151
|
Takimura T, Kamata K, Fukasawa K, Ohsawa H, Komatani H, Yoshizumi T, Takahashi I, Kotani H, Iwasawa Y. Structures of the PKC-iota kinase domain in its ATP-bound and apo forms reveal defined structures of residues 533-551 in the C-terminal tail and their roles in ATP binding. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:577-83. [PMID: 20445233 DOI: 10.1107/s0907444910005639] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 02/10/2010] [Indexed: 11/11/2022]
Abstract
Protein kinase C (PKC) plays an essential role in a wide range of cellular functions. Although crystal structures of the PKC-theta, PKC-iota and PKC-betaII kinase domains have previously been determined in complexes with small-molecule inhibitors, no structure of a PKC-substrate complex has been determined. In the previously determined PKC-iota complex, residues 533-551 in the C-terminal tail were disordered. In the present study, crystal structures of the PKC-iota kinase domain in its ATP-bound and apo forms were determined at 2.1 and 2.0 A resolution, respectively. In the ATP complex, the electron density of all of the C-terminal tail residues was well defined. In the structure, the side chain of Phe543 protrudes into the ATP-binding pocket to make van der Waals interactions with the adenine moiety of ATP; this is also observed in other AGC kinase structures such as binary and ternary substrate complexes of PKA and AKT. In addition to this interaction, the newly defined residues around the turn motif make multiple hydrogen bonds to glycine-rich-loop residues. These interactions reduce the flexibility of the glycine-rich loop, which is organized for ATP binding, and the resulting structure promotes an ATP conformation that is suitable for the subsequent phosphoryl transfer. In the case of the apo form, the structure and interaction mode of the C-terminal tail of PKC-iota are essentially identical to those of the ATP complex. These results indicate that the protein structure is pre-organized before substrate binding to PKC-iota, which is different from the case of the prototypical AGC-branch kinase PKA.
Collapse
Affiliation(s)
- Tetsuo Takimura
- Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co. Ltd, Okubo-3, Tsukuba, 300-2611 Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Valkova C, Mertens C, Weisheit S, Imhof D, Liebmann C. Activation by Tyrosine Phosphorylation as a Prerequisite for Protein Kinase Cζ to Mediate Epidermal Growth Factor Receptor Signaling to ERK. Mol Cancer Res 2010; 8:783-97. [DOI: 10.1158/1541-7786.mcr-09-0164] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
153
|
Abstract
Nestled at the tip of a branch of the kinome, protein kinase C (PKC) family members are poised to transduce signals emanating from the cell surface. Cell membranes provide the platform for PKC function, supporting the maturation of PKC through phosphorylation, its allosteric activation by binding specific lipids, and, ultimately, promoting the downregulation of the enzyme. These regulatory mechanisms precisely control the level of signaling-competent PKC in the cell. Disruption of this regulation results in pathophysiological states, most notably cancer, where PKC levels are often grossly altered. This review introduces the PKC family and then focuses on recent advances in understanding the cellular regulation of its diacylglycerol-regulated members.
Collapse
Affiliation(s)
- Alexandra C Newton
- Dept. of Pharmacology, Univ. of California at San Diego, La Jolla, 92093, USA.
| |
Collapse
|
154
|
Blouin CM, Prado C, Takane KK, Lasnier F, Garcia-Ocana A, Ferré P, Dugail I, Hajduch E. Plasma membrane subdomain compartmentalization contributes to distinct mechanisms of ceramide action on insulin signaling. Diabetes 2010; 59:600-10. [PMID: 19959757 PMCID: PMC2828662 DOI: 10.2337/db09-0897] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Ceramide is now recognized as a negative regulator of insulin signaling by impairing protein kinase B (PKB)/Akt activation. In different cells, two distinct mechanisms have been proposed to mediate ceramide inhibition of PKB/Akt: one involving atypical protein kinase C zeta (PKCzeta) and the other the protein phosphatase-2 (PP2A). We hypothesized that ceramide action through PKCzeta or PP2A might depend on plasma membrane (PM) structural organization and especially on caveolin-enriched domain (CEM) abundance. RESEARCH DESIGN AND METHODS We have used different PKCzeta mutant constructs or the PP2A inhibitor, okadaic acid (OKA), to selectively inhibit PKCzeta- and PP2A-dependent pathways in cells expressing different caveolin-1 levels and evaluated the impact of insulin and ceramide on PKB/Akt activity in different PM subdomains. RESULTS Although the PKCzeta-mediated negative effect of ceramide on insulin-stimulated PKB/Akt was dominant in adipocytes, a ceramide action through PP2A outside CEMs, prevented by OKA, was also unraveled. To test the importance of CEM to direct ceramide action through the PKCzeta pathway, we treated 3T3-L1 preadipocytes devoid of CEMs with ceramide and we saw a shift of the lipid-negative action on PKB/Akt to a PP2A-mediated mechanism. In fibroblasts with low CEM abundance, the ceramide-activated PP2A pathway dominated, but could be shifted to a ceramide-activated PKCzeta pathway after caveolin-1 overexpression. CONCLUSIONS Our results show that ceramide can switch from a PKCzeta-dependent mechanism to a PP2A pathway, acting negatively on PKB/Akt, and hence revealing a critical role of CEMs of the PM in this process.
Collapse
Affiliation(s)
- Cédric M. Blouin
- Centre de Recherche des Cordeliers, INSERM, UMR-S 872, Paris, France
- Université Pierre et Marie Curie–Paris 6, UMR-S 872, Paris, France
- Université Paris Descartes, UMR-S 872, Paris, France
| | - Cécilia Prado
- Centre de Recherche des Cordeliers, INSERM, UMR-S 872, Paris, France
- Université Pierre et Marie Curie–Paris 6, UMR-S 872, Paris, France
- Université Paris Descartes, UMR-S 872, Paris, France
| | - Karen K. Takane
- Division of Endocrinology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Françoise Lasnier
- Centre de Recherche des Cordeliers, INSERM, UMR-S 872, Paris, France
- Université Pierre et Marie Curie–Paris 6, UMR-S 872, Paris, France
- Université Paris Descartes, UMR-S 872, Paris, France
| | - Adolfo Garcia-Ocana
- Division of Endocrinology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, UMR-S 872, Paris, France
- Université Pierre et Marie Curie–Paris 6, UMR-S 872, Paris, France
- Université Paris Descartes, UMR-S 872, Paris, France
| | - Isabelle Dugail
- Centre de Recherche des Cordeliers, INSERM, UMR-S 872, Paris, France
- Université Pierre et Marie Curie–Paris 6, UMR-S 872, Paris, France
- Université Paris Descartes, UMR-S 872, Paris, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, UMR-S 872, Paris, France
- Université Pierre et Marie Curie–Paris 6, UMR-S 872, Paris, France
- Université Paris Descartes, UMR-S 872, Paris, France
- Corresponding author: Eric Hajduch,
| |
Collapse
|
155
|
Abstract
Networks of signal transducers determine the conversion of environmental cues into cellular actions. Among the main players in these networks are protein kinases, which can acutely and reversibly modify protein functions to influence cellular events. One group of kinases, the protein kinase C (PKC) family, have been increasingly implicated in the organization of signal propagation, particularly in the spatial distribution of signals. Examples of where and how various PKC isoforms direct this tier of signal organization are becoming more evident.
Collapse
|
156
|
Yao H, Hwang JW, Moscat J, Diaz-Meco MT, Leitges M, Kishore N, Li X, Rahman I. Protein kinase C zeta mediates cigarette smoke/aldehyde- and lipopolysaccharide-induced lung inflammation and histone modifications. J Biol Chem 2009; 285:5405-16. [PMID: 20007975 DOI: 10.1074/jbc.m109.041418] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atypical protein kinase C (PKC) zeta is an important regulator of inflammation through activation of the nuclear factor-kappaB (NF-kappaB) pathway. Chromatin remodeling on pro-inflammatory genes plays a pivotal role in cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced abnormal lung inflammation. However, the signaling mechanism whereby chromatin remodeling occurs in CS- and LPS-induced lung inflammation is not known. We hypothesized that PKCzeta is an important regulator of chromatin remodeling, and down-regulation of PKCzeta ameliorates lung inflammation by CS and LPS exposures. We determined the role and molecular mechanism of PKCzeta in abnormal lung inflammatory response to CS and LPS exposures in PKCzeta-deficient (PKCzeta(-/-)) and wild-type mice. Lung inflammatory response was decreased in PKCzeta(-/-) mice compared with WT mice exposed to CS and LPS. Moreover, inhibition of PKCzeta by a specific pharmacological PKCzeta inhibitor attenuated CS extract-, reactive aldehydes (present in CS)-, and LPS-mediated pro-inflammatory mediator release from macrophages. The mechanism underlying these findings is associated with decreased RelA/p65 phosphorylation (Ser(311)) and translocation of the RelA/p65 subunit of NF-kappaB into the nucleus. Furthermore, CS/reactive aldehydes and LPS exposures led to activation and translocation of PKCzeta into the nucleus where it forms a complex with CREB-binding protein (CBP) and acetylated RelA/p65 causing histone phosphorylation and acetylation on promoters of pro-inflammatory genes. Taken together, these data suggest that PKCzeta plays an important role in CS/aldehyde- and LPS-induced lung inflammation through acetylation of RelA/p65 and histone modifications via CBP. These data provide new insights into the molecular mechanisms underlying the pathogenesis of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Treebak JT, Taylor EB, Witczak CA, An D, Toyoda T, Koh HJ, Xie J, Feener EP, Wojtaszewski JFP, Hirshman MF, Goodyear LJ. Identification of a novel phosphorylation site on TBC1D4 regulated by AMP-activated protein kinase in skeletal muscle. Am J Physiol Cell Physiol 2009; 298:C377-85. [PMID: 19923418 DOI: 10.1152/ajpcell.00297.2009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TBC1D4 (also known as AS160) regulates glucose transporter 4 (GLUT4) translocation and glucose uptake in adipocytes and skeletal muscle. Its mode of action involves phosphorylation of serine (S)/threonine (T) residues by upstream kinases resulting in inactivation of Rab-GTPase-activating protein (Rab-GAP) activity leading to GLUT4 mobilization. The majority of known phosphorylation sites on TBC1D4 lie within the Akt consensus motif and are phosphorylated by insulin stimulation. However, the 5'-AMP-activated protein kinase (AMPK) and other kinases may also phosphorylate TBC1D4, and therefore we hypothesized the presence of additional phosphorylation sites. Mouse skeletal muscles were contracted or stimulated with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), and muscle lysates were subjected to mass spectrometry analyses resulting in identification of novel putative phosphorylation sites on TBC1D4. The surrounding amino acid sequence predicted that S711 would be recognized by AMPK. Using a phosphospecific antibody against S711, we found that AICAR and contraction increased S711 phosphorylation in mouse skeletal muscle, and this increase was abolished in muscle-specific AMPKalpha2 kinase-dead transgenic mice. Exercise in human vastus lateralis muscle also increased TBC1D4 S711 phosphorylation. Recombinant AMPK, but not Akt1, Akt2, or PKCzeta, phosphorylated purified muscle TBC1D4 on S711 in vitro. Interestingly, S711 was also phosphorylated in response to insulin in an Akt2- and rapamycin-independent, but a wortmannin-sensitive, manner, suggesting this site is regulated by one or more additional upstream kinases. Despite increased S711 phosphorylation with AICAR, contraction, and insulin, mutation of S711 to alanine did not alter glucose uptake in response to these stimuli. S711 is a novel TBC1D4 phosphorylation site regulated by AMPK in skeletal muscle.
Collapse
Affiliation(s)
- Jonas T Treebak
- Joslin Diabetes Center, Section on Metabolism, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Basu A, Sridharan S, Persaud S. Regulation of protein kinase C delta downregulation by protein kinase C epsilon and mammalian target of rapamycin complex 2. Cell Signal 2009; 21:1680-5. [PMID: 19632318 PMCID: PMC2748237 DOI: 10.1016/j.cellsig.2009.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/13/2009] [Indexed: 11/12/2022]
Abstract
Phosphorylation and dephosphorylation of PKCs can regulate their activity, stability and function. We have previously shown that downregulation of PKC delta by tumor promoting phorbol esters was compromised when HeLa cells acquired resistance to cisplatin (HeLa/CP). In the present study, we have used these cells to understand the mechanism of PKC delta downregulation. A brief treatment of HeLa cells with phorbol 12,13-dibutyrate (PDBu) induced phosphorylation of PKC delta at the activation loop (Thr505), turn motif (Ser643), hydrophobic motif (Ser662) and Tyr-311 sites to a greater extent in HeLa/CP cells compared to HeLa cells. Prolonged treatment with PDBu led to downregulation of PKC delta in HeLa but not in HeLa/CP cells. The PKC inhibitor Gö 6983 inhibited PDBu-induced downregulation of PKC delta, decreased Thr505 phosphorylation and increased PKC delta tyrosine phosphorylation at Tyr-311 site. However, knockdown of c-Abl, c-Src, Fyn and Lyn had little effect on PKC delta downregulation and Tyr311 phosphorylation. Pretreatment with the phosphatidylinositol 3-kinase inhibitor Ly294002 and mTOR inhibitor rapamycin restored the ability of PDBu to downregulate PKC delta in HeLa/CP cells. Knockdown of mTOR and rictor but not raptor facilitated PKC delta downregulation. Depletion of PKC epsilon also enhanced PKC delta downregulation by PDBu. These results suggest that downregulation of PKC delta is regulated by PKC epsilon and mammalian target of rapamycin complex 2 (mTORC2).
Collapse
Affiliation(s)
- Alakananda Basu
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA.
| | | | | |
Collapse
|
159
|
Insulin stimulates the phosphorylation of the exocyst protein Sec8 in adipocytes. Biosci Rep 2009; 29:229-35. [PMID: 19006485 DOI: 10.1042/bsr20080162] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The signal transduction pathway leading from the insulin receptor to stimulate the fusion of vesicles containing the glucose transporter GLUT4 with the plasma membrane in adipocytes and muscle cells is not completely understood. Current evidence suggests that in addition to the Rab GTPase-activating protein AS160, at least one other substrate of Akt (also called protein kinase B), which is as yet unidentified, is required. Sec8 is a component of the exocyst complex that has been previously implicated in GLUT4 trafficking. In the present study, we report that insulin stimulates the phosphorylation of Sec8 on Ser-32 in 3T3-L1 adipocytes. On the basis of the sequence around Ser-32 and the finding that phosphorylation is inhibited by the PI3K (phosphoinositide 3-kinase) inhibitor wortmannin, it is likely that Akt is the kinase for Ser-32. We examined the possible role of Ser-32 phosphorylation in the insulin-stimulated trafficking of GLUT4, as well as the TfR (transferrin receptor), to the plasma membrane by determining the effects of overexpression of the non-phosphorylatable S32A mutant of Sec8 and the phosphomimetic S32E mutant of Sec8. Substantial overexpression of both mutants had no effect on the amount of GLUT4 or TfR at the cell surface in either the untreated or insulin-treated states. These results indicate that insulin-stimulated phosphorylation of Sec8 is not part of the mechanism by which insulin enhances the fusion of vesicles with the plasma membrane.
Collapse
|
160
|
Kim S, Gailite I, Moussian B, Luschnig S, Goette M, Fricke K, Honemann-Capito M, Grubmüller H, Wodarz A. Kinase-activity-independent functions of atypical protein kinase C in Drosophila. J Cell Sci 2009; 122:3759-71. [PMID: 19789180 DOI: 10.1242/jcs.052514] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polarity of many cell types is controlled by a protein complex consisting of Bazooka/PAR-3 (Baz), PAR-6 and atypical protein kinase C (aPKC). In Drosophila, the Baz-PAR-6-aPKC complex is required for the control of cell polarity in the follicular epithelium, in ectodermal epithelia and neuroblasts. aPKC is the main signaling component of this complex that functions by phosphorylating downstream targets, while the PDZ domain proteins Baz and PAR-6 control the subcellular localization and kinase activity of aPKC. We compared the mutant phenotypes of an aPKC null allele with those of four novel aPKC alleles harboring point mutations that abolish the kinase activity or the binding of aPKC to PAR-6. We show that these point alleles retain full functionality in the control of follicle cell polarity, but produce strong loss-of-function phenotypes in embryonic epithelia and neuroblasts. Our data, combined with molecular dynamics simulations, show that the kinase activity of aPKC and its ability to bind PAR-6 are only required for a subset of its functions during development, revealing tissue-specific differences in the way that aPKC controls cell polarity.
Collapse
Affiliation(s)
- Soya Kim
- Department of Stem Cell Biology, DFG Research Center for Molecular Physiology of the Brain, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Sacco A, Morcavallo A, Pandini G, Vigneri R, Belfiore A. Differential signaling activation by insulin and insulin-like growth factors I and II upon binding to insulin receptor isoform A. Endocrinology 2009; 150:3594-602. [PMID: 19443570 DOI: 10.1210/en.2009-0377] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A variety of human malignancies overexpresses isoform A of the insulin receptor (IR-A) and produces IGFs (IGF-I and/or IGF-II). IR-A binds IGF-II with high affinity (although 4-fold lower than that for insulin), whereas it binds IGF-I with low affinity (approximately 30-fold lower than that for insulin). However, in engineered cells expressing only the IR-A, but not IGF-I receptor (R(-)/IR-A cells), IGF-II is a more potent mitogen than insulin. Herein, we investigated downstream signaling of IGF-II, IGF-I, and insulin in R(-)/IR-A cells to better understand their role in cell growth. We found that despite inducing a lower IR-A autophosphorylation than insulin, IGF-II was more potent than insulin for activating p70S6 kinase (p70S6K) and approximately equally potent in activating the early peaks of ERK1/2 and Akt. However, ERK1/2 activation persisted longer after IGF-II, whereas Akt activation persisted longer after insulin. Therefore, cells stimulated with IGF-II had a higher p70S6K/Akt activation ratio than cells stimulated with insulin. Remarkably, IGF-I also elicited a similar signaling pattern as IGF-II, despite inducing minimal IR-A autophosphorylation. ERK1/2 and protein kinase C seem to be involved in the preferential stimulation of p70S6K by IGFs. In conclusion, our study has identified a novel complex role of IR-A, which not only elicits a unique signaling pattern after IGF-II binding but also induces substantial downstream signaling upon binding to the low-affinity ligand IGF-I. These results underline the role of IR-A in physiology and disease.
Collapse
Affiliation(s)
- Antonella Sacco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | | | | | | | | |
Collapse
|
162
|
Keshwani MM, Gao X, Harris TK. Mechanism of PDK1-catalyzed Thr-229 phosphorylation of the S6K1 protein kinase. J Biol Chem 2009; 284:22611-24. [PMID: 19570988 DOI: 10.1074/jbc.m109.032177] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PDK1 (phosphoinositide-dependent protein kinase-1) catalyzes phosphorylation of Thr-229 in the T-loop of S6K1 alpha II (the 70-kDa 40 S ribosomal protein S6 kinase-1 alpha II isoform), and Thr-229 phosphorylation is synergistic with C-terminal Thr-389 phosphorylation to activate S6K1 alpha II regulatory functions in protein translation preinitiation complexes. Unlike its common AGC kinase subfamily member S6K1 alpha II, PDK1 does not contain the synergistic C-terminal phosphorylation site, and it has been proposed that phosphorylated Thr-389 in S6K1 alpha II may initially serve to trans-activate PDK1-catalyzed Thr-229 phosphorylation. Herein, we report direct binding and kinetic studies that showed PDK1 to exhibit nearly equal binding affinities and steady-state kinetic turnover numbers toward native (K(d)(S6K1) = 1.2 microm and k(cat) = 1.1 s(-1)) and the phosphomimicking T389E mutant S6K1 alpha II (K(d)(S6K1) = 1.5 microm and k(cat) = 1.2 s(-1)), although approximately 2-fold enhanced specificity was displayed for the T389E mutant (k(cat)/K(m)(S6K1) = 0.08 microm(-1) s(-1) compared with 0.04 microm(-1) s(-1)). Considering that transient kinetic binding studies showed all nucleotide and S6K1 alpha II substrates and products to rapidly associate with PDK1 (k(on) = 1-6 mum(-1) s(-1)), it was concluded that positioning a negative charge at residue Thr-389 reduced approximately 2-fold the occurrence of nonproductive binding events that precede formation of a reactive ternary complex for Thr-229 phosphorylation. In addition, steady-state kinetic data were most simply accommodated by an Ordered Bi Bi mechanism with competitive substrate inhibition, where (i) the initially formed PDK1-ATP complex phosphorylates the nucleotide-free form of the S6K1 alpha II kinase and (ii) initial binding of S6K1 alpha II precludes ATP binding to PDK1.
Collapse
Affiliation(s)
- Malik M Keshwani
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, USA
| | | | | |
Collapse
|
163
|
Bougie JK, Lim T, Farah CA, Manjunath V, Nagakura I, Ferraro GB, Sossin WS. The atypical protein kinase C in Aplysia can form a protein kinase M by cleavage. J Neurochem 2009; 109:1129-43. [PMID: 19302474 PMCID: PMC5154740 DOI: 10.1111/j.1471-4159.2009.06045.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vertebrates, a brain-specific transcript from the atypical protein kinase C (PKC) zeta gene encodes protein kinase M (PKM) zeta, a constitutively active kinase implicated in the maintenance of synaptic plasticity and memory. We have cloned the atypical PKC from Aplysia, PKC Apl III. We did not find a transcript in Aplysia encoding PKMzeta, and evolutionary analysis of atypical PKCs suggests formation of this transcript is restricted to vertebrates. Instead, over-expression of PKC Apl III in Aplysia sensory neurons leads to production of a PKM fragment of PKC Apl III. This cleavage was induced by calcium and blocked by calpain inhibitors. Moreover, nervous system enriched spliced forms of PKC Apl III show enhanced cleavage. PKC Apl III could also be activated through phosphorylation downstream of phosphoinositide 3-kinase. We suggest that PKM forms of atypical PKCs play a conserved role in memory formation, but the mechanism of formation of these kinases has changed over evolution.
Collapse
Affiliation(s)
- Joanna K. Bougie
- Department of Psychology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Travis Lim
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Carole Abi Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Varsha Manjunath
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ikue Nagakura
- Department of Psychology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Gino B. Ferraro
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S. Sossin
- Department of Psychology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
164
|
Roffey J, Rosse C, Linch M, Hibbert A, McDonald NQ, Parker PJ. Protein kinase C intervention: the state of play. Curr Opin Cell Biol 2009; 21:268-79. [PMID: 19233632 DOI: 10.1016/j.ceb.2009.01.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 01/15/2009] [Indexed: 12/21/2022]
Abstract
Intervention in protein kinase C (PKC) has a chequered history, partly because of the poor selectivity of many inhibitors and partly a reflection of the sometimes antagonistic action of related PKC isoforms. Recent advances in targeting PKC isoforms have come from structural work on isolated kinase domains that have provided opportunities to drive selectivity through structure-based avenues. The promise of isoform selective inhibitors and the rationale for their development are discussed in the broader context of the PKC inhibitor arsenal.
Collapse
Affiliation(s)
- Jon Roffey
- Discovery Laboratory, Cancer Research Technology Limited, Wolfson Institute for Biomedical Research, London, UK
| | | | | | | | | | | |
Collapse
|
165
|
|
166
|
The atypical kinase Cdk5 is activated by insulin, regulates the association between GLUT4 and E-Syt1, and modulates glucose transport in 3T3-L1 adipocytes. Proc Natl Acad Sci U S A 2009; 106:4249-53. [PMID: 19255425 DOI: 10.1073/pnas.0900218106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Here, we report that Cdk5 activation is stimulated by insulin and plays a key role in the regulation of GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Insulin activation of Cdk5 requires PI3K signaling. Insulin-activated Cdk5 phosphorylates E-Syt1, a 5 C2-domain protein-related to the synaptotagmins that is induced during adipocyte differentiation. Phosphorylated E-Syt1 associates with GLUT4, an event inhibited by the Cdks inhibitor roscovitine. Cdk5 silencing inhibits glucose uptake by 3T3-L1 adipocytes. These studies elucidate a previously unknown activity of Cdk5 and demonstrate the involvement of this kinase in the regulation of insulin-dependent glucose uptake in adipocytes.
Collapse
|
167
|
Gould CM, Kannan N, Taylor SS, Newton AC. The chaperones Hsp90 and Cdc37 mediate the maturation and stabilization of protein kinase C through a conserved PXXP motif in the C-terminal tail. J Biol Chem 2009; 284:4921-35. [PMID: 19091746 PMCID: PMC2643500 DOI: 10.1074/jbc.m808436200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/16/2008] [Indexed: 12/29/2022] Open
Abstract
The life cycle of protein kinase C (PKC) is tightly controlled by mechanisms that mature the enzyme, sustain the activation-competent enzyme, and degrade the enzyme. Here we show that a conserved PXXP motif (Kannan, N., Haste, N., Taylor, S. S., and Neuwald, A. F. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 1272-1277), in the C-terminal tail of AGC (c-AMP-dependent protein kinase/protein kinase G/protein kinase C) kinases, controls the processing phosphorylation of conventional and novel PKC isozymes, a required step in the maturation of the enzyme into a signaling-competent species. Mutation of both Pro-616 and Pro-619 to Ala in the conventional PKC betaII abolishes the phosphorylation and activity of the kinase. Co-immunoprecipitation studies reveal that conventional and novel, but not atypical, PKC isozymes bind the chaperones Hsp90 and Cdc37 through a PXXP-dependent mechanism. Inhibitors of Hsp90 and Cdc37 significantly reduce the rate of processing phosphorylation of PKC. Of the two C-terminal sites processed by phosphorylation, the hydrophobic motif, but not the turn motif, is regulated by Hsp90. Overlay of purified Hsp90 onto a peptide array containing peptides covering the catalytic domain of PKC betaII identified regions surrounding the PXXP segment, but not the PXXP motif itself, as major binding determinants for Hsp90. These Hsp90-binding regions, however, are tethered to the C-terminal tail via a "molecular clamp" formed between the PXXP motif and a conserved Tyr (Tyr-446) in the alphaE-helix. Disruption of the clamp by mutation of the Tyr to Ala recapitulates the phosphorylation defect of mutating the PXXP motif. These data are consistent with a model in which a molecular clamp created by the PXXP motif in the C-terminal tail and determinants in the alphaE-helix of the catalytic domain allows the chaperones Hsp90 and Cdc37 to bind newly synthesized PKC, a required event in the processing of PKC by phosphorylation.
Collapse
Affiliation(s)
- Christine M Gould
- Pharmacology Department, University of California, San Diego, La Jolla, California 92039-0721, USA
| | | | | | | |
Collapse
|
168
|
PKC isoenzymes differentially modulate the effect of thrombin on MAPK-dependent RPE proliferation. Biosci Rep 2009; 28:307-17. [PMID: 18636965 DOI: 10.1042/bsr20080083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Thrombin signalling through PAR (protease-activated receptor)-1 is involved in cellular processes, such as proliferation, differentiation and cell survival. Following traumatic injury to the eye, thrombin signalling may participate in disorders, such as PVR (proliferative vitreoretinopathy), a human eye disease characterized by the uncontrolled proliferation, transdifferentiation and migration of otherwise quiescent RPE (retinal pigment epithelium) cells. PARs activate the Ras/Raf/MEK/ERK MAPK pathway (where ERK is extracellular-signal-regulated kinase, MAPK is mitogen-activated protein kinase and MEK is MAPK/ERK kinase) through the activation of G(alpha) and G(betagamma) heterotrimeric G-proteins, and the downstream stimulation of the PLC (phospholipase C)-beta/PKC (protein kinase C) and PI3K (phosphoinositide 3-kinase) signalling axis. In the present study, we examined the molecular signalling involved in thrombin-induced RPE cell proliferation, using rat RPE cells in culture as a model system for PVR pathogenesis. Our results showed that thrombin activation of PAR-1 induces RPE cell proliferation through Ras-independent activation of the Raf/MEK/ERK1/2 MAPK signalling cascade. Pharmacological analysis revealed that the activation of 'conventional' PKC isoforms is essential for proliferation, although thrombin-induced phosphorylation of ERK1/2 requires the activation of atypical PKCzeta by PI3K. Consistently, thrombin-induced ERK1/2 activation and RPE cell proliferation were prevented completely by PI3K or PKCzeta inhibition. These results suggest that thrombin induces RPE cell proliferation by joint activation of PLC-dependent and atypical PKC isoforms and the Ras-independent downstream stimulation of the Raf/MEK/ERK1/2 MAPK cascade. The present study is the first report demonstrating directly thrombin-induced ERK phosphorylation in the RPE, and the involvement of atypical PKCzeta in this process.
Collapse
|
169
|
Kwon J, Stephan S, Mukhopadhyay A, Muders MH, Dutta SK, Lau JS, Mukhopadhyay D. Insulin receptor substrate-2 mediated insulin-like growth factor-I receptor overexpression in pancreatic adenocarcinoma through protein kinase Cdelta. Cancer Res 2009; 69:1350-7. [PMID: 19190347 PMCID: PMC2705142 DOI: 10.1158/0008-5472.can-08-1328] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pancreatic adenocarcinoma (PCA) is an almost invariably fatal disease. Recently, it has been shown by several groups as well as ours that insulin-like growth factor-I receptor (IGF-IR) overexpression is related to higher proliferation, survival, angiogenesis, and highly invasive pancreatic tumors. Several studies have been carried out to understand the pathways that lead to growth factor-mediated signaling, but the molecular mechanism of receptor overexpression remains mostly unknown. Treatment with neutralizing antibodies or a specific kinase inhibitor against IGF-IR could block the receptor expression in PCA cells. Furthermore, we also showed that insulin receptor substrate (IRS)-2, but not IRS-1, is involved in regulation of IGF-IR expression, which is most likely not transcriptional control. By blocking mammalian target of rapamycin (mTOR) pathway with rapamycin as well as other biochemical analysis, we defined a unique regulation of IGF-IR expression mediated by protein kinase Cdelta (PKCdelta) and mTOR pathway. Moreover, we showed that the down-regulation of IGF-IR expression due to IRS-2 small interfering RNA can be compensated by overexpression of dominant-active mutant of PKCdelta, suggesting that PKCdelta is downstream of IGF-IR/IRS-2 axis. Overall, these findings suggest a novel regulatory role of IRS-2 on the expression of IGF-IR through PKCdelta and mTOR in pancreatic cancer cells.
Collapse
Affiliation(s)
| | | | - Ananya Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Michael H. Muders
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Shamit K. Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Julie S. Lau
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
170
|
Sajan MP, Standaert ML, Nimal S, Varanasi U, Pastoor T, Mastorides S, Braun U, Leitges M, Farese RV. The critical role of atypical protein kinase C in activating hepatic SREBP-1c and NFkappaB in obesity. J Lipid Res 2009; 50:1133-45. [PMID: 19202134 DOI: 10.1194/jlr.m800520-jlr200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Obesity is frequently associated with systemic insulin resistance, glucose intolerance, and hyperlipidemia. Impaired insulin action in muscle and paradoxical diet/insulin-dependent overproduction of hepatic lipids are important components of obesity, but their pathogenesis and inter-relationships between muscle and liver are uncertain. We studied two murine obesity models, moderate high-fat-feeding and heterozygous muscle-specific PKC-lambda knockout, in both of which insulin activation of atypical protein kinase C (aPKC) is impaired in muscle, but conserved in liver. In both models, activation of hepatic sterol receptor element binding protein-1c (SREBP-1c) and NFkappaB (nuclear factor-kappa B), major regulators of hepatic lipid synthesis and systemic insulin resistance, was chronically increased in the fed state. In support of a critical mediatory role of aPKC, in both models, inhibition of hepatic aPKC by adenovirally mediated expression of kinase-inactive aPKC markedly diminished diet/insulin-dependent activation of hepatic SREBP-1c and NFkappaB, and concomitantly improved hepatosteatosis, hypertriglyceridemia, hyperinsulinemia, and hyperglycemia. Moreover, in high-fat-fed mice, impaired insulin signaling to IRS-1-dependent phosphatidylinositol 3-kinase, PKB/Akt and aPKC in muscle and hyperinsulinemia were largely reversed. In obesity, conserved hepatic aPKC-dependent activation of SREBP-1c and NFkappaB contributes importantly to the development of hepatic lipogenesis, hyperlipidemia, and systemic insulin resistance. Accordingly, hepatic aPKC is a potential target for treating obesity-associated abnormalities.
Collapse
Affiliation(s)
- Mini P Sajan
- James A. Haley Veterans Hospital, Tampa, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Jordan PM, Ojeda LD, Thonhoff JR, Gao J, Boehning D, Yu Y, Wu P. Generation of spinal motor neurons from human fetal brain-derived neural stem cells: role of basic fibroblast growth factor. J Neurosci Res 2009; 87:318-32. [PMID: 18803285 PMCID: PMC2738861 DOI: 10.1002/jnr.21856] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neural stem cells (NSCs) have some specified properties but are generally uncommitted and so can change their fate after exposure to environmental cues. It is unclear to what extent this NSC plasticity can be modulated by extrinsic cues and what are the molecular mechanisms underlying neuronal fate determination. Basic fibroblast growth factor (bFGF) is a well-known mitogen for proliferating NSCs. However, its role in guiding stem cells for neuronal subtype specification is undefined. Here we report that in-vitro-expanded human fetal forebrain-derived NSCs can generate cholinergic neurons with spinal motor neuron properties when treated with bFGF within a specific time window. bFGF induces NSCs to express the motor neuron marker Hb9, which is blocked by specific FGF receptor inhibitors and bFGF neutralizing antibodies. This development of spinal motor neuron properties is independent of selective proliferation or survival and does not require high levels of MAPK activation. Thus our study indicates that bFGF can play an important role in modulating plasticity and neuronal fate of human NSCs and presumably has implications for exploring the full potential of brain NSCs for clinical applications, particularly in spinal motor neuron regeneration.
Collapse
Affiliation(s)
- Paivi M. Jordan
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555–0620, USA
| | - Luis D. Ojeda
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555–0620, USA
| | - Jason R. Thonhoff
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555–0620, USA
| | - Junling Gao
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555–0620, USA
| | - Darren Boehning
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555–0620, USA
| | - Yongjia Yu
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas 77555–0620, USA
| | - Ping Wu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555–0620, USA
| |
Collapse
|
172
|
Zheng Z, Keifer J. Protein kinase C-dependent and independent signaling pathways regulate synaptic GluR1 and GluR4 AMPAR subunits during in vitro classical conditioning. Neuroscience 2008; 156:872-84. [PMID: 18809472 PMCID: PMC2584873 DOI: 10.1016/j.neuroscience.2008.08.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 11/19/2022]
Abstract
Protein kinase C (PKC) signal transduction pathways have been implicated in mechanisms of synaptic plasticity and learning, however, the roles of the different PKC family isoforms remain to be clarified. Previous studies showed that NMDAR-mediated trafficking of GluR4-containing AMPARs supports conditioning and that the mitogen-activated protein kinases (MAPKs) have a central role in the synaptic delivery of GluR4 subunits. Here, an in vitro model of classical conditioning in pond turtles, Pseudemys scripta elegans, was used to assess the role of PKC isoforms in mechanisms underlying this form of learning. We show that the PKC antagonists chelerythrine and bisindolylmaleimide I attenuated conditioned response (CR) acquisition and expression, as did the PKCzeta pseudosubstrate peptide inhibitor ZIP. Analysis of protein expression revealed that PKCzeta is activated in early stages of conditioning followed shortly afterward by increased levels of PKCalpha/beta and activation of ERK MAPK. Data also suggest that PKCzeta is upstream from and activates ERK. Finally, protein localization studies using confocal imaging indicate that inhibitors of ERK, but not PKC, suppress colocalization of GluR1 with synaptophysin while inhibitors of PKC and ERK attenuate colocalization of GluR4 with synaptophysin. Together, these data suggest that acquisition of conditioning proceeds by two stages of AMPAR trafficking. The first is PKC-independent and ERK-dependent synaptic delivery of GluR1 subunits to activate silent synapses. This is followed by PKC-dependent and ERK-dependent synthesis and delivery of GluR4 subunits that supports the acquisition of CRs. Therefore, there is a selective role for PKC and MAPK signaling pathways in multistep AMPAR trafficking that mediates acquisition of classical conditioning.
Collapse
Affiliation(s)
- Z Zheng
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, SD 57069, USA
| | | |
Collapse
|
173
|
Sui L, Wang J, Li BM. Role of the phosphoinositide 3-kinase-Akt-mammalian target of the rapamycin signaling pathway in long-term potentiation and trace fear conditioning memory in rat medial prefrontal cortex. Learn Mem 2008; 15:762-76. [DOI: 10.1101/lm.1067808] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
174
|
Borges L, Bigarella CL, Baratti MO, Crosara-Alberto DP, Joazeiro PP, Franchini KG, Costa FF, Saad STO. ARHGAP21 associates with FAK and PKCζ and is redistributed after cardiac pressure overload. Biochem Biophys Res Commun 2008; 374:641-6. [DOI: 10.1016/j.bbrc.2008.07.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/15/2008] [Indexed: 11/26/2022]
|
175
|
Dwivedi Y, Rizavi HS, Teppen T, Zhang H, Mondal A, Roberts RC, Conley RR, Pandey GN. Lower phosphoinositide 3-kinase (PI 3-kinase) activity and differential expression levels of selective catalytic and regulatory PI 3-kinase subunit isoforms in prefrontal cortex and hippocampus of suicide subjects. Neuropsychopharmacology 2008; 33:2324-40. [PMID: 18075493 DOI: 10.1038/sj.npp.1301641] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphoinositide 3 (PI 3)-kinase is one of the key signaling enzymes that participates in a myriad of physiological functions in brain and is utilized by neurotrophins to mediate neuronal plasticity, cell survival, and inhibition of apoptosis for several neuronal subtypes. Our recent demonstration that expression of neurotrophic factors and activation of the receptor tyrosine kinase B are significantly altered in postmortem brain of suicide subjects led us to examine whether suicide brain is associated with alterations in PI 3-kinase signaling. In prefrontal cortex (PFC), hippocampus, and cerebellum of suicide (n=28) and nonpsychiatric control (n=21) subjects we examined catalytic activation of PI 3-kinase, and mRNA and protein levels of regulatory (p85alpha, p85beta) and catalytic (p110alpha, p110beta) subunits of PI 3-kinase. It was observed that the catalytic activity of PI 3-kinase was significantly reduced in PFC and hippocampus of suicide subjects compared with nonpsychiatric control subjects. Competitive PCR analysis revealed significantly reduced mRNA expression of p85beta and p110alpha and increased expression of p85alpha subunit isoforms in PFC and hippocampus of suicide subjects. Alterations in these catalytic and regulatory subunits were accompanied by changes in their respective protein levels. These changes were not present in cerebellum of suicide subjects. Also, these changes were present in all suicide subjects irrespective of psychiatric diagnosis. Our findings of reduced activation and altered expression of specific PI 3-kinase regulatory and catalytic subunit isoforms demonstrate abnormalities in this signaling pathway in postmortem brain of suicide subjects and suggest possible involvement of aberrant PI 3-kinase signaling in the pathogenic mechanisms of suicide.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
Protein kinase C (PKC) is a family of kinases that plays diverse roles in many cellular functions, notably proliferation, differentiation, and cell survival. PKC is processed by phosphorylation and regulated by cofactor binding and subcellular localization. Extensive detail is available on the molecular mechanisms that regulate the maturation, activation, and signaling of PKC. However, less information is available on how signaling is terminated both from a global perspective and isozyme-specific differences. To target PKC therapeutically, various ATP-competitive inhibitors have been developed, but this method has problems with specificity. One possible new approach to developing novel, specific therapeutics for PKC would be to target the signaling termination pathways of the enzyme. This review focuses on the new developments in understanding how PKC signaling is terminated and how current drug therapies as well as information obtained from the recent elucidation of various PKC structures and down-regulation pathways could be used to develop novel and specific therapeutics for PKC.
Collapse
Affiliation(s)
- Christine M. Gould
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0721
| | - Alexandra C. Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0721
| |
Collapse
|
177
|
Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 2008; 27:1919-31. [PMID: 18566587 PMCID: PMC2486275 DOI: 10.1038/emboj.2008.119] [Citation(s) in RCA: 497] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 05/28/2008] [Indexed: 02/07/2023] Open
Abstract
Protein kinase C (PKC) is involved in a wide array of cellular processes such as cell proliferation, differentiation and apoptosis. Phosphorylation of both turn motif (TM) and hydrophobic motif (HM) are important for PKC function. Here, we show that the mammalian target of rapamycin complex 2 (mTORC2) has an important function in phosphorylation of both TM and HM in all conventional PKCs, novel PKCepsilon as well as Akt. Ablation of mTORC2 components (Rictor, Sin1 or mTOR) abolished phosphorylation on the TM of both PKCalpha and Akt and HM of Akt and decreased HM phosphorylation of PKCalpha. Interestingly, the mTORC2-dependent TM phosphorylation is essential for PKCalpha maturation, stability and signalling. Our study demonstrates that mTORC2 is involved in post-translational processing of PKC by facilitating TM and HM phosphorylation and reveals a novel function of mTORC2 in cellular regulation.
Collapse
Affiliation(s)
- Tsuneo Ikenoue
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Qian Yang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoming Zhou
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Kun-Liang Guan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, 3855 Health Sciences Dr., La Jolla, CA 92093-0815, USA. Tel.: +1 858 822 7945; Fax: +1 858 534 7628; E-mail:
| |
Collapse
|
178
|
Tang S, Xiao V, Wei L, Whiteside CI, Kotra LP. Protein kinase C isozymes and their selectivity towards ruboxistaurin. Proteins 2008; 72:447-60. [PMID: 18214957 DOI: 10.1002/prot.21942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein kinase C (PKC) isozymes are an important class of enzymes in cell signaling and as drug targets. They are involved in specific pathways and have selectivity towards certain ligands, despite their high sequence similarities. Ruboxistaurin is a specific inhibitor of PKC-beta. To understand the molecular determinants for the selectivity of ruboxistaurin, we derived the three-dimensional structures of the kinase domains of PKC-alpha, -betaI, and -zeta using homology modeling. Several binding orientations of ruboxistaurin in the binding sites of these PKC catalytic domains were analyzed, and a putative alternative binding site for PKC-zeta was identified in its kinase domain. The calculated free energy of binding correlates well with the IC(50) of the inhibitor against each PKC isozyme. A residue-based energy decomposition analysis attributed the binding free energy to several key residues in the catalytic sites of these enzymes, revealing potential protein-ligand interactions responsible for ligand binding. The contiguous binding site revealed in the catalytic domain of PKC-zeta provides avenues for selective drug design. The details of structural nuances for specific inhibition of PKC isozymes are presented in the context of the three-dimensional structures of this important class of enzymes.
Collapse
Affiliation(s)
- Sishi Tang
- Division of Cell and Molecular Biology, Center for Molecular Design and Preformulations, Toronto General Research Institute, University Health Network, Toronto ON M5G 1L7, Canada
| | | | | | | | | |
Collapse
|
179
|
Zhang Y, Liao M, Dufau ML. Unlocking repression of the human luteinizing hormone receptor gene by trichostatin A-induced cell-specific phosphatase release. J Biol Chem 2008; 283:24039-46. [PMID: 18596044 DOI: 10.1074/jbc.m801878200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous studies demonstrated that the histone deacetylase inhibitor, trichostatin A (TSA), induces derepression of the human luteinizing hormone receptor (LHR) gene by de-recruitment of the pRB homologue p107 repressor from the promoter in JAR and MCF-7 cancer cells. TSA initiates a mechanism whereby the phosphatidylinositol 3-kinase/protein kinase zeta (PKCzeta) cascade phosphorylates Sp1 at Ser-641, which is essential for the release of the repression of LHR transcription. The present studies have revealed that dissociation of serine/threonine protein phosphatases PP2A and PP1 from the LHR promoter mediates TSA-induced activation of LHR gene transcription in a cell-specific manner. Changes in chromatin structure induced by TSA cause the release of PP2A in JAR cells or of PP1 in MCF-7 cells, which is associated with Sp1 directly or through histone deacetylase 1/2, respectively, at the promoter. This favors the phosphorylation of Sp1 mediated by the phosphatidylinositol 3-kinase/PKCzeta pathway, which in turn causes the release of the p107 inhibitor from Sp1 and marked transcriptional activation of the LHR. These findings reveal the importance of phosphatases in the control of LHR transcription, where the balance between phosphatidylinositol 3-kinase/PKCzeta and phosphatases could be critical for up- and down-regulation of LHR gene expression in physiological and pathological settings.
Collapse
Affiliation(s)
- Ying Zhang
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development/NIH, 49 Convent Drive, Bethesda, MD 20892-4510, USA
| | | | | |
Collapse
|
180
|
Burnham CAD, Shokoples SE, Tyrrell GJ. Invasion of HeLa cells by group B streptococcus requires the phosphoinositide-3-kinase signalling pathway and modulates phosphorylation of host-cell Akt and glycogen synthase kinase-3. MICROBIOLOGY-SGM 2008; 153:4240-4252. [PMID: 18048937 DOI: 10.1099/mic.0.2007/008417-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The group B streptococcus (GBS) is an opportunistic bacterial pathogen with the ability to cause invasive disease. While the ability of GBS to invade a number of host-cell types has been clearly demonstrated, the invasion process is not well understood at the molecular level. What has been well established is that modulation of host-cell actin microfilaments is essential for GBS invasion to occur. Phosphoinositide-3 kinase (PI3K) is a key regulator of the cytoskeleton in eukaryotic cells. Our goal in this investigation was to explore the role of the PI3K/Akt signalling pathway in epithelial cell invasion by GBS. The epithelial cell invasion process was mimicked using the HeLa 229 cell-culture model. Treating HeLa cells with chemical inhibitors of PI3K, Akt or Ras prior to bacterial infection inhibited GBS invasion but not attachment; treatment with 30 microM LY294002 (PI3K inhibitor) reduced GBS invasion by 75%, 20 microM L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate (ICIO) (Akt inhibitor) reduced GBS invasion by 50%, and 10 microM manumycin A (Ras inhibitor) inhibited GBS invasion by 90%. Genetic inactivation of the p85alpha or p110alpha PI3K subunits in HeLa cells also reduced GBS invasion by 55 and 30%, respectively. Western blot analysis revealed that phosphorylation of host-cell Akt and glycogen synthase kinase-3 (GSK-3) occurs in response to GBS infection, and that this is mediated upstream by PI3K. Infection of HeLa cells with GBS triggers pro-survival signalling and protects the HeLa cells from camptothecin-induced caspase-3 cleavage. The results from this investigation show that GBS both requires and activates the PI3K/Akt host-cell signalling pathway during invasion of epithelial cells.
Collapse
Affiliation(s)
- Carey-Ann D Burnham
- The Department of Laboratory Medicine and Pathology, The University of Alberta, Edmonton, AB, Canada
| | - Sandra E Shokoples
- The National Centre for Streptococcus, The Provincial Laboratory for Public Health (Microbiology), Edmonton, AB, Canada
| | - Gregory J Tyrrell
- The Department of Medical Microbiology and Immunology, The University of Alberta, Edmonton, AB, Canada.,The National Centre for Streptococcus, The Provincial Laboratory for Public Health (Microbiology), Edmonton, AB, Canada.,The Department of Laboratory Medicine and Pathology, The University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
181
|
Cheng N, He R, Tian J, Dinauer MC, Ye RD. A critical role of protein kinase C delta activation loop phosphorylation in formyl-methionyl-leucyl-phenylalanine-induced phosphorylation of p47(phox) and rapid activation of nicotinamide adenine dinucleotide phosphate oxidase. THE JOURNAL OF IMMUNOLOGY 2008; 179:7720-8. [PMID: 18025218 DOI: 10.4049/jimmunol.179.11.7720] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Generation of superoxide by professional phagocytes is an important mechanism of host defense against bacterial infection. Several protein kinase C (PKC) isoforms have been found to phosphorylate p47(phox), resulting in its membrane translocation and activation of the NADPH oxidase. However, the mechanism by which specific PKC isoforms regulate NADPH oxidase activation remains to be elucidated. In this study, we report that PKCdelta phosphorylation in its activation loop is rapidly induced by fMLF and is essential for its ability to catalyze p47(phox) phosphorylation. Using transfected COS-7 cells expressing gp91(phox), p22(phox), p67(phox), and p47(phox) (COS-phox cells), we found that a functionally active PKCdelta is required for p47(phox) phosphorylation and reconstitution of NADPH oxidase. PKCbetaII cannot replace PKCdelta for this function. Characterization of PKCdelta/PKCbetaII chimeras has led to the identification of the catalytic domain of PKCdelta as a target of regulation by fMLF, which induces a biphasic (30 and 180 s) phosphorylation of Thr(505) in the activation loop of mouse PKCdelta. Mutation of Thr(505) to alanine abolishes the ability of PKCdelta to catalyze p47(phox) phosphorylation in vitro and to reconstitute NADPH oxidase in the transfected COS-phox cells. A correlation between fMLF-induced activation loop phosphorylation and superoxide production is also established in the differentiated PLB-985 human myelomonoblastic cells. We conclude that agonist-induced PKCdelta phosphorylation is a novel mechanism for NADPH oxidase activation. The ability to induce PKCdelta phosphorylation may distinguish a full agonist from a partial agonist for superoxide production.
Collapse
Affiliation(s)
- Ni Cheng
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
182
|
Kim JI, Cordova AC, Hirayama Y, Madri JA, Sumpio BE. Differential effects of shear stress and cyclic strain on Sp1 phosphorylation by protein kinase Czeta modulates membrane type 1-matrix metalloproteinase in endothelial cells. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2008; 15:33-42. [PMID: 18568943 PMCID: PMC2644408 DOI: 10.1080/10623320802092260] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) plays a key role in extracellular matrix remodeling, endothelial cell (EC) migration, and angiogenesis. Whereas cyclic strain (CS) increases MT1-MMP expression, shear stress (SS) decreases MT1-MMP expression. The aim of this study was to determine if changes in levels of Sp1 phosphorylation induced by protein kinase Czeta (PKCzeta) in ECs exposed to SS but not CS are important for MT1-MMP expression. The results showed that SS increased Sp1 phosphorylation, which could be inhibited by pretreatment with PKCzeta inhibitors. In the presence of PKCzeta inhibitors, the SS-mediated decrease in MT1-MMP protein expression was also abolished. These data demonstrate that increased affinity of Sp1 for MT1-MMP's promoter site occurs as a consequence of PKCzeta-induced phosphorylation of Sp1 in response to SS, increasing Sp1 binding affinity for the promoter site, preventing Egr-1 binding, and consequently decreasing MT1-MMP expression.
Collapse
Affiliation(s)
- Ji Il Kim
- Department of Vascular Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
183
|
Signal strength dictates phosphoinositide 3-kinase contribution to Ras/extracellular signal-regulated kinase 1 and 2 activation via differential Gab1/Shp2 recruitment: consequences for resistance to epidermal growth factor receptor inhibition. Mol Cell Biol 2007; 28:587-600. [PMID: 18025104 DOI: 10.1128/mcb.01318-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) participates in extracellular signal-regulated kinase 1 and 2 (ERK1-2) activation according to signal strength, through unknown mechanisms. We report herein that Gab1/Shp2 constitutes a PI3K-dependent checkpoint of ERK1-2 activation regulated according to signal intensity. Indeed, by up- and down-regulation of signal strength in different cell lines and through different methods, we observed that Gab1/Shp2 and Ras/ERK1-2 in concert become independent of PI3K upon strong epidermal growth factor receptor (EGFR) stimulation and dependent on PI3K upon limited EGFR activation. Using Gab1 mutants, we observed that this conditional role of PI3K is dictated by the EGFR capability of recruiting Gab1 through Grb2 or through the PI3K lipid product PIP(3), according to a high or weak level of receptor stimulation, respectively. In agreement, Grb2 siRNA generates, in cells with maximal EGFR stimulation, a strong dependence on PI3K for both Gab1/Shp2 and ERK1-2 activation. Therefore, Ras/ERK1-2 depends on PI3K only when PIP(3) is required to recruit Gab1/Shp2, which occurs only under weak EGFR mobilization. Finally, we show that, in glioblastoma cells displaying residual EGFR activation, this compensatory mechanism becomes necessary to efficiently activate ERK1-2, which could probably contribute to tumor resistance to EGFR inhibitors.
Collapse
|
184
|
Yang KJ, Shin S, Piao L, Shin E, Li Y, Park KA, Byun HS, Won M, Hong J, Kweon GR, Hur GM, Seok JH, Chun T, Brazil DP, Hemmings BA, Park J. Regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) by Src involves tyrosine phosphorylation of PDK1 and Src homology 2 domain binding. J Biol Chem 2007; 283:1480-1491. [PMID: 18024423 DOI: 10.1074/jbc.m706361200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr(9) and Tyr(373/376)) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1-Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti-phospho-Tyr(9) antibodies showed that the level of Tyr(9) phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr(9), distinct from Tyr(373/376), is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr(9) phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.
Collapse
Affiliation(s)
- Keum-Jin Yang
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Sanghee Shin
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Longzhen Piao
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Eulsoon Shin
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Yuwen Li
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Kyeong Ah Park
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Hee Sun Byun
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Minho Won
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Janghee Hong
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Gi Ryang Kweon
- Department of Biochemistry, College of Medicine, Chungnam National University, Taejeon 301-131, South Korea
| | - Gang Min Hur
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Jeong Ho Seok
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Taehoon Chun
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Derek P Brazil
- University College Dublin School of Biomolecular and Biomedical Science, University College Dublin Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Brian A Hemmings
- Friedrich Miescher Institute for Biomedical Research, Basel CH-4058, Switzerland
| | - Jongsun Park
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea.
| |
Collapse
|
185
|
Karlsson HKR, Zierath JR. Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochem Biophys 2007; 48:103-13. [PMID: 17709880 DOI: 10.1007/s12013-007-0030-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/29/2022]
Abstract
Insulin increases glucose uptake and metabolism in skeletal muscle by signal transduction via protein phosphorylation cascades. Insulin action on signal transduction is impaired in skeletal muscle from Type 2 diabetic subjects, underscoring the contribution of molecular defects to the insulin resistant phenotype. This review summarizes recent work to identify downstream intermediates in the insulin signaling pathways governing glucose homeostasis, in an attempt to characterize the molecular mechanism accounting for skeletal muscle insulin resistance in Type 2 diabetes. Furthermore, the effects of pharmaceutical treatment of Type 2 diabetic patients on insulin signaling and glucose uptake are discussed. The identification and characterization of pathways governing insulin action on glucose metabolism will facilitate the development of strategies to improve insulin sensitivity in an effort to prevent and treat Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Håkan K R Karlsson
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
186
|
Moulakakis C, Adam S, Seitzer U, Schromm AB, Leitges M, Stamme C. Surfactant protein A activation of atypical protein kinase C zeta in IkappaB-alpha-dependent anti-inflammatory immune regulation. THE JOURNAL OF IMMUNOLOGY 2007; 179:4480-91. [PMID: 17878344 DOI: 10.4049/jimmunol.179.7.4480] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The pulmonary collectin surfactant protein (SP)-A has a pivotal role in anti-inflammatory modulation of lung immunity. The mechanisms underlying SP-A-mediated inhibition of LPS-induced NF-kappaB activation in vivo and in vitro are only partially understood. We previously demonstrated that SP-A stabilizes IkappaB-alpha, the primary regulator of NF-kappaB, in alveolar macrophages (AM) both constitutively and in the presence of LPS. In this study, we show that in AM and PBMC from IkappaB-alpha knockout/IkappaB-beta knockin mice, SP-A fails to inhibit LPS-induced TNF-alpha production and p65 nuclear translocation, confirming a critical role for IkappaB-alpha in SP-A-mediated LPS inhibition. We identify atypical (a) protein kinase C (PKC) zeta as a pivotal upstream regulator of SP-A-mediated IkappaB-alpha/NF-kappaB pathway modulation deduced from blocking experiments and confirmed by using AM from PKCzeta-/- mice. SP-A transiently triggers aPKCThr(410/403) phosphorylation, aPKC kinase activity, and translocation in primary rat AM. Coimmunoprecipitation experiments reveal that SP-A induces aPKC/p65 binding under constitutive conditions. Together the data indicate that anti-inflammatory macrophage activation via IkappaB-alpha by SP-A critically depends on PKCzeta activity, and thus attribute a novel, stimulus-specific signaling function to PKCzeta in SP-A-modulated pulmonary immune response.
Collapse
Affiliation(s)
- Christina Moulakakis
- Department of Immunochemistry and Biochemical Microbiology, Division of Cellular Pneumology, Research Center Borstel, Leibniz Center for Medicine and Bioscience, Borstel, Germany
| | | | | | | | | | | |
Collapse
|
187
|
Vasavada RC, Wang L, Fujinaka Y, Takane KK, Rosa TC, Mellado-Gil JMD, Friedman PA, Garcia-Ocaña A. Protein kinase C-zeta activation markedly enhances beta-cell proliferation: an essential role in growth factor mediated beta-cell mitogenesis. Diabetes 2007; 56:2732-43. [PMID: 17686945 DOI: 10.2337/db07-0461] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Diabetes results from a deficiency of functional beta-cells. Previous studies have identified hepatocyte growth factor (HGF) and parathyroid hormone-related protein (PTHrP) as two potent beta-cell mitogens. The objective of this study is to determine 1) whether HGF and PTHrP have additive/synergistic effects on beta-cell growth and proliferation; 2) the signaling pathways through which these growth factors mediate beta-cell mitogenesis; and 3) whether activation of this/these signaling pathway(s) enhances human beta-cell replication. RESEARCH DESIGN AND METHODS We generated and phenotypically analyzed doubly transgenic mice overexpressing PTHrP and HGF in the beta-cell. INS-1 and primary mouse and human islet cells were used to identify mitogenic signaling pathways activated by HGF and/or PTHrP. RESULTS Combined overexpression of HGF and PTHrP in the beta-cell of doubly transgenic mice did not result in additive/synergistic effects on beta-cell growth and proliferation, suggesting potential cross-talk between signaling pathways activated by both growth factors. Examination of these signaling pathways in INS-1 cells revealed atypical protein kinase C (PKC) as a novel intracellular target activated by both HGF and PTHrP in beta-cells. Knockdown of PKC zeta, but not PKC iota/lambda, expression using specific small-interfering RNAs blocked growth factor-induced INS-1 cell proliferation. Furthermore, adenovirus-mediated delivery of kinase-dead PKC zeta completely inhibited beta-cell proliferation in primary islet cells overexpressing PTHrP and/or HGF. Finally, adenovirus-mediated delivery of constitutively active PKC zeta in mouse and human primary islet cells significantly enhanced beta-cell proliferation. CONCLUSIONS PKC zeta is essential for PTHrP- and HGF-induced beta-cell proliferation. PKC zeta activation could be useful in therapeutic strategies for expanding beta-cell mass in vitro and in vivo.
Collapse
Affiliation(s)
- Rupangi C Vasavada
- Department of Medicine, Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Xia L, Wang H, Munk S, Frecker H, Goldberg HJ, Fantus IG, Whiteside CI. Reactive oxygen species, PKC-beta1, and PKC-zeta mediate high-glucose-induced vascular endothelial growth factor expression in mesangial cells. Am J Physiol Endocrinol Metab 2007; 293:E1280-8. [PMID: 17711990 DOI: 10.1152/ajpendo.00223.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vascular endothelial growth factor (VEGF) is implicated in the development of proteinuria in diabetic nephropathy. High ambient glucose present in diabetes stimulates VEGF expression in several cell types, but the molecular mechanisms are incompletely understood. Here primary cultured rat mesangial cells served as a model to investigate the signal transduction pathways involved in high-glucose-induced VEGF expression. Exposure to high glucose (25 mM) significantly increased VEGF mRNA evaluated by real-time PCR by 3 h, VEGF cellular protein content assessed by immunoblotting or immunofluorescence within 24 h, and VEGF secretion by 24 h. High-glucose-induced VEGF expression was blocked by an antioxidant, Tempol, and antisense oligonucleotides directed against p22(phox), a NADPH oxidase subunit. Inhibition of protein kinase C (PKC)-beta(1) with the specific pharmacological inhibitor LY-333531 or inhibition of PKC-zeta with a cell permeable specific pseudosubstrate peptide also prevented enhanced VEGF expression in high glucose. Enhanced VEGF secretion in high glucose was prevented by Tempol, PKC-beta(1), or PKC-zeta inhibition. In normal glucose (5.6 mM), overexpression of p22(phox) or constitutively active PKC-zeta enhanced VEGF expression. Hypoxia inducible factor-1alpha protein was significantly increased in high glucose only by 24 h, suggesting a possible contribution to high-glucose-stimulated VEGF expression at later time points. Thus reactive oxygen species generated by NADPH oxidase, and both PKC-beta(1) and -zeta, play important roles in high-glucose-stimulated VEGF expression and secretion by mesangial cells.
Collapse
Affiliation(s)
- Ling Xia
- University Health Network, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
189
|
Jones JA, Stroud RE, Kaplan BS, Leone AM, Bavaria JE, Gorman JH, Gorman RC, Ikonomidis JS. Differential protein kinase C isoform abundance in ascending aortic aneurysms from patients with bicuspid versus tricuspid aortic valves. Circulation 2007; 116:I144-9. [PMID: 17846295 DOI: 10.1161/circulationaha.106.681361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND It is recognized that different events contribute to the initiation of ascending thoracic aortic aneurysms (ATAAs) in patients with bicuspid aortic valves (BAV) versus patients with tricuspid aortic valves (TAV), but the molecular signaling pathways driving aneurysm formation remain unclear. Protein kinase C (PKC) is a superfamily of kinases which differentially mediate signaling events that lead to altered gene expression and cellular function, and may regulate downstream mediators of vascular remodeling. The present study tested the hypothesis that ATAA development in patients with BAV versus TAV proceeds by independent signaling pathways involving differential PKC signaling. METHODS AND RESULTS ATAA samples were collected from BAV (n=57) and TAV (n=55) patients and assessed for 10 different PKC isoforms by immunoblotting. Results were expressed as a percent change in abundance (mean+/-SEM) from a nonaneurysmal control group (100%, n=21). Correlation analysis was performed, and relationships between PKC and matrix metalloproteinase abundance were reported. In the BAV group, classic and novel PKC isoforms (PKC-alpha, betaI, gamma, epsilon, theta) were increased, whereas PKC-eta and atypical PKC-zeta were decreased. In the TAV group, classic and novel isoforms were decreased and atypical PKC-zeta was elevated. Positive correlations between PKC and matrix metalloproteinase abundance were identified. CONCLUSIONS Differential PKC isoform abundance was observed in ATAA samples from patients with BAV versus TAV, suggesting independent molecular signaling pathways may be operative. Induction of independent transcriptional programs may result and may provide a mechanistic foundation for developing selective diagnostic/therapeutic strategies for patients with ATAAs secondary to BAV or TAV.
Collapse
Affiliation(s)
- Jeffrey A Jones
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Watson RT, Saltiel AR, Pessin JE, Kanzaki M. Subcellular Compartmentalization of Insulin Signaling Processes and GLUT4 Trafficking Events. MECHANISMS OF INSULIN ACTION 2007:33-51. [DOI: 10.1007/978-0-387-72204-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
191
|
Freeley M, Park J, Yang KJ, Wange RL, Volkov Y, Kelleher D, Long A. Loss of PTEN expression does not contribute to PDK-1 activity and PKC activation-loop phosphorylation in Jurkat leukaemic T cells. Cell Signal 2007; 19:2444-57. [PMID: 17826953 DOI: 10.1016/j.cellsig.2007.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 07/13/2007] [Accepted: 07/23/2007] [Indexed: 02/06/2023]
Abstract
Unopposed PI3-kinase activity and 3'-phosphoinositide production in Jurkat T cells, due to a mutation in the PTEN tumour suppressor protein, results in deregulation of PH domain-containing proteins including the serine/threonine kinase PKB/Akt. In Jurkat cells, PKB/Akt is constitutively active and phosphorylated at the activation-loop residue (Thr308). 3'-phosphoinositide-dependent protein kinase-1 (PDK-1), an enzyme that also contains a PH domain, is thought to catalyse Thr308 phosphorylation of PKB/Akt in addition to other kinase families such as PKC isoforms. It is unknown however if the loss of PTEN in Jurkat cells also results in unregulated PDK-1 activity and whether such loss impacts on activation-loop phosphorylation of other putative PDK-1 substrates such as PKC. In this study we have addressed if loss of PTEN in Jurkat T cells affects PDK-1 catalytic activity and intracellular localisation. We demonstrate that reducing the level of 3'-phosphoinositides in Jurkat cells with pharmacological inhibitors of PI3-kinase or expression of PTEN does not affect PDK-1 activity, Ser241 phosphorylation or intracellular localisation. In support of this finding, we show that the levels of PKC activation-loop phosphorylation are unaffected by reductions in the levels of 3'-phosphoinositides. Instead, the dephosphorylation that occurs on PKB/Akt at Thr308 following reductions in 3'-phosphoinositides is dependent on PP2A-like phosphatase activity. Our finding that PDK-1 functions independently of 3'-phosphoinositides in T cells is also confirmed by studies in HuT-78 T cells, a PTEN-expressing cell line with undetectable levels of 3'-phosphoinositides. We conclude therefore that loss of PTEN expression in Jurkat T cells does not impact on the PDK-1/PKC pathway and that only a subset of kinases, such as PKB/Akt, are perturbed as a consequence PTEN loss.
Collapse
Affiliation(s)
- Michael Freeley
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
192
|
Ranganathan S, Wang Y, Kern FG, Qu Z, Li R. Activation loop phosphorylation-independent kinase activity of human protein kinase C zeta. Proteins 2007; 67:709-19. [PMID: 17335005 DOI: 10.1002/prot.21348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Atypical protein kinase C zeta (PKCzeta) plays an important role in cell proliferation and survival. PKCzeta and its truncated form containing only the kinase domain, CATzeta, have been reported to be activated by the phosphorylation of threonine 410 in the activation loop. We expressed both the full length PKCzeta and CATzeta in a baculovirus/insect cell over-expression system and purified the proteins for biochemical characterization. Ion exchange chromatography of CATzeta revealed three species with different levels of phosphorylation at Thr-410 and allowed the isolation of the CATzeta protein devoid of phosphorylation at Thr-410. All three species of CATzeta were active and their activity was not correlated with phosphorylation at Thr-410, indicating that the kinase activity of CATzeta did not depend solely on activation loop phosphorylation. Tyrosine phosphorylation was detected in all three species of CATzeta and the full length PKCzeta. Homology structural modeling of PKCzeta revealed a conserved, predicted-to-be phosphorylated tyrosine residue, Tyr-428, in the close proximity of the RD motif of the catalytic loop and of Thr-410 in the activation loop. The structural analysis indicated that phospho-Tyr-428 would interact with two key, positively-charged residues to form a triad conformation similar to that formed by phospho-Thr-410. Based on these observations, it is possible that the Thr-410 phosphorylation-independent kinase activity of CATzeta is regulated by the phosphorylation of Tyr-428. This alternative mode of PKCzeta activation is supported by the observed stimulation of PKCzeta kinase activity upon phosphorylation at the equivalent site by Abl, and may be involved in resistance to drug-induced apoptosis.
Collapse
Affiliation(s)
- Senthil Ranganathan
- Department of Organic Chemistry, Drug Discovery Division, Southern Research Institute, 2000, 9th Avenue South, Birmingham, AL 35205, USA
| | | | | | | | | |
Collapse
|
193
|
Xin M, Gao F, May WS, Flagg T, Deng X. Protein Kinase Cζ Abrogates the Proapoptotic Function of Bax through Phosphorylation. J Biol Chem 2007; 282:21268-77. [PMID: 17525161 DOI: 10.1074/jbc.m701613200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase Czeta (PKCzeta) is an atypical PKC isoform that plays an important role in supporting cell survival but the mechanism(s) involved is not fully understood. Bax is a major member of the Bcl-2 family that is required for apoptotic cell death. Because Bax is extensively co-expressed with PKCzeta in both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) cells, it is possible that Bax may act as the downstream target of PKCzeta in regulating survival and chemosensitivity of lung cancer cells. Here we discovered that treatment of cells with nicotine not only enhances PKCzeta activity but also results in Bax phosphorylation and prolonged cell survival, which is suppressed by a PKCzeta specific inhibitor (a myristoylated PKCzeta pseudosubstrate peptide). Purified, active PKCzeta directly phosphorylates Bax in vitro. Overexpression of wild type or the constitutively active A119D but not the dominant negative K281W PKCzeta mutant results in Bax phosphorylation at serine 184. PKCzeta co-localizes and interacts with Bax at the BH3 domain. Specific depletion of PKCzeta by RNA interference blocks nicotine-stimulated Bax phosphorylation and enhances apoptotic cell death. Intriguingly, forced expression of wild type or A119D but not K281W PKCzeta mutant results in accumulation of Bax in cytoplasm and prevents Bax from undergoing a conformational change with prolonged cell survival. Purified PKCzeta can directly dissociate Bax from isolated mitochondria of C2-ceramide-treated cells. Thus, PKCzeta may function as a physiological Bax kinase to directly phosphorylate and interact with Bax, which leads to sequestration of Bax in cytoplasm and abrogation of the proapoptotic function of Bax.
Collapse
Affiliation(s)
- Meiguo Xin
- University of Florida Shands Cancer Center, Department of Medicine and Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610-3633, USA
| | | | | | | | | |
Collapse
|
194
|
Tsokas P, Ma T, Iyengar R, Landau EM, Blitzer RD. Mitogen-activated protein kinase upregulates the dendritic translation machinery in long-term potentiation by controlling the mammalian target of rapamycin pathway. J Neurosci 2007; 27:5885-94. [PMID: 17537959 PMCID: PMC6672260 DOI: 10.1523/jneurosci.4548-06.2007] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Protein synthesis is required for persistent forms of synaptic plasticity, including long-term potentiation (LTP). A key regulator of LTP-related protein synthesis is mammalian target of rapamycin (mTOR), which is thought to modulate translational capacity by facilitating the synthesis of particular components of the protein synthesis machinery. Recently, extracellularly regulated kinase (ERK) also was shown to mediate plasticity-related translation, an effect that may involve regulation of the mTOR pathway. We studied the interaction between the mTOR and ERK pathways in hippocampal LTP induced at CA3-CA1 synapses by high-frequency synaptic stimulation (HFS). Within minutes after HFS, the expression of multiple translational proteins, the synthesis of which is under the control of mTOR, increased in area CA1 stratum radiatum. This upregulation was detected in pyramidal cell dendrites and was blocked by inhibitors of the ERK pathway. In addition, ERK mediated the stimulation of mTOR by HFS. The possibility that ERK regulates mTOR by acting at a component further upstream in the phosphatidylinositide 3-kinase (PI3K)-mTOR pathway was tested by probing the phosphorylation of p90-S6 kinase, phosphoinositide-dependent kinase 1 (PDK1), and Akt. ERK inhibitors blocked HFS-induced phosphorylation of all three proteins at sites implicated in the regulation of mTOR. Moreover, a component of basal and HFS-induced ERK activity depended on PI3K, indicating that mTOR-mediated protein synthesis in LTP requires coincident and mutually dependent activity in the PI3K and ERK pathways. The role of ERK in regulating PDK1 and Akt, with their extensive effects on cellular function, has important implications for the coordinated response of the neuron to LTP-inducing stimulation.
Collapse
Affiliation(s)
| | - Tao Ma
- Departments of Pharmacology and Biological Chemistry and
| | - Ravi Iyengar
- Departments of Pharmacology and Biological Chemistry and
| | - Emmanuel M. Landau
- Departments of Pharmacology and Biological Chemistry and
- Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, and
- Psychiatry Service, Bronx Veterans Administration Medical Center, Bronx, New York 10463
| | - Robert D. Blitzer
- Departments of Pharmacology and Biological Chemistry and
- Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, and
| |
Collapse
|
195
|
Fields AP, Regala RP. Protein kinase C iota: human oncogene, prognostic marker and therapeutic target. Pharmacol Res 2007; 55:487-97. [PMID: 17570678 PMCID: PMC2705893 DOI: 10.1016/j.phrs.2007.04.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 01/29/2007] [Accepted: 04/16/2007] [Indexed: 01/12/2023]
Abstract
The protein kinase C (PKC) family of serine/threonine kinases has been the subject of intensive study in the field of cancer since their initial discovery as major cellular receptors for the tumor promoting phorbol esters nearly 30 years ago. However, despite these efforts, the search for a direct genetic link between members of the PKC family and human cancer has yielded only circumstantial evidence that any PKC isozyme is a true cancer gene. This situation changed in the past year with the discovery that atypical protein kinase C iota (PKC iota) is a bonafide human oncogene. PKC iota is required for the transformed growth of human cancer cells and the PKC iota gene is the target of tumor-specific gene amplification in multiple forms of human cancer. PKC iota participates in multiple aspects of the transformed phenotype of human cancer cells including transformed growth, invasion and survival. Herein, we review pertinent aspects of atypical PKC structure, function and regulation that relate to the role of these enzymes in oncogenesis. We discuss the evidence that PKC iota is a human oncogene, review mechanisms controlling PKC iota expression in human cancers, and describe the molecular details of PKC iota-mediated oncogenic signaling. We conclude with a discussion of how oncogenic PKC iota signaling has been successfully targeted to identify a novel, mechanism-based therapeutic drug currently entering clinical trials for treatment of human lung cancer. Throughout, we identify key unanswered questions and exciting future avenues of investigation regarding this important oncogenic molecule.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/physiology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Female
- Gene Amplification
- Gold Sodium Thiomalate/pharmacology
- Gold Sodium Thiomalate/therapeutic use
- Humans
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Isoenzymes/physiology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/pathology
- Oncogenes
- Ovarian Neoplasms/enzymology
- Protein Kinase C/biosynthesis
- Protein Kinase C/genetics
- Protein Kinase C/physiology
- Protein Structure, Tertiary
Collapse
Affiliation(s)
- Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA.
| | | |
Collapse
|
196
|
Kuribayashi K, Nakamura K, Tanaka M, Sato T, Kato J, Sasaki K, Takimoto R, Kogawa K, Terui T, Takayama T, Onuma T, Matsunaga T, Niitsu Y. Essential role of protein kinase C zeta in transducing a motility signal induced by superoxide and a chemotactic peptide, fMLP. ACTA ACUST UNITED AC 2007; 176:1049-60. [PMID: 17389234 PMCID: PMC2064088 DOI: 10.1083/jcb.200607019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Under various pathological conditions, including infection, malignancy, and autoimmune diseases, tissues are incessantly exposed to reactive oxygen species produced by infiltrating inflammatory cells. We show augmentation of motility associated with morphological changes of human squamous carcinoma SASH1 cells, human peripheral monocytes (hPMs), and murine macrophage-like cell line J774.1 by superoxide stimulation. We also disclose that motility of hPMs and J774.1 induced by a chemotactic peptide (N-formyl-methionyl-leucyl-phenylalanine [fMLP]) was inhibited by superoxide dismutase or N-acetylcystein, indicating stimulation of motility by superoxide generated by fMLP stimulation. In these cells, protein kinase C (PKC) ζ was activated to phosphorylate RhoGDI-1, which liberated RhoGTPases, leading to their activation. These events were inhibited by dominant-negative PKCζ in SASH1 cells, myristoylated PKCζ peptides in hPMs and J774.1, or a specific inhibitor of RhoGTPase in SASH1, hPMs, and J774.1. These results suggest a new approach for manipulation of inflammation as well as tumor cell invasion by targeting this novel signaling pathway.
Collapse
Affiliation(s)
- Kageaki Kuribayashi
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8543, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Gérard A, Mertens AEE, van der Kammen RA, Collard JG. The Par polarity complex regulates Rap1- and chemokine-induced T cell polarization. ACTA ACUST UNITED AC 2007; 176:863-75. [PMID: 17353362 PMCID: PMC2064060 DOI: 10.1083/jcb.200608161] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell polarization is required for virtually all functions of T cells, including transendothelial migration in response to chemokines. However, the molecular pathways that establish T cell polarity are poorly understood. We show that the activation of the partitioning defective (Par) polarity complex is a key event during Rap1- and chemokine-induced T cell polarization. Intracellular localization and activation of the Par complex are initiated by Rap1 and require Cdc42 activity. The Rac activator Tiam1 associates with both Rap1 and components of the Par complex, and thereby may function to connect the Par polarity complex to Rap1 and to regulate the Rac-mediated actin remodelling required for T cell polarization. Consistent with these findings, Tiam1-deficient T cells are impaired in Rap1- and chemokine-induced polarization and chemotaxis. Our studies implicate Tiam1 and the Par polarity complex in polarization of T cells, and provide a mechanism by which chemokines and Rap1 regulate T cell polarization and chemotaxis.
Collapse
Affiliation(s)
- Audrey Gérard
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | | | | | | |
Collapse
|
198
|
Paul DS, Harmon AW, Devesa V, Thomas DJ, Stýblo M. Molecular mechanisms of the diabetogenic effects of arsenic: inhibition of insulin signaling by arsenite and methylarsonous acid. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:734-42. [PMID: 17520061 PMCID: PMC1867998 DOI: 10.1289/ehp.9867] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 01/29/2007] [Indexed: 04/14/2023]
Abstract
BACKGROUND Increased prevalences of diabetes mellitus have been reported among individuals chronically exposed to inorganic arsenic (iAs). However, the mechanisms underlying the diabetogenic effects of iAs have not been characterized. We have previously shown that trivalent metabolites of iAs, arsenite (iAs(III)) and methylarsonous acid (MAs(III)) inhibit insulin-stimulated glucose uptake (ISGU) in 3T3-L1 adipocytes by suppressing the insulin-dependent phosphorylation of protein kinase B (PKB/Akt). OBJECTIVES Our goal was to identify the molecular mechanisms responsible for the suppression of PKB/Akt phosphorylation by iAs(III) and MAs(III). METHODS The effects of iAs(III) and MAs(III) on components of the insulin-activated signal transduction pathway that regulate PKB/Akt phosphorylation were examined in 3T3-L1 adipocytes. RESULTS Subtoxic concentrations of iAs(III) or MAs(III) had little or no effect on the activity of phosphatidylinositol 3-kinase (PI-3K), which synthesizes phosphatidylinositol-3,4,5-triphosphate (PIP(3)), or on phosphorylation of PTEN (phosphatase and tensin homolog deleted on chromosome ten), a PIP(3) phosphatase. Neither iAs(III) nor MAs(III) interfered with the phosphorylation of 3-phosphoinositide-dependent kinase-1 (PDK-1) located downstream from PI-3K. However, PDK-1 activity was inhibited by both iAs(III) and MAs(III). Consistent with these findings, PDK-1-catalyzed phosphorylation of PKB/Akt(Thr308) and PKB/Akt activity were suppressed in exposed cells. In addition, PKB/Akt(Ser473) phosphorylation, which is catalyzed by a putative PDK-2, was also suppressed. Notably, expression of constitutively active PKB/Akt restored the normal ISGU pattern in adipocytes treated with either iAs(III) or MAs(III). CONCLUSIONS These results suggest that inhibition of the PDK-1/PKB/Akt-mediated transduction step is the key mechanism for the inhibition of ISGU in adipocytes exposed to iAs(III) or MAs(III), and possibly for impaired glucose tolerance associated with human exposures to iAs.
Collapse
Affiliation(s)
- David S Paul
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7461, USA.
| | | | | | | | | |
Collapse
|
199
|
Kelly MT, Crary JF, Sacktor TC. Regulation of protein kinase Mzeta synthesis by multiple kinases in long-term potentiation. J Neurosci 2007; 27:3439-44. [PMID: 17392460 PMCID: PMC6672124 DOI: 10.1523/jneurosci.5612-06.2007] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The persistent activity of protein kinase Mzeta (PKMzeta) maintains synaptic long-term potentiation (LTP) and spatial memory, but the interactions between PKMzeta and the other protein kinases implicated in synaptic plasticity are unknown. During LTP, PKMzeta is rapidly synthesized from a PKMzeta mRNA that encodes a protein kinase Czeta (PKCzeta) catalytic domain without a regulatory domain; thus, second messengers that activate full-length PKC isoforms are not required to stimulate PKMzeta. Like other PKCs, however, PKMzeta must be phosphorylated on its activation loop by phosphoinositide-dependent protein kinase-1 (PDK1) for optimal catalytic activity. Thus, two sequential steps are required for the persistent increased PKMzeta activity that maintains LTP: de novo synthesis of PKMzeta and phosphorylation of its activation loop. Here, using a panel of antisera to phosphorylated and nonphosphorylated sites on PKMzeta, we show that PI3-kinase (phosphoinositide 3-kinase), CaMKII (Ca2+/calmodulin-dependent protein kinase II), MAPK (mitogen-activated protein kinase), PKA (protein kinase A), mTOR (mammalian target of rapamycin), all important for LTP induction, as well as preexisting PKMzeta, regulate the new synthesis of PKMzeta during LTP. In contrast, PDK1 forms a complex with PKMzeta and maintains maximal phosphorylation of its activation loop. Thus, the two steps of PKMzeta formation serve separate functions in LTP: the initial regulated synthesis of PKMzeta is the site of convergence and integration for multiple kinases of induction, whereas the constitutive phosphorylation of PKMzeta by PDK1 initiates the persistent autonomous activity that sustains maintenance.
Collapse
Affiliation(s)
- Matthew Taylor Kelly
- Department of Physiology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | |
Collapse
|
200
|
Trucy M, Barbat C, Fischer A, Mazerolles F. CD4 ligation induces activation of protein kinase C zeta and phosphoinositide-dependent-protein kinase-1, two kinases required for down-regulation of LFA-1-mediated adhesion. Cell Immunol 2007; 244:33-42. [PMID: 17408603 DOI: 10.1016/j.cellimm.2007.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 02/06/2007] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
We previously showed that CD4 binding induced a down-regulation of LFA-1-dependent-antigen-independent adhesion of T and B lymphocytes in a phosphatidylinositol-3-kinase (PI3K)-dependent manner. We now show in A201-CD4 (+) T cell lines, that anti-CD4 Ab increases activation of phosphoinositide-dependent-protein-kinase 1 (PDK1) or PKC zeta, two main effectors down-stream from PI3K. CD4 binding also increases interactions between PI3K and activated PKCzeta and PDK1. Both events are dependent on CD4/p56Lck association, since they are not detected when p56Lck is unable to bind a truncated form of CD4 in transfected T cell lines. We also show using antisense oligonucleotides that both kinases are necessary for down-regulating LFA-1-dependent adhesion induced by CD4 signalling. We also suggest a role of PDK1 in the recruitment of the phosphatase SHP-2 in a multiprotein complex induced by anti-CD4 Ab. This study thus provides further insights into the mechanism underlying the CD4 triggered regulation of LFA-1-mediated adhesion.
Collapse
Affiliation(s)
- Maÿlis Trucy
- INSERM, U768, 75015, Site Necker, 147 rue de sevres Paris, F-75015 Paris, France
| | | | | | | |
Collapse
|