151
|
VCP maintains nuclear size by regulating the DNA damage-associated MDC1-p53-autophagy axis in Drosophila. Nat Commun 2021; 12:4258. [PMID: 34253734 PMCID: PMC8275807 DOI: 10.1038/s41467-021-24556-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
The maintenance of constant karyoplasmic ratios suggests that nuclear size has physiological significance. Nuclear size anomalies have been linked to malignant transformation, although the mechanism remains unclear. By expressing dominant-negative TER94 mutants in Drosophila photoreceptors, here we show disruption of VCP (valosin-containing protein, human TER94 ortholog), a ubiquitin-dependent segregase, causes progressive nuclear size increase. Loss of VCP function leads to accumulations of MDC1 (mediator of DNA damage checkpoint protein 1), connecting DNA damage or associated responses to enlarged nuclei. TER94 can interact with MDC1 and decreases MDC1 levels, suggesting that MDC1 is a VCP substrate. Our evidence indicates that MDC1 accumulation stabilizes p53A, leading to TER94K2A-associated nuclear size increase. Together with a previous report that p53A disrupts autophagic flux, we propose that the stabilization of p53A in TER94K2A-expressing cells likely hinders the removal of nuclear content, resulting in aberrant nuclear size increase. Cells maintain a constant cytoplasm to nucleus volume ratio, although the role of DNA damage is not well explored. Here, the authors use Drosophila to connect TER94, the fly homolog of VCP, to disruption of DNA damage repair, leading to ubiquitinated Mu2 protein accumulation and enlarged nuclei.
Collapse
|
152
|
Deolal P, Mishra K. Regulation of diverse nuclear shapes: pathways working independently, together. Commun Integr Biol 2021; 14:158-175. [PMID: 34262635 PMCID: PMC8259725 DOI: 10.1080/19420889.2021.1939942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane-bound organelles provide physical and functional compartmentalization of biological processes in eukaryotic cells. The characteristic shape and internal organization of these organelles is determined by a combination of multiple internal and external factors. The maintenance of the shape of nucleus, which houses the genetic material within a double membrane bilayer, is crucial for a seamless spatio-temporal control over nuclear and cellular functions. Dynamic morphological changes in the shape of nucleus facilitate various biological processes. Chromatin packaging, nuclear and cytosolic protein organization, and nuclear membrane lipid homeostasis are critical determinants of overall nuclear morphology. As such, a multitude of molecular players and pathways act together to regulate the nuclear shape. Here, we review the known mechanisms governing nuclear shape in various unicellular and multicellular organisms, including the non-spherical nuclei and non-lamin-related structural determinants. The review also touches upon cellular consequences of aberrant nuclear morphologies.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
153
|
Yamaguchi N. [Novel Tyrosine Phosphorylation Signals in the Nucleus and on Mitotic Spindle Fibers and Lysosomes Revealed by Strong Inhibition of Tyrosine Dephosphorylation]. YAKUGAKU ZASSHI 2021; 141:927-947. [PMID: 34193653 DOI: 10.1248/yakushi.21-00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-tyrosine phosphorylation is one of the posttranslational modifications and plays critical roles in regulating a wide variety of cellular processes, such as cell proliferation, differentiation, adhesion, migration, survival, and apoptosis. Protein-tyrosine phosphorylation is reversibly regulated by protein-tyrosine kinases and protein-tyrosine phosphatases. Strong inhibition of protein-tyrosine phosphatase activities is required to undoubtedly detect tyrosine phosphorylation. Our extremely careful usage of Na3VO4, a potent protein-tyrosine phosphatase inhibitor, has revealed not only the different intracellular trafficking pathways of Src-family tyrosine kinase members but also novel tyrosine phosphorylation signals in the nucleus and on mitotic spindle fibers and lysosomes. Furthermore, despite that the first identified oncogene product v-Src is generally believed to induce transformation through continuous stimulation of proliferation signaling by its strong tyrosine kinase activity, v-Src-driven transformation was found to be caused not by continuous proliferation signaling but by v-Src tyrosine kinase activity-dependent stochastic genome alterations. Here, I summarize our findings regarding novel tyrosine phosphorylation signaling in a spatiotemporal sense and highlight the significance of the roles of tyrosine phosphorylation in transcriptional regulation inside the nucleus and chromosome dynamics.
Collapse
Affiliation(s)
- Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
154
|
Cai D, Liu Z, Lippincott-Schwartz J. Biomolecular Condensates and Their Links to Cancer Progression. Trends Biochem Sci 2021; 46:535-549. [PMID: 33579564 DOI: 10.1016/j.tibs.2021.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/14/2023]
Abstract
Liquid-liquid phase separation (LLPS) has emerged in recent years as an important physicochemical process for organizing diverse processes within cells via the formation of membraneless organelles termed biomolecular condensates. Emerging evidence now suggests that the formation and regulation of biomolecular condensates are also intricately linked to cancer formation and progression. We review the most recent literature linking the existence and/or dissolution of biomolecular condensates to different hallmarks of cancer formation and progression. We then discuss the opportunities that this condensate perspective provides for cancer research and the development of novel therapeutic approaches, including the perturbation of condensates by small-molecule inhibitors.
Collapse
Affiliation(s)
- Danfeng Cai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | |
Collapse
|
155
|
Liddane AG, McNamara CA, Campbell MC, Mercier I, Holaska JM. Defects in Emerin-Nucleoskeleton Binding Disrupt Nuclear Structure and Promote Breast Cancer Cell Motility and Metastasis. Mol Cancer Res 2021; 19:1196-1207. [PMID: 33771882 PMCID: PMC8254762 DOI: 10.1158/1541-7786.mcr-20-0413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/27/2020] [Accepted: 03/19/2021] [Indexed: 01/17/2023]
Abstract
Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamins are found in many cancers and its expression is correlated with better clinical outcomes. The nucleus is the largest organelle in the cell with a diameter between 10 and 20 μm. Nuclear size significantly impacts cell migration. Nuclear structural changes are predicted to impact cancer metastasis by regulating cancer cell migration. Here we show emerin regulates nuclear structure in invasive breast cancer cells to impact cancer metastasis. Invasive breast cancer cells had 40% to 50% less emerin than control cells, which resulted in decreased nuclear size. Overexpression of GFP-emerin in invasive breast cancer cells rescued nuclear size and inhibited migration through 3.0 and 8.0 μm pores. Mutational analysis showed emerin binding to nucleoskeletal proteins was important for its regulation of nuclear structure, migration, and invasion. Importantly, emerin expression inhibited lung metastasis by 91% in orthotopic mouse models of breast cancer. Emerin nucleoskeleton-binding mutants failed to inhibit metastasis. These results support a model whereby emerin binding to the nucleoskeleton regulates nuclear structure to impact metastasis. In this model, emerin plays a central role in metastatic transformation, because decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. IMPLICATIONS: Modulating emerin expression and function represents new targets for therapeutic interventions of metastasis, because increased emerin expression rescued cancer metastasis.
Collapse
Affiliation(s)
- Alexandra G Liddane
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Chelsea A McNamara
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Mallory C Campbell
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania
| | - Isabelle Mercier
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania
| | - James M Holaska
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania.
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey
| |
Collapse
|
156
|
Spiers H, Songhurst H, Nightingale L, de Folter J, Hutchings R, Peddie CJ, Weston A, Strange A, Hindmarsh S, Lintott C, Collinson LM, Jones ML. Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations. Traffic 2021; 22:240-253. [PMID: 33914396 DOI: 10.1111/tra.12789] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/19/2022]
Abstract
Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although some machine learning approaches exist in this domain, we remain far from realizing the aspiration of a highly accurate, yet generic, automated analysis approach, with a major obstacle being lack of sufficient high-quality ground-truth data. To address this, we developed a novel citizen science project, Etch a Cell, to enable volunteers to manually segment the nuclear envelope (NE) of HeLa cells imaged with serial blockface scanning electron microscopy. We present our approach for aggregating multiple volunteer annotations to generate a high-quality consensus segmentation and demonstrate that data produced exclusively by volunteers can be used to train a highly accurate machine learning algorithm for automatic segmentation of the NE, which we share here, in addition to our archived benchmark data.
Collapse
Affiliation(s)
- Helen Spiers
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
- Department of Physics, University of Oxford, Oxford, UK
| | - Harry Songhurst
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
- Department of Computer Science, University of Manchester, Manchester, UK
| | - Luke Nightingale
- Scientific Computing Science Technology Platform, The Francis Crick Institute, London, UK
| | - Joost de Folter
- Scientific Computing Science Technology Platform, The Francis Crick Institute, London, UK
| | | | - Christopher J Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Anne Weston
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Amy Strange
- Scientific Computing Science Technology Platform, The Francis Crick Institute, London, UK
| | - Steve Hindmarsh
- Scientific Computing Science Technology Platform, The Francis Crick Institute, London, UK
| | - Chris Lintott
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
- Department of Physics, University of Oxford, Oxford, UK
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Martin L Jones
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| |
Collapse
|
157
|
Blatt R, Davidi S, Munster M, Shteingauz A, Cahal S, Zeidan A, Marciano T, Bomzon Z, Haber A, Giladi M, Weinberg U, Kinzel A, Palti Y. In Vivo Safety of Tumor Treating Fields (TTFields) Applied to the Torso. Front Oncol 2021; 11:670809. [PMID: 34249709 PMCID: PMC8264759 DOI: 10.3389/fonc.2021.670809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background Tumor Treating Fields (TTFields) therapy is a non-invasive, loco-regional, anti-mitotic treatment modality that targets rapidly dividing cancerous cells, utilizing low intensity, alternating electric fields at cancer-cell-type specific frequencies. TTFields therapy is approved for the treatment of newly diagnosed and recurrent glioblastoma (GBM) in the US, Europe, Israel, Japan, and China. The favorable safety profile of TTFields in patients with GBM is partially attributed to the low rate of mitotic events in normal, quiescent brain cells. However, specific safety evaluations are warranted at locations with known high rates of cellular proliferation, such as the torso, which is a primary site of several of the most aggressive malignant tumors. Methods The safety of delivering TTFields to the torso of healthy rats at 150 or 200 kHz, which were previously identified as optimal frequencies for treating multiple torso cancers, was investigated. Throughout 2 weeks of TTFields application, animals underwent daily clinical examinations, and at treatment cessation blood samples and internal organs were examined. Computer simulations were performed to verify that the targeted internal organs of the torso were receiving TTFields at therapeutic intensities (≥ 1 V/cm root mean square, RMS). Results No treatment-related mortality was observed. Furthermore, no significant differences were observed between the TTFields-treated and control animals for all examined safety parameters: activity level, food and water intake, stools, motor neurological status, respiration, weight, complete blood count, blood biochemistry, and pathological findings of internal organs. TTFields intensities of 1 to 2.5 V/cm RMS were confirmed for internal organs within the target region. Conclusions This research demonstrates the safety of therapeutic level TTFields at frequencies of 150 and 200 kHz when applied as monotherapy to the torso of healthy rats.
Collapse
|
158
|
Nuclear Lamin A/C Expression Is a Key Determinant of Paclitaxel Sensitivity. Mol Cell Biol 2021; 41:e0064820. [PMID: 33972393 DOI: 10.1128/mcb.00648-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Paclitaxel is a key member of the Taxane (paclitaxel [originally named taxol], docetaxel/Taxotere) family of successful drugs used in the current treatment of several solid tumors, including ovarian cancer. The molecular target of paclitaxel has been identified as tubulin, and paclitaxel binding alters the dynamics and thus stabilizes microtubule bundles. Traditionally, the anticancer mechanism of paclitaxel has been thought to originate from its interfering with the role of microtubules in mitosis, resulting in mitotic arrest and subsequent apoptosis. However, recent evidence suggests that paclitaxel operates in cancer therapies via an as-yet-undefined mechanism rather than as a mitotic inhibitor. We found that paclitaxel caused a striking break up of nuclei (referred to as multimicronucleation) in malignant ovarian cancer cells but not in normal cells, and susceptibility to undergo nuclear fragmentation and cell death correlated with a reduction in nuclear lamina proteins, lamin A/C. Lamin A/C proteins are commonly lost, reduced, or heterogeneously expressed in ovarian cancer, accounting for the aberration of nuclear shape in malignant cells. Mouse ovarian epithelial cells isolated from lamin A/C-null mice were highly sensitive to paclitaxel and underwent nuclear breakage, compared to control wild-type cells. Forced overexpression of lamin A/C led to resistance to paclitaxel-induced nuclear breakage in cancer cells. Additionally, paclitaxel-induced multimicronucleation occurred independently of cell division that was achieved by either the withdrawal of serum or the addition of mitotic inhibitors. These results provide a new understanding for the mitotis-independent mechanism for paclitaxel killing of cancer cells, where paclitaxel induces nuclear breakage in malignant cancer cells that have a malleable nucleus but not in normal cells that have a stiffer nuclear envelope. As such, we identify that reduced nuclear lamin A/C protein levels correlate with nuclear shape deformation and are a key determinant of paclitaxel sensitivity of cancer cells.
Collapse
|
159
|
Sharma VP, Williams J, Leung E, Sanders J, Eddy R, Castracane J, Oktay MH, Entenberg D, Condeelis JS. SUN-MKL1 Crosstalk Regulates Nuclear Deformation and Fast Motility of Breast Carcinoma Cells in Fibrillar ECM Microenvironment. Cells 2021; 10:1549. [PMID: 34205257 PMCID: PMC8234170 DOI: 10.3390/cells10061549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Aligned collagen fibers provide topography for the rapid migration of single tumor cells (streaming migration) to invade the surrounding stroma, move within tumor nests towards blood vessels to intravasate and form distant metastases. Mechanisms of tumor cell motility have been studied extensively in the 2D context, but the mechanistic understanding of rapid single tumor cell motility in the in vivo context is still lacking. Here, we show that streaming tumor cells in vivo use collagen fibers with diameters below 3 µm. Employing 1D migration assays with matching in vivo fiber dimensions, we found a dependence of tumor cell motility on 1D substrate width, with cells moving the fastest and the most persistently on the narrowest 1D fibers (700 nm-2.5 µm). Interestingly, we also observed nuclear deformation in the absence of restricting extracellular matrix pores during high speed carcinoma cell migration in 1D, similar to the nuclear deformation observed in tumor cells in vivo. Further, we found that actomyosin machinery is aligned along the 1D axis and actomyosin contractility synchronously regulates cell motility and nuclear deformation. To further investigate the link between cell speed and nuclear deformation, we focused on the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex proteins and SRF-MKL1 signaling, key regulators of mechanotransduction, actomyosin contractility and actin-based cell motility. Analysis of The Cancer Genome Atlas dataset showed a dramatic decrease in the LINC complex proteins SUN1 and SUN2 in primary tumor compared to the normal tissue. Disruption of LINC complex by SUN1 + 2 KD led to multi-lobular elongated nuclei, increased tumor cell motility and concomitant increase in F-actin, without affecting Lamin proteins. Mechanistically, we found that MKL1, an effector of changes in cellular G-actin to F-actin ratio, is required for increased 1D motility seen in SUN1 + 2 KD cells. Thus, we demonstrate a previously unrecognized crosstalk between SUN proteins and MKL1 transcription factor in modulating nuclear shape and carcinoma cell motility in an in vivo relevant 1D microenvironment.
Collapse
Affiliation(s)
- Ved P. Sharma
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - James Williams
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (J.W.); (J.S.); (J.C.)
| | - Edison Leung
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
| | - Joe Sanders
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (J.W.); (J.S.); (J.C.)
| | - Robert Eddy
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
| | - James Castracane
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (J.W.); (J.S.); (J.C.)
| | - Maja H. Oktay
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Entenberg
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John S. Condeelis
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
160
|
Yadahalli R, Kheur S, Adwani A, Bhonde R, Raj AT, Patil S. Nuclear Blebbing Frequency in Tobacco-Induced Oral Potentially Malignant Disorders: A Pilot Study. Acta Cytol 2021; 65:403-410. [PMID: 34120116 DOI: 10.1159/000516496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Tobacco contains several genotoxic agents including N-nitrosamine which has the potential to cause significant nuclear damage. Nuclear blebbing is a form of protrusion on the nuclear membrane and could potentially be caused by tobacco-induced genotoxicity and is closely associated with malignancy. Thus, the present study aimed to assess if tobacco-associated oral potentially malignant disorders including oral submucous fibrosis (OSF) and oral leukoplakia have a higher nuclear blebbing frequency than patients with normal oral mucosa with no history of tobacco use. METHODS The sample consisted of patients with OSF (n = 30) and oral leukoplakia (n = 10) and normal oral mucosa (n = 10). Exfoliated cells collected from the study groups were smeared on a clean microscopic slide and stained by May-Grunwald-Giemsa stain. A baseline frequency of nuclear blebbing was evaluated using a bright-field microscope with a ×100 objective. The number of nuclear blebbing per 1,000 epithelial cells was recorded and expressed in percentage. ANOVA, the Mann-Whitney U test, and Spearman's correlation were used to analyze the data. RESULTS The mean rank of distribution of nuclear blebbing showed significant difference between all 3 groups, with the highest frequency noted in leukoplakia, followed by oral submucous and normal oral mucosa. Within OSF, the frequency of nuclear blebbing significantly increased from early stage to advanced stage. In OSF, a statistically significant positive linear correlation was noted between duration (in years), frequency (per day) of tobacco use, clinical grading, and nuclear blebbing. DISCUSSION/CONCLUSIONS The frequency of nuclear blebbing was significantly higher in oral potentially malignant disorders than normal mucosa. Nuclear blebbing also exhibited a strong dose- and time-dependent correlation with tobacco usage and clinical staging in OSF. The nuclear blebbing frequency could be a noninvasive, economic tool to assess malignant risk in tobacco-induced oral potentially malignant disorders.
Collapse
Affiliation(s)
- Roopa Yadahalli
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Aanchal Adwani
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Ramesh Bhonde
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - A Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | - Shankargouda Patil
- Division of Oral Pathology College of Dentistry, Department of Maxillofacial Surgery and Diagnostic Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
161
|
Xu J, Liu Y. Probing Chromatin Compaction and Its Epigenetic States in situ With Single-Molecule Localization-Based Super-Resolution Microscopy. Front Cell Dev Biol 2021; 9:653077. [PMID: 34178982 PMCID: PMC8222792 DOI: 10.3389/fcell.2021.653077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Chromatin organization play a vital role in gene regulation and genome maintenance in normal biological processes and in response to environmental insults. Disruption of chromatin organization imposes a significant effect on many cellular processes and is often associated with a range of pathological processes such as aging and cancer. Extensive attention has been attracted to understand the structural and functional studies of chromatin architecture. Biochemical assays coupled with the state-of-the-art genomic technologies have been traditionally used to probe chromatin architecture. Recent advances in single molecule localization microscopy (SMLM) open up new opportunities to directly visualize higher-order chromatin architecture, its compaction status and its functional states at nanometer resolution in the intact cells or tissue. In this review, we will first discuss the recent technical advantages and challenges of using SMLM to image chromatin architecture. Next, we will focus on the recent applications of SMLM for structural and functional studies to probe chromatin architecture in key cellular processes. Finally, we will provide our perspectives on the recent development and potential applications of super-resolution imaging of chromatin architecture in improving our understanding in diseases.
Collapse
Affiliation(s)
- Jianquan Xu
- Biomedical Optical Imaging Laboratory, Department of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yang Liu
- Biomedical Optical Imaging Laboratory, Department of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
162
|
Dubos T, Poulet A, Gonthier-Gueret C, Mougeot G, Vanrobays E, Li Y, Tutois S, Pery E, Chausse F, Probst AV, Tatout C, Desset S. Automated 3D bio-imaging analysis of nuclear organization by NucleusJ 2.0. Nucleus 2021; 11:315-329. [PMID: 33153359 PMCID: PMC7714466 DOI: 10.1080/19491034.2020.1845012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
NucleusJ 1.0, an ImageJ plugin, is a useful tool to analyze nuclear morphology and chromatin organization in plant and animal cells. NucleusJ 2.0 is a new release of NucleusJ, in which image processing is achieved more quickly using a command-lineuser interface. Starting with large collection of 3D nuclei, segmentation can be performed by the previously developed Otsu-modified method or by a new 3D gift-wrapping method, taking better account of nuclear indentations and unstained nucleoli. These two complementary methods are compared for their accuracy by using three types of datasets available to the community at https://www.brookes.ac.uk/indepth/images/ . Finally, NucleusJ 2.0 was evaluated using original plant genetic material by assessing its efficiency on nuclei stained with DNA dyes or after 3D-DNA Fluorescence in situ hybridization. With these improvements, NucleusJ 2.0 permits the generation of large user-curated datasets that will be useful for software benchmarking or to train convolution neural networks.
Collapse
Affiliation(s)
- Tristan Dubos
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France58
| | - Axel Poulet
- Department of Molecular, Cellular & Developmental Biology, Yale University , New Haven, CT, USA
| | | | - Guillaume Mougeot
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France58.,Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University , Oxford, UK
| | - Emmanuel Vanrobays
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France58
| | - Yanru Li
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich , Zürich, Switzerland
| | - Sylvie Tutois
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France58
| | - Emilie Pery
- Institut Pascal, Université Clermont Auvergne , Clermont-Ferrand, France
| | - Frédéric Chausse
- Institut Pascal, Université Clermont Auvergne , Clermont-Ferrand, France
| | - Aline V Probst
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France58
| | - Christophe Tatout
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France58
| | - Sophie Desset
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France58
| |
Collapse
|
163
|
Evans DE, Mermet S, Tatout C. Advancing knowledge of the plant nuclear periphery and its application for crop science. Nucleus 2021; 11:347-363. [PMID: 33295233 PMCID: PMC7746251 DOI: 10.1080/19491034.2020.1838697] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review, we explore recent advances in knowledge of the structure and dynamics of the plant nuclear envelope. As a paradigm, we focused our attention on the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, a structurally conserved bridging complex comprising SUN domain proteins in the inner nuclear membrane and KASH domain proteins in the outer nuclear membrane. Studies have revealed that this bridging complex has multiple functions with structural roles in positioning the nucleus within the cell, conveying signals across the membrane and organizing chromatin in the 3D nuclear space with impact on gene transcription. We also provide an up-to-date survey in nuclear dynamics research achieved so far in the model plant Arabidopsis thaliana that highlights its potential impact on several key plant functions such as growth, seed maturation and germination, reproduction and response to biotic and abiotic stress. Finally, we bring evidences that most of the constituents of the LINC Complex and associated components are, with some specificities, conserved in monocot and dicot crop species and are displaying very similar functions to those described for Arabidopsis. This leads us to suggest that a better knowledge of this system and a better account of its potential applications will in the future enhance the resilience and productivity of crop plants.
Collapse
Affiliation(s)
- David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes University , Oxford, UK
| | - Sarah Mermet
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France
| | - Christophe Tatout
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France
| |
Collapse
|
164
|
Jin T, Tan X, Shi X, Lv L, Peng X, Zhang H, Tang B, Wang C, Yang M. Preliminary Findings on Proline-Rich Protein 14 as a Diagnostic Biomarker for Parkinson's Disease. Neuromolecular Med 2021; 23:285-291. [PMID: 33001354 PMCID: PMC8128746 DOI: 10.1007/s12017-020-08617-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022]
Abstract
The nuclear envelope component proline-rich protein 14 (PRR14) is involved in the nuclear morphological alteration and activation of the mTOR (mammalian target of rapamycin) signaling pathway, and has been repeatedly shown to be upregulated in patients with Parkinson's disease (PD). The aim of this study was to explore whether PRR14 can be used as a potential biomarker for the diagnosis of PD. We compared PRR14 expression in PD patients and normal controls in gene expression omnibus (GEO) data. Quantitative enzyme-linked immunosorbent assay (ELISA) was used to detect PRR14 expression in PD patients and age- and sex-matched controls. The relationship between serum PRR14 and clinical phenotype was evaluated using correlation analysis and logistic regression. The expression of PRR14 in whole blood, substantia nigra, and medial substantia nigra was significantly higher in PD patients than in the healthy control group. Compared to plasma, serum was more suitable for the detection of PRR14. Furthermore, serum PRR14 level in PD patients was significantly higher than that in age- and sex-matched controls. The area under the curve for serum PRR14 level in the ability to identify PD versus age- and sex-matched controls was 0.786. In addition, serum PRR14 level was found to correlate with constipation in PD patients. Our findings demonstrate for the first time that serum PRR14 is a potential biomarker for PD.
Collapse
Affiliation(s)
- Tao Jin
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Xuling Tan
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Lingling Lv
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xinke Peng
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| | - Mei Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
165
|
Schmitz R, Madesta F, Nielsen M, Krause J, Steurer S, Werner R, Rösch T. Multi-scale fully convolutional neural networks for histopathology image segmentation: From nuclear aberrations to the global tissue architecture. Med Image Anal 2021; 70:101996. [DOI: 10.1016/j.media.2021.101996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022]
|
166
|
Pathak RU, Soujanya M, Mishra RK. Deterioration of nuclear morphology and architecture: A hallmark of senescence and aging. Ageing Res Rev 2021; 67:101264. [PMID: 33540043 DOI: 10.1016/j.arr.2021.101264] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
The metazoan nucleus is a highly structured organelle containing several well-defined sub-organelles. It is the largest organelle inside a cell taking up from one tenth to half of entire cell volume. This makes it one of the easiest organelles to identify and study under the microscope. Abnormalities in the nuclear morphology and architecture are commonly observed in an aged and senescent cell. For example, the nuclei enlarge, loose their shape, appear lobulated, harbour nuclear membrane invaginations, carry enlarged/fragmented nucleolus, loose heterochromatin, etc. In this review we discuss about the age-related changes in nuclear features and elaborate upon the molecular reasons driving the change. Many of these changes can be easily imaged under a microscope and analysed in silico. Thus, computational image analysis of nuclear features appears to be a promising tool to evaluate physiological age of a cell and offers to be a legitimate biomarker. It can be used to examine progression of age-related diseases and evaluate therapies.
Collapse
Affiliation(s)
| | - Mamilla Soujanya
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Rakesh Kumar Mishra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
167
|
Ansari S, Sami N, Yasin D, Ahmad N, Fatma T. Biomedical applications of environmental friendly poly-hydroxyalkanoates. Int J Biol Macromol 2021; 183:549-563. [PMID: 33932421 DOI: 10.1016/j.ijbiomac.2021.04.171] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Biological polyesters of hydroxyacids are known as polyhydroxyalkanoates (PHA). They have proved to be an alternative, environmentally friendly and attractive candidate for the replacement of petroleum-based plastics in many applications. Many bacteria synthesize these compounds as an intracellular carbon and energy compound usually under unbalanced growth conditions. Biodegradability and biocompatibility of different PHA has been studied in cell culture systems or in an animal host during the last few decades. Such investigations have proposed that PHA can be used as biomaterials for applications in conventional medical devices such as sutures, patches, meshes, implants, and tissue engineering scaffolds as well. Moreover, findings related to encapsulation capability and degradation kinetics of some PHA polymers has paved their way for development of controlled drug delivery systems. The present review discusses about bio-plastics, their characteristics, examines the key findings and recent advances highlighting the usage of bio-plastics in different medical devices. The patents concerning to PHA application in biomedical field have been also enlisted that will provide a brief overview of the status of research in bio-plastic. This would help medical researchers and practitioners to replace the synthetic plastics aids that are currently being used. Simultaneously, it could also prove to be a strong step in reducing the plastic pollution that surged abruptly due to the COVID-19 medical waste.
Collapse
Affiliation(s)
- Sabbir Ansari
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Neha Sami
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Durdana Yasin
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Nazia Ahmad
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| |
Collapse
|
168
|
Shokrollahi M, Mekhail K. Interphase microtubules in nuclear organization and genome maintenance. Trends Cell Biol 2021; 31:721-731. [PMID: 33902985 DOI: 10.1016/j.tcb.2021.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Microtubules are major cytoskeletal components mediating fundamental cellular processes, including cell division. Recent evidence suggests that microtubules also regulate the nucleus during the cell cycle's interphase stage. Deciphering such roles of microtubules should uncover direct crosstalk between the nucleus and cytoplasm, impacting genome function and organismal health. Here, we review emerging roles for microtubules in interphase genome regulation. We explore how microtubules exert cytoplasmic forces on the nucleus or transport molecular cargo, including DNA, into or within the nucleus. We also describe how microtubules perform these functions by establishing transient or stable connections with nuclear envelope elements. Lastly, we discuss how the regulation of the nucleus by microtubules impacts genome organization and repair. Together, the literature indicates that interphase microtubules are critical regulators of nuclear structure and genome stability.
Collapse
Affiliation(s)
- Mitra Shokrollahi
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Canada Research Chairs Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
169
|
Landers CC, Rabeler CA, Ferrari EK, D'Alessandro LR, Kang DD, Malisa J, Bashir SM, Carone DM. Ectopic expression of pericentric HSATII RNA results in nuclear RNA accumulation, MeCP2 recruitment, and cell division defects. Chromosoma 2021; 130:75-90. [PMID: 33585981 PMCID: PMC7889552 DOI: 10.1007/s00412-021-00753-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Within the pericentric regions of human chromosomes reside large arrays of tandemly repeated satellite sequences. Expression of the human pericentric satellite HSATII is prevented by extensive heterochromatin silencing in normal cells, yet in many cancer cells, HSATII RNA is aberrantly expressed and accumulates in large nuclear foci in cis. Expression and aggregation of HSATII RNA in cancer cells is concomitant with recruitment of key chromatin regulatory proteins including methyl-CpG binding protein 2 (MeCP2). While HSATII expression has been observed in a wide variety of cancer cell lines and tissues, the effect of its expression is unknown. We tested the effect of stable expression of HSATII RNA within cells that do not normally express HSATII. Ectopic HSATII expression in HeLa and primary fibroblast cells leads to focal accumulation of HSATII RNA in cis and triggers the accumulation of MeCP2 onto nuclear HSATII RNA bodies. Further, long-term expression of HSATII RNA leads to cell division defects including lagging chromosomes, chromatin bridges, and other chromatin defects. Thus, expression of HSATII RNA in normal cells phenocopies its nuclear accumulation in cancer cells and allows for the characterization of the cellular events triggered by aberrant expression of pericentric satellite RNA.
Collapse
Affiliation(s)
- Catherine C Landers
- Department of Nutritional Sciences, University of Connecticut , Storrs, CT, USA
| | | | | | | | - Diana D Kang
- Division of Pharmaceutics and Pharmacology College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Jessica Malisa
- Stanford University School of Medicine, Stanford, CA, USA
| | - Safia M Bashir
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Dawn M Carone
- Department of Biology, Swarthmore College, Swarthmore, PA, USA.
| |
Collapse
|
170
|
Payne AC, Chiang ZD, Reginato PL, Mangiameli SM, Murray EM, Yao CC, Markoulaki S, Earl AS, Labade AS, Jaenisch R, Church GM, Boyden ES, Buenrostro JD, Chen F. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science 2021; 371:eaay3446. [PMID: 33384301 PMCID: PMC7962746 DOI: 10.1126/science.aay3446] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/17/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Understanding genome organization requires integration of DNA sequence and three-dimensional spatial context; however, existing genome-wide methods lack either base pair sequence resolution or direct spatial localization. Here, we describe in situ genome sequencing (IGS), a method for simultaneously sequencing and imaging genomes within intact biological samples. We applied IGS to human fibroblasts and early mouse embryos, spatially localizing thousands of genomic loci in individual nuclei. Using these data, we characterized parent-specific changes in genome structure across embryonic stages, revealed single-cell chromatin domains in zygotes, and uncovered epigenetic memory of global chromosome positioning within individual embryos. These results demonstrate how IGS can directly connect sequence and structure across length scales from single base pairs to whole organisms.
Collapse
Affiliation(s)
- Andrew C Payne
- Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Zachary D Chiang
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul L Reginato
- Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
- Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | - Evan M Murray
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Chun-Chen Yao
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | | | - Andrew S Earl
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ajay S Labade
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Edward S Boyden
- Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- McGovern Institute, MIT, Cambridge, MA 02139, USA
- Koch Institute, MIT, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Centers for Neurobiological Engineering and Extreme Bionics, MIT, Cambridge, MA 02139, USA
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
171
|
Mohebi A, Le Gratiet A, Marongiu R, Callegari F, Bianchini P, Diaspro A. Combined approach using circular intensity differential scattering microscopy under phasor map data analysis. APPLIED OPTICS 2021; 60:1558-1565. [PMID: 33690489 DOI: 10.1364/ao.417677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Circular intensity differential scattering (CIDS) is based on the analysis of circular polarized light scattering and has been proven to be an interesting label-free microscopy technique sensitive to the chiral organization at the submicroscopic level. However, this approach averages the localized contrasts related to the sample polarimetric properties in the illumination volume. Additionally, the detection sensitivity suffers from the confinement of the mixture of structures, and it becomes an arduous task to discriminate the source of the signal. In this work, we show that a phasor map approach combined with CIDS microscopy has provided an intuitive view of the sample organization to recognize the presence of different molecular species in the illumination volume. The data represented in terms of polarization response mapped to a single point called a phasor also have the potential to pave the way for the analysis of large data sets. We validated this method by numerical simulations and compared the results with that of experimental data of optical devices of reference.
Collapse
|
172
|
Rana P, Sowmya A, Meijering E, Song Y. Estimation of three-dimensional chromatin morphology for nuclear classification and characterisation. Sci Rep 2021; 11:3364. [PMID: 33564040 PMCID: PMC7873284 DOI: 10.1038/s41598-021-82985-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Classification and characterisation of cellular morphological states are vital for understanding cell differentiation, development, proliferation and diverse pathological conditions. As the onset of morphological changes transpires following genetic alterations in the chromatin configuration inside the nucleus, the nuclear texture as one of the low-level properties if detected and quantified accurately has the potential to provide insights on nuclear organisation and enable early diagnosis and prognosis. This study presents a three dimensional (3D) nuclear texture description method for cell nucleus classification and variation measurement in chromatin patterns on the transition to another phenotypic state. The proposed approach includes third plane information using hyperplanes into the design of the Sorted Random Projections (SRP) texture feature and is evaluated on publicly available 3D image datasets of human fibroblast and human prostate cancer cell lines obtained from the Statistics Online Computational Resource. Results show that 3D SRP and 3D Local Binary Pattern provide better classification results than other feature descriptors. In addition, the proposed metrics based on 3D SRP validate the change in intensity and aggregation of heterochromatin on transition to another state and characterise the intermediate and ultimate phenotypic states.
Collapse
Affiliation(s)
- Priyanka Rana
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Arcot Sowmya
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Erik Meijering
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Yang Song
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
173
|
Drosophila female germline stem cells undergo mitosis without nuclear breakdown. Curr Biol 2021; 31:1450-1462.e3. [PMID: 33548191 DOI: 10.1016/j.cub.2021.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 02/02/2023]
Abstract
Stem cell homeostasis requires nuclear lamina (NL) integrity. In Drosophila germ cells, compromised NL integrity activates the ataxia telangiectasia and Rad3-related (ATR) and checkpoint kinase 2 (Chk2) checkpoint kinases, blocking germ cell differentiation and causing germline stem cell (GSC) loss. Checkpoint activation occurs upon loss of either the NL protein emerin or its partner barrier-to-autointegration factor, two proteins required for nuclear reassembly at the end of mitosis. Here, we examined how mitosis contributes to NL structural defects linked to checkpoint activation. These analyses led to the unexpected discovery that wild-type female GSCs utilize a non-canonical mode of mitosis, one that retains a permeable but intact nuclear envelope and NL. We show that the interphase NL is remodeled during mitosis for insertion of centrosomes that nucleate the mitotic spindle within the confines of the nucleus. We show that depletion or loss of NL components causes mitotic defects, including compromised chromosome segregation associated with altered centrosome positioning and structure. Further, in emerin mutant GSCs, centrosomes remain embedded in the interphase NL. Notably, these embedded centrosomes carry large amounts of pericentriolar material and nucleate astral microtubules, revealing a role for emerin in the regulation of centrosome structure. Epistasis studies demonstrate that defects in centrosome structure are upstream of checkpoint activation, suggesting that these centrosome defects might trigger checkpoint activation and GSC loss. Connections between NL proteins and centrosome function have implications for mechanisms associated with NL dysfunction in other stem cell populations, including NL-associated diseases, such as laminopathies.
Collapse
|
174
|
Sisdelli L, Cordioli MIV, Vaisman F, Monte O, Longui CA, Cury AN, Freitas MO, Rangel-Pozzo A, Mai S, Cerutti JM. A Multifocal Pediatric Papillary Thyroid Carcinoma (PTC) Harboring the AGK-BRAF and RET/PTC3 Fusion in a Mutually Exclusive Pattern Reveals Distinct Levels of Genomic Instability and Nuclear Organization. BIOLOGY 2021; 10:biology10020125. [PMID: 33562578 PMCID: PMC7914679 DOI: 10.3390/biology10020125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Simple Summary Genetic alterations, such as RET/PTC and AGK-BRAF fusions, are frequent events in pediatric papillary thyroid carcinoma (PTC). However, their role as prognostic markers in pediatric PTC is still under investigation. In this study, we present a patient harboring three tumor foci with distinct genetic alterations (AGK-BRAF, RET/PTC3 and an absence of canonical alterations) that were investigated for DNA structure and telomere-related genomic instability. These preliminary results highlight that AGK-BRAF fusion likely affects nuclear architecture, which might explain a more aggressive disease outcome observed in pediatric PTC cases with AGK-BRAF fusion. Abstract The spectrum and incidence of gene fusions in papillary thyroid carcinoma (PTC) can differ significantly depending on the age of onset, histological subtype or radiation exposure history. In sporadic pediatric PTC, RET/PTC1-3 and AGK-BRAF fusions are common genetic alterations. The role of RET/PTC as a prognostic marker in pediatric PTC is still under investigation. We recently showed that AGK-BRAF fusion is prevalent in young patients (mean 10 years) and associated with specific and aggressive pathological features such as multifocality and lung metastasis. In this pilot study, we report a unique patient harboring three different foci: the first was positive for AGK-BRAF fusion, the second was positive for just RET/PTC3 fusion and the third was negative for both rearrangements. To investigate whether AGK-BRAF and RET/PTC3 are associated with genomic instability and chromatin modifications, we performed quantitative fluorescence in situ hybridization (Q-FISH) of telomere repeats followed by 3D imaging analysis and 3D super-resolution Structured Illumination Microscopy (3D-SIM) to analyze the DNA structure from the foci. We demonstrated in this preliminary study that AGK-BRAF is likely associated with higher levels of telomere-related genomic instability and chromatin remodeling in comparison with RET/PTC3 foci. Our results suggest a progressive disruption in chromatin structure in AGK-BRAF-positive cells, which might explain a more aggressive disease outcome in patients harboring this rearrangement.
Collapse
Affiliation(s)
- Luiza Sisdelli
- The Genetic Basis of Thyroid Tumors Lab, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (L.S.); (M.I.V.C.)
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (A.R.-P.); (S.M.)
| | - Maria Isabel V. Cordioli
- The Genetic Basis of Thyroid Tumors Lab, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (L.S.); (M.I.V.C.)
| | | | - Osmar Monte
- Department of Pediatrics, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo 01221-010, Brazil; (O.M.); (C.A.L.)
| | - Carlos A. Longui
- Department of Pediatrics, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo 01221-010, Brazil; (O.M.); (C.A.L.)
| | - Adriano N. Cury
- Department of Medicine, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo 01221-010, Brazil;
| | - Monique O. Freitas
- Medical Genetics Service of the Martagão Gesteira Childcare and Pediatrics Institute (IPPMG), Medical School, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-912, Brazil;
| | - Aline Rangel-Pozzo
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (A.R.-P.); (S.M.)
| | - Sabine Mai
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (A.R.-P.); (S.M.)
| | - Janete M. Cerutti
- The Genetic Basis of Thyroid Tumors Lab, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (L.S.); (M.I.V.C.)
- Correspondence: ; Tel.: +55-11-5576-4979
| |
Collapse
|
175
|
Ultra-structural analysis and morphological changes during the differentiation of trophozoite to cyst in Entamoeba invadens. Mol Biochem Parasitol 2021; 242:111363. [PMID: 33524469 DOI: 10.1016/j.molbiopara.2021.111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/21/2022]
Abstract
Entamoeba histolytica, a pathogenic parasite, is the causative organism of amoebiasis and uses human colon to complete its life cycle. It destroys intestinal tissue leading to invasive disease. Since it does not form cyst in culture medium, a reptilian parasite Entamoeba invadens serves as the model system to study encystation. Detailed investigation on the mechanism of cyst formation, information on ultra-structural changes and cyst wall formation during encystation are still lacking in E. invadens. Here, we used electron microscopy to study the ultrastructural changes during cyst formation and showed that the increase in heterochromatin patches and deformation of nuclear shape were early events in encystation. These changes peaked at ∼20 h post induction, and normal nuclear morphology was restored by 72 h. Two types of cellular structures were visible by 16 h. One was densely stained and consisted of the cytoplasmic mass with clearly visible nucleus. The other consisted of membranous shells with large vacuoles and scant cytoplasm. The former structure developed into the mature cyst while the latter structure was lost after 20 h, This study of ultra-structural changes during encystation in E. invadens opens up the possibilities for further investigation into the mechanisms involved in this novel process.
Collapse
|
176
|
Chen H, Good MC. Nuclear sizER in Early Development. Dev Cell 2021; 54:297-298. [PMID: 32781022 DOI: 10.1016/j.devcel.2020.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this issue of Developmental Cell, Mukherjee et al. (2020) investigate control of nuclear growth by live imaging of early embryogenesis, perturbations of blastomere dimensions, and reconstitution in vitro. The authors uncover new mechanisms of nuclear size scaling by the amount of inherited perinuclear ER and duration of interphase.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd., 1151 BRB II/III, Philadelphia, PA 19104, USA
| | - Matthew C Good
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd., 1151 BRB II/III, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, 421 Curie Blvd., 1151 BRB II/III, Philadelphia, PA 19104, USA.
| |
Collapse
|
177
|
Adhikari P, Shukla PK, Ghimire HM, Hasan M, Sahay P, Almabadi H, Tripathi V, Skalli O, Rao R, Pradhan P. TEM study of chronic alcoholism effects on early carcinogenesis by probing the nanoscale structural alterations of cell nuclei. Phys Biol 2021; 18:026001. [PMID: 33207323 DOI: 10.1088/1478-3975/abcbdd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nanoscale structural alteration in the nuclei of cells with the progression of carcinogenesis is due to the rearrangements of the basic building blocks in the cell such as DNA, RNA, lipids, etc. Although epigenetic modifications underlie the development of cancer, exposure to carcinogenic chemicals such as alcohol also enhances the development of cancer. We report the effects of chronic alcoholism on early-carcinogenesis based on changes in the degree of nanoscale structural alterations (L d) in nuclei. For this, transmission electron microscopy (TEM) imaging of the nuclei of colonic cells is performed for the following four mouse models: control mice; chronic alcoholic mice treated with ethanol (i.e., EtOH mice); mice treated with colonic carcinogen azoxymethane (AOM) and dextran sulfate sodium (DSS) that induced colitis (i.e., AOM + DSS mice); and chronic alcoholic or EtOH treated mice, together with AOM and DSS treatment (i.e., AOM + DSS + EtOH mice). The disordered optical lattices are constructed from their respective TEM images of thin colonic cell nuclei and the L d values are calculated using the inverse participation ratio (IPR) technique from the spatially localized eigenfunctions of these lattices. Results show no significant difference in the average L d value of the colon cell nuclei of alcohol treated mice relative to its control [i.e., L d(C) ∼ L d(EtOH)]; however, an increase in the L d value of alcohol treated precancerous cells [i.e., L d(AOM + DSS + EtOH) > L d(AOM + DSS)], indicating that alcohol accelerates the early carcinogenic process.
Collapse
Affiliation(s)
- Prakash Adhikari
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762, United States of America. These authors contributed equally to the work
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Pennacchio FA, Nastały P, Poli A, Maiuri P. Tailoring Cellular Function: The Contribution of the Nucleus in Mechanotransduction. Front Bioeng Biotechnol 2021; 8:596746. [PMID: 33490050 PMCID: PMC7820809 DOI: 10.3389/fbioe.2020.596746] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cells sense a variety of different mechanochemical stimuli and promptly react to such signals by reshaping their morphology and adapting their structural organization and tensional state. Cell reactions to mechanical stimuli arising from the local microenvironment, mechanotransduction, play a crucial role in many cellular functions in both physiological and pathological conditions. To decipher this complex process, several studies have been undertaken to develop engineered materials and devices as tools to properly control cell mechanical state and evaluate cellular responses. Recent reports highlight how the nucleus serves as an important mechanosensor organelle and governs cell mechanoresponse. In this review, we will introduce the basic mechanisms linking cytoskeleton organization to the nucleus and how this reacts to mechanical properties of the cell microenvironment. We will also discuss how perturbations of nucleus-cytoskeleton connections, affecting mechanotransduction, influence health and disease. Moreover, we will present some of the main technological tools used to characterize and perturb the nuclear mechanical state.
Collapse
Affiliation(s)
- Fabrizio A. Pennacchio
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paulina Nastały
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Alessandro Poli
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paolo Maiuri
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
179
|
Molla MS, Katti DR, Katti KS. Mechanobiological evaluation of prostate cancer metastasis to bone using an in vitro prostate cancer testbed. J Biomech 2021; 114:110142. [PMID: 33290947 PMCID: PMC8281967 DOI: 10.1016/j.jbiomech.2020.110142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022]
Abstract
Prostate cancer exhibits a propensity to metastasize to the bone, which often leads to fatality. Bone metastasis is characterized by complex biochemical, morphological, pathophysiological, and genetic changes to cancer cells as they colonize at bone sites. In this study, we report the evaluation of MDA PCa2b prostate cancer cells' nanomechanical properties during the mesenchymal-to-epithelial transition (MET) and during disease progression at the metastatic site. Bone-mimetic tissue-engineered 3D nanoclay scaffolds have been used to create in vitro metastatic site for prostate cancer. A significant softening of the prostate cancer cells during MET and further softening as disease progression occurs at metastasis is also reported. The significant reduction in elastic modulus of prostate cancer cells during MET was attributed to actin reorganization and depolymerization. This study provides input towards direct nanomechanical measurements to evaluate the time evolution of cells' mechanical behavior in tumors at bone metastasis site.
Collapse
Affiliation(s)
- Md Shahjahan Molla
- Center for Engineered Cancer Testbeds, Department of Civil and Environmental Engineering, NDSU, Fargo, ND 58104, United States; Biomedical Engineering, NDSU, Fargo, ND 58104, United States; Materials and Nanotechnology, NDSU, Fargo, ND 58104, United States.
| | - Dinesh R Katti
- Center for Engineered Cancer Testbeds, Department of Civil and Environmental Engineering, NDSU, Fargo, ND 58104, United States; Biomedical Engineering, NDSU, Fargo, ND 58104, United States; Materials and Nanotechnology, NDSU, Fargo, ND 58104, United States.
| | - Kalpana S Katti
- Center for Engineered Cancer Testbeds, Department of Civil and Environmental Engineering, NDSU, Fargo, ND 58104, United States; Biomedical Engineering, NDSU, Fargo, ND 58104, United States; Materials and Nanotechnology, NDSU, Fargo, ND 58104, United States.
| |
Collapse
|
180
|
Rong R, Li J, Li Y, Guo X, Wang C, Li Y, Li J, Han B, Cao Z, Wang K, Li X. Synthesis and Anti-tumor Effects of Naphthalimide Derivatives Targeted in Cell Nucleus. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202008015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
181
|
Goto C, Hara-Nishimura I, Tamura K. Regulation and Physiological Significance of the Nuclear Shape in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:673905. [PMID: 34177991 PMCID: PMC8222917 DOI: 10.3389/fpls.2021.673905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/14/2021] [Indexed: 05/19/2023]
Abstract
The shape of plant nuclei varies among different species, tissues, and cell types. In Arabidopsis thaliana seedlings, nuclei in meristems and guard cells are nearly spherical, whereas those of epidermal cells in differentiated tissues are elongated spindle-shaped. The vegetative nuclei in pollen grains are irregularly shaped in angiosperms. In the past few decades, it has been revealed that several nuclear envelope (NE) proteins play the main role in the regulation of the nuclear shape in plants. Some plant NE proteins that regulate nuclear shape are also involved in nuclear or cellular functions, such as nuclear migration, maintenance of chromatin structure, gene expression, calcium and reactive oxygen species signaling, plant growth, reproduction, and plant immunity. The shape of the nucleus has been assessed both by labeling internal components (for instance chromatin) and by labeling membranes, including the NE or endoplasmic reticulum in interphase cells and viral-infected cells of plants. Changes in NE are correlated with the formation of invaginations of the NE, collectively called the nucleoplasmic reticulum. In this review, what is known and what is unknown about nuclear shape determination are presented, and the physiological significance of the control of the nuclear shape in plants is discussed.
Collapse
Affiliation(s)
- Chieko Goto
- Graduate School of Science, Kobe University, Kobe, Japan
| | | | - Kentaro Tamura
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- *Correspondence: Kentaro Tamura,
| |
Collapse
|
182
|
Syedmoradi L, Norton ML, Omidfar K. Point-of-care cancer diagnostic devices: From academic research to clinical translation. Talanta 2020; 225:122002. [PMID: 33592810 DOI: 10.1016/j.talanta.2020.122002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Early and timely diagnosis of cancer plays a decisive role in appropriate treatment and improves clinical outcomes, improving public health. Significant advances in biosensor technologies are leading to the development of point-of-care (POC) diagnostics, making the testing process faster, easier, cost-effective, and suitable for on-site measurements. Moreover, the incorporation of various nanomaterials into the sensing platforms has yielded POC testing (POCT) platforms with enhanced sensitivity, cost-effectiveness and simplified detection schemes. POC cancer diagnostic devices provide promising platforms for cancer biomarker detection as compared to conventional in vitro diagnostics, which are time-consuming and require sophisticated instrumentation, centralized laboratories, and experienced operators. Current innovative approaches in POC technologies, including biosensors, smartphone interfaces, and lab-on-a-chip (LOC) devices are expected to quickly transform the healthcare landscape. However, only a few cancer POC devices (e.g. lateral flow platforms) have been translated from research laboratories to clinical care, likely due to challenges include sampling procedures, low levels of sensitivity and specificity in clinical samples, system integration and signal readout requirements. In this review, we emphasize recent advances in POC diagnostic devices for cancer biomarker detection and discuss the critical challenges which must be surmounted to facilitate their translation into clinical settings.
Collapse
Affiliation(s)
- Leila Syedmoradi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael L Norton
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, WV, 25755, USA
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
183
|
Kleppe A, Albregtsen F, Trovik J, Kristensen GB, Danielsen HE. Prognostic Value of the Diversity of Nuclear Chromatin Compartments in Gynaecological Carcinomas. Cancers (Basel) 2020; 12:E3838. [PMID: 33352679 PMCID: PMC7766595 DOI: 10.3390/cancers12123838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
Statistical texture analysis of cancer cell nuclei stained for DNA has recently been used to develop a pan-cancer prognostic marker of chromatin heterogeneity. In this study, we instead analysed chromatin organisation by automatically quantifying the diversity of chromatin compartments in cancer cell nuclei. The aim was to investigate the prognostic value of such an assessment in relation to chromatin heterogeneity and as a potential supplement to pathological risk classifications in gynaecological carcinomas. The diversity was quantified by calculating the entropy of both chromatin compartment sizes and optical densities within compartments. We analysed a median of 281 nuclei (interquartile range (IQR), 273 to 289) from 246 ovarian carcinoma patients and a median of 997 nuclei (IQR, 502 to 1452) from 791 endometrial carcinoma patients. The prognostic value of the entropies and chromatin heterogeneity was moderately strongly correlated (r ranged from 0.68 to 0.73), but the novel marker was observed to provide additional prognostic information. In multivariable analysis with clinical and pathological markers, the hazard ratio associated with the novel marker was 2.1 (95% CI, 1.3 to 3.5) in ovarian carcinoma and 2.4 (95% CI, 1.5 to 3.9) in endometrial carcinoma. Integration with pathological risk classifications gave three risk groups with distinctly different prognoses. This suggests that the novel marker of diversity of chromatin compartments might possibly contribute to the selection of high-risk stage I ovarian carcinoma patients for adjuvant chemotherapy and low-risk endometrial carcinoma patients for less extensive surgery.
Collapse
Affiliation(s)
- Andreas Kleppe
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, NO-0424 Oslo, Norway; (A.K.); (F.A.); (G.B.K.)
- Department of Informatics, University of Oslo, NO-0316 Oslo, Norway
| | - Fritz Albregtsen
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, NO-0424 Oslo, Norway; (A.K.); (F.A.); (G.B.K.)
- Department of Informatics, University of Oslo, NO-0316 Oslo, Norway
| | - Jone Trovik
- Department of Obstetrics and Gynecology, Haukeland University Hospital, NO-5020 Bergen, Norway;
- Department of Clinical Science, University of Bergen, NO-5020 Bergen, Norway
| | - Gunnar B. Kristensen
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, NO-0424 Oslo, Norway; (A.K.); (F.A.); (G.B.K.)
- Department of Gynecologic Oncology, Oslo University Hospital, NO-0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NO-0318 Oslo, Norway
| | - Håvard E. Danielsen
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, NO-0424 Oslo, Norway; (A.K.); (F.A.); (G.B.K.)
- Department of Informatics, University of Oslo, NO-0316 Oslo, Norway
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
184
|
Yoshioka H, Minami K, Odashima H, Miyakawa K, Horie K, Watanabe J. Outer Cutoff Value for the Box-Counting Method for Fractal Analysis of the Nucleus Using Kirsch Edge Detection. Acta Cytol 2020; 65:186-193. [PMID: 33302277 DOI: 10.1159/000512096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The complexity of chromatin (i.e., irregular geometry and distribution) is one of the important factors considered in the cytological diagnosis of cancer. Fractal analysis with Kirsch edge detection is a known technique to detect irregular geometry and distribution in an image. We examined the outer cutoff value for the box-counting (BC) method for fractal analysis of the complexity of chromatin using Kirsch edge detection. MATERIALS The following images were used for the analysis: (1) image of the nucleus for Kirsch edge detection measuring 97 × 122 pix (10.7 × 13.4 μm) with a Feret diameter of chromatin mesh (n = 50) measuring 17.3 ± 1.8 pix (1.9 ± 0.5 μm) and chromatin network distance (n = 50) measuring 4.4 ± 1.6 pix (0.49 ± 0.18 μm), and (2) sample images for Kirsch edge detection with varying diameters (10.4, 15.9, and 18.1 μm) and network width of 0.4 μm. METHODS Three types of bias that can affect the outcomes of fractal analysis in cytological diagnosis were defined. (1) Nuclear position bias: images of 9 different positions generated by shifting the original position of the nucleus in the middle of a 256 × 256 pix (28.1 μm) square frame in 8 compass directions. (2) Nuclear rotation bias: images of 8 different rotations obtained by rotating the original position of the nucleus in 45° increments (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). (3) Nuclear size bias: images of varying size (diameter: 190 pix [10.4 μm], 290 pix [15.9 μm], and 330 pix [18.1 μm]) with the same mesh pattern (network width: 8 pix [0.4 μm]) within a 512 × 512 pix square. Different outer cutoff values for the BC method (256, 128, 64, 32, 16, and 8 pix) were applied for each bias to assess the fractal dimension and to compare the coefficient of variation (CV). RESULTS The BC method with the outer cutoff value of 32 pix resulted in the least variation of fractal dimension. Specifically, with the cutoff value of 32 pix, the CV of nuclear position bias, nuclear rotation bias, and nuclear size bias were <1% (0.1, 0.4, and 0.3%, respectively), with no significant difference between the position and rotation bias (p = 0.19). Our study suggests that the BC method with the outer cutoff value of 32 pix is suitable for the analysis of the complexity of chromatin with chromatin mesh.
Collapse
Affiliation(s)
- Haruhiko Yoshioka
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan,
| | - Kouki Minami
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Hirokazu Odashima
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Keita Miyakawa
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Jun Watanabe
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| |
Collapse
|
185
|
Sureka R, Mishra R. Identification of Evolutionarily Conserved Nuclear Matrix Proteins and Their Prokaryotic Origins. J Proteome Res 2020; 20:518-530. [PMID: 33289389 DOI: 10.1021/acs.jproteome.0c00550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compared to prokaryotic cells, a typical eukaryotic cell is much more complex along with its endomembrane system and membrane-bound organelles. Although the endosymbiosis theories convincingly explain the evolution of membrane-bound organelles such as mitochondria and chloroplasts, very little is understood about the evolutionary origins of the nucleus, the defining feature of eukaryotes. Most studies on nuclear evolution have not been able to take into consideration the underlying structural framework of the nucleus, attributed to the nuclear matrix (NuMat), a ribonucleoproteinaceous structure. This can largely be attributed to the lack of annotation of its core components. Since NuMat has been shown to provide a structural platform for facilitating a variety of nuclear functions such as replication, transcription, and splicing, it is important to identify its protein components to better understand these processes. In this study, we address this issue using the developing embryos of Drosophila melanogaster and Danio rerio and identify 362 core NuMat proteins that are conserved between the two organisms. We further compare our results with publicly available Mus musculus NuMat dataset and Homo sapiens cellular localization dataset to define the core homologous NuMat proteins consisting of 252 proteins. We find that of them, 86 protein groups have originated from pre-existing proteins in prokaryotes. While 36 were conserved across all eukaryotic supergroups, 14 new proteins evolved before the evolution of the last eukaryotic common ancestor and together, these 50 proteins out of the 252 core conserved NuMat proteins are conserved across all eukaryotes, indicating their indispensable nature for nuclear function for over 1.5 billion years of eukaryotic history. Our analysis paves the way to understand the evolution of the complex internal nuclear architecture and its functions.
Collapse
Affiliation(s)
- Rahul Sureka
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Rakesh Mishra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
186
|
Burla R, La Torre M, Maccaroni K, Verni F, Giunta S, Saggio I. Interplay of the nuclear envelope with chromatin in physiology and pathology. Nucleus 2020; 11:205-218. [PMID: 32835589 PMCID: PMC7529417 DOI: 10.1080/19491034.2020.1806661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
The nuclear envelope compartmentalizes chromatin in eukaryotic cells. The main nuclear envelope components are lamins that associate with a panoply of factors, including the LEM domain proteins. The nuclear envelope of mammalian cells opens up during cell division. It is reassembled and associated with chromatin at the end of mitosis when telomeres tether to the nuclear periphery. Lamins, LEM domain proteins, and DNA binding factors, as BAF, contribute to the reorganization of chromatin. In this context, an emerging role is that of the ESCRT complex, a machinery operating in multiple membrane assembly pathways, including nuclear envelope reformation. Research in this area is unraveling how, mechanistically, ESCRTs link to nuclear envelope associated factors as LEM domain proteins. Importantly, ESCRTs work also during interphase for repairing nuclear envelope ruptures. Altogether the advances in this field are giving new clues for the interpretation of diseases implicating nuclear envelope fragility, as laminopathies and cancer. ABBREVIATIONS na, not analyzed; ko, knockout; kd, knockdown; NE, nuclear envelope; LEM, LAP2-emerin-MAN1 (LEM)-domain containing proteins; LINC, linker of nucleoskeleton and cytoskeleton complexes; Cyt, cytoplasm; Chr, chromatin; MB, midbody; End, endosomes; Tel, telomeres; INM, inner nuclear membrane; NP, nucleoplasm; NPC, Nuclear Pore Complex; ER, Endoplasmic Reticulum; SPB, spindle pole body.
Collapse
Affiliation(s)
- Romina Burla
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Klizia Maccaroni
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Fiammetta Verni
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Simona Giunta
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- Rockefeller University, New York, NY, USA
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Italy
- Institute of Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
187
|
Rashidi N, Pant AD, Salinas SD, Shah M, Thomas VS, Zhang G, Dorairaj S, Amini R. Iris stromal cell nuclei deform to more elongated shapes during pharmacologically-induced miosis and mydriasis. Exp Eye Res 2020; 202:108373. [PMID: 33253707 DOI: 10.1016/j.exer.2020.108373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/01/2020] [Accepted: 11/24/2020] [Indexed: 01/03/2023]
Abstract
Nuclear shape alteration in ocular tissues, which can be used as a metric for overall cell deformation, may also lead to changes in gene expression and protein synthesis that could affect the biomechanics of the tissue extracellular matrix. The biomechanics of iris tissue is of particular interest in the study of primary angle-closure glaucoma. As the first step towards understanding the mutual role of the biomechanics and deformation of the iris on the activity of its constituent stromal cells, we conducted an ex-vivo study in freshly excised porcine eyes. Iris deformation was achieved by activating the constituent smooth muscles of the iris. Pupillary responses were initiated by inducing miosis and mydriasis, and the irides were placed in a fixative, bisected, and sliced into thin sections in a nasal and temporal horizontal orientation. The tissue sections were stained with DAPI for nucleus, and z-stacks were acquired using confocal microscopy. Images were analyzed to determine the nuclear aspect ratio (NAR) using both three-dimensional (3D) reconstructions of the nuclear surfaces as well as projections of the same 3D reconstruction into flat two-dimensional (2D) shapes. We observed that regardless of the calculation method (i.e., one that employed 3D surface reconstructions versus one that employed 2D projected images) the NAR increased in both the miosis group and the mydriasis group. Three-dimensional quantifications showed that NAR increased from 2.52 ± 0.96 in control group to 2.80 ± 0.81 and 2.74 ± 0.94 in the mydriasis and miosis groups, respectively. Notwithstanding the relative convenience in calculating the NAR using the 2D projected images, the 3D reconstructions were found to generate more physiologically realistic values and, thus, can be used in the development of future computational models to study primary angle-closure glaucoma. Since the iris undergoes large deformations in response to ambient light, this study suggests that the iris stromal cells are subjected to a biomechanically active micro-environment during their in-vivo physiological function.
Collapse
Affiliation(s)
- Neda Rashidi
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Anup D Pant
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA; Department of Engineering, East Carolina University, Greenville, NC, 27858, USA
| | - Samuel D Salinas
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA; Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mickey Shah
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Vineet S Thomas
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Syril Dorairaj
- Department of Ophthalmology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rouzbeh Amini
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA; Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA; Department of Mechanical and Industrial Engineering, Northeastern University, 334 Snell Engineering, 360 Huntington Ave., Boston, MA, 02115, USA.
| |
Collapse
|
188
|
Papin S, Paganetti P. Emerging Evidences for an Implication of the Neurodegeneration-Associated Protein TAU in Cancer. Brain Sci 2020; 10:brainsci10110862. [PMID: 33207722 PMCID: PMC7696480 DOI: 10.3390/brainsci10110862] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders and cancer may appear unrelated illnesses. Yet, epidemiologic studies indicate an inverse correlation between their respective incidences for specific cancers. Possibly explaining these findings, increasing evidence indicates that common molecular pathways are involved, often in opposite manner, in the pathogenesis of both disease families. Genetic mutations in the MAPT gene encoding for TAU protein cause an inherited form of frontotemporal dementia, a neurodegenerative disorder, but also increase the risk of developing cancer. Assigning TAU at the interface between cancer and neurodegenerative disorders, two major aging-linked disease families, offers a possible clue for the epidemiological observation inversely correlating these human illnesses. In addition, the expression level of TAU is recognized as a prognostic marker for cancer, as well as a modifier of cancer resistance to chemotherapy. Because of its microtubule-binding properties, TAU may interfere with the mechanism of action of taxanes, a class of chemotherapeutic drugs designed to stabilize the microtubule network and impair cell division. Indeed, a low TAU expression is associated to a better response to taxanes. Although TAU main binding partners are microtubules, TAU is able to relocate to subcellular sites devoid of microtubules and is also able to bind to cancer-linked proteins, suggesting a role of TAU in modulating microtubule-independent cellular pathways associated to oncogenesis. This concept is strengthened by experimental evidence linking TAU to P53 signaling, DNA stability and protection, processes that protect against cancer. This review aims at collecting literature data supporting the association between TAU and cancer. We will first summarize the evidence linking neurodegenerative disorders and cancer, then published data supporting a role of TAU as a modifier of the efficacy of chemotherapies and of the oncogenic process. We will finish by addressing from a mechanistic point of view the role of TAU in de-regulating critical cancer pathways, including the interaction of TAU with cancer-associated proteins.
Collapse
Affiliation(s)
- Stéphanie Papin
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Via ai Söi 24, CH-6807 Torricella-Taverne, Switzerland;
| | - Paolo Paganetti
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Via ai Söi 24, CH-6807 Torricella-Taverne, Switzerland;
- Faculty of Biomedical Neurosciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
- Correspondence: ; Tel.: +41-91-811-7250
| |
Collapse
|
189
|
Lee H, Kim C, Bhattacharjee S, Park H, Prakash D, Choi H. A Paradigm Shift in Nuclear Chromatin Interpretation: From Qualitative Intuitive Recognition to Quantitative Texture Analysis of Breast Cancer Cell Nuclei. Cytometry A 2020; 99:698-706. [PMID: 33159476 PMCID: PMC8359278 DOI: 10.1002/cyto.a.24260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/02/2020] [Accepted: 11/02/2020] [Indexed: 12/03/2022]
Abstract
Assessing the pattern of nuclear chromatin is essential for pathological investigations. However, the interpretation of nuclear pattern is subjective. In this study, we performed the texture analysis of nuclear chromatin in breast cancer samples to determine the nuclear pleomorphism score thereof. We used three different algorithms for extracting high‐level texture features: the gray‐level co‐occurrence matrix (GLCM), gray‐level run length matrix (GLRLM), and gray‐level size zone matrix (GLSZM). Using these algorithms, 12 GLCM, 11 GLRLM, and 16 GLSZM features were extracted from three scores of breast carcinoma (Scores 1–3). Classification accuracy was assessed using the support vector machine (SVM) and k‐nearest neighbor (KNN) classification models. Three features of GLCM, 11 of GLRLM, and 12 of GLSZM were consistent across the three nuclear pleomorphism scores of breast cancer. Comparing Scores 1 and 3, the GLSZM feature large zone high gray‐level emphasis showed the largest difference among breast cancer nuclear scores among all features of the three algorithms. The SVM and KNN classifiers showed favorable results for all three algorithms. A multiclass classification was performed to compare and distinguish between the scores of breast cancer. Texture features of nuclear chromatin can provide useful information for nuclear scoring. However, further validation of the correlations of histopathologic features, and standardization of the texture analysis process, are required to achieve better classification results. © 2021 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Hye‐Kyung Lee
- Department of Pathology, College of MedicineEulji UniversityDaejeonKorea
| | - Cho‐Hee Kim
- Department of Digital Anti‐Aging Healthcareu‐AHRC, Inje UniversityGimhaeKorea
| | | | - Hyeon‐Gyun Park
- Department of Computer Engineeringu‐AHRC, Inje UniversityGimhaeKorea
| | | | - Heung‐Kook Choi
- Department of Computer Engineeringu‐AHRC, Inje UniversityGimhaeKorea
| |
Collapse
|
190
|
Heijo H, Shimogama S, Nakano S, Miyata A, Iwao Y, Hara Y. DNA content contributes to nuclear size control in Xenopus laevis. Mol Biol Cell 2020; 31:2703-2717. [PMID: 32997613 PMCID: PMC7927187 DOI: 10.1091/mbc.e20-02-0113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/28/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cells adapt to drastic changes in genome quantity during evolution and cell division by adjusting the nuclear size to exert genomic functions. However, the mechanism by which DNA content within the nucleus contributes to controlling the nuclear size remains unclear. Here, we experimentally evaluated the effects of DNA content by utilizing cell-free Xenopus egg extracts and imaging of in vivo embryos. Upon manipulation of DNA content while maintaining cytoplasmic effects constant, both plateau size and expansion speed of the nucleus correlated highly with DNA content. We also found that nuclear expansion dynamics was altered when chromatin interaction with the nuclear envelope or chromatin condensation was manipulated while maintaining DNA content constant. Furthermore, excess membrane accumulated on the nuclear surface when the DNA content was low. These results clearly demonstrate that nuclear expansion is determined not only by cytoplasmic membrane supply but also by the physical properties of chromatin, including DNA quantity and chromatin structure within the nucleus, rather than the coding sequences themselves. In controlling the dynamics of nuclear expansion, we propose that chromatin interaction with the nuclear envelope plays a role in transmitting chromatin repulsion forces to the nuclear membrane.
Collapse
Affiliation(s)
- Hiroko Heijo
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi City, 753-8512, Japan
| | - Sora Shimogama
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi City, 753-8512, Japan
| | - Shuichi Nakano
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi City, 753-8512, Japan
| | - Anna Miyata
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi City, 753-8512, Japan
| | - Yasuhiro Iwao
- Laboratory of Molecular Developmental Biology, Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi City, 753-8512, Japan
| | - Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi City, 753-8512, Japan
| |
Collapse
|
191
|
Bozhok YM, Golovko O, Nikonenko AG. nPAsym: an open-source plugin for ImageJ to quantify nuclear shape asymmetry. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105562. [PMID: 32544781 DOI: 10.1016/j.cmpb.2020.105562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES The nucleus is a complex and dynamic organelle enclosing the major part of the cell's genome. A growing body of evidence suggests that changes in the shape of this organelle can influence cell activities. The other way around, altered nuclear shape may be indicative of impaired cell function. Symmetry is an important aspect of nuclear shape not receiving the attention it merits. We address this problem by presenting a software tool allowing to quantify nuclear shape asymmetry in light microscopy images. METHODS The software named nPAsym is written in Scala and implemented as a plugin to ImageJ making possible to use it in combination with other ImageJ tools. The plugin works with 8-bit images segmented into black nuclear masks and white background. It performs a number of operations allowing to analyze multiple objects within a single image, removing some segmentation artefacts, filtering out objects incomplete and below a specified size. The feature of interest is quantified using the notion of point asymmetry. The performance of nPAsym was tested in a small-scale study comparing nuclear shapes for cells of nodular goiter, follicular thyroid adenoma and papillary thyroid carcinoma. RESULTS We present nPAsym, the ImageJ plugin, that measures nuclear shape asymmetry. It works with digital microscopic images segmented using either a raster graphics editor or built-in ImageJ functions. nPAsym is packaged in a single .jar file and does not require installation as well as configuration. It has proved effective in distinguishing between some of the nuclear shape phenotypes. CONCLUSIONS nPAsym is the user-friendly, platform-independent and open-source software tool allowing to quantify nuclear shape asymmetry in digital images captured from cytologic and histologic preparations. It has a potential to become useful for both experimental research and diagnostics.
Collapse
Affiliation(s)
- Y M Bozhok
- Department of Functional Diagnostics, V.P. Komisarenko Institute of Endocrinology and Metabolism, Vyshgorodska str. 69, 04114, Kyiv, Ukraine
| | - O Golovko
- Department of Cytology, Bogomoletz Institute of Physiology, Bogomoletz str. 4, 01024, Kyiv, Ukraine
| | - A G Nikonenko
- Department of Cytology, Bogomoletz Institute of Physiology, Bogomoletz str. 4, 01024, Kyiv, Ukraine.
| |
Collapse
|
192
|
Male G, Deolal P, Manda NK, Yagnik S, Mazumder A, Mishra K. Nucleolar size regulates nuclear envelope shape in Saccharomyces cerevisiae. J Cell Sci 2020; 133:jcs242172. [PMID: 32973112 DOI: 10.1242/jcs.242172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Nuclear shape and size are cell-type specific. Change in nuclear shape is seen during cell division, development and pathology. The nucleus of Saccharomycescerevisiae is spherical in interphase and becomes dumbbell shaped during mitotic division to facilitate the transfer of one nucleus to the daughter cell. Because yeast cells undergo closed mitosis, the nuclear envelope remains intact throughout the cell cycle. The pathways that regulate nuclear shape are not well characterized. The nucleus is organized into various subcompartments, with the nucleolus being the most prominent. We have conducted a candidate-based genetic screen for nuclear shape abnormalities in S. cerevisiae to ask whether the nucleolus influences nuclear shape. We find that increasing nucleolar volume triggers a non-isometric nuclear envelope expansion resulting in an abnormal nuclear envelope shape. We further show that the tethering of rDNA to the nuclear envelope is required for the appearance of these extensions.
Collapse
Affiliation(s)
- Gurranna Male
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Naresh Kumar Manda
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Shantam Yagnik
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally, Serilingampally Manda 500046l, Hyderabad, Telangana, India
| | - Aprotim Mazumder
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally, Serilingampally Manda 500046l, Hyderabad, Telangana, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
193
|
Rangel-Pozzo A, Sisdelli L, Cordioli MIV, Vaisman F, Caria P, Mai S, Cerutti JM. Genetic Landscape of Papillary Thyroid Carcinoma and Nuclear Architecture: An Overview Comparing Pediatric and Adult Populations. Cancers (Basel) 2020; 12:E3146. [PMID: 33120984 PMCID: PMC7693829 DOI: 10.3390/cancers12113146] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Thyroid cancer is a rare malignancy in the pediatric population that is highly associated with disease aggressiveness and advanced disease stages when compared to adult population. The biological and molecular features underlying pediatric and adult thyroid cancer pathogenesis could be responsible for differences in the clinical presentation and prognosis. Despite this, the clinical assessment and treatments used in pediatric thyroid cancer are the same as those implemented for adults and specific personalized target treatments are not used in clinical practice. In this review, we focus on papillary thyroid carcinoma (PTC), which represents 80-90% of all differentiated thyroid carcinomas. PTC has a high rate of gene fusions and mutations, which can influence the histologic subtypes in both children and adults. This review also highlights telomere-related genomic instability and changes in nuclear organization as novel biomarkers for thyroid cancers.
Collapse
Affiliation(s)
- Aline Rangel-Pozzo
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Luiza Sisdelli
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| | - Maria Isabel V. Cordioli
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| | - Fernanda Vaisman
- Instituto Nacional do Câncer, Rio de Janeiro, RJ 22451-000, Brazil;
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Sabine Mai
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Janete M. Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| |
Collapse
|
194
|
Corvaisier M, Alvarado-Kristensson M. Non-Canonical Functions of the Gamma-Tubulin Meshwork in the Regulation of the Nuclear Architecture. Cancers (Basel) 2020; 12:cancers12113102. [PMID: 33114224 PMCID: PMC7690915 DOI: 10.3390/cancers12113102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The appearance of a cell is connected to its function. For example, the fusiform of smooth muscle cells is adapted to facilitate muscle contraction, the lobed nucleus in white blood cells assists with the migratory behavior of these immune cells, and the condensed nucleus in sperm aids in their swimming efficiency. Thus, changes in appearance have been used for decades by doctors as a diagnostic method for human cancers. Here, we summarize our knowledge of how a cell maintains the shape of the nuclear compartment. Specifically, we discuss the role of a novel protein meshwork, the gamma-tubulin meshwork, in the regulation of nuclear morphology and as a therapeutic target against cancer. Abstract The nuclear architecture describes the organization of the various compartments in the nucleus of eukaryotic cells, where a plethora of processes such as nucleocytoplasmic transport, gene expression, and assembly of ribosomal subunits occur in a dynamic manner. During the different phases of the cell cycle, in post-mitotic cells and after oncogenic transformation, rearrangements of the nuclear architecture take place, and, among other things, these alterations result in reorganization of the chromatin and changes in gene expression. A member of the tubulin family, γtubulin, was first identified as part of a multiprotein complex that allows nucleation of microtubules. However, more than a decade ago, γtubulin was also characterized as a nuclear protein that modulates several crucial processes that affect the architecture of the nucleus. This review presents the latest knowledge regarding changes that arise in the nuclear architecture of healthy cells and under pathological conditions and, more specifically, considers the particular involvement of γtubulin in the modulation of the biology of the nuclear compartment.
Collapse
|
195
|
Warecki B, Ling X, Bast I, Sullivan W. ESCRT-III-mediated membrane fusion drives chromosome fragments through nuclear envelope channels. J Cell Biol 2020; 219:133702. [PMID: 32032426 PMCID: PMC7054997 DOI: 10.1083/jcb.201905091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/05/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Mitotic cells must form a single nucleus during telophase or exclude part of their genome as damage-prone micronuclei. While research has detailed how micronuclei arise from cells entering anaphase with lagging chromosomes, cellular mechanisms allowing late-segregating chromosomes to rejoin daughter nuclei remain underexplored. Here, we find that late-segregating acentric chromosome fragments that rejoin daughter nuclei are associated with nuclear membrane but devoid of lamin and nuclear pore complexes in Drosophila melanogaster. We show that acentrics pass through membrane-, lamin-, and nuclear pore-based channels in the nuclear envelope that extend and retract as acentrics enter nuclei. Membrane encompassing the acentrics fuses with the nuclear membrane, facilitating integration of the acentrics into newly formed nuclei. Fusion, mediated by the membrane fusion protein Comt/NSF and ESCRT-III components Shrub/CHMP4B and CHMP2B, facilitates reintegration of acentrics into nuclei. These results suggest a previously unsuspected role for membrane fusion, similar to nuclear repair, in the formation of a single nucleus during mitotic exit and the maintenance of genomic integrity.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Xi Ling
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Ian Bast
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| |
Collapse
|
196
|
Kale N, Nandi S, Patil A, Patil Y, Banerjee S, Khandare J. Nanocarrier anticancer drug-conjugates cause higher cellular deformations: culpable for mischief. Biomater Sci 2020; 8:5729-5738. [PMID: 32940277 DOI: 10.1039/d0bm00923g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Here we report nanocarrier-anticancer drug conjugates culpable for cellular deformations, critically evidenced through image-based analysis as a measure of karyoplasmic ratio (KR) and nuclear surface area (NSA). Multiwalled carbon nanotubes (MWCNTs) were coordinated additionally with Fe3O4 nanoparticles (NPs) to evaluate the symbiotic influence, and further conjugated to Dox for evaluating the cellular kinetics and for measuring cell deformations. Cellular entry kinetics of the CNT (CNT-Dox and CNT-Cys-Fe3O4-Dox) nanocarriers and their efficiency in nuclear localization were evaluated using cervical cancer (HeLa) cells. Of note, the Dox-bound nanocarriers showed significantly enhanced cell toxicity over the free form of the drug. CNT-Dox and CNT-Cys-Fe3O4-Dox influx occurred within 4 hours, while maximum cellular retention of Dox was observed for CNT-Dox at 24 h. However, the highest KR (∼0.51) was observed for CNT-Dox within 8 hours indicating similar cellular deformations using nanocarrier anticancer drug-conjugates to that of free Dox (KR ∼0.50) at 4 hours. In addition, we observed increased NSA at 4 h in Dox treatment whereas in the case of the Dox conjugated nanocarrier, increased NSA was noted at 8 h treatment. At 8 h exposure of HeLa cells with Dox conjugates, we observed that the cells fall into distinct regions of the morphospace with respect to KR and NSA. Conclusively, nano delivery systems considered for clinical and biomedical translations must take into account the possible negative influences imparting higher cellular deformations and secondary adverse effects over the free form of the drug.
Collapse
Affiliation(s)
- Narendra Kale
- MAEER's Maharashtra Institute of Pharmacy, Kothrud, Pune 411038, India
| | - Semonti Nandi
- MAEER's Maharashtra Institute of Pharmacy, Kothrud, Pune 411038, India
| | - Ashwini Patil
- MAEER's Maharashtra Institute of Pharmacy, Kothrud, Pune 411038, India
| | - Yuvraj Patil
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune 410507, India.
| | - Shashwat Banerjee
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune 410507, India.
| | - Jayant Khandare
- School of Pharmacy, Dr. Vishwanath Karad Maharashtra Institute of Technology-World Peace University, Kothrud, Pune 411038, India. and School of Consciousness, Dr. Vishwanath Karad Maharashtra Institute of Technology-World Peace University, Kothrud, Pune 411038, India
| |
Collapse
|
197
|
Özçelik S, Pratx G. Nuclear-targeted gold nanoparticles enhance cancer cell radiosensitization. NANOTECHNOLOGY 2020; 31:415102. [PMID: 32585647 DOI: 10.1088/1361-6528/aba02b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Radiation therapy aims to kill or inhibit proliferation of cancer cells while sparing normal cells. To enhance radiosensitization, we developed 40 nm-sized gold nanoparticles targeting the nucleus. We exploited a strategy that combined RGD and NLS peptides respectively targeting cancer cell and the nucleus to initiate cell-death activated by x-ray irradiation. We observed that the modified gold nanoparticles were either translocated in the nuclei or accumulated in the vicinity of the nuclei. We demonstrated that x-ray irradiation at 225 kVp energy reduced cell proliferation by 3.8-fold when the nuclear targeted gold nanoparticles were used. We determined that the radiation dose to have a 10% survival fraction was reduced from 11.0 Gy to 7.1 Gy when 10.0 µg ml-1 of the NLS/RGD/PEG-AuNP was incubated with A549 cancer cells. We conclude that the peptide-modified gold nanoparticles targeting the nucleus significantly enhance radiosensitization.
Collapse
Affiliation(s)
- Serdar Özçelik
- İzmir Institute of Technology, Department of Chemistry, Gülbahçe-Urla 35430, İzmir, Turkey. Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, United States of America
| | | |
Collapse
|
198
|
MacGregor M, Safizadeh Shirazi H, Chan KM, Ostrikov K, McNicholas K, Jay A, Chong M, Staudacher AH, Michl TD, Zhalgasbaikyzy A, Brown MP, Kashani MN, Di Fiore A, Grochowski A, Robb S, Belcher S, Li J, Gleadle JM, Vasilev K. Cancer cell detection device for the diagnosis of bladder cancer from urine. Biosens Bioelectron 2020; 171:112699. [PMID: 33068879 DOI: 10.1016/j.bios.2020.112699] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Bladder cancer is common and has one of the highest recurrence rates. Cystoscopy, the current gold standard diagnosis approach, has recently benefited from the introduction of blue light assisted photodynamic diagnostic (PDD). While blue light cystoscopy improves diagnostic sensitivity, it remains a costly and invasive approach. Here, we present a microfluidic-based platform for non-invasive diagnosis which combines the principle of PDD with whole cell immunocapture technology to detect bladder cancer cells shed in patient urine ex vivo. Initially, we demonstrate with model cell lines that our non-invasive approach achieves highly specific capture rates of bladder cancer cells based on their Epithelial Cell Adhesion Molecule expression (>90%) and detection by the intensity levels of Hexaminolevulinic Acid-induced Protoporphyrin IX fluorescence. Then, we show in a pilot study that the biosensor platform successfully discriminates histopathologically diagnosed cancer patients (n = 10) from non-cancer controls (n = 25). Our platform can support the development of a novel non-invasive diagnostic device for post treatment surveillance in patients with bladder cancer and cancer detection in patients with suspected bladder cancer.
Collapse
Affiliation(s)
- Melanie MacGregor
- Future Industry Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - Hanieh Safizadeh Shirazi
- Future Industry Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia; School of Engineering, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Kit Man Chan
- School of Engineering, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Kola Ostrikov
- Future Industry Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia; School of Engineering, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Kym McNicholas
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, SA, 5042, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Alex Jay
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia; Department of Urology, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Michael Chong
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia; Department of Urology, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia; School of Medicine, University of Adelaide, SA, Adelaide, 5000, Australia
| | - Thomas D Michl
- School of Engineering, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | | | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia; School of Medicine, University of Adelaide, SA, Adelaide, 5000, Australia; Cancer Clinical Trials Unit, Royal Adelaide Hospital, SA, Adelaide, 5000, Australia
| | - Moein Navvab Kashani
- Future Industry Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia; South Australian Node of the Australian National Fabrication Facility, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Adam Di Fiore
- Motherson Innovations Australia, Lonsdale, SA, 5160, Australia
| | - Alex Grochowski
- Motherson Innovations Australia, Lonsdale, SA, 5160, Australia
| | - Stephen Robb
- Motherson Innovations Australia, Lonsdale, SA, 5160, Australia
| | - Simon Belcher
- Motherson Innovations Australia, Lonsdale, SA, 5160, Australia
| | - Jordan Li
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, SA, 5042, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jonathan M Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, SA, 5042, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Krasimir Vasilev
- Future Industry Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia; School of Engineering, University of South Australia, Mawson Lakes, SA, 5095, Australia
| |
Collapse
|
199
|
Hwang S, Williams JF, Kneissig M, Lioudyno M, Rivera I, Helguera P, Busciglio J, Storchova Z, King MC, Torres EM. Suppressing Aneuploidy-Associated Phenotypes Improves the Fitness of Trisomy 21 Cells. Cell Rep 2020; 29:2473-2488.e5. [PMID: 31747614 PMCID: PMC6886690 DOI: 10.1016/j.celrep.2019.10.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/10/2019] [Accepted: 10/14/2019] [Indexed: 01/24/2023] Open
Abstract
An abnormal number of chromosomes, or aneuploidy, accounts for most spontaneous abortions, causes developmental defects, and is associated with aging and cancer. The molecular mechanisms by which aneuploidy disrupts cellular function remain largely unknown. Here, we show that aneuploidy disrupts the morphology of the nucleus. Mutations that increase the levels of long-chain bases suppress nuclear abnormalities of aneuploid yeast independent of karyotype identity. Quantitative lipidomics indicates that long-chain bases are integral components of the nuclear membrane in yeast. Cells isolated from patients with Down syndrome also show that abnormal nuclear morphologies and increases in long-chain bases not only suppress these abnormalities but also improve their fitness. We obtained similar results with cells isolated from patients with Patau or Edward syndrome, indicating that increases in long-chain bases improve the fitness of aneuploid cells in yeast and humans. Targeting lipid biosynthesis pathways represents an important strategy to suppress nuclear abnormalities in aneuploidy-associated diseases. The cellular defects associated with aneuploidy are not well defined. Hwang et al. show that aneuploid yeast and human cells have abnormal nuclear morphology. Targeting ceramide synthesis suppresses nuclear abnormalities and improves the proliferation of aneuploid cells, including cells isolated from patients with Down syndrome.
Collapse
Affiliation(s)
- Sunyoung Hwang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Maja Kneissig
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern 67663, Germany
| | - Maria Lioudyno
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Isabel Rivera
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Pablo Helguera
- Instituto de Investigacion Medica Mercedes y Martin Ferreyra, INIMEC-CONICET, Universidad Nacional de Cordoba, Friuli 2434, Cordoba 5016, Argentina
| | - Jorge Busciglio
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA
| | - Zuzana Storchova
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern 67663, Germany
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Eduardo M Torres
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
200
|
Johnstone SE, Reyes A, Qi Y, Adriaens C, Hegazi E, Pelka K, Chen JH, Zou LS, Drier Y, Hecht V, Shoresh N, Selig MK, Lareau CA, Iyer S, Nguyen SC, Joyce EF, Hacohen N, Irizarry RA, Zhang B, Aryee MJ, Bernstein BE. Large-Scale Topological Changes Restrain Malignant Progression in Colorectal Cancer. Cell 2020; 182:1474-1489.e23. [PMID: 32841603 PMCID: PMC7575124 DOI: 10.1016/j.cell.2020.07.030] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 05/04/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Widespread changes to DNA methylation and chromatin are well documented in cancer, but the fate of higher-order chromosomal structure remains obscure. Here we integrated topological maps for colon tumors and normal colons with epigenetic, transcriptional, and imaging data to characterize alterations to chromatin loops, topologically associated domains, and large-scale compartments. We found that spatial partitioning of the open and closed genome compartments is profoundly compromised in tumors. This reorganization is accompanied by compartment-specific hypomethylation and chromatin changes. Additionally, we identify a compartment at the interface between the canonical A and B compartments that is reorganized in tumors. Remarkably, similar shifts were evident in non-malignant cells that have accumulated excess divisions. Our analyses suggest that these topological changes repress stemness and invasion programs while inducing anti-tumor immunity genes and may therefore restrain malignant progression. Our findings call into question the conventional view that tumor-associated epigenomic alterations are primarily oncogenic.
Collapse
Affiliation(s)
- Sarah E Johnstone
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Alejandro Reyes
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | - Yifeng Qi
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carmen Adriaens
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Esmat Hegazi
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Karin Pelka
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Jonathan H Chen
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Luli S Zou
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Vivian Hecht
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Noam Shoresh
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Martin K Selig
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Caleb A Lareau
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02215, USA
| | - Sowmya Iyer
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Son C Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Rafael A Irizarry
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | - Bin Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin J Aryee
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA.
| | - Bradley E Bernstein
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA.
| |
Collapse
|