School of Medicine, Lipid Research Centre, Molecular Horizons, University of Wollongong and Illawarra Health & Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
172
|
Prasad P, Anjali P, Sreedhar RV. Plant-based stearidonic acid as sustainable source of omega-3 fatty acid with functional outcomes on human health. Crit Rev Food Sci Nutr 2020; 61:1725-1737. [PMID: 32431176 DOI: 10.1080/10408398.2020.1765137] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dietary omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) like eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are known to be potent biological regulators with therapeutic and preventive effects on human health. Many global health organizations have recommended consuming marine based omega-3 sources for neonatal brain development and reducing the risk of various chronic diseases. However, due to concerns regarding the origin, sustainable supply and safety of the marine sources, alternative n-3 PUFA sources are being explored. Recently, plant-based omega-3 sources are gaining much importance because of their sustainable supply and dietary acceptance. α-linolenic acid (ALA, 18:3n-3) rich seed oils are the major omega-3 fatty acid source available for human consumption. But, efficiency of conversion of ALA to n-3 LC-PUFAs in humans is limited due to a rate-limiting step in the n-3 pathway catalyzed by Δ6-desaturase. Botanical stearidonic acid (SDA, 18:4n-3) rich oils are emerging as a sustainable omega-3 source with efficient conversion rate to n-3 LC-PUFA especially to EPA, as it bypasses the Δ6-desaturase rate limiting step. Several recent studies have identified the major plant sources of SDA and explored its potential health benefits and preventive roles in inflammation, cardiovascular disease (CVD) and cancer. This systematic review summarizes the current state of knowledge on the sources, nutraceutical roles, food-based applications and the future perspectives of botanical SDA.
Collapse
Affiliation(s)
- P Prasad
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P Anjali
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - R V Sreedhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
173
|
Huerta-Yepez S, Tirado-Rodriguez A, Montecillo-Aguado MR, Yang J, Hammock BD, Hankinson O. Aryl Hydrocarbon Receptor-Dependent inductions of omega-3 and omega-6 polyunsaturated fatty acid metabolism act inversely on tumor progression. Sci Rep 2020; 10:7843. [PMID: 32398692 PMCID: PMC7217871 DOI: 10.1038/s41598-020-64146-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022] Open
Abstract
The Western diet contains a high ratio of omega-6 (ω6) to omega-3 (ω3) polyunsaturated fatty acids (PUFA). The prototypical aryl hydrocarbon receptor (AHR) ligand, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), induces CYP1 family enzymes, which can metabolize PUFA to epoxides. Mice fed ω3-rich or ω6-rich diets were treated with TCDD and injected subcutaneously with AHR-competent Hepa1-GFP hepatoma cells or AHR-deficient LLC lung cancer cells. TCDD reduced the growth rates of the resulting tumors in ω3-fed mice and inhibited their metastasis to the liver and/or lung, but had the opposite effects in mice fed ω6 PUFA. These responses were likely attributable to the corresponding PUFA epoxides generated in tumor cells and/or host, since many depended upon co-administration of a soluble epoxide hydrolase (EPHX2) inhibitor in males, and/or were associated with increases in epoxide levels in tumors and sites of metastasis. Equivalent effects occurred in females in the absence of EPHX2 inhibition, probably because this sex expressed reduced levels of EPHX2. The responses elicited by TCDD were associated with effects on tumor vascularity, tumor cell proliferation and/or apoptosis. Thus environmental AHR agonists, and potentially also endogenous, nutritional, and microbiome-derived agonists, may reduce or enhance cancer progression depending on the composition of dietary PUFA, particularly in females.
Collapse
Affiliation(s)
- Sara Huerta-Yepez
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Ana Tirado-Rodriguez
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Mayra R Montecillo-Aguado
- Research Unit of Oncology Diseases. Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Jun Yang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Oliver Hankinson
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA.
- Molecular Toxicology Interdepartmental Program and Department of Environmental Health Sciences, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
174
|
Effect of linseed, sunflower, or fish oil added to hay-, or corn silage-based diets on milk fat yield and trans-C18:1 and conjugated linoleic fatty acid content in bovine milk fat. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
175
|
Value-added co-products from biomass of the diatoms Staurosirella pinnata and Phaeodactylum tricornutum. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
176
|
Jantzen da Silva Lucas A, Menegon de Oliveira L, da Rocha M, Prentice C. Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chem 2020; 311:126022. [DOI: 10.1016/j.foodchem.2019.126022] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/08/2019] [Accepted: 12/04/2019] [Indexed: 01/06/2023]
|
177
|
Oils' Impact on Comprehensive Fatty Acid Analysis and Their Metabolites in Rats. Nutrients 2020; 12:nu12051232. [PMID: 32349264 PMCID: PMC7281977 DOI: 10.3390/nu12051232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Fatty acids, especially polyunsaturated, and their metabolites (eicosanoids) play many pivotal roles in human body, influencing various physiological and pathological processes. The aim of the study was to evaluate the effect of supplementation with edible oils diverse in terms of fatty acid composition on fatty acid contents, activities of converting their enzymes, and on lipoxygenase metabolites of arachidonic and linoleic acids (eicosanoids) in rat serum. Female Sprague-Dawley rats divided into seven groups were used in the study. Animals from six groups were fed one of oils daily (carotino oil, made up by combining of red palm oil and canola oil, linseed oil, olive oil, rice oil, sesame oil, or sunflower oil). One group received a standard diet only. Fatty acids were determined using gas chromatography with flame ionization detection. Eicosanoids—hydroxyeicosatetraenoic (HETE) and hydroxyoctadecadienoic acids (HODE) were extracted using a solid-phase extraction method and analyzed with HPLC. Vegetable oils given daily to rats caused significant changes in serum fatty acid profile and eicosanoid concentrations. Significant differences were also found in desaturases’ activity, with the linseed and olive oil supplemented groups characterized by the highest D6D and D5D activity. These findings may play a significant role in various pathological states.
Collapse
|
178
|
Morillon AC, Williamson RD, Baker PN, Kell DB, Kenny LC, English JA, McCarthy FP, McCarthy C. Effect of L-Ergothioneine on the metabolic plasma profile of the RUPP rat model of pre-eclampsia. PLoS One 2020; 15:e0230977. [PMID: 32231385 PMCID: PMC7108727 DOI: 10.1371/journal.pone.0230977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Pre-eclampsia is a major cause of maternal and fetal mortality and morbidity worldwide. Its pathophysiology remains unclear, but mitochondrial dysfunction and oxidative stress have been implicated. L-Ergothioneine is a naturally occurring, water-soluble betaine, that has demonstrated antioxidant properties. Using the reduced uterine perfusion pressure (RUPP) rat model of pre-eclampsia, this study aimed to define the plasma metabolic profile following treatment with L-Ergothioneine. METHODS The effect of L-Ergothioneine (ET) treatment was explored using in vivo treatment in rats: Sham control (SC, n = 5), RUPP control (RC, n = 5), Sham +ET (ST, n = 5), RUPP +ET (RT, n = 5). Differential expression of plasma metabolites were obtained using untargeted liquid chromatography coupled to mass spectrometry. Statistical analysis was performed on normalised data comparing RC to SC, RT to RC, and RT to ST. Metabolites significantly altered (FDR < 0.05) were identified through database search. RESULTS We report significantly lower levels of L-palmitoylcarnitine in RC compared to SC, a fatty acyl substrate involved in beta-oxidation in the mitochondria. We report that a metabolite that has been associated with oxidative stress (Glutamylcysteine) was detected at significantly higher levels in RT vs RC and RT vs ST. Five metabolites associated with inflammation were significantly lower in RT vs RC and three metabolites in RT vs ST, demonstrating the anti-inflammatory effects of ET in the RUPP rat model of pre-eclampsia. CONCLUSIONS L-Ergothioneine may help preserve mitochondrial function by increasing antioxidant levels, and reducing inflammatory responses associated with pre-eclampsia. This study shows the potential of L-Ergothioneine as a treatment for pre-eclampsia.
Collapse
Affiliation(s)
- Aude-Claire Morillon
- INFANT Research Centre, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
| | | | - Philip N. Baker
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Douglas B. Kell
- Dept of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, United Kingdom
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Louise C. Kenny
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jane A. English
- INFANT Research Centre, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- INFANT Research Centre, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
| | - Cathal McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| |
Collapse
|
179
|
Başyiğit B, Sağlam H, Kandemir Ş, Karaaslan A, Karaaslan M. Microencapsulation of sour cherry oil by spray drying: Evaluation of physical morphology, thermal properties, storage stability, and antimicrobial activity. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.02.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
180
|
Innes JK, Calder PC. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. Int J Mol Sci 2020; 21:ijms21041362. [PMID: 32085487 PMCID: PMC7072971 DOI: 10.3390/ijms21041362] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
The omega-3 (n-3) fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are found in seafood (especially fatty fish), supplements and concentrated pharmaceutical preparations. Long-term prospective cohort studies consistently demonstrate an association between higher intakes of fish, fatty fish and marine n-3 fatty acids (EPA + DHA) or higher levels of EPA and DHA in the body and lower risk of developing cardiovascular disease (CVD), especially coronary heart disease (CHD) and myocardial infarction (MI), and cardiovascular mortality in the general population. This cardioprotective effect of EPA and DHA is most likely due to the beneficial modulation of a number of known risk factors for CVD, such as blood lipids, blood pressure, heart rate and heart rate variability, platelet aggregation, endothelial function, and inflammation. Evidence for primary prevention of CVD through randomised controlled trials (RCTs) is relatively weak. In high-risk patients, especially in the secondary prevention setting (e.g., post-MI), a number of large RCTs support the use of EPA + DHA (or EPA alone) as confirmed through a recent meta-analysis. This review presents some of the key studies that have investigated EPA and DHA in the primary and secondary prevention of CVD, describes potential mechanisms for their cardioprotective effect, and evaluates the more recently published RCTs in the context of existing scientific literature.
Collapse
Affiliation(s)
- Jacqueline K. Innes
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
- Correspondence: ; Tel.: +44-23281-205250
| |
Collapse
|
181
|
Jiao Z, Ruan N, Wang W, Guo M, Han S, Cheng J. Supercritical carbon dioxide co-extraction of perilla seeds and perilla leaves: experiments and optimization. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1728320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Zhen Jiao
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, PR China
- Joint Research Institute of Southeast University and Monash University, Suzhou, Jiangsu, PR China
| | - Ningjie Ruan
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, PR China
| | - Weifang Wang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, PR China
| | - Mengyang Guo
- School of Chemistry and Chemical Engineering, Southeast University Chengxian College, Nanjing, China
| | - Sai Han
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, PR China
| | - Jiangrui Cheng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, PR China
| |
Collapse
|
182
|
Määttänen P, Lurz E, Botts SR, Wu RY, Robinson SC, Yeung CW, Colas R, Li B, Johnson-Henry KC, Surette ME, Dalli J, Sherman PM. Plant- and Fish-Derived n-3 PUFAs Suppress Citrobacter Rodentium-Induced Colonic Inflammation. Mol Nutr Food Res 2020; 64:e1900873. [PMID: 31945799 DOI: 10.1002/mnfr.201900873] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/05/2019] [Indexed: 02/06/2023]
Abstract
SCOPE Marine-derived n-3 PUFAs may ameliorate inflammation associated with inflammatory bowel diseases. Plant-derived n-3 PUFAs are thought to be inferior owing to shorter chain lengths. The aim of this study is to compare the impact of plant- and fish-derived PUFAs on murine colitis. METHODS AND RESULTS C57BL/6 mice are fed high fat (36% kcal) diets with either 2.5% w/w sunflower oil (SO), flaxseed oil (FSO), ahiflower oil (AO), or fish oil (FO). After 4 weeks, mice are orogastrically challenged with Citrobacter rodentium (108 CFU) or sham gavaged. Fecal shedding is assayed at 2, 7, 10, and 14 days post infection (PI), and fecal microbiota at 14 days PI. Colonic inflammation and lipid mediators are measured. Supplementation regulates intestinal inflammation with crypt lengths being 66, 73, and 62 ±17 µm shorter (compared to SO) for FSO, AO, and FO respectively, p < 0.01. FSO blunts pathogen shedding at the peak of infection and FSO and AO both enhance fecal microbial diversity. FO attenuates levels of lipoxin and leukotriene B4 while plant oils increase pro-resolving mediator concentrations including D, E, and T-series resolvins. CONCLUSION Plant and fish n-3 PUFAs attenuate colitis-induced inflammation while exhibiting characteristic pro-resolving lipid mediator metabolomes. Plant oils additionally promote microbial diversity.
Collapse
Affiliation(s)
- Pekka Määttänen
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Biology Department, Burman University, Lacombe, Alberta, T4L 2E5, Canada
| | - Eberhard Lurz
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Division of Gastroenterology, Hepatology and Nutrition, von Haunersches Kinderspital, Ludwig-Maximillians-University LMU, Munich, 80539, Germany
| | - Steven R Botts
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Richard Y Wu
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | - Shaiya C Robinson
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - C William Yeung
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Romain Colas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Bo Li
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Kathene C Johnson-Henry
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, E1A 3E9, Canada
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, E1 4NS, UK
| | - Philip M Sherman
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A1, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| |
Collapse
|
183
|
Defining a Healthy Diet: Evidence for The Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020; 12:nu12020334. [PMID: 32012681 PMCID: PMC7071223 DOI: 10.3390/nu12020334] [Citation(s) in RCA: 406] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
The definition of what constitutes a healthy diet is continually shifting to reflect the evolving understanding of the roles that different foods, essential nutrients, and other food components play in health and disease. A large and growing body of evidence supports that intake of certain types of nutrients, specific food groups, or overarching dietary patterns positively influences health and promotes the prevention of common non-communicable diseases (NCDs). Greater consumption of health-promoting foods and limited intake of unhealthier options are intrinsic to the eating habits of certain regional diets such as the Mediterranean diet or have been constructed as part of dietary patterns designed to reduce disease risk, such as the Dietary Approaches to Stop Hypertension (DASH) or Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets. In comparison with a more traditional Western diet, these healthier alternatives are higher in plant-based foods, including fresh fruits and vegetables, whole grains, legumes, seeds, and nuts and lower in animal-based foods, particularly fatty and processed meats. To better understand the current concept of a “healthy diet,” this review describes the features and supporting clinical and epidemiologic data for diets that have been shown to prevent disease and/or positively influence health. In total, evidence from epidemiological studies and clinical trials indicates that these types of dietary patterns reduce risks of NCDs including cardiovascular disease and cancer.
Collapse
|
184
|
Sá M, Ferrer-Ledo N, Wijffels R, Crespo JG, Barbosa M, Galinha CF. Monitoring of eicosapentaenoic acid (EPA) production in the microalgae Nannochloropsis oceanica. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
185
|
Bork CS, Lasota AN, Lundbye-Christensen S, Jakobsen MU, Tjønneland A, Overvad K, Schmidt EB. Adipose tissue content of alpha-linolenic acid and development of peripheral artery disease: a Danish case-cohort study. Eur J Nutr 2019; 59:3191-3200. [PMID: 31832750 DOI: 10.1007/s00394-019-02159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/04/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to investigate the association between adipose tissue content of the plant-derived n-3 fatty acid, alpha-linolenic acid, and the rate of incident peripheral artery disease (PAD). METHODS We conducted a case-cohort study nested within the Danish Diet, Cancer and Health cohort (n = 57,053), which was established between 1993 and 1997. Potential PAD cases were identified using linkage with The Danish National Patient Register and all potential cases were validated. Adipose tissue samples from the buttock were collected at baseline and fatty acid composition was determined in cases and in a random sample (n = 3500) from the cohort by gas chromatography. Statistical analyses were performed using weighted Cox regression allowing for different baseline hazards among sexes. RESULTS During a median of 13.5 years of follow-up, we identified 863 PAD cases with complete information. The median adipose tissue content of ALA in the sub-cohort (n = 3197) was 0.84% (interquartile range 0.73-0.94%) of total fatty acids. In multivariate analyses including adjustment for established risk factors, we observed a U-shaped association between ALA in adipose tissue and rate of PAD, but the association was not statistically significant (P = 0.131). Similar pattern of associations were observed between ALA content in adipose tissue and the rate of PAD among men and women. CONCLUSIONS We found indications of a U-shaped association between adipose tissue content of ALA and the rate of PAD, but the association was not statistically significant.
Collapse
Affiliation(s)
- Christian S Bork
- Department of Cardiology, Aalborg University Hospital, Søndre Skovvej 15, 9000, Aalborg, Denmark.
| | - Anne N Lasota
- Department of Vascular Surgery, Aalborg University Hospital, Aalborg, Denmark
| | | | - Marianne U Jakobsen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Overvad
- Department of Cardiology, Aalborg University Hospital, Søndre Skovvej 15, 9000, Aalborg, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Erik B Schmidt
- Department of Cardiology, Aalborg University Hospital, Søndre Skovvej 15, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
186
|
Identification and functional characterization of Buglossoides arvensis microsomal fatty acid desaturation pathway genes involved in polyunsaturated fatty acid synthesis in seeds. J Biotechnol 2019; 308:130-140. [PMID: 31843519 DOI: 10.1016/j.jbiotec.2019.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/05/2023]
Abstract
Buglossoides arvensis seed oil is the richest natural source of stearidonic acid (SDA), an ω-3 fatty acid with nutraceutical potential superior to α-linolenic acid (ALA). The molecular basis of polyunsaturated fatty acid synthesis in B. arvensis is unknown. Here, we describe the identification of B. arvensis fatty acid desaturase2 (BaFAD2), fatty acid desaturase3 (BaFAD3), and Delta-6-desaturase (BaD6D-1 and BaD6D-2) genes by mining the transcriptome of developing seeds and their functional characterization by heterologous expression in Saccharomyces cerevisiae. In silico analysis of their encoded protein sequences showed conserved histidine-boxes and signature motifs essential for desaturase activity. Expression profiling of these genes showed higher transcript abundance in reproductive tissues than in vegetative tissues, and their expression varied with temperature stress treatments. Yeast expressing BaFAD2 was found to desaturate both oleic acid and palmitoleic acid into linoleic acid (LA) and hexadecadienoic acid, respectively. Fatty acid supplementation studies in yeast expressing BaFAD3 and BaD6D-1 genes revealed that the encoded enzyme activities of BaFAD3 efficiently converted LA to ALA, and BaD6D-1 converted LA to γ-linolenic acid and ALA to SDA, but with an apparent preference to LA. BaD6D-2 did not show the encoded enzyme activity and is not a functional D6D. Our results provide an insight into SDA biosynthesis in B. arvensis and expand the repository of fatty acid desaturase targets available for biotechnological production of SDA in traditional oilseed crops.
Collapse
|
187
|
Wen J, Khan I, Li A, Chen X, Yang P, Song P, Jing Y, Wei J, Che T, Zhang C. Alpha-linolenic acid given as an anti-inflammatory agent in a mouse model of colonic inflammation. Food Sci Nutr 2019; 7:3873-3882. [PMID: 31890165 PMCID: PMC6924294 DOI: 10.1002/fsn3.1225] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 01/12/2023] Open
Abstract
This study examined the relationship between the high-fat, high-sugar diet (HFHSD) and trinitrobenzene sulfonic acid (TNBS) induced mouse colitis, the therapeutic effect of alpha-linolenic acid (ALA) on mouse colitis, and the relationship between HFHSD and hyperlipidemia. We also examined the possible underlying mechanisms behind their interactions. Female BABL/c mice were fed with HFHSD for the 9 weeks. At the same time, ALA treatment (150 or 300 mg/kg) was administered on a daily basis. At the end of the 9 weeks, experimental colitis was induced by the intra-colonic administration of TNBS. Body weight, spleen weight, disease activity index (DAI), histological changes, T-cell-related cytokine level, and lipid profiles were measured after treatment. TNBS induced severe clinical manifestations of colitis and histological damage. Low-ALA (150 mg/kg) administration profoundly ameliorated TNBS-induced clinical manifestations, body weight loss, spleen weight loss, and histological damage. On the contrary, the high-ALA (300 mg/kg) administration did not ameliorate colitis and even exacerbated the symptoms. HFHSD consumption assisted TNBS in changing IL-12, IFN-γ, IL-2, and IL-17A in the liver. As expected, these changes were recovered through low-ALA. In addition, HFHSD had a significant impact on the total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG), which related to the increased risk of hyperlipidemia. In summation, HFHSD exacerbated the TNBS-induced colitis via the Th1/Th17 pathway. The Low-ALA (150 mg/kg) exhibited protective effects against the TNBS-induced colitis via the Th1/Th2/Th17 pathway.
Collapse
Affiliation(s)
- Juan Wen
- School of Life SciencesLanzhou UniversityLanzhouChina
- Key Laboratory of Cell Activities and Stress AdaptationsMinistry of EducationLanzhou UniversityLanzhouChina
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionLanzhou UniversityLanzhouChina
| | - Israr Khan
- School of Life SciencesLanzhou UniversityLanzhouChina
- Key Laboratory of Cell Activities and Stress AdaptationsMinistry of EducationLanzhou UniversityLanzhouChina
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionLanzhou UniversityLanzhouChina
| | - Anping Li
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Xinjun Chen
- Laboratory of Pathogenic Biology and ImmunologyHainan Medical UniversityHaikouChina
| | - Pingrong Yang
- School of Life SciencesLanzhou UniversityLanzhouChina
- Gansu Institute of Drug ControlLanzhouChina
| | - Pingshun Song
- School of Life SciencesLanzhou UniversityLanzhouChina
- Gansu Institute of Drug ControlLanzhouChina
| | - Yaping Jing
- School of Life SciencesLanzhou UniversityLanzhouChina
- Key Laboratory of Cell Activities and Stress AdaptationsMinistry of EducationLanzhou UniversityLanzhouChina
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionLanzhou UniversityLanzhouChina
| | - Junshu Wei
- School of Life SciencesLanzhou UniversityLanzhouChina
- Key Laboratory of Cell Activities and Stress AdaptationsMinistry of EducationLanzhou UniversityLanzhouChina
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionLanzhou UniversityLanzhouChina
| | - Tuanjie Che
- Gansu Key Laboratory of Functional Genomics and Molecular DiagnosisLanzhouChina
| | - Chunjiang Zhang
- School of Life SciencesLanzhou UniversityLanzhouChina
- Key Laboratory of Cell Activities and Stress AdaptationsMinistry of EducationLanzhou UniversityLanzhouChina
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionLanzhou UniversityLanzhouChina
| |
Collapse
|
188
|
Lin CR, Chu TM, Luo A, Huang SJ, Chou HY, Lu MW, Wu JL. Omega-3 polyunsaturated fatty acids suppress metastatic features of human cholangiocarcinoma cells by suppressing twist. J Nutr Biochem 2019; 74:108245. [DOI: 10.1016/j.jnutbio.2019.108245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/12/2019] [Accepted: 09/10/2019] [Indexed: 01/04/2023]
|
189
|
Beluska-Turkan K, Korczak R, Hartell B, Moskal K, Maukonen J, Alexander DE, Salem N, Harkness L, Ayad W, Szaro J, Zhang K, Siriwardhana N. Nutritional Gaps and Supplementation in the First 1000 Days. Nutrients 2019; 11:E2891. [PMID: 31783636 PMCID: PMC6949907 DOI: 10.3390/nu11122891] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022] Open
Abstract
Optimized nutrition during the first 1000 days (from conception through the 2nd birthday) is critical for healthy development and a healthy life for the newborn. Pregnancy and the postpartum period are accompanied by physiological changes, increased energy needs, and changing requirements in the nutrients critical for optimal growth and development. Infants and toddlers also experience physiological changes and have specific nutritional needs. Food and nutrition experts can provide women of childbearing age with adequate dietary advice to optimize nutrition, as well as guidance on selecting appropriate dietary supplements. Considering the approaching 2020-2025 Dietary Guidelines for Americans (DGA) will be making specific recommendations for children, it is important to provide accurate scientific information to support health influencers in the field of nutrition. The purpose of this review is to summarize the nutrition and supplementation literature for the first 1000 days; to highlight nutritional and knowledge gaps; and to educate nutrition influencers to provide thoughtful guidance to mothers and families. Optimal nutrition during pregnancy through early childhood is critical for supporting a healthy life. Nutrition influencers, such as dietitians, obstetricians/gynecologists, and other relevant health professionals, should continue guiding supplement and food intake and work closely with expectant families and nutrition gatekeepers.
Collapse
Affiliation(s)
- Katrina Beluska-Turkan
- Church & Dwight, Co., Inc., Product Development Nutritional Sciences, Princeton, NJ 08540, USA; (K.B.-T.); (K.M.); (L.H.); (W.A.); (J.S.); (K.Z.)
| | - Renee Korczak
- Premier Nutrition, LLC, Bernardsville, NJ 07924, USA;
| | - Beth Hartell
- PearTree Nutrition, LLC, Seattle, WA 98115, USA;
| | - Kristin Moskal
- Church & Dwight, Co., Inc., Product Development Nutritional Sciences, Princeton, NJ 08540, USA; (K.B.-T.); (K.M.); (L.H.); (W.A.); (J.S.); (K.Z.)
| | | | | | - Norman Salem
- DSM Nutritional Products, Columbia, MD 21045, USA;
| | - Laura Harkness
- Church & Dwight, Co., Inc., Product Development Nutritional Sciences, Princeton, NJ 08540, USA; (K.B.-T.); (K.M.); (L.H.); (W.A.); (J.S.); (K.Z.)
| | - Wafaa Ayad
- Church & Dwight, Co., Inc., Product Development Nutritional Sciences, Princeton, NJ 08540, USA; (K.B.-T.); (K.M.); (L.H.); (W.A.); (J.S.); (K.Z.)
| | - Jacalyn Szaro
- Church & Dwight, Co., Inc., Product Development Nutritional Sciences, Princeton, NJ 08540, USA; (K.B.-T.); (K.M.); (L.H.); (W.A.); (J.S.); (K.Z.)
| | - Kelly Zhang
- Church & Dwight, Co., Inc., Product Development Nutritional Sciences, Princeton, NJ 08540, USA; (K.B.-T.); (K.M.); (L.H.); (W.A.); (J.S.); (K.Z.)
| | - Nalin Siriwardhana
- Church & Dwight, Co., Inc., Product Development Nutritional Sciences, Princeton, NJ 08540, USA; (K.B.-T.); (K.M.); (L.H.); (W.A.); (J.S.); (K.Z.)
| |
Collapse
|
190
|
Yoon JY. Nutritional approach as therapeutic manipulation in inflammatory bowel disease. Intest Res 2019; 17:463-475. [PMID: 31665832 PMCID: PMC6821940 DOI: 10.5217/ir.2019.00078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Malnutrition is observed more frequently in patients with inflammatory bowel disease (IBD) than in the general population and associated with adverse clinical outcomes. This study aimed to review the current knowledge regarding the efficacy of dietary and nutritional intervention in IBD patients. Exclusive enteral nutrition might be inferior to corticosteroid treatment in adults with active Crohn’s disease (CD) but might even be superior considering the adverse effects of corticosteroid treatment in children. Total parenteral nutrition has no advantage over enteral nutrition, which is considered a more physiologic modality in organ function. Current guidelines do not yet recommend ω3-polyunsaturated fatty acid supplementation for the prevention and maintenance of remission in IBD patients. Dietary fiber supplementation could be effective in the relief of symptoms and maintenance of remission in ulcerative colitis (UC). Although vitamin D may be favorable to clinical course of IBD and bone density. Probiotic supplementation has proven to be effective in preventing and treating pouchitis for UC but is less effective in treating CD. Nutritional interventions not only correct nutritional deficiencies but also improve symptoms and clinical courses of the disease. Hence, nutritional approaches need to be developed to significantly evaluate the effectiveness of dietary interventions used to treat IBD.
Collapse
Affiliation(s)
- Jin Young Yoon
- Division of Gastroenterology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
191
|
Single-Dose SDA-Rich Echium Oil Increases Plasma EPA, DPAn3, and DHA Concentrations. Nutrients 2019; 11:nu11102346. [PMID: 31581725 PMCID: PMC6835614 DOI: 10.3390/nu11102346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 01/10/2023] Open
Abstract
The omega-3 (n3) polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with health benefits. The primary dietary source of EPA and DHA is seafood. Alpha-linoleic acid (ALA) has not been shown to be a good source for EPA and DHA; however, stearidonic acid (SDA)-which is naturally contained in echium oil (EO)-may be a more promising alternative. This study was aimed at investigating the short-term n3 PUFA metabolism after the ingestion of a single dose of EO. Healthy young male subjects (n = 12) ingested a single dose of 26 g of EO after overnight fasting. Plasma fatty acid concentrations and relative amounts were determined at baseline and 2, 4, 6, 8, 24, 48, and 72 h after the ingestion of EO. During the whole examination period, the participants received standardized nutrition. Plasma ALA and SDA concentrations increased rapidly after the single dose of EO. Additionally, EPA and DPAn3 concentrations both increased significantly by 47% after 72 h compared to baseline; DHA concentrations also significantly increased by 21% after 72 h. To conclude, EO increases plasma ALA, SDA, EPA, DPAn3, and DHA concentrations and may be an alternative source for these n3 PUFAs.
Collapse
|
192
|
Yoshikiyo K, Yoshioka Y, Narumiya Y, Oe S, Kawahara H, Kurata K, Shimizu H, Yamamoto T. Thermal stability and bioavailability of inclusion complexes of perilla oil with γ-cyclodextrin. Food Chem 2019; 294:56-59. [DOI: 10.1016/j.foodchem.2019.04.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/01/2022]
|
193
|
Stekovic S, Hofer SJ, Tripolt N, Aon MA, Royer P, Pein L, Stadler JT, Pendl T, Prietl B, Url J, Schroeder S, Tadic J, Eisenberg T, Magnes C, Stumpe M, Zuegner E, Bordag N, Riedl R, Schmidt A, Kolesnik E, Verheyen N, Springer A, Madl T, Sinner F, de Cabo R, Kroemer G, Obermayer-Pietsch B, Dengjel J, Sourij H, Pieber TR, Madeo F. Alternate Day Fasting Improves Physiological and Molecular Markers of Aging in Healthy, Non-obese Humans. Cell Metab 2019; 30:462-476.e6. [PMID: 31471173 DOI: 10.1016/j.cmet.2019.07.016] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/17/2019] [Accepted: 07/30/2019] [Indexed: 01/11/2023]
Abstract
Caloric restriction and intermittent fasting are known to prolong life- and healthspan in model organisms, while their effects on humans are less well studied. In a randomized controlled trial study (ClinicalTrials.gov identifier: NCT02673515), we show that 4 weeks of strict alternate day fasting (ADF) improved markers of general health in healthy, middle-aged humans while causing a 37% calorie reduction on average. No adverse effects occurred even after >6 months. ADF improved cardiovascular markers, reduced fat mass (particularly the trunk fat), improving the fat-to-lean ratio, and increased β-hydroxybutyrate, even on non-fasting days. On fasting days, the pro-aging amino-acid methionine, among others, was periodically depleted, while polyunsaturated fatty acids were elevated. We found reduced levels sICAM-1 (an age-associated inflammatory marker), low-density lipoprotein, and the metabolic regulator triiodothyronine after long-term ADF. These results shed light on the physiological impact of ADF and supports its safety. ADF could eventually become a clinically relevant intervention.
Collapse
Affiliation(s)
- Slaven Stekovic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria; BioTechMed Graz, Graz 8010, Austria
| | - Norbert Tripolt
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Philipp Royer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Lukas Pein
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria; Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Julia T Stadler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria; Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Barbara Prietl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Jasmin Url
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Sabrina Schroeder
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria; BioTechMed Graz, Graz 8010, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria; BioTechMed Graz, Graz 8010, Austria; NAWI Graz Central Lab Gracia, NAWI Graz, Graz, Austria
| | - Christoph Magnes
- HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz, Austria
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Elmar Zuegner
- HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz, Austria
| | - Natalie Bordag
- HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz, Austria
| | - Regina Riedl
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Ewald Kolesnik
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Nicolas Verheyen
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Anna Springer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/, VI 8010 Graz, Austria
| | - Tobias Madl
- BioTechMed Graz, Graz 8010, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/, VI 8010 Graz, Austria
| | - Frank Sinner
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria; HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz, Austria
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM U1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Center of Systems Medicine, Chinese Academy of Science Sciences, Suzhou, China
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland; Department of Dermatology, Medical Center, University of Freiburg, Hauptstr. 7, 79104 Freiburg, Germany
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Thomas R Pieber
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria; HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria; BioTechMed Graz, Graz 8010, Austria.
| |
Collapse
|
194
|
Hong MJ, Jang YE, Kim DG, Kim JM, Lee MK, Kim JB, Eom SH, Ha BK, Lyu JI, Kwon SJ. Selection of mutants with high linolenic acid contents and characterization of fatty acid desaturase 2 and 3 genes during seed development in soybean (Glycine max). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5384-5391. [PMID: 31077382 DOI: 10.1002/jsfa.9798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/14/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Soybean seeds contain 18-24% lipids, which are made up of 85% polyunsaturated fatty acids. Two of these (linoleic and linolenic acids) comprise essential fatty acids that are not synthesized in humans and animals. Linolenic acid plays a vital role in the maintenance of brain function and is a source of docosahexaenoic acid for retinal and nerve tissue, with its physiological functions being a focus of attention. RESULTS We developed mutant soybean populations via gamma irradiation of Korean cultivars Danbaek and Daepung and evaluated the linolenic acid content of 78 and 154 M9 mutant progenies. We selected the four mutant lines with the highest linolenic acid contents based on 2 years of investigation of fatty acids. The selected mutant lines had linolenic acid contents that were 33.9% to 67.7% higher than those of the original cultivars and exhibited increased fatty acid desaturase (FAD) gene expression levels during seed development. We also identified nucleotide polymorphisms of FAD genes in the four mutant lines. CONCLUSION The present study found that linolenic acid content is related to significantly increased expression levels of the FAD3C and FAD3D genes in the endoplasmic reticulum, which was uncovered by radiation mutation breeding of soybean. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Young Eun Jang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Dong-Gun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
- Department of Life-Resources, Graduate School, Sunchon National University, Sunchon, Korea
| | - Jung Min Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
- Division of Plant Biotechnology, Collage of Agriculture and Life Science, Chonnam National University, Gwangju, Korea
| | - Min-Kyu Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
- Division of Plant Biotechnology, Collage of Agriculture and Life Science, Chonnam National University, Gwangju, Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea
| | - Bo-Keun Ha
- Division of Plant Biotechnology, Collage of Agriculture and Life Science, Chonnam National University, Gwangju, Korea
| | - Jae Il Lyu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| |
Collapse
|
195
|
Endogenous production of n-3 long-chain PUFA from first feeding and the influence of dietary linoleic acid and the α-linolenic:linoleic ratio in Atlantic salmon ( Salmo salar). Br J Nutr 2019; 122:1091-1102. [PMID: 31409428 DOI: 10.1017/s0007114519001946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Atlantic salmon (Salmo salar) possess enzymes required for the endogenous biosynthesis of n-3 long-chain PUFA (LC-PUFA), EPA and DHA, from α-linolenic acid (ALA). Linoleic acid (LA) competes with ALA for LC-PUFA biosynthesis enzymes leading to the production of n-6 LC-PUFA, including arachidonic acid (ARA). We aimed to quantify the endogenous production of EPA and DHA from ALA in salmon fed from first feeding on diets that contain no EPA and DHA and to determine the influence of dietary LA and ALA:LA ratio on LC-PUFA production. Salmon were fed from first feeding for 22 weeks with three diets formulated with linseed and sunflower oils to provide ALA:LA ratios of approximately 3:1, 1:1 and 1:3. Endogenous production of n-3 LC-PUFA was 5·9, 4·4 and 2·8 mg per g fish and that of n-6 LC-PUFA was 0·2, 0·5 and 1·4 mg per g fish in salmon fed diets with ALA:LA ratios of 3:1, 1:1 and 1:3, respectively. The ratio of n-3:n-6 LC-PUFA production decreased from 27·4 to 2·0, and DHA:EPA ratio increased and EPA:ARA and DHA:ARA ratios decreased, as dietary ALA:LA ratio decreased. In conclusion, with a dietary ALA:LA ratio of 1, salmon fry/parr produced about 28 μg n-3 LC-PUFA per g fish per d, with a DHA:EPA ratio of 3·4. Production of n-3 LC-PUFA exceeded that of n-6 LC-PUFA by almost 9-fold. Reducing the dietary ALA:LA ratio reduced n-3 LC-PUFA production and EPA:ARA and DHA:ARA ratios but increased n-6 LC-PUFA production and DHA:EPA ratio.
Collapse
|
196
|
Samuel TM, Sakwinska O, Makinen K, Burdge GC, Godfrey KM, Silva-Zolezzi I. Preterm Birth: A Narrative Review of the Current Evidence on Nutritional and Bioactive Solutions for Risk Reduction. Nutrients 2019; 11:E1811. [PMID: 31390765 PMCID: PMC6723114 DOI: 10.3390/nu11081811] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/18/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Preterm birth (PTB) (<37 weeks of gestation) is the leading cause of newborn death and a risk factor for short and long-term adverse health outcomes. Most cases are of unknown cause. Although the mechanisms triggering PTB remain unclear, an inappropriate increase in net inflammatory load seems to be key. To date, interventions that reduce the risk of PTB are effective only in specific groups of women, probably due to the heterogeneity of its etiopathogenesis. Use of progesterone is the most effective, but only in singleton pregnancies with history of PTB. Thus, primary prevention is greatly needed and nutritional and bioactive solutions are a promising alternative. Among these, docosahexaenoic acid (DHA) is the most promising to reduce the risk for early PTB. Other potential nutrient interventions include the administration of zinc (possibly limited to populations with low nutritional status or poor zinc status) and vitamin D; additional preliminary evidence exists for vitamin A, calcium, iron, folic acid, combined iron-folate, magnesium, multiple micronutrients, and probiotics. Considering the public health relevance of PTB, promising interventions should be studied in large and well-designed clinical trials. The objective of this review is to describe, summarize, and discuss the existing evidence on nutritional and bioactive solutions for reducing the risk of PTB.
Collapse
Affiliation(s)
| | | | | | - Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | | |
Collapse
|
197
|
Darwesh AM, Sosnowski DK, Lee TYT, Keshavarz-Bahaghighat H, Seubert JM. Insights into the cardioprotective properties of n-3 PUFAs against ischemic heart disease via modulation of the innate immune system. Chem Biol Interact 2019; 308:20-44. [DOI: 10.1016/j.cbi.2019.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
|
198
|
Intake of α-linolenic acid is not consistently associated with a lower risk of peripheral artery disease: results from a Danish cohort study. Br J Nutr 2019; 122:86-92. [PMID: 31006418 DOI: 10.1017/s0007114519000874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intake of the plant-derived n-3 fatty acid α-linolenic acid (ALA) has been associated with anti-atherosclerotic properties. However, information on the association between ALA intake and development of peripheral artery disease (PAD) is lacking. In this follow-up study, we investigated the association between dietary intake of ALA and the rate of PAD among middle-aged Danish men and women enrolled into the Danish Diet, Cancer and Health cohort between 1993 and 1997. Incident PAD cases were identified through the Danish National Patient Register. Intake of ALA was assessed using a validated FFQ. Statistical analyses were performed using Cox proportional hazard regression allowing for separate baseline hazards among sexes and adjusted for established risk factors for PAD. During a median of 13·6 years of follow-up, we identified 950 valid cases of PAD with complete information on covariates. The median energy-adjusted ALA intake within the cohort was 1·76 g/d (95 % central range: 0·94-3·28). In multivariable analyses, we found no statistically significant association between intake of ALA and the rate of PAD (P = 0·339). Also, no statistically significant associations were observed in analyses including additional adjustment for co-morbidities and in sex-specific analyses. In supplemental analyses with additional adjustment for potential dietary risk factors, we found a weak inverse association of PAD with ALA intake above the median, but the association was not statistically significant (P = 0·314). In conclusion, dietary intake of ALA was not consistently associated with decreased risk of PAD.
Collapse
|
199
|
Polyunsaturated Fatty Acids and Risk of Ischemic Stroke. Nutrients 2019; 11:nu11071467. [PMID: 31252664 PMCID: PMC6682946 DOI: 10.3390/nu11071467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 11/29/2022] Open
Abstract
Ischemic stroke is a major cause of death and morbidity worldwide. It has been suggested that polyunsaturated fatty acids (PUFAs) may be associated with a lower risk ischemic stroke, but this has been far less studied than their role for coronary heart disease. In this paper, we summarize the main findings from previous follow-up studies investigating associations between intake or biomarkers of the major PUFAs including alpha-linolenic acid (ALA), marine n-3 PUFAs and linoleic acid (LA) and the development of ischemic stroke. Several follow-up studies have suggested that marine n-3 PUFAs may be associated with a lower risk of ischemic stroke although results have not been consistent and limited knowledge exist on the individual marine n-3 PUFAs and ischemic stroke and its subtypes. The role of ALA is less clear, but most studies have not supported that ALA is appreciably associated with ischemic stroke risk. Some studies have supported that LA might be associated with a lower risk of total ischemic stroke, while limited evidence exist on PUFAs and ischemic stroke subtypes. The associations may depend on the macronutrients that PUFAs replace and this substitution aspect together with focus on dietary patterns represent interesting areas for future research.
Collapse
|
200
|
Reduced intestinal FADS1 gene expression and plasma omega-3 fatty acids following Roux-en-Y gastric bypass. Clin Nutr 2019; 38:1280-1288. [DOI: 10.1016/j.clnu.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 12/29/2022]
|