151
|
Bang WH, Jung Y, Park JW, Lee S, Maeng SK. Effects of hydraulic loading rate and organic load on the performance of a pilot-scale hybrid VF-HF constructed wetland in treating secondary effluent. CHEMOSPHERE 2019; 218:232-240. [PMID: 30471504 DOI: 10.1016/j.chemosphere.2018.11.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/03/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
This study evaluated the performance of a pilot-scale hybrid constructed wetland system for secondary effluent and investigated bulk organic matter characteristics. The hybrid constructed wetland consisted of a vertical-flow (VF) bed followed by a horizontal-flow (HF) bed. We also investigated the effects of hydraulic loading rates and influent organic load on the performance of the pilot-scale VF-HF hybrid constructed wetland. The results showed a high removal efficiency for suspended solids (>95%) and organic matter as determined by total organic carbon (>98.5%) and dissolved organic carbon (>70%), but no significant change in nitrogen removal was observed. The wetland treatment efficiency for suspended solids and organic matter showed a good buffer capacity even when hydraulic loading rates increased from 750 to 1500 L m-2 d-1 and 500-1000 L m-2 d-1 during the VF and HF stages, respectively. Moreover, there was no significant change in the performance when influent organic load increased eight-fold. Fluorescence excitation-emission matrix and liquid chromatography-organic carbon detection (LC-OCD) were used to investigate the dissolved organic matter characteristics in the hybrid VF-HF constructed wetland. Fluorescence excitation-emission matrix spectroscopy showed that both protein- and humic-like substances did not significantly change in the effluent when hydraulic loading rates and organic load increased by two- and eight-fold, respectively. Biopolymers determined using LC-OCD were effectively removed via the VF and HF stage wetlands, indicating the occurrence of biodegradation. Fluorescence excitation-emission matrix spectroscopy and LC-OCD provided the fate of dissolved organic matter characteristics in the hybrid VF-HF constructed wetland.
Collapse
Affiliation(s)
- Woo Hyuck Bang
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006, Republic of Korea
| | - Yeonsung Jung
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006, Republic of Korea
| | - Ji Won Park
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006, Republic of Korea
| | - Seunghak Lee
- Center for Water Resource Cycle, Green City Technology Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
152
|
Aguilar L, Gallegos Á, Arias CA, Ferrera I, Sánchez O, Rubio R, Saad MB, Missagia B, Caro P, Sahuquillo S, Pérez C, Morató J. Microbial nitrate removal efficiency in groundwater polluted from agricultural activities with hybrid cork treatment wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:723-734. [PMID: 30759598 DOI: 10.1016/j.scitotenv.2018.10.426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Agricultural practices have raised the level of nutrients reaching aquifers. In Europe, nitrate pollution is considered as one of the main threats for the quality of groundwater in agricultural areas. Treatment wetlands (TWs), also known as Constructed Wetlands, are used for groundwater treatment in areas with an important concentration of nitrogen compounds; total nitrogen removal depends on the type and operation scheme. Cork by-product from the industry has shown clear adsorbent properties to remove organic pollutants. The work is focused on the characterization of microbial communities involved in the nitrate‑nitrogen removal process in groundwater polluted from agricultural activities. The experimental design allowed the comparison of nitrate removal efficiency depending on the filter media material, cork by-product or gravel, used in two hybrid TWs (a vertical flow cell followed by a horizontal subsurface flow cell), installed in areas close to two irrigated agricultural plots at the Lleida plain area (Spain). Both physicochemical and microbial results were consistent and confirm the nitrate removal efficiency using cork as a filter media. A significant (p = 0.0025) higher removal in Bellvís TW using cork compared with the Vilanova de la Barca gravel system was observed, achieving a removal rate from 80 to 99% compared to the 5-46%, respectively. Regarding the community composition of the two different TWs, microorganisms were mainly related to the phylum Proteobacteria, and included members found to be key players in the nitrogen cycle, such as ammonia and nitrite oxidizers, as well as denitrifiers. Also, the group Bacteroidetes turns to be another abundant phylum from our bacterial dataset, whose members are suggested to be strongly involved in denitrification processes. Some groups showed to prevail depending on the type of media (cork or gravel); Firmicutes and Delta and Epsilonproteobacteria had a significant higher abundance in the TW with cork, while Acidobacteria and Planctomyces were prevalent in gravel. Therefore, cork could be an alternative material used by treatment wetlands to minimize the impact in the environment caused by nitrogen pollution in groundwater bodies.
Collapse
Affiliation(s)
- Lorena Aguilar
- UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, Carrer Colom 1, TR1, ESEIAAT, Terrassa 08222, Spain
| | - Ángel Gallegos
- UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, Carrer Colom 1, TR1, ESEIAAT, Terrassa 08222, Spain
| | - Carlos A Arias
- Department of Biological Sciences, University of Aarhus, Ole Worms Allé 1, Building 1135, Aarhus C. 8000, Denmark
| | - Isabel Ferrera
- Departament de Biologia Marina I Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Spain
| | - Olga Sánchez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Raquel Rubio
- UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, Carrer Colom 1, TR1, ESEIAAT, Terrassa 08222, Spain
| | - Marwa Ben Saad
- Water Researches and Technologies Center, CERTE, BP 273 - 8020 Soliman, Tunisia; National Agronomic Institute of Tunisia, University of Carthage, 43 Avenue Charles Nicolle, Mahrajène, 1082 Tunis, Tunisia
| | - Beatriz Missagia
- Federal Centre of Technological Education of Minas Gerais - CEFET/MG, Belo Horizonte, MG, Brazil
| | - Patricia Caro
- Grupo TYPSA, C. Roselló i Porcel 21, 3ª A, Barcelona 08016, Spain
| | | | - Carlos Pérez
- LEITAT, C. de la Innovació 2, Terrassa 08225, Spain
| | - Jordi Morató
- UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, Carrer Colom 1, TR1, ESEIAAT, Terrassa 08222, Spain.
| |
Collapse
|
153
|
Hartl M, Bedoya-Ríos DF, Fernández-Gatell M, Rousseau DPL, Du Laing G, Garfí M, Puigagut J. Contaminants removal and bacterial activity enhancement along the flow path of constructed wetland microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1195-1208. [PMID: 30586806 DOI: 10.1016/j.scitotenv.2018.10.234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/24/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
Microbial fuel cells implemented in constructed wetlands (CW-MFCs), albeit a relatively new technology still under study, have shown to improve treatment efficiency of urban wastewater. So far the vast majority of CW-MFC systems investigated were designed as lab-scale systems working under rather unrealistic hydraulic conditions using synthetic wastewater. The main objective of this work was to quantify CW-MFCs performance operated under different conditions in a more realistic setup using meso-scale systems with horizontal flow fed with real urban wastewater. Operational conditions tested were organic loading rate (4.9 ± 1.6, 6.7 ± 1.4 and 13.6 ± 3.2 g COD/m2·day) and hydraulic regime (continuous vs. intermittent feeding) as well as different electrical connections: CW control (conventional CW without electrodes), open-circuit CW-MFC (external circuit between anode and cathode not connected) and closed-circuit CW-MFC (external circuit connected). Eight horizontal subsurface flow CWs were operated for about four months. Each wetland consisted of a PVC reservoir of 0.193 m2 filled with 4/8 mm granitic riverine gravel (wetted depth 25 cm). All wetlands had intermediate sampling points for gravel and interstitial liquid sampling. The CW-MFCs were designed as three MFCs incorporated one after the other along the flow path of the CWs. Anodes consisted of gravel with an incorporated current collector (stainless steel mesh) and the cathode consisted of a graphite felt layer. Electrodes of closed-circuit CW-MFC systems were connected externally over a 220 Ω resistance. Results showed no significant differences between tested organic loading rates, hydraulic regimes or electrical connections, however, on average, systems operated in closed-circuit CW-MFC mode under continuous flow outperformed the other experimental conditions. Closed-circuit CW-MFC compared to conventional CW control systems showed around 5% and 22% higher COD and ammonium removal, respectively. Correspondingly, overall bacteria activity, as measured by the fluorescein diacetate technique, was higher (4% to 34%) in closed-circuit systems when compared to CW control systems.
Collapse
Affiliation(s)
- Marco Hartl
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Diego F Bedoya-Ríos
- Grupo Ciencia e Ingeniería del Agua y el Ambiente, Facultad de Ingeniería, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62, Bogotá D.C., Colombia
| | - Marta Fernández-Gatell
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Diederik P L Rousseau
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Gijs Du Laing
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Marianna Garfí
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Jaume Puigagut
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| |
Collapse
|
154
|
Li J, Wang JT, Hu HW, Cai ZJ, Lei YR, Li W, Zhang MY, Li ZM, Zhu YN, Cui LJ. Changes of the denitrifying communities in a multi-stage free water surface constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1419-1425. [PMID: 30308829 DOI: 10.1016/j.scitotenv.2018.09.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Microorganisms play crucial roles in the nitrogen removal processes of wetlands. However, the key functional genes and microbes related to the nitrogen removal remain largely unknown in the free water surface constructed wetland (FWS CW). Here we studied the abundances of denitrifiers by targeting the key functional genes (nirS, nirK and nosZ) and investigated the community compositions of denitrifiers and their correlations with the abiotic variables in a FWS CW. The increase of nosZ/(nirS + nirK) and nirS/nirK ratios in the outlet indicated a shift of denitrifiers' communities which tended to release less nitrous oxide at the genetic potential level. The denitrifiers dominated the bacterial community which also remarkably changed from the inlet to the outlet. PICRUSt analysis revealed that the denitrifiers contributed to 39.1% of the nitrogen metabolism, 38.9% of the amino acid metabolism and 25.6% of the amino acid related enzymes. Four bacterial genera including Hydrogenophaga, Hylemonella, Aquabacterium and Cellvibrio were detected as the putative keystone denitrifiers. The abundance (nirS, nirK and nosZ) and the relative abundance of putative keystone denitrifiers were significantly correlated with total organic carbon, oxidation-reduction potential and C/N ratio, which could be regarded as the determinants for the denitrification process in the free water.
Collapse
Affiliation(s)
- Jing Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Zhang-Jie Cai
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Yin-Ru Lei
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Wei Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Man-Yin Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Zong-Ming Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yi-Nuo Zhu
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Li-Juan Cui
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China.
| |
Collapse
|
155
|
Maine MA, Sanchez GC, Hadad HR, Caffaratti SE, Pedro MC, Mufarrege MM, Di Luca GA. Hybrid constructed wetlands for the treatment of wastewater from a fertilizer manufacturing plant: Microcosms and field scale experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:297-302. [PMID: 30199675 DOI: 10.1016/j.scitotenv.2018.09.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/08/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Wastewater from a fertilizer manufacturing plant requires improvement prior to its environmental disposal. Ammonium is the critical contaminant to be removed. The aim of this study was to evaluate the feasibility of using free water surface wetlands (FWSWs), horizontal subsurface flow wetlands (HSSFWs), and their combination in hybrid wetlands (HWs) for the final treatment of wastewater with high ammonium concentration from a fertilizer manufacturing plant. Substrates and macrophytes were evaluated in microcosm experiments during three months. There were no significant differences in contaminant removal among HSSFWs with LECA or FWSWs planted with Typha domingensis or Canna indica. In a second stage, two configurations of pilot-scale HWs were constructed at the manufacturing facilities. Configuration A: HSSFW(A1)-FWSW(A2) and Configuration B: FWSW(B1)-HSSFW(B2) were evaluated during 12 months. There were no significant differences in contaminant removal (%) between the two configurations of HWs for COD (A: 74.5 ± 12.2/B: 81.5 ± 9.4), ammonium (A: 59.5 ± 17.5/B: 57.9 ± 21.4), nitrite (A: 79.8 ± 24.2/B: 80.6 ± 16.8) and dissolved inorganic nitrogen (DIN) (A: 59.4 ± 17.3/B: 50.3 ± 24.4). However, nitrate concentration (9.83 ± 3.11 mg N L-1) was significantly lower after Configuration A than after Configuration B (18.8 ± 5.2 mg N L-1). Comparing FWSWs and HSSFWs, they did not present significant differences in ammonium removal, while FWSWs presented the highest DIN removal. T. domingensis and C. indica in HSSFWs and T. domingensis in FWSWs tolerated wastewater conditions. T. domingensis presented the highest productivity. In further research, FWSWs in series planted with T. domingensis should be studied.
Collapse
Affiliation(s)
- M A Maine
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina.
| | - G C Sanchez
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - H R Hadad
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - S E Caffaratti
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - M C Pedro
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - M M Mufarrege
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - G A Di Luca
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| |
Collapse
|
156
|
Jia L, Gou E, Liu H, Lu S, Wu S, Wu H. Exploring Utilization of Recycled Agricultural Biomass in Constructed Wetlands: Characterization of the Driving Force for High-Rate Nitrogen Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1258-1268. [PMID: 30608662 DOI: 10.1021/acs.est.8b04871] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Improper treatment of various wastewaters with a low C/N ratio and management of abundant agricultural wastes may pose a serious threat to bodies of water and agricultural ecosystems in rural areas, especially in developing countries. Thus, a potential alternative for simultaneous mitigation of this pollution is needed to protect rural environments. This study investigated the feasibility and enhanced performance of applying typical agricultural wastes (such as wheat straw, apricot pits, and walnut shells) as carbon sources for nitrogen removal in constructed wetlands (CWs). The leaching experiment employed fluorescence excitation-emission spectrophotometry and revealed that the wheat straw material had the highest capability of carbon release with an average dissolved organic carbon release content and rate of 27.88 mg g-1 and 5.24 mg g-1 day-1, respectively. Dissolved organic matter released from different agricultural wastes mainly consisted of humic acid-like and fulvic acid-like compounds. Long-term assessment of lab-scale intermittent aeration CWs receiving agricultural wastes revealed a high total nitrogen removal of 66.75-93.67% in low carbon/nitrogen ratio wastewaters (C/N = 3). These findings can contribute to a better understanding of the driving mechanism through which agricultural wastes enhance nitrogen removal in CW wastewater treatments.
Collapse
Affiliation(s)
- Lixia Jia
- College of Resources and Environment , Northwest A&F University , Yangling , Shaanxi 712100 , PR China
| | - Enfang Gou
- State Key Laboratory of Urban Water Resources and Environment , Harbin Institute of Technology , Harbin 150090 , PR China
| | - Hai Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Shaoyong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration , Chinese Research Academy of Environmental Sciences , Beijing 100012 , PR China
| | - Shubiao Wu
- College of Resources and Environment , Northwest A&F University , Yangling , Shaanxi 712100 , PR China
- Aarhus Institute of Advanced Studies , Aarhus University , Aarhus 8000C , Denmark
| | - Haiming Wu
- College of Resources and Environment , Northwest A&F University , Yangling , Shaanxi 712100 , PR China
| |
Collapse
|
157
|
Han Z, Dong J, Shen Z, Mou R, Zhou Y, Chen X, Fu X, Yang C. Nitrogen removal of anaerobically digested swine wastewater by pilot-scale tidal flow constructed wetland based on in-situ biological regeneration of zeolite. CHEMOSPHERE 2019; 217:364-373. [PMID: 30419390 DOI: 10.1016/j.chemosphere.2018.11.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
Dispersed swine wastewater has increasingly aggravated water pollution in China. Anaerobically digested dispersed swine wastewater was targeted and treated by a pilot-scale zoning tidal flow constructed wetland (TFCW) with a bottom wastewater saturation layer. The long-term application of in-situ biological regeneration of biozeolite, nitrogen removal performance, nitrogen removal pathways and microbial community of TFCW were investigated. Results showed that with the surface loads of 0.079, 0.022 and 0.024 kg/(m2·d), TFCW could decrease COD, NH4N and TN by 84.75%, 74.13% and 67.13% respectively. Influent COD, NH4N, TN and nitrates/nitrites produced by bioregeneration of NH4N were mostly removed in zeolite layer and the remaining nitrates/nitrites could be further denitrified in bottom saturation layer. Theory of dynamic process of rapid-adsorption and bioregeneration for NH4N removal was proposed. When this process reached dynamic equilibrium, the mass of adsorbed NH4N onto zeolites remained relatively stable. When ambient temperature decreased to 16 °C, TFCW could still remove COD, NH4N and TN by 73.79%, 72.99% and 70.71% with the surface loads of 0.103, 0.056 and 0.054 kg/(m2·d) respectively. Nitrification-denitrification which accounted for 80.32% of TN removal was the main nitrogen removal pathway. Dominant nitrifiers (Nitrosospira and Rhizomicrobium) and denitrifiers (Ottowia, Thauera and Rhodanobacteria) in biozeolite layer verified the existence of simultaneous nitrification and denitrification.
Collapse
Affiliation(s)
- Zhenfeng Han
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jing Dong
- Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Rui Mou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Xuemin Chen
- Institute of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaoyong Fu
- Institute of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
158
|
Masi F, Rizzo A, Bresciani R, Martinuzzi N, Wallace SD, Van Oirschot D, Macor F, Rossini T, Fornaroli R, Mezzanotte V. Lessons learnt from a pilot study on residual dye removal by an aerated treatment wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:144-152. [PMID: 30114585 DOI: 10.1016/j.scitotenv.2018.08.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Treatment wetlands (TWs) have shown good capacity in dye removal from textile wastewater. However, the high hydraulic retention times (HRTs) required by these solutions and the connected high area requirements, remain a big drawback towards the application of TWs for dye treatment at full scale. Aerated TWs are interesting intensified solutions that attempt to reduce the TW required area. Therefore, an aerated CW pilot plant, composed of a 20 m2 horizontal subsurface flow TW (HF) and a 21 m2 Free Water System (FWS), equipped with aeration pipelines, was built and monitored to investigate the potential reduction of required area for dye removal from the effluent wastewater of a centralized wastewater treatment plant (WWTP). During a 8 months long study, experimenting with different hydraulic retention times (HRTs - 1.2, 2.6 and 3.5 days) and aeration modes (intermittent and continuous), the pilot plant has shown a normal biological degradation for organic matter and nutrients, while the residual dye removal has been very low, as demonstrated by the absorbance measure at three wavelengths: at 426 nm (blue) the removal varies from -55% at influent absorbance of 0.010 to 41% at 0.060; at 558 nm (yellow) the removal is negative at 0.005 (-58%) and high at higher influent concentrations (72% at 0.035 of absorbance for the inlet); at 660 nm (red) -82% of removal efficiency was obtained at influent absorbance of 0.002 and 74% at 0.010. These results are a consequence of the biological oxidation processes taking place in the WWTP, so that the residual dye seems to be resistant to further aerobic degradation. Therefore, TWs enhanced by aeration can provide only a buffer effect on peak dye concentrations.
Collapse
Affiliation(s)
- F Masi
- Iridra Srl, Via La Marmora 51, 50121 Florence, Italy.
| | - A Rizzo
- Iridra Srl, Via La Marmora 51, 50121 Florence, Italy
| | - R Bresciani
- Iridra Srl, Via La Marmora 51, 50121 Florence, Italy
| | - N Martinuzzi
- Iridra Srl, Via La Marmora 51, 50121 Florence, Italy
| | | | | | | | - T Rossini
- Università degli Studi di Milano-Bicocca, Department of Earth and Environmental Science, Italy
| | - R Fornaroli
- Università degli Studi di Milano-Bicocca, Department of Earth and Environmental Science, Italy
| | - V Mezzanotte
- Università degli Studi di Milano-Bicocca, Department of Earth and Environmental Science, Italy
| |
Collapse
|
159
|
Kania M, Gautier M, Imig A, Michel P, Gourdon R. Comparative characterization of surface sludge deposits from fourteen French Vertical Flow Constructed Wetlands sewage treatment plants using biological, chemical and thermal indices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:464-473. [PMID: 30086498 DOI: 10.1016/j.scitotenv.2018.07.440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Due to their design and mode of operation, French Vertical Flow Constructed Wetlands (VFCWs) accumulate suspended solids from the inflow wastewater in the form of a sludge layer at the surface of the first filter. In order to maintain the treatment performance over the long term, the characteristics of the sludge deposits and their evolution have to be well described. In this objective, a panel of sludge deposit samples taken from 14 French VFCW sewage treatment plants was investigated. Elemental composition and organic matter content, nature and reactivity were analyzed. Results clearly revealed two categories of sludge deposits, namely the "young-age plants" type (1 year of operation and less) and the "mature plants" type (3 years of operation and more). Sludge deposits from the "mature plants" exhibited same biological, physical and chemical properties. Their organic matter was globally less abundant, more humified and less biodegradable than in the young-age plants type. Their overall contents in trace metals were also higher, although in a limited manner. The effect of additional treatments, particularly FeCl3 injection for phosphorus precipitation, was observable in the "young-age plants" group. Finally, the sludge deposits sampled from one particular plant with specific operating conditions were found to exhibit very different characteristics from those of either groups identified. This observation underlined the influence of local conditions on the typology of the sludge deposits.
Collapse
Affiliation(s)
- M Kania
- Univ Lyon, INSA Lyon, DEEP (Déchets Eaux Environnement Pollutions), EA 7429, 69621 Villeurbanne Cedex, France; SCIRPE, 5 Allée Alban Vistel, 69110 Sainte-Foy-Lès-Lyon, France.
| | - M Gautier
- Univ Lyon, INSA Lyon, DEEP (Déchets Eaux Environnement Pollutions), EA 7429, 69621 Villeurbanne Cedex, France.
| | - A Imig
- Univ Lyon, INSA Lyon, DEEP (Déchets Eaux Environnement Pollutions), EA 7429, 69621 Villeurbanne Cedex, France
| | - P Michel
- SCIRPE, 5 Allée Alban Vistel, 69110 Sainte-Foy-Lès-Lyon, France.
| | - R Gourdon
- Univ Lyon, INSA Lyon, DEEP (Déchets Eaux Environnement Pollutions), EA 7429, 69621 Villeurbanne Cedex, France.
| |
Collapse
|
160
|
Hu K, Zhao QL, Chen W, Wang W, Han F, Shen XH. Appropriate technologies for upgrading wastewater treatment plants: methods review and case studies in China. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 53:1207-1220. [PMID: 30623713 DOI: 10.1080/10934529.2018.1528032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/30/2018] [Indexed: 06/09/2023]
Abstract
Upgrading existing wastewater treatment plants (WWTPs) is a more challenging task than constructing new plants. The aim is usually to overcome overloading and to reduce pollution concentrations in the effluent. There are various methods that can be used to upgrade WWTPs. This article reviews some of the methodologies, such as inserting new tanks as additional treatment steps and modifying the WWTP by introducing new technologies. A number of effective technologies are reviewed in terms of their basic concepts, operational conditions, and treatment performances. Examples of WWTPs in China that have been successfully upgraded using these technologies are also highlighted.
Collapse
Affiliation(s)
- Kai Hu
- a Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment , Hohai University , Nanjing , People's Republic of China
- b Hohai University, College of Environment , Nanjing , People's Republic of China
| | - Qing L Zhao
- c Harbin Institute of Technology, School of Municipal & Environmental Engineering , Harbin , People's Republic of China
- d Harbin Institute of Technology, State Key Laboratory of Urban Water Resources & Environment SK , Harbin , People's Republic of China
| | - Wei Chen
- a Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment , Hohai University , Nanjing , People's Republic of China
- b Hohai University, College of Environment , Nanjing , People's Republic of China
| | - Wei Wang
- e Hydrology and Water Resources Bureau of Henan Province , Zhengzhou , People's Republic of China
| | - Feng Han
- e Hydrology and Water Resources Bureau of Henan Province , Zhengzhou , People's Republic of China
| | - Xing H Shen
- e Hydrology and Water Resources Bureau of Henan Province , Zhengzhou , People's Republic of China
| |
Collapse
|
161
|
Evaluation of Wastewater Treatment by Microcosms of Vertical Subsurface Wetlands in Partially Saturated Conditions Planted with Ornamental Plants and Filled with Mineral and Plastic Substrates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16020167. [PMID: 30634405 PMCID: PMC6351910 DOI: 10.3390/ijerph16020167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 11/17/2022]
Abstract
The current knowledge about the role terrestrial ornamental plants play in constructed wetlands (CWs) has scarcely been evaluated. Likewise, little attention has been given towards the use of new support or fill media for subsurface flow CWs, which may result in the reduction of costs when implemented on a large scale. This study evaluated, during nine months, the effect of three terrestrial ornamental plants and two substrates on the elimination of pollutants in wastewaters by using fill-and-drain vertical subsurface flow CWs (FD-CWs). Sixteen microcosms were used, nine filled with polyethylene terephthalate (PET) and nine with porous river stone (PRS). For each type of substrate, duplicates of microcosms were used, utilizing Anthurium sp., Zantedeschia aethiopica, and Spathiphyllum wallisii as vegetation and two other CWs without vegetation as controls. The environmental conditions, number of flowers, and height of the plants were registered. The results revealed that both substrates in the FD-CWs were efficient in removing pollutants. The average removal of pollutants in systems with vegetation revealed a positive effect on the reduction of the biochemical oxygen demand (55–70%), nitrates (28–44%), phosphates (25–45%), and fecal coliforms (52–65%). Meanwhile, in units without vegetation, the reduction of pollutants was nearly 40–50% less than in those with vegetation. The use of PET as a filling substrate in CWs did not affect the growth and/or the flowering of the species; therefore, its use combined with the species studied in CWs may be replicated in villages with similar wastewater problems. This may represent a reduction in implementation costs when utilizing PET recycled wastes and PRS as substrates in these systems in comparison with the typical substrates used in CWs. More studies are needed to better understand the interactions among these novel support media and the commercial terrestrial ornamental plants.
Collapse
|
162
|
Mkhinini M, Boughattas I, Bousserhine N, Banni M. Biochemical and transcriptomic response of earthworms Eisenia andrei exposed to soils irrigated with treated wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2851-2863. [PMID: 30499083 DOI: 10.1007/s11356-018-3794-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
In order to ensure better use of treated wastewater (TWW), we investigated the effect of three increasing doses of TWW, 10%, 50%, and 100%, on biochemical and transcriptomic statuses of earthworms Eisenia andrei exposed during 7 and 14 days. The effect of TWW on the oxidative status of E. andrei was observed, but this effect was widely dependent on the dilution degree of TWW. Results showed a significant decrease in the catalase (CAT) activity and an increase in the glutathione-S-transferase (GST) activity, and considerable acetylcholinesterase (AChE) inhibition was recorded after 14 days of exposure. Moreover, malondialdehyde (MDA) accumulation was found to be higher in exposed animals compared to control worms. The gene expression level revealed a significant upregulation of target genes (CAT and GST) during experimentation. These data provided new information about the reuse of TWW and its potential toxicity on soil organisms.
Collapse
Affiliation(s)
- Marouane Mkhinini
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Chott-Meriem, Tunisia
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Chott-Meriem, Tunisia.
| | - Noureddine Bousserhine
- Laboratory of Water Environment and Urban Systems, University Paris-Est Créteil, 94010, Créteil cedex, France
| | - Mohammed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Chott-Meriem, Tunisia
| |
Collapse
|
163
|
Ge Z, Wei D, Zhang J, Hu J, Liu Z, Li R. Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland: Three years of pilot study. WATER RESEARCH 2019; 148:153-161. [PMID: 30359945 DOI: 10.1016/j.watres.2018.10.037] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
The searches for suitable substrates with high capacity for phosphorus (P) removal and promoting denitrification for enhancing nitrogen (N) removal have been a key work in constructed wetlands (CWs) research in the past several decades. But few substrates enhancing simultaneous long-term N and P removal in CWs have been found before. In this study, two subsurface flow pilot-scale wetlands using natural pyrite and limestone as substrates were constructed. After 3 year of operation, we found that pyrite had no negative effects on growth of reeds, removals of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N), but enhanced long-term total nitrogen (TN) and total phosphorus (TP) removals in constructed wetland. In the three years, the average TP and TN removals of pyrite constructed wetland (PCW) were 87.7 ± 14.2% with 0.25 ± 0.20 mg/L of average effluent TP and 69.4 ± 21.4% with 4.0 ± 3.2 mg/L of average effluent TN, respectively. The main P form in the PCW was (Fe + Al)-bound P. The mechanisms of the PCW with enhanced simultaneous long-term N and P removals were anaerobic and aerobic oxidations of pyrite. The main bacteria were Anaeromyxobacter (4.9%), Ramlibacter (4.8%), Defluviicoccus (4.2%), Azoarcus (3.7%), Geobacter (3.4%), and they were highly related to anaerobic and aerobic oxidation of pyrite in the PCW.
Collapse
Affiliation(s)
- Zhibin Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing, Jiangsu 210023, PR China
| | - Dongyang Wei
- South China Institute of Environmental Sciences, MEP, Guangzhou 510655, China
| | - Jing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing, Jiangsu 210023, PR China
| | - Junsong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing, Jiangsu 210023, PR China
| | - Zhuo Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing, Jiangsu 210023, PR China
| | - Ruihua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
164
|
Uusheimo S, Huotari J, Tulonen T, Aalto SL, Rissanen AJ, Arvola L. High Nitrogen Removal in a Constructed Wetland Receiving Treated Wastewater in a Cold Climate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13343-13350. [PMID: 30358987 DOI: 10.1021/acs.est.8b03032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Constructed wetlands provide cost-efficient nutrient removal, with minimal input of human labor and energy, and their number is globally increasing. However, in northern latitudes, wetlands are rarely utilized, because their nutrient removal efficiency has been questioned due to the cold climate. Here, we studied nutrient retention and nitrogen removal in a boreal constructed wetland (4-ha) receiving treated nitrogen-rich wastewater. On a yearly basis, most of the inorganic nutrients were retained by the wetland. The highest retention efficiency was found during the ice-free period, being 79% for ammonium-nitrogen (NH4+-N), 71% for nitrate-nitrogen (NO3--N), and 88% for phosphate-phosphorus (PO43--P). Wetland also acted as a buffer zone during the disturbed nitrification process of the wastewater treatment plant. Denitrification varied between 106 and 252 mg N m-2 d-1 during the ice-free period. During the ice-cover period, total gaseous nitrogen removal was 147 mg N m-2 d-1, from which 66% was removed as N2, 28.5% as N2O through denitrification, and 5.5% as N2 through anammox. Nearly 2600 kg N y-1 was estimated to be removed through microbial gaseous N-production which equaled 72% of NO3--N and 60% of TN yearly retention in the wetland. The wetland retained nutrients even in winter, when good oxygen conditions prevailed under ice. The results suggest that constructed wetlands are an efficient option for wastewater nitrogen removal and nutrient retention also in cold climates.
Collapse
Affiliation(s)
- Sari Uusheimo
- University of Helsinki , Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme , Lammi Biological Station, Pääjärventie 320 , Lammi FI-16900 , Finland
| | - Jussi Huotari
- University of Helsinki , Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme , Lammi Biological Station, Pääjärventie 320 , Lammi FI-16900 , Finland
| | - Tiina Tulonen
- University of Helsinki , Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme , Lammi Biological Station, Pääjärventie 320 , Lammi FI-16900 , Finland
| | - Sanni L Aalto
- University of Jyväskylä , Department of Biological and Environmental Sciences , P.O. Box 35, Jyväskylä FI-40014 , Finland
- University of Eastern Finland , Department of Environmental and Biological Sciences , P.O. Box 1627, Kuopio FI-70211 , Finland
| | - Antti J Rissanen
- Tampere University of Technology , Laboratory of Chemistry and Bioengineering , P.O. Box 541, Tampere FI-33101 , Finland
| | - Lauri Arvola
- University of Helsinki , Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme , Lammi Biological Station, Pääjärventie 320 , Lammi FI-16900 , Finland
| |
Collapse
|
165
|
Abstract
The mining industry is the major producer of acid mine drainage (AMD). The problem of AMD concerns at active and abandoned mine sites. Acid mine drainage needs to be treated since it can contaminate surface water. Constructed wetlands (CW), a passive treatment technology, combines naturally-occurring biogeochemical, geochemical, and physical processes. This technology can be used for the long-term remediation of AMD. The challenge is to overcome some factors, for instance, chemical characteristics of AMD such a high acidity and toxic metals concentrations, to achieve efficient CW systems. Design criteria, conformational arrangements, and careful selection of each component must be considered to achieve the treatment. The main objective of this review is to summarize the current advances, applications, and the prevalent difficulties and opportunities to apply the CW technology for AMD treatment. According to the cited literature, sub-surface CW (SS-CW) systems are suggested for an efficient AMD treatment. The synergistic interactions between CW components determine heavy metal removal from water solution. The microorganism-plant interaction is considered the most important since it implies symbiosis mechanisms for heavy metal removal and tolerance. In addition, formation of litter and biofilm layers contributes to heavy metal removal by adsorption mechanisms. The addition of organic amendments to the substrate material and AMD bacterial consortium inoculation are some of the strategies to improve heavy metal removal. Adequate experimental design from laboratory to full scale systems need to be used to optimize equilibria between CW components selection and construction and operational costs. The principal limitations for CW treating AMD is the toxicity effect that heavy metals produce on CW plants and microorganisms. However, these aspects can be solved partially by choosing carefully constructed wetlands components suitable for the AMD characteristics. From the economic point of view, a variety of factors affects the cost of constructed wetlands, such as: detention time, treatment goals, media type, pretreatment type, number of cells, source, and availability of gravel media, and land requirements, among others.
Collapse
|
166
|
Sustainable Management and Successful Application of Constructed Wetlands: A Critical Review. SUSTAINABILITY 2018. [DOI: 10.3390/su10113910] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constructed wetlands (CWs) are affordable and reliable green technologies for the treatment of various types of wastewater. Compared to conventional treatment systems, CWs offer an environmental-friendly approach, are low cost, have fewer operational and maintenance requirements, and have a high potential for being applied in developing countries; particularly in small rural communities. However, the sustainable management and successful application of these systems remain a challenge. Therefore, after briefly giving basic information on wetlands and summarizing the classification and use of current CWs, this study aims to provide sustainable solutions for the performance and applications of CWs. To accomplish this objective, design and management parameters of CWs, including macrophyte species, media types, water level, hydraulic retention time (HRT), and hydraulic loading rate (HLR), are discussed. The current study collects and presents results of more than 120 case studies from around the world. This work provides a tool for researchers and decision-makers for using CWs to treat wastewater in a particular area. This study presents an aid for informed analysis, decision-making, and communication.
Collapse
|
167
|
Li X, Li Y, Li Y, Wu J. Diversity and distribution of bacteria in a multistage surface flow constructed wetland to treat swine wastewater in sediments. Appl Microbiol Biotechnol 2018; 102:10755-10765. [DOI: 10.1007/s00253-018-9426-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/23/2018] [Accepted: 09/30/2018] [Indexed: 01/15/2023]
|
168
|
Hussain Z, Arslan M, Malik MH, Mohsin M, Iqbal S, Afzal M. Integrated perspectives on the use of bacterial endophytes in horizontal flow constructed wetlands for the treatment of liquid textile effluent: Phytoremediation advances in the field. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 224:387-395. [PMID: 30064065 DOI: 10.1016/j.jenvman.2018.07.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 05/18/2023]
Abstract
Constructed wetlands (CWs) have emerged as cost-effective and sustainable treatment systems for the remediation of industrial wastewaters; nevertheless, their potential has mostly been evaluated in laboratory-scale studies. Likewise, endophytic bacteria can enhance plant growth and reduce phytotoxicity under polluted conditions, but their application with pilot-scale CWs has rarely been evaluated. The present study aims to evaluate on-site performance of endophyte-assisted pilot-scale horizontal flow constructed wetlands (HFCWs) for the remediation of effluent from a textile industry. The HFCWs were established by planting Leptochloa fusca in the presence of three endophytic bacterial strains with dye degrading, and plant growth promoting capabilities. We found that the system was able to remove a significant proportion of both organic and inorganic pollutants. Maximum reduction of pollutants was observed in endophyte-augmented HFCWs, where the COD and BOD reduced from 493 to 70 mg l-1 and 190 to 42 mg l-1, respectively, within 48 h. Additionally, survival of endophytic bacteria in different components of the HFCWs was also recorded. Treated wastewater was found to be non-toxic and the inoculated bacteria showed persistence in the wastewater as well as rhizo- and endosphere of L. fusca. Accordingly, a positive impact on plant growth was observed in the presence of bacterial augmentation. The system performance was comparable to the vertical flow constructed wetlands (VFCWs) as high nutrients reduction was seen in the presence of this partnership. This pilot-scale study is a step forward toward the field-scale application of phytoremediation coupled with bacterial endophytes as a cost-effective means of on-site wastewater remediation. To the best of our knowledge, this is among the first pilot-scale studies on use of HFCWs for improvement in quality of textile industry effluent as most previous studies are limited either in the context of engineering or lack effective interplay of plant and bacteria.
Collapse
Affiliation(s)
- Zahid Hussain
- University of Management and Technology, Lahore, Pakistan; Interloop Limited, Khurrianwala, Faisalabad, Pakistan
| | - Muhammad Arslan
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan; Environmental Biotechnology Department, Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | | | | | - Samina Iqbal
- Environmental Biotechnology Department, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Muhammad Afzal
- Environmental Biotechnology Department, Helmholtz Centre for Environmental Research, Leipzig, Germany.
| |
Collapse
|
169
|
Xie H, Yang Y, Liu J, Kang Y, Zhang J, Hu Z, Liang S. Enhanced triclosan and nutrient removal performance in vertical up-flow constructed wetlands with manganese oxides. WATER RESEARCH 2018; 143:457-466. [PMID: 29986254 DOI: 10.1016/j.watres.2018.05.061] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/09/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Limited concentrations of oxygen in constructed wetlands (CWs) have inhibited their ability to remove emerging organic contaminants (EOCs) at μg/L or ng/L levels. Manganese (Mn) oxides were proposed as a solution, as they are powerful oxidants with strong adsorptive capabilities. In the present study, triclosan (TCS) was selected as a typical EOC, and CW microcosms with Mn oxides (birnessite) coated sand (B-CWs) and without (C-CWs) were developed to test the removal capacities of TCS and common nutrients. We found that the addition of Mn oxides coated sand significantly improved removal efficiencies of TCS, NH4-N, COD, NO3-N and TP (P < 0.05). The average concentration of Mn(II) effluent was 0.036 mg L-1, mostly lower than the drinking water limit. To gain insight into the mechanisms of pollution removal, Mn transformation, dissolved oxygen (DO) distribution, bacterial abundance, and microbial community composition were also investigated. Maximum Mn(II) was detected at 20 cm height of the B-CWs in anoxic zone. Although Mn-oxidizing bacteria existed in the layer of 30-50 cm with 103-104 CFU g-1 dry substate, Mn oxides were only detected at height from 40 to 50 cm with rich oxygen in B-CW. The quantities of bacterial 16S rRNA, amoA, narG and nosZ were not significantly different between two systems (P > 0.05), while Illumina high-throughput sequencing analysis revealed that the abundance of denitrifying bacteria was significant higher in B-CWs, and the abundance of Gammaproteobacteria that have a recognized role in Mn transformation were significantly increased. The results indicated that Mn oxides could enhance TCS and common pollutants removal in both anoxic and aerobic areas through the recycling of Mn between Mn(II) and biogenic Mn oxides.
Collapse
Affiliation(s)
- Huijun Xie
- Environment Research Institute, Shandong University, Jinan 250100, PR China.
| | - Yixiao Yang
- Environment Research Institute, Shandong University, Jinan 250100, PR China
| | - Junhua Liu
- Environment Research Institute, Shandong University, Jinan 250100, PR China
| | - Yan Kang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China.
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| |
Collapse
|
170
|
Antecedents of Trust in Organic Foods: The Mediating Role of Food Related Personality Traits. SUSTAINABILITY 2018. [DOI: 10.3390/su10103597] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The current study focuses on identifying the factors responsible for building trust in organic foods. This study also attempted to establish the mediating role of food-related personality traits in building such trust. The quantitative data was collected from the Liaoning province of China through a structured questionnaire (n = 420). Established scales were adopted for measuring constructs. The Structural Equation Modeling (SEM) was used to test the hypotheses. The results indicated that consumer trust towards retailers was found to be highly significant in creating trust of customers regarding organic food products, followed by information on the label. The trust of consumers towards food manufacturer was also found to be a significant predictor, while the perceived knowledge of customers about organic food products was found to be a weak contributor towards building trust. Furthermore, food-related personality traits were found to mediate the hypothesized model. This study extends the literature on trust in organic food consumption by intending to provide a detailed analysis of the factors that build trust in organic food consumption in China. The findings of this study will help producers, retailers, and marketers to identify the appropriate strategies to establish and improve the consumer trust in organic food.
Collapse
|
171
|
Zhao D, Zhang M, Liu Z, Sheng J, An S. Can cold-season macrophytes at the senescence stage improve nitrogen removal in integrated constructed wetland systems treating low carbon/nitrogen effluent? BIORESOURCE TECHNOLOGY 2018; 265:380-386. [PMID: 29929105 DOI: 10.1016/j.biortech.2018.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Cold-season macrophytes were configured in a system of stabilization ponds (SPs) and batch operation constructed wetlands (BCWs) to supply a carbon source for low carbon/nitrogen (C/N) effluent in spring and summer without generating secondary pollution during the decomposition process. For eutrophic water, the macrophyte configuration increased the average removal efficiency (RE) from 41.6% to 68.6% and from 70.2% to 83.7% for NO3--N and TN in the final BCW effluent, respectively, with the concentrations decreasing from 3.08 mg/L to 1.04 mg/L and from 4.94 mg/L to 3.12 mg/L, respectively. In the early decomposition stages, the RE and concentrations were 82.9% and 0.53 mg/L and 89.4% and 2.38 mg/L for NO3--N and TN, respectively. Thus, cold-season macrophytes can improve N removal in SP-BCW systems at the senescence stage, especially at the early decomposition stage.
Collapse
Affiliation(s)
- Dehua Zhao
- Department of Biological Science and Technology, Nanjing University, Nanjing 210093, China.
| | - Miao Zhang
- Department of Biological Science and Technology, Nanjing University, Nanjing 210093, China
| | - Zhe Liu
- Department of Biological Science and Technology, Nanjing University, Nanjing 210093, China
| | - Jing Sheng
- Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shuqing An
- Department of Biological Science and Technology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
172
|
Pelissari C, Guivernau M, Viñas M, García J, Velasco-Galilea M, Souza SS, Sezerino PH, Ávila C. Effects of partially saturated conditions on the metabolically active microbiome and on nitrogen removal in vertical subsurface flow constructed wetlands. WATER RESEARCH 2018; 141:185-195. [PMID: 29787952 DOI: 10.1016/j.watres.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Nitrogen dynamics and its association to metabolically active microbial populations were assessed in two vertical subsurface vertical flow (VF) wetlands treating urban wastewater. These VF wetlands were operated in parallel with unsaturated (UVF) and partially saturated (SVF) configurations. The SVF wetland exhibited almost 2-fold higher total nitrogen removal rate (5 g TN m-2 d-1) in relation to the UVF wetland (3 g TN m-2 d-1), as well as a low NOx-N accumulation (1 mg L-1 vs. 26 mg L-1 in SVF and UVF wetland effluents, respectively). After 6 months of operation, ammonia oxidizing prokaryotes (AOP) and nitrite oxidizing bacteria (NOB) displayed an important role in both wetlands. Oxygen availability and ammonia limiting conditions promoted shifts on the metabolically active nitrifying community within 'nitrification aggregates' of wetland biofilms. Ammonia oxidizing archaea (AOA) and Nitrospira spp. overcame ammonia oxidizing bacteria (AOB) in the oxic layers of both wetlands. Microbial quantitative and diversity assessments revealed a positive correlation between Nitrobacter and AOA, whereas Nitrospira resulted negatively correlated with Nitrobacter and AOB populations. The denitrifying gene expression was enhanced mainly in the bottom layer of the SVF wetland, in concomitance with the depletion of NOx-N from wastewater. Functional gene expression of nitrifying and denitrifying populations combined with the active microbiome diversity brought new insights on the microbial nitrogen-cycling occurring within VF wetland biofilms under different operational conditions.
Collapse
Affiliation(s)
- Catiane Pelissari
- GESAD - Decentralized Sanitation Research Group, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Miriam Guivernau
- GIRO - Program of Integrated Management of Organic Waste, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain
| | - Marc Viñas
- GIRO - Program of Integrated Management of Organic Waste, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain
| | - Joan García
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona, 1-3, Building D1, E-08034, Barcelona, Spain
| | - María Velasco-Galilea
- GMA - Program of Genetics and Animal Breeding, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain
| | - Samara Silva Souza
- INTELAB - Integrated Technologies Laboratory, Chemical and Food Engineering Department, Federal University of Santa Catarina, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Pablo Heleno Sezerino
- GESAD - Decentralized Sanitation Research Group, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Cristina Ávila
- ICRA - Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, Emili Grahit, 101, E-17003, Girona, Spain; AIMEN Technology Center, c/ Relva, 27 A, Torneiros, E-36410, Porriño, Pontevedra, Spain
| |
Collapse
|
173
|
Marzo A, Ventura D, Cirelli GL, Aiello R, Vanella D, Rapisarda R, Barbagallo S, Consoli S. Hydraulic reliability of a horizontal wetland for wastewater treatment in Sicily. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:94-106. [PMID: 29704721 DOI: 10.1016/j.scitotenv.2018.04.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to evaluate how the hydraulic behavior of a horizontal subsurface wetland (HF), that is part of the hybrid wetland (hybrid-TW) of the IKEA® store in Eastern Sicily (Italy), influences the overall wastewater treatment performance. The HF unit experiences frequent overloading peaks due to the extreme variability in the number of visitors at the store, and after 2 years of operation it showed signals of partial clogging at the inlet area. The hydraulics of the HF unit has been monitored through measurements of hydraulic conductivity at saturation (Ks), tracer tests, and geophysical (i.e. electrical resistivity tomography-ERT) measurements carried out during the years 2016 and 2017. Results indicated a general good agreement between the performed measurement techniques, thus their combination, if adequately performed and calibrated, might be a reliable tool for detecting those wetland areas mainly affected by clogging conditions. The results also indicated that partial clogging had no significant effect on the quality of the discharged water.
Collapse
Affiliation(s)
- A Marzo
- CUTGANA, Università degli Studi di Catania, Via Santa Sofia 98, Catania 95123, Italy
| | - D Ventura
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), Università degli Studi di Catania, Via S. Sofia, 100, 95123 Catania, (Italy).
| | - G L Cirelli
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), Università degli Studi di Catania, Via S. Sofia, 100, 95123 Catania, (Italy)
| | - R Aiello
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), Università degli Studi di Catania, Via S. Sofia, 100, 95123 Catania, (Italy)
| | - D Vanella
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), Università degli Studi di Catania, Via S. Sofia, 100, 95123 Catania, (Italy)
| | - R Rapisarda
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), Università degli Studi di Catania, Via S. Sofia, 100, 95123 Catania, (Italy)
| | - S Barbagallo
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), Università degli Studi di Catania, Via S. Sofia, 100, 95123 Catania, (Italy)
| | - S Consoli
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), Università degli Studi di Catania, Via S. Sofia, 100, 95123 Catania, (Italy)
| |
Collapse
|
174
|
Park J, Cho KH, Lee E, Lee S, Cho J. Sorption of pharmaceuticals to soil organic matter in a constructed wetland by electrostatic interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1345-1350. [PMID: 29710587 DOI: 10.1016/j.scitotenv.2018.04.212] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
There is a growing interest in the removal of pharmaceuticals from wastewater because pharmaceuticals have potential ecotoxicological effects. Among several removal mechanisms, the sorption of pharmaceuticals to sediment organic matter is an important mechanism related to the mobility of pharmaceuticals. This study investigated the sorption of pharmaceuticals to soil organic matter (SOM) by electrostatic interactions. SOM located on the surface of soil/sediment generally has a negative charge because of the functional groups present (i.e., carboxylic and phenolic groups). Thus, the electrical characteristics of SOM can induce electrical attraction with positively charged chemical compounds. In this study, SOM was extracted from soils under different aquatic plants (Acorus and Typha) in a constructed wetland in Korea. Experiments were carried out with the following three pharmaceuticals with different electrical characteristics at pH 7: atenolol (positive charge; pKa 9.5), carbamazepine (neutral; no pKa), and ibuprofen (negative charge; pKa 4.9). The SOM in the Acorus pond had a higher hydrophobicity and electrical charge density than that in the Typha pond. Regarding the sorption efficiency between SOM and charged pharmaceuticals, atenolol showed highest sorption efficiency (~60%), followed by carbamazepine (~40%) and ibuprofen (<~30%). In addition, the removal efficiency of the targeted pharmaceuticals in the constructed wetland was estimated by comparing the concentrations of the pharmaceuticals at sampling points with flowing water. The results showed that the removal efficiency of atenolol and carbamazepine was almost 50%, whereas that of ibuprofen was only ~10%. A comparison of the results of lab-scale and field experiments showed that electrostatic interaction is one of the major pharmaceutical removal mechanisms in a constructed wetland.
Collapse
Affiliation(s)
- Jongkwan Park
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, Republic of Korea
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, Republic of Korea
| | - Eunkyung Lee
- Water Resource Research Team, KCC Central Research Institute, 17-3 Mabuk-ro, 240 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sungyun Lee
- Department of Environmental Machinery, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea.
| | - Jaeweon Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, Republic of Korea.
| |
Collapse
|
175
|
Zhang L, Lyu T, Ramírez Vargas CA, Arias CA, Carvalho PN, Brix H. New insights into the effects of support matrix on the removal of organic micro-pollutants and the microbial community in constructed wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:699-708. [PMID: 29778055 DOI: 10.1016/j.envpol.2018.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Constructed wetlands (CWs) are an eco-friendly and cost-effective technology to remove organic micro-pollutants (OMPs) from wastewater. The support matrix is an important component in CWs as it has a primary role in the growth and development of plants and microbes. However, the roles of the support matrix in CWs in removing OMPs have not been systematically studied. Therefore, in this study, six common materials (sand, zeolite, blast iron slag, petcoke, polonite and crushed autoclaved aerated concrete (CAAC)) as support matrixes were firstly investigated by batch tests to explore their adsorption capacities to selected OMPs (ibuprofen, iohexol, tebuconazole and imazalil). Results showed that the adsorption capacities of the materials were low (at the level of μg/g) compared to well-known sorbents (at the level of mg/g), such as activated carbon and carbon nanotubes. Columns packed with the six materials, respectively, were then built up to study the effects of different materials on microbial community. In the medium-term study (66 days), the removal of four OMPs in all the columns increased by 2-58% from day 25 to day 66, and was mainly attributed to microbial degradation. Furthermore, Community-level physiological profiling (CLPP) analysis indicates that material presence shaped the microbial community metabolic function not only in the interstitial water but also in the biofilm. Overall, all the findings demonstrate that although the adsorption capacities of the common materials are low, they may be a driver to improve the removal of OMPs by altering microbial community function in CWs.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| | - Tao Lyu
- Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark; School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottinghamshire NG250QF, UK
| | | | - Carlos A Arias
- Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Pedro N Carvalho
- Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark; Department of Environmental Sciences, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark.
| | - Hans Brix
- Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
176
|
Liu X, Ning G, Xie J, Liu C, Li M. Purification efficiency of zeolite and two planted grasses on sewage and relationship with carbon-nitrogen-phosphorus ratios in simulated constructed wetland system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:545-555. [PMID: 30207996 DOI: 10.2166/wst.2018.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
For achieving the economical and efficient configuration of constructed wetlands (CWs), a simulated device of vertical flow CWs was used to investigate the effects of different volume ratios of substrates to two cold-resistant plants on pollutant concentrations as well as their ratios in effluent under different inflow domestic sewage concentrations. The average removal rates (ARRs) of ammonia nitrogen, total nitrogen (TN) and total phosphorus were 82.7%, 84.9% and 80.6% respectively in the treatments with zeolite but no plants, which increased by 22.6%, 20.8% and 14.9% compared with those without zeolite and plants. However, in the treatments with zeolite and planted grasses, the ARRs of the three pollutants were over 90%, and those of chemical oxygen demand were lower. The removal rates of ammonia nitrogen, TN and total phosphorus had negative correlations with C:N and N:P ratios and positive correlations with the C:P ratios. Increasing the ratio of zeolite to soil from 1:1 to 2:1 had no significant effects in the removal efficiency. It was suggested that planting Lolium perenne or Poa annua on the substrate with a zeolite to soil volume ratio of 1:1 could be considered as the optimum combination to purify the domestic sewage in north rural areas of China.
Collapse
Affiliation(s)
- Xia Liu
- College of Life Science, Hebei Agricultural University, Baoding, China E-mail:
| | - Guohui Ning
- College of Resource and Environment Science, Hebei Agricultural University, Baoding, China
| | - Jianzhi Xie
- College of Resource and Environment Science, Hebei Agricultural University, Baoding, China
| | - Chunjing Liu
- College of Resource and Environment Science, Hebei Agricultural University, Baoding, China
| | - Ming Li
- College of Life Science, Hebei Agricultural University, Baoding, China E-mail:
| |
Collapse
|
177
|
Liu X, Zhang Y, Li X, Fu C, Shi T, Yan P. Effects of influent nitrogen loads on nitrogen and COD removal in horizontal subsurface flow constructed wetlands during different growth periods of Phragmites australis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1360-1366. [PMID: 29710589 DOI: 10.1016/j.scitotenv.2018.03.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Horizontal subsurface constructed wetlands (HSSF-CWs) planted with Phragmites australis were established to examine the effect of influent nitrogen loads on the removal efficiencies of nitrogen and chemical oxygen demand (COD) during different plant growth periods of plants. Under low influent nitrogen loads, most of the dissolved oxygen was consumed during the oxidation of organic matter in the wetland systems, and a dissimilatory nitrate reduction to ammonium (DNRA) may have occurred in HSSF-CWs when excessive amounts of organic matter were present, which limited the nitrification of ammonium nitrogen (NH4-N) and hindered the NH4-N removal. An increase in the influent nitrogen loads resulted in an enhancement of the removal efficiencies of NH4-N, nitrate nitrogen (NO3-N) and total nitrogen (TN) during the same growth period, except for NO3-N under the highest influent nitrogen loads, whereas fluctuations occurred for the COD removal efficiency. Compared with the rapid growth period, the removal efficiency of NH4-N, NO3-N and TN increased during the mature period; however, the COD removal efficiency decreased. The change of COD: N (COD:TN in wastewater) ratios with retention times indicated the sufficiency or deficiency of organic matter as an electron donor in the wetland systems. The changes in the pH value and oxidation-reduction potential (ORP) indirectly demonstrated that many factors affected the effluent pH value and ORP, such as retention time, influent loads, plants and wetland substrate, and microorganisms. In this study, the changes of ORP also illustrated that the dissolved oxygen concentrations decreased with increasing retention time in the HSSF-CWs; however, no significant increase in the ORP was observed during the two growth periods.
Collapse
Affiliation(s)
- Xuelan Liu
- Poultry Institute, Shangdong Academy of Agricultural Science, Jinan 250023, PR China
| | - Yan Zhang
- Poultry Institute, Shangdong Academy of Agricultural Science, Jinan 250023, PR China.
| | - Xinhua Li
- Shandong Institute of Agricultural Sustainable Development, Jinan 250100, PR China
| | - Chunyan Fu
- Poultry Institute, Shangdong Academy of Agricultural Science, Jinan 250023, PR China
| | - Tianhong Shi
- Poultry Institute, Shangdong Academy of Agricultural Science, Jinan 250023, PR China
| | - Peipei Yan
- Poultry Institute, Shangdong Academy of Agricultural Science, Jinan 250023, PR China
| |
Collapse
|
178
|
Almuktar SAAAN, Abed SN, Scholz M. Wetlands for wastewater treatment and subsequent recycling of treated effluent: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23595-23623. [PMID: 29959736 PMCID: PMC6096557 DOI: 10.1007/s11356-018-2629-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/20/2018] [Indexed: 05/23/2023]
Abstract
Due to water scarcity challenges around the world, it is essential to think about non-conventional water resources to address the increased demand in clean freshwater. Environmental and public health problems may result from insufficient provision of sanitation and wastewater disposal facilities. Because of this, wastewater treatment and recycling methods will be vital to provide sufficient freshwater in the coming decades, since water resources are limited and more than 70% of water are consumed for irrigation purposes. Therefore, the application of treated wastewater for agricultural irrigation has much potential, especially when incorporating the reuse of nutrients like nitrogen and phosphorous, which are essential for plant production. Among the current treatment technologies applied in urban wastewater reuse for irrigation, wetlands were concluded to be the one of the most suitable ones in terms of pollutant removal and have advantages due to both low maintenance costs and required energy. Wetland behavior and efficiency concerning wastewater treatment is mainly linked to macrophyte composition, substrate, hydrology, surface loading rate, influent feeding mode, microorganism availability, and temperature. Constructed wetlands are very effective in removing organics and suspended solids, whereas the removal of nitrogen is relatively low, but could be improved by using a combination of various types of constructed wetlands meeting the irrigation reuse standards. The removal of phosphorus is usually low, unless special media with high sorption capacity are used. Pathogen removal from wetland effluent to meet irrigation reuse standards is a challenge unless supplementary lagoons or hybrid wetland systems are used.
Collapse
Affiliation(s)
- Suhad A A A N Almuktar
- Civil Engineering Research Group, School of Computing, Science and Engineering, The University of Salford, Newton Building, Salford, England, M5 4WT, UK
- Department of Architectural Engineering, Faculty of Engineering, The University of Basrah, Al Basrah, Iraq
| | - Suhail N Abed
- Civil Engineering Research Group, School of Computing, Science and Engineering, The University of Salford, Newton Building, Salford, England, M5 4WT, UK
| | - Miklas Scholz
- Civil Engineering Research Group, School of Computing, Science and Engineering, The University of Salford, Newton Building, Salford, England, M5 4WT, UK.
- Division of Water Resources Engineering, Department of Building and Environmental Technology, Faculty of Engineering, Lund University, P.O. Box 118, 221 00, Lund, Sweden.
- Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, University of Johannesburg, Kingsway Campus, Auckland Park, PO Box 524, Johannesburg, 2006, South Africa.
| |
Collapse
|
179
|
Yang Y, Zhao Y, Liu R, Morgan D. Global development of various emerged substrates utilized in constructed wetlands. BIORESOURCE TECHNOLOGY 2018; 261:441-452. [PMID: 29627204 DOI: 10.1016/j.biortech.2018.03.085] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/12/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Substrate selection is one of the key technical issues for constructed wetlands (CWs), which works for wastewater treatment based mainly on the biofilm principle. In recent years, many alternative substrates have been studied and applied in CWs, and a review is conducive to providing updated information on CW R&D. Based on the intensive research work especially over the last 10 years on the development of emerged substrates (except for the three conventional substrates of soil, sand, and gravel) in CWs, this review was made. The substrates are categorized depending on their main roles in pollutant removal as ion-exchange substrates, P-sorption substrates, and electron donor substrates. Among these, reuse of various waste products as substrates was suggested due to their competitive pollutant removal efficiency and minimized waste disposal. Regarding substrate development, future research on avoiding substrate clogging to extend their lifetime in CWs is needed.
Collapse
Affiliation(s)
- Yan Yang
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, Newstead Building, University College Dublin, Belfield, Dublin 4, Ireland; Department of Environmental Engineering, Anhui Jianzhu University, Hefei 230601, Anhui, PR China
| | - Yaqian Zhao
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, Newstead Building, University College Dublin, Belfield, Dublin 4, Ireland; State Key Laboratory of Eco-Hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Ranbin Liu
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, Newstead Building, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Morgan
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, Newstead Building, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
180
|
Corbella C, Puigagut J. Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1406-1414. [PMID: 29727964 DOI: 10.1016/j.scitotenv.2018.03.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
For the past few years, there has been an increasing interest in the operation of constructed wetlands as microbial fuel cells (CW-MFCs) for both the improvement of wastewater treatment efficiency and the production of energy. However, there is still scarce information on design and operation aspects to maximize CW-MFCs efficiency, especially for the treatment of real domestic wastewater. The aim of this study was to quantify the extent of treatment efficiency improvement carried out by membrane-less MFCs simulating a core of a shallow un-planted horizontal subsurface flow constructed wetland. The influence of the external resistance (50, 220, 402, 604 and 1000Ω) and the anode material (graphite and gravel) on treatment efficiency improvement were addressed. To this purpose, 6 lab-scale membrane-less MFCs were set-up and loaded in batch mode with domestic wastewater for 13weeks. Results showed that 220Ω was the best operation condition for maximising MFCs treatment efficiency, regardless the anode material employed. Gravel-based anode MFCs operated at closed circuit showed ca. 18%, 15%, 31% and 25% lower effluent concentration than unconnected MFCs to the COD, TOC, PO4-3 and NH4+-N, respectively. Main conclusion of the present work is that constructed wetlands operated as MFCs is a promising strategy to improve domestic wastewater treatment efficiency. However, further studies at pilot scale under more realistic conditions (such as planted systems operated under continuous mode) shall be performed to confirm the findings here reported.
Collapse
Affiliation(s)
- Clara Corbella
- Group of Environmental Engineering and Microbiology (GEMMA), Universitat Politècnica de Catalunya - BarcelonaTech, Spain
| | - Jaume Puigagut
- Group of Environmental Engineering and Microbiology (GEMMA), Universitat Politècnica de Catalunya - BarcelonaTech, Spain.
| |
Collapse
|
181
|
Masi F, Rizzo A, Regelsberger M. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 216:275-284. [PMID: 29224716 DOI: 10.1016/j.jenvman.2017.11.086] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 11/10/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Wastewater management is included in one of the 17 Sustainable Development Goals (SDGs): SDG 6 is dedicated to water and sanitation and sets out to "ensure availability and sustainable management of water and sanitation for all". SDG 6 expands the Millennium Development Goals (MDGs) focus on drinking water and basic sanitation to now cover the entire water cycle, including the management of water, wastewater and ecosystem resources. A UN report in 2017 states that likely over 80% of the wastewater worldwide is still discharged without adequate treatment. In several countries the wastewater management is nowadays a norm, but still there are open discussions about the kind of approach to be adopted, i.e. centralisation vs. decentralisation. The choice of the adopted technologies is strictly linked to environmental performances and economical aspects; one of the possible causes for the still enormous amount of untreated wastewater discharged into the environment can be the low "willingness to pay" for this kind of service and therefore a great focus should be given to all the technologies that are able to lower the treatment costs still maintaining reliable and robust performances in the long term. When considering wastewater as a carrier of valuable primary chemicals that can be easily converted to marketable products (fertilisers, bio-plastics, soil conditioners, biofuels, etc.), and as well as a relevant source of "new water" to be used for specific purposes, wastewater and runoff management can be highlighted as one of the most exciting challenges and occasions for a sustainable development in the near future. The paper aims to clarify the future role of CWs in circular economy, resource-oriented, and ecosystem services approaches, which want to respond to sanitation worldwide and the future research needs. We give an overview on how the conventional wastewater treatment scheme (what we call "waste paradigm") should move towards more sustainable water and biogeochemical cycles following the new resource-oriented, circular economy and ecosystem service views. On this basis, we review the potential application of CWs within this new, and needed, paradigm. Finally, a meta-analysis shows that the scientific community involved in CWs should put more effort in making CWs more suitable for these new tasks.
Collapse
Affiliation(s)
- F Masi
- IRIDRA Srl, Via La Marmora 51, 50121, Florence, Italy.
| | - A Rizzo
- IRIDRA Srl, Via La Marmora 51, 50121, Florence, Italy.
| | - M Regelsberger
- Technisches Büro Regelsberger, Marburger Gasse 11, 8200, Gleisdorf, Austria.
| |
Collapse
|
182
|
Luo P, Liu F, Zhang S, Li H, Yao R, Jiang Q, Xiao R, Wu J. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management. BIORESOURCE TECHNOLOGY 2018; 258:247-254. [PMID: 29533884 DOI: 10.1016/j.biortech.2018.03.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/20/2023]
Abstract
A series of three-stage pilot-scale surface flow constructed wetlands (CWs) planted with Myriophyllum aquaticum were fed with three strengths of lagoon-pretreated swine wastewater to study nitrogen (N) removal and recovery under sustainable plant harvesting management. The CWs had mean removal efficiency of 87.7-97.9% for NH4+-N and 85.4-96.1% for total N (TN). The recovered TN mass via multiple harvests of M. aquaticum was greatest (120-222 g N m-2 yr-1) when TN concentrations were 21.8-282 mg L-1. The harvested TN mass accounted for 0.85-100% of the total removal in the different CW units. Based on mass balance estimation, plant uptake, sediment storage, and microbial removal accounted for 13.0-55.0%, 4.9-8.0%, and 33.0-67.5% of TN loading mass, respectively. The results of this study confirm that M. aquaticum is appropriate for the removal and recovery of nutrients in CW systems designed for treating swine wastewater in conjunction with sustainable plant harvesting strategies.
Collapse
Affiliation(s)
- Pei Luo
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Shunan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hongfang Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Yao
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianwen Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Runlin Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
183
|
Lyu T, He K, Dong R, Wu S. The intensified constructed wetlands are promising for treatment of ammonia stripped effluent: Nitrogen transformations and removal pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:273-282. [PMID: 29414349 DOI: 10.1016/j.envpol.2018.01.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the treatment performance and nitrogen removal mechanism of highly alkaline ammonia-stripped digestate effluent in horizontal subsurface flow constructed wetlands (CWs). A promising nitrogen removal performance (up to 91%) was observed in CWs coupled with intensified configurations, i.e., aeration and effluent recirculation. The results clearly supported that the higher aeration ratio and presence of effluent recirculation are important to improve the alkalinity and pollutant removal in CWs. The influent pH (>10) was significantly decreased to 8.2-8.8 under the volumetric hydraulic loading rates of 0.105 and 0.21 d-1 in the CWs. Simultaneously, up to 91% of NH4+-N removal was achieved under the operation of a higher aeration ratio and effluent recirculation. Biological nitrogen transformations accounted for 94% of the consumption of alkalinity in the CWs. The significant enrichment of δ15N-NH4+ in the effluent (47-58‰) strongly supports the occurrence of microbial transformations for NH4+-N removal. However, relatively lower enrichment factors of δ15N-NH4+ (-1.8‰ to -11.6‰) compared to the values reported in previous studies reflected the inhibition effect of the high pH alkaline environment on nitrifiers in these CWs.
Collapse
Affiliation(s)
- Tao Lyu
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, Beijing 100083, China; School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottinghamshire NG25 0QF, UK
| | - Keli He
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Renjie Dong
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shubiao Wu
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, Beijing 100083, China; Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
184
|
Zhao X, Hu Y, Zhao Y, Kumar L. Achieving an extraordinary high organic and hydraulic loadings with good performance via an alternative operation strategy in a multi-stage constructed wetland system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11841-11853. [PMID: 29446020 DOI: 10.1007/s11356-018-1464-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
In this study, a high organic loading rate of 58-146 g BOD5/m2 day with a hydraulic loading rate (HLR) of 1.63 m3/m2 day and retention time (RT) of 16 h was achieved to maximize the treatment capacity of a four-stage alum sludge-based constructed wetland (CW) system. An alternative operation strategy, i.e., the first stage anaerobic up-flow and the remaining stage tidal flow with effluent recirculation, was investigated to achieve the goal with good treatment performance of 82% COD, 91% BOD5, 92% SS, 94% NH4-N, and 82% TN removal. Two kinetic models, i.e., first-order model and Monod plus continuous stirred-tank reactor (CSTR) flow model, were employed for predicting the removal dynamics. The results showed that the tidal flow strategy enhances oxygen transport and diffusion, thus improving reduction of organics and NH4-N. Effluent recirculation could further increase elimination of organics by extending the interaction time and also benefit the denitrification process. In addition, denitrification could be further enhanced by anaerobic up-flow in the first stage.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Key Laboratory of Water Supply and Drainage, Ministry of Housing and Urban-Rural Development, Chang'an University, Xi'an, 710061, People's Republic of China
| | - Yuansheng Hu
- Key Laboratory of Urban Stormwater System and Water Environment/R&D Centre for Sustainable Wastewater Treatment, Beijing University of Civil Engineering and Architecture, Ministry of Education, Beijing, 100044, People's Republic of China
| | - Yaqian Zhao
- Key Laboratory of Water Supply and Drainage, Ministry of Housing and Urban-Rural Development, Chang'an University, Xi'an, 710061, People's Republic of China.
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Newstead, Belfield, Dublin 4, Ireland.
| | - Lordwin Kumar
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Newstead, Belfield, Dublin 4, Ireland
- Department of Soil Water Land Engineering and Management, Vaugh School of Agricultural Engineering and Technology, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, India
| |
Collapse
|
185
|
Zhang L, Lyu T, Zhang Y, Button M, Arias CA, Weber KP, Brix H, Carvalho PN. Impacts of design configuration and plants on the functionality of the microbial community of mesocosm-scale constructed wetlands treating ibuprofen. WATER RESEARCH 2018; 131:228-238. [PMID: 29291484 DOI: 10.1016/j.watres.2017.12.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Microbial degradation is an important pathway during the removal of pharmaceuticals in constructed wetlands (CWs). However, the effects of CW design, plant presence, and different plant species on the microbial community in CWs have not been fully explored. This study aims to investigate the microbial community metabolic function of different types of CWs used to treat ibuprofen via community-level physiological profiling (CLPP) analysis. We studied the interactions between three CW designs (unsaturated, saturated and aerated) and six types of mesocosms (one unplanted and five planted, with Juncus, Typha, Berula, Phragmites and Iris) treating synthetic wastewater. Results show that the microbial activity and metabolic richness found in the interstitial water and biofilm of the unsaturated designs were lower than those of the saturated and aerated designs. Compared to other CW designs, the aerated mesocosms had the highest microbial activity and metabolic richness in the interstitial water, but similar levels of biofilm microbial activity and metabolic richness to the saturated mesocosms. In all three designs, biofilm microbial metabolic richness was significantly higher (p < .05) than that of interstitial water. Both the interstitial water and biofilm microbial community metabolic function were influenced by CW design, plant presence and species, but design had a greater influence than plants. Moreover, canonical correlation analysis indicated that biofilm microbial communities in the three designs played a key role in ibuprofen degradation. The important factors identified as influencing ibuprofen removal were microbial AWCD (average well color development), microbial metabolic richness, and the utilization of amino acids and amine/amides. The enzymes associated with co-metabolism of l-arginine, l-phenyloalanine and putrescine may be linked to ibuprofen transformations. These results provide useful information for optimizing the operational parameters of CWs to improve ibuprofen removal.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Bioscience, Aarhus University, Aarhus 8000C, Denmark.
| | - Tao Lyu
- Department of Bioscience, Aarhus University, Aarhus 8000C, Denmark; School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottinghamshire NG25 0QF, UK
| | - Yang Zhang
- College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Mark Button
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada; Environmental and Geographic Sciences, University of British Columbia Okanagan, Kelowna V1V 1V7, BC, Canada
| | - Carlos A Arias
- Department of Bioscience, Aarhus University, Aarhus 8000C, Denmark
| | - Kela P Weber
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Hans Brix
- Department of Bioscience, Aarhus University, Aarhus 8000C, Denmark
| | - Pedro N Carvalho
- Department of Bioscience, Aarhus University, Aarhus 8000C, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
186
|
Hickey A, Arnscheidt J, Joyce E, O'Toole J, Galvin G, O' Callaghan M, Conroy K, Killian D, Shryane T, Hughes F, Walsh K, Kavanagh E. An assessment of the performance of municipal constructed wetlands in Ireland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 210:263-272. [PMID: 29367139 DOI: 10.1016/j.jenvman.2017.12.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
While performance assessments of constructed wetlands sites around the world have appraised their capacity for effective removal of organics, a large variance remains in these sites' reported ability to retain nutrients, which appears to depend on differences in design, operation and climate factors. Nutrient retention is a very important objective for constructed wetlands, to avoid eutrophication of aquatic environments receiving their effluents. This study assessed the performance of constructed wetlands in terms of nutrient retention and associated parameters under the humid conditions of Ireland's temperate maritime climate. A review of the performance of 52 constructed wetland sites from 17 local authorities aimed to identify the best performing types of constructed wetlands and the treatment factors determining successful compliance with environmental standards. Data analysis compared effluent results from constructed wetlands with secondary free surface flow or tertiary horizontal subsurface flow, hybrid systems and integrated constructed wetlands with those from small-scale mechanical wastewater treatment plants of the same size class. Nutrient concentrations in effluents of constructed wetlands were negatively correlated (p < .01) with specific area, i.e. the ratio of surface area and population equivalents. The latest generation of integrated constructed wetlands, which had applied design guidelines issued by the Department of the Environment, performed best. Storm management design features improved treatment performance of constructed wetlands significantly (p < .05) for total suspended solids concentrations and exceedance frequency of limit values for total nitrogen. Mechanical wastewater treatment plants, secondary free surface water and tertiary horizontal subsurface flow wetlands showed a very large variance in effluent concentrations for organic and nutrient parameters. E. coli numbers in effluents were lowest for integrated constructed wetlands with an arithmetic mean of 89 MPN/100 ml. Despite Ireland's humid climate, some constructed wetland sites achieved long or frequent periods of zero effluent discharge and thus did not transfer any waterborne pollution to their receptors during these periods.
Collapse
Affiliation(s)
- Anthony Hickey
- Irish Water, Colville House, Talbot Street, Dublin 1, Ireland.
| | - Joerg Arnscheidt
- Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Eadaoin Joyce
- Irish Water, Colville House, Talbot Street, Dublin 1, Ireland
| | - James O'Toole
- Irish Water, Colville House, Talbot Street, Dublin 1, Ireland
| | - Gerry Galvin
- Irish Water, Colville House, Talbot Street, Dublin 1, Ireland
| | | | - Ken Conroy
- Irish Water, Colville House, Talbot Street, Dublin 1, Ireland
| | - Darran Killian
- Irish Water, Colville House, Talbot Street, Dublin 1, Ireland
| | - Tommy Shryane
- Irish Water, Colville House, Talbot Street, Dublin 1, Ireland
| | - Francis Hughes
- Irish Water, Colville House, Talbot Street, Dublin 1, Ireland
| | - Katherine Walsh
- Irish Water, Colville House, Talbot Street, Dublin 1, Ireland
| | - Emily Kavanagh
- Irish Water, Colville House, Talbot Street, Dublin 1, Ireland
| |
Collapse
|
187
|
Bai L, Yuan L, Ji Y, Yan H. Effective Removal of Phosphate from Aqueous by Graphene Oxide Decorated with
$$\varvec{\upalpha }\text {-}\hbox {Fe}_{2}\hbox {O}_{3}$$
α
-
Fe
2
O
3
: Kinetic, Isotherm, Thermodynamic and Mechanism Study. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3124-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
188
|
Zhang X, Hu Z, Ngo HH, Zhang J, Guo W, Liang S, Xie H. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland. WATER RESEARCH 2018; 130:79-87. [PMID: 29202344 DOI: 10.1016/j.watres.2017.11.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 05/13/2023]
Abstract
Insufficient oxygen supply is identified as one of the major factors limiting organic pollutant and nitrogen (N) removal in constructed wetlands (CWs). This study designed a novel aerated vertical flow constructed wetland (VFCW) using waste gas from biological wastewater treatment systems to improve pollutant removal in CWs, its potential in purifying waste gas was also identified. Compared with unaerated VFCW, the introduction of waste gas significantly improved NH4+-N and TN removal efficiencies by 128.48 ± 3.13% and 59.09 ± 2.26%, respectively. Furthermore, the waste gas ingredients, including H2S, NH3, greenhouse gas (N2O) and microbial aerosols, were remarkably reduced after passing through the VFCW. The removal efficiencies of H2S, NH3 and N2O were 77.78 ± 3.46%, 52.17 ± 2.53%, and 87.40 ± 3.89%, respectively. In addition, the bacterial and fungal aerosols in waste gas were effectively removed with removal efficiencies of 42.72 ± 3.21% and 47.89 ± 2.82%, respectively. Microbial analysis results revealed that the high microbial community abundance in the VFCW, caused by the introduction of waste gas from the sequencing batch reactor (SBR), led to its optimized nitrogen transformation processes. These results suggested that the VFCW intermittently aerated with waste gas may have potential application for purifying wastewater treatment plant effluent and waste gas, simultaneously.
Collapse
Affiliation(s)
- Xinwen Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Shuang Liang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Jinan 250100, PR China
| |
Collapse
|
189
|
Wu S, Lyu T, Zhao Y, Vymazal J, Arias CA, Brix H. Rethinking Intensification of Constructed Wetlands as a Green Eco-Technology for Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1693-1694. [PMID: 29388763 DOI: 10.1021/acs.est.8b00010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Shubiao Wu
- College of Engineering, China Agricultural University , Beijing 100083, China
- Aarhus Institute of Advanced Studies, Aarhus University , Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| | - Tao Lyu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University , Nottinghamshire NG25 0QF, U.K
| | - Yaqian Zhao
- Centre for Water Resources Research, School of Civil Engineering, University College Dublin , Belfield, Dublin, 4, Ireland
| | - Jan Vymazal
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague , Kymýcká 129, 165 21 Praha 6, Czech Republic
| | - Carlos A Arias
- Department of Bioscience, Aarhus University , 8000 Aarhus C, Denmark
| | - Hans Brix
- Department of Bioscience, Aarhus University , 8000 Aarhus C, Denmark
| |
Collapse
|
190
|
Ilyas H, Masih I. The effects of different aeration strategies on the performance of constructed wetlands for phosphorus removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5318-5335. [PMID: 29302907 DOI: 10.1007/s11356-017-1071-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
The effects of different aeration methods such as tidal flow (TF), effluent recirculation (ER), and artificial aeration (AA) on the performance of vertical-flow constructed wetland (VFCW), horizontal-flow constructed wetland (HFCW), and hybrid constructed wetland (HCW) are extensively and critically evaluated in this review paper. Aerated constructed wetlands (CWs) demonstrate superior performance compared with non-aerated systems. The removal of total phosphorus (TP) showed substantial variation among different types of CWs and aeration strategies, with mean and standard deviation of 68 ± 20% estimated from all reviewed studies on aerated systems. The TF-VFCW designated the highest removal efficiency and removal rate of 88 ± 6% and 2.6 ± 2.5 g m-2 day-1, respectively, followed by the ER-HCW with values of 79 ± 18% and 1.3 ± 0.7 g m-2 day-1, respectively. The superior performance of TF-VFCW could be attributed to a positive effect of TF in rejuvenating the wetland with fresh air, thus enhancing dissolved oxygen (DO) in the system, and augmenting phosphorus precipitation and adsorption to the substrate. A positive correlation of TP and orthophosphate (PO43--P) with DO indicates that the improvement in DO levels due to redox manipulation with aeration strategies facilitates the phosphorous removal processes (e.g., through precipitation and adsorption to the substrate). The conflicting results on the impact of AA and ER reported by many studies need the cautious interpretation of their impact and require further studies. Only few studies have examined the impact of oxidation-reduction potential on phosphorous removal, which requires more attention in future research, as it appears as an important factor in enhancing the phosphorus removal.
Collapse
Affiliation(s)
| | - Ilyas Masih
- IHE Delft Institute for Water Education, Delft, the Netherlands
| |
Collapse
|
191
|
Wu H, Fan J, Zhang J, Ngo HH, Guo W. Large-scale multi-stage constructed wetlands for secondary effluents treatment in northern China: Carbon dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:933-942. [PMID: 29029835 DOI: 10.1016/j.envpol.2017.09.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/12/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
Multi-stage constructed wetlands (CWs) have been proved to be a cost-effective alternative in the treatment of various wastewaters for improving the treatment performance as compared with the conventional single-stage CWs. However, few long-term full-scale multi-stage CWs have been performed and evaluated for polishing effluents from domestic wastewater treatment plants (WWTP). This study investigated the seasonal and spatial dynamics of carbon and the effects of the key factors (input loading and temperature) in the large-scale seven-stage Wu River CW polishing domestic WWTP effluents in northern China. The results indicated a significant improvement in water quality. Significant seasonal and spatial variations of organics removal were observed in the Wu River CW with a higher COD removal efficiency of 64-66% in summer and fall. Obvious seasonal and spatial variations of CH4 and CO2 emissions were also found with the average CH4 and CO2 emission rates of 3.78-35.54 mg m-2 d-1 and 610.78-8992.71 mg m-2 d-1, respectively, while the higher CH4 and CO2 emission flux was obtained in spring and summer. Seasonal air temperatures and inflow COD loading rates significantly affected organics removal and CH4 emission, but they appeared to have a weak influence on CO2 emission. Overall, this study suggested that large-scale Wu River CW might be a potential source of GHG, but considering the sustainability of the multi-stage CW, the inflow COD loading rate of 1.8-2.0 g m-2 d-1 and temperature of 15-20 °C may be the suitable condition for achieving the higher organics removal efficiency and lower greenhouse gases (GHG) emission in polishing the domestic WWTP effluent. The obtained knowledge of the carbon dynamics in large-scale Wu River CW will be helpful for understanding the carbon cycles, but also can provide useful field experience for the design, operation and management of multi-stage CW treatments.
Collapse
Affiliation(s)
- Haiming Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | - Jinlin Fan
- National Engineering Laboratory of Coal-Fired Pollutants Emission Reduction, Shandong University, Jinan 250061, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| |
Collapse
|
192
|
Lyu T, Zhang L, Xu X, Arias CA, Brix H, Carvalho PN. Removal of the pesticide tebuconazole in constructed wetlands: Design comparison, influencing factors and modelling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:71-80. [PMID: 29055837 DOI: 10.1016/j.envpol.2017.10.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Constructed wetlands (CWs) are a promising technology to treat pesticide contaminated water, but its implementation is impeded by lack of data to optimize designs and operating factors. Unsaturated and saturated CW designs were used to compare the removal of triazole pesticide, tebuconazole, in unplanted mesocosms and mesocosms planted with five different plant species: Typha latifolia, Phragmites australis, Iris pseudacorus, Juncus effusus and Berula erecta. Tebuconazole removal efficiencies were significantly higher in unsaturated CWs than saturated CWs, showing for the first time the potential of unsaturated CWs to treat tebuconazole contaminated water. An artificial neural network model was demonstrated to provide more accurate predictions of tebuconazole removal than the traditional linear regression model. Also, tebuconazole removal could be fitted an area-based first order kinetics model in both CW designs. The removal rate constants were consistently higher in unsaturated CWs (range of 2.6-10.9 cm d-1) than in saturated CWs (range of 1.7-7.9 cm d-1) and higher in planted CWs (range of 3.1-10.9 cm d-1) than in unplanted CWs (range of 1.7-2.6 cm d-1) for both designs. The low levels of sorption of tebuconazole to the substrate (0.7-2.1%) and plant phytoaccumulation (2.5-12.1%) indicate that the major removal pathways were biodegradation and metabolization inside the plants after plant uptake. The main factors influencing tebuconazole removal in the studied systems were system design, hydraulic loading rate and plant presence. Moreover, tebuconazole removal was positively correlated to dissolved oxygen and all nutrients removal.
Collapse
Affiliation(s)
- Tao Lyu
- Department of Bioscience, Aarhus University, 8000, Aarhus C, Denmark.
| | - Liang Zhang
- Department of Bioscience, Aarhus University, 8000, Aarhus C, Denmark
| | - Xiao Xu
- School of Software, Tsinghua University, Beijing, 10084, PR China
| | - Carlos A Arias
- Department of Bioscience, Aarhus University, 8000, Aarhus C, Denmark
| | - Hans Brix
- Department of Bioscience, Aarhus University, 8000, Aarhus C, Denmark
| | - Pedro N Carvalho
- Department of Bioscience, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
193
|
Zhang X, Hu Z, Zhang J, Fan J, Ngo HH, Guo W, Zeng C, Wu Y, Wang S. A novel aerated surface flow constructed wetland using exhaust gas from biological wastewater treatment: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2018; 250:94-101. [PMID: 29156370 DOI: 10.1016/j.biortech.2017.08.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
In this study, a novel aerated surface flow constructed wetland (SFCW) using exhaust gas from biological wastewater treatment was investigated. Compared with un-aerated SFCW, the introduction of exhaust gas into SFCW significantly improved NH4+-N, TN and COD removal efficiencies by 68.30 ± 2.06%, 24.92 ± 1.13% and 73.92 ± 2.36%, respectively. The pollutants removal mechanism was related to the microbial abundance and the highest microbial abundance was observed in the SFCW with exhaust gas because of the introduction of exhaust gas from sequencing batch reactor (SBR), and thereby optimizing nitrogen transformation processes. Moreover, SFCW would significantly mitigate the risk of exhaust gas pollution. SFCW removed 20.00 ± 1.23%, 34.78 ± 1.39%, and 59.50 ± 2.33% of H2S, NH3 and N2O in the exhaust gas, respectively. And 31.32 ± 2.23% and 32.02 ± 2.86% of bacterial and fungal aerosols in exhaust gas were also removed through passing SFCW, respectively.
Collapse
Affiliation(s)
- Xinwen Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China.
| | - Jinlin Fan
- National Engineering Laboratory of Coal-Fired Pollutants Emission Reduction, Shandong University, Jinan 250061, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Chujun Zeng
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Yiwen Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Siyuan Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| |
Collapse
|
194
|
Using a Backpropagation Artificial Neural Network to Predict Nutrient Removal in Tidal Flow Constructed Wetlands. WATER 2018. [DOI: 10.3390/w10010083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
195
|
Yang Z, Yang L, Wei C, Wu W, Zhao X, Lu T. Enhanced nitrogen removal using solid carbon source in constructed wetland with limited aeration. BIORESOURCE TECHNOLOGY 2018; 248:98-103. [PMID: 28941666 DOI: 10.1016/j.biortech.2017.07.188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
In this study, the performances of nitrogen removal in constructed wetlands using solid carbon source with limited aeration were investigated. The blends of poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) and polyacetic acid (PLA) were used as the carbon source and biofilm support. The performances of nitrogen removal, microbial abundance and microbial community structure in the biofilm attached on PHBV/PLA were investigated. Higher ammonia removal efficiency (91.00%) and total nitrogen removal efficiency (97.03%) than non-aerated constructed wetland (System NA) were achieved in constructed wetland with limited aeration (System A). The limited aeration decreased the average concentrations of COD in effluent. And, System A had higher microbial abundance than System NA. Pyrosequencing analysis showed that denitrifying bacteria Brevinema (41.85%) and Thiothrix (12.33%) were the predominant genus in the biofilm attached on the carbon source in System NA and System A, respectively.
Collapse
Affiliation(s)
- Zhongchen Yang
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Luhua Yang
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Caijie Wei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Xufei Zhao
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Ting Lu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
196
|
Wang H, Zhong H, Bo G. Existing forms and changes of nitrogen inside of horizontal subsurface constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:771-781. [PMID: 29063402 DOI: 10.1007/s11356-017-0477-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/11/2017] [Indexed: 05/21/2023]
Abstract
Horizontal zeolite subsurface constructed wetland system (HZCWs) and horizontal limestone subsurface constructed wetland system (HLCWs) were applied to the removal of nitrogen in lightly polluted wastewater, and the existing forms, changes, and removal mechanism of nitrogen in the constructed wetlands were analyzed. The results indicated that compared with HLCWs, HZCWs exhibited better nitrogen removal effect, and the maximum removal rates of ammonia nitrogen and total nitrogen could reach 96.97 ± 5.29 and 93.12 ± 3.35%, respectively. Besides, analysis of the removal effect on nitrogen in different existing forms on different substrate heights in the constructed wetlands showed that variation of nitrogen removal efficiency had certain regularities, which were related to the interior construction features of the wetland systems, and agreed with the regularities in the changes of the influential factors such as DO inside of the wetlands. In addition, degradation mechanism of pollutions was also analyzed, and the results indicated that the quantity of microorganisms and enzymes, including FDA, catalase, and urease, on the surface of the substrates had significant influence on the removal regularities and effects of the major pollutions in constructed wetlands.
Collapse
Affiliation(s)
- Hao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China.
| | - Huiyuan Zhong
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Guozhu Bo
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| |
Collapse
|
197
|
Design and Season Influence Nitrogen Dynamics in Two Surface Flow Constructed Wetlands Treating Nursery Irrigation Runoff. WATER 2017. [DOI: 10.3390/w10010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
198
|
|
199
|
Kahl S, Nivala J, van Afferden M, Müller RA, Reemtsma T. Effect of design and operational conditions on the performance of subsurface flow treatment wetlands: Emerging organic contaminants as indicators. WATER RESEARCH 2017; 125:490-500. [PMID: 28915479 DOI: 10.1016/j.watres.2017.09.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Six pilot-scale subsurface flow treatment wetlands loaded with primary treated municipal wastewater were monitored over one year for classical wastewater parameters and a set of emerging organic compounds (EOCs) serving as process indicators for biodegradation: caffeine, ibuprofen, naproxen, benzotriazole, diclofenac, acesulfame, and carbamazepine. The wetland technologies investigated included conventional horizontal flow, unsaturated vertical flow (single and two-stage), horizontal flow with aeration, vertical flow with aeration, and reciprocating. Treatment efficiency for classical wastewater parameters and EOCs generally increased with increasing design complexity and dissolved oxygen concentrations. The two aerated wetlands and the two-stage vertical flow system showed the highest EOC removal, and the best performance in warm season and most robust performance in the cold season. These three systems performed better than the adjacent conventional WWTP with respect to EOC removal. Acesulfame was observed to be removed (>90%) by intensified wetland systems and with use of a tertiary treatment sand filter during the warm season. Elevated temperature and high oxygen content (aerobic conditions) proved beneficial for EOC removal. For EOCs of moderate to low biodegradability, the co-occurrence of aerobic conditions and low content of readily available carbon appears essential for efficient removal. Such conditions occurred in the aerated systems and with use of a tertiary treatment sand filter.
Collapse
Affiliation(s)
- Stefanie Kahl
- Helmholtz Centre for Environmental Research (UFZ), Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Jaime Nivala
- Helmholtz Centre for Environmental Research (UFZ), Centre for Environmental Biotechnology (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Manfred van Afferden
- Helmholtz Centre for Environmental Research (UFZ), Centre for Environmental Biotechnology (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Roland A Müller
- Helmholtz Centre for Environmental Research (UFZ), Centre for Environmental Biotechnology (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research (UFZ), Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany.
| |
Collapse
|
200
|
Cyanobacterial Nitrogen Fixation Influences the Nitrogen Removal Efficiency in a Constructed Wetland. WATER 2017. [DOI: 10.3390/w9110865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|