151
|
Kestenbaum B, Gamboa J, Liu S, Ali AS, Shankland E, Jue T, Giulivi C, Smith LR, Himmelfarb J, de Boer IH, Conley K, Roshanravan B. Impaired skeletal muscle mitochondrial bioenergetics and physical performance in chronic kidney disease. JCI Insight 2020; 5:133289. [PMID: 32161192 PMCID: PMC7141399 DOI: 10.1172/jci.insight.133289] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/10/2019] [Indexed: 11/17/2022] Open
Abstract
The maintenance of functional independence is the top priority of patients with chronic kidney disease (CKD). Defects in mitochondrial energetics may compromise physical performance and independence. We investigated associations of the presence and severity of kidney disease with in vivo muscle energetics and the association of muscle energetics with physical performance. We performed measures of in vivo leg and hand muscle mitochondrial capacity (ATPmax) and resting ATP turnover (ATPflux) using 31phosphorus magnetic resonance spectroscopy and oxygen uptake (O2 uptake) by optical spectroscopy in 77 people (53 participants with CKD and 24 controls). We measured physical performance using the 6-minute walk test. Participants with CKD had a median estimated glomerular filtration rate (eGFR) of 33 ml/min per 1.73 m2. Participants with CKD had a -0.19 mM/s lower leg ATPmax compared with controls but no difference in hand ATPmax. Resting O2 uptake was higher in CKD compared with controls, despite no difference in ATPflux. ATPmax correlated with eGFR and serum bicarbonate among participants with GFR <60. ATPmax of the hand and leg correlated with 6-minute walking distance. The presence and severity of CKD associate with muscle mitochondrial capacity. Dysfunction of muscle mitochondrial energetics may contribute to reduced physical performance in CKD.
Collapse
Affiliation(s)
- Bryan Kestenbaum
- Division of Nephrology, Department of Medicine, and
- Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Jorge Gamboa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sophia Liu
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Amir S. Ali
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Eric Shankland
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Thomas Jue
- Department of Biochemistry and Molecular Medicine, School of Medicine
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, and
| | - Lucas R. Smith
- Department of Physical Medicine and Rehabilitation, School of Medicine, UCD, Davis, California, USA
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, and
- Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Ian H. de Boer
- Division of Nephrology, Department of Medicine, and
- Kidney Research Institute, University of Washington, Seattle, Washington, USA
- Puget Sound Veterans Administration Healthcare System, Seattle, Washington, USA
| | - Kevin Conley
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Baback Roshanravan
- Division of Nephrology, Department of Medicine, School of Medicine, UCD, Sacramento, California, USA
| |
Collapse
|
152
|
Friederich-Persson M, Persson P. Mitochondrial angiotensin II receptors regulate oxygen consumption in kidney mitochondria from healthy and type 1 diabetic rats. Am J Physiol Renal Physiol 2020; 318:F683-F688. [DOI: 10.1152/ajprenal.00417.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exaggerated activation of the renin-angiotensin-aldosterone system (RAAS) is a key feature in diseases such as hypertension, diabetes, and chronic kidney disease. Recently, an intracellular RAAS was demonstrated with angiotensin II (ANG II) type 1 (AT1) and type 2 (AT2) receptors expressed in nuclei and mitochondria. Diabetes is associated with both mitochondrial dysfunction and increased intracellular ANG II concentration in the kidney cortex. The present study investigated the role of ANG II signaling in kidney cortex mitochondria isolated from control and streptozotocin-induced diabetic rats. Mitochondrial oxygen consumption was evaluated after addition of ANG II alone or after preincubation with candesartan (AT1 receptor antagonist), PD-123319 (AT2 receptor antagonist), or the two in combination. ANG II binds to only mitochondrial AT2 receptors in control rats and both AT1 receptors and AT2 receptors in diabetic rats. ANG II decreased oxygen consumption in mitochondria from both control and diabetic rats. ANG II response was reversed to increased oxygen consumption by the nitric oxide synthase inhibitor N-nitro-l-arginine methyl ester. AT1 receptor inhibition did not affect the response to ANG II, whereas AT2 receptor inhibition abolished the response in mitochondria from control rats and reversed the response to increased oxygen consumption through superoxide-induced mitochondrial uncoupling in mitochondria from diabetic rats. ANG II decrease mitochondrial respiration via AT2 receptor-mediated nitric oxide release in both control and diabetic rats. AT1 receptors do not regulate mitochondria function in control rats, whereas ANG II via AT1 receptors increase mitochondria leak respiration in diabetic animals.
Collapse
Affiliation(s)
- Malou Friederich-Persson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Patrik Persson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
153
|
Braz GRF, da Silva AI, Silva SCA, Pedroza AAS, de Lemos MDT, de Lima FAS, Silva TLA, Lagranha CJ. Chronic serotonin reuptake inhibition uncouples brown fat mitochondria and induces beiging/browning process of white fat in overfed rats. Life Sci 2020; 245:117307. [DOI: 10.1016/j.lfs.2020.117307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
|
154
|
Makrecka‐Kuka M, Liepinsh E, Murray AJ, Lemieux H, Dambrova M, Tepp K, Puurand M, Käämbre T, Han WH, Goede P, O'Brien KA, Turan B, Tuncay E, Olgar Y, Rolo AP, Palmeira CM, Boardman NT, Wüst RCI, Larsen TS. Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf) 2020; 228:e13430. [PMID: 31840389 DOI: 10.1111/apha.13430] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.
Collapse
Affiliation(s)
| | | | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Hélène Lemieux
- Department of Medicine Faculty Saint‐Jean, Women and Children's Health Research Institute University of Alberta Edmonton AB Canada
| | | | - Kersti Tepp
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Marju Puurand
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Tuuli Käämbre
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Woo H. Han
- Faculty Saint‐Jean University of Alberta Edmonton AB Canada
| | - Paul Goede
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Katie A. O'Brien
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Belma Turan
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Erkan Tuncay
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Yusuf Olgar
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Anabela P. Rolo
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Carlos M. Palmeira
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Neoma T. Boardman
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| | - Rob C. I. Wüst
- Laboratory for Myology Department of Human Movement Sciences Faculty of Behavioural and Movement Sciences Amsterdam Movement Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Terje S. Larsen
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| |
Collapse
|
155
|
Robinson AJ, Hopkins GL, Rastogi N, Hodges M, Doyle M, Davies S, Hole PS, Omidvar N, Darley RL, Tonks A. Reactive Oxygen Species Drive Proliferation in Acute Myeloid Leukemia via the Glycolytic Regulator PFKFB3. Cancer Res 2020; 80:937-949. [PMID: 31862780 PMCID: PMC7611211 DOI: 10.1158/0008-5472.can-19-1920] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/15/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous clonal disorder with a poor clinical outcome. Previously, we showed that overproduction of reactive oxygen species (ROS), arising from constitutive activation of NOX2 oxidase, occurs in >60% of patients with AML and that ROS production promotes proliferation of AML cells. We show here that the process most significantly affected by ROS overproduction is glycolysis. Whole metabolome analysis of 20 human primary AML showed that blasts generating high levels of ROS have increased glucose uptake and correspondingly increased glucose metabolism. In support of this, exogenous ROS increased glucose consumption while inhibition of NOX2 oxidase decreased glucose consumption. Mechanistically, ROS promoted uncoupling protein 2 (UCP2) protein expression and phosphorylation of AMPK, upregulating the expression of a key regulatory glycolytic enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3). Overexpression of PFKFB3 promoted glucose uptake and cell proliferation, whereas downregulation of PFKFB3 strongly suppressed leukemia growth both in vitro and in vivo in the NSG model. These experiments provide direct evidence that oxidase-derived ROS promotes the growth of leukemia cells via the glycolytic regulator PFKFB3. Targeting PFKFB3 may therefore present a new mode of therapy for this disease with a poor outcome. SIGNIFICANCE: These findings show that ROS generated by NOX2 in AML cells promotes glycolysis by activating PFKFB3 and suggest PFKFB3 as a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Andrew J Robinson
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Goitseone L Hopkins
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Namrata Rastogi
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Marie Hodges
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Wales, United Kingdom
| | - Michelle Doyle
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Wales, United Kingdom
| | - Sara Davies
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Paul S Hole
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Nader Omidvar
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Richard L Darley
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom.
| |
Collapse
|
156
|
NADPH Oxidase 2 Mediates Myocardial Oxygen Wasting in Obesity. Antioxidants (Basel) 2020; 9:antiox9020171. [PMID: 32093119 PMCID: PMC7070669 DOI: 10.3390/antiox9020171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity and diabetes are independent risk factors for cardiovascular diseases, and they are associated with the development of a specific cardiomyopathy with elevated myocardial oxygen consumption (MVO2) and impaired cardiac efficiency. Although the pathophysiology of this cardiomyopathy is multifactorial and complex, reactive oxygen species (ROS) may play an important role. One of the major ROS-generating enzymes in the cardiomyocytes is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), and many potential systemic activators of NOX2 are elevated in obesity and diabetes. We hypothesized that NOX2 activity would influence cardiac energetics and/or the progression of ventricular dysfunction following obesity. Myocardial ROS content and mechanoenergetics were measured in the hearts from diet-induced-obese wild type (DIOWT) and global NOK2 knock-out mice (DIOKO) and in diet-induced obese C57BL/6J mice given normal water (DIO) or water supplemented with the NOX2-inhibitor apocynin (DIOAPO). Mitochondrial function and ROS production were also assessed in DIO and DIOAPO mice. This study demonstrated that ablation and pharmacological inhibition of NOX2 both improved mechanical efficiency and reduced MVO2 for non-mechanical cardiac work. Mitochondrial ROS production was also reduced following NOX2 inhibition, while cardiac mitochondrial function was not markedly altered by apocynin-treatment. Therefore, these results indicate a link between obesity-induced myocardial oxygen wasting, NOX2 activation, and mitochondrial ROS.
Collapse
|
157
|
Childress ES, Salamoun JM, Hargett SR, Alexopoulos SJ, Chen SY, Shah DP, Santiago-Rivera J, Garcia CJ, Dai Y, Tucker SP, Hoehn KL, Santos WL. [1,2,5]Oxadiazolo[3,4- b]pyrazine-5,6-diamine Derivatives as Mitochondrial Uncouplers for the Potential Treatment of Nonalcoholic Steatohepatitis. J Med Chem 2020; 63:2511-2526. [PMID: 32017849 DOI: 10.1021/acs.jmedchem.9b01440] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small molecule mitochondrial uncouplers are emerging as a new class of molecules for the treatment of nonalcoholic steatohepatitis. We utilized BAM15, a potent protonophore that uncouples the mitochondria without depolarizing the plasma membrane, as a lead compound for structure-activity profiling. Using oxygen consumption rate as an assay for determining uncoupling activity, changes on the 5- and 6-position of the oxadiazolopyrazine core were introduced. Our studies suggest that unsymmetrical aniline derivatives bearing electron withdrawing groups are preferred compared to the symmetrical counterparts. In addition, alkyl substituents are not tolerated, and the N-H proton of the aniline ring is responsible for the protonophore activity. In particular, compound 10b had an EC50 value of 190 nM in L6 myoblast cells. In an in vivo model of NASH, 10b decreased liver triglyceride levels and showed improvement in fibrosis, inflammation, and plasma ALT. Taken together, our studies indicate that mitochondrial uncouplers have potential for the treatment of NASH.
Collapse
Affiliation(s)
- Elizabeth S Childress
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph M Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stefan R Hargett
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Divya P Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - José Santiago-Rivera
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher J Garcia
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yumin Dai
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Simon P Tucker
- Continuum Biosciences, Pty Ltd., 2035 Sydney, Australia.,Continuum Biosciences Inc., Boston, Massachusetts 02116, United States
| | - Kyle L Hoehn
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
158
|
Wang SY, Zhu S, Wu J, Zhang M, Xu Y, Xu W, Cui J, Yu B, Cao W, Liu J. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy. J Mol Med (Berl) 2020; 98:245-261. [PMID: 31897508 DOI: 10.1007/s00109-019-01861-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a major cause of morbidity and mortality in diabetic patients. Reactive oxygen species (ROS) produced by oxidative stress play an important role in the development of DCM. DCM involves abnormal energy metabolism, thereby reducing energy production. Exercise has been reported to be effective in protecting the heart against ROS accumulation during the development of DCM. We hypothesize that the AMPK/PGC-1α axis may play a crucial role in exercise-induced bioenergetic metabolism and aerobic respiration on oxidative stress parameters in the development of diabetic cardiomyopathy. Using a streptozotocin/high-fat diet mouse to generate a diabetic model, our aim was to evaluate the effects of exercise on the cardiac function, mitochondrial oxidative capacity, mitochondrial function, and cardiac expression of PGC-1α. Mice fed a high-fat diet were given MO-siPGC-1α or treated with AMPK inhibitor. Mitochondrial structure and effects of switching between the Warburg effect and aerobic respiration were analysed. Exercise improved blood pressure and systolic dysfunction in diabetic mouse hearts. The beneficial effects of exercise were also observed in a mitochondrial function study, as reflected by an enhanced oxidative phosphorylation level, increased membrane potential, and decreased ROS level and oxygen consumption. On the other hand, depletion of PGC-1α attenuated the effects of exercise on the enhancement of mitochondrial function. In addition, PGC-1α may be responsible for reversing the Warburg effect to aerobic respiration, thus enhancing mitochondrial metabolism and energy homoeostasis. In this study, we demonstrate the protective effects of exercise on shifting energy metabolism from fatty acid oxidation to glucose oxidation in an established diabetic stage. These data suggest that exercise is effective at ameliorating diabetic cardiomyopathy by improving mitochondrial function and reducing metabolic disturbances.
Collapse
Affiliation(s)
- Shawn Yongshun Wang
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China.,Department of Biomedical Science, University of Hong Kong, Pokfulam, Hong Kong
| | - Siyu Zhu
- Department of Medical Imaging, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Jian Wu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Maomao Zhang
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Yousheng Xu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Wei Xu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Jinjin Cui
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Bo Yu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Wei Cao
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China. .,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China.
| | - Jingjin Liu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China. .,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China. .,Department of Anesthesiology, University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
159
|
Verma G, Dixit A, Nunemaker CS. A Putative Prohibitin-Calcium Nexus in β-Cell Mitochondria and Diabetes. J Diabetes Res 2020; 2020:7814628. [PMID: 33354575 PMCID: PMC7737164 DOI: 10.1155/2020/7814628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
The role of mitochondria in apoptosis is well known; however, the mechanisms linking mitochondria to the proapoptotic effects of proinflammatory cytokines, hyperglycemia, and glucolipotoxicity are not completely understood. Complex Ca2+ signaling has emerged as a critical contributor to these proapoptotic effects and has gained significant attention in regulating the signaling processes of mitochondria. In pancreatic β-cells, Ca2+ plays an active role in β-cell function and survival. Prohibitin (PHB), a mitochondrial chaperone, is actively involved in maintaining the architecture of mitochondria. However, its possible interaction with Ca2+-activated signaling pathways has not been explored. The present review aims to examine potential crosstalk between Ca2+ signaling and PHB function in pancreatic β-cells. Moreover, this review will focus on the effects of cytokines and glucolipotoxicity on Ca2+ signaling and its possible interaction with PHB. Improved understanding of this important mitochondrial protein may aid in the design of more targeted drugs to identify specific pathways involved with stress-induced dysfunction in the β-cell.
Collapse
Affiliation(s)
- Gaurav Verma
- Molecular Metabolism, Lund University Diabetes Centre, Malmö -21428, Sweden
- School of Biotechnology, Jawaharlal Nehru University, -110067, New Delhi, India
| | - Aparna Dixit
- School of Biotechnology, Jawaharlal Nehru University, -110067, New Delhi, India
| | - Craig S. Nunemaker
- HCOM-Biomedical Sciences, Ohio University, Athens Camp, US-45701 Ohio, USA
| |
Collapse
|
160
|
Tavoosi S, Baghsheikhi AH, Shetab-Boushehri SV, Navaei-Nigjeh M, Sarvestani NN, Karimi MY, Ranjbar A, Ebadollahi-Natanzi A, Hosseini A. Cerium and Yttrium Oxide Nanoparticles and Nano-selenium Produce Protective Effects Against H2O2-induced Oxidative Stress in Pancreatic Beta Cells by Modulating Mitochondrial Dysfunction. Pharm Nanotechnol 2020; 8:63-75. [PMID: 31577213 DOI: 10.2174/2211738507666191002154659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Type 1 diabetes mellitus is characterized by the destruction of insulin- producing Beta cells in the pancreas. Researchers hope that islet transplantation will help to patients with insulin-dependent diabetes mellitus (IDDM). Oxidative stress is the most important challenge that beta cells face to it after isolation, and mitochondrial dysfunction is a crucial mediator in beta cells death. Hence, therapeutic approaches can shift to antioxidants through the application of nanoparticles such as cerium and yttrium oxide nanoparticles (Cer and Ytt Ox NPs) and nano-selenium (Nan Se). OBJECTIVE This study evaluates the effects of Cer and Ytt Ox NPs and Nan Se on H2O2- induced oxidative stress in pancreatic beta cells with focus on mitochondrial dysfunction pathway. METHODS CRI-D2 beta-cell line were pretreated with Cer Ox NPs (200 µM) + Ytt Ox NPs (0.5 µg/mL) for 3 days and/or Nan Se (0.01 µM) for 1 day. Then markers of oxidative stress, mitochondrial dysfunction, insulin and glucagon secretion were measured. RESULTS We reported a decrease in H2O2-induced reactive oxygen species (ROS) level and glucagon secretion, and an increase in H2O2-reduced ATP/ADP ratio, MMP, as well as UCP2 protein expression, and insulin secretion by pretreatment of CRI-D2 cells with Cer and Ytt Ox NPs and/or Nan Se. CONCLUSION We found maximum protective effect with Cer and Ytt Ox NPs on CRI-D2 beta-cell line exposed by H2O2 for keeping beta cells alive until transplant whereas combination of Cer and Ytt Ox NPs and Nan Se had very little protective effect in this condition.
Collapse
Affiliation(s)
- Shima Tavoosi
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Seyed Vahid Shetab-Boushehri
- Department of Toxicology & Pharmacology, School of Pharmacy, International Campus, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran
| | - Nazanin Namazi Sarvestani
- Department of Animal Biology, School of Biology, Department of Science, University of Tehran, Tehran, Iran
| | | | - Akram Ranjbar
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Ebadollahi-Natanzi
- Medicinal plants Department, Imam Khomeini Higher Education Center, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
161
|
Argov-Argaman N, Cohen-Zinder M, Leibovich H, Yishay M, Eitam H, Agmon R, Hadaya O, Mesilati-Stahy R, Miron J, Shabtay A. Dietary pomegranate peel improves milk quality of lactating ewes: Emphasis on milk fat globule membrane properties and antioxidative traits. Food Chem 2019; 313:125822. [PMID: 31931419 DOI: 10.1016/j.foodchem.2019.125822] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
Abstract
Concentrated pomegranate peel extract (CPE) was supplemented to ewes, and milk yield and fat content-fatty acid (FA) and phospholipid (PL) composition-were monitored. CPE-fed ewes had higher milk yield, and fat, protein and lactose contents than controls. Milk PL content-20% higher in the CPE-supplemented group-was regulated by treatment and not by total fat content; milk phosphatidylethanolamine and phosphatidylcholine increased by 22 and 26%, respectively, in CPE-supplemented vs. control ewes. Milk saturated FA concentration was higher, and total polyunsaturated and monounsaturated FA content lower in the CPE vs. control group, regardless of milk total fat content. CPE supplementation increased milk antioxidant capacity, suggesting antioxidant transfer from dietary source to milk, increasing stability and nutritive value. Our study provides first evidence for milk quality improvement in terms of antioxidants and PL enrichment without compromising total milk fat, suggesting strategies to improve dairy animals' milk composition without compromising total production.
Collapse
Affiliation(s)
- Nurit Argov-Argaman
- The Animal Science Department, The Robert H Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Israel.
| | - Miri Cohen-Zinder
- Agricultural Research Organization, Institue of Animal Sciences, Newe Ya'ar Research Center, Israel.
| | - Haim Leibovich
- Agricultural Research Organization, Institue of Animal Sciences, Newe Ya'ar Research Center, Israel
| | - Moran Yishay
- Agricultural Research Organization, Institue of Animal Sciences, Newe Ya'ar Research Center, Israel
| | - Harel Eitam
- Agricultural Research Organization, Institue of Animal Sciences, Newe Ya'ar Research Center, Israel.
| | - Rotem Agmon
- Agricultural Research Organization, Institue of Animal Sciences, Newe Ya'ar Research Center, Israel.
| | - Oren Hadaya
- The Animal Science Department, The Robert H Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Israel
| | - Ronit Mesilati-Stahy
- The Animal Science Department, The Robert H Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Israel.
| | - Joshua Miron
- Agricultural Research Organization, Institute of Animal Sciences, Bet Dagan, Israel.
| | - Ariel Shabtay
- Agricultural Research Organization, Institue of Animal Sciences, Newe Ya'ar Research Center, Israel.
| |
Collapse
|
162
|
Spotlight on ROS and β3-Adrenoreceptors Fighting in Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6346529. [PMID: 31934266 PMCID: PMC6942895 DOI: 10.1155/2019/6346529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
The role of ROS and RNS is a long-standing debate in cancer. Increasing the concentration of ROS reaching the toxic threshold can be an effective strategy for the reduction of tumor cell viability. On the other hand, cancer cells, by maintaining intracellular ROS concentration at an intermediate level called “mild oxidative stress,” promote the activation of signaling that favors tumor progression by increasing cell viability and dangerous tumor phenotype. Many chemotherapeutic treatments induce cell death by rising intracellular ROS concentration. The persistent drug stimulation leads tumor cells to simulate a process called hormesis by which cancer cells exhibit a biphasic response to exposure to drugs used. After a first strong response to a low dose of chemotherapeutic agent, cancer cells start to decrease the response even if high doses of drugs were used. In this framework, β3-adrenoreceptors (β3-ARs) fit with an emerging antioxidant role in cancer. β3-ARs are involved in tumor proliferation, angiogenesis, metastasis, and immune tolerance. Its inhibition, by the selective β3-ARs antagonist (SR59230A), leads cancer cells to increase ROS concentration thus inducing cell death and to decrease NO levels thus inhibiting angiogenesis. In this review, we report an overview on reactive oxygen biology in cancer cells focusing on β3-ARs as new players in the antioxidant pathway.
Collapse
|
163
|
Pohl EE, Jovanovic O. The Role of Phosphatidylethanolamine Adducts in Modification of the Activity of Membrane Proteins under Oxidative Stress. Molecules 2019; 24:E4545. [PMID: 31842328 PMCID: PMC6943717 DOI: 10.3390/molecules24244545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) and their derivatives, reactive aldehydes (RAs), have been implicated in the pathogenesis of many diseases, including metabolic, cardiovascular, and inflammatory disease. Understanding how RAs can modify the function of membrane proteins is critical for the design of therapeutic approaches in the above-mentioned pathologies. Over the last few decades, direct interactions of RA with proteins have been extensively studied. Yet, few studies have been performed on the modifications of membrane lipids arising from the interaction of RAs with the lipid amino group that leads to the formation of adducts. It is even less well understood how various multiple adducts affect the properties of the lipid membrane and those of embedded membrane proteins. In this short review, we discuss a crucial role of phosphatidylethanolamine (PE) and PE-derived adducts as mediators of RA effects on membrane proteins. We propose potential PE-mediated mechanisms that explain the modulation of membrane properties and the functions of membrane transporters, channels, receptors, and enzymes. We aim to highlight this new area of research and to encourage a more nuanced investigation of the complex nature of the new lipid-mediated mechanism in the modification of membrane protein function under oxidative stress.
Collapse
Affiliation(s)
- Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna A-1210, Austria
| | - Olga Jovanovic
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna A-1210, Austria
| |
Collapse
|
164
|
Ostrakhovitch EA, Akakura S, Sanokawa-Akakura R, Tabibzadeh S. 3-Mercaptopyruvate sulfurtransferase disruption in dermal fibroblasts facilitates adipogenic trans-differentiation. Exp Cell Res 2019; 385:111683. [DOI: 10.1016/j.yexcr.2019.111683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/13/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
|
165
|
Gortan Cappellari G, Barazzoni R. Ghrelin forms in the modulation of energy balance and metabolism. Eat Weight Disord 2019; 24:997-1013. [PMID: 30353455 DOI: 10.1007/s40519-018-0599-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a gastric hormone circulating in acylated (AG) and unacylated (UnAG) forms. This narrative review aims at presenting current emerging knowledge on the impact of ghrelin forms on energy balance and metabolism. AG represents ~ 10% of total plasma ghrelin, has an appetite-stimulating effect and is the only form for which a receptor has been identified. Moreover, other metabolic AG-induced effects have been reported, including the modulation of glucose homeostasis with stimulation of liver gluconeogenesis, the increase of fat mass and the improvement of skeletal muscle mitochondrial function. On the other hand, UnAG has no orexigenic effects, however recent reports have shown that it is directly involved in the modulation of skeletal muscle energy metabolism by improving a cluster of interlinked functions including mitochondrial redox activities, tissue inflammation and insulin signalling and action. These findings are in agreement with human studies which show that UnAG circulating levels are positively associated with insulin sensitivity both in metabolic syndrome patients and in a large cohort from the general population. Moreover, ghrelin acylation is regulated by a nutrient sensor mechanism, specifically set on fatty acids availability. These recent findings consistently point towards a novel independent role of UnAG as a regulator of muscle metabolic pathways maintaining energy status and tissue anabolism. While a specific receptor for UnAG still needs to be identified, recent evidence strongly supports the hypothesis that the modulation of ghrelin-related molecular pathways, including those involved in its acylation, may be a potential novel target in the treatment of metabolic derangements in disease states characterized by metabolic and nutritional complications.Level of evidence Level V, narrative review.
Collapse
Affiliation(s)
- Gianluca Gortan Cappellari
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
- Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy.
| |
Collapse
|
166
|
McDaniel DK, Ringel-Scaia VM, Morrison HA, Coutermarsh-Ott S, Council-Troche M, Angle JW, Perry JB, Davis G, Leng W, Minarchick V, Yang Y, Chen B, Reece SW, Brown DA, Cecere TE, Brown JM, Gowdy KM, Hochella MF, Allen IC. Pulmonary Exposure to Magnéli Phase Titanium Suboxides Results in Significant Macrophage Abnormalities and Decreased Lung Function. Front Immunol 2019; 10:2714. [PMID: 31849940 PMCID: PMC6892980 DOI: 10.3389/fimmu.2019.02714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/05/2019] [Indexed: 01/03/2023] Open
Abstract
Coal is one of the most abundant and economic sources for global energy production. However, the burning of coal is widely recognized as a significant contributor to atmospheric particulate matter linked to deleterious respiratory impacts. Recently, we have discovered that burning coal generates large quantities of otherwise rare Magnéli phase titanium suboxides from TiO2 minerals naturally present in coal. These nanoscale Magnéli phases are biologically active without photostimulation and toxic to airway epithelial cells in vitro and to zebrafish in vivo. Here, we sought to determine the clinical and physiological impact of pulmonary exposure to Magnéli phases using mice as mammalian model organisms. Mice were exposed to the most frequently found Magnéli phases, Ti6O11, at 100 parts per million (ppm) via intratracheal administration. Local and systemic titanium concentrations, lung pathology, and changes in airway mechanics were assessed. Additional mechanistic studies were conducted with primary bone marrow derived macrophages. Our results indicate that macrophages are the cell type most impacted by exposure to these nanoscale particles. Following phagocytosis, macrophages fail to properly eliminate Magnéli phases, resulting in increased oxidative stress, mitochondrial dysfunction, and ultimately apoptosis. In the lungs, these nanoparticles become concentrated in macrophages, resulting in a feedback loop of reactive oxygen species production, cell death, and the initiation of gene expression profiles consistent with lung injury within 6 weeks of exposure. Chronic exposure and accumulation of Magnéli phases ultimately results in significantly reduced lung function impacting airway resistance, compliance, and elastance. Together, these studies demonstrate that Magnéli phases are toxic in the mammalian airway and are likely a significant nanoscale environmental pollutant, especially in geographic regions where coal combustion is a major contributor to atmospheric particulate matter.
Collapse
Affiliation(s)
- Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Veronica M. Ringel-Scaia
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, United States
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - McAlister Council-Troche
- Analytical Research Laboratory, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jonathan W. Angle
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Justin B. Perry
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Grace Davis
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Weinan Leng
- National Center for Earth and Environmental Nanotechnology Infrastructure, Virginia Tech, Blacksburg, VA, United States
| | - Valerie Minarchick
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical, Aurora, CO, United States
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Bo Chen
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sky W. Reece
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - David A. Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jared M. Brown
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical, Aurora, CO, United States
| | - Kymberly M. Gowdy
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | | | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
167
|
Lefranc C, Friederich-Persson M, Braud L, Palacios-Ramirez R, Karlsson S, Boujardine N, Motterlini R, Jaisser F, Nguyen Dinh Cat A. MR (Mineralocorticoid Receptor) Induces Adipose Tissue Senescence and Mitochondrial Dysfunction Leading to Vascular Dysfunction in Obesity. Hypertension 2019; 73:458-468. [PMID: 30624990 DOI: 10.1161/hypertensionaha.118.11873] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adipose tissue (AT) senescence and mitochondrial dysfunction are associated with obesity. Studies in obese patients and animals demonstrate that the MR (mineralocorticoid receptor) contributes to obesity-associated cardiovascular complications through its specific role in AT. However, underlying mechanisms remain unclear. This study aims to elucidate whether MR regulates mitochondrial function in obesity, resulting in AT premature aging and vascular dysfunction. Obese (db/db) and lean (db/+) mice were treated with an MR antagonist or a specific mitochondria-targeted antioxidant. Mitochondrial and vascular functions were determined by respirometry and myography, respectively. Molecular mechanisms were probed by Western immunoblotting and real-time polymerase chain reaction in visceral AT and arteries and focused on senescence markers and redox-sensitive pathways. db/db mice displayed AT senescence with activation of the p53-p21 pathway and decreased SIRT (sirtuin) levels, as well as mitochondrial dysfunction. Furthermore, the beneficial anticontractile effects of perivascular AT were lost in db/db via ROCK (Rho kinase) activation. MR blockade prevented these effects. Thus, MR activation in obesity induces mitochondrial dysfunction and AT senescence and dysfunction, which consequently increases vascular contractility. In conclusion, our study identifies novel mechanistic insights involving MR, adipose mitochondria, and vascular function that may be of importance to develop new therapeutic strategies to limit obesity-associated cardiovascular complications.
Collapse
Affiliation(s)
- Clara Lefranc
- From the Department of Physiology, INSERM UMRS 1138 Team 1, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France (C.L., R.P.-R., N.B., F.J., A.N.D.C.)
| | | | - Laura Braud
- Department of Pathophysiology of Cardiovascular and Respiratory Diseases, Development and Senescence, INSERM U955 Team 12, University Paris-Est Creteil, France (L.B., R.M.)
| | - Roberto Palacios-Ramirez
- From the Department of Physiology, INSERM UMRS 1138 Team 1, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France (C.L., R.P.-R., N.B., F.J., A.N.D.C.)
| | - Susanne Karlsson
- Department of Medical Cell Biology, Uppsala University, Sweden (M.F.-P., S.K.)
| | - Nabiha Boujardine
- From the Department of Physiology, INSERM UMRS 1138 Team 1, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France (C.L., R.P.-R., N.B., F.J., A.N.D.C.)
| | - Roberto Motterlini
- Department of Pathophysiology of Cardiovascular and Respiratory Diseases, Development and Senescence, INSERM U955 Team 12, University Paris-Est Creteil, France (L.B., R.M.)
| | - Frederic Jaisser
- From the Department of Physiology, INSERM UMRS 1138 Team 1, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France (C.L., R.P.-R., N.B., F.J., A.N.D.C.)
| | - Aurelie Nguyen Dinh Cat
- From the Department of Physiology, INSERM UMRS 1138 Team 1, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France (C.L., R.P.-R., N.B., F.J., A.N.D.C.)
| |
Collapse
|
168
|
Sinaga FA, Harahap U, Silalahi J, Sipahutar H. Antioxidant Effect of Virgin Coconut Oil on Urea and Creatinine Levels on Maximum Physical Activity. Open Access Maced J Med Sci 2019; 7:3781-3785. [PMID: 32127975 PMCID: PMC7048370 DOI: 10.3889/oamjms.2019.503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND: Maximal physical activity can produce an imbalance between reactive oxygen species (ROS) and antioxidants which are possibly related to fatigue and tissue injury. One of the natural sources that contain antioxidants is virgin coconut oil (VCO). AIM: This study aimed to determine the protective effects antioxidant of virgin coconut oil (VCO) treatment on urea and creatine level on maximum physical activity METHODS: This study used 24 healthy male rats. The rats were divided into four groups, randomly consisted of six rats in each group. The control group (P0) was given 2 mL water, the treatment groups (VCO-1, VCO-2, and VCO-4) were given VCO 1 mL/200 gBW, 2 mL/200 gBW and 4 ml/200 gBW, respectively, per day using gavage spuit. After 28 days, the rats were forced to perform maximal activity by putting the rats in water with no exit. Blood samples were collected immediately after the maximum physical activity. The urea, creatinine, malondialdehyde and glutation peroxidase level was then measured. RESULTS: This study used 24 healthy male rats. The rats were divided into four groups randomly consisted of six rats in each group. The control group (P0) was given 2 mL water, the treatment groups (VCO-1, VCO-2, and VCO-4) were given VCO 1 mL/200 gBW, 2 mL/200 gBW and 4 ml/200 gBW, respectively, per day using gavage spuit. After 28 days, the rats were forced to perform the maximal activity by putting the rats in water with no exit. Blood samples were collected immediately after the maximum physical activity. The urea, creatinine, malondialdehyde and glutathione peroxidase level was then measured. CONCLUSION: The results of this study indicate that virgin coconut oil is effective in the prevention of oxidative stress following maximum physical activity.
Collapse
Affiliation(s)
- Fajar Apollo Sinaga
- Department of Pharmaceutical Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Sumatera Utara, Indonesia
| | - Urip Harahap
- Department of Pharmaceutical Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Sumatera Utara, Indonesia
| | - Jansen Silalahi
- Department of Pharmaceutical Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Sumatera Utara, Indonesia
| | - Herbert Sipahutar
- Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, Indonesia
| |
Collapse
|
169
|
Kleih M, Böpple K, Dong M, Gaißler A, Heine S, Olayioye MA, Aulitzky WE, Essmann F. Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis 2019; 10:851. [PMID: 31699970 PMCID: PMC6838053 DOI: 10.1038/s41419-019-2081-4] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/12/2023]
Abstract
Patients with high-grade serous ovarian cancer (HGSC) frequently receive platinum-based chemotherapeutics, such as cisplatin. Cisplatin binds to DNA and induces DNA-damage culminating in mitochondria-mediated apoptosis. Interestingly, mitochondrial DNA is critically affected by cisplatin but its relevance in cell death induction is scarcely investigated. We find that cisplatin sensitive HGSC cell lines contain higher mitochondrial content and higher levels of mitochondrial ROS (mtROS) than cells resistant to cisplatin induced cell death. In clonal sub-lines from OVCAR-3 mitochondrial content and basal oxygen consumption rate correlate with sensitivity to cisplatin induced apoptosis. Mitochondria are in two ways pivotal for cisplatin sensitivity because not only knock-down of BAX and BAK but also the ROS scavenger glutathione diminish cisplatin induced apoptosis. Mitochondrial ROS correlates with mitochondrial content and reduction of mitochondrial biogenesis by knock-down of transcription factors PGC1α or TFAM attenuates both mtROS induction and cisplatin induced apoptosis. Increasing mitochondrial ROS by inhibition or knock-down of the ROS-protective uncoupling protein UCP2 enhances cisplatin induced apoptosis. Similarly, enhancing ROS by high-dose ascorbic acid or H2O2 augments cisplatin induced apoptosis. In summary, mitochondrial content and the resulting mitochondrial capacity to produce ROS critically determine HGSC cell sensitivity to cisplatin induced apoptosis. In line with this observation, data from the human protein atlas (www.proteinatlas.org) indicates that high expression of mitochondrial marker proteins (TFAM and TIMM23) is a favorable prognostic factor in ovarian cancer patients. Thus, we propose mitochondrial content as a biomarker for the response to platinum-based therapies. Functionally, this might be exploited by increasing mitochondrial content or mitochondrial ROS production to enhance sensitivity to cisplatin based anti-cancer therapies.
Collapse
Affiliation(s)
- Markus Kleih
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Kathrin Böpple
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Meng Dong
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Andrea Gaißler
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Simon Heine
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Walter E Aulitzky
- Department of Hematology and Oncology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Frank Essmann
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany.
| |
Collapse
|
170
|
Crosstalk between mitochondrial metabolism and oxidoreductive homeostasis: a new perspective for understanding the effects of bioactive dietary compounds. Nutr Res Rev 2019; 33:90-101. [DOI: 10.1017/s0954422419000210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractMitochondria play an important role in a number of fundamental cellular processes, including energy production, biosynthetic pathways and cellular oxidoreductive homeostasis (redox status), and their dysfunction can lead to numerous pathophysiological consequences. As the biochemical mechanisms orchestrating mitochondrial metabolism and redox homeostasis are functionally linked, mitochondria have been identified as a potential therapeutic target. Consequently, considerable effort has been made to evaluate the efficacy of natural compounds that modulate mitochondrial function. Molecules produced by plants (for example, polyphenols and isothiocyanates) have been shown to modulate mitochondrial metabolism/biogenesis and redox status; however, despite the existence of a functional link, few studies have considered the combined efficacy of these mitochondrial functions. The present review provides a complete overview of the molecular pathways involved in modulating mitochondrial metabolism/biogenesis and redox status. Crosstalk between these critical mechanisms is also discussed, whilst major data from the literature regarding their antioxidant abilities are described and critically analysed. We also provide a summary of recent evidence regarding the ability of several plant-derived compounds to target these mitochondrial functions. An in-depth understanding of the functional link between mitochondrial metabolism/biogenesis and redox status could facilitate the analysis of the biological effects of natural compounds as well as the development of new therapeutic approaches.
Collapse
|
171
|
Bottje W. Oxidative metabolism and efficiency: the delicate balancing act of mitochondria. Poult Sci 2019; 98:4223-4230. [DOI: 10.3382/ps/pey405] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
172
|
Alruwaili N, Kandhi S, Sun D, Wolin MS. Metabolism and Redox in Pulmonary Vascular Physiology and Pathophysiology. Antioxid Redox Signal 2019; 31:752-769. [PMID: 30403147 PMCID: PMC6708269 DOI: 10.1089/ars.2018.7657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: This review considers how some systems controlling pulmonary vascular function are potentially regulated by redox processes to examine how and why conditions such as prolonged hypoxia, pathological mediators, and other factors promoting vascular remodeling contribute to the development of pulmonary hypertension (PH). Recent Advances and Critical Issues: Aspects of vascular remodeling induction mechanisms described are associated with shifts in glucose metabolism through the pentose phosphate pathway and increased cytosolic NADPH generation by glucose-6-phosphate dehydrogenase, increased glycolysis generation of cytosolic NADH and lactate, mitochondrial dysfunction associated with superoxide dismutase-2 depletion, changes in reactive oxygen species and iron metabolism, and redox signaling. Future Directions: The regulation and impact of hypoxia-inducible factor and the function of cGMP-dependent and redox regulation of protein kinase G are considered for their potential roles as key sensors and coordinators of redox and metabolic processes controlling the progression of vascular pathophysiology in PH, and how modulating aspects of metabolic and redox regulatory systems potentially function in beneficial therapeutic approaches.
Collapse
Affiliation(s)
- Norah Alruwaili
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
173
|
Dimova LG, Battista S, Plösch T, Kampen RA, Liu F, Verkaik-Schakel RN, Pratico D, Verkade HJ, Tietge UJF. Gestational oxidative stress protects against adult obesity and insulin resistance. Redox Biol 2019; 28:101329. [PMID: 31550664 PMCID: PMC6812053 DOI: 10.1016/j.redox.2019.101329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 01/06/2023] Open
Abstract
Pregnancy complications such as preeclampsia cause increased fetal oxidative stress and fetal growth restriction, and associate with a higher incidence of adult metabolic syndrome. However, the pathophysiological contribution of oxidative stress per se is experimentally difficult to discern and has not been investigated. This study determined, if increased intrauterine oxidative stress (IUOx) affects adiposity, glucose and cholesterol metabolism in adult Ldlr−/−xSod2+/+ offspring from crossing male Ldlr−/−xSod2+/+ mice with Ldlr−/−xSod2 +/- dams (IUOx) or Ldlr−/−xSod2 +/- males with Ldlr−/−xSod2+/+ dams (control). At 12 weeks of age mice received Western diet for an additional 12 weeks. Adult male IUOx offspring displayed lower body weight and reduced adiposity associated with improved glucose tolerance compared to controls. Reduced weight gain in IUOx was conceivably due to increased energy dissipation in white adipose tissue conveyed by higher expression of Ucp1 and an accompanying decrease in DNA methylation in the Ucp1 enhancer region. Female offspring did not show comparable phenotypes. These results demonstrate that fetal oxidative stress protects against the obesogenic effects of Western diet in adulthood by programming energy dissipation in white adipose tissue at the level of Ucp1. Intrauterine oxidative stress (IUOx) in absence of growth restriction was induced. IUOx results in less obesity and improved glucose tolerance in adult male mice. Reduced adiposity in adult males is due to browning of white adipose tissue (WAT). Increased UCP-1 expression in WAT of IUOx mice is explained by lower methylation.
Collapse
Affiliation(s)
- Lidiya G Dimova
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Simone Battista
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Rosalie A Kampen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Fan Liu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Alle 8, Stockholm, Sweden
| | - Rikst Nynke Verkaik-Schakel
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA, USA
| | - Henkjan J Verkade
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Alle 8, Stockholm, Sweden; Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
174
|
Tang Z, Ye W, Chen H, Kuang X, Guo J, Xiang M, Peng C, Chen X, Liu H. Role of purines in regulation of metabolic reprogramming. Purinergic Signal 2019; 15:423-438. [PMID: 31493132 DOI: 10.1007/s11302-019-09676-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
Purines, among most influential molecules, are reported to have essential biological function by regulating various cell types. A large number of studies have led to the discovery of many biological functions of the purine nucleotides such as ATP, ADP, and adenosine, as signaling molecules that engage G protein-coupled or ligand-gated ion channel receptors. The role of purines in the regulation of cellular functions at the gene or protein level has been well documented. With the advances in multiomics, including those from metabolomic and bioinformatic analyses, metabolic reprogramming was identified as a key mechanism involved in the regulation of cellular function under physiological or pathological conditions. Recent studies suggest that purines or purine-derived products contribute to important regulatory functions in many fundamental biological and pathological processes related to metabolic reprogramming. Therefore, this review summarizes the role and potential mechanism of purines in the regulation of metabolic reprogramming. In particular, the molecular mechanisms of extracellular purine- and intracellular purine-mediated metabolic regulation in various cells during disease development are discussed. In summary, our review provides an extensive resource for studying the regulatory role of purines in metabolic reprogramming and sheds light on the utilization of the corresponding peptides or proteins for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Zhenwei Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Wenrui Ye
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Haotian Chen
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Xinwei Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minmin Xiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
175
|
Cobley JN, Noble A, Jimenez-Fernandez E, Valdivia Moya MT, Guille M, Husi H. Catalyst-free Click PEGylation reveals substantial mitochondrial ATP synthase sub-unit alpha oxidation before and after fertilisation. Redox Biol 2019; 26:101258. [PMID: 31234016 PMCID: PMC6597785 DOI: 10.1016/j.redox.2019.101258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 12/21/2022] Open
Abstract
Using non-reducing Western blotting to assess protein thiol redox state is challenging because most reduced and oxidised forms migrate at the same molecular weight and are, therefore, indistinguishable. While copper catalysed Click chemistry can be used to ligate a polyethylene glycol (PEG) moiety termed Click PEGylation to mass shift the reduced or oxidised form as desired, the potential for copper catalysed auto-oxidation is problematic. Here we define a catalyst-free trans-cyclooctene-methyltetrazine (TCO-Tz) inverse electron demand Diels Alder chemistry approach that affords rapid (k ~2000 M-1 s-1), selective and bio-orthogonal Click PEGylation. We used TCO-Tz Click PEGylation to investigate how fertilisation impacts reversible mitochondrial ATP synthase F1-Fo sub-unit alpha (ATP-α-F1) oxidation-an established molecular correlate of impaired enzyme activity-in Xenopus laevis. TCO-Tz Click PEGylation studies reveal substantial (~65%) reversible ATP-α-F1 oxidation at evolutionary conserved cysteine residues (i.e., C244 and C294) before and after fertilisation. A single thiol is, however, preferentially oxidised likely due to greater solvent exposure during the catalytic cycle. Selective reduction experiments show that: S-glutathionylation accounts for ~50-60% of the reversible oxidation observed, making it the dominant oxidative modification type. Intermolecular disulphide bonds may also contribute due to their relative stability. Substantial reversible ATP-α-F1 oxidation before and after fertilisation is biologically meaningful because it implies low mitochondrial F1-Fo ATP synthase activity. Catalyst-free TCO-Tz Click PEGylation is a valuable new tool to interrogate protein thiol redox state in health and disease.
Collapse
Affiliation(s)
- James N Cobley
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK.
| | - Anna Noble
- European Xenopus Resource Centre, University of Portsmouth, School of Biological Sciences, King Henry Building, Portsmouth, PO1 2DY, UK
| | - Eduardo Jimenez-Fernandez
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK
| | - Manuel-Thomas Valdivia Moya
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK
| | - Matthew Guille
- European Xenopus Resource Centre, University of Portsmouth, School of Biological Sciences, King Henry Building, Portsmouth, PO1 2DY, UK
| | - Holger Husi
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK
| |
Collapse
|
176
|
Hwang KA, Hwang YJ, Hwang IG, Heo W, Kim YJ. Effects of Low Temperature-Aged Garlic on Exercise Performance and Fatigue in Mice. J Med Food 2019; 22:944-951. [DOI: 10.1089/jmf.2018.4294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Kyung A. Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Korea
| | - Yu-Jin Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Korea
| | - In-Guk Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Korea
| | - Wan Heo
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Young-Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| |
Collapse
|
177
|
(Pro)renin receptor contributes to renal mitochondria dysfunction, apoptosis and fibrosis in diabetic mice. Sci Rep 2019; 9:11667. [PMID: 31406124 PMCID: PMC6690878 DOI: 10.1038/s41598-019-47055-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 02/04/2019] [Indexed: 01/14/2023] Open
Abstract
Recently we demonstrated that increased renal (Pro)renin receptor (PRR) expression in diabetes contributes to development of diabetic kidney disease. However, the exact mechanisms involving PRR activity and diabetic kidney dysfunction are unknown. We hypothesized that PRR is localized in renal mitochondria and contributes to renal fibrosis and apoptosis through oxidative stress-induced mitochondria dysfunction. Controls and streptozotocin-induced diabetic C57BL/6 mice were injected with scramble shRNA and PRR shRNA and followed for a period of eight weeks. At the end of study, diabetic mice showed increased expressions of PRR and NOX4 in both total kidney tissue and renal mitochondria fraction. In addition, renal mitochondria of diabetic mice showed reduced protein expression and activity of SOD2 and ATP production and increased UCP2 expression. In diabetic kidney, there was upregulation in the expressions of caspase3, phos-Foxo3a, phos-NF-κB, fibronectin, and collagen IV and reduced expressions of Sirt1 and total-FOXO3a. Renal immunostaining revealed increased deposition of PRR, collagen and fibronectin in diabetic kidney. In diabetic mice, PRR knockdown decreased urine albumin to creatinine ratio and the renal expressions of PRR, NOX4, UCP2, caspase3, phos-FOXO3a, phos-NF-κB, collagen, and fibronectin, while increased the renal mitochondria expression and activity of SOD2, ATP production, and the renal expressions of Sirt1 and total-FOXO3a. In conclusion, increased expression of PRR localized in renal mitochondria and diabetic kidney induced mitochondria dysfunction, and enhanced renal apoptosis and fibrosis in diabetes by upregulation of mitochondria NOX4/SOD2/UCP2 signaling pathway.
Collapse
|
178
|
Gaudry MJ, Keuper M, Jastroch M. Molecular evolution of thermogenic uncoupling protein 1 and implications for medical intervention of human disease. Mol Aspects Med 2019; 68:6-17. [DOI: 10.1016/j.mam.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
|
179
|
Bertholet AM, Chouchani ET, Kazak L, Angelin A, Fedorenko A, Long JZ, Vidoni S, Garrity R, Cho J, Terada N, Wallace DC, Spiegelman BM, Kirichok Y. H + transport is an integral function of the mitochondrial ADP/ATP carrier. Nature 2019; 571:515-520. [PMID: 31341297 PMCID: PMC6662629 DOI: 10.1038/s41586-019-1400-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
The mitochondrial ADP/ATP carrier (AAC) is a major transport protein of the inner mitochondrial membrane. It exchanges mitochondrial ATP for cytosolic ADP and controls cellular production of ATP. In addition, it has been proposed that AAC mediates mitochondrial uncoupling, but it has proven difficult to demonstrate this function or to elucidate its mechanisms. Here we record AAC currents directly from inner mitochondrial membranes from various mouse tissues and identify two distinct transport modes: ADP/ATP exchange and H+ transport. The AAC-mediated H+ current requires free fatty acids and resembles the H+ leak via the thermogenic uncoupling protein 1 found in brown fat. The ADP/ATP exchange via AAC negatively regulates the H+ leak, but does not completely inhibit it. This suggests that the H+ leak and mitochondrial uncoupling could be dynamically controlled by cellular ATP demand and the rate of ADP/ATP exchange. By mediating two distinct transport modes, ADP/ATP exchange and H+ leak, AAC connects coupled (ATP production) and uncoupled (thermogenesis) energy conversion in mitochondria.
Collapse
Affiliation(s)
- Ambre M Bertholet
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Edward T Chouchani
- Dana-Farber Cancer Institute & Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lawrence Kazak
- Dana-Farber Cancer Institute & Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andriy Fedorenko
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan Z Long
- Dana-Farber Cancer Institute & Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Sara Vidoni
- Dana-Farber Cancer Institute & Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ryan Garrity
- Dana-Farber Cancer Institute & Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Joonseok Cho
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Naohiro Terada
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute & Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yuriy Kirichok
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
180
|
Lima TI, Guimarães D, Sponton CH, Bajgelman MC, Palameta S, Toscaro JM, Reis O, Silveira LR. Essential role of the PGC-1α/PPARβ axis in Ucp3 gene induction. J Physiol 2019; 597:4277-4291. [PMID: 31228206 DOI: 10.1113/jp278006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/21/2019] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS We report that the peroxisome proliferator-activated receptor (PPAR)γ coactivator 1-α (PGC-1α)/PPARβ axis is a crucial mediator of uncoupling protein 3 (UCP3) expression in skeletal muscle cells via the transactivativation of a distal PPAR response element at the Ucp3 gene promoter. This mechanism is activated during the myogenic process and by high concentrations of fatty acids independent of PGC-1α protein levels. Ucp3 is essential for PGC-1α-induced oxidative capacity and the adaptive mitochondrial response to fatty acid exposure. These findings provide further evidence for the broad spectrum of the coactivator action in mitochondrial homeostasis, positioning the PGC-1ɑ/PPARβ axis as an essential component of the molecular regulation of Ucp3 gene in skeletal muscle cells. ABSTRACT Uncoupling protein 3 (UCP3) has an essential role in fatty acid metabolism and mitochondrial redox regulation in skeletal muscle. However, the molecular mechanisms involved in the expression of Ucp3 are poorly known. In the present study, we show that the peroxisome proliferator-activated receptor (PPAR)γ coactivator 1-α (PGC-1α)/PPARβ axis is a crucial mediator of Ucp3 expression in skeletal muscle cells. In silico analysis of the UCP3 promoter and quantitative chromatin immunoprecipitation experiments revealed that the induction of the UCP3 transcript is mediated by the transactivation of a distal PPAR response element at the Ucp3 gene promoter by the coactivator PGC-1α. This mechanism is activated during myogenesis and during metabolic stress induced by fatty acids independent of PGC-1α protein levels. We also provide evidence that Ucp3 is essential for PGC-1α-induced oxidative capacity. Taken together, our results highlight PGC-1ɑ/PPARβ as an essential component of the molecular regulation of Ucp3 gene in skeletal muscle cells.
Collapse
Affiliation(s)
- Tanes I Lima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School - USP, Ribeirão Preto, SP, Brazil.,Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Dimitrius Guimarães
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil.,Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Carlos H Sponton
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil.,Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | | | - Soledad Palameta
- Brazilian Biosciences National Laboratory (LNBio), Campinas, Brazil
| | | | - Osvaldo Reis
- Central Laboratory of High Performance Technologies (LaCTAD), University of Campinas, Campinas, Brazil
| | - Leonardo R Silveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School - USP, Ribeirão Preto, SP, Brazil.,Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| |
Collapse
|
181
|
Baccelli I, Gareau Y, Lehnertz B, Gingras S, Spinella JF, Corneau S, Mayotte N, Girard S, Frechette M, Blouin-Chagnon V, Leveillé K, Boivin I, MacRae T, Krosl J, Thiollier C, Lavallée VP, Kanshin E, Bertomeu T, Coulombe-Huntington J, St-Denis C, Bordeleau ME, Boucher G, Roux PP, Lemieux S, Tyers M, Thibault P, Hébert J, Marinier A, Sauvageau G. Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia. Cancer Cell 2019; 36:84-99.e8. [PMID: 31287994 DOI: 10.1016/j.ccell.2019.06.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 04/06/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
To identify therapeutic targets in acute myeloid leukemia (AML), we chemically interrogated 200 sequenced primary specimens. Mubritinib, a known ERBB2 inhibitor, elicited strong anti-leukemic effects in vitro and in vivo. In the context of AML, mubritinib functions through ubiquinone-dependent inhibition of electron transport chain (ETC) complex I activity. Resistance to mubritinib characterized normal CD34+ hematopoietic cells and chemotherapy-sensitive AMLs, which displayed transcriptomic hallmarks of hypoxia. Conversely, sensitivity correlated with mitochondrial function-related gene expression levels and characterized a large subset of chemotherapy-resistant AMLs with oxidative phosphorylation (OXPHOS) hyperactivity. Altogether, our work thus identifies an ETC complex I inhibitor and reveals the genetic landscape of OXPHOS dependency in AML.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Biomarkers
- Cell Line, Tumor
- Cell Survival/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Electron Transport Complex I/antagonists & inhibitors
- Female
- Hematopoiesis/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Mice
- Models, Biological
- Oxazoles/pharmacology
- Oxidative Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Receptor, ErbB-2/antagonists & inhibitors
- Triazoles/pharmacology
Collapse
Affiliation(s)
- Irène Baccelli
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada.
| | - Yves Gareau
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Department of Chemistry, Université de Montréal Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3C 3J7, Canada
| | - Bernhard Lehnertz
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Stéphane Gingras
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Department of Chemistry, Université de Montréal Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3C 3J7, Canada
| | - Jean-François Spinella
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Sophie Corneau
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Nadine Mayotte
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Simon Girard
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Mélanie Frechette
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Valérie Blouin-Chagnon
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Koryne Leveillé
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Isabel Boivin
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Tara MacRae
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Jana Krosl
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Clarisse Thiollier
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Vincent-Philippe Lavallée
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Evgeny Kanshin
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Thierry Bertomeu
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Jasmin Coulombe-Huntington
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Corinne St-Denis
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Marie-Eve Bordeleau
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Geneviève Boucher
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Philippe P Roux
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Department of Pathology & Cell Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal QC H3T 1J4, Canada
| | - Sébastien Lemieux
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Department of Computer Science & Operations Research, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Department of Biochemistry & Molecular Medicine, Université de Montréal Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Mike Tyers
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Pierre Thibault
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Josée Hébert
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Leukemia Cell Bank of Quebec, 5415 Assumption Boulevard, Montréal, QC H1T 2M4, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, 5415 Assumption Boulevard, Montréal, QC H1T 2M4, Canada; Department of Medicine, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Anne Marinier
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Department of Chemistry, Université de Montréal Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3C 3J7, Canada.
| | - Guy Sauvageau
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Leukemia Cell Bank of Quebec, 5415 Assumption Boulevard, Montréal, QC H1T 2M4, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, 5415 Assumption Boulevard, Montréal, QC H1T 2M4, Canada; Department of Medicine, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
182
|
Bae M, Lee Y, Park YK, Shin DG, Joshi P, Hong SH, Alder N, Koo SI, Lee JY. Astaxanthin attenuates the increase in mitochondrial respiration during the activation of hepatic stellate cells. J Nutr Biochem 2019; 71:82-89. [PMID: 31302374 DOI: 10.1016/j.jnutbio.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Upon liver injury, quiescent hepatic stellate cells (qHSCs) transdifferentiate to myofibroblast-like activated HSCs (aHSCs), which are primarily responsible for the accumulation of extracellular matrix proteins during the development of liver fibrosis. Therefore, aHSCs may exhibit different energy metabolism from that of qHSCs to meet their high energy demand. We previously demonstrated that astaxanthin (ASTX), a xanthophyll carotenoid, prevents the activation of HSCs. The objective of this study was to determine if ASTX can exert its antifibrogenic effect by attenuating any changes in energy metabolism during HSC activation. To characterize the energy metabolism of qHSCs and aHSCs, mouse primary HSCs were cultured on uncoated plastic dishes for 7 days for spontaneous activation in the presence or absence of 25 μM ASTX. qHSCs (1 day after isolation) and aHSCs treated with or without ASTX for 7 days were used to determine parameters related to mitochondrial respiration using a Seahorse XFe24 Extracellular Flux analyzer. aHSCs had significantly higher basal respiration, maximal respiration, ATP production, spare respiratory capacity and proton leak than those of qHSCs. However, ASTX prevented most of the changes occurring during HSC activation and improved mitochondrial cristae structure with decreased cristae junction width, lumen width and the area in primary mouse aHSCs. Furthermore, qHSCs isolated from ASTX-fed mice had lower mitochondrial respiration and glycolysis than control qHSCs. Our findings suggest that ASTX may exert its antifibrogenic effect by attenuating the changes in energy metabolism during HSC activation.
Collapse
Affiliation(s)
- Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Dong-Guk Shin
- Department of Computer Science and Engineering, Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Pujan Joshi
- Department of Computer Science and Engineering, Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Seung-Hyun Hong
- Department of Computer Science and Engineering, Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nathan Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Sung I Koo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
183
|
Koentges C, Cimolai MC, Pfeil K, Wolf D, Marchini T, Tarkhnishvili A, Hoffmann MM, Odening KE, Diehl P, von Zur Mühlen C, Alvarez S, Bode C, Zirlik A, Bugger H. Impaired SIRT3 activity mediates cardiac dysfunction in endotoxemia by calpain-dependent disruption of ATP synthesis. J Mol Cell Cardiol 2019; 133:138-147. [PMID: 31201798 DOI: 10.1016/j.yjmcc.2019.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/07/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sepsis-induced cardiomyopathy contributes to the high mortality of septic shock in critically ill patients. Since the underlying mechanisms are incompletely understood, we hypothesized that sepsis-induced impairment of sirtuin 3 (SIRT3) activity contributes to the development of septic cardiomyopathy. METHODS AND RESULTS Treatment of mice with lipopolysaccharide (LPS) for 6 h resulted in myocardial NAD+ depletion and increased mitochondrial protein acetylation, indicating impaired myocardial SIRT3 activity due to NAD+ depletion. LPS treatment also resulted in impaired cardiac output in isolated working hearts, indicating endotoxemia-induced cardiomyopathy. Maintaining normal myocardial NAD+ levels in LPS-treated mice by Poly(ADP-ribose)polymerase 1 (PARP1) deletion prevented cardiac dysfunction, whereas additional SIRT3 deficiency blunted this beneficial effect, indicating that impaired SIRT3 activity contributes to cardiac dysfunction in endotoxemia. Measurements of mitochondrial ATP synthesis suggest that LPS-induced contractile dysfunction may result from cardiac energy depletion due to impaired SIRT3 activity. Pharmacological inhibition of mitochondrial calpains using MDL28170 normalized LPS-induced cleavage of the ATP5A1 subunit of ATP synthase and normalized contractile dysfunction, suggesting that cardiac energy depletion may result from calpain-mediated cleavage of ATP5A1. These beneficial effects were completely blunted by SIRT3 deficiency. Finally, a gene set enrichment analysis of hearts of patients with septic, ischemic or dilated cardiomyopathy revealed a sepsis-specific suppression of SIRT3 deacetylation targets, including ATP5A1, indicating a functional relevance of SIRT3-dependent pathways in human sepsis. CONCLUSIONS Impaired SIRT3 activity may mediate cardiac dysfunction in endotoxemia by facilitating calpain-mediated disruption of ATP synthesis, suggesting SIRT3 activation as a potential therapeutic strategy to treat septic cardiomyopathy.
Collapse
Affiliation(s)
- Christoph Koentges
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany
| | - María C Cimolai
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Departamento de Ciencias Básicas, Universidad Nacional de Luján, CONICET, Luján, Buenos Aires, Argentina
| | - Katharina Pfeil
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany
| | - Dennis Wolf
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Timoteo Marchini
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Institute of Biochemistry and Molecular Medicine, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Michael M Hoffmann
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute for Clinical Chemistry and Laboratory Medicine, Medical Center - University of Freiburg, Germany
| | - Katja E Odening
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silvia Alvarez
- Institute of Biochemistry and Molecular Medicine, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Christoph Bode
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Heiko Bugger
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
184
|
Tyumentsev MA, Stefanova NA, Muraleva NA, Rumyantseva YV, Kiseleva E, Vavilin VA, Kolosova NG. Mitochondrial Dysfunction as a Predictor and Driver of Alzheimer's Disease-Like Pathology in OXYS Rats. J Alzheimers Dis 2019; 63:1075-1088. [PMID: 29710722 DOI: 10.3233/jad-180065] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidence suggests that mitochondrial dysfunction is an early event in sporadic Alzheimer's disease (AD), but the impact of mitochondrial dysfunction on the transition from healthy aging to AD remains elusive. Here we estimated the influence of mitochondrial dysfunction on the initiation of AD signs in OXYS rats, which simulate key characteristics of sporadic AD. We assessed the mitochondrial ultrastructure of pyramidal neurons of the hippocampus at the age preceding the development (age 20 days), during manifestation (4-5 months), and at the well-pronounced stages (18-24 months) of the AD-like pathology in OXYS rats. Ultrastructural alterations were collated with the amounts of proteins mediating mitochondrial dynamics [mitofusins (MFN1 and MFN2) and dynamin-1-like protein (DRP1)]; with activity of respiratory chain complexes I, IV, and V in the hippocampal mitochondria; with reactive oxygen species (ROS) production; and with expression of uncoupling protein 2 (UCP2) regulating ROS production. Already at the preclinical stage, OXYS rats showed some characteristic changes in hippocampal mitochondria, which increased in size with the manifestation and progression of AD-like pathology, including decreased activity of respiratory complexes against the background of greater fusion and formation of larger mitochondria. Signs of AD developed simultaneously with increasing dysfunction of mitochondria, with a dramatic decrease in their number, and with increased fission but without upregulation of ROS production (observed only in 20-day-old OXYS rats). Summarizing the data from our present and previous studies, we conclude that mitochondrial dysfunction appears to mediate or possibly even initiate pathological molecular cascades of AD-like pathology in OXYS rats and can be considered a predictor of the early development of the late-onset form of AD in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Valentin A Vavilin
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
185
|
Braganza A, Corey CG, Santanasto AJ, Distefano G, Coen PM, Glynn NW, Nouraie SM, Goodpaster BH, Newman AB, Shiva S. Platelet bioenergetics correlate with muscle energetics and are altered in older adults. JCI Insight 2019; 5:128248. [PMID: 31120438 DOI: 10.1172/jci.insight.128248] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Physical function decreases with age, and though bioenergetic alterations contribute to this decline, the mechanisms by which mitochondrial function changes with age remains unclear. This is partially because human mitochondrial studies require highly invasive procedures, such as muscle biopsies, to obtain live tissue with functional mitochondria. However, recent studies demonstrate that circulating blood cells are potentially informative in identifying systemic bioenergetic changes. Here, we hypothesize that human platelet bioenergetics reflect bioenergetics measured in muscle biopsies. METHODS & RESULTS We demonstrate that maximal and ATP-linked respiratory rate measured in isolated platelets from older adults (86-93 years) correlates significantly with maximal respiration (r = 0.595; P = 0.003) measured by muscle biopsy respirometry and maximal ATP production (r = 0.643; P = 0.004) measured by 31P-MRS respectively, in the same individuals. Comparison of platelet bioenergetics in this aged cohort to platelets from younger adults (18-35 years) shows aged adults demonstrate lower basal and ATP-linked respiration. Platelets from older adults also show enhanced proton leak, which is likely due to increased protein levels of uncoupling protein 2, and correlates with increased gate speed in this cohort (r = 0.58; P = 0.0019). While no significant difference in glycolysis was observed in older adults compared to younger adults, platelet glycolytic rate correlated with fatigability (r = 0.44; P = 0.016). CONCLUSIONS These data advance the mechanistic understanding of age-related changes in mitochondrial function. Further, they suggest that measuring platelet bioenergetics provides a potential supplement or surrogate for muscle biopsy measurement and may be a valuable tool to study mitochondrial involvement in age-related decline of physical function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Seyed-Mehdi Nouraie
- Vascular Medicine Institute.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | | | | | - Sruti Shiva
- Vascular Medicine Institute.,Department of Pharmacology and Chemical Biology.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
186
|
Dos Santos CC, Reynolds S, Batt J. Searching for the "Spark" in Ventilator-induced Diaphragm Dysfunction. Am J Respir Crit Care Med 2019; 196:1498-1500. [PMID: 28954198 DOI: 10.1164/rccm.201708-1716ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Claudia C Dos Santos
- 1 Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto, Ontario, Canada.,2 Institute of Medical Science.,3 Department of Medicine University of Toronto Toronto, Ontario, Canada
| | - Steven Reynolds
- 4 Critical Care Department Fraser Health Authority New Westminster, British Columbia, Canada and.,5 Department of Biophysiology and Kinesiology Simon Fraser University Burnaby, British Columbia, Canada
| | - Jane Batt
- 1 Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto, Ontario, Canada.,2 Institute of Medical Science.,3 Department of Medicine University of Toronto Toronto, Ontario, Canada
| |
Collapse
|
187
|
Occlusal interference induces oxidative stress and increases the expression of UCP3 in the masseter muscle: A rat model. Arch Oral Biol 2019; 102:249-255. [PMID: 31096116 DOI: 10.1016/j.archoralbio.2019.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine whether occlusal alteration contributes to masticatory muscle damage by inducing oxidative stress. DESIGN Thirty Sprague-Dawley rats were randomly divided into six groups, including occlusal interference groups (3 days, 7 days, 14 days, 21 days, and removal for 3 days) and a sham group. A rat experimental model of occlusal interference was generated by a 0.6-mm unilateral bite-raise. The rats were euthanised for evaluation of histologic changes in the masseter muscles using haematoxylin-eosin staining. To further investigate the role of oxidative stress and uncoupling protein (UCP3) in the development of occlusal dysfunction-induced masseter damage, levels of UCP3 protein were measured by western blot analysis. RESULTS Compared with the sham group, the connective tissue of the masseter muscle was extended partially and inflammatory cells appeared following the induction of malocclusion. With respect to the oxidative stress markers, there were increases in malondialdehyde (MDA) content but decreases in superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities; furthermore, the expression of UCP3 was upregulated. After eliminating the occlusal interference for 3 days, the degree of inflammation was substantially alleviated, the MDA content decreased, and SOD and GPX activities increased. The expression of UCP3 decreased. CONCLUSIONS Occlusal interference induces oxidative stress in the masseter muscle, regulated by UCP3. Overall, these findings have significant implications for the understanding of how occlusal dysfunction causes muscle fatigue and pain.
Collapse
|
188
|
β3-Adrenoreceptor Activity Limits Apigenin Efficacy in Ewing Sarcoma Cells: A Dual Approach to Prevent Cell Survival. Int J Mol Sci 2019; 20:ijms20092149. [PMID: 31052299 PMCID: PMC6540192 DOI: 10.3390/ijms20092149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 01/23/2023] Open
Abstract
Ewing Sarcoma (ES) is an aggressive paediatric tumour where oxidative stress and antioxidants play a central role in cancer therapy response. Inhibiting antioxidants expression, while at the same time elevating intracellular reactive oxygen species (ROS) levels, have been proposed as a valid strategy to overcome ES cancer progression. Flavonoid intake can affect free radical and nutritional status in children receiving cancer treatment, but it is not clear if it can arrest cancer progression. In particular, apigenin may enhance the effect of cytotoxic chemotherapy by inducing cell growth arrest, apoptosis, and by altering the redox state of the cells. Little is known about the use of apigenin in paediatric cancer. Recently, β3-adrenergic receptor (β3-AR) antagonism has been proposed as a possible strategy in cancer therapy for its ability to induce apoptosis by increasing intracellular levels of ROS. In this study we show that apigenin induces cell death in ES cells by modulating apoptosis, but not increasing ROS content. Since ES cells are susceptible to an increased oxidative stress to reduce cell viability, here we demonstrate that administration of β3-ARs antagonist, SR59230A, improves the apigenin effect on cell death, identifying β3-AR as a potential discriminating factor that could address the use of apigenin in ES.
Collapse
|
189
|
Migliaccio V, Scudiero R, Sica R, Lionetti L, Putti R. Oxidative stress and mitochondrial uncoupling protein 2 expression in hepatic steatosis induced by exposure to xenobiotic DDE and high fat diet in male Wistar rats. PLoS One 2019; 14:e0215955. [PMID: 31022254 PMCID: PMC6483212 DOI: 10.1371/journal.pone.0215955] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress plays a key role in steatohepatitis induced by both xenobiotic agents and high fat diet (HFD). The present study aimed to evaluate hepatic oxidative stress and anti-oxidant systems response in rats exposed to HFD and/or non-toxic dose of dichlorodiphenyldichloroethylene (DDE), the first metabolite of dichlorodiphenyltrichloroethane. Groups of 8 rats were so treated for 4 weeks: 1- standard diet (N group); 2- standard diet plus DDE (10 mg/kg b.w.) (N+DDE group); 3- HFD (D group); 4- HFD plus DDE (D+DDE group). Oxidative stress was analyzed by determining malondialdehyde as lipid peroxidation product, while the anti-oxidant systems were evaluating by measuring the levels of the principal cytosolic and mitochondrial antioxidant proteins and enzymes, namely superoxide dismutase 1 and 2 (SOD1, SOD2), glutathione peroxidase 1 (GPx1) and uncoupling protein 2 (UCP2) involved in the control of hepatic reactive oxygens species (ROS) accumulation. The results showed malondialdehyde accumulation in livers of all groups, confirming the pro-oxidant effects of both HFD and DDE, but with a greater effect of DDE in absence of HFD. In addition, we found different levels of the analyzed anti-oxidant systems in the different groups. DDE mainly induced UCP2 and SOD2, while HFD mainly induced GPx1. Noteworthy, in the condition of simultaneous exposure to DDE and HFD, the anti-oxidant response was more similar to the one induced by HFD than to the response induced by DDE. Present findings confirmed that both HFD and xenobiotic exposure induced hepatic oxidative stress and showed that the anti-oxidant defense response was not the same in the diverse groups, suggesting that UCP2 induction could be an adaptive response to limit excessive ROS damage, mainly in condition of xenobiotic exposure.
Collapse
Affiliation(s)
- Vincenzo Migliaccio
- Department of Biology, University of Naples, Federico II, Naples, Italy
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, Fisciano, Italy
| | - Rosaria Scudiero
- Department of Biology, University of Naples, Federico II, Naples, Italy
| | - Raffaella Sica
- Department of Biology, University of Naples, Federico II, Naples, Italy
| | - Lillà Lionetti
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, Fisciano, Italy
| | - Rosalba Putti
- Department of Biology, University of Naples, Federico II, Naples, Italy
| |
Collapse
|
190
|
Mitochondrial Targeting of Antioxidants Alters Pancreatic Acinar Cell Bioenergetics and Determines Cell Fate. Int J Mol Sci 2019; 20:ijms20071700. [PMID: 30959771 PMCID: PMC6480340 DOI: 10.3390/ijms20071700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is a core feature of acute pancreatitis, a severe disease in which oxidative stress is elevated. Mitochondrial targeting of antioxidants is a potential therapeutic strategy for this and other diseases, although thus far mixed results have been reported. We investigated the effects of mitochondrial targeting with the antioxidant MitoQ on pancreatic acinar cell bioenergetics, adenosine triphosphate (ATP) production and cell fate, in comparison with the non-antioxidant control decyltriphenylphosphonium bromide (DecylTPP) and general antioxidant N-acetylcysteine (NAC). MitoQ (µM range) and NAC (mM range) caused sustained elevations of basal respiration and the inhibition of spare respiratory capacity, which was attributable to an antioxidant action since these effects were minimal with DecylTPP. Although MitoQ but not DecylTPP decreased cellular NADH levels, mitochondrial ATP turnover capacity and cellular ATP concentrations were markedly reduced by both MitoQ and DecylTPP, indicating a non-specific effect of mitochondrial targeting. All three compounds were associated with a compensatory elevation of glycolysis and concentration-dependent increases in acinar cell apoptosis and necrosis. These data suggest that reactive oxygen species (ROS) contribute a significant negative feedback control of basal cellular metabolism. Mitochondrial targeting using positively charged molecules that insert into the inner mitochondrial member appears to be deleterious in pancreatic acinar cells, as does an antioxidant strategy for the treatment of acute pancreatitis.
Collapse
|
191
|
Blackwood SJ, Hanya E, Katz A. Effect of postexercise temperature elevation on postexercise glycogen metabolism of isolated mouse soleus muscle. J Appl Physiol (1985) 2019; 126:1103-1109. [PMID: 30730817 DOI: 10.1152/japplphysiol.01121.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of temperature elevation after intense repeated contractions on glycogen and energy metabolism as well as contractile function of isolated mouse soleus muscle (slow twitch, oxidative) were investigated. Muscles were stimulated electrically to perform repeated tetanic contractions for 10 min at 25°C, which reduced tetanic force by ~85% and glycogen by 50%. After 120-min recovery at 25°C glycogen was fully restored (~125% of basal), whereas after recovery at 35°C glycogen decreased further (~25% of basal). Glycogen synthase fractional activity averaged 31.8 ± 3.1% (baseline = 33.8 ± 3.4%) after 120-min recovery at 25°C but was increased after recovery at 35°C (63.8 ± 4.8%; P < 0.001 vs. 25°C). Phosphorylase fractional and total activities were not affected by the higher temperature. However, recovery at 35°C resulted in a significantly higher content of the phosphorylase substrate inorganic phosphate (~20%; P < 0.01 vs. 25°C). Finally, fatigue development during a subsequent bout of repeated contractions at 25°C was similar after 120-min recovery at 25°C and 35°C. These data demonstrate that after intense contractions elevated temperature inhibits glycogen accumulation, likely by increasing the availability of the phosphorylase substrate inorganic phosphate, but has no effect on fatigue development. Thus after heat exposure phosphorylase plays a significant role in glycogen accumulation, and glycogen does not limit muscle performance in isolated mouse soleus muscle after recovery from elevated temperature. NEW & NOTEWORTHY Whether elevated temperature affects glycogen biogenesis and contractile performance of isolated slow-twitch muscle is not known. Here we show that after a bout of repeated contractions in isolated mouse soleus muscle at 25°C, increasing muscle temperature during recovery to 35°C blocked glycogen accumulation compared with recovery at 25°C. Surprisingly, during a subsequent bout of repeated contractions at 25°C, the rate of fatigue was not different between groups after recovery at the two temperatures.
Collapse
Affiliation(s)
- Sarah J Blackwood
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| | - Ester Hanya
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| | - Abram Katz
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
192
|
TaheriChadorneshin H, Rostamkhani F, Shirvani H. Long-term effects of sprint interval training on expression of cardiac genes involved in energy efficiency. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-018-0480-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
193
|
Chao T, Burmeister DM, Corona BT, Greising SM. Oxidative pathophysiology following volumetric muscle loss injury in a porcine model. J Appl Physiol (1985) 2019; 126:1541-1549. [PMID: 30920884 DOI: 10.1152/japplphysiol.00026.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Volumetric muscle loss (VML) occurs after severe orthopedic trauma and results in loss of muscle fibers and function that can leave patients permanently disabled. Although animals models of VML are useful to test possible therapeutic strategies, the pathophysiological characteristics of remaining skeletal muscle and changes in metabolism are not thoroughly understood. Herein, alterations of neuromuscular function, muscle fiber morphology, myosin heavy chain expression, and myofiber mitochondrial respiration were evaluated in an adult Yorkshire swine VML injury model. VML injured animals showed reduced peak isometric strength (P < 0.05) and a shift toward smaller muscle fibers independent of fiber type (P < 0.001). The muscle remaining after VML had a greater distribution of type I fibers and lower distribution of type II fibers (P < 0.001). Skeletal muscle mitochondrial state 2 and state 3, reflecting complex I respiration, increased after injury (P < 0.05) with a consistent trend to display higher oxygen flux per milligram of tissue. However, this was largely driven by increased mitochondrial content after VML which was associated with higher mitochondrial fission (FIS-1 protein levels). This study demonstrates an underlying perturbation of oxidative metabolism within the remaining musculature following surgical creation of an isolated, sterile VML injury in a porcine model that may be influential to the development of insidious pathophysiology and regenerative and rehabilitative therapies. NEW & NOTEWORTHY The natural injury sequela of volumetric muscle loss (VML) and associated pathophysiology of the remaining muscle is still incompletely understood. Herein we demonstrate a chronic muscle function deficit, with an increase in type I muscle fibers and parallel increase in oxidative capacity of remaining skeletal muscle. It is possible that the alteration in oxidative capacity after VML could largely be due to heightened mitochondrial activity and an increase in mitochondrial abundance.
Collapse
Affiliation(s)
- Tony Chao
- Damage Control Resuscitation Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - David M Burmeister
- Damage Control Resuscitation Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas.,School of Medicine, Wake Forest University , Winston-Salem, North Carolina
| | - Sarah M Greising
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas.,School of Kinesiology, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
194
|
Jarmuszkiewicz W, Szewczyk A. Energy-dissipating hub in muscle mitochondria: Potassium channels and uncoupling proteins. Arch Biochem Biophys 2019; 664:102-109. [DOI: 10.1016/j.abb.2019.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/15/2023]
|
195
|
Zhou L, Liu L, Chai W, Zhao T, Jin X, Guo X, Han L, Yuan C. Dichloroacetic acid upregulates apoptosis of ovarian cancer cells by regulating mitochondrial function. Onco Targets Ther 2019; 12:1729-1739. [PMID: 30881027 PMCID: PMC6419601 DOI: 10.2147/ott.s194329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Metabolic reprogramming is a characteristic of tumor cells and is considered a potential therapeutic target. Even under aerobic conditions, tumor cells use glycolysis to produce energy, a phenomenon called the “Warburg effect”. Pyruvate dehydrogenase kinase 1 (PDK1) is a key factor linking glycolysis and the tricarboxylic acid cycle. Dichloroacetic acid (DCA) reverses the Warburg effect by inhibition of PDK1 to switch cytoplasmic glucose metabolism to mitochondrial oxidative phosphorylation (OXPHOS). Methods Cell viability was examined using a standard MTT assay. Glucose consumption and l-lactate production were measured using commercial colorimetric kits, and intracellular lactate dehydrogenase (LDH) activity was evaluated using cell lysates and an LDH Quantification Kit. Real-time PCR was used to detect the expression of related genes. The production of total ROS was evaluated by staining with dichlorofluorescin diacetate. Results Comparison of various aspects of glucose metabolism, such as expression of key enzymes in glycolysis, lactate production, glucose consumption, mitochondrial oxygen consumption rate, and citric acid production, revealed that A2780/DDP cells were primarily dependent on glycolysis whereas A2780 cells were primarily dependent on mitochondrial OXPHOS. Mitochondrial uncoupling protein 2 (UCP2) protects against mitochondrial ROS while allowing energy metabolism to switch to glycolysis. Treatment of A2780 cells with various concentrations of DCA resulted in decreased expression of UCP2, a metabolic switch from glycolysis to mitochondrial OXPHOS, and an increase in oxidative stress induced by ROS. These effects were not observed in A2780/DDP cells with higher UCP2 expression suggesting that UCP2 might induce changes in mitochondrial functions that result in different sensitivities to DCA. Conclusion Our results show that a drug targeting tumor metabolic changes affects almost the entire process of glucose metabolism. Thus, it is necessary to comprehensively determine tumor metabolic functions to facilitate individualized antitumor therapy.
Collapse
Affiliation(s)
- Li Zhou
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Lianlian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China,
| | - Wei Chai
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Ting Zhao
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Xin Jin
- Department of Obstetrics and Gynecology, Dalian Municipal Women and Children's Medical Center, Dalian 130041, China
| | - Xinxin Guo
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Liying Han
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China,
| | - Chunli Yuan
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, China,
| |
Collapse
|
196
|
Velando A, Noguera JC, da Silva A, Kim SY. Redox-regulation and life-history trade-offs: scavenging mitochondrial ROS improves growth in a wild bird. Sci Rep 2019; 9:2203. [PMID: 30778088 PMCID: PMC6379414 DOI: 10.1038/s41598-019-38535-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022] Open
Abstract
It has been proposed that animals usually restrain their growth because fast growth leads to an increased production of mitochondrial reactive oxygen species (mtROS), which can damage mitochondrial DNA and promote mitochondrial dysfunction. Here, we explicitly test whether this occurs in a wild bird by supplementing chicks with a mitochondria-targeted ROS scavenger, mitoubiquinone (mitoQ), and examining growth rates and mtDNA damage. In the yellow-legged gull Larus michahellis, mitoQ supplementation increased the early growth rate of chicks but did not reduce mtDNA damage. The level of mtDNA damage was negatively correlated with chick mass, but this relationship was not affected by the mitoQ treatment. We also found that chick growth was positively correlated with both mtDNA copy number and the mitochondrial enzymatic activity of citrate synthase, suggesting a link between mitochondrial content and growth. Additionally, we found that MitoQ supplementation increased mitochondrial content (in males), altered the relationship between mtDNA copy number and damage, and downregulated some transcriptional pathways related to cell rejuvenation, suggesting that scavenging mtROS during development enhanced growth rates but at the expense of cellular turnover. Our study confirms the central role of mitochondria modulating life-history trade-offs during development by other mechanisms than mtROS-inflicted damage.
Collapse
Affiliation(s)
- Alberto Velando
- Animal Ecology Group (GEA), Lab 97, Torre CACTI, Campus As Lagoas, Universidade de Vigo, Vigo, Spain.
| | - Jose C Noguera
- Animal Ecology Group (GEA), Lab 97, Torre CACTI, Campus As Lagoas, Universidade de Vigo, Vigo, Spain
| | - Alberto da Silva
- Animal Ecology Group (GEA), Lab 97, Torre CACTI, Campus As Lagoas, Universidade de Vigo, Vigo, Spain
| | - Sin-Yeon Kim
- Animal Ecology Group (GEA), Lab 97, Torre CACTI, Campus As Lagoas, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
197
|
Lemos NE, Dieter C, Carlessi R, Rheinheimer J, Brondani LDA, Leitão CB, Bauer AC, Crispim D. Renal effects of exendin-4 in an animal model of brain death. Mol Biol Rep 2019; 46:2197-2207. [PMID: 30759298 DOI: 10.1007/s11033-019-04674-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
Abstract
Organ transplantation is the gold standard therapy for the majority of patients with terminal organ failure. However, it is still a limited treatment especially due to the low number of brain death (BD) donors in relation to the number of waiting list recipients. Strategies to increase the quantity and quality of donor organs have been studied, and the administration of exendin-4 (Ex-4) to the donor may be a promising approach. Male Wistar rats were randomized into 3 groups: (1) control, without central nervous system injury; (2) BD induced experimentally, and (3) BD induced experimentally + Ex-4 administered immediately after BD induction. After BD induction, animals were monitored for 6 h before blood collection and kidney biopsy. Kidney function was assessed by biochemical quantification of plasma kidney markers. Gene and protein expressions of inflammation- and stress-related genes were evaluated by RT-qPCR and immunoblot analysis. Animals treated with Ex-4 had lower creatinine and urea levels compared with controls. BD induced oxidative stress in kidney tissue through increased expression of Ucp2, Sod2 and Inos, and Ex-4 administration reduced the expression of these genes. Ex-4 also induced increased expression of the anti-apoptotic Bcl2 gene. Nlrp3 and Tnf expressions were up-regulated in the BD group compared with controls, but Ex-4 treatment had no effect on these genes. Our findings suggest that Ex-4 administration in BD rats reduces BD-induced kidney damage by decreasing the expression of oxidative stress genes and increasing the expression of Bcl2.
Collapse
Affiliation(s)
- Natália Emerim Lemos
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.,Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Cristine Dieter
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.,Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Rodrigo Carlessi
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Kent St., Bentley, Perth, WA, 6102, Australia
| | - Jakeline Rheinheimer
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.,Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Letícia de Almeida Brondani
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.,Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Cristiane Bauermann Leitão
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.,Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Andrea Carla Bauer
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.,Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.,Nephrology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Daisy Crispim
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil. .,Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.
| |
Collapse
|
198
|
The reduction of NDUFC2 expression is associated with mitochondrial impairment in circulating mononuclear cells of patients with acute coronary syndrome. Int J Cardiol 2019; 286:127-133. [PMID: 30808603 DOI: 10.1016/j.ijcard.2019.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/10/2019] [Accepted: 02/13/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Deficiency of NADH dehydrogenase [ubiquinone], the mitochondrial complex I, represents an emerging mechanism of cardiovascular diseases. Ndufc2, a subunit of mitochondrial complex I, is involved in stroke development. We aimed to gain some insights on the role of Ndufc2 into acute coronary syndrome (ACS) through the assessment of its gene expression, along with that of anti-oxidant proteins and of mitochondrial function parameters, in circulating mononuclear cells (PBMCs) of ACS versus stable angina (SA) patients. The impact of NDUFC2 silencing in human endothelial and vascular smooth muscle cells was assessed in vitro. METHODS AND RESULTS One hundred twenty-three patients presenting with SA (n = 41) or ACS (n = 82) were enrolled. PBMCs were used to assess the gene expression level of: NDUFC2, uncoupling protein 2 (UCP2), superoxide dysmutases 1 and 2 (SOD1, SOD2), levels of ROS and ATP. The mitochondrial dysfunction was assessed by cytofluorimetry; the structural damage by transmission electron microscopy. Cell viability, angiogenesis, markers of atherogenesis were evaluated in NDUFC2-silenced vascular cells. NDUFC2 mRNA level was significantly downregulated, along with UCP2, SOD1, SOD2 expression, in ACS patients. We found significant increases of ROS levels, reduced ATP levels, higher degree of mitochondrial structural damage and dysfunction in ACS patients. In vitro, NDUFC2 silencing favored mechanisms involved in atherogenesis and plaque vulnerability. CONCLUSIONS A significant reduction of NDUFC2 expression is detected in ACS. In vitro, NDUFC2 silencing affects vascular cell viability and angiogenesis while stimulating the expression of markers of plaque rupture. Our observations suggest that these mechanisms may contribute to ACS development.
Collapse
|
199
|
Hough RF, Islam MN, Gusarova GA, Jin G, Das S, Bhattacharya J. Endothelial mitochondria determine rapid barrier failure in chemical lung injury. JCI Insight 2019; 4:124329. [PMID: 30728333 DOI: 10.1172/jci.insight.124329] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022] Open
Abstract
Acid aspiration, which can result from several etiologies, including postoperative complications, leads to direct contact of concentrated hydrochloric acid (HCl) with the alveolar epithelium. As a result, rapid endothelial activation induces alveolar inflammation, leading to life-threatening pulmonary edema. Because mechanisms underlying the rapid endothelial activation are not understood, here we determined responses in real time through optical imaging of alveoli of live mouse lungs. By alveolar micropuncture, we microinfused concentrated HCl in the alveolar lumen. As expected, acid contact with the epithelium caused rapid, but transient, apical injury. However, there was no concomitant membrane injury to the endothelium. Nevertheless, H2O2-mediated epithelial-endothelial paracrine signaling induced endothelial barrier failure, as detected by microvascular dextran leakage and lung water quantification. Remarkably, endothelial mitochondria regulated the barrier failure by activating uncoupling protein 2 (UCP2), thereby inducing transient mitochondrial depolarization that led to cofilin-induced actin depolymerization. Knockdown, or endothelium-targeted deletion of UCP2 expression, blocked these responses, including pulmonary edema. To our knowledge, these findings are the first to mechanistically implicate endothelial mitochondria in acid-induced barrier deterioration and pulmonary edema. We suggest endothelial UCP2 may be a therapeutic target for acid-induced acute lung injury.
Collapse
Affiliation(s)
- Rebecca F Hough
- Lung Biology Lab, Department of Medicine, and.,Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | - Shonit Das
- Lung Biology Lab, Department of Medicine, and
| | | |
Collapse
|
200
|
Christensen M, Schiffer TA, Gustafsson H, Krag SP, Nørregaard R, Palm F. Metformin attenuates renal medullary hypoxia in diabetic nephropathy through inhibition uncoupling protein-2. Diabetes Metab Res Rev 2019; 35:e3091. [PMID: 30345618 DOI: 10.1002/dmrr.3091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND The purpose of the study is to examine the effect of metformin on oxygen metabolism and mitochondrial function in the kidney of an animal model of insulinopenic diabetes in order to isolate any renoprotective effect from any concomitant effect on blood glucose homeostasis. METHODS Sprague-Dawley rats were injected with streptozotocin (STZ) (50 mg kg-1 ) and when stable started on metformin treatment (250 mg kg-1 ) in the drinking water. Rats were prepared for in vivo measurements 25 to 30 days after STZ injection, where renal function, including glomerular filtration rate and sodium transport, was estimated in anesthetized rats. Intrarenal oxygen tension was measured using oxygen sensors. Furthermore, mitochondrial function was assessed in mitochondria isolated from kidney cortex and medulla analysed by high-resolution respirometry, and superoxide production was evaluated using electron paramagnetic resonance. RESULTS Insulinopenic rats chronically treated with metformin for 4 weeks displayed improved medullary tissue oxygen tension despite of no effect of metformin on blood glucose homeostasis. Metformin reduced UCP2-dependent LEAK and differentially affected medullary mitochondrial superoxide radical production in control and diabetic rats. CONCLUSIONS Metformin attenuates diabetes-induced renal medullary tissue hypoxia in an animal model of insulinopenic type 1 diabetes. The results suggest that the mechanistic pathway to attenuate the diabetes-induced medullary hypoxia is independent of blood glucose homeostasis and includes reduced UCP2-mediated mitochondrial proton LEAK.
Collapse
Affiliation(s)
| | - Tomas A Schiffer
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Håkan Gustafsson
- Department of Radiology Norrköping and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|