151
|
Xu L, Yin L, Qi Y, Tan X, Gao M, Peng J. 3D disorganization and rearrangement of genome provide insights into pathogenesis of NAFLD by integrated Hi-C, Nanopore, and RNA sequencing. Acta Pharm Sin B 2021; 11:3150-3164. [PMID: 34729306 PMCID: PMC8546856 DOI: 10.1016/j.apsb.2021.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/30/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022] Open
Abstract
The three-dimensional (3D) conformation of chromatin is integral to the precise regulation of gene expression. The 3D genome and genomic variations in non-alcoholic fatty liver disease (NAFLD) are largely unknown, despite their key roles in cellular function and physiological processes. High-throughput chromosome conformation capture (Hi-C), Nanopore sequencing, and RNA-sequencing (RNA-seq) assays were performed on the liver of normal and NAFLD mice. A high-resolution 3D chromatin interaction map was generated to examine different 3D genome hierarchies including A/B compartments, topologically associated domains (TADs), and chromatin loops by Hi-C, and whole genome sequencing identifying structural variations (SVs) and copy number variations (CNVs) by Nanopore sequencing. We identified variations in thousands of regions across the genome with respect to 3D chromatin organization and genomic rearrangements, between normal and NAFLD mice, and revealed gene dysregulation frequently accompanied by these variations. Candidate target genes were identified in NAFLD, impacted by genetic rearrangements and spatial organization disruption. Our data provide a high-resolution 3D genome interaction resource for NAFLD investigations, revealed the relationship among genetic rearrangements, spatial organization disruption, and gene regulation, and identified candidate genes associated with these variations implicated in the pathogenesis of NAFLD. The newly findings offer insights into novel mechanisms of NAFLD pathogenesis and can provide a new conceptual framework for NAFLD therapy.
Collapse
Key Words
- 3C, chromosome conformation capture
- 3D genome
- 3D, three-dimensional
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Abcg5, ATP-binding cassette sub-family G member 5
- BWA, Burrows-Wheeler Aligner
- CNV, copy number variation
- Camk1d, calcium/calmodulin-dependent protein kinase type 1D
- Chr, chromosome
- Chromatin looping
- DEG, differentially expressed gene
- DEL, deletion
- DI, directionality index
- DUP, duplication
- Elovl6, elongation of very long chain fatty acids protein 6
- FDR, false discovery rate
- FFA, free fatty acid
- Fgfr2, fibroblast growth factor receptor 2
- GCKR, glucokinase regulator
- GO, gene ontology
- GSH, glutathione
- Gadd45g, growth arrest and DNA damage-inducible protein GADD45 gamma
- Grm8, metabotropic glutamate receptor 8
- Gsta1, glutathione S-transferase A1
- H&E, hematoxylin-eosin
- HFD, high-fat diet
- HSD17B13, hydroxysteroid 17-beta dehydrogenase 13
- Hi-C, high-throughput chromosome conformation capture
- IDE, interaction decay exponent
- INS, insertion
- INV, inversion
- IR, inclusion ratio
- IRGM, immunity related GTPase M
- IRS4, insulin receptor substrate 4
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- Kcnma1, calcium-activated potassium channel subunit alpha-1
- LPIN1, lipin 1
- MBOAT7, membrane bound O-acyltransferase domain containing 7
- MDA, malondialdehyde
- NAFLD, non-alcoholic fatty liver disease
- NF1, neurofibromin 1
- NGS, next-generation sequencing
- NOTCH1, notch receptor 1
- ONT, Oxford Nanopore Technologies
- PCA, principal component analysis
- PNPLA3, patatin like phospholipase domain containing 3
- PPP1R3B, protein phosphatase 1 regulatory subunit 3B
- PTEN, phosphatase and tensin homolog
- Pde4b, phosphodiesterase 4B
- Plce1, 1-phosphat-idylinositol 4,5-bisphosphate phosphodiesterase epsilon-1
- Plxnb1, Plexin-B1
- RB1, RB transcriptional corepressor 1
- RNA-seq, RNA-sequencing
- SD, standard deviation
- SOD, superoxide dismutase
- SV, structural variation
- Scd1, acyl-CoA desaturase 1
- Sugct, succinate-hydroxymethylglutarate CoA-transferase
- TAD, topologically associated domain
- TC, total cholesterol
- TG, triglyceride
- TM6SF2, transmembrane 6 superfamily member 2
- TP53, tumor protein p53
- TRA, translocation
- Topologically associated domain
- Transcriptome
- WGS, whole-genome sequencing
- Whole-genome sequencing
Collapse
|
152
|
Chaudhary N, Im JK, Nho SH, Kim H. Visualizing Live Chromatin Dynamics through CRISPR-Based Imaging Techniques. Mol Cells 2021; 44:627-636. [PMID: 34588320 PMCID: PMC8490199 DOI: 10.14348/molcells.2021.2254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022] Open
Abstract
The three-dimensional organization of chromatin and its time-dependent changes greatly affect virtually every cellular function, especially DNA replication, genome maintenance, transcription regulation, and cell differentiation. Sequencing-based techniques such as ChIP-seq, ATAC-seq, and Hi-C provide abundant information on how genomic elements are coupled with regulatory proteins and functionally organized into hierarchical domains through their interactions. However, visualizing the time-dependent changes of such organization in individual cells remains challenging. Recent developments of CRISPR systems for site-specific fluorescent labeling of genomic loci have provided promising strategies for visualizing chromatin dynamics in live cells. However, there are several limiting factors, including background signals, off-target binding of CRISPR, and rapid photobleaching of the fluorophores, requiring a large number of target-bound CRISPR complexes to reliably distinguish the target-specific foci from the background. Various modifications have been engineered into the CRISPR system to enhance the signal-to-background ratio and signal longevity to detect target foci more reliably and efficiently, and to reduce the required target size. In this review, we comprehensively compare the performances of recently developed CRISPR designs for improved visualization of genomic loci in terms of the reliability of target detection, the ability to detect small repeat loci, and the allowed time of live tracking. Longer observation of genomic loci allows the detailed identification of the dynamic characteristics of chromatin. The diffusion properties of chromatin found in recent studies are reviewed, which provide suggestions for the underlying biological processes.
Collapse
Affiliation(s)
- Narendra Chaudhary
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Jae-Kyeong Im
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Si-Hyeong Nho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
153
|
Liao X, Guo S, Yin X, Liao B, Li M, Su H, Li Q, Pei J, Gao J, Lei J, Li X, Huang Z, Xu J, Chen S. Hierarchical chromatin features reveal the toxin production in Bungarus multicinctus. Chin Med 2021; 16:90. [PMID: 34535171 PMCID: PMC8447776 DOI: 10.1186/s13020-021-00502-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bungarus multicinctus, from which a classical Chinese medicine is produced, is known as the most venomous land snake in the world, but the chromatin organization and transcription factor activity during venom replenishment progress have not been explored yet. This study aimed to determine the roles of chromatin structure in toxin activity via bioinformatics and experimental validation. METHODS Chromosome conformation capture (Hi-C) analysis was used to examine interactions among chromosomes and identify different scales of chromatin during envenomation in B. multicinctus. Correlations between epigenetic modifications and chromatin structure were verified through ChIP-seq analysis. RNA-seq was used to validate the influence of variation in chromatin structure and gene expression levels on venom production and regulation. RESULTS Our results suggested that intra-chromosomal interactions are more intense than inter-chromosomal interactions among the control group, 3-day group of venom glands and muscles. Through this, we found that compartmental transition was correlated with chromatin interactions. Interestingly, the up-regulated genes in more compartmental switch regions reflect the function of toxin activity. Topologically associated domain (TAD) boundaries enriched with histone modifications are associated with different distributions of genes and the expression levels. Toxin-coding genes in the same loop are highly expressed, implying that the importance of epigenetic regulation during envenomination. On a smaller scale, the epigenetic markers affect transcriptional regulation by controlling the recruitment/inhibition of transcription initiation complexes. CONCLUSIONS Chromatin structure and epigenetic modifications could play a vital status role in the mechanisms of venom regulation in B. multicinctus.
Collapse
Affiliation(s)
- Xuejiao Liao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shuai Guo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianmei Yin
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mingqian Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - He Su
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Qiushi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jin Pei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jihai Gao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juan Lei
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhihai Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
154
|
Batra RN, Lifshitz A, Vidakovic AT, Chin SF, Sati-Batra A, Sammut SJ, Provenzano E, Ali HR, Dariush A, Bruna A, Murphy L, Purushotham A, Ellis I, Green A, Garrett-Bakelman FE, Mason C, Melnick A, Aparicio SAJR, Rueda OM, Tanay A, Caldas C. DNA methylation landscapes of 1538 breast cancers reveal a replication-linked clock, epigenomic instability and cis-regulation. Nat Commun 2021; 12:5406. [PMID: 34518533 PMCID: PMC8437946 DOI: 10.1038/s41467-021-25661-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/18/2021] [Indexed: 11/08/2022] Open
Abstract
DNA methylation is aberrant in cancer, but the dynamics, regulatory role and clinical implications of such epigenetic changes are still poorly understood. Here, reduced representation bisulfite sequencing (RRBS) profiles of 1538 breast tumors and 244 normal breast tissues from the METABRIC cohort are reported, facilitating detailed analysis of DNA methylation within a rich context of genomic, transcriptional, and clinical data. Tumor methylation from immune and stromal signatures are deconvoluted leading to the discovery of a tumor replication-linked clock with genome-wide methylation loss in non-CpG island sites. Unexpectedly, methylation in most tumor CpG islands follows two replication-independent processes of gain (MG) or loss (ML) that we term epigenomic instability. Epigenomic instability is correlated with tumor grade and stage, TP53 mutations and poorer prognosis. After controlling for these global trans-acting trends, as well as for X-linked dosage compensation effects, cis-specific methylation and expression correlations are uncovered at hundreds of promoters and over a thousand distal elements. Some of these targeted known tumor suppressors and oncogenes. In conclusion, this study demonstrates that global epigenetic instability can erode cancer methylomes and expose them to localized methylation aberrations in-cis resulting in transcriptional changes seen in tumors.
Collapse
Affiliation(s)
- Rajbir Nath Batra
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Aviezer Lifshitz
- Department of Computer Science and Applied Mathematics, and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Ankita Sati-Batra
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Stephen-John Sammut
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
- Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Elena Provenzano
- Cancer Research UK Cambridge Centre, Cambridge, UK
- Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - H Raza Ali
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
- Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ali Dariush
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Leigh Murphy
- Research Institute in Oncology and Hematology, Winnipeg, Manitoba, Canada
| | - Arnie Purushotham
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Ian Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham, UK
| | - Andrew Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham, UK
| | - Francine E Garrett-Bakelman
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Chris Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Samuel A J R Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Oscar M Rueda
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Centre, Cambridge, UK.
- Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
155
|
Danieli A, Papantonis A. Spatial genome architecture and the emergence of malignancy. Hum Mol Genet 2021; 29:R197-R204. [PMID: 32619215 DOI: 10.1093/hmg/ddaa128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 01/30/2023] Open
Abstract
Human chromosomes are large spatially and hierarchically structured entities, the integrity of which needs to be preserved throughout the lifespan of the cell and in conjunction with cell cycle progression. Preservation of chromosomal structure is important for proper deployment of cell type-specific gene expression programs. Thus, aberrations in the integrity and structure of chromosomes will predictably lead to disease, including cancer. Here, we provide an updated standpoint with respect to chromatin misfolding and the emergence of various cancer types. We discuss recent studies implicating the disruption of topologically associating domains, switching between active and inactive compartments, rewiring of promoter-enhancer interactions in malignancy as well as the effects of single nucleotide polymorphisms in non-coding regions involved in long-range regulatory interactions. In light of these findings, we argue that chromosome conformation studies may now also be useful for patient diagnosis and drug target discovery.
Collapse
Affiliation(s)
- Adi Danieli
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
156
|
Topological isolation of developmental regulators in mammalian genomes. Nat Commun 2021; 12:4897. [PMID: 34385432 PMCID: PMC8361032 DOI: 10.1038/s41467-021-24951-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Precise control of mammalian gene expression is facilitated through epigenetic mechanisms and nuclear organization. In particular, insulated chromosome structures are important for regulatory control, but the phenotypic consequences of their boundary disruption on developmental processes are complex and remain insufficiently understood. Here, we generated deeply sequenced Hi-C data for human pluripotent stem cells (hPSCs) that allowed us to identify CTCF loop domains that have highly conserved boundary CTCF sites and show a notable enrichment of individual developmental regulators. Importantly, perturbation of such a boundary in hPSCs interfered with proper differentiation through deregulated distal enhancer-promoter activity. Finally, we found that germline variations affecting such boundaries are subject to purifying selection and are underrepresented in the human population. Taken together, our findings highlight the importance of developmental gene isolation through chromosomal folding structures as a mechanism to ensure their proper expression. The phenotypic consequence of 3D genome boundary disruption on developmental processes remains insufficiently understood. Here, the authors show that perturbation of a SOX17 boundary in human pluripotent stem cells interferes with proper differentiation and that germline variations affecting such boundaries are subject to selection, resulting in underrepresentation in the human population.
Collapse
|
157
|
Yao Q, Ferragina P, Reshef Y, Lettre G, Bauer DE, Pinello L. Motif-Raptor: a cell type-specific and transcription factor centric approach for post-GWAS prioritization of causal regulators. Bioinformatics 2021; 37:2103-2111. [PMID: 33532840 PMCID: PMC11025460 DOI: 10.1093/bioinformatics/btab072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Genome-wide association studies (GWASs) have identified thousands of common trait-associated genetic variants but interpretation of their function remains challenging. These genetic variants can overlap the binding sites of transcription factors (TFs) and therefore could alter gene expression. However, we currently lack a systematic understanding on how this mechanism contributes to phenotype. RESULTS We present Motif-Raptor, a TF-centric computational tool that integrates sequence-based predictive models, chromatin accessibility, gene expression datasets and GWAS summary statistics to systematically investigate how TF function is affected by genetic variants. Given trait-associated non-coding variants, Motif-Raptor can recover relevant cell types and critical TFs to drive hypotheses regarding their mechanism of action. We tested Motif-Raptor on complex traits such as rheumatoid arthritis and red blood cell count and demonstrated its ability to prioritize relevant cell types, potential regulatory TFs and non-coding SNPs which have been previously characterized and validated. AVAILABILITY AND IMPLEMENTATION Motif-Raptor is freely available as a Python package at: https://github.com/pinellolab/MotifRaptor. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Qiuming Yao
- Department of Pathology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Ferragina
- Department of Computer Science, University of Pisa, Pisa 56128, Italy
| | - Yakir Reshef
- Department of Computer Science, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Guillaume Lettre
- Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C3J7, Canada
- Montreal Heart Institute, Montreal, Quebec H1T1C8, Canada
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Luca Pinello
- Department of Pathology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
158
|
Munisha M, Schimenti JC. Genome maintenance during embryogenesis. DNA Repair (Amst) 2021; 106:103195. [PMID: 34358805 DOI: 10.1016/j.dnarep.2021.103195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022]
Abstract
Genome maintenance during embryogenesis is critical, because defects during this period can be perpetuated and thus have a long-term impact on individual's health and longevity. Nevertheless, genome instability is normal during certain aspects of embryonic development, indicating that there is a balance between the exigencies of timely cell proliferation and mutation prevention. In particular, early embryos possess unique cellular and molecular features that underscore the challenge of having an appropriate balance. Here, we discuss genome instability during embryonic development, the mechanisms used in various cell compartments to manage genomic stress and address outstanding questions regarding the balance between genome maintenance mechanisms in key cell types that are important for adulthood and progeny.
Collapse
Affiliation(s)
- Mumingjiang Munisha
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States
| | - John C Schimenti
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States.
| |
Collapse
|
159
|
Smith CL, Poleshko A, Epstein JA. The nuclear periphery is a scaffold for tissue-specific enhancers. Nucleic Acids Res 2021; 49:6181-6195. [PMID: 34023908 PMCID: PMC8216274 DOI: 10.1093/nar/gkab392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Nuclear architecture influences gene regulation and cell identity by controlling the three-dimensional organization of genes and their distal regulatory sequences, which may be far apart in linear space. The genome is functionally and spatially segregated in the eukaryotic nucleus with transcriptionally active regions in the nuclear interior separated from repressive regions, including those at the nuclear periphery. Here, we describe the identification of a novel type of nuclear peripheral chromatin domain that is enriched for tissue-specific transcriptional enhancers. Like other chromatin at the nuclear periphery, these regions are marked by H3K9me2. But unlike the nuclear peripheral Lamina-Associated Domains (LADs), these novel, enhancer-rich domains have limited Lamin B interaction. We therefore refer to them as H3K9me2-Only Domains (KODs). In mouse embryonic stem cells, KODs are found in Hi-C-defined A compartments and feature relatively accessible chromatin. KODs are characterized by low gene expression and enhancers located in these domains bear the histone marks of an inactive or poised state. These results indicate that KODs organize a subset of inactive, tissue-specific enhancers at the nuclear periphery. We hypothesize that KODs may play a role in facilitating and perhaps constraining the enhancer-promoter interactions underlying spatiotemporal regulation of gene expression programs in differentiation and development.
Collapse
Affiliation(s)
- Cheryl L Smith
- Department of Cell and Developmental Biology and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Jonathan A Epstein
- Department of Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| |
Collapse
|
160
|
Li Y, Xue B, Zhang M, Zhang L, Hou Y, Qin Y, Long H, Su QP, Wang Y, Guan X, Jin Y, Cao Y, Li G, Sun Y. Transcription-coupled structural dynamics of topologically associating domains regulate replication origin efficiency. Genome Biol 2021; 22:206. [PMID: 34253239 PMCID: PMC8276456 DOI: 10.1186/s13059-021-02424-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Metazoan cells only utilize a small subset of the potential DNA replication origins to duplicate the whole genome in each cell cycle. Origin choice is linked to cell growth, differentiation, and replication stress. Although various genetic and epigenetic signatures have been linked to the replication efficiency of origins, there is no consensus on how the selection of origins is determined. RESULTS We apply dual-color stochastic optical reconstruction microscopy (STORM) super-resolution imaging to map the spatial distribution of origins within individual topologically associating domains (TADs). We find that multiple replication origins initiate separately at the spatial boundary of a TAD at the beginning of the S phase. Intriguingly, while both high-efficiency and low-efficiency origins are distributed homogeneously in the TAD during the G1 phase, high-efficiency origins relocate to the TAD periphery before the S phase. Origin relocalization is dependent on both transcription and CTCF-mediated chromatin structure. Further, we observe that the replication machinery protein PCNA forms immobile clusters around TADs at the G1/S transition, explaining why origins at the TAD periphery are preferentially fired. CONCLUSION Our work reveals a new origin selection mechanism that the replication efficiency of origins is determined by their physical distribution in the chromatin domain, which undergoes a transcription-dependent structural re-organization process. Our model explains the complex links between replication origin efficiency and many genetic and epigenetic signatures that mark active transcription. The coordination between DNA replication, transcription, and chromatin organization inside individual TADs also provides new insights into the biological functions of sub-domain chromatin structural dynamics.
Collapse
Affiliation(s)
- Yongzheng Li
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mengling Zhang
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Liwei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingping Hou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yizhi Qin
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Haizhen Long
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Peter Su
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yao Wang
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaodong Guan
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yanyan Jin
- Department of Neurobiology, Beijing Centre of Neural Regeneration and Repair, Capital Medical University, Beijing, 100101, China
| | - Yuan Cao
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.
- College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
161
|
Lin X, Qi Y, Latham AP, Zhang B. Multiscale modeling of genome organization with maximum entropy optimization. J Chem Phys 2021; 155:010901. [PMID: 34241389 PMCID: PMC8253599 DOI: 10.1063/5.0044150] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) organization of the human genome plays an essential role in all DNA-templated processes, including gene transcription, gene regulation, and DNA replication. Computational modeling can be an effective way of building high-resolution genome structures and improving our understanding of these molecular processes. However, it faces significant challenges as the human genome consists of over 6 × 109 base pairs, a system size that exceeds the capacity of traditional modeling approaches. In this perspective, we review the progress that has been made in modeling the human genome. Coarse-grained models parameterized to reproduce experimental data via the maximum entropy optimization algorithm serve as effective means to study genome organization at various length scales. They have provided insight into the principles of whole-genome organization and enabled de novo predictions of chromosome structures from epigenetic modifications. Applications of these models at a near-atomistic resolution further revealed physicochemical interactions that drive the phase separation of disordered proteins and dictate chromatin stability in situ. We conclude with an outlook on the opportunities and challenges in studying chromosome dynamics.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
162
|
Pachano T, Sánchez-Gaya V, Ealo T, Mariner-Faulí M, Bleckwehl T, Asenjo HG, Respuela P, Cruz-Molina S, Muñoz-San Martín M, Haro E, van IJcken WFJ, Landeira D, Rada-Iglesias A. Orphan CpG islands amplify poised enhancer regulatory activity and determine target gene responsiveness. Nat Genet 2021; 53:1036-1049. [PMID: 34183853 PMCID: PMC7611182 DOI: 10.1038/s41588-021-00888-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
CpG islands (CGIs) represent a widespread feature of vertebrate genomes, being associated with ~70% of all gene promoters. CGIs control transcription initiation by conferring nearby promoters with unique chromatin properties. In addition, there are thousands of distal or orphan CGIs (oCGIs) whose functional relevance is barely known. Here we show that oCGIs are an essential component of poised enhancers that augment their long-range regulatory activity and control the responsiveness of their target genes. Using a knock-in strategy in mouse embryonic stem cells, we introduced poised enhancers with or without oCGIs within topologically associating domains harboring genes with different types of promoters. Analysis of the resulting cell lines revealed that oCGIs act as tethering elements that promote the physical and functional communication between poised enhancers and distally located genes, particularly those with large CGI clusters in their promoters. Therefore, by acting as genetic determinants of gene-enhancer compatibility, CGIs can contribute to gene expression control under both physiological and potentially pathological conditions.
Collapse
Affiliation(s)
- Tomas Pachano
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Víctor Sánchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Thais Ealo
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Maria Mariner-Faulí
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Tore Bleckwehl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Helena G Asenjo
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Virgen de las Nieves, Granada, Spain
| | - Patricia Respuela
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Sara Cruz-Molina
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - María Muñoz-San Martín
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Endika Haro
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | | | - David Landeira
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Virgen de las Nieves, Granada, Spain
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
163
|
Hua P, Badat M, Hanssen LLP, Hentges LD, Crump N, Downes DJ, Jeziorska DM, Oudelaar AM, Schwessinger R, Taylor S, Milne TA, Hughes JR, Higgs DR, Davies JOJ. Defining genome architecture at base-pair resolution. Nature 2021; 595:125-129. [PMID: 34108683 DOI: 10.1038/s41586-021-03639-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
In higher eukaryotes, many genes are regulated by enhancers that are 104-106 base pairs (bp) away from the promoter. Enhancers contain transcription-factor-binding sites (which are typically around 7-22 bp), and physical contact between the promoters and enhancers is thought to be required to modulate gene expression. Although chromatin architecture has been mapped extensively at resolutions of 1 kilobase and above; it has not been possible to define physical contacts at the scale of the proteins that determine gene expression. Here we define these interactions in detail using a chromosome conformation capture method (Micro-Capture-C) that enables the physical contacts between different classes of regulatory elements to be determined at base-pair resolution. We find that highly punctate contacts occur between enhancers, promoters and CCCTC-binding factor (CTCF) sites and we show that transcription factors have an important role in the maintenance of the contacts between enhancers and promoters. Our data show that interactions between CTCF sites are increased when active promoters and enhancers are located within the intervening chromatin. This supports a model in which chromatin loop extrusion1 is dependent on cohesin loading at active promoters and enhancers, which explains the formation of tissue-specific chromatin domains without changes in CTCF binding.
Collapse
Affiliation(s)
- Peng Hua
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mohsin Badat
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lars L P Hanssen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lance D Hentges
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Danuta M Jeziorska
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Ron Schwessinger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen Taylor
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Doug R Higgs
- Laboratory of Gene Regulation, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
164
|
Abstract
Immediately following the discovery of the structure of DNA and the semi-conservative replication of the parental DNA sequence into two new DNA strands, it became apparent that DNA replication is organized in a temporal and spatial fashion during the S phase of the cell cycle, correlated with the large-scale organization of chromatin in the nucleus. After many decades of limited progress, technological advances in genomics, genome engineering, and imaging have finally positioned the field to tackle mechanisms underpinning the temporal and spatial regulation of DNA replication and the causal relationships between DNA replication and other features of large-scale chromosome structure and function. In this review, we discuss these major recent discoveries as well as expectations for the coming decade.
Collapse
Affiliation(s)
- Athanasios E Vouzas
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
165
|
Yi E, Zhang J, Zheng M, Zhang Y, Liang C, Hao B, Hong W, Lin B, Pu J, Lin Z, Huang P, Li B, Zhou Y, Ran P. Long noncoding RNA IL6-AS1 is highly expressed in chronic obstructive pulmonary disease and is associated with interleukin 6 by targeting miR-149-5p and early B-cell factor 1. Clin Transl Med 2021; 11:e479. [PMID: 34323408 PMCID: PMC8288003 DOI: 10.1002/ctm2.479] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic obstructive pulmonary disease is a complex condition with multiple etiologies, including inflammation. We identified a novel long noncoding RNA (lncRNA), interleukin 6 antisense RNA 1 (IL6-AS1), which is upregulated in this disease and is associated with airway inflammation. We found that IL6-AS1 promotes the expression of inflammatory factors, especially interleukin (IL) 6. Mechanistically, cytoplasmic IL6-AS1 acts as an endogenous sponge by competitively binding to the microRNA miR-149-5p to stabilize IL-6 mRNA. Nuclear IL6-AS1 promotes IL-6 transcription by recruiting early B-cell factor 1 to the IL-6 promoter, which increases the methylation of the H3K4 histone and acetylation of the H3K27 histone. We propose a model of lncRNA expression in both the nucleus and cytoplasm that exerts similar effects through differing mechanisms, and IL6-AS1 probably increases inflammation via multiple pathways.
Collapse
Affiliation(s)
- Erkang Yi
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Jiahuan Zhang
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Mengning Zheng
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Yi Zhang
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Chunxiao Liang
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Binwei Hao
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Wei Hong
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Biting Lin
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Jinding Pu
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Zhiwei Lin
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Peiyu Huang
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Bing Li
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Yumin Zhou
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Pixin Ran
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| |
Collapse
|
166
|
Alvarado W, Moller J, Ferguson AL, de Pablo JJ. Tetranucleosome Interactions Drive Chromatin Folding. ACS CENTRAL SCIENCE 2021; 7:1019-1027. [PMID: 34235262 PMCID: PMC8227587 DOI: 10.1021/acscentsci.1c00085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 06/10/2023]
Abstract
The multiscale organizational structure of chromatin in eukaryotic cells is instrumental to DNA transcription, replication, and repair. At mesoscopic length scales, nucleosomes pack in a manner that serves to regulate gene expression through condensation and expansion of the genome. The particular structures that arise and their respective thermodynamic stabilities, however, have yet to be fully resolved. In this study, we combine molecular modeling using the 1CPN mesoscale model of chromatin with nonlinear manifold learning to identify and characterize the structure and free energy of metastable states of short chromatin segments comprising between 4- and 16-nucleosomes. Our results reveal the formation of two previously characterized tetranucleosomal conformations, the "α-tetrahedron" and the "β-rhombus", which have been suggested to play an important role in the accessibility of DNA and, respectively, induce local chromatin compaction or elongation. The spontaneous formation of these motifs is potentially responsible for the slow nucleosome dynamics observed in experimental studies. Increases of the nucleosome repeat length are accompanied by more pronounced structural irregularity and flexibility and, ultimately, a dynamic liquid-like behavior that allows for frequent structural reorganization. Our findings indicate that tetranucleosome motifs are intrinsically stable structural states, driven by local internucleosomal interactions, and support a mechanistic picture of chromatin packing, dynamics, and accessibility that is strongly influenced by emergent local mesoscale structure.
Collapse
Affiliation(s)
- Walter Alvarado
- Biophysical
Sciences, University of Chicago, Chicago, Illinois 60637 United States
| | - Joshua Moller
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637 United States
| | - Andrew L. Ferguson
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637 United States
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637 United States
| |
Collapse
|
167
|
SBTD: A Novel Method for Detecting Topological Associated Domains from Hi-C Data. Interdiscip Sci 2021; 13:638-651. [PMID: 34160760 DOI: 10.1007/s12539-021-00453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
The development of Hi-C technology has generated terabytes of chromatin interaction data, which bring possibilities for insight study of chromatin structure. Several studies revealed that mammalian chromosomes are folded into topological associated domains (TADs), which are conserved across cell types. Accurate detection of topological associated domains is now a vital process for revealing the relationship between the structure and function of genome organization. Unfortunately, the current TAD detection methods require massive computing resources, careful parameter adjustment and/or encounter inconsistent results. In this paper, we propose a novel method, Spectral-Based TAD Detector (SBTD), and evaluate its performance with a set of widely accepted statistical methods. We treat the chromatin interaction matrix as a graph and first introduce cosine similarity as a measure of the interaction patterns between bins. The results show that SBTD identifies higher quality TADs than the popular methods (DomainCaller, TopDom and SpectralTAD) and the internal bins of TADs identified by SBTD have higher correlation. Besides, The TADs identified by SBTD show a highly similar histone modification signal enrichment pattern at the boundary as reported in the previous literature. Finally, the motif enrichment analysis shows that compared with the background region, the DNA motifs of known insulator proteins are significantly enriched in the TAD boundary region identified by our method, which proves the high performance of our proposed method. Overall, SBTD is much more effective than existing methods with only one easy-to-adjust parameter, cluster number, for which we provide optimization guidelines.
Collapse
|
168
|
Alavi S, Ghadiri H, Dabirmanesh B, Moriyama K, Khajeh K, Masai H. G-quadruplex binding protein Rif1, a key regulator of replication timing. J Biochem 2021; 169:1-14. [PMID: 33169133 DOI: 10.1093/jb/mvaa128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/18/2020] [Indexed: 12/19/2022] Open
Abstract
DNA replication is spatially and temporally regulated during S phase to execute efficient and coordinated duplication of entire genome. Various epigenomic mechanisms operate to regulate the timing and locations of replication. Among them, Rif1 plays a major role to shape the 'replication domains' that dictate which segments of the genome are replicated when and where in the nuclei. Rif1 achieves this task by generating higher-order chromatin architecture near nuclear membrane and by recruiting a protein phosphatase. Rif1 is a G4 binding protein, and G4 binding activity of Rif1 is essential for replication timing regulation in fission yeast. In this article, we first summarize strategies by which cells regulate their replication timing and then describe how Rif1 and its interaction with G4 contribute to regulation of chromatin architecture and replication timing.
Collapse
Affiliation(s)
| | - Hamed Ghadiri
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kenji Moriyama
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Khosro Khajeh
- Department of Nanobiotechnology.,Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
169
|
Liu Y, Ai C, Gan T, Wu J, Jiang Y, Liu X, Lu R, Gao N, Li Q, Ji X, Hu J. Transcription shapes DNA replication initiation to preserve genome integrity. Genome Biol 2021; 22:176. [PMID: 34108027 PMCID: PMC8188667 DOI: 10.1186/s13059-021-02390-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Early DNA replication occurs within actively transcribed chromatin compartments in mammalian cells, raising the immediate question of how early DNA replication coordinates with transcription to avoid collisions and DNA damage. RESULTS We develop a high-throughput nucleoside analog incorporation sequencing assay and identify thousands of early replication initiation zones in both mouse and human cells. The identified early replication initiation zones fall in open chromatin compartments and are mutually exclusive with transcription elongation. Of note, early replication initiation zones are mainly located in non-transcribed regions adjacent to transcribed regions. Mechanistically, we find that RNA polymerase II actively redistributes the chromatin-bound mini-chromosome maintenance complex (MCM), but not the origin recognition complex (ORC), to actively restrict early DNA replication initiation outside of transcribed regions. In support of this finding, we detect apparent MCM accumulation and DNA replication initiation in transcribed regions due to anchoring of nuclease-dead Cas9 at transcribed genes, which stalls RNA polymerase II. Finally, we find that the orchestration of early DNA replication initiation by transcription efficiently prevents gross DNA damage. CONCLUSION RNA polymerase II redistributes MCM complexes, but not the ORC, to prevent early DNA replication from initiating within transcribed regions. This RNA polymerase II-driven MCM redistribution spatially separates transcription and early DNA replication events and avoids the transcription-replication initiation collision, thereby providing a critical regulatory mechanism to preserve genome stability.
Collapse
Affiliation(s)
- Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chen Ai
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
| | - Tingting Gan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jinchun Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yongpeng Jiang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xuhao Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
| | - Rusen Lu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Ning Gao
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Li
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiong Ji
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
170
|
Li T, Li R, Dong X, Shi L, Lin M, Peng T, Wu P, Liu Y, Li X, He X, Han X, Kang B, Wang Y, Liu Z, Chen Q, Shen Y, Feng M, Wang X, Wu D, Wang J, Li C. Integrative Analysis of Genome, 3D Genome, and Transcriptome Alterations of Clinical Lung Cancer Samples. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:741-753. [PMID: 34116262 PMCID: PMC9170781 DOI: 10.1016/j.gpb.2020.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/28/2020] [Accepted: 06/11/2020] [Indexed: 10/31/2022]
Abstract
Genomic studies of cancer cell alterations, such as mutations, copy number variations (CNVs), and translocations, greatly promote our understanding of the genesis and development of cancer. However, the 3D genome architecture of cancers remains less studied due to the complexity of cancer genomes and technical difficulties. To explore the 3D genome structure in clinical lung cancer, we performed Hi-C experiments using paired normal and tumor cells harvested from patients with lung cancer, combining with RNA-seq analysis. We demonstrated the feasibility of studying 3D genome of clinical lung cancer samples with a small number of cells (1 × 104), compared the genome architecture between clinical samples and cell lines of lung cancer, and identified conserved and changed spatial chromatin structures between normal and cancer samples. We also showed that Hi-C data can be used to infer CNVs and point mutations in cancer. By integrating those different types of cancer alterations, we showed significant associations between CNVs, 3D genome, and gene expression. We propose that 3D genome mediates the effects of cancer genomic alterations on gene expression through altering regulatory chromatin structures. Our study highlights the importance of analyzing 3D genomes of clinical cancer samples in addition to cancer cell lines and provides an integrative genomic analysis pipeline for future larger-scale studies in lung cancer and other cancers.
Collapse
Affiliation(s)
- Tingting Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China; State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ruifeng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Lin Shi
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Shanghai 200433, China; Fudan University Center for Clinical Bioinformatics, Shanghai 200433, China
| | - Miao Lin
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Ting Peng
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Pengze Wu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Yuting Liu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Xiaoting Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuheng He
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Xu Han
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Bin Kang
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Yinan Wang
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Zhiheng Liu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Qing Chen
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China; BGI-Qingdao, Qingdao 266426, China; Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen 518083, China
| | - Mingxiang Feng
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Shanghai 200433, China; Fudan University Center for Clinical Bioinformatics, Shanghai 200433, China
| | - Duojiao Wu
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Shanghai 200433, China.
| | - Jian Wang
- iCarbonX, Shenzhen 518053, China; Digital Life Research Institute, Shenzhen 518110, China.
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China.
| |
Collapse
|
171
|
Peters JM. How DNA loop extrusion mediated by cohesin enables V(D)J recombination. Curr Opin Cell Biol 2021; 70:75-83. [PMID: 33422934 DOI: 10.1016/j.ceb.2020.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
'Structural maintenance of chromosomes' (SMC) complexes are required for the folding of genomic DNA into loops. Theoretical considerations and single-molecule experiments performed with the SMC complexes cohesin and condensin indicate that DNA folding occurs via loop extrusion. Recent work indicates that this process is essential for the assembly of antigen receptor genes by V(D)J recombination in developing B and T cells of the vertebrate immune system. Here, I review how recent studies of the mouse immunoglobulin heavy chain locus Igh have provided evidence for this hypothesis and how the formation of chromatin loops by cohesin and regulation of this process by CTCF and Wapl might ensure that all variable gene segments in this locus (VH segments) participate in recombination with a re-arranged DJH segment, to ensure generation of a maximally diverse repertoire of B-cell receptors and antibodies.
Collapse
Affiliation(s)
- Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
172
|
Kenter AL, Watson CT, Spille JH. Igh Locus Polymorphism May Dictate Topological Chromatin Conformation and V Gene Usage in the Ig Repertoire. Front Immunol 2021; 12:682589. [PMID: 34084176 PMCID: PMC8167033 DOI: 10.3389/fimmu.2021.682589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
Vast repertoires of unique antigen receptors are created in developing B and T lymphocytes. The antigen receptor loci contain many variable (V), diversity (D) and joining (J) gene segments that are arrayed across very large genomic expanses and are joined to form variable-region exons of expressed immunoglobulins and T cell receptors. This process creates the potential for an organism to respond to large numbers of different pathogens. Here, we consider the possibility that genetic polymorphisms with alterations in a vast array of regulatory elements in the immunoglobulin heavy chain (IgH) locus lead to changes in locus topology and impact immune-repertoire formation.
Collapse
Affiliation(s)
- Amy L. Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, United States
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jan-Hendrik Spille
- Department of Physics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
173
|
Gnan S, Flyamer IM, Klein KN, Castelli E, Rapp A, Maiser A, Chen N, Weber P, Enervald E, Cardoso MC, Bickmore WA, Gilbert DM, Buonomo SCB. Nuclear organisation and replication timing are coupled through RIF1-PP1 interaction. Nat Commun 2021; 12:2910. [PMID: 34006872 PMCID: PMC8131703 DOI: 10.1038/s41467-021-22899-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional genome organisation and replication timing are known to be correlated, however, it remains unknown whether nuclear architecture overall plays an instructive role in the replication-timing programme and, if so, how. Here we demonstrate that RIF1 is a molecular hub that co-regulates both processes. Both nuclear organisation and replication timing depend upon the interaction between RIF1 and PP1. However, whereas nuclear architecture requires the full complement of RIF1 and its interaction with PP1, replication timing is not sensitive to RIF1 dosage. The role of RIF1 in replication timing also extends beyond its interaction with PP1. Availing of this separation-of-function approach, we have therefore identified in RIF1 dual function the molecular bases of the co-dependency of the replication-timing programme and nuclear architecture.
Collapse
Affiliation(s)
- Stefano Gnan
- grid.418924.20000 0004 0627 3632Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy ,grid.4305.20000 0004 1936 7988Institute of Cell Biology, School of Biological Sciences University of Edinburgh, Edinburgh, UK ,grid.462584.90000 0004 0367 1475Present Address: Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, Paris, France
| | - Ilya M. Flyamer
- grid.4305.20000 0004 1936 7988MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Kyle N. Klein
- grid.255986.50000 0004 0472 0419Department of Biological Science, Florida State University, Tallahassee, FL USA
| | - Eleonora Castelli
- grid.4305.20000 0004 1936 7988Institute of Cell Biology, School of Biological Sciences University of Edinburgh, Edinburgh, UK ,grid.482245.d0000 0001 2110 3787Present Address: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Alexander Rapp
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Andreas Maiser
- grid.5252.00000 0004 1936 973XDepartment of Biology II, LMU Munich, Munich, Germany
| | - Naiming Chen
- grid.4305.20000 0004 1936 7988Institute of Cell Biology, School of Biological Sciences University of Edinburgh, Edinburgh, UK
| | - Patrick Weber
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Elin Enervald
- grid.418924.20000 0004 0627 3632Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy ,grid.4305.20000 0004 1936 7988Institute of Cell Biology, School of Biological Sciences University of Edinburgh, Edinburgh, UK ,grid.10548.380000 0004 1936 9377Present Address: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - M. Cristina Cardoso
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Wendy A. Bickmore
- grid.4305.20000 0004 1936 7988MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - David M. Gilbert
- grid.255986.50000 0004 0472 0419Department of Biological Science, Florida State University, Tallahassee, FL USA
| | - Sara C. B. Buonomo
- grid.418924.20000 0004 0627 3632Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy ,grid.4305.20000 0004 1936 7988Institute of Cell Biology, School of Biological Sciences University of Edinburgh, Edinburgh, UK
| |
Collapse
|
174
|
Kim K, Kim M, Kim Y, Lee D, Jung I. Hi-C as a molecular rangefinder to examine genomic rearrangements. Semin Cell Dev Biol 2021; 121:161-170. [PMID: 33992531 DOI: 10.1016/j.semcdb.2021.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
The mammalian genome is highly packed into the nucleus. Over the past decade, the development of Hi-C has contributed significantly to our understanding of the three-dimensional (3D) chromatin structure, uncovering the principles and functions of higher-order chromatin organizations. Recent studies have repositioned its property in spatial proximity measurement to address challenging problems in genome analyses including genome assembly, haplotype phasing, and the detection of genomic rearrangements. In particular, the power of Hi-C in detecting large-scale structural variations (SVs) in the cancer genome has been demonstrated, which is challenging to be addressed solely with short-read-based whole-genome sequencing analyses. In this review, we first provide a comprehensive view of Hi-C as an intuitive and effective SV detection tool. Then, we introduce recently developed bioinformatics tools utilizing Hi-C to investigate genomic rearrangements. Finally, we discuss the potential application of single-cell Hi-C to address the heterogeneity of genomic rearrangements and sub-population identification in the cancer genome.
Collapse
Affiliation(s)
- Kyukwang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mooyoung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yubin Kim
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Dongsung Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea.
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
175
|
Costantini A, Muurinen MH, Mäkitie O. New gene discoveries in skeletal diseases with short stature. Endocr Connect 2021; 10:R160-R174. [PMID: 33830070 PMCID: PMC8183621 DOI: 10.1530/ec-21-0083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022]
Abstract
In the last decade, the widespread use of massively parallel sequencing has considerably boosted the number of novel gene discoveries in monogenic skeletal diseases with short stature. Defects in genes playing a role in the maintenance and function of the growth plate, the site of longitudinal bone growth, are a well-known cause of skeletal diseases with short stature. However, several genes involved in extracellular matrix composition or maintenance as well as genes partaking in various biological processes have also been characterized. This review aims to describe the latest genetic findings in spondyloepiphyseal dysplasias, spondyloepimetaphyseal dysplasias, and some monogenic forms of isolated short stature. Some examples of novel genetic mechanisms leading to skeletal conditions with short stature will be described. Strategies on how to successfully characterize novel skeletal phenotypes with short stature and genetic approaches to detect and validate novel gene-disease correlations will be discussed in detail. In summary, we review the latest gene discoveries underlying skeletal diseases with short stature and emphasize the importance of characterizing novel molecular mechanisms for genetic counseling, for an optimal management of the disease, and for therapeutic innovations.
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mari H Muurinen
- Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Correspondence should be addressed to O Mäkitie:
| |
Collapse
|
176
|
Liu M, Yang B, Hu M, Radda JS, Chen Y, Jin S, Cheng Y, Wang S. Chromatin tracing and multiplexed imaging of nucleome architectures (MINA) and RNAs in single mammalian cells and tissue. Nat Protoc 2021; 16:2667-2697. [PMID: 33903756 PMCID: PMC9007104 DOI: 10.1038/s41596-021-00518-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/05/2021] [Indexed: 02/02/2023]
Abstract
The genome is hierarchically organized into several 3D architectures, including chromatin loops, domains, compartments and regions associated with nuclear lamina and nucleoli. Changes in these architectures have been associated with normal development, aging and a wide range of diseases. Despite its critical importance, understanding how the genome is spatially organized in single cells, how organization varies in different cell types in mammalian tissue and how organization affects gene expression remains a major challenge. Previous approaches have been limited by a lack of capacity to directly trace chromatin folding in 3D and to simultaneously measure genomic organization in relation to other nuclear components and gene expression in the same single cells. We have developed an image-based 3D genomics technique termed 'chromatin tracing', which enables direct 3D tracing of chromatin folding along individual chromosomes in single cells. More recently, we also developed multiplexed imaging of nucleome architectures (MINA), which enables simultaneous measurements of multiscale chromatin folding, associations of genomic regions with nuclear lamina and nucleoli and copy numbers of numerous RNA species in the same single cells in mammalian tissue. Here, we provide detailed protocols for chromatin tracing in cell lines and MINA in mammalian tissue, which take 3-4 d for experimental work and 2-3 d for data analysis. We expect these developments to be broadly applicable and to affect many lines of research on 3D genomics by depicting multiscale genomic architectures associated with gene expression, in different types of cells and tissue undergoing different biological processes.
Collapse
Affiliation(s)
- Miao Liu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Bing Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mengwei Hu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan S.D. Radda
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yanbo Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Shengyan Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yubao Cheng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA,Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA,Molecular Cell Biology, Genetics and Development Program, Yale University, New Haven, CT, USA,Biochemistry, Quantitative Biology, Biophysics and Structural Biology Program, Yale University, New Haven, CT, USA,M.D.-Ph.D. Program, Yale University, New Haven, CT, USA,Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA,Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA,Correspondence:
| |
Collapse
|
177
|
Kim KD. Potential roles of condensin in genome organization and beyond in fission yeast. J Microbiol 2021; 59:449-459. [PMID: 33877578 DOI: 10.1007/s12275-021-1039-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
The genome is highly organized hierarchically by the function of structural maintenance of chromosomes (SMC) complex proteins such as condensin and cohesin from bacteria to humans. Although the roles of SMC complex proteins have been well characterized, their specialized roles in nuclear processes remain unclear. Condensin and cohesin have distinct binding sites and mediate long-range and short-range genomic associations, respectively, to form cell cycle-specific genome organization. Condensin can be recruited to highly expressed genes as well as dispersed repeat genetic elements, such as Pol III-transcribed genes, LTR retrotransposon, and rDNA repeat. In particular, mitotic transcription factors Ace2 and Ams2 recruit condensin to their target genes, forming centromeric clustering during mitosis. Condensin is potentially involved in various chromosomal processes such as the mobility of chromosomes, chromosome territories, DNA reannealing, and transcription factories. The current knowledge of condensin in fission yeast summarized in this review can help us understand how condensin mediates genome organization and participates in chromosomal processes in other organisms.
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
178
|
Replication Stress, Genomic Instability, and Replication Timing: A Complex Relationship. Int J Mol Sci 2021; 22:ijms22094764. [PMID: 33946274 PMCID: PMC8125245 DOI: 10.3390/ijms22094764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
The replication-timing program constitutes a key element of the organization and coordination of numerous nuclear processes in eukaryotes. This program is established at a crucial moment in the cell cycle and occurs simultaneously with the organization of the genome, thus indicating the vital significance of this process. With recent technological achievements of high-throughput approaches, a very strong link has been confirmed between replication timing, transcriptional activity, the epigenetic and mutational landscape, and the 3D organization of the genome. There is also a clear relationship between replication stress, replication timing, and genomic instability, but the extent to which they are mutually linked to each other is unclear. Recent evidence has shown that replication timing is affected in cancer cells, although the cause and consequence of this effect remain unknown. However, in-depth studies remain to be performed to characterize the molecular mechanisms of replication-timing regulation and clearly identify different cis- and trans-acting factors. The results of these studies will potentially facilitate the discovery of new therapeutic pathways, particularly for personalized medicine, or new biomarkers. This review focuses on the complex relationship between replication timing, replication stress, and genomic instability.
Collapse
|
179
|
Delacher M, Simon M, Sanderink L, Hotz-Wagenblatt A, Wuttke M, Schambeck K, Schmidleithner L, Bittner S, Pant A, Ritter U, Hehlgans T, Riegel D, Schneider V, Groeber-Becker FK, Eigenberger A, Gebhard C, Strieder N, Fischer A, Rehli M, Hoffmann P, Edinger M, Strowig T, Huehn J, Schmidl C, Werner JM, Prantl L, Brors B, Imbusch CD, Feuerer M. Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells. Immunity 2021; 54:702-720.e17. [PMID: 33789089 PMCID: PMC8050210 DOI: 10.1016/j.immuni.2021.03.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Murine regulatory T (Treg) cells in tissues promote tissue homeostasis and regeneration. We sought to identify features that characterize human Treg cells with these functions in healthy tissues. Single-cell chromatin accessibility profiles of murine and human tissue Treg cells defined a conserved, microbiota-independent tissue-repair Treg signature with a prevailing footprint of the transcription factor BATF. This signature, combined with gene expression profiling and TCR fate mapping, identified a population of tissue-like Treg cells in human peripheral blood that expressed BATF, chemokine receptor CCR8 and HLA-DR. Human BATF+CCR8+ Treg cells from normal skin and adipose tissue shared features with nonlymphoid T follicular helper-like (Tfh-like) cells, and induction of a Tfh-like differentiation program in naive human Treg cells partially recapitulated tissue Treg regenerative characteristics, including wound healing potential. Human BATF+CCR8+ Treg cells from healthy tissue share features with tumor-resident Treg cells, highlighting the importance of understanding the context-specific functions of these cells.
Collapse
Affiliation(s)
- Michael Delacher
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany; Institute of Immunology, University Medical Center Mainz, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Malte Simon
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data management (ODCF), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marina Wuttke
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Kathrin Schambeck
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Lisa Schmidleithner
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Sebastian Bittner
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Asmita Pant
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Uwe Ritter
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Thomas Hehlgans
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Dania Riegel
- Regensburg Center for Interventional Immunology (RCI)
| | - Verena Schneider
- University Hospital Würzburg, Department of Tissue Engineering and Regenerative Medicine TERM, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Translational Center for Regenerative Therapies TLZ-RT, 97082 Würzburg, Germany
| | - Florian Kai Groeber-Becker
- University Hospital Würzburg, Department of Tissue Engineering and Regenerative Medicine TERM, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Translational Center for Regenerative Therapies TLZ-RT, 97082 Würzburg, Germany
| | - Andreas Eigenberger
- Department of Plastic, Hand- and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | | | - Alexander Fischer
- Regensburg Center for Interventional Immunology (RCI); Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Rehli
- Regensburg Center for Interventional Immunology (RCI); Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Petra Hoffmann
- Regensburg Center for Interventional Immunology (RCI); Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Matthias Edinger
- Regensburg Center for Interventional Immunology (RCI); Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Hannover Medical School, 30625 Hannover, Germany; RESIST, Cluster of Excellence 2155, Hannover Medical School, 30625 Hannover, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; RESIST, Cluster of Excellence 2155, Hannover Medical School, 30625 Hannover, Germany
| | | | - Jens M Werner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand- and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
180
|
Majumder K, Morales AJ. Utilization of Host Cell Chromosome Conformation by Viral Pathogens: Knowing When to Hold and When to Fold. Front Immunol 2021; 12:633762. [PMID: 33841414 PMCID: PMC8027251 DOI: 10.3389/fimmu.2021.633762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
Though viruses have their own genomes, many depend on the nuclear environment of their hosts for replication and survival. A substantial body of work has therefore been devoted to understanding how viral and eukaryotic genomes interact. Recent advances in chromosome conformation capture technologies have provided unprecedented opportunities to visualize how mammalian genomes are organized and, by extension, how packaging of nuclear DNA impacts cellular processes. Recent studies have indicated that some viruses, upon entry into host cell nuclei, produce factors that alter host chromatin topology, and thus, impact the 3D organization of the host genome. Additionally, a variety of distinct viruses utilize host genome architectural factors to advance various aspects of their life cycles. Indeed, human gammaherpesviruses, known for establishing long-term reservoirs of latent infection in B lymphocytes, utilize 3D principles of genome folding to package their DNA and establish latency in host cells. This manipulation of host epigenetic machinery by latent viral genomes is etiologically linked to the onset of B cell oncogenesis. Small DNA viruses, by contrast, are tethered to distinct cellular sites that support virus expression and replication. Here, we briefly review the recent findings on how viruses and host genomes spatially communicate, and how this impacts virus-induced pathology.
Collapse
Affiliation(s)
- Kinjal Majumder
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, Human Cancer Virology Program, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Abigail J Morales
- Department of Medical Laboratory Sciences, Hunter College of the City University of New York, New York, NY, United States
| |
Collapse
|
181
|
Bak JH, Kim MH, Liu L, Hyeon C. A unified framework for inferring the multi-scale organization of chromatin domains from Hi-C. PLoS Comput Biol 2021; 17:e1008834. [PMID: 33724986 PMCID: PMC7997044 DOI: 10.1371/journal.pcbi.1008834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/26/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022] Open
Abstract
Chromosomes are giant chain molecules organized into an ensemble of three-dimensional structures characterized with its genomic state and the corresponding biological functions. Despite the strong cell-to-cell heterogeneity, the cell-type specific pattern demonstrated in high-throughput chromosome conformation capture (Hi-C) data hints at a valuable link between structure and function, which makes inference of chromatin domains (CDs) from the pattern of Hi-C a central problem in genome research. Here we present a unified method for analyzing Hi-C data to determine spatial organization of CDs over multiple genomic scales. By applying statistical physics-based clustering analysis to a polymer physics model of the chromosome, our method identifies the CDs that best represent the global pattern of correlation manifested in Hi-C. The multi-scale intra-chromosomal structures compared across different cell types uncover the principles underlying the multi-scale organization of chromatin chain: (i) Sub-TADs, TADs, and meta-TADs constitute a robust hierarchical structure. (ii) The assemblies of compartments and TAD-based domains are governed by different organizational principles. (iii) Sub-TADs are the common building blocks of chromosome architecture. Our physically principled interpretation and analysis of Hi-C not only offer an accurate and quantitative view of multi-scale chromatin organization but also help decipher its connections with genome function. An array of square blocks and checkerboard patterns characteristic to Hi-C data reflects the multi-scale organization of the chromatin chain. Deciphering the structures of chromatin domains from Hi-C and associating them with genome function are open problems of great importance in genome research. However, most existing methods are specialized in finding domains at different scales, making it difficult to integrate the solutions. Here we develop a unified framework for modeling and inferring domain structures over multiple scales, based on a physical model of the chromosome that reflects its nature as a three-dimensional object. Our method efficiently explores the space of domain solutions at different genomic scales, and systematically infers the chromatin domains over multiple scales from Hi-C data by employing a single tuning parameter. Our principled interpretation of Hi-C not only offers a quantitative view of multi-scale chromatin organization but also helps understand its connections with genome function.
Collapse
Affiliation(s)
- Ji Hyun Bak
- Korea Institute for Advanced Study, Seoul, Korea
| | | | - Lei Liu
- Korea Institute for Advanced Study, Seoul, Korea.,Department of Physics, Zhejiang Sci-Tech University, Hangzhou, China
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul, Korea.,Center for Artificial Intelligence and Natural Sciences, Korea Institute for Advanced Study, Seoul, Korea
| |
Collapse
|
182
|
Scholtes C, Giguère V. Transcriptional Regulation of ROS Homeostasis by the ERR Subfamily of Nuclear Receptors. Antioxidants (Basel) 2021; 10:antiox10030437. [PMID: 33809291 PMCID: PMC7999130 DOI: 10.3390/antiox10030437] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS) such as superoxide anion (O2•-) and hydrogen peroxide (H2O2) are generated endogenously by processes such as mitochondrial oxidative phosphorylation, or they may arise from exogenous sources like bacterial invasion. ROS can be beneficial (oxidative eustress) as signaling molecules but also harmful (oxidative distress) to cells when ROS levels become unregulated in response to physiological, pathological or pharmacological insults. Indeed, abnormal ROS levels have been shown to contribute to the etiology of a wide variety of diseases. Transcriptional control of metabolic genes is a crucial mechanism to coordinate ROS homeostasis. Therefore, a better understanding of how ROS metabolism is regulated by specific transcription factors can contribute to uncovering new therapeutic strategies. A large body of work has positioned the estrogen-related receptors (ERRs), transcription factors belonging to the nuclear receptor superfamily, as not only master regulators of cellular energy metabolism but, most recently, of ROS metabolism. Herein, we will review the role played by the ERRs as transcriptional regulators of ROS generation and antioxidant mechanisms and also as ROS sensors. We will assess how the control of ROS homeostasis by the ERRs can be linked to physiology and disease and the possible contribution of manipulating ERR activity in redox medicine.
Collapse
Affiliation(s)
- Charlotte Scholtes
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada;
| | - Vincent Giguère
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada;
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Correspondence:
| |
Collapse
|
183
|
Kirstein N, Buschle A, Wu X, Krebs S, Blum H, Kremmer E, Vorberg IM, Hammerschmidt W, Lacroix L, Hyrien O, Audit B, Schepers A. Human ORC/MCM density is low in active genes and correlates with replication time but does not delimit initiation zones. eLife 2021; 10:62161. [PMID: 33683199 PMCID: PMC7993996 DOI: 10.7554/elife.62161] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic DNA replication initiates during S phase from origins that have been licensed in the preceding G1 phase. Here, we compare ChIP-seq profiles of the licensing factors Orc2, Orc3, Mcm3, and Mcm7 with gene expression, replication timing, and fork directionality profiles obtained by RNA-seq, Repli-seq, and OK-seq. Both, the origin recognition complex (ORC) and the minichromosome maintenance complex (MCM) are significantly and homogeneously depleted from transcribed genes, enriched at gene promoters, and more abundant in early- than in late-replicating domains. Surprisingly, after controlling these variables, no difference in ORC/MCM density is detected between initiation zones, termination zones, unidirectionally replicating regions, and randomly replicating regions. Therefore, ORC/MCM density correlates with replication timing but does not solely regulate the probability of replication initiation. Interestingly, H4K20me3, a histone modification proposed to facilitate late origin licensing, was enriched in late-replicating initiation zones and gene deserts of stochastic replication fork direction. We discuss potential mechanisms specifying when and where replication initiates in human cells.
Collapse
Affiliation(s)
- Nina Kirstein
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Munich, Germany
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Xia Wu
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians Universität (LMU) München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians Universität (LMU) München, Munich, Germany
| | - Elisabeth Kremmer
- Institute for Molecular Immunology, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Ina M Vorberg
- German Center for Neurodegenerative Diseases (DZNE e.V.), Bonn, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Laurent Lacroix
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Olivier Hyrien
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Benjamin Audit
- Univ Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, 69342 Lyon, France
| | - Aloys Schepers
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
184
|
Eres IE, Gilad Y. A TAD Skeptic: Is 3D Genome Topology Conserved? Trends Genet 2021; 37:216-223. [PMID: 33203573 PMCID: PMC8120795 DOI: 10.1016/j.tig.2020.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
The notion that topologically associating domains (TADs) are highly conserved across species is prevalent in the field of 3D genomics. However, what exactly is meant by 'highly conserved' and what are the actual comparative data that support this notion? To address these questions, we performed a historical review of the relevant literature and retraced numerous citation chains to reveal the primary data that were used as the basis for the widely accepted conclusion that TADs are highly conserved across evolution. A thorough review of the available evidence suggests the answer may be more complex than what is commonly presented.
Collapse
Affiliation(s)
- Ittai E Eres
- Department of Human Genetics, University of Chicago, Cummings Life Science Center, 928 E. 58th St., Chicago, IL 60637, USA
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Cummings Life Science Center, 928 E. 58th St., Chicago, IL 60637, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Ave., N417, MC6091, Chicago, IL 60637, USA.
| |
Collapse
|
185
|
Jiang X, Prabhakar A, Van der Voorn SM, Ghatpande P, Celona B, Venkataramanan S, Calviello L, Lin C, Wang W, Black BL, Floor SN, Lagna G, Hata A. Control of ribosomal protein synthesis by the Microprocessor complex. Sci Signal 2021; 14:14/671/eabd2639. [PMID: 33622983 DOI: 10.1126/scisignal.abd2639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribosome biogenesis in eukaryotes requires the coordinated production and assembly of 80 ribosomal proteins and four ribosomal RNAs (rRNAs), and its rate must be synchronized with cellular growth. Here, we showed that the Microprocessor complex, which mediates the first step of microRNA processing, potentiated the transcription of ribosomal protein genes by eliminating DNA/RNA hybrids known as R-loops. Nutrient deprivation triggered the nuclear export of Drosha, a key component of the Microprocessor complex, and its subsequent degradation by the E3 ubiquitin ligase Nedd4, thereby reducing ribosomal protein production and protein synthesis. In mouse erythroid progenitors, conditional deletion of Drosha led to the reduced production of ribosomal proteins, translational inhibition of the mRNA encoding the erythroid transcription factor Gata1, and impaired erythropoiesis. This phenotype mirrored the clinical presentation of human "ribosomopathies." Thus, the Microprocessor complex plays a pivotal role in synchronizing protein synthesis capacity with cellular growth rate and is a potential drug target for anemias caused by ribosomal insufficiency.
Collapse
Affiliation(s)
- Xuan Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amit Prabhakar
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephanie M Van der Voorn
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Medical Physiology, University Medical Center Utrecht, Utrecht, 3584 CM, Netherlands
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Barbara Celona
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Srivats Venkataramanan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Calviello
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wanpeng Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
186
|
Involvement of TFAP2A in the activation of GSDMD gene promoter in hyperoxia-induced ALI. Exp Cell Res 2021; 401:112521. [PMID: 33609534 DOI: 10.1016/j.yexcr.2021.112521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022]
Abstract
Oxygen therapy is a common treatment in neonatal intensive care units, but long-term continuous hyperoxia ventilation may induce acute lung injury (ALI). Gasdermin D (GSDMD)-mediated pyroptosis participates in various diseases including ALI, but the role of GSDMD in hyperoxia-induced ALI is yet understood. Here, we showed a significant increase in GSDMD after exposure to high oxygen. To elucidate the molecular mechanisms involved in GSDMD regulation, we identified the core promoter of GSDMD, -98 ~ -12 bp relative to the transcriptional start site (TSS). The results of mutational analysis, overexpression or siRNA interference, EMSA and ChIP demonstrated that E2F4 and TFAP2A positively regulate the transcriptional activity of the GSDMD by binding to its promoter. However, only TFAP2A showed a regulatory effect on the expression of GSDMD. Moreover, TFAP2A was increased in the lung tissues of rats exposed to hyperoxia and showed a strong linear correlation with GSDMD. Our results indicated that TFAP2A positively regulates the GSDMD expression via binding to the promoter region of GSDMD.
Collapse
|
187
|
Chromosomal coordination and differential structure of asynchronous replicating regions. Nat Commun 2021; 12:1035. [PMID: 33589603 PMCID: PMC7884787 DOI: 10.1038/s41467-021-21348-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Abstract
Stochastic asynchronous replication timing (AS-RT) is a phenomenon in which the time of replication of each allele is different, and the identity of the early allele varies between cells. By taking advantage of stable clonal pre-B cell populations derived from C57BL6/Castaneous mice, we have mapped the genome-wide AS-RT loci, independently of genetic differences. These regions are characterized by differential chromatin accessibility, mono-allelic expression and include new gene families involved in specifying cell identity. By combining population level mapping with single cell FISH, our data reveal the existence of a novel regulatory program that coordinates a fixed relationship between AS-RT regions on any given chromosome, with some loci set to replicate in a parallel and others set in the anti-parallel orientation. Our results show that AS-RT is a highly regulated epigenetic mark established during early embryogenesis that may be used for facilitating the programming of mono-allelic choice throughout development. Most regions of the mammalian genome replicate both alleles in a synchronous manner, but some loci have been found to replicate asynchronously and the time of replication of each allele is different. Here the authors, by employing clonal mouse cells from a hybrid strain chart replication timing over the entire genome, using polymorphisms to distinguish between the paternal and maternal alleles.
Collapse
|
188
|
CTCF-binding element regulates ESC differentiation via orchestrating long-range chromatin interaction between enhancers and HoxA. J Biol Chem 2021; 296:100413. [PMID: 33581110 PMCID: PMC7960549 DOI: 10.1016/j.jbc.2021.100413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Proper expression of Homeobox A cluster genes (HoxA) is essential for embryonic stem cell (ESC) differentiation and individual development. However, mechanisms controlling precise spatiotemporal expression of HoxA during early ESC differentiation remain poorly understood. Herein, we identified a functional CTCF-binding element (CBE+47) closest to the 3'-end of HoxA within the same topologically associated domain (TAD) in ESC. CRISPR-Cas9-mediated deletion of CBE+47 significantly upregulated HoxA expression and enhanced early ESC differentiation induced by retinoic acid (RA) relative to wild-type cells. Mechanistic analysis by chromosome conformation capture assay (Capture-C) revealed that CBE+47 deletion decreased interactions between adjacent enhancers, enabling formation of a relatively loose enhancer-enhancer interaction complex (EEIC), which overall increased interactions between that EEIC and central regions of HoxA chromatin. These findings indicate that CBE+47 organizes chromatin interactions between its adjacent enhancers and HoxA. Furthermore, deletion of those adjacent enhancers synergistically inhibited HoxA activation, suggesting that these enhancers serve as an EEIC required for RA-induced HoxA activation. Collectively, these results provide new insight into RA-induced HoxA expression during early ESC differentiation, also highlight precise regulatory roles of the CTCF-binding element in orchestrating high-order chromatin structure.
Collapse
|
189
|
Liao Y, Zhang X, Chakraborty M, Emerson JJ. Topologically associating domains and their role in the evolution of genome structure and function in Drosophila. Genome Res 2021; 31:397-410. [PMID: 33563719 PMCID: PMC7919452 DOI: 10.1101/gr.266130.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022]
Abstract
Topologically associating domains (TADs) were recently identified as fundamental units of three-dimensional eukaryotic genomic organization, although our knowledge of the influence of TADs on genome evolution remains preliminary. To study the molecular evolution of TADs in Drosophila species, we constructed a new reference-grade genome assembly and accompanying high-resolution TAD map for D. pseudoobscura Comparison of D. pseudoobscura and D. melanogaster, which are separated by ∼49 million years of divergence, showed that ∼30%-40% of their genomes retain conserved TADs. Comparative genomic analysis of 17 Drosophila species revealed that chromosomal rearrangement breakpoints are enriched at TAD boundaries but depleted within TADs. Additionally, genes within conserved TADs show lower expression divergence than those located in nonconserved TADs. Furthermore, we found that a substantial proportion of long genes (>50 kbp) in D. melanogaster (42%) and D. pseudoobscura (26%) constitute their own TADs, implying transcript structure may be one of the deterministic factors for TAD formation. By using structural variants (SVs) identified from 14 D. melanogaster strains, its three closest sibling species from the D. simulans species complex, and two obscura clade species, we uncovered evidence of selection acting on SVs at TAD boundaries, but with the nature of selection differing between SV types. Deletions are depleted at TAD boundaries in both divergent and polymorphic SVs, suggesting purifying selection, whereas divergent tandem duplications are enriched at TAD boundaries relative to polymorphism, suggesting they are adaptive. Our findings highlight how important TADs are in shaping the acquisition and retention of structural mutations that fundamentally alter genome organization.
Collapse
Affiliation(s)
- Yi Liao
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - Xinwen Zhang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA.,Center for Complex Biological Systems, University of California, Irvine, California 92697, USA
| |
Collapse
|
190
|
Jones MJK, Gelot C, Munk S, Koren A, Kawasoe Y, George KA, Santos RE, Olsen JV, McCarroll SA, Frattini MG, Takahashi TS, Jallepalli PV. Human DDK rescues stalled forks and counteracts checkpoint inhibition at unfired origins to complete DNA replication. Mol Cell 2021; 81:426-441.e8. [PMID: 33545059 PMCID: PMC8211091 DOI: 10.1016/j.molcel.2021.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Eukaryotic genomes replicate via spatially and temporally regulated origin firing. Cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) promote origin firing, whereas the S phase checkpoint limits firing to prevent nucleotide and RPA exhaustion. We used chemical genetics to interrogate human DDK with maximum precision, dissect its relationship with the S phase checkpoint, and identify DDK substrates. We show that DDK inhibition (DDKi) leads to graded suppression of origin firing and fork arrest. S phase checkpoint inhibition rescued origin firing in DDKi cells and DDK-depleted Xenopus egg extracts. DDKi also impairs RPA loading, nascent-strand protection, and fork restart. Via quantitative phosphoproteomics, we identify the BRCA1-associated (BRCA1-A) complex subunit MERIT40 and the cohesin accessory subunit PDS5B as DDK effectors in fork protection and restart. Phosphorylation neutralizes autoinhibition mediated by intrinsically disordered regions in both substrates. Our results reveal mechanisms through which DDK controls the duplication of large vertebrate genomes.
Collapse
Affiliation(s)
- Mathew J K Jones
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Camille Gelot
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephanie Munk
- University of Copenhagen and Novo Nordisk Foundation Center for Protein Research, Copenhagen 2200, Denmark
| | - Amnon Koren
- Cornell University, Department of Molecular Biology and Genetics, Ithaca, NY 14853, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yoshitaka Kawasoe
- Graduate School of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kelly A George
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruth E Santos
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jesper V Olsen
- University of Copenhagen and Novo Nordisk Foundation Center for Protein Research, Copenhagen 2200, Denmark
| | | | - Mark G Frattini
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Tatsuro S Takahashi
- Graduate School of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Prasad V Jallepalli
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
191
|
Zhang YW, Wang MB, Li SC. SuperTAD: robust detection of hierarchical topologically associated domains with optimized structural information. Genome Biol 2021; 22:45. [PMID: 33494803 PMCID: PMC7831269 DOI: 10.1186/s13059-020-02234-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
Topologically associating domains (TADs) are the organizational units of chromosome structures. TADs can contain TADs, thus forming a hierarchy. TAD hierarchies can be inferred from Hi-C data through coding trees. However, the current method for computing coding trees is not optimal. In this paper, we propose optimal algorithms for this computation. In comparison with seven state-of-art methods using two public datasets, from GM12878 and IMR90 cells, SuperTAD shows a significant enrichment of structural proteins around detected boundaries and histone modifications within TADs and displays a high consistency between various resolutions of identical Hi-C matrices.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, China
| | - Meng Bo Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
192
|
Large organized chromatin lysine domains help distinguish primitive from differentiated cell populations. Nat Commun 2021; 12:499. [PMID: 33479238 PMCID: PMC7820432 DOI: 10.1038/s41467-020-20830-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 12/22/2020] [Indexed: 01/04/2023] Open
Abstract
The human genome is partitioned into a collection of genomic features, inclusive of genes, transposable elements, lamina interacting regions, early replicating control elements and cis-regulatory elements, such as promoters, enhancers, and anchors of chromatin interactions. Uneven distribution of these features within chromosomes gives rise to clusters, such as topologically associating domains (TADs), lamina-associated domains, clusters of cis-regulatory elements or large organized chromatin lysine (K) domains (LOCKs). Here we show that LOCKs from diverse histone modifications discriminate primitive from differentiated cell types. Active LOCKs (H3K4me1, H3K4me3 and H3K27ac) cover a higher fraction of the genome in primitive compared to differentiated cell types while repressive LOCKs (H3K9me3, H3K27me3 and H3K36me3) do not. Active LOCKs in differentiated cells lie proximal to highly expressed genes while active LOCKs in primitive cells tend to be bivalent. Genes proximal to bivalent LOCKs are minimally expressed in primitive cells. Furthermore, bivalent LOCKs populate TAD boundaries and are preferentially bound by regulators of chromatin interactions, including CTCF, RAD21 and ZNF143. Together, our results argue that LOCKs discriminate primitive from differentiated cell populations.
Collapse
|
193
|
Kim K, Jang I, Kim M, Choi J, Kim MS, Lee B, Jung I. 3DIV update for 2021: a comprehensive resource of 3D genome and 3D cancer genome. Nucleic Acids Res 2021; 49:D38-D46. [PMID: 33245777 PMCID: PMC7778885 DOI: 10.1093/nar/gkaa1078] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional (3D) genome organization is tightly coupled with gene regulation in various biological processes and diseases. In cancer, various types of large-scale genomic rearrangements can disrupt the 3D genome, leading to oncogenic gene expression. However, unraveling the pathogenicity of the 3D cancer genome remains a challenge since closer examinations have been greatly limited due to the lack of appropriate tools specialized for disorganized higher-order chromatin structure. Here, we updated a 3D-genome Interaction Viewer and database named 3DIV by uniformly processing ∼230 billion raw Hi-C reads to expand our contents to the 3D cancer genome. The updates of 3DIV are listed as follows: (i) the collection of 401 samples including 220 cancer cell line/tumor Hi-C data, 153 normal cell line/tissue Hi-C data, and 28 promoter capture Hi-C data, (ii) the live interactive manipulation of the 3D cancer genome to simulate the impact of structural variations and (iii) the reconstruction of Hi-C contact maps by user-defined chromosome order to investigate the 3D genome of the complex genomic rearrangement. In summary, the updated 3DIV will be the most comprehensive resource to explore the gene regulatory effects of both the normal and cancer 3D genome. ‘3DIV’ is freely available at http://3div.kr.
Collapse
Affiliation(s)
- Kyukwang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Insu Jang
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Mooyoung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jinhyuk Choi
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Min-Seo Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Byungwook Lee
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
194
|
Sun Q, Perez-Rathke A, Czajkowsky DM, Shao Z, Liang J. High-resolution single-cell 3D-models of chromatin ensembles during Drosophila embryogenesis. Nat Commun 2021; 12:205. [PMID: 33420075 PMCID: PMC7794469 DOI: 10.1038/s41467-020-20490-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Single-cell chromatin studies provide insights into how chromatin structure relates to functions of individual cells. However, balancing high-resolution and genome wide-coverage remains challenging. We describe a computational method for the reconstruction of large 3D-ensembles of single-cell (sc) chromatin conformations from population Hi-C that we apply to study embryogenesis in Drosophila. With minimal assumptions of physical properties and without adjustable parameters, our method generates large ensembles of chromatin conformations via deep-sampling. Our method identifies specific interactions, which constitute 5-6% of Hi-C frequencies, but surprisingly are sufficient to drive chromatin folding, giving rise to the observed Hi-C patterns. Modeled sc-chromatins quantify chromatin heterogeneity, revealing significant changes during embryogenesis. Furthermore, >50% of modeled sc-chromatin maintain topologically associating domains (TADs) in early embryos, when no population TADs are perceptible. Domain boundaries become fixated during development, with strong preference at binding-sites of insulator-complexes upon the midblastula transition. Overall, high-resolution 3D-ensembles of sc-chromatin conformations enable further in-depth interpretation of population Hi-C, improving understanding of the structure-function relationship of genome organization.
Collapse
Affiliation(s)
- Qiu Sun
- Shanghai Center for System Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Alan Perez-Rathke
- Department of Bioengineering, University of Illinois at Chicago, SEO, MC-063, Chicago, IL, 60607-7052, USA
| | - Daniel M Czajkowsky
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhifeng Shao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, SEO, MC-063, Chicago, IL, 60607-7052, USA.
| |
Collapse
|
195
|
Li J, Zhang J, Liu J, Zhou Y, Cai C, Xu L, Dai X, Feng S, Guo C, Rao J, Wei K, Jarvis ED, Jiang Y, Zhou Z, Zhang G, Zhou Q. A new duck genome reveals conserved and convergently evolved chromosome architectures of birds and mammals. Gigascience 2021; 10:giaa142. [PMID: 33406261 PMCID: PMC7787181 DOI: 10.1093/gigascience/giaa142] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Ducks have a typical avian karyotype that consists of macro- and microchromosomes, but a pair of much less differentiated ZW sex chromosomes compared to chickens. To elucidate the evolution of chromosome architectures between ducks and chickens, and between birds and mammals, we produced a nearly complete chromosomal assembly of a female Pekin duck by combining long-read sequencing and multiplatform scaffolding techniques. RESULTS A major improvement of genome assembly and annotation quality resulted from the successful resolution of lineage-specific propagated repeats that fragmented the previous Illumina-based assembly. We found that the duck topologically associated domains (TAD) are demarcated by putative binding sites of the insulator protein CTCF, housekeeping genes, or transitions of active/inactive chromatin compartments, indicating conserved mechanisms of spatial chromosome folding with mammals. There are extensive overlaps of TAD boundaries between duck and chicken, and also between the TAD boundaries and chromosome inversion breakpoints. This suggests strong natural selection pressure on maintaining regulatory domain integrity, or vulnerability of TAD boundaries to DNA double-strand breaks. The duck W chromosome retains 2.5-fold more genes relative to chicken. Similar to the independently evolved human Y chromosome, the duck W evolved massive dispersed palindromic structures, and a pattern of sequence divergence with the Z chromosome that reflects stepwise suppression of homologous recombination. CONCLUSIONS Our results provide novel insights into the conserved and convergently evolved chromosome features of birds and mammals, and also importantly add to the genomic resources for poultry studies.
Collapse
Affiliation(s)
- Jing Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 5 Nobels väg, Stockholm 17177, Sweden
| | - Jing Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
| | - Yang Zhou
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Cheng Cai
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Luohao Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Shaohong Feng
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Chunxue Guo
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Jinpeng Rao
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| | - Kai Wei
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Ave, NY 10065, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Zhengkui Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, 12 Zhong Guan Cun Da Jie, Beijing, China
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming 650223, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 10 Nørregade, DK-2100 Copenhagen, Denmark
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming 650223, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| |
Collapse
|
196
|
Ma G, Babarinde IA, Zhuang Q, Hutchins AP. Unified Analysis of Multiple ChIP-Seq Datasets. Methods Mol Biol 2021; 2198:451-465. [PMID: 32822050 DOI: 10.1007/978-1-0716-0876-0_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-throughput sequencing technologies are increasingly used in molecular cell biology to assess genome-wide chromatin dynamics of proteins bound to DNA, through techniques such as chromatin immunoprecipitation sequencing (ChIP-seq). These techniques often rely on an analysis strategy based on identifying genomic regions with increased sequencing signal to infer the binding location or chemical modifications of proteins bound to DNA. Peak calling within individual samples has been well described, however relatively little attention has been devoted to the merging of replicate samples, and the cross-comparison of many samples. Here, we present a generalized strategy to enable the unification of ChIP-seq datasets, enabling enhanced cross-comparison of binding patterns. The strategy works by merging peak data between different (even unrelated) samples, and then using a local background to recalculate enrichment. This strategy redefines the peaks within each experiment, allowing for more accurate cross-comparison of datasets.
Collapse
Affiliation(s)
- Gang Ma
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Isaac A Babarinde
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Qiang Zhuang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
197
|
Bizhanova A, Kaufman PD. Close to the edge: Heterochromatin at the nucleolar and nuclear peripheries. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194666. [PMID: 33307247 PMCID: PMC7855492 DOI: 10.1016/j.bbagrm.2020.194666] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Chromatin is a dynamic structure composed of DNA, RNA, and proteins, regulating storage and expression of the genetic material in the nucleus. Heterochromatin plays a crucial role in driving the three-dimensional arrangement of the interphase genome, and in preserving genome stability by maintaining a subset of the genome in a silent state. Spatial genome organization contributes to normal patterns of gene function and expression, and is therefore of broad interest. Mammalian heterochromatin, the focus of this review, mainly localizes at the nuclear periphery, forming Lamina-associated domains (LADs), and at the nucleolar periphery, forming Nucleolus-associated domains (NADs). Together, these regions comprise approximately one-half of mammalian genomes, and most but not all loci within these domains are stochastically placed at either of these two locations after exit from mitosis at each cell cycle. Excitement about the role of these heterochromatic domains in early development has recently been heightened by the discovery that LADs appear at some loci in the preimplantation mouse embryo prior to other chromosomal features like compartmental identity and topologically-associated domains (TADs). While LADs have been extensively studied and mapped during cellular differentiation and early embryonic development, NADs have been less thoroughly studied. Here, we summarize pioneering studies of NADs and LADs, more recent advances in our understanding of cis/trans-acting factors that mediate these localizations, and discuss the functional significance of these associations.
Collapse
Affiliation(s)
- Aizhan Bizhanova
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
198
|
A Brief Review of Current 3D Genomics Research. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
199
|
Karamysheva TV, Gayner TA, Muzyka VV, Orishchenko KE, Rubtsov NB. Two Separate Cases: Complex Chromosomal Abnormality Involving Three Chromosomes and Small Supernumerary Marker Chromosome in Patients with Impaired Reproductive Function. Genes (Basel) 2020; 11:genes11121511. [PMID: 33348590 PMCID: PMC7766715 DOI: 10.3390/genes11121511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
For medical genetic counseling, estimating the chance of a child being born with chromosome abnormality is crucially important. Cytogenetic diagnostics of parents with a balanced karyotype are a special case. Such chromosome rearrangements cannot be detected with comprehensive chromosome screening. In the current paper, we consider chromosome diagnostics in two cases of chromosome rearrangement in patients with balanced karyotype and provide the results of a detailed analysis of complex chromosomal rearrangement (CCR) involving three chromosomes and a small supernumerary marker chromosome (sSMC) in a patient with impaired reproductive function. The application of fluorescent in situ hybridization, microdissection, and multicolor banding allows for describing analyzed karyotypes in detail. In the case of a CCR, such as the one described here, the probability of gamete formation with a karyotype, showing a balance of chromosome regions, is extremely low. Recommendation for the family in genetic counseling should take into account the obtained result. In the case of an sSMC, it is critically important to identify the original chromosome from which the sSMC has been derived, even if the euchromatin material is absent. Finally, we present our view on the optimal strategy of identifying and describing sSMCs, namely the production of a microdissectional DNA probe from the sSMC combined with a consequent reverse painting.
Collapse
MESH Headings
- Abnormal Karyotype
- Abortion, Habitual/genetics
- Adult
- Chromosome Aberrations
- Chromosome Painting
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 16/ultrastructure
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Pair 3/ultrastructure
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 5/ultrastructure
- DNA Probes
- Female
- Gene Duplication
- Genetic Counseling
- Humans
- In Situ Hybridization, Fluorescence
- Infertility, Female/genetics
- Infertility, Male/genetics
- Male
- Metaphase
- Mutagenesis, Insertional
Collapse
Affiliation(s)
- Tatyana V. Karamysheva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.V.M.); (K.E.O.); (N.B.R.)
- Correspondence: ; Tel.: +7-(383)-363-49-63 (ext. 1332)
| | - Tatyana A. Gayner
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Center of New Medical Technologies, 630090 Novosibirsk, Russia
| | - Vladimir V. Muzyka
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.V.M.); (K.E.O.); (N.B.R.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Konstantin E. Orishchenko
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.V.M.); (K.E.O.); (N.B.R.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nikolay B. Rubtsov
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.V.M.); (K.E.O.); (N.B.R.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
200
|
Ding T, Zhu L, Fang Y, Liu Y, Tang W, Zou P. Chromophore‐Assisted Proximity Labeling of DNA Reveals Chromosomal Organization in Living Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Ding
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Liyuan Zhu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuxin Fang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yangluorong Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Wei Tang
- Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
| | - Peng Zou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- PKU-IDG/McGovern Institute for Brain Research Beijing 100871 China
- Chinese Institute for Brain Research (CIBR) Beijing 102206 China
| |
Collapse
|