151
|
Wang Z, Wang H. Au@C/Pt core@shell/satellite supra-nanostructures: plasmonic antenna-reactor hybrid nanocatalysts. NANOSCALE ADVANCES 2023; 5:5435-5448. [PMID: 37822901 PMCID: PMC10563835 DOI: 10.1039/d3na00498h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/19/2023] [Indexed: 10/13/2023]
Abstract
Integration of plasmonic nanoantennas with catalytically active reactors in deliberately designed hybrid supra-nanostructures creates a dual-functional materials platform, based upon which precise modulation of catalytic reaction kinetics becomes accomplishable through optical excitations of plasmon resonances. Here, we have developed a multistep synthetic approach that enables us to assemble colloidal Au@C/Pt core@shell/satellite supra-nanostructures, in which the Au core functions as a light-harvesting plasmonic nanoantenna, the Pt satellites act as catalytically active reactors, and the C shell serves as a nanoscale dielectric spacer separating the reactors from the antenna, respectively. By adjusting several synthetic parameters, the size of the Au core, the thickness of the C shell, and the surface coverage of Pt satellites can all be tuned independently. Choosing Pt-catalyzed cascade oxidation of 3,3',5,5'-tetramethylbenzidine in an aerobic aqueous environment as a model reaction, we have systematically studied the detailed kinetic features of the catalytic reactions both in the dark and under visible light illumination over a broad range of reaction conditions, which sheds light on the interplay between plasmonic and catalytic effects in these antenna-reactor nanohybrids. The plasmonic antenna effect can be effectively harnessed to kinetically modulate multiple crucial steps during the cascade reactions, benefiting from plasmon-enhanced interband electronic transitions in the Pt satellites and plasmon-enhanced intramolecular electronic excitations in chromogenic intermediate species. In addition to the plasmonic antenna effect, photothermal transduction derived from plasmonic excitations can also provide significant contributions to the kinetic enhancements under visible light illumination. The knowledge gained from this work serves as important guiding principles for rational design and structural optimization of plasmonic antenna-reactor hybrid nanomaterials, endowing us with enhanced capabilities to kinetically modulate targeted catalytic/photocatalytic molecule-transforming processes through light illumination.
Collapse
Affiliation(s)
- Zixin Wang
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA +1-803-777-9521 +1-803-777-2203
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA +1-803-777-9521 +1-803-777-2203
| |
Collapse
|
152
|
Masson JF, Wallace GQ, Asselin J, Ten A, Hojjat Jodaylami M, Faulds K, Graham D, Biggins JS, Ringe E. Optoplasmonic Effects in Highly Curved Surfaces for Catalysis, Photothermal Heating, and SERS. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46181-46194. [PMID: 37733583 PMCID: PMC10561152 DOI: 10.1021/acsami.3c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Surface curvature can be used to focus light and alter optical processes. Here, we show that curved surfaces (spheres, cylinders, and cones) with a radius of around 5 μm lead to maximal optoplasmonic properties including surface-enhanced Raman scattering (SERS), photocatalysis, and photothermal processes. Glass microspheres, microfibers, pulled fibers, and control flat substrates were functionalized with well-dispersed and dense arrays of 45 nm Au NP using polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) and chemically modified with 4-mercaptobenzoic acid (4-MBA, SERS reporter), 4-nitrobenzenethiol (4-NBT, reactive to plasmonic catalysis), or 4-fluorophenyl isocyanide (FPIC, photothermal reporter). The various curved substrates enhanced the plasmonic properties by focusing the light in a photonic nanojet and providing a directional antenna to increase the collection efficacy of SERS photons. The optoplasmonic effects led to an increase of up to 1 order of magnitude of the SERS response, up to 5 times the photocatalytic conversion of 4-NBT to 4,4'-dimercaptoazobenzene when the diameter of the curved surfaces was about 5 μm and a small increase in photothermal effects. Taken together, the results provide evidence that curvature enhances plasmonic properties and that its effect is maximal for spherical objects around a few micrometers in diameter, in agreement with a theoretical framework based on geometrical optics. These enhanced plasmonic effects and the stationary-phase-like plasmonic substrates pave the way to the next generation of sensors, plasmonic photocatalysts, and photothermal devices.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Département
de chimie, Quebec center for advanced materials, Regroupement québécois
sur les matériaux de pointe, and Centre interdisciplinaire
de recherche sur le cerveau et l’apprentissage, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC Canada, H3C 3J7
| | - Gregory Q. Wallace
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Jérémie Asselin
- Department
of Material Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, U.K. CB3 0FS
- Department
of Earth Science, University of Cambridge, Downing Street, Cambridge, U.K. CB2 3EQ
| | - Andrey Ten
- Department
of Material Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, U.K. CB3 0FS
- Department
of Earth Science, University of Cambridge, Downing Street, Cambridge, U.K. CB2 3EQ
| | - Maryam Hojjat Jodaylami
- Département
de chimie, Quebec center for advanced materials, Regroupement québécois
sur les matériaux de pointe, and Centre interdisciplinaire
de recherche sur le cerveau et l’apprentissage, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC Canada, H3C 3J7
| | - Karen Faulds
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Duncan Graham
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - John S. Biggins
- Engineering
Department, University of Cambridge, Trumpington Street, Cambridge, U.K. CB2 1PZ
| | - Emilie Ringe
- Department
of Material Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, U.K. CB3 0FS
- Department
of Earth Science, University of Cambridge, Downing Street, Cambridge, U.K. CB2 3EQ
| |
Collapse
|
153
|
Goddati M, Nguyen HQ, Kang S, Gicha BB, Tufa LT, Nwaji N, Nguyen MCT, Gwak J, Lee J. Rugged Forest Morphology of Magnetoplasmonic Nanorods that Collect Maximum Light for Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302980. [PMID: 37376838 DOI: 10.1002/smll.202302980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Indexed: 06/29/2023]
Abstract
A feasible nanoscale framework of heterogeneous plasmonic materials and proper surface engineering can enhance photoelectrochemical (PEC) water-splitting performance owing to increased light absorbance, efficient bulk carrier transport, and interfacial charge transfer. This article introduces a new magnetoplasmonic (MagPlas) Ni-doped Au@Fex Oy nanorods (NRs) based material as a novel photoanode for PEC water-splitting. A two stage procedure produces core-shell Ni/Au@Fex Oy MagPlas NRs. The first-step is a one-pot solvothermal synthesis of Au@Fex Oy . The hollow Fex Oy nanotubes (NTs) are a hybrid of Fe2 O3 and Fe3 O4 , and the second-step is a sequential hydrothermal treatment for Ni doping. Then, a transverse magnetic field-induced assembly is adopted to decorate Ni/Au@Fex Oy on FTO glass to be an artificially roughened morphologic surface called a rugged forest, allowing more light absorption and active electrochemical sites. Then, to characterize its optical and surface properties, COMSOL Multiphysics simulations are carried out. The core-shell Ni/Au@Fex Oy MagPlas NRs increase photoanode interface charge transfer to 2.73 mAcm-2 at 1.23 V RHE. This improvement is made possible by the rugged morphology of the NRs, which provide more active sites and oxygen vacancies as the hole transfer medium. The recent finding may provide light on plasmonic photocatalytic hybrids and surface morphology for effective PEC photoanodes.
Collapse
Affiliation(s)
- Mahendra Goddati
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sohyun Kang
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Birhanu Bayissa Gicha
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Environmental Science Program, Haramaya University, Dire Dawa, P.O. Box 138, Ethiopia
| | - Lemma Teshome Tufa
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, South Korea
- Department of Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Njemuwa Nwaji
- Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - My-Chi Thi Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Juyong Gwak
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
154
|
Chen L, Ding C, Chai K, Yang B, Chen W, Zeng J, Xu W, Huang Y. Nanohole-Array Induced Metallic Molybdenum Selenide Nanozyme for Photoenhanced Tumor-Specific Therapy. ACS NANO 2023; 17:18148-18163. [PMID: 37713431 DOI: 10.1021/acsnano.3c05000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Deficient catalytic sensitivity to the tumor microenvironment is a major obstacle to nanozyme-mediated tumor therapy. Electron transfer is the intrinsic essence for a nanozyme-catalyzed redox reaction. Here, we developed a nanohole-array-induced metallic molybdenum selenide (n-MoSe2) that is enriched with Se vacancies and can serve as an electronic transfer station for cycling electrons between H2O2 decomposition and glutathione (GSH) depletion. In a MoSe2 nanohole array, the metallic phase reaches up to 84.5%, which has been experimentally and theoretically demonstrated to exhibit ultrasensitive H2O2 responses and enhanced peroxidase (POD)-like activities for H2O2 thermodynamic heterolysis. More intriguingly, plenty of delocalized electrons appear due to phase- and vacancy-facilitated band structure reconstruction. Combined with the limited characteristic sizes of nanoholes, the surface plasmon resonance effect can be excited, leading to the broad absorption spectrum spanning of n-MoSe2 from the visible to near-infrared region (NIR) for photothermal conversion. Under NIR laser irradiation, metallic MoSe2 is able to induce out-of-balance redox and metabolism homeostasis in the tumor region, thus significantly improving therapeutic effects. This study that takes advantage of phase and defect engineering offers inspiring insights into the development of high-efficiency photothermal nanozymes.
Collapse
Affiliation(s)
- Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Caiping Ding
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Kejie Chai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Bing Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Weiwei Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Junyi Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Weiming Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
155
|
Li Z, Ehtesabi S, Gojare S, Richter M, Kupfer S, Gräfe S, Kurouski D. Plasmon-Determined Selectivity in Photocatalytic Transformations on Gold and Gold-Palladium Nanostructures. ACS PHOTONICS 2023; 10:3390-3400. [PMID: 38356782 PMCID: PMC10863388 DOI: 10.1021/acsphotonics.3c00893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 02/16/2024]
Abstract
Noble metal nanostructures absorb light producing coherent oscillations of the metal's electrons, so-called localized surface plasmon resonances (LSPRs). LSPRs can decay generating hot carriers, highly energetic species that trigger chemical transformations in the molecules located on the metal surfaces. The number of chemical reactions can be expanded by coupling noble and catalytically active metals. However, it remains unclear whether such mono- and bimetallic nanostructures possess any sensitivity toward one or another chemical reaction if both of them can take place in one molecular analyte. In this study, we utilize tip-enhanced Raman spectroscopy (TERS), an emerging analytical technique that has single-molecule sensitivity and sub-nanometer spatial resolution, to investigate plasmon-driven reactivity of 2-nitro-5-thiolobenzoic acid (2-N-5TBA) on gold and gold@palladium nanoplates (AuNPs and Au@PdNPs). This molecular analyte possesses both nitro and carboxyl groups, which can be reduced or removed by hot carriers. We found that on AuNPs, 2-N-5TBA dimerized forming 4,4'-dimethylazobenzene (DMAB), the bicarbonyl derivative of DMAB, as well as 4-nitrobenzenethiol (4-NBT). Our accompanying theoretical investigation based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) confirmed these findings. The theoretical analysis shows that 2-N-5TBA first dimerized forming the bicarbonyl derivative of DMAB, which then decarboxylated forming DMAB. Finally, DMAB can be further reduced leading to 4-NBT. This reaction mechanism is supported by TERS-determined yields on these three molecules on AuNPs. We also found that on Au@PdNPs, 2-N-5TBA first formed the bicarbonyl derivative of DMAB, which is then reduced to both bihydroxyl-DMAB and 4-amino-3-mercaptobenzoic acid. The yield of these reaction products on Au@PdNPs strictly follows the free-energy potential of these molecules on the metallic surfaces.
Collapse
Affiliation(s)
- Zhandong Li
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Sadaf Ehtesabi
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Siddhi Gojare
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Martin Richter
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stephan Kupfer
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stefanie Gräfe
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
156
|
Luo S, Song H, Ichihara F, Oshikiri M, Lu W, Tang DM, Li S, Li Y, Li Y, Davin P, Kako T, Lin H, Ye J. Light-Induced Dynamic Restructuring of Cu Active Sites on TiO 2 for Low-Temperature H 2 Production from Methanol and Water. J Am Chem Soc 2023; 145:20530-20538. [PMID: 37677133 DOI: 10.1021/jacs.3c06688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The structure and configuration of reaction centers, which dominantly govern the catalytic behaviors, often undergo dynamic transformations under reaction conditions, yet little is known about how to exploit these features to favor the catalytic functions. Here, we demonstrate a facile light activation strategy over a TiO2-supported Cu catalyst to regulate the dynamic restructuring of Cu active sites during low-temperature methanol steam reforming. Under illumination, the thermally deactivated Cu/TiO2 undergoes structural restoration from inoperative Cu2O to the originally active metallic Cu caused by photoexcited charge carriers from TiO2, thereby leading to substantially enhanced activity and stability. Given the low-intensity solar irradiation, the optimized Cu/TiO2 displays a H2 production rate of 1724.1 μmol g-1 min-1, outperforming most of the conventional photocatalytic and thermocatalytic processes. Taking advantages of the strong light-matter-reactant interaction, we achieve in situ manipulation of the Cu active sites, suggesting the feasibility for real-time functionalization of catalysts.
Collapse
Affiliation(s)
- Shunqin Luo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hui Song
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Fumihiko Ichihara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Mitsutake Oshikiri
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Wenning Lu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, P. R. China
| | - Dai-Ming Tang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Sijie Li
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yunxiang Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Yifan Li
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Philo Davin
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsuya Kako
- Hydrogen Production Catalyst Materials Group, Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Huiwen Lin
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0814, Japan
| |
Collapse
|
157
|
Negrín-Montecelo Y, Geneidy AHA, Govorov AO, Alvarez-Puebla RA, Besteiro LV, Correa-Duarte MA. Balancing Near-Field Enhancement and Hot Carrier Injection: Plasmonic Photocatalysis in Energy-Transfer Cascade Assemblies. ACS PHOTONICS 2023; 10:3310-3320. [PMID: 37743943 PMCID: PMC10516266 DOI: 10.1021/acsphotonics.3c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 09/26/2023]
Abstract
Photocatalysis stands as a very promising alternative to photovoltaics in exploiting solar energy and storing it in chemical products through a single-step process. A central obstacle to its broad implementation is its low conversion efficiency, motivating research in different fields to bring about a breakthrough in this technology. Using plasmonic materials to photosensitize traditional semiconductor photocatalysts is a popular strategy whose full potential is yet to be fully exploited. In this work, we use CdS quantum dots as a bridge system, reaping energy from Au nanostructures and delivering it to TiO2 nanoparticles serving as catalytic centers. The quantum dots can do this by becoming an intermediate step in a charge-transfer cascade initiated in the plasmonic system or by creating an electron-hole pair at an improved rate due to their interaction with the enhanced near-field created by the plasmonic nanoparticles. Our results show a significant acceleration in the reaction upon combining these elements in hybrid colloidal photocatalysts that promote the role of the near-field enhancement effect, and we show how to engineer complexes exploiting this approach. In doing so, we also explore the complex interplay between the different mechanisms involved in the photocatalytic process, highlighting the importance of the Au nanoparticles' morphology in their photosensitizing capabilities.
Collapse
Affiliation(s)
- Yoel Negrín-Montecelo
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Carrer de Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| | | | - Alexander O. Govorov
- Department
of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| | - Ramon A. Alvarez-Puebla
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Carrer de Marcel•lí Domingo s/n, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - Lucas V. Besteiro
- CINBIO,
University of Vigo, Campus
Universitario de Vigo, Lagoas Marcosende, 36310 Vigo, Spain
| | - Miguel A. Correa-Duarte
- CINBIO,
University of Vigo, Campus
Universitario de Vigo, Lagoas Marcosende, 36310 Vigo, Spain
- Southern
Galicia Institute of Health Research (IISGS) and Biomedical Research
Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
158
|
Feng E, Zheng T, He X, Chen J, Gu Q, He X, Hu F, Li J, Tian Y. Plasmon-Induced Charge Transfer-Enhanced Raman Scattering on a Semiconductor: Toward Amplification-Free Quantification of SARS-CoV-2. Angew Chem Int Ed Engl 2023; 62:e202309249. [PMID: 37555368 DOI: 10.1002/anie.202309249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Semiconductors demonstrate great potentials as chemical mechanism-based surface-enhanced Raman scattering (SERS) substrates in determination of biological species in complex living systems with high selectivity. However, low sensitivity is the bottleneck for their practical applications, compared with that of noble metal-based Raman enhancement ascribed to electromagnetic mechanism. Herein, a novel Cu2 O nanoarray with free carrier density of 1.78×1021 cm-3 comparable to that of noble metals was self-assembled, creating a record in enhancement factor (EF) of 3.19×1010 among semiconductor substrates. The significant EF was mainly attributed to plasmon-induced hot electron transfer (PIHET) in semiconductor which was never reported before. This Cu2 O nanoarray was subsequently developed as a highly sensitive and selective SERS chip for non-enzyme and amplification-free SARS-CoV-2 RNA quantification with a detection limit down to 60 copies/mL within 5 min. This unique Cu2 O nanoarray demonstrated the significant Raman enhancement through PIHET process, enabling rapid and sensitive point-of-care testing of emerging virus variants.
Collapse
Affiliation(s)
- Enduo Feng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| | - Tingting Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| | - Xiaoxiao He
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| | - Qingyi Gu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, 200062, Shanghai, China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, 200062, Shanghai, China
| | - Fanghao Hu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| |
Collapse
|
159
|
Jiang K, Lee JH, Fung TS, Wu J, Liu C, Mi H, Rajapakse RPVJ, Balasuriya UBR, Peng YK, Go YY. Next-generation diagnostic test for dengue virus detection using an ultrafast plasmonic colorimetric RT-PCR strategy. Anal Chim Acta 2023; 1274:341565. [PMID: 37455070 DOI: 10.1016/j.aca.2023.341565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
The current global COVID-19 pandemic once again highlighted the urgent need for a simple, cost-effective, and sensitive diagnostic platform that can be rapidly developed for distribution and easy access in resource-limited areas. Here, we present a simple and low-cost plasmonic photothermal (PPT)-reverse transcription-colorimetric polymerase chain reaction (RTcPCR) for molecular diagnosis of dengue virus (DENV) infection. The assay can be completed within 54 min with an estimated detection limit of 1.6 copies/μL of viral nucleic acid. The analytical sensitivity and specificity of PPT-RTcPCR were comparable to that of the reference RT-qPCR assay. Moreover, the clinical performance of PPT-RTcPCR was evaluated and validated using 158 plasma samples collected from patients suspected of dengue infection. The results showed a diagnostic agreement of 97.5% compared to the reference RT-qPCR and demonstrated a clinical sensitivity and specificity of 97.0% and 100%, respectively. The simplicity and reliability of our PPT-RTcPCR strategy suggest it can provide a foundation for developing a field-deployable diagnostic assay for dengue and other infectious diseases.
Collapse
Affiliation(s)
- Kunlun Jiang
- Department of Chemistry, College of Science, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Jung-Hoon Lee
- Department of Chemistry, Soonchunhyang University, Asan, 31538, South Korea.
| | - To Sing Fung
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Jingrui Wu
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Congnuan Liu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Hua Mi
- Department of Chemistry, College of Science, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - R P V Jayanthe Rajapakse
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Udeni B R Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Yung-Kang Peng
- Department of Chemistry, College of Science, City University of Hong Kong, Kowloon, 999077, Hong Kong, China.
| | - Yun Young Go
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong, China.
| |
Collapse
|
160
|
Jones A, Searles EK, Mayer M, Hoffmann M, Gross N, Oh H, Fery A, Link S, Landes CF. Active Control of Energy Transfer in Plasmonic Nanorod-Polyaniline Hybrids. J Phys Chem Lett 2023; 14:8235-8243. [PMID: 37676024 DOI: 10.1021/acs.jpclett.3c01990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The hybridization of plasmonic energy and charge donors with polymeric acceptors is a possible means to overcome fast internal relaxation that limits potential photocatalytic applications for plasmonic nanomaterials. Polyaniline (PANI) readily hybridizes onto gold nanorods (AuNRs) and has been used for the sensitive monitoring of local refractive index changes. Here, we use single-particle spectroscopy to quantify a previously unreported plasmon damping mechanism in AuNR-PANI hybrids while actively tuning the PANI chemical structure. By eliminating contributions from heterogeneous line width broadening and refractive index changes, we identify efficient resonance energy transfer (RET) between AuNRs and PANI. We find that RET dominates the optical response in our AuNR-PANI hybrids during the dynamic tuning of the spectral overlap of the AuNR donor and PANI acceptor. Harnessing RET between plasmonic nanomaterials and an affordable and processable polymer such as PANI offers an alternate mechanism toward efficient photocatalysis with plasmonic nanoparticle antennas.
Collapse
Affiliation(s)
- Annette Jones
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Emily K Searles
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Martin Mayer
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany
| | - Marisa Hoffmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany
| | - Niklas Gross
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Hyuncheol Oh
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
161
|
Luo B, Wang W, Zhao Y, Zhao Y. Hot-Electron Dynamics Mediated Medical Diagnosis and Therapy. Chem Rev 2023; 123:10808-10833. [PMID: 37603096 DOI: 10.1021/acs.chemrev.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Surface plasmon resonance excitation significantly enhances the absorption of light and increases the generation of "hot" electrons, i.e., conducting electrons that are raised from their steady states to excited states. These excited electrons rapidly decay and equilibrate via radiative and nonradiative damping over several hundred femtoseconds. During the hot-electron dynamics, from their generation to the ultimate nonradiative decay, the electromagnetic field enhancement, hot electron density increase, and local heating effect are sequentially induced. Over the past decade, these physical phenomena have attracted considerable attention in the biomedical field, e.g., the rapid and accurate identification of biomolecules, precise synthesis and release of drugs, and elimination of tumors. This review highlights the recent developments in the application of hot-electron dynamics in medical diagnosis and therapy, particularly fully integrated device techniques with good application prospects. In addition, we discuss the latest experimental and theoretical studies of underlying mechanisms. From a practical standpoint, the pioneering modeling analyses and quantitative measurements in the extreme near field are summarized to illustrate the quantification of hot-electron dynamics. Finally, the prospects and remaining challenges associated with biomedical engineering based on hot-electron dynamics are presented.
Collapse
Affiliation(s)
- Bing Luo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wei Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuxin Zhao
- The State Key Laboratory of Service Behavior and Structural Safety of Petroleum Pipe and Equipment Materials, CNPC Tubular Goods Research Institute (TGRI), Xi'an 710077, People's Republic of China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
162
|
Patil SJ, Kurouski D. Tip-enhanced Raman imaging of plasmon-driven dimerization of 4-bromothiophenol on nickel-decorated gold nanoplate bimetallic nanostructures. Chem Commun (Camb) 2023; 59:10976-10979. [PMID: 37614175 DOI: 10.1039/d3cc02670a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
We used tip-enhanced Raman spectroscopy (TERS) to examine plasmon-driven dimerization of 4-bromothiophenol (4-BTP) into thiophenol (TP) and 4,4'-biphenyldithiol (4,4'-BPDT) on Au and Ni@AuNPs. TERS revealed that cross-coupling of these molecular reactants into 4,4'-BPDT occurred primarily on Ni nano islands rather than the surrounding Au on the surface of Ni@AuNPs.
Collapse
Affiliation(s)
- Swati J Patil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
163
|
Xiao R, Zeng J, Li F, Ling D. Gold-semiconductor nanohybrids as advanced phototherapeutics. Nanomedicine (Lond) 2023; 18:1585-1606. [PMID: 37830425 DOI: 10.2217/nnm-2023-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Phototherapeutics is gaining momentum as a mainstream treatment for cancer, with gold-semiconductor nanocomposites showing promise as potent phototherapeutic agents due to their structural tunability, biocompatibility and functional diversity. Such nanohybrids possess plasmonic characteristics in the presence of gold and the catalytic nature of semiconductor units, as well as the unexpected physicochemical properties arising from the contact interface. This perspective provides an overview of the latest research on gold-semiconductor nanocomposites for photodynamic, photothermal and photocatalytic therapy. The relationship between the spatial configuration of these nanohybrids and their practical performance was explored to deliver comprehensive insights and guidance for the design and fabrication of novel composite nanoplatforms to enhance the efficiency of phototherapeutics, promoting the development of nanotechnology-based advanced biomedical applications.
Collapse
Affiliation(s)
- Ruixue Xiao
- Frontiers Science Center for Transformative Molecules, School of Chemistry & Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jian Zeng
- Zhejiang Cancer Hospital, Hangzhou, 310022, PR China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, PR China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry & Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, PR China
| |
Collapse
|
164
|
Liao S, Zhu Y, Ye Q, Sanders S, Yang J, Alabastri A, Natelson D. Quantifying Efficiency of Remote Excitation for Surface-Enhanced Raman Spectroscopy in Molecular Junctions. J Phys Chem Lett 2023; 14:7574-7580. [PMID: 37589653 DOI: 10.1021/acs.jpclett.3c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is enabled by local surface plasmon resonances (LSPRs) in metallic nanogaps. When SERS is excited by direct illumination of the nanogap, the background heating of the lattice and electrons can prevent further manipulation of the molecules. To overcome this issue, we report SERS in electromigrated gold molecular junctions excited remotely: surface plasmon polaritons (SPPs) are excited at nearby gratings, propagate to the junction, and couple to the local nanogap plasmon modes. Like direct excitation, remote excitation of the nanogap can generate both SERS emission and an open-circuit photovoltage (OCPV). We compare the SERS intensity and the OCPV in both direct and remote illumination configurations. SERS spectra obtained by remote excitation are much more stable than those obtained through direct excitation when the photon count rates are comparable. By statistical analysis of 33 devices, the coupling efficiency of remote excitation is calculated to be around 10%, consistent with the simulated energy flow.
Collapse
Affiliation(s)
- Shusen Liao
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Yunxuan Zhu
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Qian Ye
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Stephen Sanders
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Jiawei Yang
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Douglas Natelson
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
165
|
Dornheim T, Vorberger J, Moldabekov ZA, Böhme M. Analysing the dynamic structure of warm dense matter in the imaginary-time domain: theoretical models and simulations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220217. [PMID: 37393936 DOI: 10.1098/rsta.2022.0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/10/2023] [Indexed: 07/04/2023]
Abstract
Rigorous diagnostics of experiments with warm dense matter are notoriously difficult. A key method is X-ray Thomson scattering (XRTS), but the interpretation of XRTS measurements is usually based on theoretical models that entail various approximations. Recently, Dornheim et al. [Nat. Commun. 13, 7911 (2022)] introduced a new framework for temperature diagnostics of XRTS experiments that is based on imaginary-time correlation functions. On the one hand, switching from the frequency to the imaginary-time domain gives one direct access to a number of physical properties, which facilitates the extraction of the temperature of arbitrarily complex materials without relying on any models or approximations. On the other hand, the bulk of theoretical work in dynamic quantum many-body theory is devoted to the frequency domain, and, to the best of our knowledge, the manifestation of physics properties within the imaginary-time density-density correlation function (ITCF) remains poorly understood. In the present work, we aim to fill this gap by introducing a simple, semi-analytical model for the imaginary-time dependence of two-body correlations within the framework of imaginary-time path integrals. As a practical example, we compare our new model to extensive ab initio path integral Monte Carlo results for the ITCF of a uniform electron gas, and find excellent agreement over a broad range of wavenumbers, densities and temperatures. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Maximilian Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
166
|
Van Benschoten W, Petras HR, Shepherd JJ. Electronic Free Energy Surface of the Nitrogen Dimer Using First-Principles Finite Temperature Electronic Structure Methods. J Phys Chem A 2023; 127:6842-6856. [PMID: 37535315 PMCID: PMC10440793 DOI: 10.1021/acs.jpca.3c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/20/2023] [Indexed: 08/04/2023]
Abstract
We use full configuration interaction and density matrix quantum Monte Carlo methods to calculate the electronic free energy surface of the nitrogen dimer within the free-energy Born-Oppenheimer approximation. As the temperature is raised from T = 0, we find a temperature regime in which the internal energy causes bond strengthening. At these temperatures, adding in the entropy contributions is required to cause the bond to gradually weaken with increasing temperature. We predict a thermally driven dissociation for the nitrogen dimer between 22,000 to 63,200 K depending on symmetries and basis set. Inclusion of more spatial and spin symmetries reduces the temperature required. The origin of these observations is explored using the structure of the density matrix at various temperatures and bond lengths.
Collapse
Affiliation(s)
| | - Hayley R. Petras
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - James J. Shepherd
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
167
|
Roche B, Vo T, Chang WS. Promoting plasmonic photocatalysis with ligand-induced charge separation under interband excitation. Chem Sci 2023; 14:8598-8606. [PMID: 37592991 PMCID: PMC10430595 DOI: 10.1039/d3sc02167j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Plasmonic nanoparticles have been demonstrated to enhance photocatalysis due to their strong photon absorption and efficient hot-carrier generation. However, plasmonic photocatalysts suffer from a short lifetime of plasmon-generated hot carriers that decay through internal relaxation pathways before being harnessed for chemical reactions. Here, we demonstrate the enhanced photocatalytic reduction of gold ions on gold nanorods functionalized with polyvinylpyrrolidone. The catalytic activities of the reaction are quantified by in situ monitoring of the spectral evolution of single nanorods using a dark-field scattering microscope. We observe a 13-fold increase in the reduction rate with the excitation of d-sp interband transition compared to dark conditions, and a negligible increase in the reduction rate when excited with intraband transition. The hole scavenger only plays a minor role in the photocatalytic reduction reaction. We attribute the enhanced photocatalysis to an efficient charge separation at the gold-polyvinylpyrrolidone interface, where photogenerated d-band holes at gold transfer to the HOMO of polyvinylpyrrolidone, leading to the prolonged lifetime of the electrons that subsequently reduce gold ions to gold atoms. These results provide new insight into the design of plasmonic photocatalysts with capping ligands.
Collapse
Affiliation(s)
- Ben Roche
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth North Dartmouth Massachusetts 02747 USA
| | - Tamie Vo
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth North Dartmouth Massachusetts 02747 USA
| | - Wei-Shun Chang
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth North Dartmouth Massachusetts 02747 USA
| |
Collapse
|
168
|
Kim Y, Ji S, Nam JM. A Chemist's View on Electronic and Steric Effects of Surface Ligands on Plasmonic Metal Nanostructures. Acc Chem Res 2023; 56:2139-2150. [PMID: 37522593 DOI: 10.1021/acs.accounts.3c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
ConspectusPlasmonic metal nanostructures have been extensively developed over the past few decades because of their ability to confine light within the surfaces and manipulate strong light-matter interactions. The light energy stored by plasmonic nanomaterials in the form of surface plasmons can be utilized to initiate chemical reactions, so-called plasmon-induced catalysis, which stresses the importance of understanding the surface chemistry of the plasmonic materials. Nevertheless, only physical interpretation of plasmonic behaviors has been a dominant theme, largely excluding chemical intuitions that facilitate understanding of plasmonic systems from molecular perspectives. To overcome and address the lack of this complementary understanding based on molecular viewpoints, in this Account we provide a new concept encompassing the well-developed physics of plasmonics and the corresponding surface chemistry while reviewing and discussing related references. Inspired by Roald Hoffmann's descriptions of solid-state surfaces based on the molecular orbital picture, we treat molecular interfaces of plasmonic metal nanostructures as a series of metal-ligand complexes. Accordingly, the effects of the surface ligands can be described by bisecting them into electronic and steric contributions to the systems. By exploration of the quality of orbital overlaps and the symmetry of the plasmonic systems, electronic effects of surface ligands on localized surface plasmon resonances (LSPRs), surface diffusion rates, and hot-carrier transfer mechanisms are investigated. Specifically, the propensity of ligands to donate electrons in a σ-bonding manner can change the LSPR by shifting the density of states near the Fermi level, whereas other types of ligands donating or accepting electrons in a π-bonding manner modulate surface diffusion rates by affecting the metal-metal bond strength. In addition, the formation of metal-ligand bonds facilitates direct hot-carrier transfer by forming a sort of molecular orbital between a plasmonic structure and ligands. Furthermore, effects of steric environments are discussed in terms of ligand-ligand and ligand-surface nonbonding interactions. The steric hindrance allows for controlling the accessibility of the surrounding chemical species toward the metal surface by modulating the packing density of ligands and generating repulsive interactions with the surface atoms. This unconventional approach of considering the plasmonic system as a delocalized molecular entity could establish a basis for integrating chemical intuition with physical phenomena. Our chemist's outlook on a molecular interface of the plasmonic surface can provide insights and avenues for the design and development of more exquisite plasmonic catalysts with regio- and enantioselectivities as well as advanced sensors with unprecedented chemical controllability and specificity.
Collapse
Affiliation(s)
- Yoonhee Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Soohyun Ji
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
169
|
Gardner J, Habershon S, Maurer RJ. Assessing Mixed Quantum-Classical Molecular Dynamics Methods for Nonadiabatic Dynamics of Molecules on Metal Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15257-15270. [PMID: 37583439 PMCID: PMC10424245 DOI: 10.1021/acs.jpcc.3c03591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/30/2023] [Indexed: 08/17/2023]
Abstract
Mixed quantum-classical (MQC) methods for simulating the dynamics of molecules at metal surfaces have the potential to accurately and efficiently provide mechanistic insight into reactive processes. Here, we introduce simple two-dimensional models for the scattering of diatomic molecules at metal surfaces based on recently published electronic structure data. We apply several MQC methods to investigate their ability to capture how nonadiabatic effects influence molecule-metal energy transfer during the scattering process. Specifically, we compare molecular dynamics with electronic friction, Ehrenfest dynamics, independent electron surface hopping, and the broadened classical master equation approach. In the case of independent electron surface hopping, we implement a simple decoherence correction approach and assess its impact on vibrationally inelastic scattering. Our results show that simple, low-dimensional models can be used to qualitatively capture experimentally observed vibrational energy transfer and provide insight into the relative performance of different MQC schemes. We observe that all approaches predict similar kinetic energy dependence but return different vibrational energy distributions. Finally, by varying the molecule-metal coupling, we can assess the coupling regime in which some MQC methods become unsuitable.
Collapse
Affiliation(s)
- James Gardner
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Scott Habershon
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Reinhard J. Maurer
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
170
|
Chen JA, Qin Y, Niu Y, Mao P, Song F, Palmer RE, Wang G, Zhang S, Han M. Broadband and Spectrally Selective Photothermal Conversion through Nanocluster Assembly of Disordered Plasmonic Metasurfaces. NANO LETTERS 2023; 23:7236-7243. [PMID: 37326318 DOI: 10.1021/acs.nanolett.3c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plasmonic metasurfaces have been realized for efficient light absorption, thereby leading to photothermal conversion through nonradiative decay of plasmonic modes. However, current plasmonic metasurfaces suffer from inaccessible spectral ranges, costly and time-consuming nanolithographic top-down techniques for fabrication, and difficulty of scale-up. Here, we demonstrate a new type of disordered metasurface created by densely packing plasmonic nanoclusters of ultrasmall size on a planar optical cavity. The system either operates as a broadband absorber or offers a reconfigurable absorption band right across the visible region, resulting in continuous wavelength-tunable photothermal conversion. We further present a method to measure the temperature of plasmonic metasurfaces via surface-enhanced Raman spectroscopy (SERS), by incorporating single-walled carbon nanotubes (SWCNTs) as an SERS probe within the metasurfaces. Our disordered plasmonic system, generated by a bottom-up process, offers excellent performance and compatibility with efficient photothermal conversion. Moreover, it also provides a novel platform for various hot-electron and energy-harvesting functionalities.
Collapse
Affiliation(s)
- Ji-An Chen
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuyuan Qin
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yubiao Niu
- Nanomaterials Lab, Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea SA1 8EN, U.K
- We Are Nium Ltd. Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell, OX11 0FA, U.K
| | - Peng Mao
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Fengqi Song
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Richard E Palmer
- Nanomaterials Lab, Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea SA1 8EN, U.K
| | - Guanghou Wang
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Shuang Zhang
- Department of Physics, University of Hong Kong, Hong Kong 999077, China
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong 999077, China
| | - Min Han
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
171
|
Su T, Guo J, He ZK, Zhao J, Gao Z, Song YY. Single-Nanoparticle-Level Understanding of Oxidase-like Activity of Au Nanoparticles on Polymer Nanobrush-Based Proton Reservoirs. Anal Chem 2023; 95:11807-11814. [PMID: 37497564 DOI: 10.1021/acs.analchem.3c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Enzyme-mimicking nanoparticles play a key role in important catalytic processes, from biosensing to energy conversion. Therefore, understanding and tuning their performance is crucial for making further progress in biological applications. We developed an efficient and sensitive electrochemical method for the real-time monitoring of the glucose oxidase (GOD)-like activity of single nanoparticle through collision events. Using brush-like sulfonate (-SO3-)-doped polyaniline (PANI) decorated on TiO2 nanotube arrays (TiNTs-SPANI) as the electrode, we fabricated a proton reservoir with excellent response and high proton-storage capacity for evaluating the oxidase-like activity of individual Au nanoparticles (AuNPs) via instantaneous collision processes. Using glucose electrocatalysis as a model reaction system, the GOD-like activity of individual AuNPs could be directly monitored via electrochemical tests through the nanoparticle collision-induced proton generation. Furthermore, based on the perturbation of the electrical double layer of SPANI induced by proton injection, we investigated the relationship between the measured GOD-like activities of the plasmonic nanoparticles (NPs) and the localized surface plasmon resonance (LSPR) as well as the environment temperature. This work introduces an efficient platform for understanding and characterizing the catalytic activities of nanozymes at the single-nanoparticle level.
Collapse
Affiliation(s)
- Tiantian Su
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Junli Guo
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Zhen-Kun He
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Junjian Zhao
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| |
Collapse
|
172
|
Zhu Z, Tang R, Li C, An X, He L. Promises of Plasmonic Antenna-Reactor Systems in Gas-Phase CO 2 Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302568. [PMID: 37338243 PMCID: PMC10460874 DOI: 10.1002/advs.202302568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Sunlight-driven photocatalytic CO2 reduction provides intriguing opportunities for addressing the energy and environmental crises faced by humans. The rational combination of plasmonic antennas and active transition metal-based catalysts, known as "antenna-reactor" (AR) nanostructures, allows the simultaneous optimization of optical and catalytic performances of photocatalysts, and thus holds great promise for CO2 photocatalysis. Such design combines the favorable absorption, radiative, and photochemical properties of the plasmonic components with the great catalytic potentials and conductivities of the reactor components. In this review, recent developments of photocatalysts based on plasmonic AR systems for various gas-phase CO2 reduction reactions with emphasis on the electronic structure of plasmonic and catalytic metals, plasmon-driven catalytic pathways, and the role of AR complex in photocatalytic processes are summarized. Perspectives in terms of challenges and future research in this area are also highlighted.
Collapse
Affiliation(s)
- Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Rui Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
173
|
Nanoplasmonic acceleration of nucleic acid amplification for pathogen detection. NATURE NANOTECHNOLOGY 2023; 18:846-847. [PMID: 37277536 DOI: 10.1038/s41565-023-01398-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
174
|
Cai YY, Choi YC, Kagan CR. Chemical and Physical Properties of Photonic Noble-Metal Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2108104. [PMID: 34897837 DOI: 10.1002/adma.202108104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Colloidal noble metal nanoparticles (NPs) are composed of metal cores and organic or inorganic ligand shells. These NPs support size- and shape-dependent plasmonic resonances. They can be assembled from dispersions into artificial metamolecules which have collective plasmonic resonances originating from coupled bright and dark optical electric and magnetic modes that form depending on the size and shape of the constituent NPs and their number, arrangement, and interparticle distance. NPs can also be assembled into extended 2D and 3D metamaterials that are glassy thin films or ordered thin films or crystals, also known as superlattices and supercrystals. The metamaterials have tunable optical properties that depend on the size, shape, and composition of the NPs, and on the number of NP layers and their interparticle distance. Interestingly, strong light-matter interactions in superlattices form plasmon polaritons. Tunable interparticle distances allow designer materials with dielectric functions tailorable from that characteristic of an insulator to that of a metal, and serve as strong optical absorbers or scatterers, respectively. In combination with lithography techniques, these extended assemblies can be patterned to create subwavelength NP superstructures and form large-area 2D and 3D metamaterials that manipulate the amplitude, phase, and polarization of transmitted or reflected light.
Collapse
Affiliation(s)
- Yi-Yu Cai
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yun Chang Choi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
175
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
176
|
AbdElFatah T, Jalali M, Yedire SG, I Hosseini I, Del Real Mata C, Khan H, Hamidi SV, Jeanne O, Siavash Moakhar R, McLean M, Patel D, Wang Z, McKay G, Yousefi M, Nguyen D, Vidal SM, Liang C, Mahshid S. Nanoplasmonic amplification in microfluidics enables accelerated colorimetric quantification of nucleic acid biomarkers from pathogens. NATURE NANOTECHNOLOGY 2023; 18:922-932. [PMID: 37264088 DOI: 10.1038/s41565-023-01384-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/22/2023] [Indexed: 06/03/2023]
Abstract
Deployment of nucleic acid amplification assays for diagnosing pathogens in point-of-care settings is a challenge due to lengthy preparatory steps. We present a molecular diagnostic platform that integrates a fabless plasmonic nano-surface into an autonomous microfluidic cartridge. The plasmonic 'hot' electron injection in confined space yields a ninefold kinetic acceleration of RNA/DNA amplification at single nucleotide resolution by one-step isothermal loop-mediated and rolling circle amplification reactions. Sequential flow actuation with nanoplasmonic accelerated microfluidic colorimetry and in conjugation with machine learning-assisted analysis (using our 'QolorEX' device) offers an automated diagnostic platform for multiplexed amplification. The versatility of QolorEX is demonstrated by detecting respiratory viruses: SARS-CoV-2 and its variants at the single nucleotide polymorphism level, H1N1 influenza A, and bacteria. For COVID-19 saliva samples, with an accuracy of 95% on par with quantitative polymerase chain reaction and a sample-to-answer time of 13 minutes, QolorEX is expected to advance the monitoring and rapid diagnosis of pathogens.
Collapse
Affiliation(s)
- Tamer AbdElFatah
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | | | - Imman I Hosseini
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | | | - Haleema Khan
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Seyed Vahid Hamidi
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Olivia Jeanne
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | | | - Myles McLean
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research and McGill Centre for Viral Diseases, Jewish General Hospital, Montreal, Quebec, Canada
| | - Dhanesh Patel
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Zhen Wang
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research and McGill Centre for Viral Diseases, Jewish General Hospital, Montreal, Quebec, Canada
| | - Geoffrey McKay
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Mitra Yousefi
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Dao Nguyen
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Chen Liang
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research and McGill Centre for Viral Diseases, Jewish General Hospital, Montreal, Quebec, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
177
|
Sakamoto M, Hada M, Ota W, Uesugi F, Sato T. Localised surface plasmon resonance inducing cooperative Jahn-Teller effect for crystal phase-change in a nanocrystal. Nat Commun 2023; 14:4471. [PMID: 37524703 PMCID: PMC10390505 DOI: 10.1038/s41467-023-40153-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/14/2023] [Indexed: 08/02/2023] Open
Abstract
The Jahn-Teller effect, a phase transition phenomenon involving the spontaneous breakdown of symmetry in molecules and crystals, causes important physical and chemical changes that affect various fields of science. In this study, we discovered that localised surface plasmon resonance (LSPR) induced the cooperative Jahn-Teller effect in covellite CuS nanocrystals (NCs), causing metastable displacive ion movements. Electron diffraction measurements under photo illumination, ultrafast time-resolved electron diffraction analyses, and theoretical calculations of semiconductive plasmonic CuS NCs showed that metastable displacive ion movements due to the LSPR-induced cooperative Jahn-Teller effect delayed the relaxation of LSPR in the microsecond region. Furthermore, the displacive ion movements caused photo-switching of the conductivity in CuS NC films at room temperature (22 °C), such as in transparent variable resistance infrared sensors. This study pushes the limits of plasmonics from tentative control of collective oscillation to metastable crystal structure manipulation.
Collapse
Affiliation(s)
- Masanori Sakamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| | - Masaki Hada
- Tsukuba Research Center for Energy Materials Science (TREMS), Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan.
| | - Wataru Ota
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto, 606-8103, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Fumihiko Uesugi
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tohru Sato
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto, 606-8103, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
178
|
Liu W, Liu H, Wang Z, Li S, Wang L, Luo J. Inverse Design of Light Manipulating Structural Phase Transition in Solids. J Phys Chem Lett 2023; 14:6647-6657. [PMID: 37462525 DOI: 10.1021/acs.jpclett.3c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
This Perspective focuses on recent advances in understanding ultrafast processes involved in photoinduced structural phase transitions and proposes a strategy for precise manipulation of such transitions. It has been demonstrated that photoexcited carriers occupying empty antibonding or bonding states generate atomic driving forces that lead to either stretching or shortening of associated bonds, which in turn induce collective and coherent motions of atoms and yield structural transitions. For instance, phase transitions in IrTe2 and VO2, and nonthermal melting in Si, can be explained by the occupation of specific local bonding or antibonding states during laser excitation. These cases reveal the electronic-orbital-selective nature of laser-induced structural transitions. Based on this understanding, we propose an inverse design protocol for achieving or preventing a target structural transition by controlling the related electron occupations with orbital-selective photoexcitation. Overall, this Perspective provides a comprehensive overview of recent advancements in dynamical structural control in solid materials.
Collapse
Affiliation(s)
- Wenhao Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haowen Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Shushen Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linwang Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Junwei Luo
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
179
|
Hossein-Babaei F, Karimpour A. Highly Rectifying Water-Mediated Hydrogen Bond-Coupled Organic-Inorganic Interfaces. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37422766 DOI: 10.1021/acsami.3c05009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Asymmetrically conducting interfaces are the building blocks of electronic devices. While p-n junction diodes made of seminal inorganic semiconductors with rectification ratios close to the theoretical limits are routinely fabricated, the analogous organic-inorganic and organic-organic interfaces are still too leaky to afford functional use. We report fabricating highly rectifying organic-inorganic interfaces by forming water-mediated hydrogen bonds between the hydrophilic surfaces of a hole-conducting polymer anode and a polycrystalline n-type metal oxide cathode. These hydrogen bonds simultaneously strengthen the anode-cathode electronic coupling, facilitate the matching between their incompatible surface structures, and passivate the detrimental surface imperfections. Compared to an analogous directly joined interface, our hydrogen-bonded Au-PEDOT:PSS-H2O-TiO2-Ti diodes demonstrate 105 times higher rectification ratios. These results illustrate the strong electronic coupling power of the hydrogen bonds on a macroscopic scale and underscore the hydrogen-bonded interfaces as the building blocks of fabricating organic electronic and optoelectronic devices. The presented interface model is anticipated to advance designing electronic devices based on the organic-organic and organic-inorganic hetero-interfaces. Described electronic implications of hydrogen bonding on the conductive polymer interfaces are anticipated to be impactful in the organic electronics and neuromorphic engineering.
Collapse
Affiliation(s)
- Faramarz Hossein-Babaei
- Electronic Materials Laboratory, Electrical Engineering Department, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
- Hezare Sevom Co. Ltd., 7, Niloofar Square, Tehran 1533-874-417, Iran
| | - Alireza Karimpour
- Electronic Materials Laboratory, Electrical Engineering Department, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| |
Collapse
|
180
|
Alcorn FM, van der Veen RM, Jain PK. In Situ Electron Microscopy of Transformations of Copper Nanoparticles under Plasmonic Excitation. NANO LETTERS 2023. [PMID: 37399502 DOI: 10.1021/acs.nanolett.3c01474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Metal nanoparticles are attracting interest for their light-absorption properties, but such materials are known to dynamically evolve under the action of chemical and physical perturbations, resulting in changes in their structure and composition. Using a transmission electron microscope equipped for optical excitation of the specimen, the structural evolution of Cu-based nanoparticles under simultaneous electron beam irradiation and plasmonic excitation was investigated with high spatiotemporal resolution. These nanoparticles initially have a Cu core-Cu2O oxide shell structure, but over the course of imaging, they undergo hollowing via the nanoscale Kirkendall effect. We captured the nucleation of a void within the core, which then rapidly grows along specific crystallographic directions until the core is hollowed out. Hollowing is triggered by electron-beam irradiation; plasmonic excitation enhances the kinetics of the transformation likely by the effect of photothermal heating.
Collapse
Affiliation(s)
- Francis M Alcorn
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Renske M van der Veen
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Prashant K Jain
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
181
|
Doiron B, Li Y, Bower R, Mihai A, Dal Forno S, Fearn S, Hüttenhofer L, Cortés E, Cohen LF, Alford NM, Lischner J, Petrov P, Maier SA, Oulton RF. Optimizing Hot Electron Harvesting at Planar Metal-Semiconductor Interfaces with Titanium Oxynitride Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37307410 DOI: 10.1021/acsami.3c02812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding metal-semiconductor interfaces is critical to the advancement of photocatalysis and sub-bandgap solar energy harvesting where electrons in the metal can be excited by sub-bandgap photons and extracted into the semiconductor. In this work, we compare the electron extraction efficiency across Au/TiO2 and titanium oxynitride (TiON)/TiO2-x interfaces, where in the latter case the spontaneously forming oxide layer (TiO2-x) creates a metal-semiconductor contact. Time-resolved pump-probe spectroscopy is used to study the electron recombination rates in both cases. Unlike the nanosecond recombination lifetimes in Au/TiO2, we find a bottleneck in the electron relaxation in the TiON system, which we explain using a trap-mediated recombination model. Using this model, we investigate the tunability of the relaxation dynamics with oxygen content in the parent film. The optimized film (TiO0.5N0.5) exhibits the highest carrier extraction efficiency (NFC ≈ 2.8 × 1019 m-3), slowest trapping, and an appreciable hot electron population reaching the surface oxide (NHE ≈ 1.6 × 1018 m-3). Our results demonstrate the productive role oxygen can play in enhancing electron harvesting and prolonging electron lifetimes, providing an optimized metal-semiconductor interface using only the native oxide of titanium oxynitride.
Collapse
Affiliation(s)
- Brock Doiron
- Department of Physics, Imperial College London, London SW7 2BW, U.K
| | - Yi Li
- Department of Physics, Imperial College London, London SW7 2BW, U.K
- Nanoinstitut München, Chair in Hybrid Nanosystems, Faculty of Physics, Ludwig-Maximilians Universität München, Königinstrasse 10, 80539 München, Germany
| | - Ryan Bower
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Andrei Mihai
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | | | - Sarah Fearn
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Ludwig Hüttenhofer
- Nanoinstitut München, Chair in Hybrid Nanosystems, Faculty of Physics, Ludwig-Maximilians Universität München, Königinstrasse 10, 80539 München, Germany
| | - Emiliano Cortés
- Nanoinstitut München, Chair in Hybrid Nanosystems, Faculty of Physics, Ludwig-Maximilians Universität München, Königinstrasse 10, 80539 München, Germany
| | - Lesley F Cohen
- Department of Physics, Imperial College London, London SW7 2BW, U.K
| | - Neil M Alford
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Johannes Lischner
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
- Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Peter Petrov
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Stefan A Maier
- Department of Physics, Imperial College London, London SW7 2BW, U.K
- Nanoinstitut München, Chair in Hybrid Nanosystems, Faculty of Physics, Ludwig-Maximilians Universität München, Königinstrasse 10, 80539 München, Germany
| | - Rupert F Oulton
- Department of Physics, Imperial College London, London SW7 2BW, U.K
| |
Collapse
|
182
|
Al-Zubeidi A, Wang Y, Lin J, Flatebo C, Landes CF, Ren H, Link S. d-Band Holes React at the Tips of Gold Nanorods. J Phys Chem Lett 2023:5297-5304. [PMID: 37267074 DOI: 10.1021/acs.jpclett.3c00997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Reactive hot spots on plasmonic nanoparticles have attracted attention for photocatalysis as they allow for efficient catalyst design. While sharp tips have been identified as optimal features for field enhancement and hot electron generation, the locations of catalytically promising d-band holes are less clear. Here we exploit d-band hole-enhanced dissolution of gold nanorods as a model reaction to locate reactive hot spots produced from direct interband transitions, while the role of the plasmon is to follow the reaction optically in real time. Using a combination of single-particle electrochemistry and single-particle spectroscopy, we determine that d-band holes increase the rate of gold nanorod electrodissolution at their tips. While nanorods dissolve isotropically in the dark, the same nanoparticles switch to tip-enhanced dissolution upon illimitation with 488 nm light. Electron microscopy confirms that dissolution enhancement is exclusively at the tips of the nanorods, consistent with previous theoretical work that predicts the location of d-band holes. We, therefore, conclude that d-band holes drive reactions selectively at the nanorod tips.
Collapse
Affiliation(s)
- Alexander Al-Zubeidi
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Yufei Wang
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, TX 78712, United States
| | - Jiamu Lin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Charlotte Flatebo
- Applied Physics Program, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, TX 78712, United States
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| |
Collapse
|
183
|
Guo Z, Yu G, Zhang Z, Han Y, Guan G, Yang W, Han MY. Intrinsic Optical Properties and Emerging Applications of Gold Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206700. [PMID: 36620937 DOI: 10.1002/adma.202206700] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/21/2022] [Indexed: 06/09/2023]
Abstract
The collective oscillation of free electrons at the nanoscale surface of gold nanostructures is closely modulated by tuning the size, shape/morphology, phase, composition, hybridization, assembly, and nanopatterning, along with the surroundings of the plasmonic surface located at a dielectric interface with air, liquid, and solid. This review first introduces the physical origin of the intrinsic optical properties of gold nanostructures and further summarizes stimuli-responsive changes in optical properties, metal-field-enhanced optical signals, luminescence spectral shaping, chiroptical response, and photogenerated hot carriers. The current success in the landscape of nanoscience and nanotechnology mainly originates from the abundant optical properties of gold nanostructures in the thermodynamically stable face-centered cubic (fcc) phase. It has been further extended by crystal phase engineering to prepare thermodynamically unfavorable phases (e.g., kinetically stable) and heterophases to modulate their intriguing phase-dependent optical properties. A broad range of promising applications, including but not limited to full-color displays, solar energy harvesting, photochemical reactions, optical sensing, and microscopic/biomedical imaging, have fostered parallel research on the multitude of physical effects occurring in gold nanostructures.
Collapse
Affiliation(s)
- Zilong Guo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Guo Yu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhiguo Zhang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yandong Han
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Guijian Guan
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475001, China
| | - Ming-Yong Han
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Singapore, 138634, Singapore
| |
Collapse
|
184
|
Fresno F, Iglesias-Juez A, Coronado JM. Photothermal Catalytic CO 2 Conversion: Beyond Catalysis and Photocatalysis. Top Curr Chem (Cham) 2023; 381:21. [PMID: 37253819 DOI: 10.1007/s41061-023-00430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023]
Abstract
In recent years, the combination of both thermal and photochemical contributions has provided interesting opportunities for solar upgrading of catalytic processes. Photothermal catalysis works at the interface between purely photochemical processes, which involve the direct conversion of photon energy into chemical energy, and classical thermal catalysis, in which the catalyst is activated by temperature. Thus, photothermal catalysis acts in two different ways on the energy path of the reaction. This combined catalysis, of which the fundamental principles will be reviewed here, is particularly promising for the activation of small reactive molecules at moderate temperatures compared to thermal catalysis and with higher reaction rates than those attained in photocatalysis, and it has gained a great deal of attention in the last years. Among the different applications of photothermal catalysis, CO2 conversion is probably the most studied, although reaction mechanisms and photonic-thermal synergy pathways are still quite unclear and, from the reaction route point of view, it can be said that photothermal-catalytic CO2 reduction processes are still in their infancy. This article intends to provide an overview of the principles underpinning photothermal catalysis and its application to the conversion of CO2 into useful molecules, with application essentially as fuels but also as chemical building blocks. The most relevant specific cases published to date will be also reviewed from the viewpoint of selectivity towards the most frequent target products.
Collapse
Affiliation(s)
- Fernando Fresno
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/Marie Curie 2, 28049, Madrid, Spain.
| | - Ana Iglesias-Juez
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/Marie Curie 2, 28049, Madrid, Spain.
| | - Juan M Coronado
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/Marie Curie 2, 28049, Madrid, Spain.
| |
Collapse
|
185
|
Shin HH, Jeong J, Nam Y, Lee KS, Yeon GJ, Lee H, Lee SY, Park S, Park H, Lee JY, Kim ZH. Vibrationally Hot Reactants in a Plasmon-Assisted Chemical Reaction. J Am Chem Soc 2023. [PMID: 37220278 DOI: 10.1021/jacs.3c02681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent studies on plasmon-assisted chemical reactions postulate that the hot electrons of plasmon-excited nanostructures may induce a non-thermal vibrational activation of metal-bound reactants. However, the postulate has not been fully validated at the level of molecular quantum states. We directly and quantitatively prove that such activation occurs on plasmon-excited nanostructures: The anti-Stokes Raman spectra of reactants undergoing a plasmon-assisted reaction reveal that a particular vibrational mode of the reactant is selectively excited, such that the reactants possess >10 times more energy in the mode than is expected from the fully thermalized molecules at the given local temperature. Furthermore, a significant portion (∼20%) of the excited reactant is in vibrational overtone states with energies exceeding 0.5 eV. Such mode-selective multi-quantum excitation could be fully modeled by the resonant electron-molecule scattering theory. Such observations suggest that the vibrationally hot reactants are created by non-thermal hot electrons, not by thermally heated electrons or phonons of metals. The result validates the mechanism of plasmon-assisted chemical reactions and further offers a new method to explore the vibrational reaction control on metal surfaces.
Collapse
Affiliation(s)
- Hyun-Hang Shin
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaeyoung Jeong
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yeonsig Nam
- Department of Chemistry, Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Republic of Korea
| | - Kang Sup Lee
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Gyu Jin Yeon
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hankyul Lee
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seung Yeon Lee
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sangwon Park
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyungjun Park
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Republic of Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
186
|
Shiraishi Y, Shimabukuro Y, Shima K, Ichikawa S, Tanaka S, Hirai T. Sunlight-Driven Generation of Hypochlorous Acid on Plasmonic Au/AgCl Catalysts in Aerated Chloride Solution. JACS AU 2023; 3:1403-1412. [PMID: 37234114 PMCID: PMC10207101 DOI: 10.1021/jacsau.3c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
HClO is typically manufactured from Cl2 gas generated by the electrochemical oxidation of Cl- using considerable electrical energy with a large concomitant emission of CO2. Therefore, renewable energy-driven HClO generation is desirable. In this study, we developed a strategy for stable HClO generation by sunlight irradiation of a plasmonic Au/AgCl photocatalyst in an aerated Cl- solution at ambient temperature. Plasmon-activated Au particles by visible light generate hot electrons, which are consumed by O2 reduction, and hot holes, which oxidize the lattice Cl- of AgCl adjacent to the Au particles. The formed Cl2 is disproportionated to afford HClO, and the removed lattice Cl- are compensated by the Cl- in the solution, thus promoting a catalytic HClO generation cycle. A solar-to-HClO conversion efficiency of ∼0.03% was achieved by simulated sunlight irradiation, where the resultant solution contained >38 ppm (>0.73 mM) of HClO and exhibited bactericidal and bleaching activities. The strategy based on the Cl- oxidation/compensation cycles will pave the way for sunlight-driven clean, sustainable HClO generation.
Collapse
Affiliation(s)
- Yasuhiro Shiraishi
- Research
Center for Solar Energy Chemistry and Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka University, Suita 565-0871, Japan
| | - Yoshifumi Shimabukuro
- Research
Center for Solar Energy Chemistry and Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Kaho Shima
- Research
Center for Solar Energy Chemistry and Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Satoshi Ichikawa
- Research
Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki 567-0047, Japan
| | - Shunsuke Tanaka
- Department
of Chemical, Energy, and Environmental Engineering, Kansai University, Suita 564-8680, Japan
| | - Takayuki Hirai
- Research
Center for Solar Energy Chemistry and Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| |
Collapse
|
187
|
Kondo T, Inagaki M, Tanaka S, Tsukiji S, Motobayashi K, Ikeda K. Revisit of the plasmon-mediated chemical transformation of para-aminothiophenol. Phys Chem Chem Phys 2023; 25:14618-14626. [PMID: 37191289 DOI: 10.1039/d3cp00924f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Fingerprint Raman features of para-aminothiophenol (pATP) in surface-enhanced Raman scattering (SERS) spectra have been widely used to measure plasmon-driven catalytic activities because the appearance of characteristic spectral features is purported to be due to plasmon-induced chemical transformation of pATP to trans-p,p'-dimercaptoazobenzene (trans-DMAB). Here, we present a thorough comparison of SERS spectra for pATP and trans-DMAB in the extended range of frequencies covering group vibrations, skeletal vibrations, and external vibrations under various conditions. Although the fingerprint vibration modes of pATP could be almost mistaken with those of trans-DMAB, the low-frequency vibrations revealed distinct differences between pATP and DMAB. Photo-induced spectral changes of pATP in the fingerprint region were explained well by photo-thermal variation of the Au-S bond configuration, which affects the degree of the metal-to-molecule charge transfer resonance. This finding indicates that a large number of reports in the field of plasmon-mediated photochemistry must be reconsidered.
Collapse
Affiliation(s)
- Toshiki Kondo
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan.
| | - Motoharu Inagaki
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan.
| | - Shohei Tanaka
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Shinya Tsukiji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Kenta Motobayashi
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan.
| | - Katsuyoshi Ikeda
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan.
- Frontier Research Institute for Materials Science (FRIMS), Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
188
|
Kumar N, Maiti N, Thomas S. Insights into Plasmon-Induced Dimerization of Rhodanine-A Surface-Enhanced Raman Scattering Study. J Phys Chem A 2023; 127:4429-4439. [PMID: 37184576 DOI: 10.1021/acs.jpca.3c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Plasmon-mediated chemical reactions (PMCRs) have attracted considerable interest in recent times. The PMCR initiated by hot carriers is known to be influenced by the type of metals and the excitation wavelength. Herein, we have carried out the surface-enhanced Raman scattering (SERS) investigation of rhodanine (Rd), an important pharmacologically active heterocyclic compound, adsorbed on silver and gold nanoparticles (AgNP and AuNP) using 514.5 and 632.8 nm lasers. The prominent Raman band at 1566 cm-1 observed in the SERS spectra is attributed to the characteristic ν(C═C) stretching vibration of the Rd dimer and not of Rd tautomers. The chemical transformation of Rd to Rd dimer on metal surfaces is plausibly triggered by the indirect transfer of energetic hot electrons generated during the non-radiative decay of plasmon. The mechanism involved in the dimerization of Rd via the indirect transfer of hot electrons is also presented. The effect of wavelength on the dimerization of Rd is also observed on the AgNP surface, which indicates that the dimerization occurs more efficiently on the AgNP surface with excitation at 514.5 nm wavelength.
Collapse
Affiliation(s)
- Naveen Kumar
- Infrared Laser Spectroscopy Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Nandita Maiti
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Susy Thomas
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
189
|
Singh S, Verma R, Kaul N, Sa J, Punjal A, Prabhu S, Polshettiwar V. Surface plasmon-enhanced photo-driven CO 2 hydrogenation by hydroxy-terminated nickel nitride nanosheets. Nat Commun 2023; 14:2551. [PMID: 37137916 PMCID: PMC10156734 DOI: 10.1038/s41467-023-38235-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
The majority of visible light-active plasmonic catalysts are often limited to Au, Ag, Cu, Al, etc., which have considerations in terms of costs, accessibility, and instability. Here, we show hydroxy-terminated nickel nitride (Ni3N) nanosheets as an alternative to these metals. The Ni3N nanosheets catalyze CO2 hydrogenation with a high CO production rate (1212 mmol g-1 h-1) and selectivity (99%) using visible light. Reaction rate shows super-linear power law dependence on the light intensity, while quantum efficiencies increase with an increase in light intensity and reaction temperature. The transient absorption experiments reveal that the hydroxyl groups increase the number of hot electrons available for photocatalysis. The in situ diffuse reflectance infrared Fourier transform spectroscopy shows that the CO2 hydrogenation proceeds via the direct dissociation pathway. The excellent photocatalytic performance of these Ni3N nanosheets (without co-catalysts or sacrificial agents) is suggestive of the use of metal nitrides instead of conventional plasmonic metal nanoparticles.
Collapse
Affiliation(s)
- Saideep Singh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Nidhi Kaul
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Jacinto Sa
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Ajinkya Punjal
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - Shriganesh Prabhu
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
190
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 184] [Impact Index Per Article: 184.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|
191
|
Zheng JR, You EM, Hu YF, Yi J, Tian ZQ. Ultrabroadband hot-hole photodetector based on ultrathin gold film. NANOSCALE 2023; 15:8863-8869. [PMID: 37128810 DOI: 10.1039/d3nr00220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hot carriers injected into semiconductor enables below-bandgap photodetection, thus attracting increasing interest. The performance of hot carrier-based device is directly related to the absorptivity of metal. Several strategies such as surface plasmons, metamaterials, and optical cavities are utilized to enhance the weak intrinsic absorption of the metal. However, the detection range is limited by their narrow resonance bandwidth alternatively. Impedance-matched absorbers, whose sheet resistance is equal to half of the free-space impedance (188 Ω), can achieve a wavelength-independent absorptivity up to 50%. Herein, we theoretically design a purely planar hot-hole photodetector based on ultrathin gold film, a new type of metallic impedance-matched absorber. Benefiting both from the efficient absorption and ultrathin nature of the film, we predict that the photoresponsivity of our device can reach 35.7 mA W-1 under zero bias at the wavelength of 1.3 μm, with a full width at half maximum (FWHM) of detection range reaching 1050 nm, setting a new record for the bandwidth of the hot carrier photodetectors. We also demonstrated that the device is robust to the incident angle and can be tuned through the external bias voltage. This work provides a pathway for broadband hot carrier detectors and other hot carrier-based applications.
Collapse
Affiliation(s)
- Jun-Rong Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.
| | - En-Ming You
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.
| | - Yuan-Fei Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.
| | - Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (iKKEM), Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (iKKEM), Xiamen 361005, China
| |
Collapse
|
192
|
Patil S, Lomonosov V, Ringe E, Kurouski D. Tip-Enhanced Raman Imaging of Plasmon-Driven Coupling of 4-Nitrobenzenethiol on Au-Decorated Magnesium Nanostructures. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:7702-7706. [PMID: 37483685 PMCID: PMC10359025 DOI: 10.1021/acs.jpcc.3c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Indexed: 07/25/2023]
Abstract
Magnesium nanoparticles (MgNPs) exhibit localized surface plasmon resonances across the ultraviolet, visible, and near-infrared parts of electromagnetic spectrum and are attracting increasing interest due to their sustainability and biocompatibility. In this study, we used tip-enhanced Raman spectroscopy (TERS) to examine the photocatalytic properties of MgNP protected by a thin native oxide layer and their Au-modified bimetallic analogs produced by partial galvanic replacement, Au-MgNPs. We found no reduction of 4-nitrobenzenethiol (4-NBT) to p,p'-dimercaptoazobisbenzene (DMAB) when a Au-coated tip was placed in contact with a self-assembled monolayer of 4-NBT molecules adsorbed on MgNPs alone. However, decorating Mg with Au made these bimetallic structures catalytically active. The DMAB signal signature of photocatalytic activity was more delocalized around AuNPs attached to Mg than around AuNPs on a Si substrate, indicating coupling between the Mg core and Au decorations. This report on photocatalytic activity of a bimetallic structure including plasmonic Mg paves the way for further catalyst architectures benefiting from Mg's versatility and abundance.
Collapse
Affiliation(s)
- Swati
J. Patil
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Vladimir Lomonosov
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- The
Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
193
|
Lomonosov V, Wayman TMR, Hopper ER, Ivanov YP, Divitini G, Ringe E. Plasmonic magnesium nanoparticles decorated with palladium catalyze thermal and light-driven hydrogenation of acetylene. NANOSCALE 2023; 15:7420-7429. [PMID: 36988987 PMCID: PMC10134437 DOI: 10.1039/d3nr00745f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Bimetallic Pd-Mg nanoparticles were synthesized by partial galvanic replacement of plasmonic Mg nanoparticles, and their catalytic and photocatalytic properties in selective hydrogenation of acetylene have been investigated. Electron probe studies confirm that the Mg-Pd structures mainly consist of metallic Mg and sustain several localized plasmon resonances across a broad wavelength range. We demonstrate that, even without light excitation, the Pd-Mg nanostructures exhibit an excellent catalytic activity with selectivity to ethylene of 55% at 100% acetylene conversion achieved at 60 °C. With laser excitation at room temperature over a range of intensities and wavelengths, the initial reaction rate increased up to 40 times with respect to dark conditions and a 2-fold decrease of the apparent activation energy was observed. A significant wavelength-dependent change in hydrogenation kinetics strongly supports a catalytic behavior affected by plasmon excitation. This report of coupling between Mg's plasmonic and Pd's catalytic properties paves the way for sustainable catalytic structures for challenging, industrially relevant selective hydrogenation processes.
Collapse
Affiliation(s)
- Vladimir Lomonosov
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Thomas M R Wayman
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Elizabeth R Hopper
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Yurii P Ivanov
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giorgio Divitini
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| |
Collapse
|
194
|
Ambardar S, Withers ZH, Liu J, Lai X, Albagami A, Zhukova A, Fabris Capelli P, Sahoo PK, Voronine DV. Quantum plasmonic two-dimensional WS 2-MoS 2 heterojunction. NANOSCALE 2023; 15:7318-7328. [PMID: 37017120 DOI: 10.1039/d3nr00861d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Two-dimensional heterostructures have recently gained broad interest due to potential applications in optoelectronic devices. Their reduced dimensionality leads to novel physical effects beyond conventional bulk electronics. However, the optical properties of the 2D lateral heterojunctions have not been completely characterized due to the limited spatial resolution, requiring nano-optical techniques beyond the diffraction limit. Here, we investigate lateral monolayer WS2-MoS2 heterostructures in a plasmonic Au-Au tip-substrate picocavity using subdiffraction limited tip-enhanced photoluminescence (TEPL) spectroscopy with sub-nanometer tip-sample distance control. We observed more than 3 orders of magnitude PL enhancement by placing a plasmonic Au-coated tip at the resonantly excited heterojunction. We developed a theoretical model of the quantum plasmonic 2D heterojunction, where tunneling of hot electrons between the Au tip and MoS2 leads to the quenching of the MoS2 PL, while simultaneously increasing the WS2 PL, in contrast to the non-resonant reverse transfer. Our simulations show good agreement with the experiments, revealing a range of parameters and enhancement factors corresponding to the switching between the classical and quantum regimes. The controllable photoresponse of the 2D heterojunction can be used in novel nanodevices.
Collapse
Affiliation(s)
- Sharad Ambardar
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
| | - Zachary H Withers
- Department of Physics, Stony Brook University, Stony Brook, NY 11790, USA
| | - Jiru Liu
- Department of Physics, Texas A&M University, College Station, TX 77840, USA
| | - Xiaoyi Lai
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Abdullah Albagami
- Department of Physics, King Saud University, Riyadh 11362, Kingdom of Saudi Arabia
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Alina Zhukova
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | | | - Prasana K Sahoo
- Materials Science Centre, India Institute of Technology, Kharagpur, India
| | - Dmitri V Voronine
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
195
|
Lee SA, Kuhs CT, Searles EK, Everitt HO, Landes CF, Link S. d-Band Hole Dynamics in Gold Nanoparticles Measured with Time-Resolved Emission Upconversion Microscopy. NANO LETTERS 2023; 23:3501-3506. [PMID: 37023287 DOI: 10.1021/acs.nanolett.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The performance of photocatalysts and photovoltaic devices can be enhanced by energetic charge carriers produced from plasmon decay, and the lifetime of these energetic carriers greatly affects overall efficiencies. Although hot electron lifetimes in plasmonic gold nanoparticles have been investigated, hot hole lifetimes have not been as thoroughly studied in plasmonic systems. Here, we demonstrate time-resolved emission upconversion microscopy and use it to resolve the lifetime and energy-dependent cooling of d-band holes formed in gold nanoparticles by plasmon excitation and by following plasmon decay into interband and then intraband electron-hole pairs.
Collapse
Affiliation(s)
- Stephen A Lee
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Christopher T Kuhs
- U.S. Army DEVCOM Army Research Laboratory-South, Houston, Texas 77005, United States
| | - Emily K Searles
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Henry O Everitt
- U.S. Army DEVCOM Army Research Laboratory-South, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Stephan Link
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
196
|
Wilms M, Melendez LV, Hudson RJ, Hall CR, Ratnayake SP, Smith T, Della Gaspera E, Bryant G, Connell TU, Gomez D. Photoinitiated Energy Transfer in Porous-Cage-Stabilised Silver Nanoparticles. Angew Chem Int Ed Engl 2023:e202303501. [PMID: 37186332 DOI: 10.1002/anie.202303501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
We report a new composite material consisting of silver nanoparticles decorated with three-dimensional molecular organic cages based on light absorbing porphyrins. The porphyrin cages serve to both stabilize the particles and allow diffusion and trapping of small molecules close to the metallic surface. Combining these two photoactive components results in a Fano resonant interaction between the porphyrin Soret band and the nanoparticle localised surface plasmon resonance. Time resolved spectroscopy revealed the silver nanoparticles transfer up to 37% of their excited state energy to the stabilising layer of porphyrin cages. These unusual photophysics cause a 2-fold current increase in photoelectrochemical water splitting measurements. The composite structure provides a compelling proof-of-concept for advanced photosensitiser systems with intrinsic porosity for photocatalytic and sensing applications.
Collapse
Affiliation(s)
| | | | - Rohan J Hudson
- The University of Melbourne, School of Chemistry, AUSTRALIA
| | | | | | - Trevor Smith
- The University of Melbourne, School of Chemistry, AUSTRALIA
| | | | - Gary Bryant
- RMIT University, School of Science, AUSTRALIA
| | - Timothy U Connell
- Deakin University, School of Life and Environmental Science, AUSTRALIA
| | - Daniel Gomez
- RMIT University, Chemistry, Melbourne, 3000, Melbourne, AUSTRALIA
| |
Collapse
|
197
|
Dhama R, Habib M, Rashed AR, Caglayan H. Unveiling Long-Lived Hot-Electron Dynamics via Hyperbolic Meta-antennas. NANO LETTERS 2023; 23:3122-3127. [PMID: 36867120 PMCID: PMC10141405 DOI: 10.1021/acs.nanolett.2c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Conventional plasmonic nanoantennas enable scattering and absorption bands at the same wavelength region, making their utilization to full potential impossible for both features simultaneously. Here, we take advantage of spectrally separated scattering and absorption resonance bands in hyperbolic meta-antennas (HMA) to enhance the hot-electron generation and prolong the relaxation dynamics of hot carriers. First, we show that HMA enables extending plasmon-modulated photoluminescence spectrum toward longer wavelengths due to its particular scattering spectrum, in comparison to the corresponding nanodisk antennas (NDA). Then, we demonstrate that the tunable absorption band of HMA controls and modifies the lifetime of the plasmon-induced hot electrons with enhanced excitation efficiency in the near-infrared region and also broadens the utilization of the visible/NIR spectrum in comparison to NDA. Thus, the rational heterostructures designed by plasmonic and adsorbate/dielectric layers with such dynamics can be a platform for optimization and engineering the utilization of plasmon-induced hot carriers.
Collapse
|
198
|
Gao Y, Zhu Q, He S, Wang S, Nie W, Wu K, Fan F, Li C. Observation of Charge Separation Enhancement in Plasmonic Photocatalysts under Coupling Conditions. NANO LETTERS 2023; 23:3540-3548. [PMID: 37026801 DOI: 10.1021/acs.nanolett.3c00697] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Surface plasmon resonance-induced charge separation plays key roles in plasmon-related applications, especially in photocatalysis and photovoltaics. Plasmon coupling nanostructures exhibit extraordinary behaviors in hybrid states, phonon scattering, and ultrafast plasmon dephasing, but plasmon-induced charge separation in these materials remains unknown. Here, we design Schottky-free Au nanoparticle (NP)/NiO/Au nanoparticles-on-a-mirror plasmonic photocatalysts to support plasmon-induced interfacial hole transfer, evidenced by surface photovoltage microscopy at the single-particle level. In particular, we observe a nonlinear increase in charge density and photocatalytic performance with an increase in excitation intensity in plasmonic photocatalysts containing hot spots as a result of varying the geometry. Such charge separation increased the internal quantum efficiency by 14 times at 600 nm in catalytic reactions as compared to that of the Au NP/NiO without a coupling effect. These observations provide an improved understanding of charge transfer management and utilization by geometric engineering and interface electronic structure for plasmonic photocatalysis.
Collapse
Affiliation(s)
- Yuying Gao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, P. R. China
| | - Qianhong Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan He
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, P. R. China
| | - Wei Nie
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, P. R. China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, P. R. China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, P. R. China
| |
Collapse
|
199
|
Feng Y, Xu Y, Wen Z, Ning X, Wang J, Wang D, Cao J, Zhou X. Cerium End-Deposited Gold Nanorods-Based Photoimmunotherapy for Boosting Tumor Immunogenicity. Pharmaceutics 2023; 15:pharmaceutics15041309. [PMID: 37111794 PMCID: PMC10145050 DOI: 10.3390/pharmaceutics15041309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) was closely related to high metastatic risk and mortality and has not yet found a targeted receptor for targeted therapy. Cancer immunotherapy, especially photoimmunotherapy, shows promising potential in TNBC treatment because of great spatiotemporal controllability and non-trauma. However, the therapeutic effectiveness was limited by insufficient tumor antigen generation and the immunosuppressive microenvironment. METHODS We report on the design of cerium oxide (CeO2) end-deposited gold nanorods (CEG) to achieve excellent near-infrared photoimmunotherapy. CEG was synthesized through hydrolyzing of ceria precursor (cerium acetate, Ce(AC)3) on the surface of Au nanorods (NRs) for cancer therapy. The therapeutic response was first verified in murine mammary carcinoma (4T1) cells and then monitored by analysis of the anti-tumor effect in xenograft mouse models. RESULTS Under near-infrared (NIR) light irradiation, CEG can efficiently generate hot electrons and avoid hot-electron recombination to release heat and form reactive oxygen species (ROS), triggering immunogenic cell death (ICD) and activating part of the immune response. Simultaneously, combining with PD-1 antibody could further enhance cytotoxic T lymphocyte infiltration. CONCLUSIONS Compared with CBG NRs, CEG NRs showed strong photothermal and photodynamic effects to destroy tumors and activate a part of the immune response. Combining with PD-1 antibody could reverse the immunosuppressive microenvironment and thoroughly activate the immune response. This platform demonstrates the superiority of combination therapy of photoimmunotherapy and PD-1 blockade in TNBC therapy.
Collapse
Affiliation(s)
- Yanlin Feng
- Key Laboratory of Cellular Physiology, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Yumei Xu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaoyang Wen
- Key Laboratory of Cellular Physiology, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xin Ning
- Key Laboratory of Cellular Physiology, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jianlin Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xin Zhou
- Key Laboratory of Cellular Physiology, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
200
|
Hu T, Zhang J, Xia J, Li X, Tao P, Deng T. A Review on Recent Progress in Preparation of Medium-Temperature Solar-Thermal Nanofluids with Stable Dispersion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1399. [PMID: 37110985 PMCID: PMC10141638 DOI: 10.3390/nano13081399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
Direct absorption of sunlight and conversion into heat by uniformly dispersed photothermal nanofluids has emerged as a facile way to efficiently harness abundant renewable solar-thermal energy for a variety of heating-related applications. As the key component of the direct absorption solar collectors, solar-thermal nanofluids, however, generally suffer from poor dispersion and tend to aggregate, and the aggregation and precipitation tendency becomes even stronger at elevated temperatures. In this review, we overview recent research efforts and progresses in preparing solar-thermal nanofluids that can be stably and homogeneously dispersed under medium temperatures. We provide detailed description on the dispersion challenges and the governing dispersion mechanisms, and introduce representative dispersion strategies that are applicable to ethylene glycol, oil, ionic liquid, and molten salt-based medium-temperature solar-thermal nanofluids. The applicability and advantages of four categories of stabilization strategies including hydrogen bonding, electrostatic stabilization, steric stabilization, and self-dispersion stabilization in improving the dispersion stability of different type of thermal storage fluids are discussed. Among them, recently emerged self-dispersible nanofluids hold the potential for practical medium-temperature direct absorption solar-thermal energy harvesting. In the end, the exciting research opportunities, on-going research need and possible future research directions are also discussed. It is anticipated that the overview of recent progress in improving dispersion stability of medium-temperature solar-thermal nanofluids can not only stimulate exploration of direct absorption solar-thermal energy harvesting applications, but also provide a promising means to solve the fundamental limiting issue for general nanofluid technologies.
Collapse
|