151
|
Williams A, Hayashi T, Wolozny D, Yin B, Su TC, Betenbaugh MJ, Su TP. The non-apoptotic action of Bcl-xL: regulating Ca(2+) signaling and bioenergetics at the ER-mitochondrion interface. J Bioenerg Biomembr 2016; 48:211-25. [PMID: 27155879 PMCID: PMC6737942 DOI: 10.1007/s10863-016-9664-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
Bcl-2 family proteins are known to competitively regulate Ca(2+); however, the specific inter-organelle signaling pathways and related cellular functions are not fully elucidated. In this study, a portion of Bcl-xL was detected at the ER-mitochondrion interface or MAM (mitochondria-associated ER membrane) in association with type 3 inositol 1,4,5-trisphosphate receptors (IP3R3); an association facilitated by the BH4 and transmembrane domains of Bcl-xL. Moreover, increasing Bcl-xL expression enhanced transient mitochondrial Ca(2+) levels upon ER Ca(2+) depletion induced by short-term, non-apoptotic incubation with thapsigargin (Tg), while concomitantly reducing cytosolic Ca(2+) release. These mitochondrial changes appear to be IP3R3-dependent and resulted in decreased NAD/NADH ratios and higher electron transport chain oxidase activity. Interestingly, extended Tg exposure stimulated ER stress, but not apoptosis, and further enhanced TCA cycling. Indeed, confocal analysis indicated that Bcl-xL translocated to the MAM and increased its interaction with IP3R3 following extended Tg treatment. Thus, the MAM is a critical cell-signaling junction whereby Bcl-xL dynamically interacts with IP3R3 to coordinate mitochondrial Ca(2+) transfer and alters cellular metabolism in order to increase the cells' bioenergetic capacity, particularly during periods of stress.
Collapse
Affiliation(s)
- Abasha Williams
- Cellular Pathobiology Section, IRP, NIDA, NIH, DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
- Division of Biotechnology Review and Research II, FDA/CDER/OPS/OBP, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Teruo Hayashi
- Cellular Pathobiology Section, IRP, NIDA, NIH, DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA
- Seiwakai Nishikawa Hospital, 293-2 Minato-Machi, Hamada, Shimane, 697-0052, Japan
| | - Daniel Wolozny
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Bojiao Yin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Tzu-Chieh Su
- Cellular Pathobiology Section, IRP, NIDA, NIH, DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA.
| | - Tsung-Ping Su
- Cellular Pathobiology Section, IRP, NIDA, NIH, DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| |
Collapse
|
152
|
Cell viability modulation through changes of Ca2+-dependent signalling pathways. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:45-53. [DOI: 10.1016/j.pbiomolbio.2016.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/01/2016] [Accepted: 01/05/2016] [Indexed: 11/22/2022]
|
153
|
LaPensee CR, Mann JE, Rainey WE, Crudo V, Hunt SW, Hammer GD. ATR-101, a Selective and Potent Inhibitor of Acyl-CoA Acyltransferase 1, Induces Apoptosis in H295R Adrenocortical Cells and in the Adrenal Cortex of Dogs. Endocrinology 2016; 157:1775-88. [PMID: 26986192 DOI: 10.1210/en.2015-2052] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ATR-101 is a novel, oral drug candidate currently in development for the treatment of adrenocortical cancer. ATR-101 is a selective and potent inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase 1 (ACAT1), an enzyme located in the endoplasmic reticulum (ER) membrane that catalyzes esterification of intracellular free cholesterol (FC). We aimed to identify mechanisms by which ATR-101 induces adrenocortical cell death. In H295R human adrenocortical carcinoma cells, ATR-101 decreases the formation of cholesteryl esters and increases FC levels, demonstrating potent inhibition of ACAT1 activity. Caspase-3/7 levels and terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeled-positive cells are increased by ATR-101 treatment, indicating activation of apoptosis. Exogenous cholesterol markedly potentiates the activity of ATR-101, suggesting that excess FC that cannot be adequately esterified increases caspase-3/7 activation and subsequent cell death. Inhibition of calcium release from the ER or the subsequent uptake of calcium by mitochondria reverses apoptosis induced by ATR-101. ATR-101 also activates multiple components of the unfolded protein response, an indicator of ER stress. Targeted knockdown of ACAT1 in an adrenocortical cell line mimicked the effects of ATR-101, suggesting that ACAT1 mediates the cytotoxic effects of ATR-101. Finally, in vivo treatment of dogs with ATR-101 decreased adrenocortical steroid production and induced cellular apoptosis that was restricted to the adrenal cortex. Together, these studies demonstrate that inhibition of ACAT1 by ATR-101 increases FC, resulting in dysregulation of ER calcium stores that result in ER stress, the unfolded protein response, and ultimately apoptosis.
Collapse
Affiliation(s)
- Christopher R LaPensee
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - Jacqueline E Mann
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - William E Rainey
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - Valentina Crudo
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - Stephen W Hunt
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - Gary D Hammer
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| |
Collapse
|
154
|
Su TP, Su TC, Nakamura Y, Tsai SY. The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems. Trends Pharmacol Sci 2016; 37:262-278. [PMID: 26869505 PMCID: PMC4811735 DOI: 10.1016/j.tips.2016.01.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 01/21/2023]
Abstract
The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum (ER) protein that resides specifically in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), an interface between ER and mitochondria. In addition to being able to translocate to the plasma membrane (PM) to interact with ion channels and other receptors, Sig-1R also occurs at the nuclear envelope, where it recruits chromatin-remodeling factors to affect the transcription of genes. Sig-1Rs have also been reported to interact with other membranous or soluble proteins at other loci, including the cytosol, and to be involved in several central nervous system (CNS) diseases. Here, we propose that Sig-1R is a pluripotent modulator with resultant multiple functional manifestations in living systems.
Collapse
Affiliation(s)
- Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | - Tzu-Chieh Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Yoki Nakamura
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Shang-Yi Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| |
Collapse
|
155
|
Naringin inhibits lipopolysaccharide-induced damage in human umbilical vein endothelial cells via attenuation of inflammation, apoptosis and MAPK pathways. Cytotechnology 2016; 68:1473-87. [PMID: 27006302 DOI: 10.1007/s10616-015-9908-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/30/2015] [Indexed: 12/21/2022] Open
Abstract
Endothelial cell activation, injury and dysfunction have been regarded as one of the initial key events in the pathogenesis of atherosclerosis. Lipopolysaccharide (LPS), an important mediator of inflammation, can cause endothelial cell damage and apoptosis. Naringin (Nar), one major flavanone glycoside from citrus fruits, shows various pharmacological actions, but the effect of Nar on LPS-induced damage in human umbilical vein endothelial cells (HUVECs) remains unknown. The present results showed that Nar significantly improved the survival rate of HUVECs, and decreased reactive oxygen species and intracellular Ca(2+) levels caused by LPS compared with model group. In addition, Nar obviously decreased cytochrome c release from mitochondria into cytosol. Moreover, Nar significantly down-regulated the protein or mRNA levels of IL-1, IL-6, TNF-α, VCAM-1, ICAM-1, NF-κB, AP-1, cleaved-3,-7,-9, p53, Bak and Bax, and up-regulated the expressions of Bcl-xl, Bcl-2 to suppress inflammation and apoptosis. Furthermore, Nar obviously inhibited phosphorylation levels of JNK, ERK and p38 MAPK. In conclusion, Nar exhibited potent effects against LPS-induced damage in HUVECs through the modulation of oxidative stress, inflammation, apoptosis and MAPK pathways, which should be developed as a potent candidate for the treatment of atherosclerosis in the future.
Collapse
|
156
|
Biphasic regulation of InsP3 receptor gating by dual Ca2+ release channel BH3-like domains mediates Bcl-xL control of cell viability. Proc Natl Acad Sci U S A 2016; 113:E1953-62. [PMID: 26976600 DOI: 10.1073/pnas.1517935113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Antiapoptotic Bcl-2 family members interact with inositol trisphosphate receptor (InsP3R) Ca(2+)release channels in the endoplasmic reticulum to modulate Ca(2+)signals that affect cell viability. However, the molecular details and consequences of their interactions are unclear. Here, we found that Bcl-xL activates single InsP3R channels with a biphasic concentration dependence. The Bcl-xLBcl-2 homology 3 (BH3) domain-binding pocket mediates both high-affinity channel activation and low-affinity inhibition. Bcl-xL activates channel gating by binding to two BH3 domain-like helices in the channel carboxyl terminus, whereas inhibition requires binding to one of them and to a previously identified Bcl-2 interaction site in the channel-coupling domain. Disruption of these interactions diminishes cell viability and sensitizes cells to apoptotic stimuli. Our results identify BH3-like domains in an ion channel and they provide a unifying model of the effects of antiapoptotic Bcl-2 proteins on the InsP3R that play critical roles in Ca(2+) signaling and cell viability.
Collapse
|
157
|
Noren DP, Chou WH, Lee SH, Qutub AA, Warmflash A, Wagner DS, Popel AS, Levchenko A. Endothelial cells decode VEGF-mediated Ca2+ signaling patterns to produce distinct functional responses. Sci Signal 2016; 9:ra20. [PMID: 26905425 PMCID: PMC5301990 DOI: 10.1126/scisignal.aad3188] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A single extracellular stimulus can promote diverse behaviors among isogenic cells by differentially regulated signaling networks. We examined Ca(2+) signaling in response to VEGF (vascular endothelial growth factor), a growth factor that can stimulate different behaviors in endothelial cells. We found that altering the amount of VEGF signaling in endothelial cells by stimulating them with different VEGF concentrations triggered distinct and mutually exclusive dynamic Ca(2+) signaling responses that correlated with different cellular behaviors. These behaviors were cell proliferation involving the transcription factor NFAT (nuclear factor of activated T cells) and cell migration involving MLCK (myosin light chain kinase). Further analysis suggested that this signal decoding was robust to the noisy nature of the signal input. Using probabilistic modeling, we captured both the stochastic and deterministic aspects of Ca(2+) signal decoding and accurately predicted cell responses in VEGF gradients, which we used to simulate different amounts of VEGF signaling. Ca(2+) signaling patterns associated with proliferation and migration were detected during angiogenesis in developing zebrafish.
Collapse
Affiliation(s)
- David P Noren
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA. Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Wesley H Chou
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Sung Hoon Lee
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Amina A Qutub
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA. Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Daniel S Wagner
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | - Andre Levchenko
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA.
| |
Collapse
|
158
|
Li ZL, Zhou SF. A SILAC-Based Approach Elicits the Proteomic Responses to Vancomycin-Associated Nephrotoxicity in Human Proximal Tubule Epithelial HK-2 Cells. Molecules 2016; 21:148. [PMID: 26840285 PMCID: PMC6273696 DOI: 10.3390/molecules21020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 11/16/2022] Open
Abstract
Vancomycin, a widely used antibiotic, often induces nephrotoxicity, however, the molecular targets and underlying mechanisms of this side effect remain unclear. The present study aimed to examine molecular interactome and analyze the signaling pathways related to the vancomycin-induced nephrotoxicity in human proximal tubule epithelial HK-2 cells using the stable isotope labeling by amino acids in cell culture (SILAC) approach. The quantitative proteomic study revealed that there were at least 492 proteins interacting with vancomycin and there were 290 signaling pathways and cellular functions potentially regulated by vancomycin in HK-2 cells. These proteins and pathways played a critical role in the regulation of cell cycle, apoptosis, autophagy, EMT, and ROS generation. These findings suggest that vancomycin-induced proteomic responses in HK-2 cells involvefunctional proteins and pathways that regulate cell cycle, apoptosis, autophagy, and redox homeostasis. This is the first systemic study revealed the networks of signaling pathways and proteomic responses to vancomycin treatment in HK-2 cells, and the data may be used to discriminate the molecular and clinical subtypes and to identify new targets and biomarkers for vancomycin-induced nephrotoxic effect. Further studies are warranted to explore the potential of quantitative proteomic analysis in the identification of new targets and biomarkers for drug-induced renal toxicity.
Collapse
Affiliation(s)
- Zhi-Ling Li
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
159
|
Hannibal L, Tomasina F, Capdevila DA, Demicheli V, Tórtora V, Alvarez-Paggi D, Jemmerson R, Murgida DH, Radi R. Alternative Conformations of Cytochrome c: Structure, Function, and Detection. Biochemistry 2016; 55:407-28. [DOI: 10.1021/acs.biochem.5b01385] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Luciana Hannibal
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Center
for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Mathildenstrasse 1, Freiburg D-79106, Germany
| | - Florencia Tomasina
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Daiana A. Capdevila
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Verónica Demicheli
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Ronald Jemmerson
- Department
of Microbiology and Immunology, University of Minnesota, MMC 196,
420 Delaware Street, Southeast, Minneapolis, Minnesota 55455, United States
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Rafael Radi
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| |
Collapse
|
160
|
Abstract
Cancer is a disease characterized by a very little apoptosis, ie, genetically programmed cell death. Aberrations in apoptotic pathways are central to tumorigenesis, tumor progression, and overall tumor growth and regression in response to chemotherapy. It is now increasingly accepted that chemotherapeutic drug efficacy is partially related to its ability to induce apoptosis. Apoptosis, therefore, represents not only a vital target in cancer therapy but also a unique biomarker opportunity that has thus far been largely unexploited. In response to therapy, tumor cells undergo apoptosis and release their cellular components in the circulation. As such, these materials may serve as biomarkers to assess response. Apoptosis markers in breast cancer include circulating soluble FasL, granzyme B, and cytochrome c that increase following chemotherapy. Unfortunately, there is a paucity of information in the literature with respect to this approach. As such, large-scale prospective studies are clearly needed to validate this approach and more fully elucidate clinical usefulness.
Collapse
|
161
|
Nakka VP, Prakash-Babu P, Vemuganti R. Crosstalk Between Endoplasmic Reticulum Stress, Oxidative Stress, and Autophagy: Potential Therapeutic Targets for Acute CNS Injuries. Mol Neurobiol 2016; 53:532-544. [PMID: 25482050 PMCID: PMC4461562 DOI: 10.1007/s12035-014-9029-6] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/30/2014] [Indexed: 01/06/2023]
Abstract
Endoplasmic reticulum (ER) stress induces a variety of neuronal cell death pathways that play a critical role in the pathophysiology of stroke. ER stress occurs when unfolded/misfolded proteins accumulate and the folding capacity of ER chaperones exceeds the capacity of ER lumen to facilitate their disposal. As a consequence, a complex set of signaling pathways will be induced that transmit from ER to cytosol and nucleus to compensate damage and to restore the normal cellular homeostasis, collectively known as unfolded protein response (UPR). However, failure of UPR due to severe or prolonged stress leads to cell death. Following acute CNS injuries, chronic disturbances in protein folding and oxidative stress prolong ER stress leading to sustained ER dysfunction and neuronal cell death. While ER stress responses have been well studied after stroke, there is an emerging need to study the association of ER stress with other cell pathways that exacerbate neuronal death after an injury. In this review, we summarize the current understanding of the role for ER stress in acute brain injuries, highlighting the diverse molecular mechanisms associated with ER stress and its relation to oxidative stress and autophagy. We also discussed the existing and developing therapeutic options aimed to reduce ER stress to protect the CNS after acute injuries.
Collapse
Affiliation(s)
- Venkata Prasuja Nakka
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA
- Department of Biotechnology & Bioinformatics, School of Life sciences, University of Hyderabad, Hyderabad, India
| | - Phanithi Prakash-Babu
- Department of Biotechnology & Bioinformatics, School of Life sciences, University of Hyderabad, Hyderabad, India
| | - Raghu Vemuganti
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA.
| |
Collapse
|
162
|
陈 圆. Modeling of Ca<sup>2+</sup> Channels and Ca<sup>2+</sup> Signal Oscillations. Biophysics (Nagoya-shi) 2016. [DOI: 10.12677/biphy.2016.41001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
163
|
Milisav I, Šuput D, Ribarič S. Unfolded Protein Response and Macroautophagy in Alzheimer's, Parkinson's and Prion Diseases. Molecules 2015; 20:22718-56. [PMID: 26694349 PMCID: PMC6332363 DOI: 10.3390/molecules201219865] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Proteostasis are integrated biological pathways within cells that control synthesis, folding, trafficking and degradation of proteins. The absence of cell division makes brain proteostasis susceptible to age-related changes and neurodegeneration. Two key processes involved in sustaining normal brain proteostasis are the unfolded protein response and autophagy. Alzheimer’s disease (AD), Parkinson’s disease (PD) and prion diseases (PrDs) have different clinical manifestations of neurodegeneration, however, all share an accumulation of misfolded pathological proteins associated with perturbations in unfolded protein response and macroautophagy. While both the unfolded protein response and macroautophagy play an important role in the prevention and attenuation of AD and PD progression, only macroautophagy seems to play an important role in the development of PrDs. Macroautophagy and unfolded protein response can be modulated by pharmacological interventions. However, further research is necessary to better understand the regulatory pathways of both processes in health and neurodegeneration to be able to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
- Faculty of Health Sciences, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenija.
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
| | - Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
164
|
Jones S, Uusna J, Langel Ü, Howl J. Intracellular Target-Specific Accretion of Cell Penetrating Peptides and Bioportides: Ultrastructural and Biological Correlates. Bioconjug Chem 2015; 27:121-9. [DOI: 10.1021/acs.bioconjchem.5b00529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sarah Jones
- Research
Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, United Kingdom
| | - Julia Uusna
- Institute
of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Ülo Langel
- Institute
of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - John Howl
- Research
Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, United Kingdom
| |
Collapse
|
165
|
Wang L, Alzayady KJ, Yule DI. Proteolytic fragmentation of inositol 1,4,5-trisphosphate receptors: a novel mechanism regulating channel activity? J Physiol 2015; 594:2867-76. [PMID: 26486785 DOI: 10.1113/jp271140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are a family of ubiquitously expressed intracellular Ca(2+) release channels. Regulation of channel activity by Ca(2+) , nucleotides, phosphorylation, protein binding partners and other cellular factors is thought to play a major role in defining the specific spatiotemporal characteristics of intracellular Ca(2+) signals. These properties are, in turn, believed pivotal for the selective and specific physiological activation of Ca(2+) -dependent effectors. IP3 Rs are also substrates for the intracellular cysteine proteases, calpain and caspase. Cleavage of the IP3 R has been proposed to play a role in apoptotic cell death by uncoupling regions important for IP3 binding from the channel domain, leaving an unregulated leaky Ca(2+) pore. Contrary to this hypothesis, we demonstrate following proteolysis that N- and C-termini of IP3 R1 remain associated, presumably through non-covalent interactions. Further, we show that complementary fragments of IP3 R1 assemble into tetrameric structures and retain their ability to be regulated robustly by IP3 . While peptide continuity is clearly not necessary for IP3 -gating of the channel, we propose that cleavage of the IP3 R peptide chain may alter other important regulatory events to modulate channel activity. In this scenario, stimulation of the cleaved IP3 R may support distinct spatiotemporal Ca(2+) signals and activation of specific effectors. Notably, in many adaptive physiological events, the non-apoptotic activities of caspase and calpain are demonstrated to be important, but the substrates of the proteases are poorly defined. We speculate that proteolytic fragmentation may represent a novel form of IP3 R regulation, which plays a role in varied adaptive physiological processes.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Kamil J Alzayady
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| |
Collapse
|
166
|
Tsai SYA, Chuang JY, Tsai MS, Wang XF, Xi ZX, Hung JJ, Chang WC, Bonci A, Su TP. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope. Proc Natl Acad Sci U S A 2015; 112:E6562-70. [PMID: 26554014 PMCID: PMC4664336 DOI: 10.1073/pnas.1518894112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal.
Collapse
Affiliation(s)
- Shang-Yi A Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224
| | - Jian-Ying Chuang
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224; The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Meng-Shan Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224
| | - Xiao-Fei Wang
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224
| | - Zheng-Xiong Xi
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224
| | - Jan-Jong Hung
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Science, Taipei Medical University, Taipei 11031, Taiwan
| | - Antonello Bonci
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224; Department of Neurology, University of California, San Francisco, CA 94608; Solomon H. Snyder Neuroscience Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224;
| |
Collapse
|
167
|
Leulmi S, Chauchet X, Morcrette M, Ortiz G, Joisten H, Sabon P, Livache T, Hou Y, Carrière M, Lequien S, Dieny B. Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane. NANOSCALE 2015; 7:15904-14. [PMID: 26364870 DOI: 10.1039/c5nr03518j] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cancer cells develop resistance to chemotherapy, and the side effects encountered seriously limit the effectiveness of treatments. For these reasons, the search for alternative therapies that target cancer cells without affecting healthy tissues is currently one of the most active areas of research on cancer. The present study focuses on a recently proposed approach for cancer cell destruction based on the targeted triggering of cancer cell spontaneous death through the mechanical vibration of anisotropic magnetic micro/nanoparticles attached to the cell membranes at low frequencies (∼20 Hz) and in weak magnetic fields (∼30 mT). The study was conducted in vitro, on human renal cancer cells with superparamagnetic-like particles. Three types of such particles made of NiFe or magnetite were prepared and characterized (either synthetic antiferromagnetic, vortex or polycrystalline with random grain anisotropy). The triggering of the apoptosis of these cancer cells was demonstrated with NiFe vortex particles and statistically characterized by flow-cytometry studies. The death pathway via apoptosis and not necrosis was identified by the clear observation of caspase activation.
Collapse
Affiliation(s)
- Selma Leulmi
- Université Grenoble Alpes, INAC, F-38000 Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Zhang HT, Xue JH, Zhang ZW, Kong HB, Liu AJ, Li SC, Xu DG. Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis. Brain Res 2015; 1622:474-483. [PMID: 26168889 DOI: 10.1016/j.brainres.2015.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 11/21/2022]
Abstract
Cold-inducible RNA-binding protein (CIRP) is induced by mild hypothermia in several mammals, but the precise mechanism by which CIRP mediates hypothermia-induced neuroprotection remains unknown. We aimed to investigate the molecular mechanisms by which CIRP protects the nervous system during mild hypothermia. Rat cortical neurons were isolated and cultured in vitro under mild hypothermia (32°C). Apoptosis was measured by annexin V and propidium iodide staining, visualized by flow cytometry. Neuron ultrastructure was visualized by transmission electron microscopy. CIRP overexpression and knockdown were achieved via infection with pL/IRES/GFP-CIRP and pL/shRNA/F-CIRP-A lentivirus. RT(2) Profiler PCR Array Pathway Analysis and western blotting were used to evaluate the effects of CIRP overexpresion/knockdown on the neurons׳ transcriptome. Neuron late apoptosis was significantly reduced at day 7 of culture by 12h hypothermia, but neuron ultrastructure remained relatively intact. RT(2) Profiler PCR Array Pathway Analysis of 84 apoptosis pathway-associated factors revealed that mild hypothermia and CIRP overexpression induce similar gene expression profiles, specifically alterations of genes implicated in the mitochondrial apoptosis pathway. Mild hypothermia-treated neurons up-regulated 12 and down-regulated 38 apoptosis pathway-associated genes. CIRP-overexpressing neurons up-regulated 15 and down-regulated 46 genes. CIRP-knocked-down hypothermia-treated cells up-regulated 9 and down-regulated 40 genes. Similar results were obtained at the protein level. In conclusion, CIRP may inhibit neuron apoptosis through the suppression of the mitochondria apoptosis pathway during mild hypothermia.
Collapse
Affiliation(s)
- Hai-Tao Zhang
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
| | - Jing-Hui Xue
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
| | - Zhi-Wen Zhang
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China.
| | - Hai-Bo Kong
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
| | - Ai-Jun Liu
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
| | - Shou-Chun Li
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
| | - Dong-Gang Xu
- Laboratory of Genetic Engineering, The Military Medical Science Academy of the PLA, Beijing 100048, China
| |
Collapse
|
169
|
Pan ST, Qin Y, Zhou ZW, He ZX, Zhang X, Yang T, Yang YX, Wang D, Zhou SF, Qiu JX. Plumbagin suppresses epithelial to mesenchymal transition and stemness via inhibiting Nrf2-mediated signaling pathway in human tongue squamous cell carcinoma cells. Drug Des Devel Ther 2015; 9:5511-51. [PMID: 26491260 PMCID: PMC4599573 DOI: 10.2147/dddt.s89621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is the most common malignancy in oral and maxillofacial tumors with highly metastatic characteristics. Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone; PLB), a natural naphthoquinone derived from the roots of Plumbaginaceae plants, exhibits various bioactivities, including anticancer effects. However, the potential molecular targets and underlying mechanisms of PLB in the treatment of TSCC remain elusive. This study employed stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic approach to investigate the molecular interactome of PLB in human TSCC cell line SCC25 and elucidate the molecular mechanisms. The proteomic data indicated that PLB inhibited cell proliferation, activated death receptor-mediated apoptotic pathway, remodeled epithelial adherens junctions pathway, and manipulated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response signaling pathway in SCC25 cells with the involvement of a number of key functional proteins. Furthermore, we verified these protein targets using Western blotting assay. The verification results showed that PLB markedly induced cell cycle arrest at G2/M phase and extrinsic apoptosis, and inhibited epithelial to mesenchymal transition (EMT) and stemness in SCC25 cells. Of note, N-acetyl-l-cysteine (NAC) and l-glutathione (GSH) abolished the effects of PLB on cell cycle arrest, apoptosis induction, EMT inhibition, and stemness attenuation in SCC25 cells. Importantly, PLB suppressed the translocation of Nrf2 from cytosol to nucleus, resulting in an inhibition in the expression of downstream targets. Taken together, these results suggest that PLB may act as a promising anticancer compound via inhibiting Nrf2-mediated oxidative stress signaling pathway in SCC25 cells. This study provides a clue to fully identify the molecular targets and decipher the underlying mechanisms of PLB in the treatment of TSCC.
Collapse
Affiliation(s)
- Shu-Ting Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yiru Qin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
170
|
Liu Q, Tian Y, Zhao X, Jing H, Xie Q, Li P, Li D, Yan D, Zhu X. NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization. Mol Cells 2015; 38:886-94. [PMID: 26429502 PMCID: PMC4625070 DOI: 10.14348/molcells.2015.0125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 01/09/2023] Open
Abstract
Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-GuC)rin) activates disabled naC/ve macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-N1), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-1N2), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-N2) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions.
Collapse
Affiliation(s)
- Qihui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021,
China
| | - Yuan Tian
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021,
China
| | - Xiangfeng Zhao
- Department of Immunology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004,
China
| | - Haifeng Jing
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021,
China
| | - Qi Xie
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021,
China
| | - Peng Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021,
China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021,
China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021,
China
| | - Xun Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021,
China
| |
Collapse
|
171
|
Identifying the role of cytochrome c in post-resuscitation pathophysiology. Am J Emerg Med 2015; 33:1826-30. [PMID: 26494628 DOI: 10.1016/j.ajem.2015.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/06/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022] Open
Abstract
Cytochrome c, an electron carrier that normally resides in the mitochondrial intermembrane space, may translocate to the cytosol under ischemic and hypoxic conditions and contribute to mitochondrial permeability transition pore opening. In addition, reperfusion of brain tissue following ischemia initiates a cell death cascade that includes cytochrome c-mediated induction of apoptosis. Further studies are needed to determine the contribution of cytochrome c in the regulation of cell death, as well as its value as an in vivo prognostic marker after cardiac arrest and resuscitation.
Collapse
|
172
|
Jarius S, Wildemann B. 'Medusa-head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 1: Anti-mGluR1, anti-Homer-3, anti-Sj/ITPR1 and anti-CARP VIII. J Neuroinflammation 2015; 12:166. [PMID: 26377085 PMCID: PMC4574226 DOI: 10.1186/s12974-015-0356-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 01/09/2023] Open
Abstract
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa-head antibodies' due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| |
Collapse
|
173
|
Rapid and transient palmitoylation of the tyrosine kinase Lck mediates Fas signaling. Proc Natl Acad Sci U S A 2015; 112:11876-80. [PMID: 26351666 DOI: 10.1073/pnas.1509929112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Palmitoylation is the posttranslational modification of proteins with a 16-carbon fatty acid chain through a labile thioester bond. The reversibility of protein palmitoylation and its profound effect on protein function suggest that this modification could play an important role as an intracellular signaling mechanism. Evidence that palmitoylation of proteins occurs with the kinetics required for signal transduction is not clear, however. Here we show that engagement of the Fas receptor by its ligand leads to an extremely rapid and transient increase in palmitoylation levels of the tyrosine kinase Lck. Lck palmitoylation kinetics are consistent with the activation of downstream signaling proteins, such as Zap70 and PLC-γ1. Inhibiting Lck palmitoylation not only disrupts proximal Fas signaling events, but also renders cells resistant to Fas-mediated apoptosis. Knockdown of the palmitoyl acyl transferase DHHC21 eliminates activation of Lck and downstream signaling after Fas receptor stimulation. Our findings demonstrate highly dynamic Lck palmitoylation kinetics that are essential for signaling downstream of the Fas receptor.
Collapse
|
174
|
BORAHAY MA, VINCENT K, MOTAMEDI M, SBRANA E, KILIC GS, AL-HENDY A, BOEHNING D. Novel effects of simvastatin on uterine fibroid tumors: in vitro and patient-derived xenograft mouse model study. Am J Obstet Gynecol 2015; 213:196.e1-8. [PMID: 25840272 PMCID: PMC4519389 DOI: 10.1016/j.ajog.2015.03.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/26/2015] [Accepted: 03/27/2015] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Uterine leiomyomas represent a common gynecologic problem with no satisfactory long-term medical treatment. The purpose of this study is to examine the effects of simvastatin on uterine leiomyoma, both in vitro and in vivo. STUDY DESIGN This is a laboratory-based experimental study. For in vitro studies, we used human and rat leiomyoma cells. For in vivo studies, we used immunodeficient mice supplemented with estrogen/progesterone pellets xenografted with human leiomyoma tissue explant. RESULTS For in vitro studies, cells were treated with different concentrations of simvastatin for 48 hours. Simvastatin induced dose-dependent apoptosis in leiomyoma cells as measured by a fluorometric caspase-3 activity assay, and inhibited proliferation as demonstrated by an (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay (both were significant at 5 and 10 μM). In addition, simvastatin decreased Akt signaling pathway phosphorylation as examined using Western blot analysis. For in vivo studies, animals were treated for 28 days with simvastatin (20 μg/gm body weight/day) vs vehicle control. The treatment inhibited tumor growth as measured weekly using calipers and/ or ultrasound (P < .01). Finally, simvastatin decreased expression of the proliferation marker Ki67 in xenograft tumor tissue as examined by immunohistochemistry (P = .02). CONCLUSION Simvastatin can be a promising treatment for uterine leiomyoma. Further studies, including pharmacokinetic and drug delivery studies, are required.
Collapse
Affiliation(s)
- Mostafa A. BORAHAY
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555
- Department of Biochemistry and Molecular Biology, University of Texas Health Sciences Center at Houston, Houston, TX, 77030
| | - Kathleen VINCENT
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555
- Biomedical Engineering Center, University of Texas Medical Branch, Galveston, TX, 77555
| | - Massoud MOTAMEDI
- Biomedical Engineering Center, University of Texas Medical Branch, Galveston, TX, 77555
| | - Elena SBRANA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555
| | - Gokhan S. KILIC
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555
| | - Ayman AL-HENDY
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA, 30912
| | - Darren BOEHNING
- Department of Biochemistry and Molecular Biology, University of Texas Health Sciences Center at Houston, Houston, TX, 77030
| |
Collapse
|
175
|
Singh A, Ahluwalia P, Rafiq A, Sharma S. Biomarkers: Non-destructive Method for Predicting Meat Tenderization. Crit Rev Food Sci Nutr 2015. [PMID: 26147251 DOI: 10.1080/10408398.2015.1015716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Meat tenderness is the primary and most important quality attribute for the consumers worldwide. Tenderness is the process of breakdown of collagen tissue in meat to make it palatable. The earlier methods of tenderness evaluation like taste panels and shear force methods are destructive, time consuming and ill suited as they requires removing a piece of steak from the carcass for performing the test. Therefore, a non-destructive method for predicting the tenderness would be more desirable. The development of a meat quality grading and guarantee system through muscle profiling research can help to meet this demand. Biomarkers have the ability to identify if an exposure has occurred. Biomarkers of the meat quality are of prime importance for meat industry, which has ability to satisfy consumers' expectations. The biomarkers so far identified have been then sorted and grouped according to their common biological functions. All of them refer to a series of biological pathways including glycolytic and oxidative energy production, cell detoxification, protease inhibition and production of Heat Shock Proteins. On this basis, a detailed analysis of these metabolic pathways helps in identifying tenderization of meat having some domains of interest. It was, therefore, stressed forward that biomarkers can be used to determine meat tenderness. This review article summarizes the uses of several biomarkers for predicting the meat tenderness.
Collapse
Affiliation(s)
- Arashdeep Singh
- a Department of Food Science and Technology , Punjab Agricultural University , Ludhiana , 141004
| | | | | | | |
Collapse
|
176
|
Lightfoot AP, McArdle A, Jackson MJ, Cooper RG. In the idiopathic inflammatory myopathies (IIM), do reactive oxygen species (ROS) contribute to muscle weakness? Ann Rheum Dis 2015; 74:1340-6. [PMID: 26063809 DOI: 10.1136/annrheumdis-2014-207172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/05/2015] [Indexed: 12/13/2022]
Abstract
The idiopathic inflammatory myopathies (IIMs) are a group of rare autoimmune disorders, collectively known as myositis. Affected patients present with proximal muscle weakness, which usually improves following treatment with immunosuppressants, but often incompletely so, thus many patients remain weak. IIMs are characterised histologically by inflammatory cell infiltrates into skeletal muscle and overexpression of major histocompatibility complex I on muscle cell surfaces. Although inflammatory cell infiltrates represent a major feature of myositis there is growing evidence that muscle weakness correlates only poorly with the degree of cellular infiltration, while weakness may in fact precede such infiltrations. The mechanisms underpinning such non-immune cell mediated weakness in IIM are poorly understood. Activation of the endoplasmic reticulum stress pathways appears to be a potential contributor. Data from non-muscle cells indicate that endoplasmic reticulum stress results in altered redox homeostasis capable of causing oxidative damage. In myopathological situations other than IIM, as seen in ageing and sepsis, evidence supports an important role for reactive oxygen species (ROS). Modified ROS generation is associated with mitochondrial dysfunction, depressed force generation and activation of muscle catabolic and autophagy pathways. Despite the growing evidence demonstrating a key role for ROS in skeletal muscle dysfunction in myopathologies other than IIM, no research has yet investigated the role of modified generation of ROS in inducing the weakness characteristic of IIM. This article reviews current knowledge regarding muscle weakness in the absence of immune cells in IIM, and provides a background to the potential role of modified ROS generation as a mechanism of muscle dysfunction. The authors suggest that ROS-mediated mechanisms are potentially involved in non-immune cell mediated weakness seen in IIM and outline how these mechanisms might be investigated in this context. This appears a timely strategy, given recent developments in targeted therapies which specifically modify ROS generation.
Collapse
Affiliation(s)
- Adam P Lightfoot
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Anne McArdle
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Malcolm J Jackson
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Robert G Cooper
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
177
|
Martinovich GG, Martinovich IV, Zenkov NK, Menshchikova EB, Kandalintseva NV, Cherenkevich SN. Phenolic antioxidant TS-13 regulating ARE-driven genes induces tumor cell death by a mitochondria-dependent pathway. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915010194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
178
|
Lin B, Li Y, Han L, Kaplan AD, Ao Y, Kalra S, Bett GCL, Rasmusson RL, Denning C, Yang L. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Dis Model Mech 2015; 8:457-66. [PMID: 25791035 PMCID: PMC4415895 DOI: 10.1242/dmm.019505] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/16/2015] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD), and is characterized by progressive weakness in skeletal and cardiac muscles. Currently, dilated cardiomyopathy due to cardiac muscle loss is one of the major causes of lethality in late-stage DMD patients. To study the molecular mechanisms underlying dilated cardiomyopathy in DMD heart, we generated cardiomyocytes (CMs) from DMD and healthy control induced pluripotent stem cells (iPSCs). DMD iPSC-derived CMs (iPSC-CMs) displayed dystrophin deficiency, as well as the elevated levels of resting Ca2+, mitochondrial damage and cell apoptosis. Additionally, we found an activated mitochondria-mediated signaling network underlying the enhanced apoptosis in DMD iPSC-CMs. Furthermore, when we treated DMD iPSC-CMs with the membrane sealant Poloxamer 188, it significantly decreased the resting cytosolic Ca2+ level, repressed caspase-3 (CASP3) activation and consequently suppressed apoptosis in DMD iPSC-CMs. Taken together, using DMD patient-derived iPSC-CMs, we established an in vitro model that manifests the major phenotypes of dilated cardiomyopathy in DMD patients, and uncovered a potential new disease mechanism. Our model could be used for the mechanistic study of human muscular dystrophy, as well as future preclinical testing of novel therapeutic compounds for dilated cardiomyopathy in DMD patients. Highlighted Article: Patient-derived induced pluripotent stem cells are used to establish an in vitro model of DMD-associated cardiomyopathy that could be used for future preclinical testing.
Collapse
Affiliation(s)
- Bo Lin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 530 45th Street, 8117 Rangos Research Center, Pittsburgh, PA 15201, USA
| | - Yang Li
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 530 45th Street, 8117 Rangos Research Center, Pittsburgh, PA 15201, USA
| | - Lu Han
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 530 45th Street, 8117 Rangos Research Center, Pittsburgh, PA 15201, USA
| | - Aaron D Kaplan
- Center for Cellular and Systems Electrophysiology, Departments of Physiology and Biophysics, SUNY, Buffalo, NY 14214, USA
| | - Ying Ao
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 530 45th Street, 8117 Rangos Research Center, Pittsburgh, PA 15201, USA
| | - Spandan Kalra
- Department of Stem Cells, Tissue Engineering & Modelling (STEM), University of Nottingham, Nottingham, NG7 2RD, UK
| | - Glenna C L Bett
- Departments of Obstetrics and Gynecology, and Physiology and Biophysics, SUNY, Buffalo, NY 14214, USA
| | - Randall L Rasmusson
- Center for Cellular and Systems Electrophysiology, Departments of Physiology and Biophysics, SUNY, Buffalo, NY 14214, USA
| | - Chris Denning
- Department of Stem Cells, Tissue Engineering & Modelling (STEM), University of Nottingham, Nottingham, NG7 2RD, UK
| | - Lei Yang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 530 45th Street, 8117 Rangos Research Center, Pittsburgh, PA 15201, USA
| |
Collapse
|
179
|
Carbonic anhydrase-8 regulates inflammatory pain by inhibiting the ITPR1-cytosolic free calcium pathway. PLoS One 2015; 10:e0118273. [PMID: 25734498 PMCID: PMC4347988 DOI: 10.1371/journal.pone.0118273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023] Open
Abstract
Calcium dysregulation is causally linked with various forms of neuropathology including seizure disorders, multiple sclerosis, Huntington’s disease, Alzheimer’s, spinal cerebellar ataxia (SCA) and chronic pain. Carbonic anhydrase-8 (Car8) is an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1), which regulates intracellular calcium release fundamental to critical cellular functions including neuronal excitability, neurite outgrowth, neurotransmitter release, mitochondrial energy production and cell fate. In this report we test the hypothesis that Car8 regulation of ITPR1 and cytoplasmic free calcium release is critical to nociception and pain behaviors. We show Car8 null mutant mice (MT) exhibit mechanical allodynia and thermal hyperalgesia. Dorsal root ganglia (DRG) from MT also demonstrate increased steady-state ITPR1 phosphorylation (pITPR1) and cytoplasmic free calcium release. Overexpression of Car8 wildtype protein in MT nociceptors complements Car8 deficiency, down regulates pITPR1 and abolishes thermal and mechanical hypersensitivity. We also show that Car8 nociceptor overexpression alleviates chronic inflammatory pain. Finally, inflammation results in downregulation of DRG Car8 that is associated with increased pITPR1 expression relative to ITPR1, suggesting a possible mechanism of acute hypersensitivity. Our findings indicate Car8 regulates the ITPR1-cytosolic free calcium pathway that is critical to nociception, inflammatory pain and possibly other neuropathological states. Car8 and ITPR1 represent new therapeutic targets for chronic pain.
Collapse
|
180
|
Decrock E, De Bock M, Wang N, Bol M, Gadicherla AK, Leybaert L. Electroporation loading and flash photolysis to investigate intra- and intercellular Ca2+ signaling. Cold Spring Harb Protoc 2015; 2015:239-49. [PMID: 25734071 DOI: 10.1101/pdb.top066068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many cellular functions are driven by variations in the intracellular Ca(2+) concentration ([Ca(2+)]i), which may appear as a single-event transient [Ca(2+)]i elevation, repetitive [Ca(2+)]i increases known as Ca(2+) oscillations, or [Ca(2+)]i increases propagating in the cytoplasm as Ca(2+) waves. Additionally, [Ca(2+)]i changes can be communicated between cells as intercellular Ca(2+) waves (ICWs). ICWs are mediated by two possible mechanisms acting in parallel: one involving gap junctions that form channels directly linking the cytoplasm of adjacent cells and one involving a paracrine messenger, in most cases ATP, that is released into the extracellular space, leading to [Ca(2+)]i changes in neighboring cells. The intracellular messenger inositol 1,4,5-trisphosphate (IP3) that triggers Ca(2+) release from Ca(2+) stores is crucial in these two ICW propagation scenarios, and is also a potent trigger to initiate ICWs. Loading inactive, "caged" IP3 into cells followed by photolytic "uncaging" with UV light, thereby liberating IP3, is a well-established method to trigger [Ca(2+)]i changes in single cells that is also effective in initiating ICWs. We here describe a method to load cells with caged IP3 by local electroporation of monolayer cell cultures and to apply flash photolysis to increase intracellular IP3 and induce [Ca(2+)]i changes, or initiate ICWs. Moreover, the electroporation method allows loading of membrane-impermeable agents that interfere with IP3 and Ca(2+) signaling.
Collapse
Affiliation(s)
- Elke Decrock
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Marijke De Bock
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Mélissa Bol
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Ashish K Gadicherla
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
181
|
Mogi M, Kondo A. Activation of Caspase-8 and Caspase-9 are Required for PC12 Cells Differentiation. J Immunoassay Immunochem 2015; 36:547-58. [DOI: 10.1080/15321819.2015.1017106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
182
|
Pan ST, Zhou ZW, He ZX, Zhang X, Yang T, Yang YX, Wang D, Qiu JX, Zhou SF. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:937-68. [PMID: 25733813 PMCID: PMC4338781 DOI: 10.2147/dddt.s76021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
5,6-Dimethylxanthenone 4-acetic acid (DMXAA), also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC) and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data showed that treatment with DMXAA modulated the expression of 588 protein molecules in A549 cells, with 281 protein molecules being up regulated and 306 protein molecules being downregulated. Ingenuity pathway analysis (IPA) identified 256 signaling pathways and 184 cellular functional proteins that were regulated by DMXAA in A549 cells. These targeted molecules and signaling pathways were mostly involved in cell proliferation and survival, redox homeostasis, sugar, amino acid and nucleic acid metabolism, cell migration, and invasion and programed cell death. Subsequently, the effects of DMXAA on cell cycle distribution, apoptosis, autophagy, and reactive oxygen species (ROS) generation were experimentally verified. Flow cytometric analysis showed that DMXAA significantly induced G1 phase arrest in A549 cells. Western blotting assays demonstrated that DMXAA induced apoptosis via a mitochondria-dependent pathway and promoted autophagy, as indicated by the increased level of cytosolic cytochrome c, activation of caspase 3, and enhanced expression of beclin 1 and microtubule-associated protein 1A/1B-light chain 3 (LC3-II) in A549 cells. Moreover, DMXAA significantly promoted intracellular ROS generation in A549 cells. Collectively, this SILAC study quantitatively evaluates the proteomic response to treatment with DMXAA that helps to globally identify the potential molecular targets and elucidate the underlying mechanism of DMXAA in the treatment of NSCLC.
Collapse
Affiliation(s)
- Shu-Ting Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, People's Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
183
|
Hedgepeth SC, Garcia MI, Wagner LE, Rodriguez AM, Chintapalli SV, Snyder RR, Hankins GDV, Henderson BR, Brodie KM, Yule DI, van Rossum DB, Boehning D. The BRCA1 tumor suppressor binds to inositol 1,4,5-trisphosphate receptors to stimulate apoptotic calcium release. J Biol Chem 2015; 290:7304-13. [PMID: 25645916 DOI: 10.1074/jbc.m114.611186] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein.
Collapse
Affiliation(s)
- Serena C Hedgepeth
- From the Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas 77030, the Cell Biology Graduate Program and
| | - M Iveth Garcia
- From the Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas 77030, the Cell Biology Graduate Program and
| | - Larry E Wagner
- the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Ana M Rodriguez
- the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Sree V Chintapalli
- the Department of Biology, Penn State University, University Park, Pennsylvania, 16802, and
| | - Russell R Snyder
- the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Gary D V Hankins
- the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Beric R Henderson
- the Centre for Cancer Research, Westmead Millennium Institute at Westmead Hospital, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Kirsty M Brodie
- the Centre for Cancer Research, Westmead Millennium Institute at Westmead Hospital, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - David I Yule
- the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Damian B van Rossum
- the Department of Biology, Penn State University, University Park, Pennsylvania, 16802, and
| | - Darren Boehning
- From the Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas 77030,
| |
Collapse
|
184
|
|
185
|
Abstract
AbstractRecent research has identified ER stress as a major mechanism implicated in cytotoxicity in many neurodegenerative diseases, among them Huntington’s disease. This genetic disorder is of late-onset, progressive and fatal, affecting cognition and movement. There is presently no cure nor any effective therapy for the disease. This review focuses on recent findings that shed light on the mechanisms of the advent and development of ER stress in Huntington’s disease and on its implications, highlighting possible therapeutic avenues that are being or could be explored.
Collapse
|
186
|
|
187
|
Zhang F, Wen Y, Guo X, Zhang Y, Wang X, Yang T, Shen H, Chen X, Tian Q, Deng HW. Brief Report: Genome-Wide Association Study IdentifiesITPR2as a Susceptibility Gene for Kashin-Beck Disease in Han Chinese. Arthritis Rheumatol 2014; 67:176-81. [DOI: 10.1002/art.38898] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/25/2014] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yan Wen
- Xi'an Jiaotong University; Xi'an China
| | - Xiong Guo
- Xi'an Jiaotong University; Xi'an China
| | - Yingang Zhang
- First Affiliated Hospital and Xi'an Jiaotong University; Xi'an China
| | - Xi Wang
- Xi'an Jiaotong University; Xi'an China
| | | | - Hui Shen
- Tulane University; New Orleans Louisiana
| | | | - Qing Tian
- Tulane University; New Orleans Louisiana
| | | |
Collapse
|
188
|
Huang HM, Chen HL, Gibson GE. Interactions of endoplasmic reticulum and mitochondria Ca(2+) stores with capacitative calcium entry. Metab Brain Dis 2014; 29:1083-93. [PMID: 24748364 PMCID: PMC4206688 DOI: 10.1007/s11011-014-9541-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/28/2014] [Indexed: 11/30/2022]
Abstract
Thiamine dependent enzymes are diminished in Alzheimer's disease (AD). Thiamine deficiency in vitro and in rodents is a useful model of this reduction. Thiamine interacts with cellular calcium stores. To directly test the relevance of the thiamine dependent changes to dynamic processes in AD, the interactions must be studied in cells from patients with AD. These studies employed fibroblasts. Mitochondrial dysfunction including reductions in thiamine dependent enzymes and abnormalities in calcium homeostasis and oxidative processes occur in fibroblasts from Alzheimer's Disease (AD) patients. Bombesin-releasable calcium stores (BRCS) from the endoplasmic reticulum (ER) are exaggerated in fibroblasts from patients with AD bearing a presenilin-1 (PS-1) mutation and in control fibroblasts treated with oxidants. ER calcium regulates calcium entry into the cell through capacitative calcium entry (CCE), which is reduced in fibroblasts and neurons from mice bearing PS-1 mutations. Under physiological conditions, mitochondria and ER play important and interactive roles in the regulation of Ca(2+) homeostasis. Thus, the interactions of mitochondria and oxidants with CCE were tested. Inhibition of ER Ca(2+)-ATPase by cyclopiazonic acid (CPA) stimulates CCE. CPA-induced CCE was diminished by inhibition of mitochondrial Ca(2+) export (-60%) or import (-40%). Different aspects of mitochondrial Ca(2+) coupled to CPA-induced-CCE were sensitive to select oxidants. The effects were very different when CCE was examined in the presence of InsP3, a physiological regulator of ER calcium release, and subsequent CCE. CCE under these conditions was only mildly reduced (20-25%) by inhibition of mitochondrial Ca(2+) export, and inhibition of mitochondrial Ca(2+) uptake exaggerated CCE (+53%). However, t-BHP reversed both abnormalities. The results suggest that in the presence of InsP3, mitochondria buffer the local Ca(2+) released from ER following rapid activation of InsP3R and serve as a negative feedback to the CCE. The results suggest that mitochondrial Ca(2+) modifies the depletion and refilling mechanism of ER Ca(2+) stores.
Collapse
Affiliation(s)
- Hsueh-Meei Huang
- Brain Mind Research Institute, Burke Medical Research Institute, Weill Medical College of Cornell University, 785 Mamaroneck Ave, White Plains, NY, 10605, USA
| | | | | |
Collapse
|
189
|
Abstract
The calcium ion (Ca(2+)) is the main common second messenger involved in signaling transduction subsequent to immunoreceptor activation. Its rapid intracellular elevation induces multiple cellular responses, such as secretion, proliferation, mobility, and gene transcription. Intracellular levels of Ca(2+) need to reach a specific threshold to efficiently transduce the signal to activate transcription factors through the recruitment of Ca(2+)-binding molecules. However, since Ca(2+) cannot be metabolized, its intracellular concentration is tightly regulated to avoid the induction of programmed cell death. This highly controlled regulation of Ca(2+) homeostasis has recently been clarified by the uncovering of new ion channels. The regulation of these channels allows the role of Ca(2+) in Fc receptor transduction pathways to be more precisely defined.
Collapse
Affiliation(s)
- Tarik Attout
- Inserm U1149, Bichat Medical School, Paris, France,
| | | | | |
Collapse
|
190
|
Varghese E, Büsselberg D. Auranofin, an anti-rheumatic gold compound, modulates apoptosis by elevating the intracellular calcium concentration ([ca2+]I) in mcf-7 breast cancer cells. Cancers (Basel) 2014; 6:2243-58. [PMID: 25383481 PMCID: PMC4276964 DOI: 10.3390/cancers6042243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 09/26/2014] [Indexed: 12/21/2022] Open
Abstract
Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca2+]i) in breast cancer cells (MCF-7). Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca2+]i) was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM) with a strong negative correlation (r = −0.713) to viability. Pharmacological modulators 2-APB (50 μM), Nimodipine (10 μM), Caffeine (10 mM), SKF 96365(20 μM) were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca2+]i in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca2+]i. Overall, elevation of [Ca2+]i by Auranofin might be crucial for triggering Ca2+-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca2+]i should be considered as a crucial factor for the induction of cell death in cancer cells.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144 Doha, Qatar.
| | - Dietrich Büsselberg
- Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144 Doha, Qatar.
| |
Collapse
|
191
|
Bcl-2 family in inter-organelle modulation of calcium signaling; roles in bioenergetics and cell survival. J Bioenerg Biomembr 2014; 46:1-15. [PMID: 24078116 DOI: 10.1007/s10863-013-9527-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/27/2013] [Indexed: 01/01/2023]
Abstract
Bcl-2 family proteins, known for their apoptosis functioning at the mitochondria, have been shown to localize to other cellular compartments to mediate calcium (Ca2+) signals. Since the proper supply of Ca2+ in cells serves as an important mechanism for cellular survival and bioenergetics, we propose an integrating role for Bcl-2 family proteins in modulating Ca2+ signaling. The endoplasmic reticulum (ER) is the main Ca2+ storage for the cell and Bcl-2 family proteins competitively regulate its Ca2+ concentration. Bcl-2 family proteins also regulate the flux of Ca2+ from the ER by physically interacting with inositol 1,4,5-trisphosphate receptors (IP3Rs) to mediate their opening. Type 1 IP3Rs reside at the bulk ER to coordinate cytosolic Ca2+ signals, while type 3 IP3Rs reside at mitochondria-associated ER membrane (MAM) to facilitate mitochondrial Ca2+ uptake. In healthy cells, mitochondrial Ca2+ drives pyruvate into the citric acid (TCA) cycle to facilitate ATP production, while a continuous accumulation of Ca2+ can trigger the release of cytochrome c, thus initiating apoptosis. Since multiple organelles and Bcl-2 family proteins are involved in Ca2+ signaling, we aim to clarify the role that Bcl-2 family proteins play in facilitating Ca2+ signaling and how mitochondrial Ca2+ is relevant in both bioenergetics and apoptosis. We also explore how these insights could be useful in controlling bioenergetics in apoptosis-resistant cell lines.
Collapse
|
192
|
Borahay MA, Kilic GS, Yallampalli C, Snyder RR, Hankins GDV, Al-Hendy A, Boehning D. Simvastatin potently induces calcium-dependent apoptosis of human leiomyoma cells. J Biol Chem 2014; 289:35075-86. [PMID: 25359773 DOI: 10.1074/jbc.m114.583575] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Statins are drugs commonly used for the treatment of high plasma cholesterol levels. Beyond these well known lipid-lowering properties, they possess broad-reaching effects in vivo, including antitumor effects. Statins inhibit the growth of multiple tumors. However, the mechanisms remain incompletely understood. Here we show that simvastatin inhibits the proliferation of human leiomyoma cells. This was associated with decreased mitogen-activated protein kinase signaling and multiple changes in cell cycle progression. Simvastatin potently stimulated leiomyoma cell apoptosis in a manner mechanistically dependent upon apoptotic calcium release from voltage-gated calcium channels. Therefore, simvastatin possesses antitumor effects that are dependent upon the apoptotic calcium release machinery.
Collapse
Affiliation(s)
- Mostafa A Borahay
- From the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555, the Department of Biochemistry and Molecular Biology, University of Texas Health Sciences Center at Houston, Houston, Texas 77030,
| | - Gokhan S Kilic
- From the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Chandrasekha Yallampalli
- the Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Russell R Snyder
- From the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Gary D V Hankins
- From the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Ayman Al-Hendy
- the Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, Georgia 30912
| | - Darren Boehning
- the Department of Biochemistry and Molecular Biology, University of Texas Health Sciences Center at Houston, Houston, Texas 77030,
| |
Collapse
|
193
|
Kondratskyi A, Kondratska K, Skryma R, Prevarskaya N. Ion channels in the regulation of apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2532-46. [PMID: 25450339 DOI: 10.1016/j.bbamem.2014.10.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 02/07/2023]
Abstract
Apoptosis, a type of genetically controlled cell death, is a fundamental cellular mechanism utilized by multicellular organisms for disposal of cells that are no longer needed or potentially detrimental. Given the crucial role of apoptosis in physiology, deregulation of apoptotic machinery is associated with various diseases as well as abnormalities in development. Acquired resistance to apoptosis represents the common feature of most and perhaps all types of cancer. Therefore, repairing and reactivating apoptosis represents a promising strategy to fight cancer. Accumulated evidence identifies ion channels as essential regulators of apoptosis. However, the contribution of specific ion channels to apoptosis varies greatly depending on cell type, ion channel type and intracellular localization, pathology as well as intracellular signaling pathways involved. Here we discuss the involvement of major types of ion channels in apoptosis regulation. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Artem Kondratskyi
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Kateryna Kondratska
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France.
| |
Collapse
|
194
|
Mikoshiba K. Role of IP3 receptor signaling in cell functions and diseases. Adv Biol Regul 2014; 57:217-27. [PMID: 25497594 DOI: 10.1016/j.jbior.2014.10.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022]
Abstract
IP3 receptor (IP3R) was found to release Ca(2+) from non-mitochondrial store but the exact localization and the mode of action of IP3 remained a mystery. IP3R was identified to be P400 protein, a protein, which was missing in the cerebellum of ataxic mutant mice lacking Ca(2+) spikes in Pukinje cells. IP3R was an IP3 binding protein and was a Ca(2+) channel localized on the endoplasmic reticulum. Full-length cDNA of IP3R type 1 was initially cloned and later two other isoforms of IP3R (IP3R type 2 and type 3) were cloned in vertebrates. Interestingly, the phosphorylation sites, splicing sites, associated molecules, IP3 binding affinity and 5' promoter sequences of each isoform were different. Thus each isoform of IP3 receptor plays a role as a signaling hub offering a unique platform for matching various functional molecules that determines different trajectories of cell signaling. Because of this distinct role of each isoform of IP3R, the dysregulation of IP3 receptor causes various kinds of diseases in human and rodents such as ataxia, vulnerability to neuronal degeneration, heart disease, exocrine secretion deficit, taste perception deficit. Moreover, IP3 was found not only to release Ca(2+), but also to release IRBIT (IP3receptor binding protein released with inositol trisphosphate) essential for the regulation of acid-base balance, RNA synthesis and ribonucleotide reductase.
Collapse
Affiliation(s)
- Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
195
|
Zhang N, Fissore RA. Role of caspase-3 cleaved IP3 R1 on Ca(2+) homeostasis and developmental competence of mouse oocytes and eggs. J Cell Physiol 2014; 229:1842-54. [PMID: 24692207 DOI: 10.1002/jcp.24638] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 03/28/2014] [Indexed: 11/12/2022]
Abstract
Apoptosis in most cell types is accompanied by altered Ca(2+) homeostasis. During apoptosis, caspase-3 mediated cleavage of the type 1 inositol 1,4,5-trisphosphate receptor (IP3 R1) generates a 95-kDa C-terminal fragment (C-IP3 R1), which represents the channel domain of the receptor. Aged mouse eggs display abnormal Ca(2+) homeostasis and express C-IP3 R1, although whether or not C-IP3 R1 expression contributes to Ca(2+) misregulation or a decrease in developmental competency is unknown. We sought to answer these questions by injecting in mouse oocytes and eggs cRNAs encoding C-IP3 R1. We found that: (1) expression of C-IP3 R1 in eggs lowered the Ca(2+) content of the endoplasmic reticulum (ER), although, as C-IP3 R1 is quickly degraded at this stage, its expression did not impair pre-implantation embryo development; (2) expression of C-IP3 R1 in eggs enhanced fragmentation associated with aging; (3) endogenous IP3 R1 is required for aging associated apoptosis, as its down-regulation prevented fragmentation, and expression of C-IP3 R1 in eggs with downregulated IP3 R1 partly restored fragmentation; (4) C-IP3 R1 expression in GV oocytes resulted in persistent levels of protein, which abolished the increase in the ER releasable Ca(2+) pool that occurs during maturation, undermined the Ca(2+) oscillatory ability of matured eggs and their activation potential. Collectively, this study supports a role for IP3 R1 and C-IP3 R1 in regulating Ca(2+) homeostasis and the ER Ca(2+) content during oocyte maturation. Nevertheless, the role of C-IP3 R1 on Ca(2+) homeostasis in aged eggs seems minor, as in MII eggs the majority of endogenous IP3 R1 remains intact and C-IP3 R1 undergoes rapid turnover.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | | |
Collapse
|
196
|
Wang R, Shen X, Xing E, Guan L, Xin L. Scutellaria baicalensis stem-leaf total flavonoid reduces neuronal apoptosis induced by amyloid beta-peptide (25-35). Neural Regen Res 2014; 8:1081-90. [PMID: 25206402 PMCID: PMC4145899 DOI: 10.3969/j.issn.1673-5374.2013.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/05/2013] [Indexed: 01/15/2023] Open
Abstract
Scutellaria baicalensis stem-leaf total flavonoid might attenuate learning/memory impairment and neuronal loss in rats induced by amyloid beta-peptide. This study aimed to explore the effects of Scutellaria baicalensis stem-leaf total flavonoid on amyloid beta-peptide-induced neuronal apoptosis and the expression of apoptosis-related proteins in the rat hippocampus. Male Wistar rats were given intragastric administration of Scutellaria baicalensis stem-leaf total flavonoid, 50 or 100 mg/kg, once per day. On day 8 after administration, 10 μg amyloid beta-peptide (25–35) was injected into the bilateral hippocampus of rats to induce neuronal apoptosis. On day 20, hippocampal tissue was harvested and probed with the terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay. Scutellaria baicalensis stem-leaf total flavonoid at 50 and 100 mg/kg reduced neuronal apoptosis induced by amyloid beta-peptide (25–35) in the rat hippocampus. Immunohistochemistry and western blot assay revealed that expression of the pro-apoptotic protein Bax, cytochrome c and caspase-3 was significantly diminished by 50 and 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid, while expression of the anti-apoptotic protein Bcl-2 was increased. Moreover, 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid had a more dramatic effect than the lower dosage. These experimental findings indicate that Scutellaria baicalensis stem-leaf total flavonoid dose-dependently attenuates neuronal apoptosis induced by amyloid beta-peptide in the hippocampus, and it might mediate this by regulating the expression of Bax, cytochrome c, caspase-3 and Bcl-2.
Collapse
Affiliation(s)
- Ruiting Wang
- Department of Pharmacology, Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Xingbin Shen
- Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Enhong Xing
- Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Lihua Guan
- Department of Pharmacology, Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Lisheng Xin
- Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| |
Collapse
|
197
|
Eletto D, Chevet E, Argon Y, Appenzeller-Herzog C. Redox controls UPR to control redox. J Cell Sci 2014; 127:3649-58. [PMID: 25107370 DOI: 10.1242/jcs.153643] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In many physiological contexts, intracellular reduction-oxidation (redox) conditions and the unfolded protein response (UPR) are important for the control of cell life and death decisions. UPR is triggered by the disruption of endoplasmic reticulum (ER) homeostasis, also known as ER stress. Depending on the duration and severity of the disruption, this leads to cell adaptation or demise. In this Commentary, we review reductive and oxidative activation mechanisms of the UPR, which include direct interactions of dedicated protein disulfide isomerases with ER stress sensors, protein S-nitrosylation and ER Ca(2+) efflux that is promoted by reactive oxygen species. Furthermore, we discuss how cellular oxidant and antioxidant capacities are extensively remodeled downstream of UPR signals. Aside from activation of NADPH oxidases, mitogen-activated protein kinases and transcriptional antioxidant responses, such remodeling prominently relies on ER-mitochondrial crosstalk. Specific redox cues therefore operate both as triggers and effectors of ER stress, thus enabling amplification loops. We propose that redox-based amplification loops critically contribute to the switch from adaptive to fatal UPR.
Collapse
Affiliation(s)
- Davide Eletto
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric Chevet
- INSERM U1053, Université Bordeaux 33076 Segalen, Bordeaux, France
| | - Yair Argon
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christian Appenzeller-Herzog
- Division of Molecular & Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
198
|
Feng X, Krogh KA, Wu CY, Lin YW, Tsai HC, Thayer SA, Wei LN. Receptor-interacting protein 140 attenuates endoplasmic reticulum stress in neurons and protects against cell death. Nat Commun 2014; 5:4487. [PMID: 25066731 PMCID: PMC4200015 DOI: 10.1038/ncomms5487] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/23/2014] [Indexed: 12/29/2022] Open
Abstract
Inositol 1, 4, 5-trisphosphate receptor (IP3R)-mediated Ca(2+) release from the endoplasmic reticulum (ER) triggers many physiological responses in neurons, and when uncontrolled can cause ER stress that contributes to neurological disease. Here we show that the unfolded protein response (UPR) in neurons induces rapid translocation of nuclear receptor-interacting protein 140 (RIP140) to the cytoplasm. In the cytoplasm, RIP140 localizes to the ER by binding to the IP3R. The carboxyl-terminal RD4 domain of RIP140 interacts with the carboxyl-terminal gate-keeping domain of the IP3R. This molecular interaction disrupts the IP3R's 'head-tail' interaction, thereby suppressing channel opening and attenuating IP3R-mediated Ca(2+) release. This contributes to a rapid suppression of the ER stress response and provides protection from apoptosis in both hippocampal neurons in vitro and in an animal model of ER stress. Thus, RIP140 translocation to the cytoplasm is an early response to ER stress and provides protection against neuronal death.
Collapse
Affiliation(s)
- Xudong Feng
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kelly A. Krogh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Cheng-Ying Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yi-Wei Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hong-Chieh Tsai
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Neurosurgery, Chang-Gung Memorial Hospital and University, Tao-Yuan, Taiwan, R.O.C
| | - Stanley A. Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
199
|
Wu CS, Chen GS, Lin PY, Pan IH, Wang ST, Lin SH, Yu HS, Lin CC. Tazarotene induces apoptosis in human basal cell carcinoma via activation of caspase-8/t-Bid and the reactive oxygen species-dependent mitochondrial pathway. DNA Cell Biol 2014; 33:652-66. [PMID: 24927175 DOI: 10.1089/dna.2014.2366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Previous studies suggest that tazarotene, a new member of the acetylenic class of RARβ/γ selective retinoids which is approved to treat a variety of skin diseases, exhibits an anti-proliferative effect in human basal cell carcinoma (BCC) by triggering caspase-dependent apoptosis. However, the detailed molecular mechanisms underlying the anti-tumor activity of tazarotene are poorly understood. This study aims at investigating the molecular mechanisms of tazarotene-induced apoptosis in human BCC cells. Our results are the first to demonstrate that tazarotene induces mitochondria-dependent cleavage of caspase-9 and -3 and PARP in BCC cells by producing reactive oxygen species (ROS) and activating caspase-8 through both ROS and death receptor signaling. These events are accompanied by a decrease in BCL-2 and BCL-xl anti-apoptotic proteins as well as by survivin and XIAP, two IAP family members. Furthermore, our results presented for the first time that tazarotene triggers a convergence of the intrinsic and extrinsic apoptotic pathways via the caspase-8-truncated Bid signaling pathway. Collectively, these data provide insights into the molecular mechanisms underlying tazarotene-induced apoptosis in human BCC cells, suggesting that this compound is a potential anti-skin cancer drug.
Collapse
Affiliation(s)
- Chieh-Shan Wu
- 1 Department of Dermatology, Kaohsiung Veterans General Hospital , Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Naon D, Scorrano L. At the right distance: ER-mitochondria juxtaposition in cell life and death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2184-94. [PMID: 24875902 DOI: 10.1016/j.bbamcr.2014.05.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 11/29/2022]
Abstract
The interface between mitochondria and the endoplasmic reticulum is emerging as a crucial hub for calcium signalling, apoptosis, autophagy and lipid biosynthesis, with far reaching implications in cell life and death and in the regulation of mitochondrial and endoplasmic reticulum function. Here we review our current knowledge on the structural and functional aspects of this interorganellar juxtaposition. This article is part of a Special Issue entitled: Calcium Signaling In Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Deborah Naon
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy; Department of Biology, University of Padua, Via G. Colombo 3, 35121 Padua, Italy
| | - Luca Scorrano
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy; Department of Biology, University of Padua, Via G. Colombo 3, 35121 Padua, Italy.
| |
Collapse
|