151
|
Kim CR, Cho YC, Lee SH, Han JH, Kim MJ, Ji HB, Kim S, Min CH, Shin BH, Lee C, Cho YM, Choy YB. Implantable device actuated by manual button clicks for noninvasive self-drug administration. Bioeng Transl Med 2023; 8:e10320. [PMID: 36684080 PMCID: PMC9842066 DOI: 10.1002/btm2.10320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Self-injectable therapy has several advantages in the treatment of metabolic disorders. However, frequent injections with needles impair patient compliance and medication adherence. Therefore, we develop a fully implantable device capable of on-demand administration of self-injection drugs via noninvasive manual button clicks on the outer skin. The device is designed to infuse the drug only at the moment of click actuation, which allows for an accurate and reproducible drug infusion, and also prevents unwanted drug leakage. Using a mechanical means of drug infusion, this implantable device does not contain any electronic compartments or batteries, making it compact, and semi-permanent. When tested in animals, the device can achieve subcutaneous injection-like pharmacokinetic and pharmacodynamic effects for self-injection drugs such as exenatide, insulin, and glucagon.
Collapse
Affiliation(s)
- Cho Rim Kim
- Interdisciplinary Program in Bioengineering, College of EngineeringSeoul National UniversitySeoulSouth Korea
| | - Yong Chan Cho
- Interdisciplinary Program in Bioengineering, College of EngineeringSeoul National UniversitySeoulSouth Korea
| | - Seung Ho Lee
- Institute of Medical and Biological Engineering, Medical Research CenterSeoul National UniversitySeoulSouth Korea
| | - Jae Hoon Han
- Interdisciplinary Program in Bioengineering, College of EngineeringSeoul National UniversitySeoulSouth Korea
| | - Min Ji Kim
- Interdisciplinary Program in Bioengineering, College of EngineeringSeoul National UniversitySeoulSouth Korea
| | - Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of EngineeringSeoul National UniversitySeoulSouth Korea
| | - Se‐Na Kim
- Institute of Medical and Biological Engineering, Medical Research CenterSeoul National UniversitySeoulSouth Korea
| | - Chang Hee Min
- Institute of Medical and Biological Engineering, Medical Research CenterSeoul National UniversitySeoulSouth Korea
| | - Byung Ho Shin
- Department of Biomedical EngineeringSeoul National University College of MedicineSeoulSouth Korea
| | - Cheol Lee
- Department of PathologySeoul National University College of MedicineSeoulSouth Korea
| | - Young Min Cho
- Department of Internal MedicineSeoul National University College of MedicineSeoulSouth Korea
- Department of Translational Medicine, College of MedicineSeoul National UniversitySeoulSouth Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of EngineeringSeoul National UniversitySeoulSouth Korea
- Institute of Medical and Biological Engineering, Medical Research CenterSeoul National UniversitySeoulSouth Korea
- Department of Biomedical EngineeringSeoul National University College of MedicineSeoulSouth Korea
| |
Collapse
|
152
|
Huang CF, Mao TY, Hwang SJ. The Effects of Switching from Dipeptidyl Peptidase-4 Inhibitors to Glucagon-Like Peptide-1 Receptor Agonists on Bone Mineral Density in Diabetic Patients. Diabetes Metab Syndr Obes 2023; 16:31-36. [PMID: 36760582 PMCID: PMC9843232 DOI: 10.2147/dmso.s389964] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Diabetes increases the risk of fragility fractures. As a result, when choosing a diabetes treatment, whether the drug affects bone density should be taken into account. The goal of this study was to determine how switching from dipeptidyl peptidase-4 inhibitors (DPP-4i) to glucagon-like peptide-1 receptor agonists (GLP-1RA) influenced bone mineral density (BMD) in diabetic patients. PATIENTS AND METHODS In this retrospective cohort study, diabetic patients with osteoporosis or osteopenia who used DPP-4i but not anti-osteoporosis medications were divided into two groups: those who switched to GLP-1RA (n = 132) and those who did not (control group, n = 133). We compared changes in glycemic control and BMD with and without conversion from DPP-4i to GLP-1RA. RESULTS Prior to switching, there was no difference between the groups in terms of age, gender, glycosylated hemoglobin (HbA1c), or BMD. HbA1c was 8.7% in the participants (mean age 62.7 years, 17.4% female). Despite the fact that there was no difference in femoral neck BMD, the GLP-1RA group had a greater decrease in lumbar spine BMD (-0.028 g/cm2 versus -0.019 g/cm2, p = 0.041) than the control group. Furthermore, HbA1c levels in the GLP-1RA-treated group were considerably lower than in the control group (7.5% versus 8.0%, p = 0.027). CONCLUSION While switching to GLP-1RA improves glycemic control, it appears to have a less favorable effect on bone density than continuing DPP-4i. More research is needed, however, to determine whether diabetic patients with low bone density should be switched from DPP-4i to GLP-1RA.
Collapse
Affiliation(s)
- Chun-Feng Huang
- Division of Family Medicine, En Chu Kong Hospital, New Taipei City, Taiwan, Republic of China
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
- Department of Leisure Services Management, Chaoyang University of Technology, Taichung, Taiwan, Republic of China
| | - Tso-Yen Mao
- Department of Leisure Services Management, Chaoyang University of Technology, Taichung, Taiwan, Republic of China
- Correspondence: Tso-Yen Mao, Department of Leisure Services Management, Chaoyang University of Technology, 168, Jifeng E. Road, Wufeng District, 413, Taichung, Taiwan, Republic of China, Tel +886 4 23323000 #7453, Fax +886 4 23742363, Email
| | - Shinn-Jang Hwang
- Division of Family Medicine, En Chu Kong Hospital, New Taipei City, Taiwan, Republic of China
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
- Shinn-Jang Hwang, En Chu Kong Hospital, 399, Fuxing Road, Sanxia District, 237, New Taipei City, Taiwan, Republic of China, Tel +886 2 26723456, Fax +886 2 2671-9537, Email
| |
Collapse
|
153
|
Su Y, Zhang S, Wu Z, Liu W, Chen J, Deng F, Chen F, Zhu D, Hou K. Pharmacoeconomic analysis (CER) of Dulaglutide and Liraglutide in the treatment of patients with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1054946. [PMID: 36755915 PMCID: PMC9899911 DOI: 10.3389/fendo.2023.1054946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
AIM To evaluate the treatment effect Fand pharmacoeconomic value of Dugaglutide in women with type 2 diabetes. METHODS Women (n=96) with type 2 diabetes recruited from June 2019 to December 2021 were randomized into two equal groups. The control group was treated with Liraglutide, and the observation group was treated with Dulaglutide, both for 24 weeks. The blood glucose levels, biochemical index, insulin resistance index (HOMA-IR), cost-effect ratio (CER), and drug safety were determined and compared between the two groups. RESULTS Blood glucose levels, the biochemical index, and HOMA-IR were lower in both groups after the treatment (P < 0.05), and there was no statistical difference in the blood glucose levels, biochemical index and HOMA-IR between the two groups (P > 0.05). The CER levels did not differ statistically between the two groups (P > 0.05). Both the cost and the incidence of drug side effects during solution injection were lower in the observation group than in the control group after 24 weeks of treatment (P < 0.05). CONCLUSION Both Dulaglutide and Liraglutide can reduce blood glucose levels, improve biochemical index, and HOMA-IR levels in women with type 2 diabetes. Dulaglutide is more cost-effective and safe. CLINICAL TRIAL REGISTRATION https://www.chictr.org.cn/index.aspx, identifier ChiCTR1900026514.
Collapse
Affiliation(s)
- Yu Su
- Center of Teaching Evaluation and Faculty Development, Anhui University of Chinese medicine, Hefei, Anhui, China
| | - Shuo Zhang
- Medical College of Shantou University, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Zezhen Wu
- Medical College of Shantou University, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Weiting Liu
- School of nursing, Anhui University of Chinese medicine, Hefei, Anhui, China
| | - Jingxian Chen
- Medical College of Shantou University, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Feiying Deng
- Medical College of Shantou University, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Fengwu Chen
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Kaijian Hou
- School of Public Health, Shantou University, Shantou, China
- *Correspondence: Kaijian Hou,
| |
Collapse
|
154
|
Yaribeygi H, Maleki M, Nasimi F, Jamialahmadi T, Stanford FC, Sahebkar A. Benefits of GLP-1 Mimetics on Epicardial Adiposity. Curr Med Chem 2023; 30:4256-4265. [PMID: 36642880 PMCID: PMC10293101 DOI: 10.2174/0929867330666230113110431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 01/17/2023]
Abstract
The epicardial adipose tissue, which is referred to as fats surrounding the myocardium, is an active organ able to induce cardiovascular problems in pathophysiologic conditions through several pathways, such as inflammation, fibrosis, fat infiltration, and electrophysiologic problems. So, control of its volume and thickness, especially in patients with diabetes, is highly important. Incretin-based pharmacologic agents are newly developed antidiabetics that could provide further cardiovascular benefits through control and modulating epicardial adiposity. They can reduce cardiovascular risks by rapidly reducing epicardial adipose tissues, improving cardiac efficiency. We are at the first steps of a long way, but current evidence demonstrates the sum of possible mechanisms. In this study, we evaluate epicardial adiposity in physiologic and pathologic states and the impact of incretin-based drugs.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nasimi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatima C. Stanford
- Massachusetts General Hospital, MGH Weight Center, Department of Medicine-Division of Endocrinology-Neuroendocrine, Department of Pediatrics-Division of Endocrinology, Nutrition Obesity Research Center at Harvard (NORCH), Harvard Medical School, Boston, MA, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
155
|
Nakamura Y, Horie I, Kanetaka K, Eguchi S, Nakamichi S, Hongo R, Takashima M, Kawakami A, Abiru N. Exenatide challenge in oral glucose tolerance test is insufficient for predictions of glucose metabolism and insulin secretion after sleeve gastrectomy (SG) in obese patients with type 2 diabetes: a pilot study to establish a preoperative model to estimate β-cell function following augmented glucagon-like peptide-1 secretion after SG. Endocr J 2022; 69:1457-1465. [PMID: 35896344 DOI: 10.1507/endocrj.ej22-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The postoperative increase in glucagon-like peptide-1 (GLP-1) is the main factor to improve glucose metabolism following sleeve gastrectomy (SG) in obese patients with type 2 diabetes. We investigated whether the β-cell responsiveness to an injection of exogenous GLP-1 in the preoperative period could determine the postoperative glucose tolerance in 18 patients underwent SG. In the preoperative period, a regular oral glucose tolerance test (OGTT) and an exenatide-challenge during OGTT (Ex-OGTT) were performed to evaluate the β-cell function and its responsiveness to GLP-1. The postoperative glucose tolerance was evaluated by another regular OGTT performed at 3 months after SG. The significant decrease in glucose levels with enhanced secretions of insulin and GLP-1 was observed in OGTT at 3 months after SG. The area under the curve of glucose from 0 to 120 minutes (AUC glucose0-120 min) and the insulinogenic index (I.I.) in OGTT at 3 months post-SG were significantly improved compared to those in preoperative period, but comparable with those in Ex-OGTT. AUC glucose0-120 min and I.I. in OGTT at 3 months post-SG were significantly correlated with not only those in Ex-OGTT, but also those in the preoperative regular OGTT. Conversely, the correlations calculated by the Spearman's ρ were stronger in the latter than the former. This exenatide-challenge protocol might be useful to estimate glucose tolerance and insulin secretion after SG, however, it may be insufficient to improve predictability of a patient who is likely to achieve a significant benefit on glucose metabolism from receiving SG.
Collapse
Affiliation(s)
- Yuta Nakamura
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Ichiro Horie
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Kengo Kanetaka
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Susumu Eguchi
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Seiko Nakamichi
- Department of General Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Ryoko Hongo
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Nagasaki 851-2195, Japan
| | - Miwa Takashima
- Nutritional Management Division, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Atsushi Kawakami
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| |
Collapse
|
156
|
Chen J, Mei A, Wei Y, Li C, Qian H, Min X, Yang H, Dong L, Rao X, Zhong J. GLP-1 receptor agonist as a modulator of innate immunity. Front Immunol 2022; 13:997578. [PMID: 36569936 PMCID: PMC9772276 DOI: 10.3389/fimmu.2022.997578] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a 30-amino acid hormone secreted by L cells in the distal ileum, colon, and pancreatic α cells, which participates in blood sugar regulation by promoting insulin release, reducing glucagon levels, delaying gastric emptying, increasing satiety, and reducing appetite. GLP-1 specifically binds to the glucagon-like peptide-1 receptor (GLP-1R) in the body, directly stimulating the secretion of insulin by pancreatic β-cells, promoting proliferation and differentiation, and inhibiting cell apoptosis, thereby exerting a glycemic lowering effect. The glycemic regulating effect of GLP-1 and its analogues has been well studied in human and murine models in the circumstance of many diseases. Recent studies found that GLP-1 is able to modulate innate immune response in a number of inflammatory diseases. In the present review, we summarize the research progression of GLP-1 and its analogues in immunomodulation and related signal pathways.
Collapse
Affiliation(s)
- Jun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlei Li
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Jixin Zhong, ; Xiaoquan Rao, ; Lingli Dong,
| | - Xiaoquan Rao
- Department of Cardiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jixin Zhong, ; Xiaoquan Rao, ; Lingli Dong,
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Jixin Zhong, ; Xiaoquan Rao, ; Lingli Dong,
| |
Collapse
|
157
|
Xu Q, Zhang X, Li T, Shao S. Exenatide regulates Th17/Treg balance via PI3K/Akt/FoxO1 pathway in db/db mice. Mol Med 2022; 28:144. [PMID: 36463128 PMCID: PMC9719171 DOI: 10.1186/s10020-022-00574-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The T helper 17 (Th17)/T regulatory (Treg) cell imbalance is involved in the course of obesity and type 2 diabetes mellitus (T2DM). In the current study, the exact role of glucagon-like peptide-1 receptor agonist (GLP-1RA) exenatide on regulating the Th17/Treg balance and the underlying molecular mechanisms are investigated in obese diabetic mice model. METHODS Metabolic parameters were monitored in db/db mice treated with/without exenatide during 8-week study period. The frequencies of Th17 and Treg cells from peripheral blood and pancreas in db/db mice were assessed. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/Forkhead box O1 (FoxO1) pathway in Th17 and Treg cells from the spleens of male C57BL/6J mice was detected by western blotting. In addition, the expression of glucagon-like peptide-1 receptor (GLP-1R) in peripheral blood mononuclear cells (PBMCs) of male C57BL/6J mice was analyzed. RESULTS Exenatide treatment improved β-cell function and insulitis in addition to glucose, insulin sensitivity and weight. Increased Th17 and decreased Treg cells in peripheral blood were present as diabetes progressed while exenatide corrected this imbalance. Progressive IL-17 + T cell infiltration of pancreatic islets was alleviated by exenatide intervention. In vitro study showed no significant difference in the level of GLP-1R expression in PBMCs between control and palmitate (PA) groups. In addition, PA could promote Th17 but suppress Treg differentiation along with down-regulating the phosphorylation of PI3K/Akt/FoxO1, which was reversed by exenatide intervention. FoxO1 inhibitor AS1842856 could abrogate all these effects of exenatide against lipid stress. CONCLUSIONS Exenatide could restore systemic Th17/Treg balance via regulating FoxO1 pathway with the progression of diabetes in db/db mice. The protection of pancreatic β-cell function may be partially mediated by inhibiting Th17 cell infiltration into pancreatic islets, and the resultant alleviation of islet inflammation.
Collapse
Affiliation(s)
- Qinqin Xu
- grid.33199.310000 0004 0368 7223Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China ,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, People’s Republic of China
| | - Xiaoling Zhang
- grid.33199.310000 0004 0368 7223Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China ,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, People’s Republic of China
| | - Tao Li
- grid.33199.310000 0004 0368 7223Division of Ophthalmology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China
| | - Shiying Shao
- grid.33199.310000 0004 0368 7223Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China ,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, People’s Republic of China
| |
Collapse
|
158
|
DeMarsilis A, Reddy N, Boutari C, Filippaios A, Sternthal E, Katsiki N, Mantzoros C. Pharmacotherapy of type 2 diabetes: An update and future directions. Metabolism 2022; 137:155332. [PMID: 36240884 DOI: 10.1016/j.metabol.2022.155332] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Type 2 diabetes (T2D) is a widely prevalent disease with substantial economic and social impact for which multiple conventional and novel pharmacotherapies are currently available; however, the landscape of T2D treatment is constantly changing as new therapies emerge and the understanding of currently available agents deepens. This review aims to provide an updated summary of the pharmacotherapeutic approach to T2D. Each class of agents is presented by mechanism of action, details of administration, side effect profile, cost, and use in certain populations including heart failure, non-alcoholic fatty liver disease, obesity, chronic kidney disease, and older individuals. We also review targets of novel therapeutic T2D agent development. Finally, we outline an up-to-date treatment approach that starts with identification of an individualized goal for glycemic control then selection, initiation, and further intensification of a personalized therapeutic plan for T2D.
Collapse
Affiliation(s)
- Antea DeMarsilis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Niyoti Reddy
- Department of Medicine, School of Medicine, Boston University, Boston, USA
| | - Chrysoula Boutari
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Filippaios
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Elliot Sternthal
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus.
| | - Christos Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
159
|
Yu H, Sun T, He X, Wang Z, Zhao K, An J, Wen L, Li JY, Li W, Feng J. Association between Parkinson's Disease and Diabetes Mellitus: From Epidemiology, Pathophysiology and Prevention to Treatment. Aging Dis 2022; 13:1591-1605. [PMID: 36465171 PMCID: PMC9662283 DOI: 10.14336/ad.2022.0325] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2022] [Indexed: 08/27/2023] Open
Abstract
Diabetes mellitus (DM) and Parkinson's disease (PD) are both age-related diseases of global concern being among the most common chronic metabolic and neurodegenerative diseases, respectively. While both diseases can be genetically inherited, environmental factors play a vital role in their pathogenesis. Moreover, DM and PD have common underlying molecular mechanisms, such as misfolded protein aggregation, mitochondrial dysfunction, oxidative stress, chronic inflammation, and microbial dysbiosis. Recently, epidemiological and experimental studies have reported that DM affects the incidence and progression of PD. Moreover, certain antidiabetic drugs have been proven to decrease the risk of PD and delay its progression. In this review, we elucidate the epidemiological and pathophysiological association between DM and PD and summarize the antidiabetic drugs used in animal models and clinical trials of PD, which may provide reference for the clinical translation of antidiabetic drugs in PD treatment.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhen Wang
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
| | - Kaidong Zhao
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
| | - Jing An
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jia-Yi Li
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Wen Li
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
160
|
Kopp KO, Glotfelty EJ, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol Res 2022; 186:106550. [PMID: 36372278 PMCID: PMC9712272 DOI: 10.1016/j.phrs.2022.106550] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Chronic, excessive neuroinflammation is a key feature of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, neuroinflammatory pathways have yet to be effectively targeted in clinical treatments for such diseases. Interestingly, increased inflammation and neurodegenerative disease risk have been associated with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), suggesting that treatments that mitigate T2DM pathology may be successful in treating neuroinflammatory and neurodegenerative pathology as well. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that promotes healthy insulin signaling, regulates blood sugar levels, and suppresses appetite. Consequently, numerous GLP-1 receptor (GLP-1R) stimulating drugs have been developed and approved by the US Food and Drug Administration (FDA) and related global regulatory authorities for the treatment of T2DM. Furthermore, GLP-1R stimulating drugs have been associated with anti-inflammatory, neurotrophic, and neuroprotective properties in neurodegenerative disorder preclinical models, and hence hold promise for repurposing as a treatment for neurodegenerative diseases. In this review, we discuss incretin signaling, neuroinflammatory pathways, and the intersections between neuroinflammation, brain IR, and neurodegenerative diseases, with a focus on AD and PD. We additionally overview current FDA-approved incretin receptor stimulating drugs and agents in development, including unimolecular single, dual, and triple receptor agonists, and highlight those in clinical trials for neurodegenerative disease treatment. We propose that repurposing already-approved GLP-1R agonists for the treatment of neurodegenerative diseases may be a safe, efficacious, and cost-effective strategy for ameliorating AD and PD pathology by quelling neuroinflammation.
Collapse
Affiliation(s)
- Katherine O Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| |
Collapse
|
161
|
Ahmed M, Badi S, Elidrisi A, Husain NE, Zainudin SB, Mahmood A, Abubaker NE, Alghamdi AS, Ahmed MH. Safety and effectiveness of newer antidiabetic medications during Ramadan fasting and safety of Ramadan fasting after bariatric surgery. J Diabetes Metab Disord 2022; 21:1991-2004. [PMID: 36404821 PMCID: PMC9672258 DOI: 10.1007/s40200-022-01145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
Background Fasting during Ramadan is mandatory for all adult healthy Muslims. International studies found that most Muslims with diabetes mellitus fast during Ramadan. The main risk factors are hypoglycemia, Hyperglycemia, diabetic ketoacidosis, and dehydration during fasting. Therefore, stratification of the risks for severe acute diabetes complications needs to be considered for each individual and strategies personalized to advert these complications. The advent of new diabetes medications which are effective yet with a better safety profile and monitoring of blood glucose levels during the day are important to reduce the risk of untoward effects of hypoglycemia and hyperglycemia during Ramadan fasting. Here we review the safety and effectiveness of the newer diabetes medications for Ramadan fasting and whether it is safe to perform fasting after bariatric surgery. Methods An extensive literature search using PubMed and Google Scholar was done using different search terms. The eligible studies were 48 randomized controlled trials, prospective observational studies, and reviews from January 2008 to June 2022 which were conducted in individuals living with diabetes. Results and Conclusions The newer diabetes medications such as GLP-1 agonists, DPP-4 inhibitors, SGLT-2 inhibitors, and new Insulin therapy are thought to be safe and effective during fasting of Ramadan. These medications are associated with a reduction in HbA1c, body weight, systolic blood pressure and risk of hypoglycemia during Ramadan fasting. However, further studies with larger sample size are needed to confirm the efficacy and safety of these newer medications during Ramadan fasting. Individuals with Bariatric surgery should seek advice and approval to fast from the bariatric dietician, physician, and surgeon before the beginning of the month of Ramadan.
Collapse
Affiliation(s)
- Musaab Ahmed
- College of Medicine, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Safaa Badi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | - Ala Elidrisi
- Department of Pathology, Faculty of Medicine and Health Sciences, Omdurman Islamic University, Khartoum, Sudan
| | - Nazik Elmalaika Husain
- Department of Pathology, Faculty of Medicine and Health Sciences, Omdurman Islamic University, Khartoum, Sudan
| | | | - Arshad Mahmood
- Department of Colorectal Surgery, Milton Keynes University Hospital NHS Foundation Trust, Eaglestone, Milton Keynes, Buckinghamshire UK
| | - Nuha Eljaili Abubaker
- Clinical Chemistry Department, College of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan
| | | | - Mohamed H. Ahmed
- Department of Medicine and HIV Metabolic Clinic, Milton Keynes University Hospital NHS Foundation Trust, Eaglestone, Milton Keynes, Buckinghamshire UK
| |
Collapse
|
162
|
Liraglutide Improves the Angiogenic Capability of EPC and Promotes Ischemic Angiogenesis in Mice under Diabetic Conditions through an Nrf2-Dependent Mechanism. Cells 2022; 11:cells11233821. [PMID: 36497087 PMCID: PMC9736458 DOI: 10.3390/cells11233821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
The impairment in endothelial progenitor cell (EPC) functions results in dysregulation of vascular homeostasis and dysfunction of the endothelium under diabetic conditions. Improving EPC function has been considered as a promising strategy for ameliorating diabetic vascular complications. Liraglutide has been widely used as a therapeutic agent for diabetes. However, the effects and mechanisms of liraglutide on EPC dysfunction remain unclear. The capability of liraglutide in promoting blood perfusion and angiogenesis under diabetic conditions was evaluated in the hind limb ischemia model of diabetic mice. The effect of liraglutide on the angiogenic function of EPC was evaluated by cell scratch recovery assay, tube formation assay, and nitric oxide production. RNA sequencing was performed to assess the underlying mechanisms. Liraglutide enhanced blood perfusion and angiogenesis in the ischemic hindlimb of db/db mice and streptozotocin-induced type 1 diabetic mice. Additionally, liraglutide improved tube formation, cell migration, and nitric oxide production of high glucose (HG)-treated EPC. Assessment of liraglutide target pathways revealed a network of genes involved in antioxidant activity. Further mechanism study showed that liraglutide decreased the production of reactive oxygen species and increased the activity of nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 deficiency attenuated the beneficial effects of liraglutide on improving EPC function and promoting ischemic angiogenesis under diabetic conditions. Moreover, liraglutide activates Nrf2 through an AKT/GSK3β/Fyn pathway, and inhibiting this pathway abolished liraglutide-induced Nrf2 activation and EPC function improvement. Overall, these results suggest that Liraglutide represents therapeutic potential in promoting EPC function and ameliorating ischemic angiogenesis under diabetic conditions, and these beneficial effects relied on Nrf2 activation.
Collapse
|
163
|
The Interaction of Food Allergy and Diabetes: Food Allergy Effects on Diabetic Mice by Intestinal Barrier Destruction and Glucagon-like Peptide 1 Reduction in Jejunum. Foods 2022; 11:foods11233758. [PMID: 36496564 PMCID: PMC9741085 DOI: 10.3390/foods11233758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in food allergies and diabetes leads to the assumption that they are related. This study aimed to (1) verify the interaction between food allergy and diabetes and (2) explore the potential mechanisms by which food allergy promotes diabetes. Female BALB/c mice were grouped into a control group (CK), an ovalbumin-sensitized group (OVA), a diabetes group (STZ), and a diabetic allergic group (STZ + OVA) (Mice were modeled diabetes with STZ first, then were given OVA to model food allergies), and an allergic diabetic group (OVA + STZ) (Mice were modeled food allergies with OVA first, then were given STZ to model diabetes). The results showed that OVA + STZ mice exhibited a more serious Th2 humoral response, and they were more susceptible to diabetes. Furthermore, when the OVA + STZ mice were in the sensitized state, the intestinal barrier function was severely impaired, and mast cell activation was promoted. Moreover, we found that the effect of food allergy on diabetes is related to the inhibition of GLP-1 secretion and the up-regulation of the PI3K/Akt/mTOR/NF-κB P65 signaling pathway in the jejunum. Overall, our results suggest that food allergies have interactions with diabetes, which sheds new light on the importance of food allergies in diabetes.
Collapse
|
164
|
Zheng Y, Ongpipattanakul C, Nair SK. Bioconjugate Platform for Iterative Backbone N-Methylation of Peptides. ACS Catal 2022; 12:14006-14014. [PMID: 36793448 PMCID: PMC9928189 DOI: 10.1021/acscatal.2c04681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
N-methylation of peptide backbones has often been utilized as a strategy towards the development of peptidic drugs. However, difficulties in the chemical synthesis, high cost of enantiopure N-methyl building blocks, and subsequent coupling inefficiencies have hampered larger-scale medicinal chemical efforts. Here, we present a chemoenzymatic strategy for backbone N-methylation by bioconjugation of peptides of interest to the catalytic scaffold of a borosin-type methyltransferase. Crystal structures of a substrate tolerant enzyme from Mycena rosella guided the design of a decoupled catalytic scaffold that can be linked via a heterobifunctional crosslinker to any peptide substrate of choice. Peptides linked to the scaffold, including those with non-proteinogenic residues, show robust backbone N-methylation. Various crosslinking strategies were tested to facilitate substrate disassembly, which enabled a reversible bioconjugation approach that efficiently released modified peptide. Our results provide general framework for the backbone N-methylation on any peptide of interest and may facilitate the production of large libraries of N-methylated peptides.
Collapse
Affiliation(s)
- Yiwu Zheng
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL, 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| |
Collapse
|
165
|
Silva-Nunes J, Nascimento E, Louro J, Dores J, Laginha T, Gonçalves-Ferreira A, Alves M, Souto SB, Cunha N, Pina E, Duarte R, Raposo JF. Liraglutide Effectiveness in Type 2 Diabetes: Insights from a Real-World Cohort of Portuguese Patients. Metabolites 2022; 12:metabo12111121. [PMID: 36422260 PMCID: PMC9694138 DOI: 10.3390/metabo12111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Liraglutide is a long-acting glucagon-like peptide-1 receptor agonist prescribed to diabetic patients for glycaemic control. To understand the impact of liraglutide in the real-world setting, this study analysed its effects in a Portuguese cohort of Type 2 diabetes patients. This was an observational, multicentric, and retrospective study that included 191 liraglutide-treated patients with at least 12 months of treatment. Patients’ data were collected and analysed during a 24-month follow-up period. Overall, liraglutide treatment effectively reduced HbA1c levels from 8.3% to around 7.5%, after 6, 12, and 24 months (p < 0.001). In fact, 38.2%, 37.2%, and 44.8% of patients at 6, 12, and 24 months, respectively, experienced an HbA1c reduction of at least 1%. Moreover, a persistent reduction in anthropometric features was also observed, with 44.0%, 47.6%, and 54.4% of patients achieving a weight reduction of at least 3% at 6, 12, and 24 months, respectively. Finally, significant improvements were observed in the HDL-c and LDL-c levels. Our results demonstrate that liraglutide effectively promoted the reduction of HbA1c values during routine clinical practice, which was sustained throughout the study. In addition, there were significant improvements in anthropometric parameters and other cardiovascular risk factors.
Collapse
Affiliation(s)
- José Silva-Nunes
- Department of Endocrinology, Diabetes and Metabolism, Curry Cabral Hospital—Centro Hospitalar Universitário de Lisboa Central, 1050-099 Lisboa, Portugal
- NOVA Medical School, New University of Lisbon, 1169-056 Lisboa, Portugal
- Health and Technology Research Center (H&TRC), Escola Superior de Tecnologia da Saúde de Lisboa, 1990-096 Lisboa, Portugal
- Correspondence:
| | - Edite Nascimento
- Department of Internal Medicine, Centro Hospitalar Tondela-Viseu, 3504-509 Viseu, Portugal
| | - Joana Louro
- Department of Internal Medicine, Centro Hospitalar do Oeste, 2500-176 Caldas da Rainha, Portugal
| | - Jorge Dores
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| | - Teresa Laginha
- Diabetes Clinic, Associação Protetora dos Diabéticos de Portugal (APDP), 1250-189 Lisboa, Portugal
| | - Ana Gonçalves-Ferreira
- Department of Endocrinology, Diabetes and Metabolism, Garcia de Orta Hospital, 2805-267 Almada, Portugal
| | - Marta Alves
- Department of Endocrinology, Diabetes and Metabolism, Hospital de Braga, 4710-243 Braga, Portugal
| | - Selma B. Souto
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| | - Nelson Cunha
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Elsa Pina
- Department of Internal Medicine, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal
| | - Rui Duarte
- Diabetes Clinic, Associação Protetora dos Diabéticos de Portugal (APDP), 1250-189 Lisboa, Portugal
- Portuguese Society of Diabetology (SPD), 1250-198 Lisboa, Portugal
| | - João Filipe Raposo
- NOVA Medical School, New University of Lisbon, 1169-056 Lisboa, Portugal
- Diabetes Clinic, Associação Protetora dos Diabéticos de Portugal (APDP), 1250-189 Lisboa, Portugal
- Portuguese Society of Diabetology (SPD), 1250-198 Lisboa, Portugal
| |
Collapse
|
166
|
Park S, Oh S, Kim EK. Glucagon-like peptide-1 analog liraglutide leads to multiple metabolic alterations in diet-induced obese mice. J Biol Chem 2022; 298:102682. [PMID: 36356900 PMCID: PMC9730228 DOI: 10.1016/j.jbc.2022.102682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Liraglutide, a glucagon-like peptide-1 analog, has beneficial metabolic effects in patients with type 2 diabetes and obesity. Although the high efficacy of liraglutide as an anti-diabetic and anti-obesity drug is well known, liraglutide-induced metabolic alterations in diverse tissues remain largely unexplored. Here, we report the changes in metabolic profiles induced by a 2-week subcutaneous injection of liraglutide in diet-induced obese mice fed a high-fat diet for 8 weeks. Our comprehensive metabolomic analyses of the hypothalamus, plasma, liver, and skeletal muscle showed that liraglutide intervention led to various metabolic alterations in comparison with diet-induced obese or nonobese mice. We found that liraglutide remarkably coordinated not only fatty acid metabolism in the hypothalamus and skeletal muscle but also amino acid and carbohydrate metabolism in plasma and liver. Comparative analyses of metabolite dynamics revealed that liraglutide rewired intertissue metabolic correlations. Our study points to a previously unappreciated metabolic alteration by liraglutide in several tissues, which may underlie its therapeutic effects within and across the tissues.
Collapse
Affiliation(s)
- Seokjae Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sungjoon Oh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,For correspondence: Eun-Kyoung Kim
| |
Collapse
|
167
|
King A, Miller EM. Glucagon-Like Peptide 1 Receptor Agonists Have the Potential to Revolutionize the Attainment of Target A1C Levels in Type 2 Diabetes-So Why Is Their Uptake So Low? Clin Diabetes 2022; 41:226-238. [PMID: 37092151 PMCID: PMC10115618 DOI: 10.2337/cd22-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A target A1C of <7% is the recommended goal for most people with type 2 diabetes. However, many are not achieving this target with their current treatment. Glucagon-like peptide 1 (GLP-1) receptor agonists are highly efficacious in achieving glycemic control and could aid primary care providers (PCPs) in getting patients to their A1C target. However, despite their potential, use of GLP-1 receptor agonists in the primary care setting is limited. This review provides guidance for PCPs on how to help patients achieve their glycemic target and overcome perceived barriers of GLP-1 receptor agonist use, with the overall goal of improving PCP confidence in prescribing these agents.
Collapse
|
168
|
Xenopus GLP-1-based glycopeptides as dual glucagon-like peptide 1 receptor/glucagon receptor agonists with improved in vivo stability for treating diabetes and obesity. Chin J Nat Med 2022; 20:863-872. [DOI: 10.1016/s1875-5364(22)60196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/23/2022]
|
169
|
Abstract
Obesity is a major public health issue with an increasing prevalence worldwide. Excess body fat is associated with various comorbidities, as well as increased overall mortality risk. The benefits of weight loss are evident by the reductions in morbidity and mortality. The foundation for most weight loss programs involves strict lifestyle modification, including dietary change and exercise. Unfortunately, many individuals struggle with weight loss and chronic weight management due to difficulty adhering to long-term lifestyle modification and the metabolic adaptations that promote weight regain. The use of adjunctive pharmacotherapy has been employed to help patients not only achieve greater weight loss than lifestyle modification alone but also to assist with long-term weight management. Historically, antiobesity drugs have produced only modest weight loss and required at least once daily administration. Glucagon-like peptide-1 (GLP-1), a hormone with significant effects on glycemic control and weight regulation, has been explored for use as adjunctive pharmacotherapy for weight loss. Semaglutide, a GLP-1 receptor agonist, was recently approved by the Food and Drug Administration for chronic weight management in adults with obesity or who are overweight. The approval came after the publication of the Semaglutide Treatment Effect in People with Obesity clinical trials. In these 68-week trials, semaglutide 2.4 mg was associated with significantly greater weight loss compared to placebo. Semaglutide differs from other GLP-1 receptor agonists by having a longer half-life and producing greater weight loss. This article provides an overview of the discovery and mechanism of action of semaglutide 2.4 mg, and the clinical trials that led to its approval.
Collapse
Affiliation(s)
- Joel Novograd
- From the New York Medical College (student) Valhalla, NY
| | - Jaime Mullally
- Department of Medicine, Division of Endocrinology, New York Medical College/Westchester Medical Center, Valhalla, NY
| | | |
Collapse
|
170
|
Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes. Nat Commun 2022; 13:6356. [PMID: 36289225 PMCID: PMC9606127 DOI: 10.1038/s41467-022-33656-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/23/2022] [Indexed: 12/25/2022] Open
Abstract
Gut dysbiosis has been linked to type 1 diabetes (T1D); however, microbial capacity in T1D remains unclear. Here, we integratively profiled gut microbial functional and metabolic alterations in children with new-onset T1D in independent cohorts and investigated the underlying mechanisms. In T1D, the microbiota was characterized by decreased butyrate production and bile acid metabolism and increased lipopolysaccharide biosynthesis at the species, gene, and metabolite levels. The combination of 18 bacterial species and fecal metabolites provided excellently discriminatory power for T1D. Gut microbiota from children with T1D induced elevated fasting glucose levels and declined insulin sensitivity in antibiotic-treated mice. In streptozotocin-induced T1D mice, butyrate and lipopolysaccharide exerted protective and destructive effects on islet structure and function, respectively. Lipopolysaccharide aggravated the pancreatic inflammatory response, while butyrate activated Insulin1 and Insulin2 gene expression. Our study revealed perturbed microbial functional and metabolic traits in T1D, providing potential avenues for microbiome-based prevention and intervention for T1D.
Collapse
|
171
|
Abdalqadir N, Adeli K. GLP-1 and GLP-2 Orchestrate Intestine Integrity, Gut Microbiota, and Immune System Crosstalk. Microorganisms 2022; 10:2061. [PMID: 36296337 PMCID: PMC9610230 DOI: 10.3390/microorganisms10102061] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
The intestine represents the body's largest interface between internal organs and external environments except for its nutrient and fluid absorption functions. It has the ability to sense numerous endogenous and exogenous signals from both apical and basolateral surfaces and respond through endocrine and neuronal signaling to maintain metabolic homeostasis and energy expenditure. The intestine also harbours the largest population of microbes that interact with the host to maintain human health and diseases. Furthermore, the gut is known as the largest endocrine gland, secreting over 100 peptides and other molecules that act as signaling molecules to regulate human nutrition and physiology. Among these gut-derived hormones, glucagon-like peptide 1 (GLP-1) and -2 have received the most attention due to their critical role in intestinal function and food absorption as well as their application as key drug targets. In this review, we highlight the current state of the literature that has brought into light the importance of GLP-1 and GLP-2 in orchestrating intestine-microbiota-immune system crosstalk to maintain intestinal barrier integrity, inflammation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Nyan Abdalqadir
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biology, College of Science, University of Sulaimani, Sulaymaniyah 46001, Iraq
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
172
|
Retnakaran R, Ye C, Emery A, Kramer CK, Zinman B. The metabolic effects of adding exenatide to basal insulin therapy when targeting remission in early type 2 diabetes in a randomized clinical trial. Nat Commun 2022; 13:6109. [PMID: 36244997 PMCID: PMC9573864 DOI: 10.1038/s41467-022-33867-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Combining a glucagon-like peptide-1 receptor agonist (GLP1-RA) with basal insulin is an emerging option when initiating injectable therapy in longstanding type 2 diabetes (T2DM). Recognizing that short-term insulin therapy can improve beta-cell function and induce glycemic remission in early T2DM, we hypothesized that adding the short-acting GLP1-RA exenatide to basal insulin in early T2DM may enhance the achievability of these outcomes. In this completed, 20-week, open-label, parallel-arm trial at an academic hospital, 103 individuals aged 30-80 years with <7 years duration of T2DM were randomized (by computer-generated sequence) to 8-weeks treatment with (i) insulin glargine (Glar; n = 33), (ii) glargine + thrice-daily lispro (Glar/Lispro; n = 35), or (iii) glargine + twice-daily exenatide (Glar/Exenatide; n = 35), followed by 12-weeks washout. The analyzed population of 102 participants (median 3.5 years of T2DM, A1c 6.6% ±0.7%) consisted of 33 on Glar, 35 on Glar/Lispro and 34 on Glar/Exenatide. Oral glucose tolerance tests at baseline, 4-weeks, 8-weeks and 20-weeks enabled assessment of beta-cell function (Insulin Secretion-Sensitivity Index-2 (ISSI-2)) and glycemic control. Mean ISSI-2 over the 8-week intervention (primary outcome) did not differ across the groups (Glar/Exenatide 237 ± 11; Glar/Lispro 208 ± 11; Glar 223 ± 11; p = 0.19). Baseline-adjusted A1c at 8-weeks (secondary outcome) was lowest in Glar/Exenatide followed by Glar/Lispro and Glar (mean 5.9% vs 6.0% vs 6.2%; p = 0.0007). After 12-weeks washout, however, neither baseline-adjusted A1c nor baseline-adjusted ISSI-2 (secondary outcomes) differed between the groups, nor did (additional outcome) rates of remission (Glar/Exenatide 26.7%, Glar/Lispro 43.8%, Glar 32.1%; p = 0.35). There were no severe hypoglycemia episodes. In conclusion, adding exenatide to basal insulin in early T2DM does not further enhance underlying beta-cell function or the capacity to achieve diabetes remission, despite yielding on-treatment glycemic benefit.
Collapse
Affiliation(s)
- Ravi Retnakaran
- grid.416166.20000 0004 0473 9881Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada ,grid.17063.330000 0001 2157 2938Division of Endocrinology, University of Toronto, Toronto, Canada ,grid.416166.20000 0004 0473 9881Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Chang Ye
- grid.416166.20000 0004 0473 9881Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
| | - Alexandra Emery
- grid.416166.20000 0004 0473 9881Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
| | - Caroline K. Kramer
- grid.416166.20000 0004 0473 9881Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada ,grid.17063.330000 0001 2157 2938Division of Endocrinology, University of Toronto, Toronto, Canada ,grid.416166.20000 0004 0473 9881Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Bernard Zinman
- grid.416166.20000 0004 0473 9881Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada ,grid.17063.330000 0001 2157 2938Division of Endocrinology, University of Toronto, Toronto, Canada ,grid.416166.20000 0004 0473 9881Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
173
|
El Meouchy P, Wahoud M, Allam S, Chedid R, Karam W, Karam S. Hypertension Related to Obesity: Pathogenesis, Characteristics and Factors for Control. Int J Mol Sci 2022; 23:ijms232012305. [PMID: 36293177 PMCID: PMC9604511 DOI: 10.3390/ijms232012305] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
The World Health Organization (WHO) refers to obesity as abnormal or excessive fat accumulation that presents a health risk. Obesity was first designated as a disease in 2012 and since then the cost and the burden of the disease have witnessed a worrisome increase. Obesity and hypertension are closely interrelated as abdominal obesity interferes with the endocrine and immune systems and carries a greater risk for insulin resistance, diabetes, hypertension, and cardiovascular disease. Many factors are at the interplay between obesity and hypertension. They include hemodynamic alterations, oxidative stress, renal injury, hyperinsulinemia, and insulin resistance, sleep apnea syndrome and the leptin-melanocortin pathway. Genetics, epigenetics, and mitochondrial factors also play a major role. The measurement of blood pressure in obese patients requires an adapted cuff and the search for other secondary causes is necessary at higher thresholds than the general population. Lifestyle modifications such as diet and exercise are often not enough to control obesity, and so far, bariatric surgery constitutes the most reliable method to achieve weight loss. Nonetheless, the emergence of new agents such as Semaglutide and Tirzepatide offers promising alternatives. Finally, several molecular pathways are actively being explored, and they should significantly extend the treatment options available.
Collapse
Affiliation(s)
- Paul El Meouchy
- Department of Internal Medicine, MedStar Health, Baltimore, MD 21218, USA
| | - Mohamad Wahoud
- Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Sabine Allam
- Faculty of Medicine and Medical Sciences, University of Balamand, El Koura P.O. Box 100, Lebanon
| | - Roy Chedid
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - Wissam Karam
- Department of Internal Medicine, University of Kansas School of Medicine, Wichita, KS 67214, USA
| | - Sabine Karam
- Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, MN 55414, USA
- Correspondence:
| |
Collapse
|
174
|
Zhang Y, Yang M, Wu X, Deng F, Yin X, Ma R, Shi L. Glucose-Responsive Nanochaperones Mediate Exendin-4 Delivery for Enhancing Therapeutic Effects. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44211-44221. [PMID: 36153949 DOI: 10.1021/acsami.2c13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exendin-4 (Ex-4) is a promising therapeutic peptide for the clinical treatment of type 2 diabetes, but its instability and immunogenicity result in a short circulating half-life and low bioavailability, which severely limit its clinical application. Here, complex micelles with 4-carboxy-3-fluorophenylboronic acid (FPBA)-modified and positively charged hydrophobic domains on the surface were devised as nanochaperones to mediate the delivery of Ex-4. The nanochaperones can bind Ex-4 on the surface via the synergy of electrostatic and hydrophobic interactions, leading to efficient loading and stabilization of Ex-4. More importantly, the immunogenic site of Ex-4 was shielded by the nanochaperones, thereby effectively reducing the immune clearance and prolonging the half-life. Hyperglycemia-triggered release of Ex-4 was achieved by the hydrophobic to the hydrophilic transformation of the FPBA-modified domains and the introduced negative charge because of the binding of glucose by FPBA. The Ex-4-loaded nanochaperones exhibited an enhanced therapeutic effect on type 2 diabetic mice.
Collapse
Affiliation(s)
- Yanli Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Menglin Yang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Xiaohui Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Fei Deng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Xu Yin
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P.R. China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
| |
Collapse
|
175
|
Pilszyk A, Niebrzydowska M, Pilszyk Z, Wierzchowska-Opoka M, Kimber-Trojnar Ż. Incretins as a Potential Treatment Option for Gestational Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms231710101. [PMID: 36077491 PMCID: PMC9456218 DOI: 10.3390/ijms231710101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disease affecting an increasing number of pregnant women around the world. It is not only associated with numerous perinatal complications but also has long-term consequences impacting maternal health and fetal development. To prevent them, it is important to keep glucose levels under control. As much as 15-30% of GDM patients will require treatment with insulin, metformin, or glyburide. With that in mind, it is crucial to keep searching for novel and improved pharmacotherapies. Nowadays, there are ongoing studies investigating the use of other groups of drugs that have proven successful in the treatment of T2DM. Glucagon-like peptide-1 (GLP-1) receptor agonist and dipeptidyl peptidase-4 (DPP-4) inhibitor are among the drugs targeting the incretin system and are currently receiving significant attention. The aim of our review is to demonstrate the potential of these medications in treating GDM and preventing its later complications. It seems that both groups may be successful in the GDM management used alone or as an addition to better-known drugs, including metformin and glyburide. However, more clinical trials are needed to confirm their importance in GDM treatment and to demonstrate effective therapeutic strategies.
Collapse
|
176
|
Farokhnia M, Browning BD, Crozier ME, Sun H, Akhlaghi F, Leggio L. The glucagon‐like peptide‐1 system is modulated by acute and chronic alcohol exposure: Findings from human laboratory experiments and a post‐mortem brain study. Addict Biol 2022; 27:e13211. [DOI: 10.1111/adb.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health Baltimore and Bethesda Maryland USA
- Center on Compulsive Behaviors National Institutes of Health Bethesda Maryland USA
- Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
| | - Brittney D. Browning
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health Baltimore and Bethesda Maryland USA
| | - Madeline E. Crozier
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health Baltimore and Bethesda Maryland USA
| | - Hui Sun
- Clinical Core Laboratory, Office of the Clinical Director National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Bethesda Maryland USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences University of Rhode Island Kingston Rhode Island USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health Baltimore and Bethesda Maryland USA
- Center on Compulsive Behaviors National Institutes of Health Bethesda Maryland USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences Brown University Providence Rhode Island USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program National Institutes of Health Baltimore Maryland USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
177
|
Wu Q, Li D, Huang C, Zhang G, Wang Z, Liu J, Yu H, Song B, Zhang N, Li B, Chu X. Glucose control independent mechanisms involved in the cardiovascular benefits of glucagon-like peptide-1 receptor agonists. Biomed Pharmacother 2022; 153:113517. [DOI: 10.1016/j.biopha.2022.113517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
|
178
|
Karamanakos G, Kokkinos A, Dalamaga M, Liatis S. Highlighting the Role of Obesity and Insulin Resistance in Type 1 Diabetes and Its Associated Cardiometabolic Complications. Curr Obes Rep 2022; 11:180-202. [PMID: 35931912 DOI: 10.1007/s13679-022-00477-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW This narrative review appraises research data on the potentially harmful effect of obesity and insulin resistance (IR) co-existence with type 1 diabetes mellitus (T1DM)-related cardiovascular (CVD) complications and evaluates possible therapeutic options. RECENT FINDINGS Obesity and IR have increasingly been emerging in patients with T1DM. Genetic, epigenetic factors, and subcutaneous insulin administration are implicated in the pathogenesis of this coexistence. Accumulating evidence implies that the concomitant presence of obesity and IR is an independent predictor of worse CVD outcomes. The prevalence of obesity and IR has increased in patients with T1DM. This increase can be partly attributed to general population trends but, additionally, to iatrogenic weight gain caused by insulin treatment. This association might be the missing link explaining the excess CVD burden observed in patients with T1DM despite optimal glycemic control. Data on newer agents for type 2 diabetes mellitus (T2DM) treatment are unraveling novel ways to challenge this aggravating coexistence.
Collapse
Affiliation(s)
- Georgios Karamanakos
- First Department of Propaedeutic Internal Medicine, Medical School, National Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, Athens, 11527, Greece.
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, National Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, Athens, 11527, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavros Liatis
- First Department of Propaedeutic Internal Medicine, Medical School, National Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, Athens, 11527, Greece
| |
Collapse
|
179
|
GLP-1 Agonist to Treat Obesity and Prevent Cardiovascular Disease: What Have We Achieved so Far? Curr Atheroscler Rep 2022; 24:867-884. [PMID: 36044100 DOI: 10.1007/s11883-022-01062-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW To discuss evidence supporting the use of glucagon-like peptide 1 receptor agonists (GLP-1RA) to treat obesity and their role as a cardioprotective drug. Obesity is not just a hypertrophy of the adipose tissue because it may become dysfunctional and inflamed resulting in increased insulin resistance. Being overweight is associated with increased incidence of cardiovascular events and weight loss achieved through lifestyle changes lowers risk factors, but has no clear effect on cardiovascular outcomes. In contrast, treating obesity with GLP-1RA decreases cardiovascular risk and the possible mechanisms of cardioprotection achieved by this class of drugs are discussed. GLP-1RA were initially developed to treat type 2 diabetes patients, in whom the effects upon glycemia and, moreover, weight loss, especially with long-acting GLP-1RA, were evident. However, cardiovascular safety trials in type 2 diabetes patients, the majority presenting cardiovascular disease and excess weight, showed that GLP-1 receptor agonists were indeed capable of decreasing cardiovascular risk. RECENT FINDINGS Type 2 diabetes treatment with GLP-1RA liraglutide and semaglutide paved way to a ground-breaking therapy specific for obesity, as shown with the SCALE 3 mg/day liraglutide program and the STEP 2.4 mg/week semaglutide program. A novel molecule with superior performance is tirzepatide, a GLP-1 and GIP (Gastric Inhibitory Peptide) receptor agonist and recent results from the SURPASS and SURMOUNT programs are briefly described. Liraglutide was approved without a CVOT (Cardiovascular Outcome Trial) because authorities accepted the results from the LEADER study, designed for superiority. The SELECT study with semaglutide will report results only in 2023 and tirzepatide is being tested in patients with diabetes in the SURPASS-CVOT. Clinical studies highlight that GLP-1RA to treat obesity, alongside their concomitant cardioprotective effects, have become a hallmark in clinical science.
Collapse
|
180
|
Once-Weekly Semaglutide Use in Patients with Type 2 Diabetes: Results from the SURE Spain Multicentre, Prospective, Observational Study. J Clin Med 2022; 11:jcm11174938. [PMID: 36078869 PMCID: PMC9456474 DOI: 10.3390/jcm11174938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes (T2D) is a complex disease for which an individualised treatment approach is recommended. Once-weekly (OW) semaglutide is a glucagon-like peptide-1 receptor agonist approved for the treatment of insufficiently controlled T2D. The aim of this study was to investigate the use of OW semaglutide in adults with T2D in a real-world context. SURE Spain, from the 10-country SURE programme, was a prospective, multicentre, open-label, observational study, approximately 30 weeks in duration. Adults with T2D and ≥1 documented HbA1c value ≤12 weeks before semaglutide initiation were enrolled. Change in HbA1c from baseline to end of study (EOS) was the primary endpoint, with change in body weight (BW), waist circumference, and patient-reported outcomes as secondary endpoints. Of the 227 patients initiating semaglutide, 196 (86.3%) completed the study on-treatment with semaglutide. The estimated mean changes in HbA1c and body weight between baseline and EOS were −1.3%-points (95% confidence interval (CI) −1.51;−1.18%-points) and −5.7 kg (95% CI −6.36;−4.98 kg). No new safety concerns were identified. Therefore, in routine clinical practice in Spain, OW semaglutide was shown to be associated with statistically significant and clinically relevant reductions in HbA1c and BW in adults with T2D.
Collapse
|
181
|
Yildiz M, Lavie CJ, Morin DP, Oktay AA. The complex interplay between diabetes mellitus and atrial fibrillation. Expert Rev Cardiovasc Ther 2022; 20:707-717. [PMID: 35984314 DOI: 10.1080/14779072.2022.2115357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
INTRODUCTION : A growing body of evidence suggests that diabetes mellitus (DM) is associated with an increased risk of new-onset atrial fibrillation (AF) and contributes to suboptimal arrhythmia control and poor prognosis in patients with AF. The high prevalence of AF among patients with DM is primarily attributed to common risk factors, shared pathophysiological mechanisms, and associated atrial remodeling and autonomic dysfunction. AREAS COVERED : This comprehensive review covers the current data on the role of DM in the development and prognosis of AF. In addition, we review the impact of anti-DM medications on AF prevention and the role of anticoagulation in patients with coexisting DM and AF. EXPERT OPINION : DM is independently associated with new-onset AF, and the coexistence of these two conditions contributes to poor outcomes, from reduced quality of life to increased risks of thromboembolic events, heart failure, and mortality. Despite this strong link, the current evidence is insufficient to recommend routine screening for AF in patients with DM. Although some observations exist on preventing AF with anti-DM medications, randomized controlled trials are warranted to explore the proposed benefits of novel anti-DM medicines in reducing the risk of incident AF.
Collapse
Affiliation(s)
- Mehmet Yildiz
- The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, OH
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School-The University of Queensland School of Medicine, New Orleans, LA
| | - Daniel P Morin
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School-The University of Queensland School of Medicine, New Orleans, LA
| | - Ahmet Afsin Oktay
- The Heart and Vascular Institute, Rush University Medical Center, Chicago, IL
| |
Collapse
|
182
|
Tasdemiroglu Y, Gourdie RG, He JQ. In vivo degradation forms, anti-degradation strategies, and clinical applications of therapeutic peptides in non-infectious chronic diseases. Eur J Pharmacol 2022; 932:175192. [PMID: 35981605 DOI: 10.1016/j.ejphar.2022.175192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Current medicinal treatments for diseases comprise largely of two categories: small molecular (chemical) (e.g., aspirin) and larger molecular (peptides/proteins, e.g., insulin) drugs. Whilst both types of therapeutics can effectively treat different diseases, ranging from well-understood (in view of pathogenesis and treatment) examples (e.g., flu), to less-understood chronic diseases (e.g., diabetes), classical small molecule drugs often possess significant side-effects (a major cause of drug withdrawal from market) due to their low- or non-specific targeting. By contrast, therapeutic peptides, which comprise short sequences from naturally occurring peptides/proteins, commonly demonstrate high target specificity, well-characterized modes-of-action, and low or non-toxicity in vivo. Unfortunately, due to their small size, linear permutation, and lack of tertiary structure, peptidic drugs are easily subject to rapid degradation or loss in vivo through chemical and physical routines, thus resulting in a short half-life and reduced therapeutic efficacy, a major drawback that can reduce therapeutic efficiency. However, recent studies demonstrate that the short half-life of peptidic drugs can be significantly extended by various means, including use of enantiomeric or non-natural amino acids (AAs) (e.g., L-AAs replacement with D-AAs), chemical conjugation [e.g., with polyethylene glycol], and encapsulation (e.g., in exosomes). In this context, we provide an overview of the major in vivo degradation forms of small therapeutic peptides in the plasma and anti-degradation strategies. We also update on the progress of small peptide therapeutics that are either currently in clinical trials or are being successfully used in clinical therapies for patients with non-infectious diseases, such as diabetes, multiple sclerosis, and cancer.
Collapse
Affiliation(s)
- Yagmur Tasdemiroglu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robert G Gourdie
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
183
|
Madsbad S, Holst JJ. Cardiovascular effects of incretins - focus on GLP-1 receptor agonists. Cardiovasc Res 2022; 119:886-904. [PMID: 35925683 DOI: 10.1093/cvr/cvac112] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
GLP-1 receptor agonists (GLP-1 RAs) have been used to treat patients with type 2 diabetes since 2005 and have become popular because of the efficacy and durability in relation to glycaemic control in combination with weight loss in most patients. Today in 2022, seven GLP-1 RAs, including oral semaglutide are available for treatment of type 2 diabetes. Since the efficacy in relation to reduction of HbA1c and body weight as well as tolerability and dosing frequency vary between agents, the GLP-1 RAs cannot be considered equal. The short acting lixisenatide showed no cardiovascular benefits, while once daily liraglutide and the weekly agonists, subcutaneous semaglutide, dulaglutide, and efpeglenatide, all lowered the incidence of cardiovascular events. Liraglutide, oral semaglutide and exenatide once weekly also reduced mortality. GLP-1 RAs reduce the progression of diabetic kidney disease. In the 2019 consensus report from EASD/ADA, GLP-1 RAs with demonstrated cardio-renal benefits (liraglutide, semaglutide and dulaglutide) are recommended after metformin to patients with established cardiovascular diseases or multiple cardiovascular risk factors. European Society of Cardiology (ESC) suggests starting with a SGLT-2 inhibitor or a GLP-1 RA in drug naïve patients with type 2 diabetes and atherosclerotic CVD or high CV Risk. However, the results from cardiovascular outcome trials (CVOT) are very heterogeneous suggesting that some GLP-1RA are more suitable to prevent CVD than others. The CVOTs provide a basis upon which individual treatment decisions for patients with T2D and CVD can be made.
Collapse
Affiliation(s)
- Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
184
|
Chatterjee D, Vhora N, Goswami A, Hiray A, Jain A, Kate AS. In-silico and in-vitro hybrid approach to identify glucagon-like peptide-1 receptor agonists from anti-diabetic natural products. Nat Prod Res 2022; 37:1651-1655. [PMID: 35924731 DOI: 10.1080/14786419.2022.2106567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Natural products have contributed immensely towards the treatment of various diseases including diabetes. Here, a database of small molecules from nature possessing antidiabetic properties was analysed and shortlisted according to their structural diversity. Later, those structures were screened by in-silico docking studies to understand their affinity towards glucagon-like peptide-1 (GLP-1) receptor. The selected molecules were isolated and investigated further by integrated in-vitro and in-silico approaches. Alpha-mangostin was found to be suitable due to its excellent docking score and isolation yield. A pancreatic beta cell line was used to test the activity of alpha-mangostin and observed a 3-fold increase in insulin secretion compared to 15 mM glucose control. Further, in-silico molecular dynamics simulations studies have validated its target by showing conformational changes at the functionally active part of the GLP-1 receptor. This screening strategy can be applied to identify pertinent natural products rapidly for various therapeutic targets.
Collapse
Affiliation(s)
- Debanjan Chatterjee
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Nazmina Vhora
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Ashutosh Goswami
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Aishwarya Hiray
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palaj, Gandhinagar, Gujarat, India.,Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi, Jharkhand, India
| | - Abhijeet S Kate
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| |
Collapse
|
185
|
Garvey WT, Umpierrez GE, Dunn JP, Kwan AYM, Varnado OJ, Konig M, Levine JA. Examining the evidence for weight management in individuals with type 2 diabetes. Diabetes Obes Metab 2022; 24:1411-1422. [PMID: 35545861 DOI: 10.1111/dom.14764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022]
Abstract
The obesity epidemic has been linked to the worsening diabetes epidemic. Despite this, weight reduction for individuals with obesity is seen as a secondary, or even tertiary, consideration in the treatment of type 2 diabetes (T2D). The aim of this review is to examine the benefits of weight management in individuals with T2D. A literature review of current available published data on the benefits of weight reduction in individuals with T2D was conducted. In individuals with T2D who have obesity or overweight, modest and sustained weight reduction results in improvement in glycaemic control and decreased utilization of glucose-lowering medication. A total body weight loss of 5% or higher reduces HbA1c levels and contributes to mitigating risk factors of cardiovascular disease, such as hyperlipidaemia and hypertension, as well as other disease-related complications of obesity. Progressive improvements in glycaemic control and cardiometabolic risk factors can occur when the total body weight loss increases to 10% or more. In the approach to treating patients with T2D and obesity, prioritizing weight management and the use of therapeutics that offer glycaemic control as well as the additional weight loss should be emphasized given their potential to attenuate the progression and severity of T2D.
Collapse
Affiliation(s)
- W Timothy Garvey
- University of Alabama at Birmingham, UAB Diabetes Research Center, Birmingham, Alabama
| | | | | | | | | | | | | |
Collapse
|
186
|
Han C, Zhang X, Pang G, Zhang Y, Pan H, Li L, Cui M, Liu B, Kang R, Xue X, Sun T, Liu J, Chang J, Zhao P, Wang H. Hydrogel microcapsules containing engineered bacteria for sustained production and release of protein drugs. Biomaterials 2022; 287:121619. [PMID: 35700622 DOI: 10.1016/j.biomaterials.2022.121619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 12/18/2022]
Abstract
Subcutaneous administration of sustained-release formulations is a common strategy for protein drugs, which avoids first pass effect and has high bioavailability. However, conventional sustained-release strategies can only load a limited amount of drug, leading to insufficient durability. Herein, we developed microcapsules based on engineered bacteria for sustained release of protein drugs. Engineered bacteria were carried in microcapsules for subcutaneous administration, with a production-lysis circuit for sustained protein production and release. Administrated in diabetic rats, engineered bacteria microcapsules was observed to smoothly release Exendin-4 for 2 weeks and reduce blood glucose. In another example, by releasing subunit vaccines with bacterial microcomponents as vehicles, engineered bacterial microcapsules activated specific immunity in mice and achieved tumor prevention. The engineered bacteria microcapsules have potential to durably release protein drugs and show versatility on the size of drugs. It might be a promising design strategy for long-acting in situ drug factory.
Collapse
Affiliation(s)
- Chunli Han
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Xinyu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Gaoju Pang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Yingying Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Huizhuo Pan
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Lianyue Li
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Meihui Cui
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Baona Liu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Ruru Kang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Xin Xue
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Tao Sun
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, China; Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
| | - Jing Liu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Peiqi Zhao
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China.
| |
Collapse
|
187
|
Janez A, Muzurovic E, Stoian AP, Haluzik M, Guja C, Czupryniak L, Duvnjak L, Lalic N, Tankova T, Bogdanski P, Papanas N, Nunes JS, Kempler P, Fras Z, Rizzo M. Translating results from the cardiovascular outcomes trials with glucagon-like peptide-1 receptor agonists into clinical practice: Recommendations from a Eastern and Southern Europe diabetes expert group. Int J Cardiol 2022; 365:8-18. [PMID: 35905827 DOI: 10.1016/j.ijcard.2022.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists mimic the action of the endogenous GLP-1 incretin hormone, improving glycaemic control in type 2 diabetes mellitus (T2DM) by increasing insulin secretion and decreasing glucagon secretion in a glucose-dependent manner. However, as cardiovascular (CV) morbidity and mortality is common in patients with T2DM, several trials with the use of GLP-1 receptor agonists (RAs) have been performed focusing on endpoints related to cardiovascular disease rather than metabolic control of T2DM. Following the positive cardiovascular effects of liraglutide, dulaglutide and semaglutide observed in these trials, major changes in T2DM management guidelines have occurred. This document from a Eastern and Southern European Diabetes Expert Group discusses the results of GLP-1 RA CV outcomes trials, their impact on recent clinical guidelines for the management of T2DM, and some selected combination regimens utilising GLP-1 RAs. We also propose an algorithm for guiding GLP-1 RA-based treatment according to patients' characteristics, which can be easily applied in every day clinical practice.
Collapse
Affiliation(s)
- Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Slovenia.
| | - Emir Muzurovic
- Faculty of Medicine, University of Montenegro, Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Podgorica, Montenegro
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Martin Haluzik
- Diabetes Centre and Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine and Institute of Endocrinology, Prague, Czech Republic
| | - Cristian Guja
- Department of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Leszek Czupryniak
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Poland
| | - Lea Duvnjak
- School of Medicine University of Zagreb, Vuk Vrhovac University Clinic, Zagreb, Croatia
| | - Nebojsa Lalic
- Faculty of Medicine University of Belgrade, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Belgrade, Serbia
| | | | - Pawel Bogdanski
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, University of Medical Sciences, Poznan, Poland
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Josè Silva Nunes
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Peter Kempler
- First Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Zlatko Fras
- Preventive Cardiology Unit, Division of Medicine, University Medical Centre Ljubljana and Chair of Internal Medicine, Medical Faculty, University of Ljubljana, Slovenia
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, Italy
| |
Collapse
|
188
|
Teng D, Zhou Y, Tang Y, Liu G, Tu Y. Mechanistic Studies on the Stereoselectivity of FFAR1 Modulators. J Chem Inf Model 2022; 62:3664-3675. [PMID: 35877470 PMCID: PMC9364411 DOI: 10.1021/acs.jcim.2c00417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Free fatty acid receptor 1 (FFAR1) is a potential therapeutic target for the treatment of type 2 diabetes (T2D). It has been validated that agonists targeting FFAR1 can achieve the initial therapeutic endpoints of T2D, and the epimer agonists (R,S) AM-8596 can activate FFAR1 differently, with one acting as a partial agonist and the other as a full agonist. Up to now, the origin of the stereoselectivity of FFAR1 agonists remains elusive. In this work, we used molecular simulation methods to elucidate the mechanism of the stereoselectivity of the FFAR1 agonists (R)-AM-8596 and (S)-AM-8596. We found that the full agonist (R)-AM-8596 disrupts the residue interaction network around the receptor binding pocket and promotes the opening of the binding site for the G-protein, thereby resulting in the full activation of FFAR1. In contrast, the partial agonist (S)-AM-8596 forms stable electrostatic interactions with FFAR1, which stabilizes the residue network and hinders the conformational transition of the receptor. Our work thus clarifies the selectivity and underlying molecular activation mechanism of FFAR1 agonists.
Collapse
Affiliation(s)
- Dan Teng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.,Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm SE-106 91, Sweden
| | - Yang Zhou
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yaoquan Tu
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm SE-106 91, Sweden
| |
Collapse
|
189
|
Liang T, Xie X, Wu L, Li L, Yang L, Gao H, Deng Z, Zhang X, Chen X, Zhang J, Ding Y, Wu Q. Comparative analysis of the efficacies of probiotic supplementation and glucose-lowering drugs for the treatment of type 2 diabetes: A systematic review and meta-analysis. Front Nutr 2022; 9:825897. [PMID: 35923194 PMCID: PMC9339904 DOI: 10.3389/fnut.2022.825897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this systematic review and meta-analysis was to evaluate the effects of probiotics and glucose-lowering drugs (thiazolidinedione [TZD], glucagon-like pep-tide-1 receptor agonists [GLP-1 RA], dipeptidyl peptidase IV inhibitors, and sodium glucose co-transporter 2 inhibitors [SGLT-2i]) in patients with type 2 diabetes from randomized con-trolled trials (RCTs). The PubMed, Web of science, Embase, and Cochrane Library databases were searched on the treatment effects of probiotics and glucose-lowering drugs on glycemia, lipids, and blood pressure metabolism published between Jan 2015 and April 2021. We performed meta-analyses using the random-effects model. We included 25 RCTs (2,843 participants). Overall, GLP-1RA, SGLT-2i, and TZD significantly reduce fasting blood sugar (FBS) and glycated hemoglobin (HbA1c), whereas GLP-1 RA increased the risk of hypoglycaemia. Multispecies probiotics decrease FBS, total cholesterol (TC), and systolic and diastolic blood pressure (SBP, DBP). Moreover, subgroup analyses indicated that participants aged >55 years, BMI ≥30 kg/m2, longer duration of intervention, and subjects from Eastern countries, showed significantly higher reduction in FBS and HbA1c, TC, TG and SBP. This meta-analysis revealed that including multiple probiotic rather than glucose-lowering drugs might be more beneficial regarding T2D prevention who suffering from simultaneously hyperglycemia, hypercholesterolemia, and hypertension.
Collapse
Affiliation(s)
- Tingting Liang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lei Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - He Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhenshan Deng
- College of Life Sciences, Yan'an University, Yan'an, China
| | | | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
190
|
Zhou F, Song P, Tang X, Yang Q, Zhou S, Xu R, Fang T, Jia Z, Han J. Discovery of once-weekly, peptide-based selective GLP-1 and cholecystokinin 2 receptors co-agonizts. Peptides 2022; 153:170811. [PMID: 35594964 DOI: 10.1016/j.peptides.2022.170811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 01/03/2023]
Abstract
A group of long-acting, peptide-based, and selective GLP-1R/CCK-2R dual agonizts were identified by rational design. Guided by sequence analysis, structural elements of the CCK-2R agonist moiety were engineered into the GLP-1R agonist Xenopus GLP-1, resulting in hybrid peptides with potent GLP-1R/CCK-2R dual activity. Further modifications with fatty acids resulted in novel metabolically stable peptides, among which 3d and 3 h showed potent GLP-1R and CCK-2R activation potencies and comparable stability to semaglutide. In food intake tests, 3d and 3 h also showed a potent reduction in food intake, superior to that of semaglutide. Moreover, the acute hypoglycemic and insulinotropic activities of 3d and 3 h were better than that of semaglutide and ZP3022. Importantly, the limited pica response following 3d and 3 h administration in SD rats preliminarily indicated that the food intake reduction effects of 3d and 3 h are independent of nausea/vomiting. In a 35-day study in db/db mice, every two days administration of 3d and 3 h increased islet areas and numbers, insulin contents, β-cell area, β-cell proliferation, as well as improved glucose tolerance, and decreased HbA1c, to a greater extent than ZP3022 and semaglutide. In a 21-day study in DIO mice, once-weekly administration of 3d and 3 h significantly induced body weight loss, improved glucose tolerance, and normalized lipid metabolism, to a greater extent than semaglutide. The current study showed the antidiabetic and antiobesity potentials of GLP-1R/CCK-2R dual agonizts that warrant further investigation.
Collapse
Affiliation(s)
- Feng Zhou
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Peng Song
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xueling Tang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Qimeng Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Siyuan Zhou
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Ronglian Xu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Ting Fang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Zhiruo Jia
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, PR China.
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, PR China.
| |
Collapse
|
191
|
Zhang Y, Hu J, Tan H, Zhong Y, Nie S. Akkermansia muciniphila, an important link between dietary fiber and host health. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
192
|
The GI Effects of GLP-1 - The Genesis of Longstanding Progress. Dig Dis Sci 2022; 67:2714-2715. [PMID: 35635628 DOI: 10.1007/s10620-022-07520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 12/09/2022]
|
193
|
Miura H, Muramae N, Mori K, Otsui K, Sakaguchi K. Successful Resolution of Glucose Toxicity With the Use of Fixed-Ratio Combination Injection of Basal Insulin and Short-Acting Glucagon-Like Peptide 1 (GLP-1) Receptor Agonist. Cureus 2022; 14:e25889. [PMID: 35844351 PMCID: PMC9277572 DOI: 10.7759/cureus.25889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic hyperglycemia leads to a decrease in glucose-stimulated insulin secretion and an increase in insulin resistance. Resolving these glucose toxicities is pivotal in type 2 diabetes therapy because the decline in insulin secretion and insulin sensitivity causes further hyperglycemia. Conventionally, multiple daily insulin injection therapy was applied in such a situation. However, it could not be easily introduced, especially in outpatients. We present a case involving the successful resolution of glucose toxicity easily, immediately, and safely by using a fixed-ratio combination (FRC) injection of basal insulin and short-acting glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1 RA). Additionally, we discuss the advantages of this new injection therapy.
Collapse
|
194
|
Wang SC, Teng XN, Wang XD, Dong YS, Yuan HL, Xiu ZL. Recycling reaction and separation for FACylation of loxenatide by trade-off between miscibility and immiscibility of reactants and product in methanol solution. J Chromatogr A 2022; 1676:463239. [PMID: 35709607 DOI: 10.1016/j.chroma.2022.463239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 10/18/2022]
Abstract
The growing demand and scale of production for fatty acid chain modified (FACylated) polypeptide has sparked the interest in novel production technologies. In this study, a recycling reaction and separation process was proposed and applied to the fatty acid chain modification (FACylation) of loxenatide (LOX), which was based on the difference in solubility between reactants and FACylated product. Especially, the mixed PBS-Methanol (MeOH) solution was designed to meet the demands for FACylation of LOX as well as separation of FACylated LOX and residual modifier. In order to ensure the efficient FACylation, a mixed 10% PBS-90% MeOH (v/v) solution was chosen to provide a good miscibility for two reactants, LOX and N-tetradecylmaleimide (C14-MAL). On the other hand, the immiscibility between reactant (C14-MAL) and FACylated product (N-tetradecyl-Loxenatide (C14-LOX)) could realize the separation of C14-LOX when the MeOH concentration was less than 30% (v/v). Based on this strategy, the recycling reaction and separation process for FACylation of LOX was established by adjusting the MeOH concentration in the mixed solution. The reaction yield and recovery of C14-LOX exceeded 97% and 94%, and the excess reactant C14-MAL could be recycled with a recovery of more than 80%. Furthermore, after purification by reversed-phase chromatography, C14-LOX showed good pharmacokinetic and pharmacodynamic properties in vivo. This study will have great application prospects in industrial production of C14-LOX.
Collapse
Affiliation(s)
- Shu-Chang Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xin-Nan Teng
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xu-Dong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue-Sheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Heng-Li Yuan
- State Key Laboratory Cultivating Base for Long-acting Bio-medical Research of Jiangsu Province, Jiangsu Hansoh Pharmaceutical Group Co. Ltd., Lianyungang 222000, China
| | - Zhi-Long Xiu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
195
|
Ma Y, Lee E, Yoshikawa H, Noda T, Miyamoto J, Kimura I, Hatano R, Miki T. Phloretin suppresses carbohydrate-induced GLP-1 secretion via inhibiting short chain fatty acid release from gut microbiome. Biochem Biophys Res Commun 2022; 621:176-182. [DOI: 10.1016/j.bbrc.2022.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
|
196
|
Ferrannini E, Niemoeller E, Dex T, Servera S, Mari A. Fixed-ratio combination of insulin glargine plus lixisenatide (iGlarLixi) improves ß-cell function in people with type 2 diabetes. Diabetes Obes Metab 2022; 24:1159-1165. [PMID: 35257461 PMCID: PMC9314929 DOI: 10.1111/dom.14688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
Abstract
AIM Multiple studies support the efficacy of combining a glucagon-like peptide 1 receptor agonist (GLP-1RA) with basal insulin in people with type 2 diabetes inadequately controlled on dual/triple oral therapy. Fixed-ratio combinations of basal insulin + GLP-1RA represent a further advance to facilitate management. We assessed the impact of fixed-ratio combination basal insulin + GLP-1RA treatment on β-cell function. MATERIALS AND METHODS We analysed data from 351 participants in the LixiLan-G trial (NCT02787551) randomized to receive iGlarLixi (insulin glargine 100 U/ml + lixisenatide) or to continue daily/weekly GLP-1RA, both on top of metformin. Participants received a 2-h meal tolerance test before randomization and at study end (26 weeks), with timed plasma glucose and C-peptide determinations. β-cell function parameters were resolved using mathematical modelling. RESULTS In the GLP-1RA group (n = 162), both body weight and glycated haemoglobin decreased at week 26, yet none of the insulin secretion/β-cell function parameters changed significantly. In contrast, in the iGlarLixi group (n = 189), glycated haemoglobin decreased significantly more than in the GLP-1RA group (p < .0001) despite an increase in body weight (+1.7 ± 3.9 kg, p < .0001). Fasting and stimulated insulin secretion decreased at Week 26 (both p < .0001 vs. GLP-1RA), while β-cell glucose sensitivity increased by a median 35% (p = .0032 vs. GLP-1RA). The incremental meal tolerance test glucose area showed a larger reduction with iGlarLixi versus GLP-1RA (p < .0001). CONCLUSIONS In people with type 2 diabetes on metformin, 26-week treatment with iGlarLixi resulted in a marked improvement in β-cell function concomitant with sparing of endogenous insulin release and a reduction in meal absorption.
Collapse
|
197
|
Kim ER, Park JS, Kim JH, Oh JY, Oh IJ, Choi DH, Lee YS, Park IS, Kim S, Lee DH, Cheon JH, Bae JW, Lee M, Cho JW, An IB, Nam EJ, Yang SI, Lee MS, Bae SH, Lee YH. A GLP-1/GLP-2 receptor dual agonist to treat NASH: Targeting the gut-liver axis and microbiome. Hepatology 2022; 75:1523-1538. [PMID: 34773257 DOI: 10.1002/hep.32235] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Currently there is no Food and Drug Administration-approved drug to treat NAFLD and NASH, the rates of which are increasing worldwide. Although NAFLD/NASH are highly complex and heterogeneous conditions, most pharmacotherapy pipelines focus on a single mechanistic target. Considering the importance of the gut-liver axis in their pathogenesis, we investigated the therapeutic effect of a long-acting dual agonist of glucagon-like peptide (GLP)-1 and GLP-2 receptors in mice with NAFLD/NASH. APPROACH AND RESULTS C57BL/6J mice were fed a choline-deficient high-fat diet/high fructose and sucrose solution. After 16 weeks, mice were randomly allocated to receive vehicle, GLP1-Fc, GLP2-Fc, or GLP1/2-Fc fusion (GLP1/2-Fc) subcutaneously every 2 days for 4 weeks. Body weight was monitored, insulin/glucose tolerance tests were performed, feces were collected, and microbiome profiles were analyzed. Immobilized cell systems were used to evaluate direct peptide effect. Immunohistochemistry, quantitative PCR, immunoblot analysis, tunnel assay, and biochemical assays were performed to assess drug effects on inflammation, hepatic fibrosis, cell death, and intestinal structures. The mice had well-developed NASH phenotypes. GLP1/2-Fc reduced body weight, glucose levels, hepatic triglyceride levels, and cellular apoptosis. It improved liver fibrosis, insulin sensitivity, and intestinal tight junctions, and increased microvillus height, crypt depth, and goblet cells of intestine compared with a vehicle group. Similar effects of GLP1/2-Fc were found in in vitro cell systems. GLP1/2-Fc also changed microbiome profiles. We applied fecal microbiota transplantation (FMT) gain further insight into the mechanism of GLP1/2-Fc-mediated protection. We confirmed that FMT exerted an additive effect on GLP1-Fc group, including the body weight change, liver weight, hepatic fat accumulation, inflammation, and hepatic fibrosis. CONCLUSIONS A long-acting dual agonist of GLP-1 and GLP-2 receptors is a promising therapeutic strategy to treat NAFLD/NASH.
Collapse
Affiliation(s)
- Eun Ran Kim
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
| | - Jeong Su Park
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
| | - Jin Hee Kim
- Graduate SchoolYonsei University College of MedicineSeoulKorea
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
- Institute of Endocrine ResearchYonsei University College of MedicineSeoulKorea
| | - Ji Young Oh
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
- Institute of Endocrine ResearchYonsei University College of MedicineSeoulKorea
| | - In Jeong Oh
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
| | - Da Hyun Choi
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
| | - Yu Seol Lee
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 ProjectYonsei University College of MedicineSeoulKorea
| | - I Seul Park
- Department of Internal Medicine and Institute of GastroenterologyYonsei University College of MedicineSeoulKorea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulKorea
| | - SeungWon Kim
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
- Department of Internal Medicine and Institute of GastroenterologyYonsei University College of MedicineSeoulKorea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulKorea
| | - Da Hyun Lee
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 ProjectYonsei University College of MedicineSeoulKorea
| | - Jae Hee Cheon
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
- Department of Internal Medicine and Institute of GastroenterologyYonsei University College of MedicineSeoulKorea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulKorea
| | - Jin-Woo Bae
- Department of Biology and Department of Life and Nanopharmaceutical SciencesKyung Hee UniversitySeoulKorea
| | - Minyoung Lee
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
| | - Jin Won Cho
- Department of Systems BiologyGlycosylation Network Research CenterYonsei UniversitySeoulKorea
| | - In Bok An
- Research InstituteSL MetaGenSeoulKorea
| | | | | | - Myung-Shik Lee
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
- Institute of Endocrine ResearchYonsei University College of MedicineSeoulKorea
| | - Soo Han Bae
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
- Graduate SchoolYonsei University College of MedicineSeoulKorea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 ProjectYonsei University College of MedicineSeoulKorea
| | - Yong-Ho Lee
- Graduate SchoolYonsei University College of MedicineSeoulKorea
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
- Institute of Endocrine ResearchYonsei University College of MedicineSeoulKorea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulKorea
- Department of Systems BiologyGlycosylation Network Research CenterYonsei UniversitySeoulKorea
| |
Collapse
|
198
|
Mahapatra MK, Karuppasamy M, Sahoo BM. Semaglutide, a glucagon like peptide-1 receptor agonist with cardiovascular benefits for management of type 2 diabetes. Rev Endocr Metab Disord 2022; 23:521-539. [PMID: 34993760 PMCID: PMC8736331 DOI: 10.1007/s11154-021-09699-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
Semaglutide, a glucagon like peptide-1 (GLP-1) receptor agonist, is available as monotherapy in both subcutaneous as well as oral dosage form (first approved oral GLP-1 receptor agonist). It has been approved as a second line treatment option for better glycaemic control in type 2 diabetes and currently under scrutiny for anti-obesity purpose. Semaglutide has been proved to be safe in adults and elderly patients with renal or hepatic disorders demanding no dose modification. Cardiovascular (CV) outcome trials established that it can reduce various CV risk factors in patients with established CV disorders. Semaglutide is well tolerated with no risk of hypoglycaemia in monotherapy but suffers from gastrointestinal adverse effects. A large population affected with COVID-19 infection were diabetic; therefore use of semaglutide in diabetes as well as CV patients would be very much supportive in maintaining health care system during this pandemic situation. Hence, this peptidic drug can be truly considered as a quintessential of GLP-1 agonists for management of type 2 diabetes.
Collapse
Affiliation(s)
- Manoj Kumar Mahapatra
- Kanak Manjari Institute of Pharmaceutical Sciences, Rourkela, 769015, Odisha, India.
| | - Muthukumar Karuppasamy
- YaAn Pharmaceutical and Medical Communications, 6/691H1, Balaji Nagar, Sithurajapuram, Sivakasi, 626189, Tamilnadu, India
| | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Berhampur, 760010, Odisha, India
| |
Collapse
|
199
|
Nedosugova LV, Markina YV, Bochkareva LA, Kuzina IA, Petunina NA, Yudina IY, Kirichenko TV. Inflammatory Mechanisms of Diabetes and Its Vascular Complications. Biomedicines 2022; 10:biomedicines10051168. [PMID: 35625904 PMCID: PMC9138517 DOI: 10.3390/biomedicines10051168] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
The main cause of death in patients with type 2 DM is cardiovascular complications resulting from the progression of atherosclerosis. The pathophysiology of the association between diabetes and its vascular complications is complex and multifactorial and closely related to the toxic effects of hyperglycemia that causes increased generation of reactive oxygen species and promotes the secretion of pro-inflammatory cytokines. Subsequent oxidative stress and inflammation are major factors of the progression of type 2 DM and its vascular complications. Data on the pathogenesis of the development of type 2 DM and associated cardiovascular diseases, in particular atherosclerosis, open up broad prospects for the further development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Lyudmila V. Nedosugova
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Yuliya V. Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
| | - Leyla A. Bochkareva
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Irina A. Kuzina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Nina A. Petunina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Irina Y. Yudina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
| | - Tatiana V. Kirichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Correspondence:
| |
Collapse
|
200
|
WITHDRAWN: Analysis of intestinal short-chain fatty acid metabolism profile after probiotics and GLP-1 treatment for type 2 diabetes mellitus. Biochem Biophys Res Commun 2022. [DOI: 10.1016/j.bbrc.2022.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|