151
|
Ekanayake DK, Cipriano MJ, Sabatini R. Telomeric co-localization of the modified base J and contingency genes in the protozoan parasite Trypanosoma cruzi. Nucleic Acids Res 2007; 35:6367-77. [PMID: 17881368 PMCID: PMC2095807 DOI: 10.1093/nar/gkm693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 08/14/2007] [Accepted: 08/22/2007] [Indexed: 12/20/2022] Open
Abstract
Base J or beta-d-glucosylhydroxymethyluracil is a modification of thymine residues within the genome of kinetoplastid parasites. In organisms known to contain the modified base, J is located mainly within the telomeric repeats. However, in Trypanosoma brucei, a small fraction of J is also located within the silent subtelomeric variant surface glycoprotein (VSG) gene expression sites, but not in the active expression site, suggesting a role for J in regulating telomeric genes involved in pathogenesis. With the identification of surface glycoprotein genes adjacent to telomeres in the South American Trypanosome, Trypanosoma cruzi, we became interested in the telomeric distribution of base J. Analysis of J and telomeric repeat sequences by J immunoblots and Southern blots following DNA digestion, reveals approximately 25% of J outside the telomeric repeat sequences. Moreover, the analysis of DNA sequences immunoprecipitated with J antiserum, localized J within subtelomeric regions rich in life-stage-specific surface glycoprotein genes involved in pathogenesis. Interestingly, the pattern of J within these regions is developmentally regulated. These studies provide a framework to characterize the role of base J in the regulation of telomeric gene expression/diversity in T. cruzi.
Collapse
Affiliation(s)
| | | | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
152
|
Garg N, Bhatia V. Current status and future prospects for a vaccine against American trypanosomiasis. Expert Rev Vaccines 2007; 4:867-80. [PMID: 16372882 DOI: 10.1586/14760584.4.6.867] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinically relevant pathognomonic consequences of human infection by Trypanosoma cruzi are dilation and hypertrophy of the left ventricle walls and thinning of the apex. The major complications and debilitating evolutionary outcomes of chronic infection include ventricular fibrillation, thromboembolism and congestive heart failure. American trypanosomiasis (Chagas disease) poses serious public healthcare and budgetary concerns. The currently available drugs, although effective against acute infection, are highly toxic and ineffective in arresting or attenuating clinical disease symptoms in chronic patients. The development of an efficacious prophylactic vaccine faces many challenges, and progress is slow, despite several years of effort. Studies in animal models and human patients have revealed the pathogenic mechanisms during disease progression, pathology of disease and features of protective immunity. Accordingly, several antigens, antigen-delivery vehicles and adjuvants have been tested in animal models, and some efforts have been successful in controlling infection and disease. This review will summarize the accumulated knowledge about the parasite and disease, as well as pathogenesis and protective immunity. The authors will discuss the efforts to date, and the challenges faced in achieving an efficient prophylactic vaccine against human American trypanosomiasis, and present the future perspectives.
Collapse
Affiliation(s)
- Nisha Garg
- Sealy Center for Vaccine Development, Department of Microbiology, Immunology and Pathology, University of Texas Medical Branch, Galveston TX 77555, USA.
| | | |
Collapse
|
153
|
Agustí R, Giorgi ME, de Lederkremer RM. The trans-sialidase from Trypanosoma cruzi efficiently transfers alpha-(2-->3)-linked N-glycolylneuraminic acid to terminal beta-galactosyl units. Carbohydr Res 2007; 342:2465-9. [PMID: 17765882 DOI: 10.1016/j.carres.2007.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 11/16/2022]
Abstract
The trans-sialidase from Trypanosoma cruzi (TcTS), the agent of Chagas' disease, is a unique enzyme involved in mammalian host-cell invasion. Since T. cruzi is unable to synthesize sialic acids de novo, TcTS catalyzes the transfer of alpha-(2-->3)-sialyl residues from the glycoconjugates of the host to terminal beta-galactopyranosyl units present on the surface of the parasite. TcTS also plays a key role in the immunomodulation of the infected host. Chronic Chagas' disease patients elicit TcTS-neutralizing antibodies that are able to inhibit the enzyme. N-Glycolylneuraminic acid has been detected in T. cruzi, and the trans-sialidase was pointed out as the enzyme involved in its incorporation from host glycoconjugates. However, N-glycolylneuraminic acid alpha-(2-->3)-linked-containing oligosaccharides have not been analyzed as donors in the T. cruzi trans-sialidase reaction. In this paper we studied the ability of TcTS to transfer N-glycolylneuraminic acid from Neu5Gc(alpha2-->3)Gal(beta1-->4)GlcbetaOCH(2)CH(2)N(3) (1) and Neu5Gc(alpha2-->3)Gal(beta1-->3)GlcNAcbetaOCH(2)CH(2)N(3) (2) to lactitol, N-acetyllactosamine and lactose as acceptor substrates. Transfer from 1 was more efficient (50-65%) than from 2 (20-30%) for the three acceptors. The reactions were inhibited when the enzyme was preincubated with a neutralizing antibody. K(m) values were calculated for 1 and 2 and compared with 3'-sialyllactose using lactitol as acceptor substrate. Analysis was performed by high-performance anion-exchange (HPAEC) chromatography. A competitive transfer reaction of compound 1 in the presence of 3'-sialyllactose and N-acetyllactosamine showed a better transfer of Neu5Gc than of Neu5Ac.
Collapse
Affiliation(s)
- Rosalía Agustí
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|
154
|
Azuaje FJ, Ramirez JL, Da Silveira JF. In silico, biologically-inspired modelling of genomic variation generation in surface proteins of Trypanosoma cruzi. KINETOPLASTID BIOLOGY AND DISEASE 2007; 6:6. [PMID: 17623100 PMCID: PMC1965468 DOI: 10.1186/1475-9292-6-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 07/10/2007] [Indexed: 02/08/2023]
Abstract
BACKGROUND Protozoan parasites improve the likelihood of invading or adapting to the host through their capacity to present a large repertoire of surface molecules. The understanding of the mechanisms underlying the generation of antigenic diversity is crucial to aid in the development of therapies and the study of evolution. Despite advances driven by molecular biology and genomics, there is a need to gain a deeper understanding of key properties that may facilitate variation generation, models for explaining the role of genomic re-arrangements and the characterisation of surface protein families on the basis of their capacity to generate variation. Computer models may be implemented to explore, visualise and estimate the variation generation capacity of gene families in a dynamic fashion. In this paper we report the dynamic simulation of genomic variation using real T. cruzi coding sequences as inputs to a computational simulation system. The effects of random, multiple-point mutations and gene conversions on genomic variation generation were quantitatively estimated and visualised. Simulations were also implemented to investigate the potential role of pseudogenes as a source of antigenic variation in T. cruzi. RESULTS Computational models of variation generation were applied to real coding sequences from surface proteins in T. cruzi: trans-sialidase-like proteins and putative surface protein dispersed gene family-1. In the simulations the sequences self-replicated, mutated and re-arranged during thousands of generations. Simulations were implemented for different mutation rates to estimate the relative robustness of the protein families in the face of DNA multiple-point mutations and sequence re-arrangements. The gene super-families and families showed distinguishing evolutionary responses, which may be used to characterise them on the basis of their capacity to generate variability. The simulations showed that sequences from T. cruzi nuclear genes tend to be relatively more robust against random, multiple-point mutations than those obtained from surface protein genes. Simulations also showed that a gene conversion model may act as an effective variation generation mechanism. Differential variation responses can be used to characterise the sequence groups under study. For example, unlike other families, sequences from the DGF1 family have the capacity to maximise variation at the amino acid level under relatively low mutation rates and through gene conversion. However, in relation to the other protein families, they exhibit more robust behaviour in response to more severe modifications through intra-family genomic sequence exchange. Independent simulations indicate that DGF1 pseudogenes might play a role in the generation of greater genomic variation in the DFG1 gene family through gene conversion under different experimental conditions. CONCLUSION Digital, dynamic simulations may be implemented to characterise gene families on the basis of their capacity to generate variation in the face of genomic perturbations. Such simulations may be useful to explore antigenic variation mechanisms and hypotheses about robustness at the genomic level. This investigation illustrated how sequences derived from surface protein genes and computer simulations can be used to investigate variation generation mechanisms. Such in silico experiments of self-replicating sequences undergoing random mutations and genomic re-arrangements can offer insights into the diversity generation potential of the genes under study. Biologically-inspired simulations may support the study of genomic variation mechanisms in pathogens whose genomes have been recently sequenced.
Collapse
Affiliation(s)
- Francisco J Azuaje
- Computer Science Research Institute and School of Computing and Mathematics, University of Ulster, Jordanstown, BT37 OQB, Northern Ireland, UK
| | - Jose L Ramirez
- Biotechnology Centre, Instituto de Estudios Avanzados (IDEA)-MCT, Caracas, Venezuela
| | | |
Collapse
|
155
|
Atayde VD, Cortez M, Souza R, da Silveira JF, Yoshida N. Expression and cellular localization of molecules of the gp82 family in Trypanosoma cruzi metacyclic trypomastigotes. Infect Immun 2007; 75:3264-70. [PMID: 17438027 PMCID: PMC1932952 DOI: 10.1128/iai.00262-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A member of the Trypanosoma cruzi gp82 family, expressed on metacyclic trypomastigote surface and identified by monoclonal antibody (MAb) 3F6, plays a key role in host cell invasion. Apart from the gp82 defined by MAb 3F6, no information is available on members of this protein family. From cDNA clones encoding gp82 proteins sharing 59.1% sequence identity, we produced the recombinant proteins J18 and C03, the former containing and the latter lacking the epitope for MAb 3F6. Polyclonal antibodies to J18 and C03 proteins were generated and used, along with MAb 3F6, to analyze the expression and cellular localization of gp82 family members in metacyclic forms of CL and G strains, which belong to highly divergent genetic groups. By two-dimensional gel electrophoresis and immunoblotting, molecules of 82 to 86 kDa, focusing at pH 4.6 to 5.4, and molecules of 72 to 88 kDa, focusing at pH 4.9 to 5.7, were visualized in CL and G strains, respectively. Flow cytometry and microscopic analysis revealed in both strains similar expression of MAb 3F6-reactive gp82 in live and permeabilized parasites, indicating its surface localization. The reaction of live parasites of both strains with anti-J18 antibodies was weaker than with MAb 3F6 and was increased by permeabilization. Anti-C03 antibodies bound predominantly to flagellar components in permeabilized G strain parasites, but in the CL strain the flagellum was not the preferential target for these antibodies. Host cell invasion of metacyclic forms was inhibited by J18 protein, as well as by MAb 3F6 and anti-J18 antibodies, but not by C03 protein or anti-C03 antibodies.
Collapse
Affiliation(s)
- Vanessa D Atayde
- Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862-6o andar, 04023-062 São Paulo, S.P., Brazil
| | | | | | | | | |
Collapse
|
156
|
Atwood JA, Minning T, Ludolf F, Nuccio A, Weatherly DB, Alvarez-Manilla G, Tarleton R, Orlando R. Glycoproteomics of Trypanosoma cruzi trypomastigotes using subcellular fractionation, lectin affinity, and stable isotope labeling. J Proteome Res 2007; 5:3376-84. [PMID: 17137339 DOI: 10.1021/pr060364b] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we detail the first glycoproteomic analysis of a human pathogen. We describe an approach that enables the identification of organelle and cell surface N-linked glycoproteins from Trypanosoma cruzi, the causative agent of Chagas' disease. This approach is based on a subcellular fractionation protocol to produce fractions enriched in either organelle or plasma membrane/cytoplasmic proteins. Through lectin affinity capture of the glycopeptides from each subcellular fraction and stable isotope labeling of the glycan attachment sites with H(2)18O, we unambiguously identified 36 glycosylation sites on 35 glycopeptides which mapped to 29 glycoproteins. We also present the first expression evidence for 11 T. cruzi specific glycoproteins and provide experimental data indicating that the mucin associated surface protein family (MASP) and dispersed gene family (DGF-1) are post-translationally modified by N-linked glycans.
Collapse
Affiliation(s)
- James A Atwood
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602-4712, USA
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Jäger AV, De Gaudenzi JG, Cassola A, D'Orso I, Frasch AC. mRNA maturation by two-step trans-splicing/polyadenylation processing in trypanosomes. Proc Natl Acad Sci U S A 2007; 104:2035-42. [PMID: 17267594 PMCID: PMC1892994 DOI: 10.1073/pnas.0611125104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Indexed: 11/18/2022] Open
Abstract
Trypanosomes are unique eukaryotic cells, in that they virtually lack mechanisms to control gene expression at the transcriptional level. These microorganisms mostly control protein synthesis by posttranscriptional regulation processes, like mRNA stabilization and degradation. Transcription in these cells is polycistronic. Tens to hundreds of protein-coding genes of unrelated function are arrayed in long clusters on the same DNA strand. Polycistrons are cotranscriptionally processed by trans-splicing at the 5' end and polyadenylation at the 3' end, generating monocistronic units ready for degradation or translation. In this work, we show that some trans-splicing/polyadenylation sites may be skipped during normal polycistronic processing. As a consequence, dicistronic units or monocistronic transcripts having long 3' UTRs are produced. Interestingly, these unspliced transcripts can be processed into mature mRNAs by the conventional trans-splicing/polyadenylation events leading to translation. To our knowledge, this is a previously undescribed mRNA maturation by trans-splicing uncoupled from transcription. We identified an RNA-recognition motif-type protein, homologous to the mammalian polypyrimidine tract-binding protein, interacting with one of the partially processed RNAs analyzed here that might be involved in exon skipping. We propose that splice-site skipping might be part of a posttranscriptional mechanism to regulate gene expression in trypanosomes, through the generation of premature nontranslatable RNA molecules.
Collapse
Affiliation(s)
- Adriana V. Jäger
- Instituto de Investigaciones Biotecnológicas–Instituto Tecnológico Chascomus, Universidad Nacional de San Martín–Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Gral. Paz 5445, Edificio 24, INTI, 1650 San Martín, Provincia de Buenos Aires, Argentina
| | - Javier G. De Gaudenzi
- Instituto de Investigaciones Biotecnológicas–Instituto Tecnológico Chascomus, Universidad Nacional de San Martín–Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Gral. Paz 5445, Edificio 24, INTI, 1650 San Martín, Provincia de Buenos Aires, Argentina
| | - Alejandro Cassola
- Instituto de Investigaciones Biotecnológicas–Instituto Tecnológico Chascomus, Universidad Nacional de San Martín–Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Gral. Paz 5445, Edificio 24, INTI, 1650 San Martín, Provincia de Buenos Aires, Argentina
| | - Iván D'Orso
- Instituto de Investigaciones Biotecnológicas–Instituto Tecnológico Chascomus, Universidad Nacional de San Martín–Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Gral. Paz 5445, Edificio 24, INTI, 1650 San Martín, Provincia de Buenos Aires, Argentina
| | - Alberto C. Frasch
- Instituto de Investigaciones Biotecnológicas–Instituto Tecnológico Chascomus, Universidad Nacional de San Martín–Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Gral. Paz 5445, Edificio 24, INTI, 1650 San Martín, Provincia de Buenos Aires, Argentina
| |
Collapse
|
158
|
|
159
|
Maldonado RA, Kuniyoshi RK, Linss JG, Almeida IC. Trypanosoma cruzi oleate desaturase: molecular characterization and comparative analysis in other trypanosomatids. J Parasitol 2006; 92:1064-74. [PMID: 17152952 DOI: 10.1645/ge-845r.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Trypanosoma cruzi lipids contain a high content of unsaturated fatty acids, primarily oleic acid (C18:1) and linoleic acid (C18:2). Previous data suggest that this parasite is able to convert oleic acid into linoleic acid; humans are not able to do this. Presently, we show that T. cruzi has a gene with high similarity to the delta12 (omega6)-oleate desaturase from plants. Northern blot analysis of the oleate desaturase gene from T. cruzi (OD(Tc)) indicated that this gene is transcribed in epimastigote, amastigote, and trypomastigote forms. Pulsed-field analysis showed that OD(Tc) is located at distinct chromosomal bands on distinct T. cruzi phylogenetic groups. In addition, the chromoblot analysis demonstrated the presence of homologous OD(Tc) genes in several trypanosomatids; namely, Crithidia fasciculata, Herpetomonas megaseliae, Leptomonas seymouri, Trypanosoma freitasi, Trypanosoma rangeli, Trypanosoma lewisi, Blastocrithidia sp., Leishmania amazonensis, Endotrypanum schaudinni, and Trypanosoma conorhini. The native OD(Tc) activity was detected by metabolic labeling and analysis of total fatty acids from epimastigotes and trypomastigotes of T. cruzi, coanomastigotes of C. fasciculata, and promastigotes of L. amazonensis, H. megaseliae, and L. seymouri. The fact that the enzyme oleate desaturase is not present in humans makes it an ideal molecular target for the development of new chemotherapeutic approaches against Chagas disease.
Collapse
Affiliation(s)
- Rosa A Maldonado
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, USA.
| | | | | | | |
Collapse
|
160
|
Risso MG, Pitcovsky TA, Caccuri RL, Campetella O, Leguizamón MS. Immune system pathogenesis is prevented by the neutralization of the systemic trans-sialidase from Trypanosoma cruzi during severe infections. Parasitology 2006; 134:503-10. [PMID: 17166319 DOI: 10.1017/s0031182006001752] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 09/27/2006] [Accepted: 10/02/2006] [Indexed: 12/15/2022]
Abstract
During the acute phase of Trypanosoma cruzi infection, strong haematological and immune system alterations are observed. The parasite expresses trans-sialidase, a virulence factor responsible for the sialylation of its surface glycoconjugates. This enzyme is also shed to the bloodstream where it is associated with immune system alterations triggered during the infection. During experimental and human infections, the host elicits antibodies able to neutralize the enzyme activity that would be responsible for restricting systemic trans-sialidase to the early steps of the infection, when major immune alterations are induced. The actual relevance of these antibodies was tested by passive transference of monoclonal neutralizing antibodies in acute infection models displaying extreme sensitivity to the infection. Mice were inoculated with virulent parasite strains that induce high parasitaemia, early mortality and strong immune tissue abnormalities. The trans-sialidase-neutralizing antibodies were able to preserve B cell areas both in ganglia and spleen as well as the thymus architecture even in these extreme models. Although no differences between control and treated mice regarding animal survival were found, a major role for the humoral response in controlling the damage of the immune system induced by a systemically distributed virulence factor was defined in an infection with a eukaryotic pathogen.
Collapse
Affiliation(s)
- M G Risso
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
161
|
Yamauchi LM, Aliberti JC, Baruffi MD, Portela RW, Rossi MA, Gazzinelli RT, Mineo JR, Silva JS. The binding of CCL2 to the surface of Trypanosoma cruzi induces chemo-attraction and morphogenesis. Microbes Infect 2006; 9:111-8. [PMID: 17194609 DOI: 10.1016/j.micinf.2006.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/25/2006] [Accepted: 10/25/2006] [Indexed: 01/06/2023]
Abstract
Adhesion of Trypanosoma cruzi to host cells employs mechanisms which are complex and not completely understood. Upon infection, host cells release pro-inflammatory cytokines and chemokines in the environment. These had been found to be involved with increasing parasite uptake as well as killing by macrophages and cardiomyocytes. In the present study, we focused on the interaction of murine beta-chemokine CCL2 with trypomastigote forms of T. cruzi. We found that this chemokine directly triggers the chemotaxis and morphogenesis of trypomastigote forms of parasites. Binding assays showed that the interaction of CCL2 with molecules present in trypomastigote forms is abolished by the addition of condroitin 6-sulphate, a glycosaminoglycan. Moreover, we also observed that the parasite glycoproteins are the major players in this interaction. In summary, our study demonstrates a host ligand/parasite receptor interaction that may have relevant implications in the tissue tropism of this important parasitic disease.
Collapse
Affiliation(s)
- Lucy M Yamauchi
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto-USP, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Martin DL, Weatherly DB, Laucella SA, Cabinian MA, Crim MT, Sullivan S, Heiges M, Craven SH, Rosenberg CS, Collins MH, Sette A, Postan M, Tarleton RL. CD8+ T-Cell responses to Trypanosoma cruzi are highly focused on strain-variant trans-sialidase epitopes. PLoS Pathog 2006; 2:e77. [PMID: 16879036 PMCID: PMC1526708 DOI: 10.1371/journal.ppat.0020077] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 06/26/2006] [Indexed: 01/30/2023] Open
Abstract
CD8+ T cells are crucial for control of a number of medically important protozoan parasites, including Trypanosoma cruzi, the agent of human Chagas disease. Yet, in contrast to the wealth of information from viral and bacterial infections, little is known about the antigen specificity or the general development of effector and memory T-cell responses in hosts infected with protozoans. In this study we report on a wide-scale screen for the dominant parasite peptides recognized by CD8+ T cells in T. cruzi–infected mice and humans. This analysis demonstrates that in both hosts the CD8+ T-cell response is highly focused on epitopes encoded by members of the large trans-sialidase family of genes. Responses to a restricted set of immunodominant peptides were especially pronounced in T. cruzi–infected mice, with more than 30% of the CD8+ T-cell response at the peak of infection specific for two major groups of trans-sialidase peptides. Experimental models also demonstrated that the dominance patterns vary depending on the infective strain of T. cruzi, suggesting that immune evasion may be occurring at a population rather than single-parasite level. The authors of this paper conducted a broad screen to identify the major proteins in Trypanosoma cruzi, the causative agent of Chagas disease, that allow for detection and control of this intracellular pathogen by CD8+ T cells. This study is the first to show that a complex pathogen such as T. cruzi elicits a T-cell response focused on a few peptides, despite having a genome of >12,000 genes capable of encoding hundreds of thousands of potential target epitopes. The immunodominant CD8+ T-cell targets in both murine and human T. cruzi infection are almost exclusively peptides within multiple trans-sialidase proteins that are encoded by the large and diverse trans-sialidase gene family. trans-sialidase genes show great potential for variation, and the frequency of individual trans-sialidase epitopes appears to vary significantly in different parasite strains, giving rise to distinct patterns of T-cell responses to different T. cruzi isolates. The authors hypothesize that the massive expansion of this gene family under immunological pressure and the resulting variable expression of specific T-cell epitopes provides a mechanism of immune escape for T. cruzi.
Collapse
Affiliation(s)
- Diana L Martin
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - D. Brent Weatherly
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Susana A Laucella
- Instituto Nacional de Parasiologia Dr. Mario Fatala Chaben/Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán” (ANLIS/Malbran), Buenos Aires, Argentina
| | - Melissa A Cabinian
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Matthew T Crim
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Susan Sullivan
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Mark Heiges
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Sarah H Craven
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Charles S Rosenberg
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Matthew H Collins
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, California, United States of America
| | - Miriam Postan
- Instituto Nacional de Parasiologia Dr. Mario Fatala Chaben/Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán” (ANLIS/Malbran), Buenos Aires, Argentina
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
163
|
Augustine SAJ, Kleshchenko YY, Nde PN, Pratap S, Ager EA, Burns JM, Lima MF, Villalta F. Molecular cloning of a Trypanosoma cruzi cell surface casein kinase II substrate, Tc-1, involved in cellular infection. Infect Immun 2006; 74:3922-9. [PMID: 16790765 PMCID: PMC1489715 DOI: 10.1128/iai.00045-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this work, we report the cloning and characterization of the first cell surface casein kinase II (CKII) substrate (Tc-1) of Trypanosoma cruzi, the causative agent of Chagas' disease. Analysis of the gene sequence revealed a 1,653-bp open reading frame coding for 550 amino acid residues. Northern blot analysis showed a 4.5-kb transcript that is expressed in invasive trypomastigotes but not in noninvasive epimastigote forms of T. cruzi. Southern blot analysis indicates that Tc-1 is a single-copy gene. At the amino acid level, Tc-1 displayed 95% and 99% identity to two hypothetical proteins recently reported by the T. cruzi genome project. Analysis of the translated amino acid sequence indicates that the Tc-1 gene has a putative transmembrane domain with multiple cytoplasmic and extracellular CKII phosphosites. Exogenous human CKII was able to phosphorylate serine residues on both recombinant Tc-1 and Tc-1 of intact trypomastigotes. This phosphorylation was inhibited by the CKII inhibitors heparin and 4,5,6,7,-tetrabromo-2-azabenzimidazole. Immunoblots of solubilized trypomastigotes, epimastigotes, and amastigotes probed with anti-recombinant Tc-1 immunoglobulin G revealed a 62-kDa protein that is expressed only in infective trypomastigotes. Immunoprecipitation of labeled surface proteins of trypomastigotes indicated that the 62-kDa protein is a surface protein, and we found that the protein is uniformly distributed on the surface of trypomastigotes by direct immunofluorescence. Antibodies to Tc-1 effectively blocked trypomastigote invasion of host cells and consequently reduced parasite load. Preincubation of either trypomastigotes or myoblasts with CKII inhibitors blocked T. cruzi infection. Thus, for the first time, we describe a cell surface CKII substrate of a protozoan parasite that is phosphorylated by human CKII and that is involved in cellular infection.
Collapse
Affiliation(s)
- Swinburne A J Augustine
- Division of Microbial Pathogenesis and Immune Response, Department of Biomedical Sciences, School of Medicine, Meharry Medical College, 1005 Dr. D. B. Todd Jr. Blvd., Nashville, TN 37208, USA
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Mucci J, Risso MG, Leguizamón MS, Frasch ACC, Campetella O. The trans-sialidase from Trypanosoma cruzi triggers apoptosis by target cell sialylation. Cell Microbiol 2006; 8:1086-95. [PMID: 16819962 DOI: 10.1111/j.1462-5822.2006.00689.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The trans-sialidase, a modified sialidase that transfers sialyl residues among macromolecules, is a unique enzymatic activity expressed by some parasitic trypanosomes being essential for their survival in the mammalian host and/or in the insect vector. The enzyme from Trypanosoma cruzi, the agent of Chagas disease, is found in blood and able to act far from the infection site by inducing apoptosis in cells from the immune system. A central and still unsolved question is whether trans-sialidase-mediated addition or removal of sialic acid to/from host acceptor molecules is the event associated with the apoptosis induced by the enzyme. Here we show that lactitol, a competitive inhibitor that precluded the transference of the sialyl residue to endogenous acceptors but not the hydrolase activity of the enzyme, prevented ex vivo and in vivo the apoptosis caused by the trans-sialidase. By lectin histochemistry, the transference of sialyl residue to the cell surface was demonstrated in vivo and found associated with the apoptosis induction. The sialylation of the CD43 mucin, a key molecule involved in trans-sialidase-apoptotic process, was readily detected and also prevented by lactitol on thymocytes. Therefore, lesions induced by trans-sialidase on the immune system are due to the sialylation of endogenous acceptor molecules.
Collapse
Affiliation(s)
- Juan Mucci
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de San Martín, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
165
|
Rubin-de-Celis SSC, Uemura H, Yoshida N, Schenkman S. Expression of trypomastigote trans-sialidase in metacyclic forms of Trypanosoma cruzi increases parasite escape from its parasitophorous vacuole. Cell Microbiol 2006; 8:1888-98. [PMID: 16824037 DOI: 10.1111/j.1462-5822.2006.00755.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trypanosoma cruzi actively invades mammalian cells by forming parasitophorous vacuoles (PVs). After entry, the parasite has to escape from these vacuoles in order to replicate inside the host cell cytosol. Trans-sialidase (TS), a parasite enzyme that is used to obtain sialic acid from host glycoconjugates, has been implicated in cell invasion and PV exit, but how the enzyme acts in these processes is still unknown. Here we show that trypomastigotes derived from infected mammalian cells express and release 20 times more TS activity than axenic metacyclic trypomastigotes, which correspond to the infective forms derived from the insect vector. Both forms have the same capacity to invade mammalian cells, but cell derived trypomastigotes exit earlier from the vacuole. To test whether high TS expression is responsible for this increased exit from the PV, trypomastigote TS was expressed on the surface of metacyclic forms. Transfected and non-transfected metacyclics attached to and invaded HeLa or CHO cells equally. In contrast, metacyclics expressing TS on the surface escaped earlier from the vacuole than non-transfected metacyclics, or metacyclics expressing TS in their cytoplasm. Sialic acid may act as a barrier, which is removed by surface and/or secreted TS, because all types of parasites escaped earlier from the vacuoles of sialic acid-deficient Lec 2 cells than wild-type CHO cells. In addition, trypomastigotes and metacyclic forms expressing TS differentiated earlier into amastigotes. These results indicate that the increased expression of TS in cell-derived trypomastigotes is responsible for the earlier exit from the PV to the cytoplasm and their subsequent differentiation into amastigotes.
Collapse
|
166
|
Nde PN, Simmons KJ, Kleshchenko YY, Pratap S, Lima MF, Villalta F. Silencing of the laminin gamma-1 gene blocks Trypanosoma cruzi infection. Infect Immun 2006; 74:1643-8. [PMID: 16495535 PMCID: PMC1418675 DOI: 10.1128/iai.74.3.1643-1648.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is thought that Trypanosoma cruzi, the protozoan that causes Chagas' disease, modulates the extracellular matrix network to facilitate infection of human cells. However, direct evidence to document this phenomenon is lacking. Here we show that the T. cruzi gp83 ligand, a cell surface trans-sialidase-like molecule that the parasite uses to attach to host cells, increases the level of laminin gamma-1 transcript and its expression in mammalian cells, leading to an increase in cellular infection. Stable RNA interference (RNAi) with host cell laminin gamma-1 knocks down the levels of laminin gamma-1 transcript and protein expression in mammalian cells, causing a dramatic reduction in cellular infection by T. cruzi. Thus, host laminin gamma-1, which is regulated by the parasite, plays a crucial role in the early process of infection. This is the first report showing that knocking down the expression of a human gene by RNAi inhibits the infection of an intracellular parasite.
Collapse
Affiliation(s)
- Pius N Nde
- Division of Microbial Pathogenesis and Immune Response, Department of Biomedical Sciences, School of Medicine, Meharry Medical College, 1005 Dr. D. B. Todd Jr. Blvd., Nashville, TN 37208, USA
| | | | | | | | | | | |
Collapse
|
167
|
Baida RCP, Santos MRM, Carmo MS, Yoshida N, Ferreira D, Ferreira AT, El Sayed NM, Andersson B, da Silveira JF. Molecular characterization of serine-, alanine-, and proline-rich proteins of Trypanosoma cruzi and their possible role in host cell infection. Infect Immun 2006; 74:1537-46. [PMID: 16495524 PMCID: PMC1418663 DOI: 10.1128/iai.74.3.1537-1546.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported the isolation of a novel protein gene family, termed SAP (serine-, alanine-, and proline-rich protein), from Trypanosoma cruzi. Aided by the availability of the completed genome sequence of T. cruzi, we have now identified 39 full-length sequences of SAP, six pseudogenes and four partial genes. SAPs share a central domain of about 55 amino acids and can be divided into four groups based on their amino (N)- and carboxy (C)-terminal sequences. Some SAPs have conserved N- and C-terminal domains encoding a signal peptide and a glycosylphosphatidylinositol anchor addition site, respectively. Analysis of the expression of SAPs in metacyclic trypomastigotes by two-dimensional electrophoresis and immunoblotting revealed that they are likely to be posttranslationally modified in vivo. We have also demonstrated that some SAPs are shed into the extracellular medium. The recombinant SAP exhibited an adhesive capacity toward mammalian cells, where binding was dose dependent and saturable, indicating a possible ligand-receptor interaction. SAP triggered the host cell Ca2+ response required for parasite internalization. A cell invasion assay performed in the presence of SAP showed inhibition of internalization of the metacyclic forms of the CL strain. Taken together, these results show that SAP is involved in the invasion of mammalian cells by metacyclic trypomastigotes, and they confirm the hypothesis that infective trypomastigotes exploit an arsenal of surface glycoproteins and shed proteins to induce signaling events required for their internalization.
Collapse
Affiliation(s)
- Renata C P Baida
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, UNIFESP, Rua Botucatu, 862, CEP 04023-062, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Buscaglia CA, Campo VA, Frasch ACC, Di Noia JM. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol 2006; 4:229-36. [PMID: 16489349 DOI: 10.1038/nrmicro1351] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The surface of the protozoan parasite Trypanosoma cruzi is covered in mucins, which contribute to parasite protection and to the establishment of a persistent infection. Their importance is highlighted by the fact that the approximately 850 mucin-encoding genes comprise approximately 1% of the parasite genome and approximately 6% of all predicted T. cruzi genes. The coordinate expression of a large repertoire of mucins containing variable regions in the mammal-dwelling stages of the T. cruzi life cycle suggests a possible strategy to thwart the host immune response. Here, we discuss the expression profiling of T. cruzi mucins, the mechanisms leading to the acquisition of mucin diversity and the possible consequences of a mosaic surface coat in the interplay between parasite and host.
Collapse
Affiliation(s)
- Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de General San Martn-CONICET, San Martín (1650), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
169
|
Berrizbeitia M, Ndao M, Bubis J, Gottschalk M, Aché A, Lacouture S, Medina M, Ward BJ. Purified excreted-secreted antigens from Trypanosoma cruzi trypomastigotes as tools for diagnosis of Chagas' disease. J Clin Microbiol 2006; 44:291-6. [PMID: 16455872 PMCID: PMC1392643 DOI: 10.1128/jcm.44.2.291-296.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is currently no "gold standard" test for the diagnosis of late-stage Chagas' disease. As a result, protection of the blood supply in areas where Chagas' disease is endemic remains problematic. A panel of 709 serum samples from subjects with confirmed Chagas' disease (n = 195), healthy controls (n = 400), and patients with other parasitic diseases (n = 114) was used to assess enzyme-linked immunosorbent assays (ELISAs) based on a concentrated extract of excretory-secretory antigens from either Brazil or Tulahuen strain Trypanosoma cruzi trypomastigotes (total trypomastigote excretory-secretory antigens [TESAs]). The total TESA-based assays had excellent overall sensitivity (100%) and specificity (>94%), except for cross-reactivity with Leishmania-infected sera. In an attempt to increase the specificity of the assay, immunoaffinity chromatography was used to purify the TESA proteins (TESA(IA) proteins). By Western blotting, a series of polypeptide bands with molecular masses ranging from 60 to 220 kDa were recognized by pooled sera positive for Chagas' disease. An ELISA based on TESA(IA) proteins had a slightly lower sensitivity (98.6%) but an improved specificity (100%) compared to the sensitivity and specificity of the total TESA protein-based ELISAs. A 60-kDa polypeptide was identified as a major contributor to the cross-reactivity with Leishmania. These data suggest the need for field validation studies of TESA- and TESA(IA)-based assays in regions where Chagas' disease is endemic.
Collapse
Affiliation(s)
- Mariolga Berrizbeitia
- McGill Center for Tropical Diseases, Montreal General Hospital, Room D7-153, Montreal, Quebec, H3G IA4 Canada
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Neubacher B, Scheid S, Kelm S, Frasch AC, Meyer B, Thiem J. Synthesis of Neu5Ac Oligosaccharides and Analogues by Transglycosylation and their Binding Properties as Ligands to MAG. Chembiochem 2006; 7:896-9. [PMID: 16607670 DOI: 10.1002/cbic.200500543] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Björn Neubacher
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
171
|
MacRae JI, Obado SO, Turnock DC, Roper JR, Kierans M, Kelly JM, Ferguson MAJ. The suppression of galactose metabolism in Trypanosoma cruzi epimastigotes causes changes in cell surface molecular architecture and cell morphology. Mol Biochem Parasitol 2006; 147:126-36. [PMID: 16569451 DOI: 10.1016/j.molbiopara.2006.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 02/09/2006] [Accepted: 02/15/2006] [Indexed: 11/23/2022]
Abstract
The cell surface of the epimastigote form of Trypanosoma cruzi is covered by glycoconjugates rich in galactose. The parasite cannot take up galactose through its hexose transporter, suggesting that the epimerisation of UDP-glucose to UDP-galactose may be the parasite's only route to this sugar. The T. cruzi UDP-glucose 4'-epimerase is encoded by the TcGALE gene. We were unable to make a CL-Brener strain T. cruzi epimastigote TcGALE-/- null mutant, suggesting that the gene is essential. Two TcGALE+/- single-allele knockout clones displayed aberrant morphology and haploid deficiency with respect to galactose metabolism. The morphological phenotypes included shortened flagella, increased incidence of spheromastigotes, agglutination and a novel walnut-like appearance. The reduced supply of UDP-galactose was manifest in the two clones as a six- or nine-fold reduction in the expression of galactopyranose-containing cell surface mucins and negligible or two-fold reduction in the expression of galactofuranose-containing glycoinositolphospholipids. The major loss of mucins as opposed to glycoinositolphospholipids may indicate that the latter are more important for basic parasite survival in culture. The apparent haploid deficiency suggests that epimerase levels are close to limiting, at least in the epimastigote form, and might be exploited as a potential drug target.
Collapse
Affiliation(s)
- James I MacRae
- Division of Biological Chemistry & Molecular Microbiology, The School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
172
|
García GA, Arnaiz MR, Laucella SA, Esteva MI, Ainciart N, Riarte A, Garavaglia PA, Fichera LE, Ruiz AM. Immunological and pathological responses in BALB/c mice induced by genetic administration of Tc 13 Tul antigen of Trypanosoma cruzi. Parasitology 2006; 132:855-66. [PMID: 16478565 DOI: 10.1017/s0031182005009753] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/26/2005] [Accepted: 10/28/2005] [Indexed: 01/31/2023]
Abstract
Tc13 is a trans-sialidase family protein of Trypanosoma cruzi, the aetiological agent of Chagas' disease. Recently, in vitro studies had suggested that Tc13 might participate in the pathogenesis of the disease. In order to study the role of Tc13 antigens in an in vivo model, we administered plasmid DNA encoding a Tc13 antigen from the Tulahuén strain (Tc13 Tul) to BALB/c mice and evaluated the immunological and pathological manifestations as well as the capacity of this antigen to confer protection against T. cruzi infection. Tc13 Tul immunization did not elicit a detectable humoral immune response but induced specific memory T-cells with no capacity to produce IFN-gamma. Five months after DNA-immunization with Tc13 Tul, signs of hepatotoxicity and reactive changes in the heart, liver and spleen were observed in 40-80% of mice. When Tc13 Tul DNA-immunized animals were challenged with trypomastigotes, a significant decrease in parasitaemia in early and late acute phase was observed without modification in the survival rate. Surprisingly, Tc13 Tul-immunized mice chronically infected with T. cruzi showed a decrease in the severity of heart damage. We conclude that, in BALB/c mice, genetic immunization with Tc13 Tul mainly induces immune responses associated with pathology.
Collapse
Affiliation(s)
- G A García
- Insituto Nacional de Parasitología Dr. Mario Fatala Chabén, Paseo Colón 568, 1063, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Batista DGJ, Silva CF, Mota RA, Costa LC, Meirelles MNL, Meuser-Batista M, Soeiro MNC. Trypanosoma cruzi Modulates the Expression of Rabs and Alters the Endocytosis in Mouse Cardiomyocytes In Vitro. J Histochem Cytochem 2006; 54:605-14. [PMID: 16009966 DOI: 10.1369/jhc.5a6654.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is an incurable illness caused by the protozoan Trypanosoma cruzi. Cardiomyocytes represent important targets for the parasite infection and alterations in their physiology were reported. Because endocytosis is involved in different cellular events and guanosine triphosphatase (GTPase) Rab proteins play important roles in various aspects of the membrane traffic, our aim was to characterize the expression of Rab proteins in T. cruzi-infected cardiomyocytes, which displayed a downregulation of Rab7 and Rab11, whereas the expression of Rab5a was maintained in the infected cultures even after longer periods of parasite internalization, but early endosome antigen 1 was partially downregulated. The parasite infection also decreased the uptake of fluid phase ligands by the cardiac cultures. The regulation of GTPase proteins and effector molecules can contribute to the altered physiology of the host cells by modifying the normal incoming of nutrients as well as interfering with other important events related to the endocytic pathway.
Collapse
Affiliation(s)
- Denise G J Batista
- Departamento Ultra-estrutura e Biologia Celular, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ, Brasil
| | | | | | | | | | | | | |
Collapse
|
174
|
Cerqueira GC, DaRocha WD, Campos PC, Zouain CS, Teixeira SMR. Analysis of expressed sequence tags from Trypanosoma cruzi amastigotes. Mem Inst Oswaldo Cruz 2005; 100:385-9. [PMID: 16113886 DOI: 10.1590/s0074-02762005000400008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A total of 880 expressed sequence tags (EST) originated from clones randomly selected from a Trypanosoma cruzi amastigote cDNA library have been analyzed. Of these, 40% (355 ESTs) have been identified by similarity to sequences in public databases and classified according to functional categorization of their putative products. About 11% of the mRNAs expressed in amastigotes are related to the translational machinery, and a large number of them (9% of the total number of clones in the library) encode ribosomal proteins. A comparative analysis with a previous study, where clones from the same library were selected using sera from patients with Chagas disease, revealed that ribosomal proteins also represent the largest class of antigen coding genes expressed in amastigotes (54% of all immunoselected clones). However, although more than thirty classes of ribosomal proteins were identified by EST analysis, the results of the immunoscreening indicated that only a particular subset of them contains major antigenic determinants recognized by antibodies from Chagas disease patients.
Collapse
Affiliation(s)
- Gustavo C Cerqueira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-010 Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
175
|
El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005; 309:409-15. [PMID: 16020725 DOI: 10.1126/science.1112631] [Citation(s) in RCA: 1042] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T. cruzi, T. brucei, and Leishmania major (Tritryp) genomes imply differences from other eukaryotes in DNA repair and initiation of replication and reflect their unusual mitochondrial DNA. Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention.
Collapse
Affiliation(s)
- Najib M El-Sayed
- Department of Parasite Genomics, Institute for Genomic Research, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Barboza M, Duschak VG, Fukuyama Y, Nonami H, Erra-Balsells R, Cazzulo JJ, Couto AS. Structural analysis of the N-glycans of the major cysteine proteinase of Trypanosoma cruzi. FEBS J 2005; 272:3803-15. [PMID: 16045752 DOI: 10.1111/j.1742-4658.2005.04787.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trypanosoma cruzi, the parasitic protozoan that causes Chagas disease, contains a major cysteine proteinase, cruzipain. This lysosomal enzyme bears an unusual C-terminal extension that contains a number of post-translational modifications, and most antibodies in natural and experimental infections are directed against it. In this report we took advantage of UV-MALDI-TOF mass spectrometry in conjunction with peptide N-glycosidase F deglycosylation and high performance anion exchange chromatography analysis to address the structure of the N-linked oligosaccharides present in this domain. The UV-MALDI-TOF MS analysis in the negative-ion mode, using nor-harmane as matrix, allowed us to determine a new striking feature in cruzipain: sulfated high-mannose type oligosaccharides. Sulfated GlcNAc2Man3 to GlcNAc2Man9 species were identified. In accordance, after chemical or enzymatic desulfation, the corresponding signals disappeared. In addition, by UV-MALDI-TOF MS analysis (a) a main population of high-mannose type oligosaccharides was shown in the positive-ion mode, (b) lactosaminic glycans were also identified, among them, structures corresponding to monosialylated species were detected, and (c) as an interesting fact a fucosylated oligosaccharide was also detected. The presence of the deoxy sugar was further confirmed by high performance anion exchange chromatography. In conclusion, the total number of oligosaccharides occurring in cruzipain was shown to be much higher than previous estimates. This constitutes the first report on the presence of sulfated glycoproteins in Trypanosomatids.
Collapse
Affiliation(s)
- Mariana Barboza
- Instituto de Investigaciones Biotecnológicas-INTECH, Universidad Nacional de Gral. San Martin, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
177
|
Atwood JA, Weatherly DB, Minning TA, Bundy B, Cavola C, Opperdoes FR, Orlando R, Tarleton RL. The Trypanosoma cruzi Proteome. Science 2005; 309:473-6. [PMID: 16020736 DOI: 10.1126/science.1110289] [Citation(s) in RCA: 313] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To complement the sequencing of the three kinetoplastid genomes reported in this issue, we have undertaken a whole-organism, proteomic analysis of the four life-cycle stages of Trypanosoma cruzi. Peptides mapping to 2784 proteins in 1168 protein groups from the annotated T. cruzi genome were identified across the four life-cycle stages. Protein products were identified from >1000 genes annotated as "hypothetical" in the sequenced genome, including members of a newly defined gene family annotated as mucin-associated surface proteins. The four parasite stages appear to use distinct energy sources, including histidine for stages present in the insect vectors and fatty acids by intracellular amastigotes.
Collapse
Affiliation(s)
- J A Atwood
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Abate T, Rincón M, Díaz-Bello Z, Spencer L, Rodríguez-Acosta A. A mucin like gene different from the previously reported members of the mucin like gene families is transcribed in Trypanosoma cruzi but not in Trypanosoma rangeli. Mem Inst Oswaldo Cruz 2005; 100:391-5. [PMID: 16113887 DOI: 10.1590/s0074-02762005000400009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trypanosoma cruzi expresses mucin like glycoproteins encoded by a complex multigene family. In this work, we report the transcription in T. cruzi but not in T. rangeli of a mucin type gene automatically annotated by the T. cruzi genome project. The gene showed no nucleotide similarities with the previously reported T. cruzi mucin like genes, although the computational analysis of the deduced protein showed that it has the characteristic features of mucins: a signal peptide sequence, O-glycosylation sites, and glycosylphosphatidylinositol (GPI) anchor sequence. The presence in this gene of N-terminal and C-terminal coding sequences common to other annotated mucin like genes suggests the existence of a new mucin like gene family.
Collapse
Affiliation(s)
- Teresa Abate
- Instituto de Medicina Tropical Dr. Félix Pifano, Caracas 1041-A, DF, Venezuela.
| | | | | | | | | |
Collapse
|
179
|
Añez-Rojas N, Peralta A, Crisante G, Rojas A, Añez N, Ramírez JL, Chiurillo MA. Trypanosoma rangeli expresses a gene of the group II trans-sialidase superfamily. Mol Biochem Parasitol 2005; 142:133-6. [PMID: 15907566 DOI: 10.1016/j.molbiopara.2005.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 03/22/2005] [Indexed: 11/18/2022]
Affiliation(s)
- Néstor Añez-Rojas
- Decanato de Medicina, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Estado Lara, Venezuela
| | | | | | | | | | | | | |
Collapse
|
180
|
Urbina JA. New chemotherapeutic approaches for the treatment of Chagas disease (American Trypanosomiasis). Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.5.661] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
181
|
Kim D, Chiurillo MA, El-Sayed N, Jones K, Santos MRM, Porcile PE, Andersson B, Myler P, da Silveira JF, Ramírez JL. Telomere and subtelomere of Trypanosoma cruzi chromosomes are enriched in (pseudo)genes of retrotransposon hot spot and trans-sialidase-like gene families: the origins of T. cruzi telomeres. Gene 2005; 346:153-61. [PMID: 15716016 DOI: 10.1016/j.gene.2004.10.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2004] [Revised: 09/06/2004] [Accepted: 10/14/2004] [Indexed: 11/23/2022]
Abstract
Here, we sequenced two large telomeric regions obtained from the pathogen protozoan Trypanosoma cruzi. These sequences, together with in silico assembled contigs, allowed us to establish the general features of telomeres and subtelomeres of this parasite. Our findings can be summarized as follows: We confirmed the presence of two types of telomeric ends; subtelomeric regions appeared to be enriched in (pseudo)genes of RHS (retrotransposon hot spot), TS (trans-sialidase)-like proteins, and putative surface protein DGF-1 (dispersed gene family-1). Sequence analysis of the ts-like genes located at the telomeres suggested that T. cruzi chromosomal ends could have been the site for generation of new gp85 variants, an important adhesin molecule involved in the invasion of mammalian cells by T. cruzi. Finally, a mechanism for generation of T. cruzi telomere by chromosome breakage and telomere healing is proposed.
Collapse
Affiliation(s)
- Dong Kim
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu, 862, CEP 04023-062, S. Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Macrae JI, Acosta-Serrano A, Morrice NA, Mehlert A, Ferguson MAJ. Structural characterization of NETNES, a novel glycoconjugate in Trypanosoma cruzi epimastigotes. J Biol Chem 2005; 280:12201-11. [PMID: 15649890 DOI: 10.1074/jbc.m412939200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The unicellular stercorarian protozoan parasite Trypanosoma cruzi is the etiological agent of Chagas' disease. The epimastigote form of the parasite is covered in a dense coat of glycoinositol phospholipids and short glycosylphosphatidylinositol (GPI)-anchored mucinlike molecules. Here, we describe the purification and structural characterization of NETNES, a relatively minor but unusually complex glycoprotein that coexists with these major surface components. The mature glycoprotein is only 13 amino acids in length, with the sequence AQENETNESGSID, and exists in two forms with either four or five post-translational modifications. These are either one or two asparagine-linked oligomannose glycans, two linear alpha-mannose glycans linked to serine residues via phosphodiester linkages, and a GPI membrane anchor attached to the C-terminal aspartic acid residue. The variety and density of post-translational modifications on an unusually small peptide core make NETNES a unique type of glycoprotein. The N-glycans are predominantly Manalpha1-6(Manalpha1-3) Manalpha1-6(Manalpha1-3)Manbeta1-4GlcNAcbeta1-4GlcNAcbeta1-Asn; the phosphate-linked glycans are a mixture of (Manalpha1-2)0-3Man1-P-Ser; and the GPI anchor has the structure Manalpha1-2(ethanolamine phosphate)Manalpha1-2Manalpha1-6Manalpha1-4(2-aminoethylphosphonate-6)GlcNalpha1-6-myo-inositol-1-P-3(sn-1-O-(C16:0)alkyl-2-O-(C16:0)acylglycerol). Four putative NETNES genes were found in the T. cruzi genome data base. These genes are predicted to encode 65-amino acid proteins with cleavable 26-amino acid N-terminal signal peptides and 26-amino acid C-terminal GPI addition signal peptides.
Collapse
MESH Headings
- Algorithms
- Amino Acid Sequence
- Animals
- Asparagine/chemistry
- Aspartic Acid/chemistry
- Carbohydrate Conformation
- Carbohydrate Sequence
- Chromatography
- Chromatography, High Pressure Liquid
- Databases as Topic
- Electrophoresis, Polyacrylamide Gel
- Glycoconjugates/chemistry
- Glycoproteins/chemistry
- Glycoproteins/isolation & purification
- Glycoside Hydrolases/metabolism
- Glycosylphosphatidylinositols/chemistry
- Hydrofluoric Acid/chemistry
- Hydrolysis
- Ions
- Mannose/chemistry
- Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/metabolism
- Mass Spectrometry
- Methylation
- Models, Chemical
- Molecular Sequence Data
- Nitrous Acid/metabolism
- Peptides/chemistry
- Phospholipids/chemistry
- Phosphorylation
- Polysaccharides/chemistry
- Protein Processing, Post-Translational
- Protein Sorting Signals
- Protein Structure, Tertiary
- Protozoan Proteins
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Time Factors
- Trypanosoma cruzi/metabolism
Collapse
Affiliation(s)
- James I Macrae
- Division of Biological Chemistry and Molecular Microbiology, University of Dundee, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
183
|
Tribulatti MV, Mucci J, Van Rooijen N, Leguizamón MS, Campetella O. The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas' disease by reducing the platelet sialic acid contents. Infect Immun 2005; 73:201-7. [PMID: 15618155 PMCID: PMC538983 DOI: 10.1128/iai.73.1.201-207.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strong thrombocytopenia is observed during acute infection with Trypanosoma cruzi, the parasitic protozoan agent of American trypanosomiasis or Chagas' disease. The parasite sheds trans-sialidase, an enzyme able to mobilize the sialyl residues on cell surfaces, which is distributed in blood and is a virulence factor. Since the sialic acid content on the platelet surface is crucial for determining the half-life of platelets in blood, we examined the possible involvement of the parasite-derived enzyme in thrombocytopenia induction. We found that a single intravenous injection of trans-sialidase into naive mice reduced the platelet count by 50%, a transient effect that lasted as long as the enzyme remained in the blood. CD43(-/-) mice were affected to a similar extent. When green fluorescent protein-expressing platelets were treated in vitro with trans-sialidase, their sialic acid content was reduced together with their life span, as determined after transfusion into naive animals. No apparent deleterious effect on the bone marrow was observed. A central role for Kupffer cells in the clearance of trans-sialidase-altered platelets was revealed after phagocyte depletion by administration of clodronate-containing liposomes and splenectomy. Consistent with this, parasite strains known to exhibit more trans-sialidase activity induced heavier thrombocytopenia. Finally, the passive transfer of a trans-sialidase-neutralizing monoclonal antibody to infected animals prevented the clearance of transfused platelets. Results reported here strongly support the hypothesis that the trans-sialidase is the virulence factor that, after depleting the sialic acid content of platelets, induces the accelerated clearance of the platelets that leads to the thrombocytopenia observed during acute Chagas' disease.
Collapse
Affiliation(s)
- María Virginia Tribulatti
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Predio INTI, Edificio 24, Av. General Paz y Constituyentes, B1650WAB San Martín, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
184
|
Agusti R, Mendoza VM, Gallo-Rodriguez C, de Lederkremer RM. Selective sialylation of 2,3-di-O-(β-d-galactopyranosyl)-d-galactose catalyzed by Trypanosoma cruzi trans-sialidase. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.tetasy.2004.11.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
185
|
Neubacher B, Schmidt D, Ziegelmuller P, Thiem J. Preparation of sialylated oligosaccharides employing recombinant trans-sialidase from Trypanosoma cruzi. Org Biomol Chem 2005; 3:1551-6. [PMID: 15827656 DOI: 10.1039/b500042d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Terminally sialylated oligosaccharides were synthesised employing recombinant trans-sialidase from Trypanosoma cruzi. Regio- and stereoselectively Sia-alpha(2-3)-Gal-betaR derivatives could be obtained in respectable yields, using combined chemical and enzymatic methodologies. An array of different disaccharide precursors such as Gal-beta(1-3)-GalNAc-alphaSer/Thr, lactosides and lactosamide derivatives were sialylated and successfully purified by facile isolation procedures. Depending on the acceptor structure isolated, yields for trans-sialylation products were between 20 and 60%.
Collapse
Affiliation(s)
- Bjorn Neubacher
- Institute of Organic Chemistry, University of Hamburg, Germany
| | | | | | | |
Collapse
|
186
|
Bhatia V, Sinha M, Luxon B, Garg N. Utility of the Trypanosoma cruzi sequence database for identification of potential vaccine candidates by in silico and in vitro screening. Infect Immun 2004; 72:6245-54. [PMID: 15501750 PMCID: PMC523045 DOI: 10.1128/iai.72.11.6245-6254.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are abundantly expressed in the infective and intracellular stages of Trypanosoma cruzi and are recognized as antigenic targets by both the humoral and cellular arms of the immune system. Previously, we demonstrated the efficacy of genes encoding GPI-anchored proteins in eliciting partially protective immunity to T. cruzi infection and disease, suggesting their utility as vaccine candidates. For the identification of additional vaccine targets, in this study we screened the T. cruzi expressed sequence tag (EST) and genomic sequence survey (GSS) databases. By applying a variety of web-based genome-mining tools to the analysis of approximately 2,500 sequences, we identified 348 (37.6%) EST and 260 (17.4%) GSS sequences encoding novel parasite-specific proteins. Of these, 19 sequences exhibited the characteristics of secreted and/or membrane-associated GPI proteins. Eight of the selected sequences were amplified to obtain genes TcG1, TcG2, TcG3, TcG4, TcG5, TcG6, TcG7, and TcG8 (TcG1-TcG8) which are expressed in different developmental stages of the parasite and conserved in the genome of a variety of T. cruzi strains. Flow cytometry confirmed the expression of the antigens encoded by the cloned genes as surface proteins in trypomastigote and/or amastigote stages of T. cruzi. When delivered as a DNA vaccine, genes TcG1-TcG6 elicited a parasite-specific antibody response in mice. Except for TcG5, antisera to genes TcG1-TcG6 exhibited trypanolytic activity against the trypomastigote forms of T. cruzi, a property known to correlate with the immune control of T. cruzi. Taken together, our results validate the applicability of bioinformatics in genome mining, resulting in the identification of T. cruzi membrane-associated proteins that are potential vaccine candidates.
Collapse
Affiliation(s)
- Vandanajay Bhatia
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston 77555, USA
| | | | | | | |
Collapse
|
187
|
Abstract
CD8(+) T cells are crucial to the control of Trypanosoma cruzi infection and probably act via multiple mechanisms, the most important being the production of interferon-gamma (IFN-gamma). In the absence of CD8(+) T cells, mice quickly succumb to the infection or develop a more severe chronic disease. Reduced production of IFN-gamma by CD8(+) T cells is also associated with increased severity of chagasic disease in humans. CD8(+) T cells in chronic T. cruzi infection are maintained as effector memory cells, undergo rapid expansion, and demonstrate effector functions following re-exposure to antigen. However, the initial generation of T. cruzi-specific CD8(+) T-cell responses appears to be relatively slow to develop. In addition, the expression of the effector function of the CD8(+) T cells is compromised in some tissues, particularly in muscle. The targets of effective CD8(+) T-cell responses in T. cruzi infection are multiple and varied, and they represent some of the best vaccine candidates described to date. Further analysis of CD8(+) T cells will provide insight into the disease process in T. cruzi infection and should identify methods to assess and enhance immunity to T. cruzi infection and protection from the symptoms of Chagas' disease.
Collapse
Affiliation(s)
- Diana Martin
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
188
|
Tabarés E, Ferguson D, Clark J, Soon PE, Wan KL, Tomley F. Eimeria tenella sporozoites and merozoites differentially express glycosylphosphatidylinositol-anchored variant surface proteins. Mol Biochem Parasitol 2004; 135:123-32. [PMID: 15287593 DOI: 10.1016/j.molbiopara.2004.01.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Little is known about glycosylphosphatidylinositol (GPI)-linked surface proteins in the coccidian parasite Eimeria tenella. Examination of 28,550 EST sequences from the sporozoite and second merozoite developmental stages of the parasite led to the identification of 37 potential GPI-linked variant surface proteins, termed EtSAGs. Analysis of the complete nucleotide sequences of 23 EtSAG genes separated them into two multi-gene families. All the predicted EtSAG proteins (which vary in length from 228 to 271 residues) have an N-terminal hydrophobic signal peptide, a C-terminal hydrophobic GPI signal-anchor peptide and an extracellular domain organised around six cysteine residues, the positions of which are conserved within each family. Using specific antibodies against a small number of recombinant-expressed EtSAGs, the surface localisation and GPI-anchorage of members of both families was confirmed experimentally. Expression of EtSAGs is differentially regulated between the oocyst/sporozoite and second generation merozoite stages, with only one expressed specifically in the sporozoite, a small number expressed in both stages and the majority expressed specifically in the second generation merozoite. Preliminary data support a model in which multiple variant surface antigens are co-expressed on individual parasites, rather than a model of antigenic switching. The biological role(s) of EtSAGs and the effect(s) that expression of a complex repertoire of variant surface antigens by the second generation merozoite has on host adapted immunity are unknown.
Collapse
Affiliation(s)
- Enrique Tabarés
- Division of Molecular Biology, Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK
| | | | | | | | | | | |
Collapse
|
189
|
Buscaglia CA, Campo VA, Di Noia JM, Torrecilhas ACT, De Marchi CR, Ferguson MAJ, Frasch ACC, Almeida IC. The Surface Coat of the Mammal-dwelling Infective Trypomastigote Stage of Trypanosoma cruzi Is Formed by Highly Diverse Immunogenic Mucins. J Biol Chem 2004; 279:15860-9. [PMID: 14749325 DOI: 10.1074/jbc.m314051200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A thick coat of mucin-like glycoproteins covers the surface of Trypanosoma cruzi and plays a crucial role in parasite protection and infectivity and host immunomodulation. The appealing candidate genes coding for the mucins of the mammal-dwelling stages define a heterogeneous family termed TcMUC, which comprises up to 700 members, thus precluding a genetic approach to address the protein core identity. Here, we demonstrate by multiple approaches that the TcMUC II genes code for the majority of trypomastigote mucins. These molecules display a variable, non-repetitive, highly O-glycosylated central domain, followed by a short conserved C terminus and a glycosylphosphatidylinositol anchor. A simultaneous expression of multiple TcMUC II gene products was observed. Moreover, the C terminus of TcMUC II mucins, but not their central domain, elicited strong antibody responses in patients with Chagas' disease and T. crusi infected animals. This highly diverse coat of mucins may represent a refined parasite strategy to elude the mammalian host immune system.
Collapse
Affiliation(s)
- Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Freire T, Robello C, Soulé S, Ferreira F, Osinaga E. Sialyl-Tn antigen expression and O-linked GalNAc-Thr synthesis by Trypanosoma cruzi. Biochem Biophys Res Commun 2004; 312:1309-16. [PMID: 14652017 DOI: 10.1016/j.bbrc.2003.11.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most Trypanosoma cruzi O-glycans are linked to Thr/Ser residues via N-acetylglucosamine. We report that the mucin-type carcinoma-associated sialyl-Tn antigen (NeuAc-GalNAc-O-Ser/Thr) is expressed by T. cruzi. A specific MAb allowed us to localize the antigen on the surface of epimastigotes and to identify reactive components in parasite lysates (32, 60, and 94kDa). In addition, ppGalNAc-T activity was characterized in epimastigotes, and direct evidence was obtained for the in vitro incorporation of GalNAc to a synthetic peptide derived from a T. cruzi mucin. These results add an as yet unknown complexity to the pathways of O-glycan biosynthesis in this protozoan parasite.
Collapse
Affiliation(s)
- Teresa Freire
- Depto. de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
191
|
Ouaissi A, Ouaissi M, Tavares J, Cordeiro-Da-Silva A. Host Cell Phenotypic Variability Induced by Trypanosomatid-Parasite-Released Immunomodulatory Factors: Physiopathological Implications. J Biomed Biotechnol 2004; 2004:167-174. [PMID: 15292583 PMCID: PMC551588 DOI: 10.1155/s1110724304311034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The parasitic protozoa Trypanosoma cruzi and Leishmania sp release a variety of molecules into their mammalian hosts (ESA: excretory-secretory products). The effects of these ESA on the host cell function may participate in the establishment of a successful infection, in which the parasite persists for a sufficient period of time to complete its life cycle. A number of regulatory components or processes originating from the parasite that control or regulate the metabolism and the growth of host cell have been identified. The purpose of the present review is to analyze some of the current data related to the parasite ESA that interfere with the host cell physiology. Special attention is given to members of conserved protein families demonstrating remarkable diversity and plasticity of function (ie, glutathione S-transferases and related molecules; members of the trans-sialidase and mucin family; and members of the ribosomal protein family). The identification of parasite target molecules and the elucidation of their mode of action toward the host cell represents a step forward in efforts aimed at an immunotherapeutic or pharmacological control of parasitic infection.
Collapse
Affiliation(s)
- Ali Ouaissi
- Institut de la Recherche pour le Développement, Unité de Recherche no 008 “Pathogénie des Trypanosomatidae,” Montpellier, France
- *Ali Ouaissi:
| | - Mehdi Ouaissi
- Service de Chirurgie Digestive et Générale, Hôpital Sainte Marguerite, 270 Boulevard de Sainte Marguerite, Marseille, France
| | - Joana Tavares
- Biochemical Laboratory, Faculty of Pharmacy, University of Porto, Portugal
| | | |
Collapse
|
192
|
Todeschini AR, Dias WB, Girard MF, Wieruszeski JM, Mendonça-Previato L, Previato JO. Enzymatically inactive trans-sialidase from Trypanosoma cruzi binds sialyl and beta-galactopyranosyl residues in a sequential ordered mechanism. J Biol Chem 2003; 279:5323-8. [PMID: 14634017 DOI: 10.1074/jbc.m310663200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Host/parasite interaction mediated by carbohydrate/lectin recognition results in the attachment to and invasion of host cells and immunoregulation, enabling parasite replication and establishment of infection. Trypanosoma cruzi, the protozoan responsible for Chagas disease, expresses on its surface a family of enzymatically active and inactive trans-sialidases. The parasite uses the active trans-sialidase for glycoprotein sialylation in an unusual trans-glycosylation reaction. Inactive trans-sialidase is a sialic acid-binding lectin that costimulates host T cells through leucosialin (CD43) engagement. The co-mitogenic effect of trans-sialidase can be selectively abrogated by N-acetyllactosamine, suggesting the presence of an additional carbohydrate binding domain for galactosides, in addition to that for sialic acid. Here we investigated the interaction of inactive trans-sialidase in the presence of beta-galactosides. By using NMR spectroscopy, we demonstrate that inactive trans-sialidase has a beta-galactoside recognition site formed following a conformational switch induced by sialoside binding. Thus prior positioning of a sialyl residue is required for the beta-galactoside interaction. When an appropriate sialic acid-containing molecule is available, both sialoside and beta-galactoside are simultaneously accommodated in the inactive trans-sialidase binding pocket. This is the first report of a lectin recognizing two distinct ligands by a sequential ordered mechanism. This uncommon binding behavior may play an important role in several biological aspects of T. cruzi/host cell interaction and could shed more light into the catalytic mechanism of the sialic acid transfer reaction of enzymatically active trans-sialidase.
Collapse
Affiliation(s)
- Adriane R Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde-Bloco G, Universidade Federal do Rio de Janeiro, 21 944970, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brasil
| | | | | | | | | | | |
Collapse
|
193
|
Alvarez P, Buscaglia CA, Campetella O. Improving protein pharmacokinetics by genetic fusion to simple amino acid sequences. J Biol Chem 2003; 279:3375-81. [PMID: 14612434 DOI: 10.1074/jbc.m311356200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of primary amino acid sequences in protein pharmacokinetics, an issue of relevance in both basic knowledge and biotechnology, was addressed here using as a starting point two repetitive antigens from the hemoflagellate Trypanosoma cruzi that are known to stabilize their associated proteins in the bloodstream. A major drawback to their pharmacological application is that these repetitive sequences are highly immunogenic, being therefore the deletion of this characteristic desirable. Based on sequence homology and epitope mapping analyses, an artificial repetitive sequence (PSTAD) was engineered. This motif was tested by genetic fusion to the C terminus of both the trypanosomal trans-sialidase and the rat tyrosine aminotransferase and found to produce a 4.5-6-fold increase in the half-life of the associated proteins in blood while displaying significantly lower immunogenicity. Residues involved in the stabilizing properties of the novel peptide were mapped by a site-directed mutagenesis approach, allowing us to successfully identify another two motifs. Searching databases for sequences displaying some homology, embedded in proline frameworks and associated to shed virulence factors from unrelated microorganisms, resulted in the identification of four other protein extensions. Remarkably, three of them (from Streptococcus pneumoniae, Actinomyces viscosus, and Escherichia coli) revealed similar pharmacokinetic features, suggesting therefore an analogous evolutionarily acquired mechanism to ensure the biodistribution of their corresponding proteins. Our findings indicate that the insertion of defined motifs into a proline-rich framework constitutes a suitable alternative to construct a chimeric protein with extended half-life in blood.
Collapse
Affiliation(s)
- Paula Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, B1650WAB San Martín, Buenos Aires, Argentina
| | | | | |
Collapse
|
194
|
Cuevas IC, Cazzulo JJ, Sánchez DO. gp63 homologues in Trypanosoma cruzi: surface antigens with metalloprotease activity and a possible role in host cell infection. Infect Immun 2003; 71:5739-49. [PMID: 14500495 PMCID: PMC201075 DOI: 10.1128/iai.71.10.5739-5749.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
gp63 is a highly abundant glycosylphosphatidylinositol (GPI)-anchored membrane protein expressed predominantly in the promastigote but also in the amastigote stage of Leishmania species. In Leishmania spp., gp63 has been implicated in a number of steps in establishment of infection. Here we demonstrate that Trypanosoma cruzi, the etiological agent of Chagas' disease, has a family of gp63 genes composed of multiple groups. Two of these groups, Tcgp63-I and -II, are present as high-copy-number genes. The genomic organization and mRNA expression pattern were specific for each group. Tcgp63-I was widely expressed, while the Tcgp63-II group was scarcely detected in Northern blots, even though it is well represented in the T. cruzi genome. Western blots using sera directed against a synthetic peptide indicated that the Tcgp63-I group produced proteins of approximately 78 kDa, differentially expressed during the life cycle. Immunofluorescence staining and phosphatidylinositol-specific phospholipase C digestion confirmed that Tcgp63-I group members are surface proteins bound to the membrane by a GPI anchor. We also demonstrate the presence of metalloprotease activity which is attributable, at least in part, to Tcgp63-I group. Since antibodies against Tcgp63-I partially blocked infection of Vero cells by trypomastigotes, a possible role for this group in infection is suggested.
Collapse
Affiliation(s)
- Ileana C Cuevas
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de General San Martín, 1650 San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, San Martín, Provincia de Buenos Aires, Argentina
| | | | | |
Collapse
|
195
|
Abstract
The trypanosomiases consist of a group of important animal and human diseases caused by parasitic protozoa of the genus Trypanosoma. In sub-Saharan Africa, the final decade of the 20th century witnessed an alarming resurgence in sleeping sickness (human African trypanosomiasis). In South and Central America, Chagas' disease (American trypanosomiasis) remains one of the most prevalent infectious diseases. Arthropod vectors transmit African and American trypanosomiases, and disease containment through insect control programmes is an achievable goal. Chemotherapy is available for both diseases, but existing drugs are far from ideal. The trypanosomes are some of the earliest diverging members of the Eukaryotae and share several biochemical peculiarities that have stimulated research into new drug targets. However, differences in the ways in which trypanosome species interact with their hosts have frustrated efforts to design drugs effective against both species. Growth in recognition of these neglected diseases might result in progress towards control through increased funding for drug development and vector elimination.
Collapse
Affiliation(s)
- Michael P Barrett
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, G12 8QQ, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
196
|
Roper JR, Ferguson MAJ. Cloning and characterisation of the UDP-glucose 4′-epimerase of Trypanosoma cruzi. Mol Biochem Parasitol 2003; 132:47-53. [PMID: 14563536 DOI: 10.1016/j.molbiopara.2003.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosoma cruzi incorporates galactose into many of its cell-surface glycoconjugates but it is unable to transport this sugar through its hexose transporter. Epimerisation of UDP-glucose to UDP-galactose by UDP-glucose 4'-epimerase may be the only way that the parasites can obtain galactose. Here, we describe cloning the T. cruzi UDP-Glc 4'-epimerase (TcGALE) gene and show that it is functional by complementing an Escherichia coli epimerase-deficient strain. The T. cruzi GALE gene encodes a 42.4 kDa protein and the recombinant protein expressed in E. coli is a homodimer in solution with a specific activity of 3.8 U mg(-1) and K(m) for UDP-Gal of 114 microM. Unlike the human epimerase, T. cruzi UDP-Glc 4'-epimerase is unable to inter-convert UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine. This may explain why T. cruzi initiates O-glycosylation of its abundant GPI-anchored surface mucins via GlcNAcalpha1-O-Thr/Ser rather than the GalNAcalpha1-O-Thr/Ser linkage that is common for mucins from many other eukaryotes.
Collapse
Affiliation(s)
- Janine R Roper
- Division of Biological Chemistry and Molecular Microbiology, The School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | |
Collapse
|
197
|
Pereira-Chioccola VL, Fragata-Filho AA, Levy AMDA, Rodrigues MM, Schenkman S. Enzyme-linked immunoassay using recombinant trans-sialidase of Trypanosoma cruzi can be employed for monitoring of patients with Chagas' disease after drug treatment. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:826-30. [PMID: 12965912 PMCID: PMC193901 DOI: 10.1128/cdli.10.5.826-830.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
trans-Sialidase is an enzyme present on the surface of Trypanosoma cruzi and is an important antigen recognized by sera from patients with Chagas' disease. In the present study we investigated whether the benznidazole treatment of patients with Chagas' disease induced changes in the reactivity of serum toward a recombinant form of trans-sialidase in order to develop an assay for monitoring of patients after treatment for Chagas' disease, which is needed at Chagas' disease control centers. By using an enzyme-linked immunosorbent assay containing a recombinant protein corresponding to the catalytic domain of trans-sialidase, we found that the antigen had a high specificity for sera from untreated patients with Chagas' disease. Sera from healthy individuals or patients with active visceral leishmaniasis minimally cross-reacted with the antigen. Anti-trans-sialidase immunoglobulin was detected in 98% of 151 untreated patients with Chagas' disease. Of these, 124 patients were treated for 60 days with benznidazole (5 mg/kg of body weight/day), and their sera were assayed for reactivity with the recombinant trans-sialidase. By using this methodology, three groups of patients could be established. The first group (60 patients), which was considered to have been successfully treated, showed no reactivity after treatment. The second group (46 patients) still showed signs of infection, and after treatment their sera recognized trans-sialidase, but with reduced titers. The third group (18 patients) was considered to be resistant to drug treatment, and their sera presented identical reactivities before and after treatment. These results suggest that determination of the absence of antibodies to recombinant trans-sialidase in treated patients by the present assay is indicative of treatment success, while the presence of antibodies may indicate the persistence of infection. Therefore, this method may be useful for the diagnosis and monitoring of patients undergoing benznidazole treatment.
Collapse
|
198
|
Soeiro MNC, Mota RA, Batista DGJ, Pereira MCS, Meirelles MNL. Trypanosoma cruzi Infection Impairs the Endocytosis of Zymosan A by Cardiomyocytes. Pathobiology 2003; 70:69-75. [PMID: 12476031 DOI: 10.1159/000067307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We have previously reported that mannose receptors participate and are regulated during Trypanosoma cruzi cardiomyocyte (CM) infection. Our present aim is to characterize the endocytosis of mannosylated ligands like zymosan A (Zy) in uninfected and T. cruzi-infected CM. METHODS CM infected or not by T. cruzi were incubated with Zy for different periods of time and their internalization was analyzed at light microscopy level. Fluorescent approaches were performed by treating Zy with concanavalin-A-TRITC and washing it exhaustively prior to incubation with CM. The cultures were further stained with phalloidin-FITC and DAPI for actin and DNA visualization, respectively. RESULTS CM internalized Zy particles in a time-dependent fashion. The ligand specificity was confirmed by the addition of mannan, which efficiently blocked the Zy endocytosis. Designed fluorescent approaches extended and confirmed the Zy internalization by striated cells. Infected cultures displayed impairment in Zy endocytosis, which seems to be directly related to host infection rates. CONCLUSIONS Altogether, our results show the ability of CM to ingest large particles such as the mannosylated ligand Zy. During their infection with T. cruzi, there is a loss in Zy internalization possibly due to the negative modulation of mannose receptors.
Collapse
Affiliation(s)
- M N C Soeiro
- Laboratório de Biologia Celular, Departamento de Ultra-estrutura e Biologia Celular, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
199
|
Watts AG, Damager I, Amaya ML, Buschiazzo A, Alzari P, Frasch AC, Withers SG. Trypanosoma cruzi trans-sialidase operates through a covalent sialyl-enzyme intermediate: tyrosine is the catalytic nucleophile. J Am Chem Soc 2003; 125:7532-3. [PMID: 12812490 DOI: 10.1021/ja0344967] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modified sialic acid substrates have been used to label Trypanosoma cruzi trans-sialidase, demonstrating that the enzyme catalyses the transfer of sialic acid through a covalent glycosyl-enzyme intermediate, a mechanism common to most retaining glycosidases. Peptic digestion of labeled protein, followed by LC-MS/MS analysis of the digest, identified Tyr342 as the catalytic nucleophile. This is the first such example of a retaining glycosidase utilizing an aryl glycoside intermediate. It is suggested that this alternative choice of nucleophile is a consequence of the chemical nature of sialic acid. A Tyr/Glu couple is invoked to relay charge from a remote glutamic acid, thereby avoiding electrostatic repulsion with the sialic acid carboxylate group.
Collapse
Affiliation(s)
- Andrew G Watts
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., Canada V6T 1Z1
| | | | | | | | | | | | | |
Collapse
|
200
|
Fralish BH, Tarleton RL. Genetic immunization with LYT1 or a pool of trans-sialidase genes protects mice from lethal Trypanosoma cruzi infection. Vaccine 2003; 21:3070-80. [PMID: 12798651 DOI: 10.1016/s0264-410x(03)00121-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genetic immunization with a limited set of genes has been demonstrated to be an effective means of protecting mice from a normally lethal challenge of Trypanosoma cruzi. The goal of this study was to expand the diversity of genes assessed as genetic vaccine candidates. Screening a T. cruzi amastigote cDNA expression library with anti-amastigote monoclonal antibodies resulted in the identification of two genes, the previously identified flagellar Ca(2+) binding protein, FCaBP, and a novel homologue of the adaptin AP-3 complex beta3 subunit, Tcbeta3. A third gene, LYT1, recently identified as a secreted T. cruzi protein involved in cell lysis and infectivity, and was selected. Although peptides from all three genes were found to be targets of cytotoxic T cell responses in chronically infected mice, only immunization with LYT1 protected mice from a normally lethal challenge of T. cruzi. As an alternative to testing individual T. cruzi genes as vaccines, pools of genes from the trans-sialidase (TS) and mucin families were assessed in vaccination studies. Immunization with pools of TS but not mucin genes provided protection against a normally lethal challenge of T. cruzi. This study demonstrates that the ability of T. cruzi proteins to elicit immune responses in infected hosts does not necessarily associate with the ability to induce protection and that both the products of single genes and multi-gene families may serve as effective vaccines.
Collapse
Affiliation(s)
- Bolyn H Fralish
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|