151
|
|
152
|
McArthur K, Kile BT. Apoptotic Caspases: Multiple or Mistaken Identities? Trends Cell Biol 2018; 28:475-493. [PMID: 29551258 DOI: 10.1016/j.tcb.2018.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/22/2022]
Abstract
The mitochondrial caspase cascade was originally thought to be required for apoptotic death driven by Bak/Bax-mediated intrinsic apoptosis. It has also been ascribed several 'non-apoptotic' functions, including differentiation, proliferation, and cellular reprogramming. Recent work has demonstrated that, during apoptosis, the caspase cascade suppresses damage-associated molecular pattern (DAMP)-initiated production of cytokines such as type I interferon by the dying cell. The caspase cascade is not required for death to occur; instead, it shapes the immunogenic properties of the apoptotic cell. This raises questions about the role of apoptotic caspases in regulating DAMP signaling more generally, puts a new perspective on their non-apoptotic functions, and suggests that pharmacological caspase inhibitors might find new applications as antiviral or anticancer agents.
Collapse
Affiliation(s)
- Kate McArthur
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
153
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, et alGalluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25:486-541. [PMID: 29362479 PMCID: PMC5864239 DOI: 10.1038/s41418-017-0012-4] [Show More Authors] [Citation(s) in RCA: 4298] [Impact Index Per Article: 614.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Paris Descartes/Paris V University, Paris, France.
| | - Ilio Vitale
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institute of Immunology, Kiel University, Kiel, Germany
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Ivano Amelio
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Alexey V Antonov
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Center for Biological Investigation (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Catherine Brenner
- INSERM U1180, Châtenay Malabry, France
- University of Paris Sud/Paris Saclay, Orsay, France
| | - Michelangelo Campanella
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- University College London Consortium for Mitochondrial Research, London, UK
| | - Eleonora Candi
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francis K-M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Aaron Ciechanover
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, CeSI-MetUniversity of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicola Di Daniele
- Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Colin S Duckett
- Baylor Scott & White Research Institute, Baylor College of Medicine, Dallas, TX, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University School of Medicine, Philadelphia, PA, USA
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Tübingen University, Tübingen, Germany
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM U1231 "Lipides Nutrition Cancer", Dijon, France
- Faculty of Medicine, University of Burgundy France Comté, Dijon, France
- Cancer Centre Georges François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pierre Golstein
- Immunology Center of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Eyal Gottlieb
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hinrich Gronemeyer
- Team labeled "Ligue Contre le Cancer", Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Hajnoczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Philipp J Jost
- III Medical Department for Hematology and Oncology, Technical University Munich, Munich, Germany
| | - Philippe P Juin
- Team 8 "Stress adaptation and tumor escape", CRCINA-INSERM U1232, Nantes, France
- University of Nantes, Nantes, France
- University of Angers, Angers, France
- Institute of Cancer Research in Western France, Saint-Herblain, France
| | - William J Kaiser
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Oliver Kepp
- Paris Descartes/Paris V University, Paris, France
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France
- INSERM U1138, Paris, France
- Pierre et Marie Curie/Paris VI University, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Knight
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Cell Death, Injury and Regeneration, Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard A Lockshin
- Department of Biology, St. John's University, Queens, NY, USA
- Queens College of the City University of New York, Queens, NY, USA
| | - Carlos López-Otín
- Departament of Biochemistry and Molecular Biology, Faculty of Medicine, University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Scott W Lowe
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marion MacFarlane
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Frank Madeo
- Department Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Michal Malewicz
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Walter Malorni
- National Centre for Gender Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Seamus J Martin
- Departments of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Cancer Genomics Center, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer and Development laboratory, CRCL, Lyon, France
- Team labeled "La Ligue contre le Cancer", Lyon, France
- LabEx DEVweCAN, Lyon, France
- INSERM U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, UK
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery D Molkentin
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Pagano
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Health System (NUHS), Singapore, Singapore
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA center, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Health Science Foundation, Cotignola, Italy
| | - Jochen H M Prehn
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Emre Sayan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory of Stem Cells and Medicinal Biomaterials, Institutes for Translational Medicine, Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - John Silke
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Inflammation, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Antonella Sistigu
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, University College London Consortium for Mitochondrial Research, London, UK
- Francis Crick Institute, London, UK
| | | | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Medical School, University of Crete, Heraklion, Greece
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | | | - Boris Turk
- Department Biochemistry and Molecular Biology, "Jozef Stefan" Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andreas Villunger
- Division of Developmental Immunology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Department of Biology, Queens College of the City University of New York, Queens, NY, USA
| | - Boris Zhivotovsky
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Laurence Zitvogel
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Gerry Melino
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- Paris Descartes/Paris V University, Paris, France.
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France.
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France.
- INSERM U1138, Paris, France.
- Pierre et Marie Curie/Paris VI University, Paris, France.
- Biology Pole, European Hospital George Pompidou, AP-HP, Paris, France.
| |
Collapse
|
154
|
Abstract
Analysis of CD95/Fas complexes by immunoprecipitation has long relied on the monoclonal antibody APO1 or tagged recombinant Fas ligand. Immunoprecipitation is an elegant and efficient procedure to investigate endogenous protein interactions or complexes. Provided that the targeted complex is soluble in mild detergent these complexes can be recovered using protein A/G-coupled Sepharose beads and further analyzed after denaturation and electrophoretic separation by western blotting or mass spectrometry. Herein, we describe in detail the method used in our laboratory to immunoprecipitate and analyze by immunoblot complexes containing caspase-8, using a commercial antibody directed against caspase-8.
Collapse
|
155
|
Zheng L, Li J, Lenardo M. Restimulation-induced cell death: new medical and research perspectives. Immunol Rev 2018; 277:44-60. [PMID: 28462523 DOI: 10.1111/imr.12535] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the periphery, homeostasis of the immune system depends on the equilibrium of expanding and contracting T lymphocytes during immune response. An important mechanism of lymphocyte contraction is clonal depletion of activated T cells by cytokine withdrawal induced death (CWID) and TCR restimulation induced cell death (RICD). Deficiencies in signaling components for CWID and RICD leads to autoimmunune lymphoproliferative disorders in mouse and human. The most important feature of CWID and RICD is clonal specificity, which lends great appeal as a strategy for targeted tolerance induction and treatment of autoimmune diseases, allergic disorders, and graft rejection by depleting undesired disease-causing T cells while keeping the overall host immunity intact.
Collapse
Affiliation(s)
- Lixin Zheng
- Laboratory of Immunology and Clinical Genomics Program, Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jian Li
- Laboratory of Immunology and Clinical Genomics Program, Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Michael Lenardo
- Laboratory of Immunology and Clinical Genomics Program, Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
156
|
Zhou H, Harberts E, Fishelevich R, Gaspari AA. TLR4 acts as a death receptor for ultraviolet radiation (UVR) through IRAK-independent and FADD-dependent pathway in macrophages. Exp Dermatol 2018; 25:949-955. [PMID: 27676214 DOI: 10.1111/exd.13222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 12/15/2022]
Abstract
UVR-induced apoptosis in cutaneous antigen presenting cells (APC) causes systemic immune suppression and is dependent on TLR4/MyD88 signalling, but the apoptotic signalling pathways have not been defined. Macrophages pretreated with lipopolysaccharide (LPS) were unresponsive to subsequent LPS treatment, however, but were susceptible to UVR-induced apoptosis. Macrophage survival and apoptotic events after UVR were also unaffected by treatment with TLR4 antagonists, a blocking IgG or a TLR4 analog antagonist, suggesting that UVR cell death is independent of a soluble ligand. After UVR, IRAK4KDKI (catalytically inactive IRAK4) and wild-type (WT) macrophages show equivalent levels of survival, as measured by MTT assay, and apoptosis, as measured by cleaved caspase-3. Furthermore, in macrophages from both mice, UVR activated caspase-8 and PARP, while inactivating Rip3. This finding is supported by a lack of IRAK1 degradation after UVR, compared to treatment with TLR2 or TLR4 agonists. UVR induced association of MyD88 with FADD, an extrinsic apoptotic pathway protein, but not IRAK4. UVR-induced migration of FADD to the cell membrane of WT macrophages, but not MyD88-/- macrophages, was observed (confocal microscopy). Co-immunoprecipitation using an epitope-tagged MyD88 revealed that FADD, but not TRADD, was recruited to MyD88 within 30 minutes of UVR exposure. UVR engages TLR4/MyD88 as a death signalling complex, rather than the classical inflammatory signalling pathway triggered by PAMP recognition of TLR4. These studies provide the rationale for the future development of topical TLR4 modulating therapies to interfere with this UVB-mediated apoptosis and the associated negative consequences of immune suppression.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Dermatology, University Maryland Baltimore, Baltimore, MD, USA
| | - Erin Harberts
- Department of Dermatology, University Maryland Baltimore, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Rita Fishelevich
- Department of Dermatology, University Maryland Baltimore, Baltimore, MD, USA
| | - Anthony A Gaspari
- Department of Dermatology, University Maryland Baltimore, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA.,Research Service, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| |
Collapse
|
157
|
Chen X, Yan X, Guo L. Inhibitory effect of Patrinia on BRL-3A cell apoptosis through the TLR4/PI3K/AKT/GSK3β and TLR4/P38/JNK signaling pathways. Mol Med Rep 2018; 17:5344-5349. [PMID: 29363726 DOI: 10.3892/mmr.2018.8466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/16/2017] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the inhibitory effect of Patrinia on lipopolysaccharide (LPS)-induced apoptosis of rat liver BRL‑3A cells. A Cell Counting Kit‑8 assay was performed to measure the effect of Patrinia on BLR‑3A cell activities. A biochemical assay was employed to detect the release of lactate dehydrogenase (LDH) in BRL‑3A cells induced by different doses of LPS. Based on the release rate of LDH, drug concentrations were set at 0.5, 1 and 2 g/l. Apoptotic morphology of cells was observed via Hoechst 33342 staining and flow cytometry was performed to detect apoptosis rates. Western blotting was performed to detect the expression of toll‑like receptor 4 (TLR4), protein kinase B (AKT), phosphorylated (P)‑AKTSer473, glycogen synthase kinase 3β (GSK3β), P‑GSK3βSer9, P38, P‑P38, c‑Jun N‑terminal kinase (JNK), P‑JNK, B‑cell lymphoma‑2 (Bcl‑2), Bcl‑2 associated X protein (Bax) and active‑caspase‑3 proteins. The translocation of GSK3β was observed by immunofluorescence staining. Results revealed that Patrinia increases cell activities and inhibits apoptosis. The expression levels of TLR4, P‑P38 and P‑JNK were reduced, whereas the expression of P‑AKTSer473 and P‑GSK3βSer9 were increased. Patrinia significantly reduced GSK3β nuclear translocation induced by LPS, and significantly decreased the mRNA expression levels of Bax/Bcl‑2 and caspase‑3 in BRL‑3A cells induced by LPS. In conclusion, Patrinia may significantly reduce apoptosis of BRL‑3A induced by LPS via the TLR4/PI3K/AKT/GSK3β and TLR4/P38/JNK signaling pathways, providing evidence for its potential use in liver disease therapy.
Collapse
Affiliation(s)
- Xiaoli Chen
- Hepatopathy Department, Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Xiuping Yan
- Hepatopathy Department, Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Lu Guo
- Hepatopathy Department, Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
158
|
Abstract
Ultimately, the common final pathway of any glomerular disease is podocyte effacement, podocyte loss, and, eventually, glomerular scarring. There has been a long-standing debate on the underlying mechanisms for podocyte depletion, ranging from necrosis and apoptosis to detachment of viable cells from the glomerular basement membrane. However, this debate still continues because additional pathways of programmed cell death have been reported in recent years. Interestingly, viable podocytes can be isolated out of the urine of proteinuric patients easily, emphasizing the importance of podocyte detachment in glomerular diseases. In contrast, detection of apoptosis and other pathways of programmed cell death in podocytes is technically challenging. In fact, we still are lacking direct evidence showing, for example, the presence of apoptotic bodies in podocytes, leaving the question unanswered as to whether podocytes undergo mechanisms of programmed cell death. However, understanding the mechanisms leading to podocyte depletion is of particular interest because future therapeutic strategies might interfere with these to prevent glomerular scarring. In this review, we summarize our current knowledge on podocyte cell death, the different molecular pathways and experimental approaches to study these, and, finally, focus on the mechanisms that prevent the onset of programmed cell death.
Collapse
Affiliation(s)
- Fabian Braun
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
159
|
Zheng W, Li J, Wang X, Yuan Y, Zhang J, Xiu Z. Effects of Antarctic krill docosahexaenoic acid on MCF-7 cell migration and invasion induced by the interaction of CD95 with caveolin-1. Life Sci 2018; 192:270-277. [DOI: 10.1016/j.lfs.2017.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/09/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022]
|
160
|
Ben-Mustapha I, Agrebi N, Barbouche MR. Novel insights into FAS defects underlying autoimmune lymphoproliferative syndrome revealed by studies in consanguineous patients. J Leukoc Biol 2017; 103:501-508. [PMID: 29345341 DOI: 10.1002/jlb.5mr0817-332r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 10/10/2017] [Indexed: 11/08/2022] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a primary immunodeficiency disease due to impaired Fas-Fas ligand apoptotic pathway. It is characterized by chronic nonmalignant, noninfectious lymphadenopathy and/or splenomegaly associated with autoimmune manifestations primarily directed against blood cells. Herein, we review the heterogeneous ALPS molecular bases and discuss recent findings revealed by the study of consanguineous patients. Indeed, this peculiar genetic background favored the identification of a novel form of AR ALPS-FAS associated with normal or residual protein expression, expanding the spectrum of ALPS types. In addition, rare mutational mechanisms underlying the splicing defects of FAS exon 6 have been identified in AR ALPS-FAS with lack of protein expression. These findings will help decipher critical regions required for the tight regulation of FAS exon 6 splicing. We also discuss the genotype-phenotype correlation and disease severity in AR ALPS-FAS. Altogether, the study of ALPS molecular bases in endogamous populations helps to better classify the disease subgroups and to unravel the Fas pathway functioning.
Collapse
Affiliation(s)
- Imen Ben-Mustapha
- Department of Immunology and LR11IPT02, Institut Pasteur de Tunis, 1002, Tunis-Belvédère, Tunisia.,The University of Tunis El Manar, Tunis, Tunisia
| | - Nourhen Agrebi
- Department of Immunology and LR11IPT02, Institut Pasteur de Tunis, 1002, Tunis-Belvédère, Tunisia.,The University of Tunis El Manar, Tunis, Tunisia.,Faculty of Sciences of Bizerte, The University of Carthage, Bizerte, Tunisia
| | - Mohamed-Ridha Barbouche
- Department of Immunology and LR11IPT02, Institut Pasteur de Tunis, 1002, Tunis-Belvédère, Tunisia.,The University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
161
|
Chandran V, Gao K, Swarup V, Versano R, Dong H, Jordan MC, Geschwind DH. Inducible and reversible phenotypes in a novel mouse model of Friedreich's Ataxia. eLife 2017; 6:e30054. [PMID: 29257745 PMCID: PMC5736353 DOI: 10.7554/elife.30054] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
Friedreich's ataxia (FRDA), the most common inherited ataxia, is caused by recessive mutations that reduce the levels of frataxin (FXN), a mitochondrial iron binding protein. We developed an inducible mouse model of Fxn deficiency that enabled us to control the onset and progression of disease phenotypes by the modulation of Fxn levels. Systemic knockdown of Fxn in adult mice led to multiple phenotypes paralleling those observed in human patients across multiple organ systems. By reversing knockdown after clinical features appear, we were able to determine to what extent observed phenotypes represent reversible cellular dysfunction. Remarkably, upon restoration of near wild-type FXN levels, we observed significant recovery of function, associated pathology and transcriptomic dysregulation even after substantial motor dysfunction and pathology were observed. This model will be of broad utility in therapeutic development and in refining our understanding of the relative contribution of reversible cellular dysfunction at different stages in disease.
Collapse
Affiliation(s)
- Vijayendran Chandran
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Kun Gao
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Vivek Swarup
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Revital Versano
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Hongmei Dong
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Maria C Jordan
- Department of Physiology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Department of Human Genetics, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
162
|
Im JY, Kim BK, Lee JY, Park SH, Ban HS, Jung KE, Won M. DDIAS suppresses TRAIL-mediated apoptosis by inhibiting DISC formation and destabilizing caspase-8 in cancer cells. Oncogene 2017; 37:1251-1262. [DOI: 10.1038/s41388-017-0025-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/16/2017] [Accepted: 09/27/2017] [Indexed: 11/09/2022]
|
163
|
Sciuto MR, Warnken U, Schnölzer M, Valvo C, Brunetto L, Boe A, Biffoni M, Krammer PH, De Maria R, Haas TL. Two-Step Coimmunoprecipitation (TIP) Enables Efficient and Highly Selective Isolation of Native Protein Complexes. Mol Cell Proteomics 2017; 17:993-1009. [PMID: 29217617 DOI: 10.1074/mcp.o116.065920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 11/22/2017] [Indexed: 11/06/2022] Open
Abstract
Coimmunoprecipitation (co-IP) is one of the most frequently used techniques to study protein-protein (PPIs) or protein-nucleic acid interactions (PNIs). However, the presence of coprecipitated contaminants is a well-recognized issue associated with single-step co-IPs. To overcome this limitation, we developed the two-step co-IP (TIP) strategy that enables sequential coimmunoprecipitations of endogenous protein complexes. TIP can be performed with a broad range of mono- and polyclonal antibodies targeting a single protein or different components of a given complex. TIP results in a highly selective enrichment of protein complexes and thus outperforms single-step co-IPs for downstream applications such as mass spectrometry for the identification of PPIs and quantitative PCR for the analysis of PNIs. We benchmarked TIP for the identification of CD95/FAS-interacting proteins in primary human CD4+ T cells, which recapitulated all major known interactors, but also enabled the proteomics discovery of PPM1G and IPO7 as new interaction partners. For its feasibility and high performance, we propose TIP as an advanced tool for the isolation of highly purified protein-protein and protein-nucleic acid complexes under native expression conditions.
Collapse
Affiliation(s)
- Maria Rita Sciuto
- From the ‡Department of Hematology and Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy;
| | - Uwe Warnken
- §Functional Proteome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Martina Schnölzer
- §Functional Proteome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Cecilia Valvo
- From the ‡Department of Hematology and Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.,¶Institute of General Pathology, Catholic University and Gemelli Polyclinic, Largo F. Vito 1, 00168, Rome, Italy
| | - Lidia Brunetto
- From the ‡Department of Hematology and Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandra Boe
- From the ‡Department of Hematology and Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Mauro Biffoni
- From the ‡Department of Hematology and Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Peter H Krammer
- ‖Department of Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ruggero De Maria
- ¶Institute of General Pathology, Catholic University and Gemelli Polyclinic, Largo F. Vito 1, 00168, Rome, Italy
| | - Tobias L Haas
- From the ‡Department of Hematology and Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy; .,¶Institute of General Pathology, Catholic University and Gemelli Polyclinic, Largo F. Vito 1, 00168, Rome, Italy
| |
Collapse
|
164
|
Kumar S, Saini RV, Mahindroo N. Recent advances in cancer immunology and immunology-based anticancer therapies. Biomed Pharmacother 2017; 96:1491-1500. [PMID: 29198747 DOI: 10.1016/j.biopha.2017.11.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 11/12/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapies offer promise for cure of cancer with specificity and minimal toxicity. Recent developments in cancer immunology have led to the better understanding of role of immune regulatory mechanisms in cancer. There is rapid progress in this field in the last few years. Several clinical studies report the efficacy of immunotherapies for treating cancer. The immunology-based anticancer therapies have shown better safety profiles in clinic as compared to other chemotherapeutic agents, thus increasing interest in this area. This review summarizes recent advances in cancer immunology and discusses tumor microenvironment and immunology-based anticancer therapies, including vaccines and therapies targeting immune checkpoints.
Collapse
Affiliation(s)
- Sunil Kumar
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India
| | - Reena Vohra Saini
- School of Biotechnology, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India; Centre of Research on Himalayan Sustainability and Development, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India
| | - Neeraj Mahindroo
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India; Centre of Research on Himalayan Sustainability and Development, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India.
| |
Collapse
|
165
|
Guégan JP, Legembre P. Nonapoptotic functions of Fas/CD95 in the immune response. FEBS J 2017; 285:809-827. [PMID: 29032605 DOI: 10.1111/febs.14292] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022]
Abstract
CD95 (also known as Fas) is a member of the tumor necrosis factor receptor (TNFR) superfamily. Its cognate ligand, CD95L, is implicated in immune homeostasis and immune surveillance. Mutations in this receptor are associated with a loss of apoptotic signaling and have been detected in an autoimmune disorder called autoimmune lymphoproliferative syndrome (ALPS) type Ia, which shares some clinical features with systemic lupus erythematosus (SLE). In addition, deletions and mutations of CD95 have been described in many cancers, which led researchers to initially classify this receptor as a tumor suppressor. More recent data demonstrate that CD95 engagement evokes nonapoptotic signals that promote inflammation and carcinogenesis. Transmembrane CD95L (m-CD95L) can be cleaved by metalloproteases, releasing a soluble ligand (s-CD95L). Soluble and membrane-bound CD95L show different stoichiometry (homotrimer versus multimer of homotrimers, respectively), which differentially affects CD95-mediated signaling through molecular mechanisms that remain to be elucidated. This review discusses the biological roles of CD95 in light of recent experiments addressing how a death receptor can trigger both apoptotic and nonapoptotic signaling pathways.
Collapse
Affiliation(s)
- Jean-Philippe Guégan
- Centre Eugène Marquis, INSERM U1242-COSS, Equipe Labellisée Ligue Contre Le Cancer, Rennes, France.,Université de Rennes-1, Rennes, France
| | - Patrick Legembre
- Centre Eugène Marquis, INSERM U1242-COSS, Equipe Labellisée Ligue Contre Le Cancer, Rennes, France.,Université de Rennes-1, Rennes, France
| |
Collapse
|
166
|
Osuka K, Watanabe Y, Usuda N, Aoyama M, Iwami K, Takeuchi M, Watabe T, Takayasu M. Expression of Caspase Signaling Components in the Outer Membranes of Chronic Subdural Hematomas. J Neurotrauma 2017; 34:3192-3197. [DOI: 10.1089/neu.2017.5051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Koji Osuka
- Department of Neurological Surgery, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yasuo Watanabe
- High Technology Research Center, Pharmacology, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Nobuteru Usuda
- Department of Anatomy II, Fujita Health University School of Medicine, Kutsukake, Toyoake, Aichi, Japan
| | - Masahiro Aoyama
- Department of Neurological Surgery, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kenichiro Iwami
- Department of Neurological Surgery, Aichi Medical University, Nagakute, Aichi, Japan
| | - Mikinobu Takeuchi
- Department of Neurological Surgery, Aichi Medical University, Nagakute, Aichi, Japan
| | - Takeya Watabe
- Department of Neurological Surgery, Aichi Medical University, Nagakute, Aichi, Japan
| | - Masakazu Takayasu
- Department of Neurological Surgery, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
167
|
Gomes-Silva D, Mukherjee M, Srinivasan M, Krenciute G, Dakhova O, Zheng Y, Cabral JMS, Rooney CM, Orange JS, Brenner MK, Mamonkin M. Tonic 4-1BB Costimulation in Chimeric Antigen Receptors Impedes T Cell Survival and Is Vector-Dependent. Cell Rep 2017; 21:17-26. [PMID: 28978471 PMCID: PMC5645034 DOI: 10.1016/j.celrep.2017.09.015] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/17/2017] [Accepted: 09/03/2017] [Indexed: 01/11/2023] Open
Abstract
Antigen-independent tonic signaling by chimeric antigen receptors (CARs) can increase differentiation and exhaustion of T cells, limiting their potency. Incorporating 4-1BB costimulation in CARs may enable T cells to resist this functional exhaustion; however, the potential ramifications of tonic 4-1BB signaling in CAR T cells remain unclear. Here, we found that tonic CAR-derived 4-1BB signaling can produce toxicity in T cells via continuous TRAF2-dependent activation of the nuclear factor κB (NF-κB) pathway and augmented FAS-dependent cell death. This mechanism was amplified in a non-self-inactivating gammaretroviral vector through positive feedback on the long terminal repeat (LTR) promoter, further enhancing CAR expression and tonic signaling. Attenuating CAR expression by substitution with a self-inactivating lentiviral vector minimized tonic signaling and improved T cell expansion and anti-tumor function. These studies illuminate the interaction between tonic CAR signaling and the chosen expression platform and identify inhibitory properties of the 4-1BB costimulatory domain that have direct implications for rational CAR design.
Collapse
MESH Headings
- 4-1BB Ligand/genetics
- 4-1BB Ligand/immunology
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cell Death
- Cell Survival
- Gammaretrovirus/genetics
- Gammaretrovirus/metabolism
- Gene Expression Regulation, Leukemic
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Lentivirus/genetics
- Lentivirus/metabolism
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Mice
- Mice, Inbred NOD
- Mutant Chimeric Proteins/genetics
- Mutant Chimeric Proteins/immunology
- NF-kappa B/genetics
- NF-kappa B/immunology
- Neoplasm Transplantation
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/transplantation
- Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- fas Receptor/genetics
- fas Receptor/immunology
Collapse
Affiliation(s)
- Diogo Gomes-Silva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Malini Mukherjee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Madhuwanti Srinivasan
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Giedre Krenciute
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olga Dakhova
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Yueting Zheng
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Joaquim M S Cabral
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
168
|
Nichols DB, De Martini W, Cottrell J. Poxviruses Utilize Multiple Strategies to Inhibit Apoptosis. Viruses 2017; 9:v9080215. [PMID: 28786952 PMCID: PMC5580472 DOI: 10.3390/v9080215] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Cells have multiple means to induce apoptosis in response to viral infection. Poxviruses must prevent activation of cellular apoptosis to ensure successful replication. These viruses devote a substantial portion of their genome to immune evasion. Many of these immune evasion products expressed during infection antagonize cellular apoptotic pathways. Poxvirus products target multiple points in both the extrinsic and intrinsic apoptotic pathways, thereby mitigating apoptosis during infection. Interestingly, recent evidence indicates that poxviruses also hijack cellular means of eliminating apoptotic bodies as a means to spread cell to cell through a process called apoptotic mimicry. Poxviruses are the causative agent of many human and veterinary diseases. Further, there is substantial interest in developing these viruses as vectors for a variety of uses including vaccine delivery and as oncolytic viruses to treat certain human cancers. Therefore, an understanding of the molecular mechanisms through which poxviruses regulate the cellular apoptotic pathways remains a top research priority. In this review, we consider anti-apoptotic strategies of poxviruses focusing on three relevant poxvirus genera: Orthopoxvirus, Molluscipoxvirus, and Leporipoxvirus. All three genera express multiple products to inhibit both extrinsic and intrinsic apoptotic pathways with many of these products required for virulence.
Collapse
Affiliation(s)
- Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - William De Martini
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| |
Collapse
|
169
|
Agrebi N, Ben-Mustapha I, Matoussi N, Dhouib N, Ben-Ali M, Mekki N, Ben-Ahmed M, Larguèche B, Ben Becher S, Béjaoui M, Barbouche MR. Rare splicing defects of FAS underly severe recessive autoimmune lymphoproliferative syndrome. Clin Immunol 2017; 183:17-23. [PMID: 28668589 DOI: 10.1016/j.clim.2017.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/08/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a prototypic disorder of impaired apoptosis characterized by autoimmune features and lymphoproliferation. Heterozygous germline or somatic FAS mutations associated with preserved protein expression have been described. Very rare cases of homozygous germline FAS mutations causing severe autosomal recessive form of ALPS with a complete defect of Fas expression have been reported. We report two unrelated patients from highly inbred North African population showing a severe ALPS phenotype and an undetectable Fas surface expression. Two novel homozygous mutations have been identified underlying rare splicing defects mechanisms. The first mutation breaks a branch point sequence and the second alters a regulatory exonic splicing site. These splicing defects induce the skipping of exon 6 encoding the transmembrane domain of CD95. Our findings highlight the requirement of tight regulation of FAS exon 6 splicing for balanced alternative splicing and illustrate the importance of such studies in highly consanguineous populations.
Collapse
Affiliation(s)
- N Agrebi
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; The University of Carthage, Faculty of Sciences of Bizerte, 7021 Jarzouna, Tunisia
| | - I Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; Faculty of Medicine, 1007 Tunis, Tunisia.
| | - N Matoussi
- Faculty of Medicine, 1007 Tunis, Tunisia; Department of Pediatric Care, Emergency and Out Patient Children's Hospital of Tunis, 1029 Tunis, Tunisia
| | - N Dhouib
- Faculty of Medicine, 1007 Tunis, Tunisia; National Bone Marrow Transplantation Center, 1006 Tunis, Tunisia
| | - M Ben-Ali
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia
| | - N Mekki
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; Faculty of Medicine, 1007 Tunis, Tunisia
| | - M Ben-Ahmed
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; Faculty of Medicine, 1007 Tunis, Tunisia
| | - B Larguèche
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia
| | - S Ben Becher
- Faculty of Medicine, 1007 Tunis, Tunisia; Department of Pediatric Care, Emergency and Out Patient Children's Hospital of Tunis, 1029 Tunis, Tunisia
| | - M Béjaoui
- Faculty of Medicine, 1007 Tunis, Tunisia; National Bone Marrow Transplantation Center, 1006 Tunis, Tunisia
| | - M R Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; Faculty of Medicine, 1007 Tunis, Tunisia
| |
Collapse
|
170
|
Chen JJ, Boehning D. Protein Lipidation As a Regulator of Apoptotic Calcium Release: Relevance to Cancer. Front Oncol 2017; 7:138. [PMID: 28706877 PMCID: PMC5489567 DOI: 10.3389/fonc.2017.00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022] Open
Abstract
Calcium is a critical regulator of cell death pathways. One of the most proximal events leading to cell death is activation of plasma membrane and endoplasmic reticulum-resident calcium channels. A large body of evidence indicates that defects in this pathway contribute to cancer development. Although we have a thorough understanding of how downstream elevations in cytosolic and mitochondrial calcium contribute to cell death, it is much less clear how calcium channels are activated upstream of the apoptotic stimulus. Recently, it has been shown that protein lipidation is a potent regulator of apoptotic signaling. Although classically thought of as a static modification, rapid and reversible protein acylation has emerged as a new signaling paradigm relevant to many pathways, including calcium release and cell death. In this review, we will discuss the role of protein lipidation in regulating apoptotic calcium signaling with direct therapeutic relevance to cancer.
Collapse
Affiliation(s)
- Jessica J Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| |
Collapse
|
171
|
Leigh ND, O'Neill RE, Du W, Chen C, Qiu J, Ashwell JD, McCarthy PL, Chen GL, Cao X. Host-Derived CD70 Suppresses Murine Graft-versus-Host Disease by Limiting Donor T Cell Expansion and Effector Function. THE JOURNAL OF IMMUNOLOGY 2017; 199:336-347. [PMID: 28550198 DOI: 10.4049/jimmunol.1502181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/01/2017] [Indexed: 11/19/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for hematologic and immunologic diseases. However, graft-versus-host disease (GVHD) may develop when donor-derived T cells recognize and damage genetically distinct normal host tissues. In addition to TCR signaling, costimulatory pathways are involved in T cell activation. CD27 is a TNFR family member expressed on T cells, and its ligand, CD70, is expressed on APCs. The CD27/CD70 costimulatory pathway was shown to be critical for T cell function and survival in viral infection models. However, the role of this pathway in allo-HCT is previously unknown. In this study, we have examined its contribution in GVHD pathogenesis. Surprisingly, Ab blockade of CD70 after allo-HCT significantly increases GVHD. Interestingly, whereas donor T cell- or bone marrow-derived CD70 plays no role in GVHD, host-derived CD70 inhibits GVHD as CD70-/- hosts show significantly increased GVHD. This is evidenced by reduced survival, more severe weight loss, and increased histopathologic damage compared with wild-type hosts. In addition, CD70-/- hosts have higher levels of proinflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-17. Moreover, accumulation of donor CD4+ and CD8+ effector T cells is increased in CD70-/- versus wild-type hosts. Mechanistic analyses suggest that CD70 expressed by host hematopoietic cells is involved in the control of alloreactive T cell apoptosis and expansion. Together, our findings demonstrate that host CD70 serves as a unique negative regulator of allogeneic T cell response by contributing to donor T cell apoptosis and inhibiting expansion of donor effector T cells.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Rachel E O'Neill
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Wei Du
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Chuan Chen
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - George L Chen
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
172
|
Lai AG, Aboobaker AA. Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species. BMC Genomics 2017; 18:389. [PMID: 28521727 PMCID: PMC5437397 DOI: 10.1186/s12864-017-3769-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Growing global demands for crustacean food crop species have driven large investments in aquaculture research worldwide. However, large-scale production is susceptible to pathogen-mediated destruction particularly in developing economies. Thus, a thorough understanding of the immune system components of food crop species is imperative for research to combat pathogens. RESULTS Through a comparative genomics approach utilising extant data from 55 species, we describe the innate immune system of the class Malacostraca, which includes all food crop species. We identify 7407 malacostracan genes from 39 gene families implicated in different aspects of host defence and demonstrate dynamic evolution of innate immunity components within this group. Malacostracans have achieved flexibility in recognising infectious agents through divergent evolution and expansion of pathogen recognition receptors genes. Antiviral RNAi, Toll and JAK-STAT signal transduction pathways have remained conserved within Malacostraca, although the Imd pathway appears to lack several key components. Immune effectors such as the antimicrobial peptides (AMPs) have unique evolutionary profiles, with many malacostracan AMPs not found in other arthropods. Lastly, we describe four putative novel immune gene families, potentially representing important evolutionary novelties of the malacostracan immune system. CONCLUSION Our analyses across the broader Malacostraca have allowed us to not only draw analogies with other arthropods but also to identify evolutionary novelties in immune modulation components and form strong hypotheses as to when key pathways have evolved or diverged. This will serve as a key resource for future immunology research in crustacean food crops.
Collapse
Affiliation(s)
- Alvina G Lai
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK.
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
173
|
Mahmoud F, Shields B, Makhoul I, Avaritt N, Wong HK, Hutchins LF, Shalin S, Tackett AJ. Immune surveillance in melanoma: From immune attack to melanoma escape and even counterattack. Cancer Biol Ther 2017; 18:451-469. [PMID: 28513269 DOI: 10.1080/15384047.2017.1323596] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pharmacologic inhibition of the cytotoxic T lymphocyte antigen 4 (CTLA4) and the programmed death receptor-1 (PD1) has resulted in unprecedented durable responses in metastatic melanoma. However, resistance to immunotherapy remains a major challenge. Effective immune surveillance against melanoma requires 4 essential steps: activation of the T lymphocytes, homing of the activated T lymphocytes to the melanoma microenvironment, identification and episode of melanoma cells by activated T lymphocytes, and the sensitivity of melanoma cells to apoptosis. At each of these steps, there are multiple factors that may interfere with the immune surveillance machinery, thus allowing melanoma cells to escape immune attack and develop resistance to immunotherapy. We provide a comprehensive review of the complex immune surveillance mechanisms at play in melanoma, and a detailed discussion of how these mechanisms may allow for the development of intrinsic or acquired resistance to immunotherapeutic modalities, and potential avenues for overcoming this resistance.
Collapse
Affiliation(s)
- Fade Mahmoud
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Bradley Shields
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Issam Makhoul
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Nathan Avaritt
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Henry K Wong
- c Department of Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Laura F Hutchins
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Sara Shalin
- d Departments of Pathology and Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Alan J Tackett
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| |
Collapse
|
174
|
Caspases and their substrates. Cell Death Differ 2017; 24:1380-1389. [PMID: 28498362 DOI: 10.1038/cdd.2017.44] [Citation(s) in RCA: 536] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/14/2022] Open
Abstract
, or for pyroptosis, gasdermin D. For the most part, it appears that cleavage events function cooperatively in the cell death process to generate a proteolytic synthetic lethal outcome. In contrast to apoptosis, far less is known about caspase biology in non-apoptotic cellular processes, such as cellular remodeling, including which caspases are activated, the mechanisms of their activation and deactivation, and the key substrate targets. Here we survey the progress made in global identification of caspase substrates using proteomics and the exciting new avenues these studies have opened for understanding the molecular logic of substrate cleavage in apoptotic and non-apoptotic processes.
Collapse
|
175
|
Hamouda N, Sano T, Oikawa Y, Ozaki T, Shimakawa M, Matsumoto K, Amagase K, Higuchi K, Kato S. Apoptosis, Dysbiosis and Expression of Inflammatory Cytokines are Sequential Events in the Development of 5-Fluorouracil-Induced Intestinal Mucositis in Mice. Basic Clin Pharmacol Toxicol 2017; 121:159-168. [PMID: 28374966 DOI: 10.1111/bcpt.12793] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/29/2017] [Indexed: 12/26/2022]
Abstract
The chemotherapeutic agent 5-fluorouracil (5-FU) causes intestinal mucositis with severe diarrhoea, but the pathogenesis is not fully understood. In this study, we investigated the pathogenic effects of 5-FU in mice, focusing on apoptosis, enterobacteria and inflammatory cytokines. Repeated administration of 5-FU caused severe intestinal mucositis on day 6, accompanied by diarrhoea and body-weight loss. TNF-α expression increased 1 day after exposure to the drug, and spiked a second time on day 4, at which point myeloperoxidase activity and IL-1β expression also increased. Apoptotic cells were observed in intestinal crypts only on day 1. 5-FU also induced dysbiosis, notably decreasing the abundance of intestinal Firmicutes while increasing the abundance of Bacteroidetes and Verrucomicrobia. Twice-daily co-administration of oral antibiotics significantly reduced the severity of intestinal mucositis and dysbiosis, and blocked the increase in myeloperoxidase activity and cytokine expression on day 6, without affecting apoptosis and TNF-α up-regulation on day 1. In cultured colonic epithelial cells, exposure to 5-FU also up-regulated TNF-α expression. Collectively, the data suggest that crypt apoptosis, dysbiosis and expression of inflammatory cytokines are sequential events in the development of intestinal mucositis after exposure to 5-FU. In particular, 5-FU appears to directly induce apoptosis via TNF-α and to suppress intestinal cell proliferation, thereby resulting in degradation of the epithelial barrier, as well as in secondary inflammation mediated by inflammatory cytokines.
Collapse
Affiliation(s)
- Nahla Hamouda
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tatsushi Sano
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan.,Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Yosuke Oikawa
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Hyogo, Japan
| | - Toru Ozaki
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Hyogo, Japan
| | - Masaki Shimakawa
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Hyogo, Japan
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
176
|
Yuan J, Najafov A, Py BF. Roles of Caspases in Necrotic Cell Death. Cell 2017; 167:1693-1704. [PMID: 27984721 DOI: 10.1016/j.cell.2016.11.047] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/13/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022]
Abstract
Caspases were originally identified as important mediators of inflammatory response and apoptosis. Recent discoveries, however, have unveiled their roles in mediating and suppressing two regulated forms of necrotic cell death, termed pyroptosis and necroptosis, respectively. These recent advances have significantly expanded our understanding of the roles of caspases in regulating development, adult homeostasis, and host defense response.
Collapse
Affiliation(s)
- Junying Yuan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA; Ludwig Cancer Center, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| | - Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA; Ludwig Cancer Center, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Bénédicte F Py
- CIRI, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France
| |
Collapse
|
177
|
Li KP, Shanmuganad S, Carroll K, Katz JD, Jordan MB, Hildeman DA. Dying to protect: cell death and the control of T-cell homeostasis. Immunol Rev 2017; 277:21-43. [PMID: 28462527 PMCID: PMC5416827 DOI: 10.1111/imr.12538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
T cells play a critical role in immune responses as they specifically recognize peptide/MHC complexes with their T-cell receptors and initiate adaptive immune responses. While T cells are critical for performing appropriate effector functions and maintaining immune memory, they also can cause autoimmunity or neoplasia if misdirected or dysregulated. Thus, T cells must be tightly regulated from their development onward. Maintenance of appropriate T-cell homeostasis is essential to promote protective immunity and limit autoimmunity and neoplasia. This review will focus on the role of cell death in maintenance of T-cell homeostasis and outline novel therapeutic strategies tailored to manipulate cell death to limit T-cell survival (eg, autoimmunity and transplantation) or enhance T-cell survival (eg, vaccination and immune deficiency).
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kaitlin Carroll
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Endocrinology, Diabetes Research Center, Cincinnati, OH 45229, USA
| | - Michael B. Jordan
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children’s Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | |
Collapse
|
178
|
Desouza-Armstrong M, Gunning PW, Stehn JR. Tumor suppressor tropomyosin Tpm2.1 regulates sensitivity to apoptosis beyond anoikis characterized by changes in the levels of intrinsic apoptosis proteins. Cytoskeleton (Hoboken) 2017; 74:233-248. [PMID: 28378936 DOI: 10.1002/cm.21367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 01/15/2023]
Abstract
The actin cytoskeleton is a polymer system that acts both as a sensor and mediator of apoptosis. Tropomyosins (Tpm) are a family of actin binding proteins that form co-polymers with actin and diversify actin filament function. Previous studies have shown that elevated expression of the tropomyosin isoform Tpm2.1 sensitized cells to apoptosis induced by cell detachment (anoikis) via an unknown mechanism. It is not yet known whether Tpm2.1 or other tropomyosin isoforms regulate sensitivity to apoptosis beyond anoikis. In this study, rat neuroepithelial cells overexpressing specific tropomyosin isoforms (Tpm1.7, Tpm2.1, Tpm3.1, and Tpm4.2) were screened for sensitivity to different classes of apoptotic stimuli, including both cytoskeletal and non-cytoskeletal targeting compounds. Results showed that elevated expression of tropomyosins in general inhibited apoptosis sensitivity to different stimuli. However, Tpm2.1 overexpression consistently enhanced sensitivity to anoikis as well as apoptosis induced by the actin targeting drug jasplakinolide (JASP). In contrast the cancer-associated isoform Tpm3.1 inhibited the induction of apoptosis by a range of agents. Treatment of Tpm2.1 overexpressing cells with JASP was accompanied by enhanced sensitivity to mitochondrial depolarization, a hallmark of intrinsic apoptosis. Moreover, Tpm2.1 overexpressing cells showed elevated levels of the apoptosis proteins Bak (proapoptotic), Mcl-1 (prosurvival), Bcl-2 (prosurvival) and phosphorylated p53 (Ser392). Finally, JASP treatment of Tpm2.1 cells caused significantly reduced Mcl-1, Bcl-2 and p53 (Ser392) levels relative to control cells. We therefore propose that Tpm2.1 regulates sensitivity to apoptosis beyond the scope of anoikis by modulating the expression of key intrinsic apoptosis proteins which primes the cell for death.
Collapse
Affiliation(s)
- Melissa Desouza-Armstrong
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Peter W Gunning
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Justine R Stehn
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Novogen Ltd. Hornsby, Sydney, New South Wales, 2077, Australia
| |
Collapse
|
179
|
Veyer DL, Carrara G, Maluquer de Motes C, Smith GL. Vaccinia virus evasion of regulated cell death. Immunol Lett 2017; 186:68-80. [PMID: 28366525 DOI: 10.1016/j.imlet.2017.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Abstract
Regulated cell death is a powerful anti-viral mechanism capable of aborting the virus replicative cycle and alerting neighbouring cells to the threat of infection. The biological importance of regulated cell death is illustrated by the rich repertoire of host signalling cascades causing cell death and by the multiple strategies exhibited by viruses to block death signal transduction and preserve cell viability. Vaccinia virus (VACV), a poxvirus and the vaccine used to eradicate smallpox, encodes multiple proteins that interfere with apoptotic, necroptotic and pyroptotic signalling. Here the current knowledge on cell death pathways and how VACV proteins interact with them is reviewed. Studying the mechanisms evolved by VACV to counteract host programmed cell death has implications for its successful use as a vector for vaccination and as an oncolytic agent against cancer.
Collapse
Affiliation(s)
- David L Veyer
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, 20 Rue Leblanc, 75015 Paris, France
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
180
|
Xu YM, Brooks AD, Wijeratne EMK, Henrich CJ, Tewary P, Sayers TJ, Gunatilaka AAL. 17β-Hydroxywithanolides as Sensitizers of Renal Carcinoma Cells to Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) Mediated Apoptosis: Structure-Activity Relationships. J Med Chem 2017; 60:3039-3051. [PMID: 28257574 DOI: 10.1021/acs.jmedchem.7b00069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Renal cell carcinoma (RCC) is a cancer with poor prognosis, and the 5-year survival rate of patients with metastatic RCC is 5-10%. Consequently, treatment of metastatic RCC represents an unmet clinical need. Screening of a 50 000-member library of natural and synthetic compounds for sensitizers of RCC cells to TRAIL-mediated apoptosis led to identification of the 17β-hydroxywithanolide (17-BHW), withanolide E (1), as a promising lead. To explore structure-activity relationships, we obtained natural and semisynthetic withanolides 1, 2a, 2c, and 3-36 and compared their ability to sensitize TRAIL-mediated apoptosis in a panel of renal carcinoma cells. Our findings revealed that 17-BHWs with a α-oriented side chain are superior to known TRAIL-sensitizing withanolides belonging to withaferin A class with a β-oriented side chain and demonstrated that the 17-BHW scaffold can be modified to enhance sensitization of RCCs to TRAIL-mediated apoptosis, thereby assisting development of natural-product-inspired drugs to treat metastatic RCC.
Collapse
Affiliation(s)
- Ya-Ming Xu
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Alan D Brooks
- Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research , Frederick, Maryland 21702, United States.,Cancer and Inflammation Program, National Cancer Institute-Frederick , Frederick, Maryland 21702, United States
| | - E M Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Curtis J Henrich
- Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research , Frederick, Maryland 21702, United States.,Molecular Targets Laboratory, National Cancer Institute-Frederick , Frederick, Maryland 21702, United States
| | - Poonam Tewary
- Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research , Frederick, Maryland 21702, United States.,Cancer and Inflammation Program, National Cancer Institute-Frederick , Frederick, Maryland 21702, United States
| | - Thomas J Sayers
- Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research , Frederick, Maryland 21702, United States.,Cancer and Inflammation Program, National Cancer Institute-Frederick , Frederick, Maryland 21702, United States
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 E. Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
181
|
Li J, Qian L, Dowling JP, Curcione C, Kurup D, Zhang J. Daxx plays a novel role in T cell survival but is dispensable in Fas-induced apoptosis. PLoS One 2017; 12:e0174011. [PMID: 28301594 PMCID: PMC5354431 DOI: 10.1371/journal.pone.0174011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/01/2017] [Indexed: 01/15/2023] Open
Abstract
Daxx was originally isolated as a Fas-binding protein. However, the in vivo function of Daxx in Fas-induced apoptosis has remained enigmatic. Fas plays an important role in homeostasis in the immune system. Fas gene mutations lead to autoimmune-lymphoproliferation (lpr) diseases characterized by hyperplasia of secondary lymphoid organs. It is well established that the FADD adaptor binds to Fas, and recruits/activates caspase 8. However, additional proteins including Daxx have also been indicated to associate with Fas. It was proposed that Daxx mediates a parallel apoptotic pathway that is independent of FADD and caspase 8, but signals through ASK1-mediated apoptotic pathway. However, because the deletion of Daxx leads to embryonic lethality, the in vivo function of Daxx has not been properly analyzed. In the current study, analysis was performed using a conditional mutant mouse in which Daxx was deleted specifically in T cells. The data show that Daxx-/- T cells were able to undergo normal Fas-induced apoptosis. While containing normal thymocyte populations, the T cell-specific Daxx-/- mice have a reduced peripheral T cell pool. Importantly, Daxx-deficient T cells displayed increased death responses upon activation through TCR stimulation. These results unequivocally demonstrated that Daxx does not mediate Fas-induced apoptosis, but rather that it plays a critical role in survival responses in primary mature T cells.
Collapse
Affiliation(s)
- Jinghe Li
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Liangyue Qian
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - John P. Dowling
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Christine Curcione
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Drishya Kurup
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Jianke Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
182
|
Kerr MC, Gomez GA, Ferguson C, Tanzer MC, Murphy JM, Yap AS, Parton RG, Huston WM, Teasdale RD. Laser-mediated rupture of chlamydial inclusions triggers pathogen egress and host cell necrosis. Nat Commun 2017; 8:14729. [PMID: 28281536 PMCID: PMC5353685 DOI: 10.1038/ncomms14729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Remarkably little is known about how intracellular pathogens exit the host cell in order to infect new hosts. Pathogenic chlamydiae egress by first rupturing their replicative niche (the inclusion) before rapidly lysing the host cell. Here we apply a laser ablation strategy to specifically disrupt the chlamydial inclusion, thereby uncoupling inclusion rupture from the subsequent cell lysis and allowing us to dissect the molecular events involved in each step. Pharmacological inhibition of host cell calpains inhibits inclusion rupture, but not subsequent cell lysis. Further, we demonstrate that inclusion rupture triggers a rapid necrotic cell death pathway independent of BAK, BAX, RIP1 and caspases. Both processes work sequentially to efficiently liberate the pathogen from the host cytoplasm, promoting secondary infection. These results reconcile the pathogen's known capacity to promote host cell survival and induce cell death.
Collapse
Affiliation(s)
- Markus C. Kerr
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Guillermo A. Gomez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Maria C. Tanzer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - James M. Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alpha S. Yap
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Wilhelmina M. Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
183
|
Coutu J, Ryerson MR, Bugert J, Brian Nichols D. The Molluscum Contagiosum Virus protein MC163 localizes to the mitochondria and dampens mitochondrial mediated apoptotic responses. Virology 2017; 505:91-101. [PMID: 28235685 DOI: 10.1016/j.virol.2017.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/30/2017] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
Abstract
Apoptosis is a powerful host cell defense to prevent viruses from completing replication. Poxviruses have evolved complex means to dampen cellular apoptotic responses. The poxvirus, Molluscum Contagiosum Virus (MCV), encodes numerous host interacting molecules predicted to antagonize immune responses. However, the function of the majority of these MCV products has not been characterized. Here, we show that the MCV MC163 protein localized to the mitochondria via an N-terminal mitochondrial localization sequence and transmembrane domain. Transient expression of the MC163 protein prevented mitochondrial membrane permeabilization (MMP), an event central to cellular apoptotic responses, induced by either Tumor Necrosis Factor alpha (TNF-α) or carbonyl cyanide 3-chlorophenylhydrazone (CCCP). MC163 expression prevented the release of a mitochondrial intermembrane space reporter protein when cells were challenged with TNF-α. Inhibition of MMP was also observed in cell lines stably expressing MC163. MC163 expression may contribute to the persistence of MCV lesions by dampening cellular apoptotic responses.
Collapse
Affiliation(s)
- Jesse Coutu
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, United States
| | - Melissa R Ryerson
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave., Champaign-Urbana, IL 61801, United States
| | - Joachim Bugert
- Institut für Mikrobiologie der Bundeswehr, Neuherbergstrasse, 1180937 München, Germany
| | - Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, United States.
| |
Collapse
|
184
|
Teng Y, Dong YC, Liu Z, Zou Y, Xie H, Zhao Y, Su J, Cao F, Jin H, Ren H. DNA methylation-mediated caspase-8 downregulation is associated with anti-apoptotic activity and human malignant glioma grade. Int J Mol Med 2017; 39:725-733. [DOI: 10.3892/ijmm.2017.2881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 01/27/2017] [Indexed: 11/05/2022] Open
|
185
|
Abstract
More than 50 years ago, cells were observed to die during insect development via a process that was named 'programmed cell death'. Later, a similar cell death process was found to occur in humans, and the process was renamed 'apoptosis'. In the 1990s, a number of apoptosis-regulating molecules were identified, and apoptosis was found to have essential roles in the immune system. In this Timeline article, we highlight the key events that have demonstrated the importance of programmed cell death processes, including apoptosis and programmed necrosis, in the immune system.
Collapse
Affiliation(s)
- Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Masato Tanaka
- Laboratory of Immune Regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
186
|
Liu PC, Lu G, Deng Y, Wang CD, Su XW, Zhou JY, Chan TM, Hu X, Poon WS. Inhibition of NF-κB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) Combination Therapy. PLoS One 2017; 12:e0171157. [PMID: 28135339 PMCID: PMC5279772 DOI: 10.1371/journal.pone.0171157] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/16/2017] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is a common malignant brain tumor and it is refractory to therapy because it usually contains a mixture of cell types. The tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been shown to induce apoptosis in a range of tumor cell types. Previously, we found that two human glioblastoma cell lines are resistant to TRAIL, while lovastatin sensitizes these glioblastoma cells to TRAIL-induced cell death. In this study, we investigated the mechanisms underlying the TRAIL-induced apoptosis in human glioblastoma cell lines by lovastatin. Furthermore, we have confirmed the anti-tumor effect of combination therapy with lovastatin and TRAIL in the subcutaneous brain tumor model. We showed that lovastatin significantly up-regulated the expression of death receptor 5 (DR5) in glioblastoma cell lines as well as in tumor-bearing mice with peri-tumoral administration of lovastatin. Further study in glioblastoma cell lines suggested that lovastatin treatment could inhibit NF-κB and Erk/MAPK pathways but activates JNK pathway. These results suggest that lovastatin sensitizes TRAIL-induced apoptosis by up-regulation of DR5 level via NF-κB inactivation, but also directly induces apoptosis by dysregulation of MAPK pathway. Our in vivo study showed that local peri-tumoral co-injection of lovastatin and TRAIL substantially reduced tumor growth compared with single injection of lovastatin or TRAIL in subcutaneous nude mice model. This study suggests that combined treatment of lovastatin and TRAIL is a promising therapeutic strategy to TRAIL-resistant glioblastoma.
Collapse
Affiliation(s)
- Pi Chu Liu
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Gang Lu
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Deng
- Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China
| | - Cheng Dong Wang
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Xian Wei Su
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Ye Zhou
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Tat Ming Chan
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Hu
- Shenzhen Beike Cell Engineering Research Institute, Shenzhen, China
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
187
|
Park YH, Jeong MS, Jang SB. Structural insights of homotypic interaction domains in the ligand-receptor signal transduction of tumor necrosis factor (TNF). BMB Rep 2017; 49:159-66. [PMID: 26615973 PMCID: PMC4915230 DOI: 10.5483/bmbrep.2016.49.3.205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Indexed: 11/21/2022] Open
Abstract
Several members of tumor necrosis factor receptor (TNFR) superfamily that these
members activate caspase-8 from death-inducing signaling complex (DISC) in TNF
ligand-receptor signal transduction have been identified. In the extrinsic
pathway, apoptotic signal transduction is induced in death domain (DD)
superfamily; it consists of a hexahelical bundle that contains 80 amino acids.
The DD superfamily includes about 100 members that belong to four subfamilies:
death domain (DD), caspase recruitment domain (CARD), pyrin domain (PYD), and
death effector domain (DED). This superfamily contains key building blocks: with
these blocks, multimeric complexes are formed through homotypic interactions.
Furthermore, each DD-binding event occurs exclusively. The DD superfamily
regulates the balance between death and survival of cells. In this study, the
structures, functions, and unique features of DD superfamily members are
compared with their complexes. By elucidating structural insights of DD
superfamily members, we investigate the interaction mechanisms of DD domains;
these domains are involved in TNF ligand-receptor signaling. These DD
superfamily members play a pivotal role in the development of more specific
treatments of cancer. [BMB Reports 2016; 49(3): 159-166]
Collapse
Affiliation(s)
- Young-Hoon Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Mi Suk Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University; Genetic Engineering Institute, Pusan National University, Busan 46241, Korea
| |
Collapse
|
188
|
|
189
|
Cell death: From initial concepts to pathways to clinical applications – Personal reflections of a clinical researcher. Biochem Biophys Res Commun 2017; 482:445-449. [DOI: 10.1016/j.bbrc.2016.10.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 01/30/2023]
|
190
|
Lee HJ, Kim JY, Park JE, Yoon YD, Tsang BK, Kim JM. Induction of Fas-Mediated Apoptosis by Interferon-γ is Dependent on Granulosa Cell Differentiation and Follicular Maturation in the Rat Ovary. Dev Reprod 2016; 20:315-329. [PMID: 28144637 PMCID: PMC5270607 DOI: 10.12717/dr.2016.20.4.315] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/20/2016] [Accepted: 12/13/2016] [Indexed: 11/17/2022]
Abstract
Fas ligand (FasL) and its receptor Fas have been implicated in granulosa cell apoptosis during follicular atresia. Although interferon-gamma (IFN-γ) is believed to be involved in the regulation Fas expression in differentiated granulosa or granulosa-luteal cells, the expression of this cytokine and its role in the regulation of the granulosa cell Fas/FasL system and apoptosis during follicular maturation have not been thoroughly investigated. In the present study, we have examined the presence of IFN-γ in ovarian follicles at different stage of development by immunohistochemistry and related their relative intensities with follicular expression of Fas and FasL, and with differences in granulosa cell sensitivity to Fas activation by exogenous agonistic Anti-Fas monoclonal antibody (Fas mAb). Although IFN-γ immunostaining was detectable in oocyte and granulosa cells in antral follicles, most intense immunoreactivity for the cytokine was observed in these cells of preantral follicles. Intense immunoreactivity for IFN-γ was most evident in granulosa cells of atretic early antral follicles where increased Fas and FasL expression and apoptosis were also observed. Whereas low concentrations of IFN-γ (10-100 U/mL) significantly increased Fas expression in undifferentiated granulosa cells (from preantral or very early antral follicles) in vitro, very higher concentrations (≥ 1,000 U/mL) were required to up-regulate of Fas in differentiated cells isolated from eCG-primed (antral) follicles. Addition of agonistic Fas mAb to cultures of granulosa cells at the two stages of differentiation and pretreated with IFN-γ (100 U/mL) elicited morphological and biochemical apoptotic features which were more prominent in cells not previously exposed to the gonadotropin in vivo. These findings suggested that IFN-γ is an important physiologic intra-ovarian regulator of follicular atresia and plays a pivotal role in regulation of expression of Fas receptor and subsequent apoptotic response in undifferentiated (or poorly differentiated) granulosa cells at an early (penultimate) stage of follicular development.
Collapse
Affiliation(s)
- Hye-Jeong Lee
- Department of Pharmacology, College of Medicine, Dong-A University, Busan 602-714, Korea
| | - Ji Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea
| | - Ji Eun Park
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714, Korea
| | - Yong-Dal Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Benjamin K Tsang
- Department of Obstetrics and Gynecology and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1Y 4E9
| | - Jong-Min Kim
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714, Korea
| |
Collapse
|
191
|
Cycloheximide Can Induce Bax/Bak Dependent Myeloid Cell Death Independently of Multiple BH3-Only Proteins. PLoS One 2016; 11:e0164003. [PMID: 27806040 PMCID: PMC5091851 DOI: 10.1371/journal.pone.0164003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/19/2016] [Indexed: 01/25/2023] Open
Abstract
Apoptosis mediated by Bax or Bak is usually thought to be triggered by BH3-only members of the Bcl-2 protein family. BH3-only proteins can directly bind to and activate Bax or Bak, or indirectly activate them by binding to anti-apoptotic Bcl-2 family members, thereby relieving their inhibition of Bax and Bak. Here we describe a third way of activation of Bax/Bak dependent apoptosis that does not require triggering by multiple BH3-only proteins. In factor dependent myeloid (FDM) cell lines, cycloheximide induced apoptosis by a Bax/Bak dependent mechanism, because Bax-/-Bak-/- lines were profoundly resistant, whereas FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Addition of cycloheximide led to the rapid loss of Mcl-1 but did not affect the expression of other Bcl-2 family proteins. In support of these findings, similar results were observed by treating FDM cells with the CDK inhibitor, roscovitine. Roscovitine reduced Mcl-1 abundance and caused Bax/Bak dependent cell death, yet FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Therefore Bax/Bak dependent apoptosis can be regulated by the abundance of anti-apoptotic Bcl-2 family members such as Mcl-1, independently of several known BH3-only proteins.
Collapse
|
192
|
Oh M, Elvitigala DAS, Bathige SDNK, Lee S, Kim MJ, Lee J. Molecular and functional characterization of caspase-8 from the big-belly seahorse (Hippocampus abdominalis). FISH & SHELLFISH IMMUNOLOGY 2016; 58:650-662. [PMID: 27732898 DOI: 10.1016/j.fsi.2016.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Apoptosis is a physiological process that can also participate in host immune defense mechanisms, including tumor growth suppression along with homeostasis and maturation of immune cells. Caspases are known to be involved in cellular apoptotic signaling; among them, caspase-8 plays an important role in the initiation phase of the apoptotic death cascade. In the current study, we molecularly characterized a caspase-8 homolog (designated as HaCasp-8) from Hippocampus abdominalis. The HaCasp-8 gene harbors a 1476 bp open reading frame (ORF) that codes for a protein of 492 amino acids (aa) with a predicted molecular mass of 55 kDa. HaCasp-8 houses the typical domain architecture of known initiator caspases, including the death effector domain and the carboxyl-terminal catalytic domain. As expected, phylogenetic analysis reflected a closer evolutionary relationship of HaCasp-8 with its teleostean similitudes. The results of our qPCR assays confirmed the ubiquitous expression of HaCasp-8 in physiologically important tissues examined, with pronounced expression levels in ovary tissues, followed by blood cells. HaCasp-8 expression at the mRNA level was found to be significantly modulated by lipopolysaccharide, polyinosinic:polycytidylic acid, Streptococcus iniae, and Edwardsiella tarda injection. Overexpression of HaCasp-8 could trigger a significant level of cell death in HEK293T cells, suggesting its putative role in cell death. Taken together, our findings suggest that HaCasp-8 is an important component in the caspase cascade, and its expression can be significantly modulated under pathogen stress conditions in the big-belly seahorse.
Collapse
Affiliation(s)
- Minyoung Oh
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Zoology, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - S D N K Bathige
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Seongdo Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
193
|
CD95 Signaling Inhibits B Cell Receptor-Mediated Gammaherpesvirus Replication in Apoptosis-Resistant B Lymphoma Cells. J Virol 2016; 90:9782-9796. [PMID: 27558422 DOI: 10.1128/jvi.00668-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/13/2016] [Indexed: 11/20/2022] Open
Abstract
While CD95 is an apoptosis-inducing receptor and has emerged as a potential anticancer therapy target, mounting evidence shows that CD95 is also emerging as a tumor promoter by activating nonapoptotic signaling pathways. Gammaherpesviral infection is closely associated with lymphoproliferative diseases, including B cell lymphomas. The nonapoptotic function of CD95 in gammaherpesvirus-associated lymphomas is largely unknown. Here, we show that stimulation of CD95 agonist antibody drives the majority of sensitive gammaherpesvirus-transformed B cells to undergo caspase-dependent apoptosis and promotes the survival and proliferation of a subpopulation of apoptosis-resistant B cells. Surprisingly, CD95-mediated nonapoptotic signaling induced beta interferon (IFN-β) expression and correlatively inhibited B cell receptor (BCR)-mediated gammaherpesviral replication in the apoptosis-resistant lymphoma cells without influencing BCR signaling. Further analysis showed that IFN-β alone or synergizing with CD95 blocked the activation of lytic switch proteins and the gene expression of gammaherpesviruses. Our findings indicate that, independent of its apoptotic activity, CD95 signaling activity plays an important role in blocking viral replication in apoptosis-resistant, gammaherpesvirus-associated B lymphoma cells, suggesting a novel mechanism that indicates how host CD95 prototype death receptor controls the life cycle of gammaherpesviruses independent of its apoptotic activity. IMPORTANCE Gammaherpesviruses are closely associated with lymphoid malignancies and other cancers. Viral replication and persistence strategies leading to cancer involve the activation of antiapoptotic and proliferation programs, as well as evasion of the host immune response. Here, we provide evidence that the stimulation of CD95 agonist antibody, mimicking one of the major mechanisms of cytotoxic T cell killing, inhibits B cell receptor-mediated gammaherpesviral replication in CD95 apoptosis-resistant lymphoma cells. CD95-induced type I interferon (IFN-β) contributes to the inhibition of gammaherpesviral replication. This finding sheds new light on the CD95 nonapoptotic function and provides a novel mechanism for gammaherpesviruses that helps them to escape host immune surveillance.
Collapse
|
194
|
Patergnani S, Fossati V, Bonora M, Giorgi C, Marchi S, Missiroli S, Rusielewicz T, Wieckowski MR, Pinton P. Mitochondria in Multiple Sclerosis: Molecular Mechanisms of Pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:49-103. [PMID: 28069137 DOI: 10.1016/bs.ircmb.2016.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria, the organelles that function as the powerhouse of the cell, have been increasingly linked to the pathogenesis of many neurological disorders, including multiple sclerosis (MS). MS is a chronic inflammatory demyelinating disease of the central nervous system (CNS) and a leading cause of neurological disability in young adults in the western world. Its etiology remains unknown, and while the inflammatory component of MS has been heavily investigated and targeted for therapeutic intervention, the failure of remyelination and the process of axonal degeneration are still poorly understood. Recent studies suggest a role of mitochondrial dysfunction in the neurodegenerative aspects of MS. This review is focused on mitochondrial functions under physiological conditions and the consequences of mitochondrial alterations in various CNS disorders. Moreover, we summarize recent findings linking mitochondrial dysfunction to MS and discuss novel therapeutic strategies targeting mitochondria-related pathways as well as emerging experimental approaches for modeling mitochondrial disease.
Collapse
Affiliation(s)
- S Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - V Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - M Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - C Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Missiroli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - T Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - M R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - P Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
195
|
Pereira M, Tourlomousis P, Wright J, P. Monie T, Bryant CE. CARD9 negatively regulates NLRP3-induced IL-1β production on Salmonella infection of macrophages. Nat Commun 2016; 7:12874. [PMID: 27670879 PMCID: PMC5052644 DOI: 10.1038/ncomms12874] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/11/2016] [Indexed: 12/30/2022] Open
Abstract
Interleukin-1β (IL-1β) is a proinflammatory cytokine required for host control of bacterial infections, and its production must be tightly regulated to prevent excessive inflammation. Here we show that caspase recruitment domain-containing protein 9 (CARD9), a protein associated with induction of proinflammatory cytokines by fungi, has a negative role on IL-1β production during bacterial infection. Specifically, in response to activation of the nucleotide oligomerization domain receptor pyrin-domain containing protein 3 (NLRP3) by Salmonella infection, CARD9 negatively regulates IL-1β by fine-tuning pro-IL-1β expression, spleen tyrosine kinase (SYK)-mediated NLRP3 activation and repressing inflammasome-associated caspase-8 activity. CARD9 is suppressed during Salmonella enterica serovar Typhimurium infection, facilitating increased IL-1β production. CARD9 is, therefore, a central signalling hub that coordinates a pathogen-specific host inflammatory response.
Collapse
Affiliation(s)
- Milton Pereira
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Panagiotis Tourlomousis
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - John Wright
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Tom P. Monie
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK
| | - Clare E. Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
196
|
Kong S, Yang Y, Xu Y, Wang Y, Zhang Y, Melo-Cardenas J, Xu X, Gao B, Thorp EB, Zhang DD, Zhang B, Song J, Zhang K, Zhang J, Zhang J, Li H, Fang D. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas. Proc Natl Acad Sci U S A 2016; 113:10394-9. [PMID: 27573825 PMCID: PMC5027446 DOI: 10.1073/pnas.1606742113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity.
Collapse
Affiliation(s)
- Sinyi Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Yi Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Yuanming Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Yajun Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yusi Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Johanna Melo-Cardenas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Xiangping Xu
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Jianning Zhang
- School of Life Science and Medicine, Dalian University of Technology, Dalian, 116024, China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China;
| | - Huabin Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Department of Otolaryngology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611;
| |
Collapse
|
197
|
Huppertz B, Kingdom JCP. Apoptosis in the Trophoblast—Role of Apoptosis in Placental Morphogenesis. ACTA ACUST UNITED AC 2016; 11:353-62. [PMID: 15350247 DOI: 10.1016/j.jsgi.2004.06.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Villous trophoblast is the epithelial cover of the placental villous tree and comes in direct contact with maternal blood. The turnover of villous trophoblast includes proliferation and differentiation of cytotrophoblast, syncytial fusion of cytotrophoblast with the overlying syncytiotrophoblast, differentiation in the syncytiotrophoblast, and finally extrusion of apoptotic material into the maternal circulation. In recent years, it has become clear that apoptosis is a normal constituent of trophoblast turnover and the release of apoptotic material does not lead to an inflammatory response of the mother. During preeclampsia there seems to be an altered balance between proliferation and apoptosis of villous trophoblast leading to a dysregulation of the release from the syncytiotrophoblast. The normal apoptotic release may be reduced in favor of a necrotic release. Since apoptosis is still ongoing in the syncytiotrophoblast, a necrotic release of intrasyncytial and partly apoptotic material lead us to call this type of release "aponecrotic shedding." In this situation, cell-free components such as G-actin and DNA freely floating in maternal blood may trigger damage to the maternal endothelium, thereby triggering preeclampsia. This review highlights the importance of the apoptosis cascade in permitting normal physiologic turnover of villous trophoblast. It will demonstrate the participation of initial stages of this cascade within the cytotrophoblast and of the execution stages within the syncytiotrophoblast. Moreover, this review presents hypotheses of how dysregulation of the apoptosis cascade may be linked to endothelial dysfunction of the maternal vasculature in preeclampsia.
Collapse
Affiliation(s)
- Berthold Huppertz
- Department of Anatomy II, University Hospital RWTH, Aachen, Germany.
| | | |
Collapse
|
198
|
Menon R, Fortunato SJ. The Role of Matrix Degrading Enzymes and Apoptosis in Repture of Membranes. ACTA ACUST UNITED AC 2016; 11:427-37. [PMID: 15458739 DOI: 10.1016/j.jsgi.2004.04.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prematurity is the third leading cause of perinatal death, and preterm premature rupture of the membranes (pPROM) is associated with approximately 20-50% of all preterm births. The etiologic factors described for pPROM and preterm labor (PTL) are the same, although the clinical presentation (pPROM vs PTL) differs among patients. The reason for this disparity is unknown and poses a therapeutic dilemma. Several etiologic factors have been described for PTL and pPROM. PTL and pPROM are associated with overwhelming host inflammatory response. Many of these pro-inflammatory factors (inflammatory cytokine release) are common in both conditions; however, the clinical presentation differs. The objective of this review is to explain the differential expression pattern of matrix metalloproteinases (MMPs) and pro-apoptotic elements in human fetal membranes in pPROM and PTL and how they interact to present different clinical outcomes during pregnancy.
Collapse
Affiliation(s)
- Ramkumar Menon
- The Perinatal Research Center of the Women's Health Research and Education Foundation and The University of Phoenix, Nashville Campus, Nashville, Tennessee, USA
| | | |
Collapse
|
199
|
Sakamaki K, Ishii TM, Sakata T, Takemoto K, Takagi C, Takeuchi A, Morishita R, Takahashi H, Nozawa A, Shinoda H, Chiba K, Sugimoto H, Saito A, Tamate S, Satou Y, Jung SK, Matsuoka S, Koyamada K, Sawasaki T, Nagai T, Ueno N. Dysregulation of a potassium channel, THIK-1, targeted by caspase-8 accelerates cell shrinkage. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2766-2783. [PMID: 27566292 DOI: 10.1016/j.bbamcr.2016.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 11/26/2022]
Abstract
Activation of caspases is crucial for the execution of apoptosis. Although the caspase cascade associated with activation of the initiator caspase-8 (CASP8) has been investigated in molecular and biochemical detail, the physiological role of CASP8 is not fully understood. Here, we identified a two-pore domain potassium channel, tandem-pore domain halothane-inhibited K+ channel 1 (THIK-1), as a novel CASP8 substrate. The intracellular region of THIK-1 was cleaved by CASP8 in apoptotic cells. Overexpression of THIK-1, but not its mutant lacking the CASP8-target sequence in the intracellular portion, accelerated cell shrinkage in response to apoptotic stimuli. In contrast, knockdown of endogenous THIK-1 by RNA interference resulted in delayed shrinkage and potassium efflux. Furthermore, a truncated THIK-1 mutant lacking the intracellular region, which mimics the form cleaved by CASP8, led to a decrease of cell volume of cultured cells without apoptotic stimulation and excessively promoted irregular development of Xenopus embryos. Taken together, these results indicate that THIK-1 is involved in the acceleration of cell shrinkage. Thus, we have demonstrated a novel physiological role of CASP8: creating a cascade that advances the cell to the next stage in the apoptotic process.
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| | - Takahiro M Ishii
- Department of Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Toshiya Sakata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kiwamu Takemoto
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Chiyo Takagi
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Ayako Takeuchi
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd., Yokohama 230-0046, Japan
| | | | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Hajime Shinoda
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki 567-0047, Japan
| | - Kumiko Chiba
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Haruyo Sugimoto
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Akiko Saito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shuhei Tamate
- Department of Electronic Science and Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Sang-Kee Jung
- SCOTS, Tensei Suisan Co., Ltd., Karatsu 847-0193, Japan
| | - Satoshi Matsuoka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Koji Koyamada
- Center for Promotion of Excellence in Higher Education, Kyoto University, Kyoto 606-8501, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Takeharu Nagai
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan; The Institute of Scientific and Industrial Research, Osaka University, Ibaraki 567-0047, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| |
Collapse
|
200
|
Gari HH, DeGala GD, Lucia MS, Lambert JR. Loss of the oncogenic phosphatase PRL-3 promotes a TNF-R1 feedback loop that mediates triple-negative breast cancer growth. Oncogenesis 2016; 5:e255. [PMID: 27526109 PMCID: PMC5007826 DOI: 10.1038/oncsis.2016.50] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/14/2022] Open
Abstract
Stimulating tumor cell senescence and apoptosis are proven methods for therapeutically combating cancer. However, senescence and apoptosis are conventionally viewed as parallel, not sequential, processes. We have discovered that the metastasis-promoting phosphatase, PRL-3, is transcriptionally regulated by the NF-ĸB pathway in triple-negative breast cancer (TNBC) cells, and that PRL-3 knockdown elicits an autocrine tumor necrosis factor receptor 1 (TNF-R1) feedback loop that results in TNBC cell senescence followed by apoptosis. Knockdown of PRL-3 leads to rapid G1 cell cycle arrest and induction of a strong TNFα cytokine response that promotes a period of cellular senescence through TNF-R1-mediated activation of NF-ĸB. Senescent PRL-3 knockdown cells subsequently underwent apoptosis as a result of increased TNF-R1 signaling through the TNFα-associated extrinsic death pathway, shunting signaling away from the NF-ĸB cascade. These data suggest that TNF-R1 signaling dynamically re-programs after PRL-3 knockdown, from sustaining cell senescence through NF-ĸB to promoting apoptosis through TNF-R1 internalization and caspase-8 activation. The molecular mechanisms that determine the survival–death balance of TNF-R1 signaling are poorly understood, despite the fact that TNF-R1 has been extensively studied. Our results describe PRL-3 knockdown as a novel survival–death balance modifier of the TNF-R1 pathway, and show that senescent TNBC tumor cells can be sensitized to undergo apoptosis in a sequential manner.
Collapse
Affiliation(s)
- H H Gari
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - G D DeGala
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M S Lucia
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J R Lambert
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|