151
|
|
152
|
Roberts A, Phuah P, Cheng S, Murphy KG. Targeting Enteroendocrine Cells to Treat Metabolic Disease. COMPREHENSIVE PHARMACOLOGY 2022:344-372. [DOI: 10.1016/b978-0-12-820472-6.00068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
153
|
Morita A, Omoya Y, Ito R, Ishibashi Y, Hiramoto K, Ohnishi S, Yoshikawa N, Kawanishi S. Glycyrrhizin and its derivatives promote hepatic differentiation via sweet receptor, Wnt, and Notch signaling. Biochem Biophys Rep 2021; 28:101181. [PMID: 34934826 PMCID: PMC8654616 DOI: 10.1016/j.bbrep.2021.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
The acute liver disease is involved in aberrant release of high-mobility group box 1 (HMGB1). Glycyrrhizin (GL), a traditional Chinese medicine for liver disease, binds to HMGB1, thereby inhibits tissue injury. However the mode of action of GL for chronic liver disease remains unclear. We investigated the effects of glycyrrhizin (GL) and its derivatives on liver differentiation using human iPS cells by using a flow cytometric analysis. GL promoted hepatic differentiation at the hepatoblast formation stage. The GL derivatives, 3-O-mono-glucuronyl 18β-glycyrrhetinic acid (Mono) and 3-O-[glucosyl (1 → 2)-glucuronyl] 18β-glycyrrhetinic acid increased AFP+ cell counts and albumin+ cell counts. Glucuronate conjugation seemed to be a requirement for hepatic differentiation. Mono exhibited the most significant hepatic differentiation effect. We evaluated the effects of (±)-2-(2,4-dichlorophenoxy) propionic acid (DP), a T1R3 antagonist, and sucralose, a T1R3 agonist, on hepatic differentiation, and found that DP suppressed Mono-induced hepatic differentiation, while sucralose promoted hepatic differentiation. Thus, GL promoted hepatic differentiation via T1R3 signaling. In addition, Mono increased β-catenin+ cell count and decreased Hes5+ cell count suggesting the involvement of Wnt and Notch signaling in GL-induced hepatic differentiation. In conclusion, GL exerted a hepatic differentiation effect via sweet receptor (T1R3), canonical Wnt, and Notch signaling.
Collapse
Key Words
- AFP, α-fetoprotein
- Api, 3-O-[apiosyl (1 → 2)-glucuronyl] βGA
- CBX, carbenoxolone, 3-O-hemisuccinyl βGA
- CK-19, cytokeratin 19
- DMSO, dimethyl sulfoxide
- DP, (±)-2-(2,4-dichlorophenoxy) propionic acid
- GL, glycyrrhizin
- Glc, 3-O-[glucosyl (1 → 2)-glucuronyl] βGA
- Glycyrrhizin
- HMGB1, high-mobility group box1
- HNF-4α, hepatocyte nuclear factor 4α
- Hepatic differentiation
- Hes, hairy and enhancer of split
- LSG, licorice saponin G
- LSH, licorice saponin H
- Liver regeneration
- Mono, 3-O-mono-glucuronyl βGA
- Sweet receptor
- T1R3
- αGA, 18α-glycyrrhetinic acid
- βGA, 18β-glycyrrhetinic acid
Collapse
Affiliation(s)
- Akihiro Morita
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Yuta Omoya
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Rie Ito
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Yuya Ishibashi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Shiho Ohnishi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Nobuji Yoshikawa
- Matsusaka R&D Center, Cokey Co., Ltd., Matsusaka, Mie, 515-0041, Japan
| | - Shosuke Kawanishi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| |
Collapse
|
154
|
Khramova DS, Popov SV. A secret of salivary secretions: Multimodal effect of saliva in sensory perception of food. Eur J Oral Sci 2021; 130:e12846. [PMID: 34935208 DOI: 10.1111/eos.12846] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023]
Abstract
Saliva plays multifunctional roles in oral cavity. Even though its importance for the maintenance of oral health has long been established, the role of saliva in food perception has attracted increasing attention in recent years. We encourage researchers to discover the peculiarity of this biological fluid and aim to combine the data concerning all aspects of the saliva influence on the sensory perception of food. This review presents saliva as a unique material, which modulates food perception due to constant presence of saliva in the mouth and thanks to its composition. Therefore, we highlight the salivary components that contribute to these effects. Moreover, this review is an attempt to structure the effects of saliva on perception of different food categories, where the mechanisms of salivary impact in perception of liquid, semi-solid, and solid foods are revealed. Finally, we emphasize that the large inter-individual variability in salivary composition and secretion appear to contribute to the fact that everyone experiences food in their own way. Therefore, the design of the sensory studies should consider the properties of volunteers' saliva and also carefully monitor the experimental conditions that affect salivary composition and flow rate.
Collapse
Affiliation(s)
- Daria S Khramova
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Russia
| | - Sergey V Popov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Russia
| |
Collapse
|
155
|
Zhao X, Liu M, Cui M, Liu B. Multiple interaction modes between saccharin and sweet taste receptors determine a species-dependent response to saccharin. FEBS Open Bio 2021; 12:494-499. [PMID: 34932896 PMCID: PMC8804617 DOI: 10.1002/2211-5463.13355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/05/2022] Open
Abstract
Saccharin is a commonly used artificial sweetener that exhibits both sweetening and sweet inhibition activities. The species-dependent response towards saccharin and the interaction between saccharin and the sweet taste receptor T1R2/T1R3 remain elusive. In this study we used mismatched chimeras of T1R2 and T1R3 and calcium mobilization functional analysis to reveal a detailed species-dependent response towards saccharin of human, squirrel monkey, and mouse sweet taste receptors. Our findings, combined with previous results by others, suggest multiple and complex interaction modes between saccharin and the sweet taste receptor, which are helpful guidelines for effective modulation of the sweet taste by sweetener/sweet inhibitors.
Collapse
Affiliation(s)
- Xiangzhong Zhao
- Department of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Meng Liu
- Department of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Bo Liu
- Department of Food Science and Engineering, Qilu University of Technology, Jinan, China
| |
Collapse
|
156
|
Herman MA, Birnbaum MJ. Molecular aspects of fructose metabolism and metabolic disease. Cell Metab 2021; 33:2329-2354. [PMID: 34619074 PMCID: PMC8665132 DOI: 10.1016/j.cmet.2021.09.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Excessive sugar consumption is increasingly considered as a contributor to the emerging epidemics of obesity and the associated cardiometabolic disease. Sugar is added to the diet in the form of sucrose or high-fructose corn syrup, both of which comprise nearly equal amounts of glucose and fructose. The unique aspects of fructose metabolism and properties of fructose-derived metabolites allow for fructose to serve as a physiological signal of normal dietary sugar consumption. However, when fructose is consumed in excess, these unique properties may contribute to the pathogenesis of cardiometabolic disease. Here, we review the biochemistry, genetics, and physiology of fructose metabolism and consider mechanisms by which excessive fructose consumption may contribute to metabolic disease. Lastly, we consider new therapeutic options for the treatment of metabolic disease based upon this knowledge.
Collapse
Affiliation(s)
- Mark A Herman
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | | |
Collapse
|
157
|
Jensterle M, DeVries JH, Battelino T, Battelino S, Yildiz B, Janez A. Glucagon-like peptide-1, a matter of taste? Rev Endocr Metab Disord 2021; 22:763-775. [PMID: 33123893 DOI: 10.1007/s11154-020-09609-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/22/2023]
Abstract
Understanding of gustatory coding helps to predict, and perhaps even modulate the ingestive decision circuitry, especially when eating behaviour becomes dysfunctional. Preclinical research demonstrated that glucagon like peptide 1 (GLP-1) is locally synthesized in taste bud cells in the tongue and that GLP-1 receptor exists on the gustatory nerves in close proximity to GLP-1 containing taste bud cells. In humans, the tongue has not yet been addressed as clinically relevant target for GLP-1 based therapies. The primary aim of the current review was to elaborate on the role of GLP- 1 in mammalian gustatory system, in particular in the perception of sweet. Secondly, we aimed to explore what modulates gustatory coding and whether the GLP-1 based therapies might be involved in regulation of taste perception. We performed a series of PubMed, Medline and Embase databases systemic searches. The Population-Intervention-Comparison-Outcome (PICO) framework was used to identify interventional studies. Based on the available data, GLP-1 is specifically involved in the perception of sweet. Aging, diabetes and obesity are characterized by diminished taste and sweet perception. Calorie restriction and bariatric surgery are associated with a diminished appreciation of sweet food. GLP-1 receptor agonists (RAs) modulate food preference, yet its modulatory potential in gustatory coding is currently unknown. Future studies should explore whether GLP-1 RAs modulate taste perception to the extent that changes of food preference and consumption ensue.
Collapse
Affiliation(s)
- Mojca Jensterle
- Division of Internal Medicine, Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloška cesta, 7, 1000, Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia, Zaloška cesta 7, 1000, Ljubljana, Slovenia
| | - J Hans DeVries
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Bohoričeva 20, SI-1000, Ljubljana, Slovenia
- Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Bohoričeva 20, SI-1000, Ljubljana, Slovenia
| | - Saba Battelino
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bulent Yildiz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Hacettepe University School of Medicine, Hacettepe, 06100, Ankara, Turkey
| | - Andrej Janez
- Division of Internal Medicine, Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloška cesta, 7, 1000, Ljubljana, Slovenia.
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia, Zaloška cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
158
|
Zhong H, Huang J, Shang S, Yuan B. Evolutionary insights into umami, sweet, and bitter taste receptors in amphibians. Ecol Evol 2021; 11:18011-18025. [PMID: 35003653 PMCID: PMC8717283 DOI: 10.1002/ece3.8398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Umami and sweet sensations provide animals with important dietary information for detecting and consuming nutrients, whereas bitter sensation helps animals avoid potentially toxic or harmful substances. Enormous progress has been made toward animal sweet/umami taste receptor (Tas1r) and bitter taste receptor (Tas2r). However, information about amphibians is mainly scarce. This study attempted to delineate the repertoire of Tas1r/Tas2r genes by searching for currently available genome sequences in 14 amphibian species. This study identified 16 Tas1r1, 9 Tas1r2, and 9 Tas1r3 genes to be intact and another 17 Tas1r genes to be pseudogenes or absent in the 14 amphibians. According to the functional prediction of Tas1r genes, two species have lost sweet sensation and seven species have lost both umami and sweet sensations. Anurans possessed a large number of intact Tas2rs, ranging from 39 to 178. In contrast, caecilians possessed a contractive bitter taste repertoire, ranging from 4 to 19. Phylogenetic and reconciling analysis revealed that the repertoire of amphibian Tas1rs and Tas2rs was shaped by massive gene duplications and losses. No correlation was found between feeding preferences and the evolution of Tas1rs in amphibians. However, the expansion of Tas2rs may help amphibians adapt to both aquatic and terrestrial habitats. Bitter detection may have played an important role in the evolutionary adaptation of vertebrates in the transition from water to land.
Collapse
Affiliation(s)
- Huaming Zhong
- College of Biology and FoodShangqiu Normal UniversityShangqiuChina
| | - Jie Huang
- College of Biology and FoodShangqiu Normal UniversityShangqiuChina
| | - Shuai Shang
- College of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| | - Baodong Yuan
- College of Biology and FoodShangqiu Normal UniversityShangqiuChina
| |
Collapse
|
159
|
Huang S, Zhang T, Li H, Zhang M, Liu X, Xu D, Wang H, Shen Z, Wu Q, Tao J, Xia W, Xie X, Liu F. Flexible Tongue Electrode Array System for In Vivo Mapping of Electrical Signals of Taste Sensation. ACS Sens 2021; 6:4108-4117. [PMID: 34757732 DOI: 10.1021/acssensors.1c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tongue is a unique organ that senses tastes, and the scientific puzzle about whether electricity can evoke taste sensations and how the sensations have been distributed on the tongue has not been solved. Investigations on tongue stimulation by electricity might benefit the developments of techniques for clinical neuromodulation, tissue activation, and a brain-tongue-machine interface. To solve the scientific puzzle of whether electrical stimulation induces taste-related sensations, a portable flexible tongue electrode array system (FTEAS) was developed, which can synchronously provide electrical stimulation and signal mapping at each zone of the tongue. Utilizing the FTEAS to perform tests on the rat tongue in vivo, specific electrical signals were observed to be evoked by chemical and electrical stimulations. The features and distributions of the electric signals evoked during the rat tongue tests were systematically studied and comprehensively analyzed. The results show that an appropriate electrical stimulation can induce multiple sensations simultaneously, while the distribution of each sensation was not significantly distinguished among different zones of the tongue, and at the same time, this taste-related electrical signal can be recorded by the FTEAS. This work establishes a promising platform to solve the scientific puzzle of how sensations are activated chemically and electrically on the tongue and may provide advanced noninvasive oral-electrotherapy and a brain-tongue-machine interface.
Collapse
Affiliation(s)
- Shuang Huang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zhang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongbo Li
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyue Zhang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingxing Liu
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Xu
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao Wang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiran Shen
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Qianni Wu
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jun Tao
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Xia
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Fanmao Liu
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
160
|
Yoshida Y, Miyazaki M, Yajima Y, Toyoda A. Subchronic and mild social defeat stress downregulates peripheral expression of sweet and umami taste receptors in male mice. Biochem Biophys Res Commun 2021; 579:116-121. [PMID: 34597994 DOI: 10.1016/j.bbrc.2021.09.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 01/19/2023]
Abstract
Depression is associated with taste disorders; however, the mechanisms by which mental stress affects taste perception are not well understood. This study aimed to elucidate the effects of psychosocial stress on peripheral taste-sensing systems using a mouse depression model. Male mice were subjected to subchronic and mild social defeat stress (sCSDS). Results showed that sCSDS significantly increased body weight, food and water intake, and social avoidance behavior and that sCSDS did not change reward-seeking behavior on sucrose preference but tended to decrease pheromonal preference for female urine. Furthermore, sCSDS downregulated the mRNA levels of sweet and umami taste receptor subunits, i.e., sweet taste receptor type 1 members 2 and 3 (T1R2 and T1R3), but not the umami taste receptor subunit, i.e., taste receptor type 1 member 1 (T1R1), in the circumvallate papillae of mice. It is known that sucrose preference is mediated by the gut-brain axis without taste perception; thus, it was considered that sCSDS affected the peripheral taste-sensing systems, rather than the central reward systems, which mediate sucrose preference. This is the first study to report that psychosocial stress affects peripheral sweet and umami taste-sensing systems.
Collapse
Affiliation(s)
- Yuta Yoshida
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Ami, Ibaraki, 300-0393, Japan
| | - Misa Miyazaki
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Ami, Ibaraki, 300-0393, Japan
| | - Yuhei Yajima
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Ami, Ibaraki, 300-0393, Japan
| | - Atsushi Toyoda
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Ami, Ibaraki, 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-city, Tokyo, 183-8538, Japan.
| |
Collapse
|
161
|
Activation of specific bitter taste receptors by olive oil phenolics and secoiridoids. Sci Rep 2021; 11:22340. [PMID: 34785711 PMCID: PMC8595653 DOI: 10.1038/s41598-021-01752-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
Extra-virgin olive oil (EVOO) is a critical component of the Mediterranean diet, which has been found beneficial to human health. Bitterness is often positively associated with the presence of phenolic compounds in EVOO. There are twenty-five bitter taste receptors (TAS2Rs) in humans, each of which responds to specific bitter tastants. The identity of phenolic compounds and the bitter taste receptors they stimulate remain unknown. In this study, we isolated 12 phenolic and secoiridoid compounds from the olive fruit and the oil extracted from it, and tested their ability to stimulate bitter taste receptor activity, using a calcium mobilization functional assay. Our results showed that seven out of twelve studied compounds activated TAS2R8, and five of them activated TAS2R1, TAS2R8, and TAS2R14. The phenolic compounds oleuropein aglycon and ligstroside aglycon were the most potent bitter tastants in olive oil. TAS2R1 and TAS2R8 were the major bitter taste receptors activated most potently by these phenolic compounds. The results obtained here could be utilized to predict and control the bitterness of olive oil based on the concentration of specific bitter phenolics produced during the milling process of olives.
Collapse
|
162
|
Tan FPY, Beltranena E, Zijlstra RT. Resistant starch: Implications of dietary inclusion on gut health and growth in pigs: a review. J Anim Sci Biotechnol 2021; 12:124. [PMID: 34784962 PMCID: PMC8597317 DOI: 10.1186/s40104-021-00644-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/07/2021] [Indexed: 01/10/2023] Open
Abstract
Starch from cereal grains, pulse grains, and tubers is a major energy substrate in swine rations constituting up to 55% of the diet. In pigs, starch digestion is initiated by salivary and then pancreatic α-amylase, and has as final step the digestion of disaccharides by the brush-border enzymes in the small intestine that produce monosaccharides (glucose) for absorption. Resistant starch (RS) is the proportion of starch that escapes the enzymatic digestion and absorption in the small intestine. The undigested starch reaches the distal small intestine and hindgut for microbial fermentation, which produces short-chain fatty acids (SCFA) for absorption. SCFA in turn, influence microbial ecology and gut health of pigs. These fermentative metabolites exert their benefits on gut health through promoting growth and proliferation of enterocytes, maintenance of intestinal integrity and thus immunity, and modulation of the microbial community in part by suppressing the growth of pathogenic bacteria while selectively enhancing beneficial microbes. Thus, RS has the potential to confer prebiotic effects and may contribute to the improvement of intestinal health in pigs during the post-weaning period. Despite these benefits to the well-being of pigs, RS has a contradictory effect due to lower energetic efficiency of fermented vs. digested starch absorption products. The varying amount and type of RS interact differently with the digestion process along the gastrointestinal tract affecting its energy efficiency and host physiological responses including feed intake, energy metabolism, and feed efficiency. Results of research indicate that the use of RS as prebiotic may improve gut health and thereby, reduce the incidence of post-weaning diarrhea (PWD) and associated mortality. This review summarizes our current knowledge on the effects of RS on microbial ecology, gut health and growth performance in pigs.
Collapse
Affiliation(s)
- Felina P Y Tan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Eduardo Beltranena
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Ruurd T Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
163
|
Biophysical and functional characterization of the human TAS1R2 sweet taste receptor overexpressed in a HEK293S inducible cell line. Sci Rep 2021; 11:22238. [PMID: 34782704 PMCID: PMC8593021 DOI: 10.1038/s41598-021-01731-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023] Open
Abstract
Sweet taste perception is mediated by a heterodimeric receptor formed by the assembly of the TAS1R2 and TAS1R3 subunits. TAS1R2 and TAS1R3 are class C G-protein-coupled receptors whose members share a common topology, including a large extracellular N-terminal domain (NTD) linked to a seven transmembrane domain (TMD) by a cysteine-rich domain. TAS1R2-NTD contains the primary binding site for sweet compounds, including natural sugars and high-potency sweeteners, whereas the TAS1R2-TMD has been shown to bind a limited number of sweet tasting compounds. To understand the molecular mechanisms governing receptor–ligand interactions, we overexpressed the human TAS1R2 (hTAS1R2) in a stable tetracycline-inducible HEK293S cell line and purified the detergent-solubilized receptor. Circular dichroism spectroscopic studies revealed that hTAS1R2 was properly folded with evidence of secondary structures. Using size exclusion chromatography coupled to light scattering, we found that the hTAS1R2 subunit is a dimer. Ligand binding properties were quantified by intrinsic tryptophan fluorescence. Due to technical limitations, natural sugars have not been tested. However, we showed that hTAS1R2 is capable of binding high potency sweeteners with Kd values that are in agreement with physiological detection. This study offers a new experimental strategy to identify new sweeteners or taste modulators that act on the hTAS1R2 and is a prerequisite for structural query and biophysical studies.
Collapse
|
164
|
McCaughey SA. Variation in the gene Tas1r3 reveals complex temporal properties of mouse brainstem taste responses to sweeteners. Am J Physiol Regul Integr Comp Physiol 2021; 321:R751-R767. [PMID: 34523351 PMCID: PMC8616626 DOI: 10.1152/ajpregu.00001.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022]
Abstract
The gene Tas1r3 codes for the protein T1R3, which dimerizes with T1R2 to form a sweetener-binding receptor in taste cells. Tas1r3 influences sweetener preferences in mice, as shown by work with a 129.B6-Tas1r3 segregating congenic strain on a 129P3/J (129) genetic background; members of this strain vary in whether they do or do not have one copy of a donor fragment with the C57BL/6ByJ (B6) allele for Tas1r3 (B6/129 and 129/129 mice, respectively). Taste-evoked neural responses were measured in the nucleus of the solitary tract (NST), the first central gustatory relay, in B6/129 and 129/129 littermates, to examine how the activity dependent on the T1R2/T1R3 receptor is distributed across neurons and over time. Responses to sucrose were larger in B6/129 than in 129/129 mice, but only during a later, tonic response portion (>600 ms) sent to different cells than the earlier, phasic response. Similar results were found for artificial sweeteners, whose responses were best considered as complex spatiotemporal patterns. There were also group differences in burst firing of NST cells, with a significant positive correlation between bursting prevalence and sucrose response size in only the 129/129 group. The results indicate that sweetener transduction initially occurs through T1R3-independent mechanisms, after which the T1R2/T1R3 receptor initiates a separate, spatially distinct response, with the later period dominating sweet taste perceptions and driving sugar preferences. Furthermore, the current data suggest that burst firing is distributed across NST neurons nonrandomly and in a manner that may amplify weak incoming gustatory signals.
Collapse
Affiliation(s)
- Stuart A McCaughey
- Center for Medical Education, Ball State University, Muncie, Indiana
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| |
Collapse
|
165
|
Abstract
Bitter taste-sensing type 2 receptors (TAS2Rs or T2Rs), belonging to the subgroup of family A G-protein coupled receptors (GPCRs), are of crucial importance in the perception of bitterness. Although in the first instance, TAS2Rs were considered to be exclusively distributed in the apical microvilli of taste bud cells, numerous studies have detected these sensory receptor proteins in several extra-oral tissues, such as in pancreatic or ovarian tissues, as well as in their corresponding malignancies. Critical points of extra-oral TAS2Rs biology, such as their structure, roles, signaling transduction pathways, extensive mutational polymorphism, and molecular evolution, have been currently broadly studied. The TAS2R cascade, for instance, has been recently considered to be a pivotal modulator of a number of (patho)physiological processes, including adipogenesis or carcinogenesis. The latest advances in taste receptor biology further raise the possibility of utilizing TAS2Rs as a therapeutic target or as an informative index to predict treatment responses in various disorders. Thus, the focus of this review is to provide an update on the expression and molecular basis of TAS2Rs functions in distinct extra-oral tissues in health and disease. We shall also discuss the therapeutic potential of novel TAS2Rs targets, which are appealing due to their ligand selectivity, expression pattern, or pharmacological profiles.
Collapse
Affiliation(s)
- Kamila Tuzim
- Department of Clinical Pathomorphology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland.
| | - Agnieszka Korolczuk
- Department of Clinical Pathomorphology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
166
|
Mafi A, Kim SK, Chou KC, Güthrie B, Goddard WA. Predicted Structure of Fully Activated Tas1R3/1R3' Homodimer Bound to G Protein and Natural Sugars: Structural Insights into G Protein Activation by a Class C Sweet Taste Homodimer with Natural Sugars. J Am Chem Soc 2021; 143:16824-16838. [PMID: 34585929 DOI: 10.1021/jacs.1c08839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Tas1R3 G protein-coupled receptor constitutes the main component of sweet taste sensory response in humans via forming a heterodimer with Tas1R2 or a homodimer with Tas1R3. The Tas1R3/1R3' homodimer serves as a low-affinity sweet taste receptor, stimulating gustducin G protein (GGust) signaling in the presence of a high concentration of natural sugars. This provides an additional means to detect the taste of natural sugars, thereby differentiating the flavors between natural sugars and artificial sweeteners. We report here the predicted 3D structure of active state Tas1R3/1R3' homodimer complexed with heterotrimeric GGust and sucrose. We discovered that the GGust makes ionic anchors to intracellular loops 1 and 2 of Tas1R3 while the Gα-α5 helix engages the cytoplasmic region extensively through salt bridge and hydrophobic interactions. We show that in the activation of this complex the Venus flytrap domains of the homodimer undergo a remarkable twist up to ∼100° rotation around the vertical axis to adopt a closed-closed conformation while the intracellular region relaxes to an open-open conformation. We find that binding of sucrose to the homodimer stabilizes a preactivated conformation with a largely open intracellular region that recruits and activates the GGust. Upon activation, the Gα subunit spontaneously opens up the nucleotide-binding site, making nucleotide exchange facile for signaling. This activation of GGust promotes the interdomain twist of the Venus flytrap domains. These structures and transformations could potentially be a basis for the design of new sweeteners with higher activity and less unpleasant flavors.
Collapse
Affiliation(s)
- Amirhossein Mafi
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Keng C Chou
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Brian Güthrie
- Cargill Global Food Research, Wayzata, Minnesota 55391, United States
| | - William A Goddard
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
167
|
Evidence that human oral glucose detection involves a sweet taste pathway and a glucose transporter pathway. PLoS One 2021; 16:e0256989. [PMID: 34614010 PMCID: PMC8494309 DOI: 10.1371/journal.pone.0256989] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
The taste stimulus glucose comprises approximately half of the commercial sugar sweeteners used today, whether in the form of the di-saccharide sucrose (glucose-fructose) or half of high-fructose corn syrup (HFCS). Therefore, oral glucose has been presumed to contribute to the sweet taste of foods when combined with fructose. In light of recent rodent data on the role of oral metabolic glucose signaling, we examined psychopharmacologically whether oral glucose detection may also involve an additional pathway in humans to the traditional sweet taste transduction via the class 1 taste receptors T1R2/T1R3. In a series of experiments, we first compared oral glucose detection thresholds to sucralose thresholds without and with addition of the T1R receptor inhibitor Na-lactisole. Next, we compared oral detection thresholds of glucose to sucralose and to the non-metabolizable glucose analog, α-methyl-D-glucopyranoside (MDG) without and with the addition of the glucose co-transport component sodium (NaCl). Finally, we compared oral detection thresholds for glucose, MDG, fructose, and sucralose without and with the sodium-glucose co-transporter (SGLT) inhibitor phlorizin. In each experiment, psychopharmacological data were consistent with glucose engaging an additional signaling pathway to the sweet taste receptor T1R2/T1R3 pathway. Na-lactisole addition impaired detection of the non-caloric sweetener sucralose much more than it did glucose, consistent with glucose using an additional signaling pathway. The addition of NaCl had a beneficial impact on the detection of glucose and its analog MDG and impaired sucralose detection, consistent with glucose utilizing a sodium-glucose co-transporter. The addition of the SGLT inhibitor phlorizin impaired detection of glucose and MDG more than it did sucralose, and had no effect on fructose, further evidence consistent with glucose utilizing a sodium-glucose co-transporter. Together, these results support the idea that oral detection of glucose engages two signaling pathways: one that is comprised of the T1R2/T1R3 sweet taste receptor and the other that utilizes an SGLT glucose transporter.
Collapse
|
168
|
Basson AR, Rodriguez-Palacios A, Cominelli F. Artificial Sweeteners: History and New Concepts on Inflammation. Front Nutr 2021; 8:746247. [PMID: 34631773 PMCID: PMC8497813 DOI: 10.3389/fnut.2021.746247] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Since the introduction of artificial sweeteners (AS) to the North American market in the 1950s, a growing number of epidemiological and animal studies have suggested that AS may induce changes in gut bacteria and gut wall immune reactivity, which could negatively affect individuals with or susceptible to chronic inflammatory conditions such as inflammatory bowel disease (IBD), a disorder that has been growing exponentially in westernized countries. This review summarizes the history of current FDA-approved AS and their chemical composition, metabolism, and bacterial utilization, and provides a scoping overview of the disease mechanisms associated with the induction or prevention of inflammation in IBD. We provide a general outlook on areas that have been both largely and scarcely studied, emerging concepts using silica, and describe the effects of AS on acute and chronic forms of intestinal inflammation.
Collapse
Affiliation(s)
- Abigail Raffner Basson
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Mouse Models, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH, United States
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Mouse Models, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH, United States
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
169
|
Aida H, Morita R, Shigeta Y, Harada R. In silico mutational analyses reveal different ligand-binding abilities of double pockets of medaka fish taste receptor type 1 essential for efficient taste recognition. Phys Chem Chem Phys 2021; 23:20398-20405. [PMID: 34494045 DOI: 10.1039/d1cp02876f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Taste receptors are important sensors for the detection of nutrient concentrations in animals. Tastes are recognized by interactions between chemical substances and taste receptors. Recently, the high-resolution X-ray crystal structure of the extracellular ligand-binding domains (LBDs) of medaka fish (Oryzias latipes) taste receptor type 1 (T1r) complexed with ligands (amino acids) was determined. Medaka fish T1r is a heterodimer composed of two different LBDs, T1r2aLBD and T1r3LBD. In this study, we performed all-atom molecular dynamics (MD) simulations on this heterodimer (T1r2aLBD-T1r3LBD) to address mutational effects on key residues near each ligand-binding pocket in recognizing one of the ligands (L-Gln). For T1r2aLBD, Ser165 is important in ligand recognition due to its direct hydrogen bonding with the ligand. After mutating Ser165 to Ile or Ala, the direct hydrogen bonds between the ligand and the binding pocket were weakened, which destabilized the ligand-binding form of T1r2aLBD. For T1r3LBD, Ser300 is important in ligand recognition. The water-mediated hydrogen bond with the side-chain hydroxyl group of Ser300 is a single interaction that maintains the ligand-binding form of T1r3LBD. After mutating Ser300 to Glu or Ala, both mutant systems almost maintained their ligand-binding form. As a mechanism for maintaining the binding form of T1r3LBD, alternative hydrogen bonds were formed as direct interactions instead of the indirect water-mediated interactions found in the wild-type system, which stabilized the binding form of T1r3LBD. Judging from our in silico mutational analyses, T1r2aLBD was structurally destabilized by the amino acid mutations. Therefore, it might be required that the ligand-binding pocket of T1r2aLBD is composed of a set of specific residues to maintain its ligand-binding form. On the contrary, T1r3LBD was robust enough to withstand the amino acid mutations. These different ligand-binding abilities of both LBDs provide multiple binding modes, which might be helpful for discriminating various taste substances or detecting concentrations of nutrients efficiently.
Collapse
Affiliation(s)
- Hayato Aida
- Master's Program in Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Master's Program in Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan. .,Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryuhei Harada
- Master's Program in Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan. .,Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
170
|
Ftuwi H, Parri R, Mohammed AR. Novel, Fully Characterised Bovine Taste Bud Cells of Fungiform Papillae. Cells 2021; 10:2285. [PMID: 34571933 PMCID: PMC8469975 DOI: 10.3390/cells10092285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 01/14/2023] Open
Abstract
Current understanding of functional characteristics and biochemical pathways in taste bud cells have been hindered due the lack of long-term cultured cells. To address this, we developed a holistic approach to fully characterise long term cultured bovine taste bud cells (BTBCs). Initially, cultured BTBCs were characterised using RT-PCR gene expression profiling, immunocytochemistry, flowcytometry and calcium imaging, that confirmed the cells were mature TBCs that express taste receptor genes, taste specific protein markers and capable of responding to taste stimuli, i.e., denatonium (2 mM) and quinine (462.30 μM). Gene expression analysis of forty-two genes implicated in taste transduction pathway (map04742) using custom-made RT-qPCR array revealed high and low expressed genes in BTBCs. Preliminary datamining and bioinformatics demonstrated that the bovine α-gustducin, gustatory G-protein, have higher sequence similarity to the human orthologue compared to rodents. Therefore, results from this work will replace animal experimentation and provide surrogate cell-based throughput system to study human taste transduction.
Collapse
Affiliation(s)
| | | | - Afzal R. Mohammed
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK; (H.F.); (R.P.)
| |
Collapse
|
171
|
Koc G, Soyocak A, Andac-Ozturk S. TAS1R2 rs35874116 and TRPM5 rs886277 polymorphisms are not related with risk of obesity. Int J Clin Pract 2021; 75:e14562. [PMID: 34157195 DOI: 10.1111/ijcp.14562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Obesity is one of the most serious public health problems due to its high morbidity and mortality rates. The taste perception is a powerful factor affecting food acceptance and may be one of the causes of tendency to obesity. Genetic variations in TAS1R2 and TRPM5 genes that affect taste preferences may cause inter-individual differences in food selection and thus increase the risk of obesity. We hypothesised that genetic variations in TAS1R2 and TRPM5 genes may contribute to obesity phenotypes by influencing food intake and body mass index (BMI). The aim of this study is to analyse the association of TAS1R2 rs35874116 and TRPM5 rs886277 polymorphisms with BMI and obesity. METHODS A total of 186 people were enrolled in this study, 54 of whom were normal weight (BMI = 18.50-24.99 kg/m2 ), 15 overweight (BMI = 25.0-29.9 kg/m2 ) and 117 obese people (BMI ≥ 30 kg/m2 ). Genomic DNA was isolated from whole blood with the Blood DNA Isolation kit. TAS1R2 rs35874116 and TRPM5 rs886277 polymorphisms were detected by using the Kompetitive Allele Specific PCR genotyping system (KASP). KASP genotyping assays are based on competitive allele-specific PCR and enable bi-allelic scoring of single nucleotide polymorphisms (SNPs) at specific loci. RESULTS There were no significant differences in the allele and genotype frequencies between normal and overweight/obese, but there was a trend towards a smaller increase in BMI in TAS1R2 rs35874116 GA heterozygotes (OR = 1.827), GG (OR = 1.364) homozygotes genotypes. CONCLUSIONS Although TAS1R2 and TRPM5 genes were associated with taste preferences in previous studies, we found out that TAS1R2 rs35874116 and TRPM5 rs886277 variants are not associated with obesity. The functional potency of the genetic variants within TAS1R2 and TRPM5 may be different between ethnic groups and this requires further investigations.
Collapse
Affiliation(s)
- Gulsah Koc
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Ahu Soyocak
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Serap Andac-Ozturk
- Department of Nutrition and Dietetic, Health Science Faculty, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
172
|
Lu P, ElMallah MK, Liu Z, Wu C, Chen J, Lifshitz LM, ZhuGe R. Genetic deletion of the Tas2r143/Tas2r135/Tas2r126 cluster reveals that TAS2Rs may not mediate bitter tastant-induced bronchodilation. J Cell Physiol 2021; 236:6407-6423. [PMID: 33559206 PMCID: PMC8223514 DOI: 10.1002/jcp.30315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/09/2022]
Abstract
Bitter taste receptors (TAS2Rs) and their signaling elements are detected throughout the body, and bitter tastants induce a wide variety of biological responses in tissues and organs outside the mouth. However, the roles of TAS2Rs in these responses remain to be tested and established genetically. Here, we employed the CRISPR/Cas9 gene-editing technique to delete three bitter taste receptors-Tas2r143/Tas2r135/Tas2r126 (i.e., Tas2r triple knockout [TKO]) in mice. The fidelity and effectiveness of the Tas2r deletions were validated genetically at DNA and messenger RNA levels and functionally based on the tasting of TAS2R135 and TAS2R126 agonists. Bitter tastants are known to relax airways completely. However, TAS2R135 or TAS2R126 agonists either failed to induce relaxation of pre-contracted airways in wild-type mice and Tas2r TKO mice or relaxed them dose-dependently, but to the same extent in both types of mice. These results indicate that TAS2Rs are not required for bitter tastant-induced bronchodilation. The Tas2r TKO mice also provide a valuable model to resolve whether TAS2Rs mediate bitter tastant-induced responses in many other extraoral tissues.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mai K ElMallah
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zeyu Liu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chan Wu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jun Chen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
173
|
Le Gléau L, Rouault C, Osinski C, Prifti E, Soula HA, Debédat J, Busieau P, Amouyal C, Clément K, Andreelli F, Ribeiro A, Serradas P. Intestinal alteration of α-gustducin and sweet taste signaling pathway in metabolic diseases is partly rescued after weight loss and diabetes remission. Am J Physiol Endocrinol Metab 2021; 321:E417-E432. [PMID: 34338041 DOI: 10.1152/ajpendo.00071.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Carbohydrates and sweeteners are detected by the sweet taste receptor in enteroendocrine cells (EECs). This receptor is coupled to the gustducin G-protein, which α-subunit is encoded by GNAT3 gene. In intestine, the activation of sweet taste receptor triggers a signaling pathway leading to GLP-1 secretion, an incretin hormone. In metabolic diseases, GLP-1 concentration and incretin effect are reduced while partly restored after Roux-en-Y gastric bypass (RYGB). We wondered if the decreased GLP-1 secretion in metabolic diseases is caused by an intestinal defect in sweet taste transduction pathway. In our RNA-sequencing of EECs, GNAT3 expression is decreased in patients with obesity and type 2 diabetes compared with normoglycemic obese patients. This prompted us to explore sweet taste signaling pathway in mice with metabolic deteriorations. During obesity onset in mice, Gnat3 expression was downregulated in EECs. After metabolic improvement with enterogastro anastomosis surgery in mice (a surrogate of the RYGB in humans), the expression of Gnat3 increased in the new alimentary tract and glucose-induced GLP-1 secretion was improved. To evaluate if high-fat diet-induced dysbiotic intestinal microbiota could explain the changes in the expression of sweet taste α-subunit G-protein, we performed a fecal microbiota transfer in mice. However, we could not conclude if dysbiotic microbiota impacted or not intestinal Gnat3 expression. Our data highlight that metabolic disorders were associated with altered gene expression of sweet taste signaling in intestine. This could contribute to impaired GLP-1 secretion that is partly rescued after metabolic improvement.NEW & NOTEWORTHY Our data highlighted 1) the sweet taste transduction pathway in EECs plays pivotal role for glucose homeostasis at least at gene expression level; 2) metabolic disorders lead to altered gene expression of sweet taste signaling pathway in intestine contributing to impaired GLP-1 secretion; and 3) after surgical intestinal modifications, increased expression of GNAT3, encoding α-gustducin contributed to metabolic improvement.
Collapse
Affiliation(s)
- Léa Le Gléau
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France
| | - Christine Rouault
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France
| | - Céline Osinski
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France
| | - Edi Prifti
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France
- IRD, Sorbonne University, UMMISCO, Bondy, France
| | - Hédi Antoine Soula
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France
| | - Jean Debédat
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France
| | - Pauline Busieau
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France
| | - Chloé Amouyal
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France
- Assistance Publique/Hôpitaux de Paris, APHP, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
- Assistance Publique-Hôpitaux de Paris, APHP, Diabetology-Metabolisms Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France
- Assistance Publique/Hôpitaux de Paris, APHP, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Fabrizio Andreelli
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France
- Assistance Publique/Hôpitaux de Paris, APHP, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
- Assistance Publique-Hôpitaux de Paris, APHP, Diabetology-Metabolisms Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Agnès Ribeiro
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France
| | - Patricia Serradas
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France
| |
Collapse
|
174
|
Zhu JH, Zheng X, Peng X, Xu X, Margolskee R, Zhou XD. Regulation effect of lipopolysaccharide on the alternative splicing and function of sweet taste receptor T1R2. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:469-474. [PMID: 34409805 DOI: 10.7518/hxkq.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To identify the alternative splicing isoform of mouse sweet taste receptor T1R2, and investigate the effect of lipopolysaccharide (LPS) local injection on T1R2 alternative splicing and the function of sweet taste receptor as one of the bacterial virulence factors. METHODS After mouse taste bud tissue isolation was conducted, RNA extraction and reverse transcription polymerase chain reaction (PCR) were performed to identify the splicing isoform of T1R2. Heterologous expression experiments in vitro were utilized to detect how the T1R2 isoform regulated the function of sweet taste receptors. The effect of local LPS injection on the expression of the T1R2 isoform was measured by real-time fluorescent quantitative PCR. RESULTS T1R2 splicing isoform T1R2_Δe3p formed sweet taste receptors with T1R3, which could not be activated by sweet taste stimuli and significantly downregulated the function of canonical T1R2/T1R3. Local LPS injection significantly increased the expression ratio of T1R2_Δe3p in mouse taste buds. CONCLUSIONS LPS stimulation affects the alternative splicing of mouse sweet taste receptor T1R2 and significantly upregulates the expression of non-functional isoform T1R2_Δe3p, suggesting that T1R2 alternative splicing regulation may be one of the mechanisms by which microbial infection affects host taste perception.
Collapse
Affiliation(s)
- Jian-Hui Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | | | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
175
|
Wang Y, Sun Y, Joseph PV. Contrasting Patterns of Gene Duplication, Relocation, and Selection Among Human Taste Genes. Evol Bioinform Online 2021; 17:11769343211035141. [PMID: 34366662 PMCID: PMC8312168 DOI: 10.1177/11769343211035141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/08/2021] [Indexed: 11/15/2022] Open
Abstract
In humans, taste genes are responsible for perceiving at least 5 different taste qualities. Human taste genes’ evolutionary mechanisms need to be explored. We compiled a list of 69 human taste-related genes and divided them into 7 functional groups. We carried out comparative genomic and evolutionary analyses for these taste genes based on 8 vertebrate species. We found that relative to other groups of human taste genes, human TAS2R genes have a higher proportion of tandem duplicates, suggesting that tandem duplications have contributed significantly to the expansion of the human TAS2R gene family. Human TAS2R genes tend to have fewer collinear genes in outgroup species and evolve faster, suggesting that human TAS2R genes have experienced more gene relocations. Moreover, human TAS2R genes tend to be under more relaxed purifying selection than other genes. Our study sheds new insights into diverse and contrasting evolutionary patterns among human taste genes.
Collapse
Affiliation(s)
- Yupeng Wang
- BDX Research & Consulting LLC, Herndon, VA, USA
| | - Ying Sun
- BDX Research & Consulting LLC, Herndon, VA, USA
| | - Paule Valery Joseph
- Division of Intramural Research, National Institute on Alcohol Abuse and Alcoholism and National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
176
|
Toda Y, Ko MC, Liang Q, Miller ET, Rico-Guevara A, Nakagita T, Sakakibara A, Uemura K, Sackton T, Hayakawa T, Sin SYW, Ishimaru Y, Misaka T, Oteiza P, Crall J, Edwards SV, Buttemer W, Matsumura S, Baldwin MW. Early origin of sweet perception in the songbird radiation. Science 2021; 373:226-231. [PMID: 34244416 DOI: 10.1126/science.abf6505] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
Abstract
Early events in the evolutionary history of a clade can shape the sensory systems of descendant lineages. Although the avian ancestor may not have had a sweet receptor, the widespread incidence of nectar-feeding birds suggests multiple acquisitions of sugar detection. In this study, we identify a single early sensory shift of the umami receptor (the T1R1-T1R3 heterodimer) that conferred sweet-sensing abilities in songbirds, a large evolutionary radiation containing nearly half of all living birds. We demonstrate sugar responses across species with diverse diets, uncover critical sites underlying carbohydrate detection, and identify the molecular basis of sensory convergence between songbirds and nectar-specialist hummingbirds. This early shift shaped the sensory biology of an entire radiation, emphasizing the role of contingency and providing an example of the genetic basis of convergence in avian evolution.
Collapse
Affiliation(s)
- Yasuka Toda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.,Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.,Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Meng-Ching Ko
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Qiaoyi Liang
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Eliot T Miller
- Macaulay Library, Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Seattle, WA 98105, USA.,Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| | - Tomoya Nakagita
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Ayano Sakakibara
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Kana Uemura
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | | | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong.,Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, USA
| | - Yoshiro Ishimaru
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Pablo Oteiza
- Flow Sensing Research Group, Max Planck Institute for Ornithology, Seewiesen Germany
| | - James Crall
- Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, USA.,Department of Entomology, University of Wisconsin-Madison, WI, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, USA
| | - William Buttemer
- Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia.,School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Shuichi Matsumura
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany. .,Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, USA
| |
Collapse
|
177
|
Expression of Jejunal Taste Receptors in Women with Morbid Obesity. Nutrients 2021; 13:nu13072437. [PMID: 34371946 PMCID: PMC8308737 DOI: 10.3390/nu13072437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Nutrient sensing plays important roles in promoting satiety and maintaining good homeostatic control. Taste receptors (TAS) are located through the gastrointestinal tract, and recent studies have shown they have a relationship with metabolic disorders. The aim of this study was to analyze the jejunal expression of TAS1R2, TAS1R3, TAS2R14 and TAS2R38 in women with morbid obesity, first classified according to metabolic syndrome presence (MetS; n = 24) or absence (non-MetS; n = 45) and then classified according to hepatic histology as normal liver (n = 28) or nonalcoholic fatty liver disease (n = 41). Regarding MetS, we found decreased expression of TAS2R14 in MetS patients. However, when we subclassified patients according to liver histology, we did not find differences between groups. We found negative correlations between glucose levels, triglycerides and MetS with TAS1R3 expression. Moreover, TAS2R14 jejunal expression correlated negatively with the presence of MetS and ghrelin levels and positively with the jejunal Toll-like receptor (TLR)4, peroxisome proliferator-activated receptor (PPAR)-γ, and interleukin (IL)-10 levels. Furthermore, TAS2R38 expression correlated negatively with TLR9 jejunal expression and IL-6 levels and positively with TLR4 levels. Our findings suggest that metabolic dysfunctions such as MetS trigger downregulation of the intestinal TASs. Therefore, taste receptors modulation could be a possible therapeutic target for metabolic disorders.
Collapse
|
178
|
Mogi K, Kamiya I, Makino A, Hirao A, Abe R, Doi Y, Shimizu T, Ando H, Morito K, Takayama K, Ishida T, Nagasawa K. Liposomalization of Oxaliplatin Exacerbates the Non-Liposomal Formulation-Induced Decrease of Sweet Taste Sensitivity in Rats. J Pharm Sci 2021; 110:3937-3945. [PMID: 34246630 DOI: 10.1016/j.xphs.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
Here, we investigated whether or not the characteristics of the oxaliplatin-induced sweet taste sensitivity were altered by PEGylated liposomalization of oxaliplatin (liposomal oxaliplatin), which enhances its anticancer efficacy. Liposomal oxaliplatin and oxaliplatin were intravenously and intraperitoneally, respectively, administered to male Sprague-Dawley rats at the total dose of 8 mg/kg. A brief-access test for evaluation of sweet taste sensitivity on day 7 revealed that both liposomal oxaliplatin and oxaliplatin decreased the sensitivity of rats, the degree with the former being greater than in the case of the latter. Liposomalization of oxaliplatin increased the accumulation of platinum in lingual non-epithelial tissues, through which taste nerves passed. The lingual platinum accumulation induced by not only liposomal oxaliplatin but also oxaliplatin was decreased on cooling of the tongue during the administration. In the current study, we revealed that liposomalization of oxaliplatin exacerbated the oxaliplatin-induced decrease of sweet taste sensitivity by increasing the accumulation of platinum/oxaliplatin in lingual non-epithelial tissues. These findings may suggest that reduction of liposomal oxaliplatin distribution to the tongue on cooling during the administration prevents exacerbation of the decrease of sweet taste sensitivity, maintaining the quality of life and chemotherapeutic outcome in patients.
Collapse
Affiliation(s)
- Keisuke Mogi
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Ikumi Kamiya
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Aimi Makino
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Ayaka Hirao
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Reina Abe
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Yusuke Doi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Katsuya Morito
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Kentaro Takayama
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN.
| |
Collapse
|
179
|
Demi LM, Taylor BW, Reading BJ, Tordoff MG, Dunn RR. Understanding the evolution of nutritive taste in animals: Insights from biological stoichiometry and nutritional geometry. Ecol Evol 2021; 11:8441-8455. [PMID: 34257909 PMCID: PMC8258225 DOI: 10.1002/ece3.7745] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
A major conceptual gap in taste biology is the lack of a general framework for understanding the evolution of different taste modalities among animal species. We turn to two complementary nutritional frameworks, biological stoichiometry theory and nutritional geometry, to develop hypotheses for the evolution of different taste modalities in animals. We describe how the attractive tastes of Na-, Ca-, P-, N-, and C-containing compounds are consistent with principles of both frameworks based on their shared focus on nutritional imbalances and consumer homeostasis. Specifically, we suggest that the evolution of multiple nutritive taste modalities can be predicted by identifying individual elements that are typically more concentrated in the tissues of animals than plants. Additionally, we discuss how consumer homeostasis can inform our understanding of why some taste compounds (i.e., Na, Ca, and P salts) can be either attractive or aversive depending on concentration. We also discuss how these complementary frameworks can help to explain the evolutionary history of different taste modalities and improve our understanding of the mechanisms that lead to loss of taste capabilities in some animal lineages. The ideas presented here will stimulate research that bridges the fields of evolutionary biology, sensory biology, and ecology.
Collapse
Affiliation(s)
- Lee M. Demi
- Department of Applied EcologyNorth Carolina State UniversityRaleighNCUSA
| | - Brad W. Taylor
- Department of Applied EcologyNorth Carolina State UniversityRaleighNCUSA
| | | | | | - Robert R. Dunn
- Department of Applied EcologyNorth Carolina State UniversityRaleighNCUSA
- Center for Evolutionary HologenomicsUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
180
|
Xi M, Liu Z, Ding J, Cheng W, Jia D, Lin H. Saccharin Anion Acts as a "Traffic Assistant" of Zn 2+ to Achieve a Long-Life and Dendritic-Free Zinc Plate Anode. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29631-29640. [PMID: 34151569 DOI: 10.1021/acsami.1c06307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to the great advantages of low cost, high capacity, and excellent safety, the Zn metal is a promising candidate material for rechargeable aqueous battery systems. However, its practical applications have been restricted by the uncontrollable dendrite growth and electrode side reactions (such as corrosion, passivation, and hydrogen evolution reactions) during the plating process. Herein, we reveal that the dendrite growth would expose the electrode to more highly active tips, exacerbating the passivation of the electrode and the decomposition of the electrolyte by in situ optical microscopies. We propose a low-cost, nontoxic, low-concentration (less than 1 g/L), and effective electrolyte additive, saccharin sodium, which can guide an even Zn deposition without obvious electrode side reactions in the charge/discharge process. The saccharin anion acts as a "traffic assistant" of Zn2+ and demonstrates its great potential for practical application. The assembled Zn symmetrical battery shows an excellent cycling performance at a high current density and capacity (an extremely long cycle life over 3800 h is obtained at 5 mA/cm2 and 8 mA h/cm2, and 20 mA/cm2 and 5 mA h/cm2 show a lifetime over 800 h), and the full cell (coupled to an AC electrode) presents a stable cycle life with a capacity retention of 86.4% even after 8000 cycles at 5 mA/cm2. The saccharin sodium proposed in this work is promising to solve the anode problems in advanced Zn batteries.
Collapse
Affiliation(s)
- Murong Xi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, P. R. China
| | - Zhenjie Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, P. R. China
| | - Juan Ding
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, P. R. China
| | - Wenhua Cheng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, P. R. China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, P. R. China
| | - He Lin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, P. R. China
| |
Collapse
|
181
|
Gaudel F, Guiraudie-Capraz G, Féron F. Limbic Expression of mRNA Coding for Chemoreceptors in Human Brain-Lessons from Brain Atlases. Int J Mol Sci 2021; 22:ijms22136858. [PMID: 34202385 PMCID: PMC8267617 DOI: 10.3390/ijms22136858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Animals strongly rely on chemical senses to uncover the outside world and adjust their behaviour. Chemical signals are perceived by facial sensitive chemosensors that can be clustered into three families, namely the gustatory (TASR), olfactory (OR, TAAR) and pheromonal (VNR, FPR) receptors. Over recent decades, chemoreceptors were identified in non-facial parts of the body, including the brain. In order to map chemoreceptors within the encephalon, we performed a study based on four brain atlases. The transcript expression of selected members of the three chemoreceptor families and their canonical partners was analysed in major areas of healthy and demented human brains. Genes encoding all studied chemoreceptors are transcribed in the central nervous system, particularly in the limbic system. RNA of their canonical transduction partners (G proteins, ion channels) are also observed in all studied brain areas, reinforcing the suggestion that cerebral chemoreceptors are functional. In addition, we noticed that: (i) bitterness-associated receptors display an enriched expression, (ii) the brain is equipped to sense trace amines and pheromonal cues and (iii) chemoreceptor RNA expression varies with age, but not dementia or brain trauma. Extensive studies are now required to further understand how the brain makes sense of endogenous chemicals.
Collapse
|
182
|
Ding W, Zhang X, Zhao X, Jing W, Cao Z, Li J, Huang Y, You X, Wang M, Shi Q, Bing X. A Chromosome-Level Genome Assembly of the Mandarin Fish ( Siniperca chuatsi). Front Genet 2021; 12:671650. [PMID: 34249093 PMCID: PMC8262678 DOI: 10.3389/fgene.2021.671650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
The mandarin fish, Siniperca chuatsi, is an economically important perciform species with widespread aquaculture practices in China. Its special feeding habit, acceptance of only live prey fishes, contributes to its delicious meat. However, little is currently known about related genetic mechanisms. Here, we performed whole-genome sequencing and assembled a 758.78 Mb genome assembly of the mandarin fish, with the scaffold and contig N50 values reaching 2.64 Mb and 46.11 Kb, respectively. Approximately 92.8% of the scaffolds were ordered onto 24 chromosomes (Chrs) with the assistance of a previously established genetic linkage map. The chromosome-level genome contained 19,904 protein-coding genes, of which 19,059 (95.75%) genes were functionally annotated. The special feeding behavior of mandarin fish could be attributable to the interaction of a variety of sense organs (such as vision, smell, and endocrine organs). Through comparative genomics analysis, some interesting results were found. For example, olfactory receptor (OR) genes (especially the beta and delta types) underwent a significant expansion, and endocrinology/vision related npy, spexin, and opsin genes presented various functional mutations. These may contribute to the special feeding habit of the mandarin fish by strengthening the olfactory and visual systems. Meanwhile, previously identified sex-related genes and quantitative trait locis (QTLs) were localized on the Chr14 and Chr17, respectively. 155 toxin proteins were predicted from mandarin fish genome. In summary, the high-quality genome assembly of the mandarin fish provides novel insights into the feeding habit of live prey and offers a valuable genetic resource for the quality improvement of this freshwater fish.
Collapse
Affiliation(s)
- Weidong Ding
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Xiaomeng Zhao
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Wu Jing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Zheming Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Min Wang
- BGI Zhenjiang Institute of Hydrobiology, Zhenjiang, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Xuwen Bing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
183
|
von Molitor E, Riedel K, Krohn M, Hafner M, Rudolf R, Cesetti T. Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Front Hum Neurosci 2021; 15:667709. [PMID: 34239428 PMCID: PMC8258107 DOI: 10.3389/fnhum.2021.667709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Sweetness is the preferred taste of humans and many animals, likely because sugars are a primary source of energy. In many mammals, sweet compounds are sensed in the tongue by the gustatory organ, the taste buds. Here, a group of taste bud cells expresses a canonical sweet taste receptor, whose activation induces Ca2+ rise, cell depolarization and ATP release to communicate with afferent gustatory nerves. The discovery of the sweet taste receptor, 20 years ago, was a milestone in the understanding of sweet signal transduction and is described here from a historical perspective. Our review briefly summarizes the major findings of the canonical sweet taste pathway, and then focuses on molecular details, about the related downstream signaling, that are still elusive or have been neglected. In this context, we discuss evidence supporting the existence of an alternative pathway, independent of the sweet taste receptor, to sense sugars and its proposed role in glucose homeostasis. Further, given that sweet taste receptor expression has been reported in many other organs, the physiological role of these extraoral receptors is addressed. Finally, and along these lines, we expand on the multiple direct and indirect effects of sugars on the brain. In summary, the review tries to stimulate a comprehensive understanding of how sweet compounds signal to the brain upon taste bud cells activation, and how this gustatory process is integrated with gastro-intestinal sugar sensing to create a hedonic and metabolic representation of sugars, which finally drives our behavior. Understanding of this is indeed a crucial step in developing new strategies to prevent obesity and associated diseases.
Collapse
Affiliation(s)
- Elena von Molitor
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | | | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Tiziana Cesetti
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| |
Collapse
|
184
|
Saputra F, Lai YH, Fernandez RAT, Macabeo APG, Lai HT, Huang JC, Hsiao CD. Acute and Sub-Chronic Exposure to Artificial Sweeteners at the Highest Environmentally Relevant Concentration Induce Less Cardiovascular Physiology Alterations in Zebrafish Larvae. BIOLOGY 2021; 10:548. [PMID: 34207293 PMCID: PMC8233861 DOI: 10.3390/biology10060548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Artificial sweeteners are widely used food ingredients in beverages and drinks to lower calorie intake which in turn helps prevent lifestyle diseases such as obesity. However, as their popularity has increased, the release of artificial sweetener to the aquatic environment has also increased at a tremendous rate. Thus, our study aims to systematically explore the potential cardiovascular physiology alterations caused by eight commercial artificial sweeteners, including acesulfame-K, alitame, aspartame, sodium cyclamate, dulcin, neotame, saccharine and sucralose, at the highest environmentally relevant concentration on cardiovascular performance using zebrafish (Danio rerio) as a model system. Embryonic zebrafish were exposed to the eight artificial sweeteners at 100 ppb and their cardiovascular performance (heart rate, ejection fraction, fractional shortening, stroke volume, cardiac output, heartbeat variability, and blood flow velocity) was measured and compared. Overall, our finding supports the safety of artificial sweetener exposure. However, several finding like a significant increase in the heart rate and heart rate variability after incubation in several artificial sweeteners are noteworthy. Biomarker testing also revealed that saccharine significantly increase the dopamine level in zebrafish larvae, which is might be the reason for the cardiac physiology changes observed after saccharine exposure.
Collapse
Affiliation(s)
- Ferry Saputra
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan;
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Rey Arturo T. Fernandez
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana St., Manila 1015, Philippines; (R.A.T.F.); (A.P.G.M.)
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana St., Manila 1015, Philippines; (R.A.T.F.); (A.P.G.M.)
| | - Hong-Thih Lai
- Department of Aquatic Biosciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan;
- Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| |
Collapse
|
185
|
Zhao X, Wang C, Zheng Y, Liu B. New Insight Into the Structure-Activity Relationship of Sweet-Tasting Proteins: Protein Sector and Its Role for Sweet Properties. Front Nutr 2021; 8:691368. [PMID: 34222309 PMCID: PMC8249704 DOI: 10.3389/fnut.2021.691368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Sweet-tasting protein is a kind of biomacromolecule that has remarkable sweetening power and is regarded as the promising sugar replacer in the future. Some sweet-tasting proteins has been used in foods and beverages. However, the structure and function relationship of these proteins is still elusive, and guidelines for their protein engineering is limited. It is well-known that the sweet-tasting proteins bind to and activate the sweet taste receptor T1R2/T1R3, thus eliciting their sweetness. The “wedge-model” for describing the interaction between sweet-tasting proteins and sweet taste receptor to elucidate their sweetness has been reported. In this perspective article, we revealed that the intramolecular interaction forces in sweet-tasting proteins is directly correlated to their properties (sweetness and stability). This intramolecular interaction pattern, named as “protein sector,” refers to a small subset of residues forming physically connections, which cooperatively affect the function of the proteins. Based on the analysis of previous experimental data, we suggest that “protein sector” of sweet-tasting proteins is pivotal for their sweet properties, which are meaningful guidelines for the future protein engineering.
Collapse
Affiliation(s)
- Xiangzhong Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Congrui Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yue Zheng
- Shandong Aojing Biotechnology Co., Ltd., Zoucheng, China
| | - Bo Liu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
186
|
The umami receptor T1R1-T1R3 heterodimer is rarely formed in chickens. Sci Rep 2021; 11:12318. [PMID: 34112880 PMCID: PMC8192514 DOI: 10.1038/s41598-021-91728-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/31/2021] [Indexed: 11/09/2022] Open
Abstract
The characterization of molecular mechanisms underlying the taste-sensing system of chickens will add to our understanding of their feeding behaviors in poultry farming. In the mammalian taste system, the heterodimer of taste receptor type 1 members 1/3 (T1R1/T1R3) functions as an umami (amino acid) taste receptor. Here, we analyzed the expression patterns of T1R1 and T1R3 in the taste cells of chickens, labeled by the molecular markers for chicken taste buds (vimentin and α-gustducin). We observed that α-gustducin was expressed in some of the chicken T1R3-positive taste bud cells but rarely expressed in the T1R1-positive and T2R7-positive taste bud cells. These results raise the possibility that there is another second messenger signaling system in chicken taste sensory cells. We also observed that T1R3 and α-gustducin were expressed mostly in the vimentin-positive taste bud cells, whereas T1R1 and bitter taste receptor (i.e., taste receptor type 2 member 7, T2R7) were expressed largely in the vimentin-negative taste bud cells in chickens. In addition, we observed that T1R1 and T1R3 were co-expressed in about 5% of chickens' taste bud cells, which express T1R1 or T1R3. These results suggest that the heterodimer of T1R1 and T1R3 is rarely formed in chickens' taste bud cells, and they provide comparative insights into the expressional regulation of taste receptors in the taste bud cells of vertebrates.
Collapse
|
187
|
Zhu Z, Mei J, Sun S, Lu S, Li M, Guan Y, Chen Y, Xu Y, Zhang T, Shi F, Li X, Miao M, Zhao S, Gao Q, Mi Q, Tang P, Yao J. Nutrigenomics reveals potential genetic underpinning of diverse taste preference of Chinese men. Genes Genomics 2021; 43:689-699. [PMID: 33843022 DOI: 10.1007/s13258-021-01079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Taste preference varies geographically in China. However, studies on Chinese people's taste preference in different regions of China are limited, and are lack of research on the mechanism of differences in taste preference, especially in genetics. OBJECTIVE This study aims to investigate the characteristics of taste preference of Chinese men, and estimate whether diverse taste preference in Chinese have genetic underpinning. METHODS We conducted a questionnaire survey on taste preferences on 1076 males from 10 regions of China, and collected another 1427 males from the same regions which genotyped by microarray. We compared the correlation between different taste preference, and evaluated the correlation between the mutation frequency of inhouse database and different taste preference. The putative taste-preference-related genes were further utilized to estimate the candidate relationship on gene and gene network in different taste preference. RESULTS There was a correlation between different taste preferences in Chinese men. We found 31 SNPs associated with 6 kind of taste preferences. These SNPs located within or nearby 36 genes, and the tastes associated with 4 of these genes (TRPV1, AGT, ASIC2 and GLP1R) are consistent with the previous studies. Moreover, in different tastes which were suggested to be associated with each other, some putative related genes were the same or in the same gene network, such as pathways related with blood pressure, response to stimulus and nervous system. CONCLUSIONS This study indicates that the diverse taste preference of Chinese men may have genetic underpinning.
Collapse
Affiliation(s)
- Zhouhai Zhu
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Junpu Mei
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Silong Sun
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Sheming Lu
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Meng Li
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Ying Guan
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Ying Chen
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Yuqiong Xu
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Tao Zhang
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Fengxue Shi
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Xuemei Li
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Mingming Miao
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Shancen Zhao
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Qian Gao
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Qili Mi
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Ping Tang
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Jianhua Yao
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China.
| |
Collapse
|
188
|
Jang JH, Kwon O, Moon SJ, Jeong YT. Recent Advances in Understanding Peripheral Taste Decoding I: 2010 to 2020. Endocrinol Metab (Seoul) 2021; 36:469-477. [PMID: 34139798 PMCID: PMC8258330 DOI: 10.3803/enm.2021.302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
Taste sensation is the gatekeeper for direct decisions on feeding behavior and evaluating the quality of food. Nutritious and beneficial substances such as sugars and amino acids are represented by sweet and umami tastes, respectively, whereas noxious substances and toxins by bitter or sour tastes. Essential electrolytes including Na+ and other ions are recognized by the salty taste. Gustatory information is initially generated by taste buds in the oral cavity, projected into the central nervous system, and finally processed to provide input signals for food recognition, regulation of metabolism and physiology, and higher-order brain functions such as learning and memory, emotion, and reward. Therefore, understanding the peripheral taste system is fundamental for the development of technologies to regulate the endocrine system and improve whole-body metabolism. In this review article, we introduce previous widely-accepted views on the physiology and genetics of peripheral taste cells and primary gustatory neurons, and discuss key findings from the past decade that have raised novel questions or solved previously raised questions.
Collapse
Affiliation(s)
- Jea Hwa Jang
- BK21 Graduate Program, Department of Biomedical Sciences, Yonsei University College of Dentistry, Seoul,
Korea
- Department of Pharmacology, Korea University College of Medicine, Yonsei University College of Dentistry, Seoul,
Korea
| | - Obin Kwon
- Departments of Biochemistry and Molecular Biology, Yonsei University College of Dentistry, Seoul,
Korea
- Biomedical Sciences, Seoul National University College of Medicine, Yonsei University College of Dentistry, Seoul,
Korea
| | - Seok Jun Moon
- Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul,
Korea
| | - Yong Taek Jeong
- BK21 Graduate Program, Department of Biomedical Sciences, Yonsei University College of Dentistry, Seoul,
Korea
- Department of Pharmacology, Korea University College of Medicine, Yonsei University College of Dentistry, Seoul,
Korea
| |
Collapse
|
189
|
Lossow K, Hermans-Borgmeyer I, Meyerhof W, Behrens M. Segregated Expression of ENaC Subunits in Taste Cells. Chem Senses 2021; 45:235-248. [PMID: 32006019 DOI: 10.1093/chemse/bjaa004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Salt taste is one of the 5 basic taste qualities. Depending on the concentration, table salt is perceived either as appetitive or aversive, suggesting the contribution of several mechanisms to salt taste, distinguishable by their sensitivity to the epithelial sodium channel (ENaC) blocker amiloride. A taste-specific knockout of the α-subunit of the ENaC revealed the relevance of this polypeptide for low-salt transduction, whereas the response to other taste qualities remained normal. The fully functional ENaC is composed of α-, β-, and γ-subunits. In taste tissue, however, the precise constitution of the channel and the cell population responsible for detecting table salt remain uncertain. In order to examine the cells and subunits building the ENaC, we generated mice carrying modified alleles allowing the synthesis of green and red fluorescent proteins in cells expressing the α- and β-subunit, respectively. Fluorescence signals were detected in all types of taste papillae and in taste buds of the soft palate and naso-incisor duct. However, the lingual expression patterns of the reporters differed depending on tongue topography. Additionally, immunohistochemistry for the γ-subunit of the ENaC revealed a lack of overlap between all potential subunits. The data suggest that amiloride-sensitive recognition of table salt is unlikely to depend on the classical ENaCs formed by α-, β-, and γ-subunits and ask for a careful investigation of the channel composition.
Collapse
Affiliation(s)
- Kristina Lossow
- Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Unit, University Medical Center Hamburg-Eppendorf (ZMNH), Hamburg, Germany
| | - Wolfgang Meyerhof
- Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| | - Maik Behrens
- Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| |
Collapse
|
190
|
Ogata T, Ohtubo Y. Quantitative Analysis of Taste Bud Cell Numbers in the Circumvallate and Foliate Taste Buds of Mice. Chem Senses 2021; 45:261-273. [PMID: 32157267 DOI: 10.1093/chemse/bjaa017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A mouse single taste bud contains 10-100 taste bud cells (TBCs) in which the elongated TBCs are classified into 3 cell types (types I-III) equipped with different taste receptors. Accordingly, differences in the cell numbers and ratios of respective cell types per taste bud may affect taste-nerve responsiveness. Here, we examined the numbers of each immunoreactive cell for the type II (sweet, bitter, or umami receptor cells) and type III (sour and/or salt receptor cells) markers per taste bud in the circumvallate and foliate papillae and compared these numerical features of TBCs per taste bud to those in fungiform papilla and soft palate, which we previously reported. In circumvallate and foliate taste buds, the numbers of TBCs and immunoreactive cells per taste bud increased as a linear function of the maximal cross-sectional taste bud area. Type II cells made up approximately 25% of TBCs irrespective of the regions from which the TBCs arose. In contrast, type III cells in circumvallate and foliate taste buds made up approximately 11% of TBCs, which represented almost 2 times higher than what was observed in the fungiform and soft palate taste buds. The densities (number of immunoreactive cells per taste bud divided by the maximal cross-sectional area of the taste bud) of types II and III cells per taste bud are significantly higher in the circumvallate papillae than in the other regions. The effects of these region-dependent differences on the taste response of the taste bud are discussed.
Collapse
Affiliation(s)
- Takahiro Ogata
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu-shi, Japan.,ASTEC Co., Ltd, Minamizato 4-6-15, Shime-machi, Kasuya-gun, Fukuoka, Japan
| | - Yoshitaka Ohtubo
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu-shi, Japan
| |
Collapse
|
191
|
Pickrahn S, Dawid C, Babinger T, Schmid C, Brockhoff A, Meyerhof W, Hofmann T. Sensory-Guided Multidimensional Exploration of Antisweet Principles from Gymnema sylvestre (Retz) Schult. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5510-5527. [PMID: 33970622 DOI: 10.1021/acs.jafc.1c00994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report on activity-guided investigation of the key antisweet principles of Gymnema sylvestre. Orosensory-guided fractionation by means of solid phase extraction, preparative 2D-LC, and semipreparative HPLC followed by accurate MS and 1D/2D NMR experiments revealed six known and three previously unknown gymnemic acids as the key constituents of seven highly sensory-active fractions. Localized via a modified comparative taste dilution analysis (cTDA) and taste modulation probability (TMP) based screening techniques, a strong intrinsic bitterness was also observed for gymnemic acids. In addition, the suppressive effects of the most abundant acids on the response of the human sweet taste receptor to sucrose were verified by means of a functional hTAS1R2/hTAS1R3 sweet taste receptor assay. This in vitro screening revealed large differences in antisweet activity among the isolated compounds, where gymnemic acids XV and XIX showed the highest sweet suppressing activity. This broad-based molecular characterization of the sweet taste inhibiting activity of Gymnema sylvestre will enable further insight into the molecular basis of sweet taste modulation at the receptor level.
Collapse
Affiliation(s)
- Stephen Pickrahn
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Timo Babinger
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Christian Schmid
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Anne Brockhoff
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Wolfgang Meyerhof
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Kirrberger Straße 100, 66421 Homburg, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| |
Collapse
|
192
|
Choi Y, Manthey JA, Park TH, Cha YK, Kim Y, Kim Y. Correlation between in vitro binding activity of sweeteners to cloned human sweet taste receptor and sensory evaluation. Food Sci Biotechnol 2021; 30:675-682. [PMID: 34123464 DOI: 10.1007/s10068-021-00905-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022] Open
Abstract
The human sweet taste receptor is a TAS1R2/TAS1R3 heterodimer. To investigate the correlation between the in vitro affinity of sweeteners with stably expressed human sweet taste receptor in HEK-293 cells and human sensory evaluation, the receptor-ligand activity of bulk (sucrose, D-fructose, and allulose) and high-intensity sweeteners (saccharin, rebaudioside A, rebaudioside M, and neohesperidin dihydrochalcone) was compared by analyzing the Ca2+ release. The relative potency of the sweeteners was identified over a wide concentration range for EC50s. Relative to sucrose, bulk sweeteners showed similar concentration ranges and potency, whereas high-intensity sweeteners exhibited lower concentration ranges and higher potency. The log of the calculated EC50 of each sweetener relative to sucrose by the in vitro affinity assay was positively correlated (r = 0.9943) with the molar relative sweetness reported in the previous literatures. These results suggested a good correlation between the in vitro activity assay of sweeteners and human sensory evaluation.
Collapse
Affiliation(s)
- Yoonha Choi
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - John A Manthey
- Agricultural Research Service, U.S. Horticultural Research Lab, U. S. Dept. of Agriculture, 2001 South Rock Road, Fort Pierce, FL34945 USA
| | - Tai Hyun Park
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826 Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yeon Kyung Cha
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yang Kim
- Center for Food & Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760 Republic of Korea
| |
Collapse
|
193
|
Wu B, Eldeghaidy S, Ayed C, Fisk ID, Hewson L, Liu Y. Mechanisms of umami taste perception: From molecular level to brain imaging. Crit Rev Food Sci Nutr 2021; 62:7015-7024. [PMID: 33998842 DOI: 10.1080/10408398.2021.1909532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Due to unique characteristics, umami substances have gained much attention in the food industry during the past decade as potential replacers to sodium or fat to increase food palatability. Umami is not only known to increase appetite, but also to increase satiety, and hence could be used to control food intake. Therefore, it is important to understand the mechanism(s) involved in umami taste perception. This review discusses current knowledge of the mechanism(s) of umami perception from receptor level to human brain imaging. New findings regarding the molecular mechanisms for detecting umami tastes and their pathway(s), and the peripheral and central coding to umami taste are reviewed. The representation of umami in the human brain and the individual variation in detecting umami taste and associations with genotype are discussed. The presence of umami taste receptors in the gastrointestinal tract, and the interactions between the brain and gut are highlighted. The review concludes that more research is required into umami taste perception to include not only oral umami taste perception, but also the wider "whole body" signaling mechanisms, to explore the interaction between the brain and gut in response to umami perception and ingestion.
Collapse
Affiliation(s)
- Ben Wu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sally Eldeghaidy
- Division of Food, Nutrition and Dietetics, and Future Food Beacon, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK.,Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University Park Campus, University of Nottingham, UK
| | - Charfedinne Ayed
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Ian D Fisk
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK.,The University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Louise Hewson
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Yuan Liu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
194
|
Artificial Sweeteners Negatively Regulate Pathogenic Characteristics of Two Model Gut Bacteria, E. coli and E. faecalis. Int J Mol Sci 2021; 22:ijms22105228. [PMID: 34063332 PMCID: PMC8156656 DOI: 10.3390/ijms22105228] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Artificial sweeteners (AS) are synthetic sugar substitutes that are commonly consumed in the diet. Recent studies have indicated considerable health risks which links the consumption of AS with metabolic derangements and gut microbiota perturbations. Despite these studies, there is still limited data on how AS impacts the commensal microbiota to cause pathogenicity. The present study sought to investigate the role of commonly consumed AS on gut bacterial pathogenicity and gut epithelium-microbiota interactions, using models of microbiota (Escherichia coli NCTC10418 and Enterococcus faecalis ATCC19433) and the intestinal epithelium (Caco-2 cells). Model gut bacteria were exposed to different concentrations of the AS saccharin, sucralose, and aspartame, and their pathogenicity and changes in interactions with Caco-2 cells were measured using in vitro studies. Findings show that sweeteners differentially increase the ability of bacteria to form a biofilm. Co-culture with human intestinal epithelial cells shows an increase in the ability of model gut bacteria to adhere to, invade and kill the host epithelium. The pan-sweet taste inhibitor, zinc sulphate, effectively blocked these negative impacts. Since AS consumption in the diet continues to increase, understanding how this food additive affects gut microbiota and how these damaging effects can be ameliorated is vital.
Collapse
|
195
|
Dutt M, Ng YK, Molendijk J, Karimkhanloo H, Liao L, Blazev R, Montgomery MK, Watt MJ, Parker BL. Western Diet Induced Remodelling of the Tongue Proteome. Proteomes 2021; 9:proteomes9020022. [PMID: 34066295 PMCID: PMC8163156 DOI: 10.3390/proteomes9020022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022] Open
Abstract
The tongue is a heavily innervated and vascularized striated muscle that plays an important role in vocalization, swallowing and digestion. The surface of the tongue is lined with papillae which contain gustatory cells expressing various taste receptors. There is growing evidence to suggest that our perceptions of taste and food preference are remodelled following chronic consumption of Western diets rich in carbohydrate and fats. Our sensitivity to taste and also to metabolising Western diets may be a key factor in the rising prevalence of obesity; however, a systems-wide analysis of the tongue is lacking. Here, we defined the proteomic landscape of the mouse tongue and quantified changes following chronic consumption of a chow or Western diet enriched in lipid, fructose and cholesterol for 7 months. We observed a dramatic remodelling of the tongue proteome including proteins that regulate fatty acid and mitochondrial metabolism. Furthermore, the expressions of several receptors, metabolic enzymes and hormones were differentially regulated, and are likely to provide novel therapeutic targets to alter taste perception and food preference to combat obesity.
Collapse
|
196
|
Dale N. Biological insights from the direct measurement of purine release. Biochem Pharmacol 2021; 187:114416. [PMID: 33444569 DOI: 10.1016/j.bcp.2021.114416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/23/2022]
Abstract
Although purinergic signalling has been a well-established and accepted mechanism of chemical communication for many years, it remains important to measure the extracellular concentration of ATP and adenosine in real time. In this review I summarize the reasons why such measurements are still needed, how they provide additional mechanistic insight and give an overview of the techniques currently available to make spatially localised measurements of ATP and adenosine in real time. To illustrate the impact of direct real-time measurements, I explore CO2 and nutrient sensing in the medulla oblongata and hypothalamus. In both of these examples, the sensing involves hemichannel mediated ATP release from glial cells. For CO2 the hemichannels involved, connexin26, are directly CO2-sensitive. This mechanism contributes to the chemosensory control of breathing. In the hypothamalus, specialised glial cells, tanycytes, directly contact the cerebrospinal fluid in the 3rd ventricle and sense nutrients via sweet and umami taste receptors. Nutrient sensing by tanycytes is likely to contribute to the control of body weight as their selective stimulation alters food intake. To illustrate the importance of direct adenosine measurements, I consider the complex and multiple mechanisms of activity-dependent adenosine release in different brain regions. This activity dependent release of adenosine is likely to mediate important feedback regulation and may also be involved in controlling the sleep-wake state. I finish by briefly considering the potential of whole blood purine measurements in clinical practice.
Collapse
Affiliation(s)
- Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
197
|
Caruso V, Zuccarini M, Di Iorio P, Muhammad I, Ronci M. Metabolic Changes Induced by Purinergic Signaling: Role in Food Intake. Front Pharmacol 2021; 12:655989. [PMID: 33995077 PMCID: PMC8117016 DOI: 10.3389/fphar.2021.655989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023] Open
Abstract
The purinergic signalling has a well-established role in the regulation of energy homeostasis, but there is growing evidence of its implication in the control of food intake. In this review, we provide an integrative view of the molecular mechanisms leading to changes in feeding behaviour within hypothalamic neurons following purinergic receptor activation. We also highlight the importance of purinergic signalling in metabolic homeostasis and the possibility of targeting its receptors for therapeutic purposes.
Collapse
Affiliation(s)
- Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS, Australia.,Institute for Research on Pain, ISAL-Foundation, Rimini, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Ishaq Muhammad
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS, Australia
| | - Maurizio Ronci
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
198
|
Banerjee A, Mukherjee S, Maji BK. Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: An overview. Toxicol Rep 2021; 8:938-961. [PMID: 34026558 PMCID: PMC8120859 DOI: 10.1016/j.toxrep.2021.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Flavor enhancing high lipid diet acts as silent killer. Monosodium glutamate mixed with high lipid diet alters redox-status. Monosodium glutamate mixed with high lipid diet induces systemic anomalies.
In this fast-food era, people depend on ready-made foods and engage in minimal physical activities that ultimately change their food habits. Majorities of such foods have harmful effects on human health due to higher percentages of saturated fatty acids, trans-fatty acids, and hydrogenated fats in the form of high lipid diet (HLD). Moreover, food manufacturers add monosodium glutamate (MSG) to enhance the taste and palatability of the HLD. Both MSG and HLD induce the generation of reactive oxygen species (ROS) and thereby alter the redox-homeostasis to cause systemic damage. However, MSG mixed HLD (MH) consumption leads to dyslipidemia, silently develops non-alcoholic fatty liver disease followed by metabolic alterations and systemic anomalies, even malignancies, via modulating different signaling pathways. This comprehensive review formulates health care strategies to create global awareness about the harmful impact of MH on the human body and recommends the daily consumption of more natural foods rich in antioxidants instead of toxic ingredients to counterbalance the MH-induced systemic anomalies.
Collapse
|
199
|
Association of single nucleotide polymorphisms with taste and food preferences of the Hungarian general and Roma populations. Appetite 2021; 164:105270. [PMID: 33930497 DOI: 10.1016/j.appet.2021.105270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/20/2022]
Abstract
It is reasonable to suppose that poor diet underlies the unfavorable health status of the Roma population of Europe. Previously in the framework of a complex health survey, fruit and vegetable consumption, quantity of sugar added, salting frequency; bitter, salty, sweet and fat taste preferences were evaluated of Hungarian (HG, n = 410) and Roma (HR, n = 387) populations. In the present study the associations of taste and food preferences with TAS1R3, CD36, SCNN1B, TRPV1, TAS2R38, TAS2R19 and CA6 polymorphisms were tested in the same samples. Genotype frequencies did not differ significantly between the two populations. Although we initially observed associations between certain genetic polymorphisms and taste and food preferences in our study samples, none of the p values remained significant after the multiple test correction. However, some of our results could be considered promising (0.05<corrected p < 0.20), which showed potential ethnicity-specific effects (CA6 rs2274333 with salty taste and raw kohlrabi preference, CD36 rs1527483 with fat taste preference, TAS2R19 rs10772420 with grapefruit preference, and TAS2R38 rs713598 with quantity of sugar added). Our results may suggest that genetics may mediate food preferences, and individuals with different ethnic background may require personalized interventions to modify diet. Further investigations with greater sample sizes are essential to explore the effect of these genetic variants on taste and food preferences.
Collapse
|
200
|
Ohtubo Y. Slow recovery from the inactivation of voltage-gated sodium channel Nav1.3 in mouse taste receptor cells. Pflugers Arch 2021; 473:953-968. [PMID: 33881614 DOI: 10.1007/s00424-021-02563-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
Action potentials play an important role in neurotransmitter release in response to taste. Here, I have investigated voltage-gated Na+ channels, a primary component of action potentials, in respective cell types of mouse fungiform taste bud cells (TBCs) with in situ whole-cell clamping and single-cell RT-PCR techniques. The cell types of TBCs electrophysiologically examined were determined immunohistochemically using the type III inositol 1,4,5-triphoshate receptor as a type II cell marker and synaptosomal-associated protein 25 as a type III cell marker. I show that type II cells, type III cells, and TBCs not immunoreactive to these markers (likely type I cells) generate voltage-gated Na+ currents. The recovery following inactivation of these currents was well fitted with double exponential curves. The time constants in type III cells (~20 ms and ~ 1 s) were significantly slower than respective time constants in other cell types. RT-PCR analysis indicated the expression of Nav1.3, Nav1.5, Nav1.6, and β1 subunit mRNAs in TBCs. Pharmacological inhibition and single-cell RT-PCR studies demonstrated that type II and type III cells principally express tetrodotoxin (TTX)-sensitive Nav1.3 channels and that ~ 30% of type I cells express TTX-resistant Nav1.5 channels. The auxiliary β1 subunit that modulates gating kinetics was rarely detected in TBCs. As the β1 subunit co-expressed with an α subunit is known to accelerate the recovery from inactivation, it is likely that voltage-gated Na+ channels in TBCs may function without β subunits. Slow recovery from inactivation, especially in type III cells, may limit high-frequency firing in response to taste substances.
Collapse
Affiliation(s)
- Yoshitaka Ohtubo
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan.
| |
Collapse
|