151
|
Alschuler L, Chiasson AM, Horwitz R, Sternberg E, Crocker R, Weil A, Maizes V. Integrative medicine considerations for convalescence from mild-to-moderate COVID-19 disease. Explore (NY) 2020; 18:140-148. [PMID: 33358750 PMCID: PMC7756157 DOI: 10.1016/j.explore.2020.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
The majority of individuals infected with SARS-CoV-2 have mild-to-moderate COVID-19 disease. Convalescence from mild-to-moderate (MtoM) COVID-19 disease may be supported by integrative medicine strategies. Integrative Medicine (IM) is defined as healing-oriented medicine that takes account of the whole person, including all aspects of lifestyle. Integrative medicine strategies that may support recovery from MtoM COVID-19 are proposed given their clinically studied effects in related conditions. Adoption of an anti-inflammatory diet, supplementation with vitamin D, glutathione, melatonin, Cordyceps, Astragalus and garlic have potential utility. Osteopathic manipulation, Qigong, breathing exercises and aerobic exercise may support pulmonary recovery. Stress reduction, environmental optimization, creative expression and aromatherapy can provide healing support and minimize enduring trauma. These modalities would benefit from clinical trials in people recovering from COVID-19 infection.
Collapse
Affiliation(s)
- Lise Alschuler
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States.
| | - Ann Marie Chiasson
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| | - Randy Horwitz
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| | - Esther Sternberg
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| | - Robert Crocker
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| | - Andrew Weil
- Andrew Weil Center for Integrative Medicine, United States; University of Arizona, United States
| | - Victoria Maizes
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| |
Collapse
|
152
|
Shinu P, Morsy MA, Deb PK, Nair AB, Goyal M, Shah J, Kotta S. SARS CoV-2 Organotropism Associated Pathogenic Relationship of Gut-Brain Axis and Illness. Front Mol Biosci 2020; 7:606779. [PMID: 33415126 PMCID: PMC7783391 DOI: 10.3389/fmolb.2020.606779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
COVID-19 has resulted in a pandemic after its first appearance in a pneumonia patient in China in early December 2019. As per WHO, this global outbreak of novel COVID-19 has resulted in 28,329,790 laboratory-confirmed cases and 911,877 deaths which have been reported from 210 countries as on 12th Sep 2020. The major symptoms at the beginning of COVID-19 are fever (98%), tussis (76%), sore throat (17%), rhinorrhea (2%), chest pain (2%), and myalgia or fatigue (44%). Furthermore, acute respiratory distress syndrome (61.1%), cardiac dysrhythmia (44.4%), shock (30.6%), hemoptysis (5%), stroke (5%), acute cardiac injury (12%), acute kidney injury (36.6%), dermatological symptoms with maculopapular exanthema (36.1%), and death can occur in severe cases. Even though human coronavirus (CoV) is mainly responsible for the infections of the respiratory tract, some studies have shown CoV (in case of Severe Acute Respiratory Syndrome, SARS and Middle East Respiratory Syndrome, MERS) to possess potential to spread to extra-pulmonary organs including the nervous system as well as gastrointestinal tract (GIT). Patients infected with COVID-19 have also shown symptoms associated with neurological and enteric infection like disorders related to smell/taste, loss of appetite, nausea, emesis, diarrhea, and pain in the abdomen. In the present review, we attempt to evaluate the understanding of basic mechanisms involved in clinical manifestations of COVID-19, mainly focusing on interaction of COVID-19 with gut-brain axis. This review combines both biological characteristics of the virus and its clinical manifestations in order to comprehend an insight into the fundamental potential mechanisms of COVID-19 virus infection, and thus endorse in the advancement of prophylactic and treatment strategies.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
153
|
Challenges of a novel range: Water balance, stress, and immunity in an invasive toad. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110870. [PMID: 33321177 DOI: 10.1016/j.cbpa.2020.110870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Species introduced by human activities can alter the normal functioning of ecosystems promoting negative impacts on native biodiversity, as they can rapidly expand their population size, demonstrating phenotypic plasticity and possible adaptive capacity to novel environments. Twenty years ago, the guttural toad, Sclerophrys gutturalis, was introduced to a peri-urban area of Cape Town, with cooler and drier climatic characteristics than its native source population, Durban, South Africa. Our goal was to understand the phenotypic changes, in terms of physiology and immunity, of populations in native and novel environments. We evaluated body index (BI), field hydration level, plasma corticosterone levels (CORT), proportion of neutrophils: lymphocytes (N: L), plasma bacterial killing ability (BKA), and hematocrit (HTC) in the field, and after standardized stressors (dehydration and movement restriction) in males from the native and invasive populations. Toads from the invasive population presented lower BI and tended to show a lower field hydration state, which is consistent with living in the drier environmental conditions of Cape Town. Additionally, invasive toads also showed higher BKA and N:L ratio under field conditions. After exposure to stressors, invasive animals presented higher BKA than the natives. Individuals from both populations showed increased CORT after dehydration, an intense stressor for these animals. The highest BKA and N:L ratio in the field and after submission to stressors in the laboratory shows that the invasive population has a phenotype that might increase their fitness, leading to adaptive responses in the novel environment and, thus, favoring successful dispersion and population increase.
Collapse
|
154
|
Yan J, Zhao N, Yang Z, Li Y, Bai H, Zou W, Zhang K, Huang X. A trade-off switch of two immunological memories in Caenorhabditis elegans reinfected by bacterial pathogens. J Biol Chem 2020; 295:17323-17336. [PMID: 33051209 PMCID: PMC7863904 DOI: 10.1074/jbc.ra120.013923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/25/2020] [Indexed: 11/06/2022] Open
Abstract
Recent studies have suggested that innate immune responses exhibit characteristics associated with memory linked to modulations in both vertebrates and invertebrates. However, the diverse evolutionary paths taken, particularly within the invertebrate taxa, should lead to similarly diverse innate immunity memory processes. Our understanding of innate immune memory in invertebrates primarily comes from studies of the fruit fly Drosophila melanogaster, the generality of which is unclear. Caenorhabditis elegans typically inhabits soil harboring a variety of fatal microbial pathogens; for this invertebrate, the innate immune system and aversive behavior are the major defensive strategies against microbial infection. However, their characteristics of immunological memory remains infantile. Here we discovered an immunological memory that promoted avoidance and suppressed innate immunity during reinfection with bacteria, which we revealed to be specific to the previously exposed pathogens. During this trade-off switch of avoidance and innate immunity, the chemosensory neurons AWB and ADF modulated production of serotonin and dopamine, which in turn decreased expression of the innate immunity-associated genes and led to enhanced avoidance via the downstream insulin-like pathway. Therefore, our current study profiles the immune memories during C. elegans reinfected by pathogenic bacteria and further reveals that the chemosensory neurons, the neurotransmitter(s), and their associated molecular signaling pathways are responsible for a trade-off switch between the two immunological memories.
Collapse
Affiliation(s)
- Jinyuan Yan
- State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China; Center Laboratory of the Second Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Ninghui Zhao
- Neurosurgery of the Second Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Zhongshan Yang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Yuhong Li
- State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Hua Bai
- State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China; School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Wei Zou
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Keqin Zhang
- State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Xiaowei Huang
- State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China.
| |
Collapse
|
155
|
Bacterial Metabolites of Human Gut Microbiota Correlating with Depression. Int J Mol Sci 2020; 21:ijms21239234. [PMID: 33287416 PMCID: PMC7730936 DOI: 10.3390/ijms21239234] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a global threat to mental health that affects around 264 million people worldwide. Despite the considerable evolution in our understanding of the pathophysiology of depression, no reliable biomarkers that have contributed to objective diagnoses and clinical therapy currently exist. The discovery of the microbiota-gut-brain axis induced scientists to study the role of gut microbiota (GM) in the pathogenesis of depression. Over the last decade, many of studies were conducted in this field. The productions of metabolites and compounds with neuroactive and immunomodulatory properties among mechanisms such as the mediating effects of the GM on the brain, have been identified. This comprehensive review was focused on low molecular weight compounds implicated in depression as potential products of the GM. The other possible mechanisms of GM involvement in depression were presented, as well as changes in the composition of the microbiota of patients with depression. In conclusion, the therapeutic potential of functional foods and psychobiotics in relieving depression were considered. The described biomarkers associated with GM could potentially enhance the diagnostic criteria for depressive disorders in clinical practice and represent a potential future diagnostic tool based on metagenomic technologies for assessing the development of depressive disorders.
Collapse
|
156
|
Li Z, Peng M, Power DM, Niu D, Dong Z, Li J. RNAi-mediated knock-down of the dopamine beta-hydroxylase gene changes growth of razor clams. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110534. [PMID: 33161095 DOI: 10.1016/j.cbpb.2020.110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/23/2020] [Accepted: 10/30/2020] [Indexed: 11/26/2022]
Abstract
Dopamine beta-hydroxylase (DβH) plays an essential role in the synthesis of catecholamines (CA) in neuroendocrine networks. In the razor clam, Sinonovacula constricta a novel gene for DβH (ScDβH-α) was identified that belongs to the copper type II ascorbate-dependent monooxygenase family. Expression analysis revealed ScDβH-α gene transcripts were abundant in the liver and expressed throughout development. Knock-down of ScDβH-α in adult clams using siRNA caused a reduction in the growth rate compared to control clams. Reduced growth was associated with strong down-regulation of gene transcripts for the growth-related factors, platelet derived growth factors A (PDGF-A) (P < 0.001) 24 h after ScDβH-α knock-down, vascular endothelial growth factor (VEGF1) (P < 0.001) and platelet derived growth factor B (PDGF-B-2) (P < 0.001) 24 h and 48 h after ScDβH-α knock-down and transforming growth factor beta (TGF-β1) (P < 0.001) 48 h and 72 h after ScDβH-α knock-down. Taken together the results suggest that the novel ScDβH-α gene through its role in CA synthesis is involved in growth regulation in the razor clam and possibly other bivalves.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Maoxiao Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah Mary Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Zhiguo Dong
- Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
157
|
Ernst G, Watne LO, Rostrup M, Neerland BE. Delirium in patients with hip fracture is associated with increased heart rate variability. Aging Clin Exp Res 2020; 32:2311-2318. [PMID: 31916197 DOI: 10.1007/s40520-019-01447-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Heart rate variability (HRV) is a method to assess the autonomic nervous system and reflects possibly central brain states. HRV has previously not been examined in patients with hip fracture and delirium. AIMS To explore HRV parameters in hip fracture patients with and without delirium. METHODS Patients admitted to Oslo University Hospital with hip fracture and sinus rhythm in electrocardiogram (ECG) were included. Delirium was diagnosed using the confusion assessment method. HRV was assessed preoperatively after a relaxing period of five minutes, by measuring an ECG signal over 5 min. Parameters in time domain (the standard deviation of the QRS distances-SDNN) and frequency domain (total power (TP), low frequency (LF), high frequency (HF) and LF/HF ratio) were calculated. RESULTS Seventy-five patients were included in the study, and 21 of them had subsyndromal delirium and were excluded from the analysis. Fifty-four patients with a mean age of 83.5 years (SD 8.6, 78% females) were included. Twenty-six patients (48%) had preoperative delirium, 11 (20%) developed delirium postoperatively, whereas 17 (31%) never developed delirium. SDNN, TP and HF values were significantly higher in patients with delirium compared to patients without delirium, and LF and LF/HF were lower. Patients developing postoperative delirium had decreased LF and increased HF before symptom onset. DISCUSSION Increased SDNN, TP and HF and decreased LF values might reflect an abnormal stress response in delirium. CONCLUSION HRV measurements in patients with hip fractures provide additional information beyond heart rate and might be used to identify relevant pathophysiological factors in delirium.
Collapse
Affiliation(s)
- Gernot Ernst
- Vestre Viken Hospital Trust, Kongsberg Hospital, Kongsberg, Norway.
- Psychological Institute, University of Oslo, Oslo, Norway.
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Morten Rostrup
- Section of Cardiovascular and Renal Research, Oslo University Hospital, Oslo, Norway
- Department of Behavioral Sciences in Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn Erik Neerland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
158
|
Chen W, Shu Q, Fan J. Neural Regulation of Interactions Between Group 2 Innate Lymphoid Cells and Pulmonary Immune Cells. Front Immunol 2020; 11:576929. [PMID: 33193374 PMCID: PMC7658006 DOI: 10.3389/fimmu.2020.576929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence supports the involvement of nervous system in the regulation of immune responses. Group 2 innate lymphoid cells (ILC2), which function as a crucial bridge between innate and adaptive immunity, are present in large numbers in barrier tissues. Neuropeptides and neurotransmitters have been found to participate in the regulation of ILC2, adding a new dimension to neuroimmunity. However, a comprehensive and detailed overview of the mechanisms of neural regulation of ILC2, associated with previous findings and prospects for future research, is still lacking. In this review, we compile existing information that supports neurons as yet poorly understood regulators of ILC2 in the field of lung innate and adaptive immunity, focusing on neural regulation of the interaction between ILC2 and pulmonary immune cells.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
159
|
Gundamaraju R, Lu W, Azimi I, Eri R, Sohal SS. Endogenous Anti-Cancer Candidates in GPCR, ER Stress, and EMT. Biomedicines 2020; 8:biomedicines8100402. [PMID: 33050301 PMCID: PMC7601667 DOI: 10.3390/biomedicines8100402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
The majority of cellular responses to external stimuli are mediated by receptors such as G protein-coupled receptors (GPCRs) and systems including endoplasmic reticulum stress (ER stress). Since GPCR signalling is pivotal in numerous malignancies, they are widely targeted by a number of clinical drugs. Cancer cells often negatively modulate GPCRs in order to survive, proliferate and to disseminate. Similarly, numerous branches of the unfolded protein response (UPR) act as pro-survival mediators and are involved in promoting cancer progression via mechanisms such as epithelial to mesenchymal transition (EMT). However, there are a few proteins among these groups which impede deleterious effects by orchestrating the pro-apoptotic phenomenon and paving a therapeutic pathway. The present review exposes and discusses such critical mechanisms and some of the key processes involved in carcinogenesis.
Collapse
Affiliation(s)
- Rohit Gundamaraju
- ER Stress & Mucosal Immunology Group, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
- Correspondence:
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia; (W.L.); (S.S.S.)
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Rajaraman Eri
- ER Stress & Mucosal Immunology Group, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia; (W.L.); (S.S.S.)
| |
Collapse
|
160
|
Shields GS, Spahr CM, Slavich GM. Psychosocial Interventions and Immune System Function: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Psychiatry 2020; 77:1031-1043. [PMID: 32492090 PMCID: PMC7272116 DOI: 10.1001/jamapsychiatry.2020.0431] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Recent estimates suggest that more than 50% of all deaths worldwide are currently attributable to inflammation-related diseases. Psychosocial interventions may represent a potentially useful strategy for addressing this global public health problem, but which types of interventions reliably improve immune system function, under what conditions, and for whom are unknown. OBJECTIVE To address this issue, we conducted a systematic review and meta-analysis of randomized clinical trials (RCTs) in which we estimated associations between 8 different psychosocial interventions and 7 markers of immune system function, and examined 9 potential moderating factors. DATA SOURCES PubMed, Scopus, PsycInfo, and ClinicalTrials.gov databases were systematically searched from February 1, 2017, to December 31, 2018, for all relevant RCTs published through December 31, 2018. STUDY SELECTION Eligible RCTs included a psychosocial intervention, immune outcome, and preintervention and postintervention immunologic assessments. Studies were independently examined by 2 investigators. Of 4621 studies identified, 62 were eligible and 56 included. DATA EXTRACTION AND SYNTHESIS Data were extracted and analyzed from January 1, 2019, to July 29, 2019. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline was followed. Data were extracted by 2 investigators who were blind to study hypotheses and analyses, and were then analyzed using robust variance estimation. Analysis included 8 psychosocial interventions (behavior therapy, cognitive therapy, cognitive behavior therapy [CBT], CBT plus additive treatment or mode of delivery that augmented the CBT, bereavement or supportive therapy, multiple or combined interventions, other psychotherapy, and psychoeducation), 7 immune outcomes (proinflammatory cytokine or marker levels, anti-inflammatory cytokine levels, antibody levels, immune cell counts, natural killer cell activity, viral load, and other immune outcomes), and 9 moderating factors (intervention type, intervention format, intervention length, immune marker type, basal vs stimulated markers, immune marker measurement timing, disease state or reason for treatment, age, and sex). MAIN OUTCOMES AND MEASURES The primary a priori outcomes were pretest-posttest-control (ppc) group effect sizes (ppc g) for the 7 immunologic outcomes investigated. RESULTS Across 56 RCTs and 4060 participants, psychosocial interventions were associated with enhanced immune system function (ppc g = 0.30, 95% CI, 0.21-0.40; t50.9 = 6.22; P < .001). Overall, being randomly assigned to a psychosocial intervention condition vs a control condition was associated with a 14.7% (95% CI, 5.7%-23.8%) improvement in beneficial immune system function and an 18.0% (95% CI, 7.2%-28.8%) decrease in harmful immune system function over time. These associations persisted for at least 6 months following treatment and were robust across age, sex, and intervention duration. These associations were most reliable for CBT (ppc g = 0.33, 95% CI, 0.19-0.47; t27.2 = 4.82; P < .001) and multiple or combined interventions (ppc g = 0.52, 95% CI, 0.17-0.88; t5.7 = 3.63; P = .01), and for studies that assessed proinflammatory cytokines or markers (ppc g = 0.33, 95% CI, 0.19-0.48; t25.6 = 4.70; P < .001). CONCLUSIONS AND RELEVANCE These findings suggest that psychosocial interventions are reliably associated with enhanced immune system function and may therefore represent a viable strategy for improving immune-related health.
Collapse
Affiliation(s)
| | - Chandler M. Spahr
- Department of Psychology, San Diego State University, San Diego, California
| | - George M. Slavich
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| |
Collapse
|
161
|
Zhang Y, Lin C, Wang X, Ji T. Calcitonin gene-related peptide: A promising bridge between cancer development and cancer-associated pain in oral squamous cell carcinoma. Oncol Lett 2020; 20:253. [PMID: 32994816 PMCID: PMC7509602 DOI: 10.3892/ol.2020.12116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/27/2020] [Indexed: 01/23/2023] Open
Abstract
Nerves have been widely demonstrated to exert major effects in tumor-associated microenvironments. Due to the characteristic innervation of the oral cavity and the fact that cancer-associated pain is a distinct feature of oral squamous cell carcinoma (OSCC), the sensory nerves may dominate in the OSCC-nerve microenvironment. As the most abundant neuropeptide in the trigeminal ganglion, the calcitonin gene-related peptide (CGRP) exerts a dual effect on cancer development and cancer-associated pain in various types of cancer. The present review explored the potential molecular mechanisms of the roles of CGRP in cancer development and cancer-associated pain, suggesting that CGRP may be a promising therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Chengzhong Lin
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xu Wang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Tong Ji
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
162
|
Wang W, Wang G, Zhuo X, Liu Y, Tang L, Liu X, Wang J. C-type lectin-mediated microbial homeostasis is critical for Helicoverpa armigera larval growth and development. PLoS Pathog 2020; 16:e1008901. [PMID: 32997722 PMCID: PMC7549827 DOI: 10.1371/journal.ppat.1008901] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/12/2020] [Accepted: 08/18/2020] [Indexed: 01/22/2023] Open
Abstract
The immune system of a host functions critically in shaping the composition of the microbiota, and some microbes are involved in regulating host endocrine system and development. However, whether the immune system acts on endocrine and development by shaping the composition of the microbiota remains unclear, and few molecular players or microbes involved in this process have been identified. In the current study, we found that RNA interference of a C-type lectin (HaCTL3) in the cotton bollworm Helicoverpa armigera suppresses ecdysone and juvenile hormone signaling, thus reducing larval body size and delaying pupation. Depletion of HaCTL3 also results in an increased abundance of Enterocuccus mundtii in the hemolymph, which may escape from the gut. Furthermore, HaCTL3 and its controlled antimicrobial peptides (attacin, lebocin, and gloverin) are involved in the clearance of E. mundtii from the hemolymph via phagocytosis or direct bactericidal activity. Injection of E. mundtii into larval hemocoel mimics HaCTL3-depleted phenotypes and suppresses ecdysone and juvenile hormone signaling. Taken together, we conclude that HaCTL3 maintains normal larval growth and development of H. armigera via suppressing the abundance of E. mundtii in the hemolymph. Our results provide the first evidence of an immune system acting on an endocrine system to modulate development via shaping the composition of microbiota in insect hemolymph. Thus, this study will deepen our understanding of the interaction between immunity and development. Considering that a large number of hemocytes and multiple soluble effectors are present in insect hemolymph, it is conventionally believed that healthy insect hemolymph is a hostile environment for bacteria and is, therefore, sterile. However, increasing evidences disprove this opinion, although the interactive mechanism between hemolymph microbiota and insect host, as well as the function of hemolymph microbiota, remain unclear. C-type lectin (CTL), as pattern recognition receptor (PRR), plays important roles in defending against various pathogens. Here we found that various bacteria colonized the hemolymph of the cotton bollworm Helicoverpa armigera. We first reported that an H. armigera CTL (HaCTL3) was involved in modulating larval growth and development. Further study indicated that HaCTL3-mediated homeostasis of Enterocuccus mundtii in the hemolymph is critical for normal larval growth and development. Our study demonstrated that this PRR modulated insect development through shaping hemolymph microbiota, which may represent a novel mechanism of immune system regulation during insect development.
Collapse
Affiliation(s)
- Wenwen Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Guijie Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiaorong Zhuo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yu Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Lin Tang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xusheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jialin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- * E-mail:
| |
Collapse
|
163
|
Abstract
In recent years, research in behavioral medicine has become increasingly focused on understanding how chronic and acute exposure to stress impacts health outcomes. During stress, the body’s physiological stress systems are activated. These systems closely interact with the immune system and are, thus, importantly implicated in the onset and maintenance of disease states. While much of the research in behavioral medicine that has investigated the effects of stress on disease has focused on the role of the hypothalamic-pituitary-adrenal axis and its downstream biomarker, cortisol, it is evident that the autonomic nervous system (ANS) also plays a crucial role in both the biological stress process and the manifestation and maintenance of stress-related symptoms. In recent years salivary alpha-amylase (sAA) has emerged as a valid and reliable marker of ANS activity in stress research and is therefore an important biomarker to consider in behavioral medicine. In this commentary, we will highlight research relevant for behavioral medicine that has utilized sAA measurements, both basally, and in response to stress, to examine ANS function in clinical populations. We will additionally summarize findings from studies that have examined the effects of various targeted interventions on changes in sAA levels. Through this, our aim is to present evidence that sAA can serve as a feasible biomarker of ANS (dys)function in health and disease. To this end, we will also highlight important methodological considerations for readers to keep in mind when including sAA assessments in their own studies. The overarching goal of this brief commentary is to highlight how a multidimensional approach toward physiological stress measurement can allow researchers to develop a better understanding of physical health and disease states.
Collapse
|
164
|
Wang Y, Gong D, Yao C, Zheng F, Zhou T, Cao Q, Zhu X, Wang M, Zhu J. Human monoclonal anti‑TLR4 antibody negatively regulates lipopolysaccharide‑induced inflammatory responses in mouse macrophages. Mol Med Rep 2020; 22:4125-4134. [PMID: 32901894 PMCID: PMC7533504 DOI: 10.3892/mmr.2020.11500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/26/2020] [Indexed: 12/26/2022] Open
Abstract
Previous studies have revealed that activation of the Toll‑like receptor 4 (TLR4)‑mediated proinflammatory signaling pathway plays an important role in acute inflammation, sepsis and chronic inflammatory disorders. Moreover, TLR4 significantly contributes to lipopolysaccharide (LPS)‑induced immune response. Thus, modulation of the TLR4 pathway is an important strategy to specifically target these pathologies. The aim of the present study was to develop a complete human anti‑TLR4 IgG2 antibody by screening human TLR4 Fab from a phage‑display library and integrating it with constant regions of the heavy chain of human IgG2 via antibody engineering. ELISA, a BLItz system and fluorescence‑activated cell sorting were used to assess its affinity. Furthermore, mouse‑derived peritoneal macrophages were treated with human anti‑TLR4 IgG2 and induced with LPS in vitro. Reverse transcription‑quantitative PCR and western blotting were used to determine mRNA expression levels of cytokines and phosphorylation levels of signaling pathways, respectively. It was found that human anti‑TLR4 IgG2 bound to TLR4 with a high affinity of 8.713x10‑10 M, and that preincubation with anti‑TLR4 IgG2 inhibited the LPS‑induced production of tumor necrosis factor‑α, interferon‑β and interleukin‑6 mRNA expression levels in mouse peritoneal macrophages. It was also demonstrated that human anti‑TLR4 IgG2 inhibited LPS‑induced TLR4 signaling by reducing the phosphorylation of the NF‑κB, mitogen‑activated protein kinase and interferon regulatory factor 3 signaling pathways. In addition, human anti‑TLR4 IgG2 protected mice from LPS challenge with a survival rate of 40% and also significantly increased the survival time in the cecal ligation and puncture model. Therefore, it was speculated that human anti‑TLR4 IgG2 plays a protective role against sepsis‑associated injury and is potentially applicable for the treatment of infection‑associated immune dysfunction.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Epidemiology and Microbiology, Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210002, P.R. China
| | - Dandan Gong
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Chuanxia Yao
- Department of Infectious Disease, Anhui Medical University Affiliated with Bayi Clinical College, Hefei, Anhui 230000, P.R. China
| | - Feng Zheng
- Department of Epidemiology and Microbiology, Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210002, P.R. China
| | - Tingting Zhou
- Department of Epidemiology and Microbiology, Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210002, P.R. China
| | - Qingxin Cao
- Department of Epidemiology and Microbiology, Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210002, P.R. China
| | - Xuhui Zhu
- Department of Epidemiology and Microbiology, Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210002, P.R. China
| | - Maorong Wang
- Institute of Liver Disease, Nanjing Jingdu Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Jin Zhu
- Department of Epidemiology and Microbiology, Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
165
|
Babelyuk VY, Popovych IL, Babelyuk NV, Korolyshyn TA, Dubkova GI, Kovbasnyuk MM, Hubyts’kyi VY, Kikhtan VV, Musiyenko VY, Kyrylenko IG, Dobrovolsky YG, Korsunskyi IH, Muszkieta R, Zukow W, Gozhenko AI. Perspectives on the use of electrostimulation with the device “VEB”® in the management of disorders related to COVID-19. BALNEO RESEARCH JOURNAL 2020. [DOI: 10.12680/balneo.2020.361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background. One of the symptoms of COVID-19 is the so-called "cytokine storm". Its pathogenesis is that the initial release by lymphocytes and macrophages of proinflammatory cytokines in the classical immune response to SARS-CoV-2 is significantly enhanced and maintained due to excessive adrenergic stimulation of the immune cells. The proinflammatory adrenergic mechanism of the "cytokine storm" can be offset by the activation of the anti-inflammatory cholinergic mechanism by non-invasive stimulation of the vagus nerve. In 2015, a generator for electrotherapy and stimulation oh human nerve centers was created, called “VEB-1”®. Preliminary observation of volunteers revealed a modulating effect of a four-day course of electrical stimulation on the parameters of electroencephalogram, metabolism, as well as gas-discharge visualization (GDV). We hypothesized that changes in EEG parameters may be accompanied by a vagotonic shift of the sympatho-vagus balance, favorable for calming the “cytokine storm”. The main purpose of this study was to find out. In addition, concomitant changes in EEG, immunity, GDV, etc. due to the use of the devices "VEB-1"® and recently designed "VEB-2" had to be detected. Material and research methods. The object of observation were 18 volunteers: 11 women 33-62 y and 7 men 29-62 y (Mean±SD: 51±12 y) without clinical diagnose but with dysfunction of neuro-endocrine-immune complex and metabolism. In the morning registered HRV (“CardioLab+HRV”, “KhAI-Medica”, Kharkiv, UA), EEG (“NeuroCom Standard”, “KhAI-Medica”, Kharkiv, UA), kirlianogram by the method of GDV (“GDV Chamber”, “Biotechprogress”, SPb, RF), electroconductivity of skin in three pairs of points of acupuncture (“Medissa”), electrokinetic index of buccal epithelium ("Biotest", Kharkiv State University), as well as some parameters of immunity and metabolism. After the initial testing, an electrical stimulation session was performed with a “VEB-1”® or a “VEB-2” devices. The next morning after completing the four-day course, retesting was performed. Results. The effects of electrical stimulation can be divided into the following networks. Regarding EEG, this is a leveling of right-hand lateralization and normalizing decrease in the increased of the amplitude of the θ-rhythm and its spectral power density (SPD) at the loci F3, F7, F8, T3, T4, T6, P3, O1 and O2; further increase of SPD of δ-rhythm in loci F3, F4, T6, P3 and O1 as well as further decrease of SPD F4-α; reversion of the increased level of entropy in loci Fp1, F4, C3 and P3 to the lowered level. Regarding HRV, it is a vagotonic shift of sympatho-vagus balance due to a decrease in elevated levels of sympathetic tone markers and an increase in decreased levels of vagus tone markers, but without normalization. Neurotropic effects are accompanied by favorable changes in a number of immune parameters and a tendency to decrease the level of C-Reactive Protein. Regarding GDV, it is almost complete normalization of the initially increased GDI Area in the frontal projection and third Chakra Energy; normalizing decrease in the initially increased Energy of second and seventh Chakras; normalizing right-hand shift of more or less pronounced left-sided Asymmetry of first and third Chakra. These effects should be clearly interpreted as physiologically beneficial. The effects on these parameters are almost equally pronounced in people of both sexes when using both devices. Conclusion. Vagotonic and immunotropic effects of our device give us a reason to offer it for further research on the leveling of “cytokine storm” in patients with COVID-19.
Collapse
Affiliation(s)
- Valeriy Ye. Babelyuk
- 1. Clinical Sanatorium “Moldova”, Truskavets’, Ukraine 2. State Enterprise Ukrainian Research Institute for Medicine of Transport, Ministry of Health of Ukraine, Odesa, Ukraine
| | - Igor L. Popovych
- 2. State Enterprise Ukrainian Research Institute for Medicine of Transport, Ministry of Health of Ukraine, Odesa, Ukraine 3. Bohomolets’ Institute of Physiology of NAS, Kyїv, Ukraine
| | - Nazariy V. Babelyuk
- 1. Clinical Sanatorium “Moldova”, Truskavets’, Ukraine 2. State Enterprise Ukrainian Research Institute for Medicine of Transport, Ministry of Health of Ukraine, Odesa, Ukraine
| | | | | | | | | | | | | | - Iryna G. Kyrylenko
- 2. State Enterprise Ukrainian Research Institute for Medicine of Transport, Ministry of Health of Ukraine, Odesa, Ukraine
| | | | | | | | - Walery Zukow
- 5. Nicolaus Copernicus University, Torun, Poland
| | - Anatoliy I. Gozhenko
- 2. State Enterprise Ukrainian Research Institute for Medicine of Transport, Ministry of Health of Ukraine, Odesa, Ukraine
| |
Collapse
|
166
|
Xu Z, Wei Y, Guo S, Lin D, Ye H. B-type allatostatin modulates immune response in hepatopancreas of the mud crab Scylla paramamosain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103725. [PMID: 32376281 DOI: 10.1016/j.dci.2020.103725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
B-type allatostatin (AST-B) is a pleiotropic neuropeptide, widely found in arthropods. However, the information about its immune effect in crustaceans is unknown. In this study, we identified the nervous tissue as the main site for Sp-AST-B expression, while its receptor gene (Sp-AST-BR) is widely expressed in various tissues, including the hepatopancreas. This suggests the peptide's potential role in diverse physiological processes in the mud crab Scylla paramamosain. In situ hybridization revealed that Sp-AST-BR is mainly localized in the F-cell of hepatopancreas. Furthermore, we found a significant up-regulation of Sp-AST-BR transcripts in the hepatopancreas following exposure to lipopolysaccharide (LPS) or polyriboinosinic polyribocytidylic acid (Poly (I:C)). Results from in vitro and in vivo experiments revealed that treatment with a synthetic AST-B peptide mediated significant upregulation in expression of AST-BR, nuclear factor-κB (NF-κB) pathway components (Dorsal and Relish), pro-inflammatory cytokine (IL-16) and antimicrobial peptides (AMPs) in the hepatopancreas. In addition, AST-B treatment mediated significant elevation of nitric oxide (NO) production and enhanced the bacteriostasis capacity of the hepatopancreas tissue in vitro. Taken together, these findings reveal the existence of a basic neuroendocrine-immune (NEI) network in crabs, and indicate that AST-B could couple with its receptor to trigger downstream signaling pathways and induce immune responses in the hepatopancreas.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yujie Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Songlin Guo
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Dongdong Lin
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
167
|
Su M, Zhang R, Liu N, Zhang J. Modulation of inflammatory response by cortisol in the kidney of spotted scat (Scatophagus argus) in vitro under different osmotic stresses. FISH & SHELLFISH IMMUNOLOGY 2020; 104:46-54. [PMID: 32474084 DOI: 10.1016/j.fsi.2020.05.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Salinity changes on renal osmoregulation have often been investigated while the immune response of the kidney under osmotic stress is poorly understood in teleosts. Acute stress is generally associated with enhancement of circulating cortisol. The effects of osmotic stress on renal immune response and its regulation by cortisol deserve more attention. In the present study, the effects of exogenous cortisol treatment on the lipopolysaccharide (LPS)-induced immune response were analyzed in renal masses of Scatophagus argus under different osmotic stresses in vitro. mRNA expression of pro-inflammatory cytokines (TNF-α, IL1-β and IL-6) and immune-regulatory related genes (GR and SOCS1) was measured over a short course (15 h). Comprehensive analysis reveals that transcript abundances of pro-inflammatory cytokine genes such as TNF-α, IL-1β, and IL-6 induced by LPS, alone or in the combination of cortisol, are tightly associated with osmoregulation under acute osmotic stress. Our results showed that osmotic challenge could significantly enhance mRNA expression levels of pro-inflammatory cytokines in renal masses in vitro. Based on our analysis, it can be inferred that cortisol suppresses the magnitude of renal inflammatory response and attenuates LPS-induced immune response through GR signaling in the face of challenging environmental conditions.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ran Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
168
|
Deng J, Wen C, Ding X, Zhang X, Hou G, Liu A, Xu H, Cao X, Bai Y. LKB1-MARK2 signalling mediates lipopolysaccharide-induced production of cytokines in mouse macrophages. J Cell Mol Med 2020; 24:11307-11317. [PMID: 32841502 PMCID: PMC7576310 DOI: 10.1111/jcmm.15710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 01/25/2023] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin involved in a number of acute and chronic inflammatory syndromes. Although LPS-induced signalling has been extensively studied, there are still mysteries remaining to be revealed. In the current study, we used high-throughput phosphoproteomics to profile LPS-initiated signalling and aimed to find novel mediators. A total of 448 phosphoproteins with 765 phosphorylation sites were identified, and we further validated that the phosphorylation of MARK2 on T208 was important for the regulation on LPS-induced CXCL15 (human IL-8 homolog), IL-1β, IL-6 and TNF-α release, in which LKB1 had a significant contribution. In summary, induction of cytokines by LPS in mouse macrophage is regulated by LKB1-MARK2 signals. Our study provides new clues for further exploring the underlying mechanisms of LPS-induced diseases, and new therapeutic approaches concerning bacterial infection may be derived from these findings.
Collapse
Affiliation(s)
- Jie Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chunmei Wen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiangyu Ding
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xi Zhang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoqing Hou
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andong Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Ultrastructural Pathology Laboratory, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Cao
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Chronic Kidney Disease, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
169
|
Lee M, Hosseindoust A, Oh S, Ko H, Cho E, Sa S, Kim Y, Choi J, Kim J. Impact of an anti-Salmonella. Typhimurium Bacteriophage on intestinal microbiota and immunity status of laying hens. J Anim Physiol Anim Nutr (Berl) 2020; 105:952-959. [PMID: 32772452 DOI: 10.1111/jpn.13424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/01/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Typhoid is a distinct gastrointestinal disease that largely affects the public by consumption of inadequately or partially cooked eggs from contaminated laying hen farms. This has led the research on laying hens to focus on controlling the contamination by an effective anti-Salmonella spp. agent in the intestine. The treatments included, control, without challenge; PC, Salmonella typhimurium challenged (STC); BP5, 5 ppm bacteriophage/kg + STC; BP10, 10 ppm bacteriophage/kg + STC, on Salmonella shedding, body organs inflammatory reactions, and expression of toll-like receptor (TLR), pro-inflammatory cytokines, and heat shock protein (HSP) in the jejunum, liver,and thigh muscle in the STC laying hens. The RT-PCR method was used to enumerate the number of Salmonella typhimurium in the organs. The birds in the STC groups exhibited the increased population of Salmonella spp. in the excreta (p < .01). In the STC groups, the BP5 and BP10 laying hens exhibited a lower (p < .01) population of Salmonella spp. in the excreta at d 7 after STC. Supplementation of bacteriophage significantly decreased (p < .01) the colonization of S. Typhimurium in the spleen, oviduct, caecum and excreta. Among the STC treatments, the BP10 laying hens showed lower (p < .01) mRNA expression of interferon-γ (IFNγ) and TLR-4 in the jejunum compared with the PC treatment. After the STC, dietary supplementation with BP5 or BP10 decreased (p < .01) the mRNA expressions of IFNγ, HSP-27 and tumour necrosis factor-α in the liver compared with the PC treatment. These results suggest that bacteriophage can be used as an effective agent to decrease S. Typhimurium contamination in laying hens and possibly lower S. Typhimurium transfer to foods.
Collapse
Affiliation(s)
- MiJin Lee
- Poultry Science Division, Livestock Research Development, National Institute of Animal Science, RDA, Cheonan, Korea
| | | | - SeungMin Oh
- Gyeongsangbuk-do Livestock Research Institute, Yeongju, Korea
| | - HanSeo Ko
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Korea
| | - EunSeok Cho
- Poultry Science Division, Livestock Research Development, National Institute of Animal Science, RDA, Cheonan, Korea
| | - SooJin Sa
- Poultry Science Division, Livestock Research Development, National Institute of Animal Science, RDA, Cheonan, Korea
| | | | - JungWoo Choi
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Korea
| | - JinSoo Kim
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
170
|
Abstract
This narrative review provides an overview of the scope of psychosocial distress and stress in cancer patients and survivors and the potential negative consequences of untreated symptoms. Evidence-based interventions to treat these symptoms are reviewed, beginning with a summary of published clinical practice guidelines, followed by more detailed reviews of the specific integrative interventions with the largest empirical support: cognitive-behavioral stress management, yoga, mindfulness-based interventions, and massage. We also comment on use of natural health products because of their popularity. Finally, we conclude with recommendations to improve the quality of research in integrative interventions for stress management.
Collapse
|
171
|
Wei Y, Shah R. Substance Use Disorder in the COVID-19 Pandemic: A Systematic Review of Vulnerabilities and Complications. Pharmaceuticals (Basel) 2020; 13:E155. [PMID: 32708495 PMCID: PMC7407364 DOI: 10.3390/ph13070155] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/18/2023] Open
Abstract
As the world endures the coronavirus disease 2019 (COVID-19) pandemic, the conditions of 35 million vulnerable individuals struggling with substance use disorders (SUDs) worldwide have not received sufficient attention for their special health and medical needs. Many of these individuals are complicated by underlying health conditions, such as cardiovascular and lung diseases and undermined immune systems. During the pandemic, access to the healthcare systems and support groups is greatly diminished. Current research on COVID-19 has not addressed the unique challenges facing individuals with SUDs, including the heightened vulnerability and susceptibility to the disease. In this systematic review, we will discuss the pathogenesis and pathology of COVID-19, and highlight potential risk factors and complications to these individuals. We will also provide insights and considerations for COVID-19 treatment and prevention in patients with SUDs.
Collapse
Affiliation(s)
- Yufeng Wei
- Department of Chemistry, New Jersey City University, Jersey City, NJ 07305, USA;
| | | |
Collapse
|
172
|
Wang J, Lei X, Xie Z, Zhang X, Cheng X, Zhou W, Zhang Y. CA-30, an oligosaccharide fraction derived from Liuwei Dihuang decoction, ameliorates cognitive deterioration via the intestinal microbiome in the senescence-accelerated mouse prone 8 strain. Aging (Albany NY) 2020; 11:3463-3486. [PMID: 31160541 PMCID: PMC6594795 DOI: 10.18632/aging.101990] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Mounting evidence points to alterations in the gut microbiota-neuroendocrine immunomodulation (NIM) network that might drive Alzheimer’s Disease (AD) pathology. In previous studies, we found that Liuwei Dihuang decoction (LW) had beneficial effects on the cognitive impairments and gastrointestinal microbiota dysbiosis in an AD mouse model. In particular, CA-30 is an oligosaccharide fraction derived from LW. We sought to determine the effects of CA-30 on the composition and function of the intestinal microbiome in the senescence-accelerated mouse prone 8 (SAMP8) mouse strain, an AD mouse model. Treatment with CA-30 delayed aging processes, ameliorated cognition in SAMP8 mice. Moreover, CA-30 ameliorated abnormal NIM network in SAMP8 mice. In addition, we found that CA-30 mainly altered the abundance of four genera and 10 newborn genera. Advantageous changes in carbohydrate-active enzymes of SAMP8 mice following CA-30 treatment, especially GH85, were also noted. We further found that seven genera were significantly correlated with the NIM network and cognitive performance. CA-30 influenced the relative abundance of these intestinal microbiomes in SAMP8 mice and restored them to SAMR1 mouse levels. CA-30 ameliorated the intestinal microbiome, rebalanced the NIM network, improved the AD-like cognitive impairments in SAMP8 mice, and can thus be a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Jianhui Wang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xi Lei
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Zongjie Xie
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xiaorui Zhang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xiaorui Cheng
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Wenxia Zhou
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Yongxiang Zhang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| |
Collapse
|
173
|
Nikolaeva M, Arefieva A, Babayan A, Chagovets V, Kitsilovskaya N, Starodubtseva N, Frankevich V, Kalinina E, Krechetova L, Sukhikh G. Immunoendocrine Markers of Stress in Seminal Plasma at IVF/ICSI Failure: a Preliminary Study. Reprod Sci 2020; 28:144-158. [PMID: 32638280 DOI: 10.1007/s43032-020-00253-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/28/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022]
Abstract
We have previously shown that high level of seminal interleukin (IL)-18 is positively associated with a greater risk of pregnancy failure in women exposed to their partners' seminal plasma (SP) during the in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycle. Since IL-18 and IL-1β considered to be the key immune markers of stress, here we ask whether their increase in SP may be due to the stress experienced by men engaged in the IVF programs. Therefore, we correlated seminal IL-18 with IL-1β and both cytokines with the seminal steroids, whose increase indicates the activation of neuroendocrine stress response systems. Retrospective analysis of stored seminal samples was performed. Based on previously identified cutoff level for content of IL-18 per ejaculate, samples with high IL-18 content from IVF failure group (n = 9), as well as samples with low IL-18 content from IVF success group (n = 7), were included in the study. Seminal cytokines were evaluated using FlowCytomix™ technology. A set of 16 biologically active steroids in SP was quantified by liquid chromatography coupled with mass spectrometry. Concentrations and total amounts per ejaculate of cytokines and steroids were determined. A positive significant correlation was found between the levels of IL-18 and IL-1β. There was also a positive correlation between IL-18 or IL-1β and 17-α-hydroxypregnenolone, 17-α-hydroxyprogesterone, dehydroepiandrosterone (DHEA), DHEA sulfate (DHEAS), androstenedione, testosterone, dihydrotestosterone, progesterone, corticosterone, 11-deoxycorticosterone, and the ratio of DHEAS/cortisol. We suggested that stress-related overexpression of immune and hormonal factors in SP may be the key link between male stress and embryo implantation failure.
Collapse
Affiliation(s)
- Marina Nikolaeva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.
| | - Alla Arefieva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Alina Babayan
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Vitaliy Chagovets
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Natalia Kitsilovskaya
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Natalia Starodubtseva
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.,Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, Russia, 141701
| | - Vladimir Frankevich
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Elena Kalinina
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Lubov Krechetova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Gennady Sukhikh
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.,First Moscow State Medical University named after I.M. Sechenov, Trubetskaya str. 8-2, Moscow, Russia, 119991
| |
Collapse
|
174
|
Du X, Tang Y, Han Y, Ri S, Kim T, Ju K, Shi W, Sun S, Zhou W, Liu G. Acetylcholine suppresses phagocytosis via binding to muscarinic- and nicotinic-acetylcholine receptors and subsequently interfering Ca 2+- and NFκB-signaling pathways in blood clam. FISH & SHELLFISH IMMUNOLOGY 2020; 102:152-160. [PMID: 32320762 DOI: 10.1016/j.fsi.2020.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Though immunomodulation via cholinergic neurotransmitter acetylcholine (ACh), an important part of neuroendocrine-immune (NEI) regulatory network, has been well established in vertebrate species, the mechanisms remain poorly understood in invertebrates. In the present study, the immunomodulatory effect of ACh on haemocyte phagocytosis was investigated in an invertebrate bivalve species, Tegillarca granosa. Data obtained showed that in vitro ACh incubation suppressed phagocytic activity of haemocytes along with a significant elevation in intracellular Ca2+. In addition, the expressions of genes from Ca2+ signaling pathway were significantly induced whereas those from NF-κB signaling pathway were significantly down-regulated by ACh incubation. Furthermore, these adverse impacts of ACh were significantly relieved by the blocking of muscarinic acetylcholine receptors (mAChRs) or nicotinic acetylcholine receptors (nAChRs) using corresponding antagonists. Our study suggests that ACh suppresses phagocytosis via binding to both mAChRs and nAChRs, which disrupts intracellular Ca2+ homeostasis and subsequently interferes with downstream Ca2+ and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, PR Korea
| | - Tongchol Kim
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, PR Korea
| | - Kwangjin Ju
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Aquaculture, Wonsan Fisheries University, Wonsan, 999093, PR Korea
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
175
|
Appleyard CB, Flores I, Torres-Reverón A. The Link Between Stress and Endometriosis: from Animal Models to the Clinical Scenario. Reprod Sci 2020; 27:1675-1686. [PMID: 32542543 DOI: 10.1007/s43032-020-00205-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
There is strong evidence from humans and animal models showing that abnormal functioning of the hypothalamic-pituitary-adrenal (HPA) axis and/or the inflammatory response system disrupts feedback regulation of both neuroendocrine and immune systems, contributing to disease. Stress is known to affect the physiology of pelvic organs and to disturb the HPA axis leading to chronic, painful, inflammatory disorders. A link between stress and disease has already been documented for many chronic conditions. Endometriosis is a complex chronic gynecological disease associated with severe pelvic pain and infertility that affects 10% of reproductive-aged women. Patients report the negative impact of endometriosis symptoms on quality of life, work/study productivity, and personal relationships, which in turn cause high levels of psychological and emotional distress. The relationship between stress and endometriosis is not clear. Still, we have recently demonstrated that stress increases the size and severity of the lesions as well as inflammatory parameters in an animal model. Furthermore, the "controllability" of stress influences the pathophysiology in this model, offering the possibility of using stress management techniques in patients. The crosstalk between stress-inflammation-pain through HPA axis activity indicates that stress relief should alleviate inflammation and, in turn, decrease painful responses. This opens up the opportunity of altering brain-body-brain pathways as potential new therapeutic option for endometriosis. The goal of this review is to gather the research evidence regarding the interaction between stress (psychological and physiological) and the development and progression of endometriosis on the exacerbation of its symptoms with the purpose of proposing new lines of emerging research and possible treatment modalities for this still incurable disease.
Collapse
Affiliation(s)
- Caroline B Appleyard
- Department of Basic Sciences, Women's Health Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA. .,Department of Internal Medicine, Ponce Health Sciences University, Ponce, PR, USA. .,Department of Basic Sciences, Physiology Division, Medical School and Ponce Research Institute, Ponce Health Sciences University, 395 Zona Ind Reparada 2, Ponce, PR, 00716-2347, USA.
| | - Idhaliz Flores
- Department of Basic Sciences, Women's Health Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA.,Department of Obstetrics and Gynecology, Ponce Health Sciences University, Ponce, PR, USA
| | | |
Collapse
|
176
|
The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020; 107:234-256. [PMID: 32553197 DOI: 10.1016/j.neuron.2020.06.002] [Citation(s) in RCA: 1190] [Impact Index Per Article: 238.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Depression represents the number one cause of disability worldwide and is often fatal. Inflammatory processes have been implicated in the pathophysiology of depression. It is now well established that dysregulation of both the innate and adaptive immune systems occur in depressed patients and hinder favorable prognosis, including antidepressant responses. In this review, we describe how the immune system regulates mood and the potential causes of the dysregulated inflammatory responses in depressed patients. However, the proportion of never-treated major depressive disorder (MDD) patients who exhibit inflammation remains to be clarified, as the heterogeneity in inflammation findings may stem in part from examining MDD patients with varied interventions. Inflammation is likely a critical disease modifier, promoting susceptibility to depression. Controlling inflammation might provide an overall therapeutic benefit, regardless of whether it is secondary to early life trauma, a more acute stress response, microbiome alterations, a genetic diathesis, or a combination of these and other factors.
Collapse
|
177
|
Bermejo-Pareja F, Del Ser T, Valentí M, de la Fuente M, Bartolome F, Carro E. Salivary lactoferrin as biomarker for Alzheimer's disease: Brain-immunity interactions. Alzheimers Dement 2020; 16:1196-1204. [PMID: 32543760 PMCID: PMC7984071 DOI: 10.1002/alz.12107] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Objective We aim to explain why salivary lactoferrin (Lf) levels are reduced in patients suffering mild cognitive impairment (MCI) and sporadic Alzheimer's disease (sAD).1 We also will discuss if such Lf decrease could be due to a downregulation of the sAD associated systemic immunity. Background Several non‐neurological alterations have been described in sAD, mainly in skin, blood cell, and immunological capacities. We reviewed briefly the main pathophysiological theories of sAD (amyloid cascade, tau, unfolder protein tau, and amyloid deposits) emphasizing the most brain based hypotheses such as the updated tau‐related neuron skeletal hypothesis; we also comment on the systemic theories that emphasize the fetal origin of the complex disorders that include the low inflammatory and immunity theories of sAD. New/updated hypothesis Lf has important anti‐infectious and immunomodulatory roles in health and disease. We present the hypothesis that the reduced levels of saliva Lf could be an effect of immunological disturbances associated to sAD. Under this scenario, two alternative pathways are possible: first, whether sAD could be a systemic disorder (or disorders) related to early immunological and low inflammatory alterations; second, if systemic immunity alterations of sAD manifestations could be downstream of early sAD brain affectations. Major challenges for the hypothesis The major challenge of the Lf as early sAD biomarker would be its validation in other clinical and population‐based studies. It is possible the decreased salivary Lf in early sAD could be related to immunological modulation actions, but other different unknown mechanisms could be the origin of such reduction. Linkage to other major theories This hypothesis is in agreement with two physiopathological explanations of the sAD as a downstream process determined by the early lesions of the hypothalamus and autonomic vegetative system (neurodegeneration), or as a consequence of low neuroinflammation and dysimmunity since the early life aggravated in the elderly (immunosenescence).
Collapse
Affiliation(s)
- Félix Bermejo-Pareja
- Department of Medicine, Complutense University, Madrid, Spain.,Neurodegenerative Disorders Group, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Teodoro Del Ser
- Alzheimer's Disease Investigation Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofia Foundation, Alzheimer Research Centre, Madrid, Spain
| | - Meritxell Valentí
- Alzheimer's Disease Investigation Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofia Foundation, Alzheimer Research Centre, Madrid, Spain
| | - Mónica de la Fuente
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid, Madrid, Spain.,Aging, Neuroimmunology and Nutrition Group, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Fernando Bartolome
- Neurodegenerative Disorders Group, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.,Networking Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eva Carro
- Neurodegenerative Disorders Group, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.,Networking Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
178
|
Żarski D, Ben Ammar I, Bernáth G, Baekelandt S, Bokor Z, Palińska-Żarska K, Fontaine P, Horváth Á, Kestemont P, Mandiki SNM. Repeated hormonal induction of spermiation affects the stress but not the immune response in pikeperch (Sander lucioperca). FISH & SHELLFISH IMMUNOLOGY 2020; 101:143-151. [PMID: 32229293 DOI: 10.1016/j.fsi.2020.03.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 05/25/2023]
Abstract
Hormonal induction of spermiation, previously reported to be immunogenic in fishes, is a common hatchery practice in pikeperch, Sander lucioperca. The aim of the present study was to investigate the effects of repeated induction of spermiation in pikeperch, following application of either human chorionic gonadotropin (hCG) or salmon gonadoliberine analogue (sGnRHa) on sperm quality indices as well as on immune and stress response. Mature males of pikeperch (n = 7 per group) were stimulated twice with five days between injections of either hCG (hCG; 500 IU kg-1), sGnRHa (sGnRHa; 50 μg kg-1) or NaCl (control group; 1 ml kg-1) to assess spermatozoa motility with a computer-assisted sperm analysis (CASA) system. During second sampling, blood plasma was sampled for humoral innate immune (peroxidase and lysozyme activities, ACH50), stress (cortisol, glucose) and endocrine (testosterone) markers. In addition, the head kidney was dissected to assay the expression of several immune genes (such as il1, c3, hamp, tnf-α and lys genes). The results indicate that hormonal treatment significantly increased sperm production. Sperm sampled after the hormonal treatment maintained its quality throughout the study, regardless of the sampling time. However, it appears that the application of hCG induced elevated cortisol and glucose plasma levels compared to the control group. Almost all immune markers, except the relative expression of hepcidin (hamp gene), were unaffected by the two hormones applied. The results showed that the induction treatment of spermiation processes in pikeperch resulted in an important physiological stress response for which the intensity varied according to the hormonal agent used. However, this stress response (more profound following application of hCG) was weakly associated with innate immune functions. On the other hand, a significant negative correlation between the expression of several important immune markers (peroxidase activity, relative expression of c3 and il1 genes) and sperm quality indices indicates significant involvement of immune status on sperm quality. The results obtained shed light on immune-system-induced modifications to sperm quality. The data presented here highlight the need for careful revision of broodstock management and selection practices where welfare status as well as individual predispositions of fish to cope with the stress should be taken under the consideration.
Collapse
Affiliation(s)
- Daniel Żarski
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Imen Ben Ammar
- URBE, Institute of Life, Earth & Environment, Université de Namur, Namur, Belgium
| | - Gergely Bernáth
- Department of Aquaculture, Szent István University, Gödöllő, Hungary
| | - Sébastien Baekelandt
- URBE, Institute of Life, Earth & Environment, Université de Namur, Namur, Belgium
| | - Zoltán Bokor
- Department of Aquaculture, Szent István University, Gödöllő, Hungary
| | - Katarzyna Palińska-Żarska
- Department of Fisheries, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | | | - Ákos Horváth
- Department of Aquaculture, Szent István University, Gödöllő, Hungary
| | - Patrick Kestemont
- URBE, Institute of Life, Earth & Environment, Université de Namur, Namur, Belgium
| | | |
Collapse
|
179
|
Mohanta L, Das BC, Patri M. Microbial communities modulating brain functioning and behaviors in zebrafish: A mechanistic approach. Microb Pathog 2020; 145:104251. [PMID: 32418919 DOI: 10.1016/j.micpath.2020.104251] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
Microbiota plays a vital role in maintaining their host's physiology, development, reproduction, immune system, nutrient metabolism, brain chemistry and its behavior. How the gut microbiota modulates the brain function altering cognitive and fundamental behavior patterns related to specific functional changes is unclear. Recent studies provide holistic approaches which show gut microbiota can greatly sway all aspects of physiology including gut-brain communication, brain function and behavior by establishing a bi-directional link between the gut and brain. Among these studies, to our knowledge, the present review focus on the new mechanistic basis that relates the microbiota of the intestine with diseases of the nervous system causing behavioral alteration in zebrafish (Danio rerio) during development. The current review on microbiota-gut-brain axis communication showed a high instability of the microbiome at early stage of development in zebrafish. Probiotics restore the composition of the gut microbiota by producing neuroactive compounds and introduce beneficial functions to gut microbial communities, resulting in amelioration of gut inflammation and other intestinal disease phenotypes. Therefore, the present review mainly highlights the mechanistic way of gut-brain function, including neuronal, hormonal, immunological signaling with production of bacterial metabolites. This study consider current knowledge that may enable us to increase our understanding to know how the gut microbiota establishes a connection with brain modulating the gut-brain signaling by alteration of the neurochemistry such as GABA and serotonin levels in brain to control host behavior. Further studies are needed to define the exact microbial and host mechanism in GI disease states and functional syndromes.
Collapse
Affiliation(s)
- Larica Mohanta
- Neurobiology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Bhaskar C Das
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine, Mount Sinai, Annenberg, 19-201, New York, USA
| | - Manorama Patri
- Neurobiology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, 753003, Odisha, India.
| |
Collapse
|
180
|
Li Z, Niu D, Peng M, Xiong Y, Ji J, Dong Z, Li J. Dopamine beta-hydroxylase and its role in regulating the growth and larval metamorphosis in Sinonovacula constricta. Gene 2020; 737:144418. [PMID: 32006597 DOI: 10.1016/j.gene.2020.144418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
Dopamine beta-hydroxylase (DβH) plays a key role in the synthesis of catecholamines (CAs) in the neuroendocrine regulatory network. The DβH gene was identified from the razor clam Sinonovacula constricta and referred to as ScDβH. The ScDβH gene is a copper type II ascorbate-dependent monooxygenase with a DOMON domain and two Cu2_monooxygen domains. ScDβH transcript expression was abundant in liver and hemolymph. During early development, ScDβH expression significantly increased at the umbo larval stage. Furthermore, the inhibitors and siRNA of DβH were screened. After challenge with DβH inhibitor, the larval metamorphosis and survival rates, and juvenile growth were obviously decreased. Under the siRNA stress, the larval metamorphosis and survival rates were also significantly decreased. Therefore, ScDβH may play an important regulating role in larval metamorphosis and juvenile growth.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Maoxiao Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ya Xiong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Ji
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiguo Dong
- Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China.
| |
Collapse
|
181
|
Liu Z, Zhou Z, Wang L, Zhang Y, Zong Y, Zheng Y, Li M, Wang W, Song L. A Signaling Pathway to Mediate the Combined Immunomodulation of Acetylcholine and Enkephalin in Oyster Crassostrea gigas. Front Immunol 2020; 11:616. [PMID: 32362893 PMCID: PMC7180215 DOI: 10.3389/fimmu.2020.00616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
Molluscs have evolved a primitive but complete neuroendocrine-immune (NEI) system with a vast array of neurotransmitters to conduct both humoral and cellular immunomodulation. Previous studies have illustrated the immune functions of several key neurotransmitters. However, the combined effects of multiple neurotransmitters and the signaling pathway to mediate such immunomodulation have not been well-understood. In the present study, iTRAQ and LC-ESI-MS/MS approaches were employed to investigate the combined immunomodulation functions of two crucial neurotransmitters, acetylcholine (ACh), and [Met5]-enkephalin (ENK), in oyster Crassostrea gigas. A total number of 5,379 proteins were identified from hemocytes of oysters after the treatments with Ach and ENK separately or simultaneously, and 1,475 of them were found to be significantly up-regulated, while 1,115 of them were significantly down-regulated. The protein expression patterns in the groups treated by ACh and ENK separately were quite similar, which were dramatically different from that in the group treated by ACh+ENK. One hundred seventy-two proteins were found to be differentially expressed in all the three neurotransmitter treatment groups. Functional validation suggested that ACh and ENK possibly modulate the immune response in oyster hemocytes by enhancing pathogen recognition, cell apoptosis, and the enzyme activities of superoxide dismutase (SOD). Moreover, GO enrichment and co-expression network analyses implied that the combined immunomodulation of ACh and ENK might be mediated by p53, EGF-R–ErbB, and Fc gamma R (FcγR) signaling pathways. These results collectively indicated that multiple neurotransmitters executed a combined and ordered immune regulation through common signaling cascades in molluscs, which was under delicate control to maintain the homeostasis.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Yukun Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Yan Zheng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| |
Collapse
|
182
|
Rehan IF, Youssef M, Abdel-Rahman MAM, Fahmy SG, Ahmed E, Ahmed AS, Maky MA, Diab HM, Shanab O, Alkahtani S, Abdel-Daim MM, Hassan H, Rehan AF, Hussien MA, Eleiwa NZ, Elnagar A, Abdeen A, Hesham AEL. The Impact of Probiotics and Egg Yolk IgY on Behavior and Blood Parameters in a Broiler Immune Stress Model. Front Vet Sci 2020; 7:145. [PMID: 32328501 PMCID: PMC7160245 DOI: 10.3389/fvets.2020.00145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
Feed additives are used frequently in variable combinations to maximize broiler productivity and consumer safety. Therefore, we evaluated the efficiency of feed additives used in four different diets: a basal diet, a probiotic (PRO-PAC®) supplement diet, an egg yolk purified immunoglobulin Y (IgY) supplemented diet, and a combination of IgY and PRO-PAC® supplement (n = 15 for each group). We assessed the improvement of behavioral and hematological parameters of Ross broilers before and after an immune stress challenge using lipopolysaccharide (LPS). Behavioral as well as physiological parameters were analyzed. The standing frequency was the highest (P < 0.05) in broilers supplemented with a combination of probiotics and IgY. Likewise, latency approach score to a novel object improved (P < 0.01) in the combination group at week-3. After intraperitoneal injection of LPS, this combination group achieved the best gait score at week-3, followed by week-5, compared to birds fed the basal diet. The heterophil/lymphocyte (H/L) ratio, heterophil differential count, and eosinophil differential count in the basal diet group that was challenged with LPS were significantly increased (P < 0.01, P < 0.001, P < 0.05, respectively) compared to the combination groups. Therefore, we concluded that the combination of IgY and probiotics can significantly improve the behavior and the underlying physiological parameters of Ross broilers. Consequently, this combination can improve the broilers′ health, welfare and produce a safe meat free from harmful chemical residues.
Collapse
Affiliation(s)
- Ibrahim F Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menofia University, Shibin Alkom, Egypt
| | - Mohammed Youssef
- Department of Animal Physiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mootaz A M Abdel-Rahman
- Department of Behavior, Management, and Development of Animal Wealth, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| | - Sohaila G Fahmy
- Department of Animal Behavior and Management, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Eslam Ahmed
- Department of Animal Behavior and Management, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Ahmed S Ahmed
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mohamed A Maky
- Department of Food Hygiene and Control (Meat Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Hassan M Diab
- Department of Animal and Poultry Health and Environment, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Obeid Shanab
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hamdy Hassan
- Department of Animal Production, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Ahmed F Rehan
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed A Hussien
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nesreen Z Eleiwa
- Department of Food Hygiene, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Asmaa Elnagar
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Abd El-Latif Hesham
- Department of Genetics, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
183
|
Arias JA, Williams C, Raghvani R, Aghajani M, Baez S, Belzung C, Booij L, Busatto G, Chiarella J, Fu CH, Ibanez A, Liddell BJ, Lowe L, Penninx BWJH, Rosa P, Kemp AH. The neuroscience of sadness: A multidisciplinary synthesis and collaborative review. Neurosci Biobehav Rev 2020; 111:199-228. [PMID: 32001274 DOI: 10.1016/j.neubiorev.2020.01.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Sadness is typically characterized by raised inner eyebrows, lowered corners of the mouth, reduced walking speed, and slumped posture. Ancient subcortical circuitry provides a neuroanatomical foundation, extending from dorsal periaqueductal grey to subgenual anterior cingulate, the latter of which is now a treatment target in disorders of sadness. Electrophysiological studies further emphasize a role for reduced left relative to right frontal asymmetry in sadness, underpinning interest in the transcranial stimulation of left dorsolateral prefrontal cortex as an antidepressant target. Neuroimaging studies - including meta-analyses - indicate that sadness is associated with reduced cortical activation, which may contribute to reduced parasympathetic inhibitory control over medullary cardioacceleratory circuits. Reduced cardiac control may - in part - contribute to epidemiological reports of reduced life expectancy in affective disorders, effects equivalent to heavy smoking. We suggest that the field may be moving toward a theoretical consensus, in which different models relating to basic emotion theory and psychological constructionism may be considered as complementary, working at different levels of the phylogenetic hierarchy.
Collapse
Affiliation(s)
- Juan A Arias
- Department of Psychology, Swansea University, United Kingdom; Department of Statistics, Mathematical Analysis, and Operational Research, Universidade de Santiago de Compostela, Spain
| | - Claire Williams
- Department of Psychology, Swansea University, United Kingdom
| | - Rashmi Raghvani
- Department of Psychology, Swansea University, United Kingdom
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | | | | | - Linda Booij
- Department of Psychology, Concordia University Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | | | - Julian Chiarella
- Department of Psychology, Concordia University Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Cynthia Hy Fu
- School of Psychology, University of East London, United Kingdom; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Agustin Ibanez
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile; Universidad Autonoma del Caribe, Barranquilla, Colombia; Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), New South Wales, Australia
| | | | - Leroy Lowe
- Neuroqualia (NGO), Turo, Nova Scotia, Canada
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | - Pedro Rosa
- Department of Psychiatry, University of Sao Paulo, Brazil
| | - Andrew H Kemp
- Department of Psychology, Swansea University, United Kingdom; Department of Psychiatry, University of Sao Paulo, Brazil; Discipline of Psychiatry, and School of Psychology, University of Sydney, Sydney, Australia.
| |
Collapse
|
184
|
Venet F, Demaret J, Gossez M, Monneret G. Myeloid cells in sepsis-acquired immunodeficiency. Ann N Y Acad Sci 2020; 1499:3-17. [PMID: 32202669 DOI: 10.1111/nyas.14333] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
On May 2017, the World Health Organization recognized sepsis as a global health priority. Sepsis profoundly perturbs immune homeostasis by initiating a complex response that varies over time, with the concomitant occurrence of pro- and anti-inflammatory mechanisms. Sepsis deeply impacts myeloid cell response. Different mechanisms are at play, such as apoptosis, endotoxin tolerance, metabolic failure, epigenetic reprogramming, and central regulation. This induces systemic effects on circulating immune cells and impacts progenitors locally in lymphoid organs. In the bone marrow, a progressive shift toward the release of immature myeloid cells (including myeloid-derived suppressor cells), at the expense of mature neutrophils, takes place. Circulating dendritic cell number remains dramatically low and monocytes/macrophages display an anti-inflammatory phenotype and reduced antigen presentation capacity. Intensity and persistence of these alterations are associated with increased risk of deleterious outcomes in patients. Thus, myeloid cells dysfunctions play a prominent role in the occurrence of sepsis-acquired immunodeficiency. For the most immunosuppressed patients, this paves the way for clinical trials evaluating immunoadjuvant molecules (granulocyte-macrophage colony-stimulating factor and interferon gamma) aimed at restoring homeostatic myeloid cell response. Our review offers a summary of sepsis-induced myeloid cell dysfunctions and current therapeutic strategies proposed to target these defects in patients.
Collapse
Affiliation(s)
- Fabienne Venet
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Julie Demaret
- Institut d'Immunologie, Lille University and University Hospital (CHU), Lille, France
| | - Morgane Gossez
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
185
|
Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C, Camus V. Neuroinflammation and depression: A review. Eur J Neurosci 2020; 53:151-171. [DOI: 10.1111/ejn.14720] [Citation(s) in RCA: 615] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | - Pascal Barone
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Samuel Leman
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Thomas Desmidt
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| | | | | | - Bruno Brizard
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Wissam El Hage
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| | | | | | - Vincent Camus
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| |
Collapse
|
186
|
Xue Z, Zhang Y, Liu Y, Zhang C, Shen XD, Gao F, Busuttil RW, Zheng S, Kupiec-Weglinski JW, Ji H. PACAP neuropeptide promotes Hepatocellular Protection via CREB-KLF4 dependent autophagy in mouse liver Ischemia Reperfusion Injury. Am J Cancer Res 2020; 10:4453-4465. [PMID: 32292507 PMCID: PMC7150481 DOI: 10.7150/thno.42354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Organ ischemia reperfusion injury (IRI), associated with acute hepatocyte death, remains an unresolved problem in clinical orthotopic liver transplantation (OLT). Autophagy, an intracellular self-digesting progress, is responsible for cell reprograming required to regain post-stress homeostasis. Methods: Here, we analyzed the cytoprotective mechanism of pituitary adenylate cyclase-activating polypeptide (PACAP)-promoted hepatocellular autophagy in a clinically relevant mouse model of extended hepatic cold storage (4 °C UW solution for 20 h) followed by syngeneic OLT. Results: In contrast to 41.7% of liver graft failure by day 7 post-transplant in control group, PACAP treatment significantly improved graft survival (91.7% by day 14), and promoted autophagy-associated regeneration programs in OLT. In parallel in vitro studies, PACAP-enhanced autophagy ameliorated cellular damage (LDH/ALT levels), and diminished necrosis in H2O2-stressed primary hepatocytes. Interestingly, PACAP not only induced nuclear cAMP response element-binding protein (CREB), but also triggered reprogramming factor Kruppel-like factor 4 (KLF4) expression in IR-stressed OLT. Indeed, CREB inhibition attenuated hepatic autophagy and recreated hepatocellular injury in otherwise PACAP-protected livers. Furthermore, CREB inhibition suppressed PACAP-induced KLF4 expression, whereas KLF4 blockade abolished PACAP-promoted autophagy and neutralized PACAP-mediated hepatoprotection both in vivo and in vitro. Conclusion: Current study documents the essential neural regulation of PACAP-promoted autophagy in hepatocellular homeostasis in OLT, which provides the emerging therapeutic principle to combat hepatic IRI in OLT.
Collapse
|
187
|
Di Battista AP, Churchill N, Rhind SG, Richards D, Hutchison MG. The relationship between symptom burden and systemic inflammation differs between male and female athletes following concussion. BMC Immunol 2020; 21:11. [PMID: 32164571 PMCID: PMC7068899 DOI: 10.1186/s12865-020-0339-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammation appears to be an important component of concussion pathophysiology. However, its relationship to symptom burden is unclear. Therefore, the purpose of this study was to evaluate the relationship between symptoms and inflammatory biomarkers measured in the blood of male and female athletes following a sport-related concussion (SRC). RESULTS Forty athletes (n = 20 male, n = 20 female) from nine interuniversity sport teams at a single institution provided blood samples within one week of an SRC. Twenty inflammatory biomarkers were quantitated by immunoassay. The Sport Concussion Assessment Tool version 5 (SCAT-5) was used to evaluate symptoms. Partial least squares (PLS) analyses were used to evaluate the relationship(s) between biomarkers and symptoms. In males, a positive correlation between interferon (IFN)-γ and symptom severity was observed following SRC. The relationship between IFN-γ and symptoms was significant among all symptom clusters, with cognitive symptoms displaying the largest effect. In females, a significant negative relationship was observed between symptom severity and cytokines IFN-γ, tumor necrosis factor (TNF)-α, and myeloperoxidase (MPO); a positive relationship was observed between symptom severity and MCP-4. Inflammatory mediators were significantly associated with all symptom clusters in females; the somatic symptom cluster displayed the largest effect. CONCLUSION These results provide supportive evidence of a divergent relationship between inflammation and symptom burden in male and female athletes following SRC. Future investigations should be cognizant of the potentially sex-specific pathophysiology underlying symptom presentation.
Collapse
Affiliation(s)
- Alex P Di Battista
- Faculty of Kinesiology & Physical Education, University of Toronto, 55 Harbord St., Toronto, ON, M5S 2W6, Canada.
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada.
| | - Nathan Churchill
- Neuroscience Program, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - Shawn G Rhind
- Faculty of Kinesiology & Physical Education, University of Toronto, 55 Harbord St., Toronto, ON, M5S 2W6, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Doug Richards
- Faculty of Kinesiology & Physical Education, University of Toronto, 55 Harbord St., Toronto, ON, M5S 2W6, Canada
- David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
| | - Michael G Hutchison
- Faculty of Kinesiology & Physical Education, University of Toronto, 55 Harbord St., Toronto, ON, M5S 2W6, Canada
- David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
188
|
Vaknine S, Soreq H. Central and peripheral anti-inflammatory effects of acetylcholinesterase inhibitors. Neuropharmacology 2020; 168:108020. [PMID: 32143069 DOI: 10.1016/j.neuropharm.2020.108020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Acetylcholinesterase (AChE) inhibitors modulate acetylcholine hydrolysis and hence play a key role in determining the cholinergic tone and in implementing its impact on the cholinergic blockade of inflammatory processes. Such inhibitors may include rapidly acting small molecule AChE-blocking drugs and poisonous anti-AChE insecticides or war agent inhibitors which penetrate both body and brain. Notably, traumatized patients may be hyper-sensitized to anti-AChEs due to their impaired cholinergic tone, higher levels of circulation pro-inflammatory cytokines and exacerbated peripheral inflammatory responses. Those largely depend on the innate-immune system yet reach the brain via vagus pathways and/or disrupted blood-brain-barrier. Other regulators of the neuro-inflammatory cascade are AChE-targeted microRNAs (miRs) and synthetic chemically protected oligonucleotide blockers thereof, whose size prevents direct brain penetrance. Nevertheless, these larger molecules may exert parallel albeit slower inflammatory regulating effects on brain and body tissues. Additionally, oligonucleotide aptamers interacting with innate immune Toll-Like Receptors (TLRs) may control inflammation through diverse routes and in different rates. Such aptamers may compete with the action of both small molecule inhibitors and AChE-inhibiting miRs in peripheral tissues including muscle and intestine. However, rapid adaptation processes, visualized in neuromuscular junctions enable murine survival under otherwise lethal anti-cholinesterase exposure; and both miR inhibitors and TLR-modulating aptamers may exert body-brain signals protecting experimental mice from acute inflammation. The complex variety of AChE inhibiting molecules identifies diverse body-brain communication pathways which may rapidly induce long-lasting central reactions to peripheral stressful and inflammatory insults in both mice and men. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Shani Vaknine
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel.
| |
Collapse
|
189
|
Harnessing cancer immunotherapy during the unexploited immediate perioperative period. Nat Rev Clin Oncol 2020; 17:313-326. [PMID: 32066936 DOI: 10.1038/s41571-019-0319-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
The immediate perioperative period (days before and after surgery) is hypothesized to be crucial in determining long-term cancer outcomes: during this short period, numerous factors, including excess stress and inflammatory responses, tumour-cell shedding and pro-angiogenic and/or growth factors, might facilitate the progression of pre-existing micrometastases and the initiation of new metastases, while simultaneously jeopardizing immune control over residual malignant cells. Thus, application of anticancer immunotherapy during this critical time frame could potentially improve patient outcomes. Nevertheless, this strategy has rarely been implemented to date. In this Perspective, we discuss apparent contraindications for the perioperative use of cancer immunotherapy, suggest safe immunotherapeutic and other anti-metastatic approaches during this important time frame and specify desired characteristics of such interventions. These characteristics include a rapid onset of immune activation, avoidance of tumour-promoting effects, no or minimal increase in surgical risk, resilience to stress-related factors and minimal induction of stress responses. Pharmacological control of excess perioperative stress-inflammatory responses has been shown to be clinically feasible and could potentially be combined with immune stimulation to overcome the direct pro-metastatic effects of surgery, prevent immune suppression and enhance immunostimulatory responses. Accordingly, we believe that certain types of immunotherapy, together with interventions to abrogate stress-inflammatory responses, should be evaluated in conjunction with surgery and, for maximal effectiveness, could be initiated before administration of adjuvant therapies. Such strategies might improve the overall success of cancer treatment.
Collapse
|
190
|
Lee W, Lee JG, Yoon JH, Lee JH. Relationship between occupational dust exposure levels and mental health symptoms among Korean workers. PLoS One 2020; 15:e0228853. [PMID: 32059015 PMCID: PMC7021288 DOI: 10.1371/journal.pone.0228853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Dust and fumes are complex mixtures of airborne gases and fine particles present in all environments inhabited by people. This study investigated the relationship between occupational dust exposure levels and mental health problems such as depression or anxiety, fatigue, and insomnia or sleep disturbance. We analyzed data from the third and fourth Korean Working Conditions Survey (KWCS) conducted by the Korea Occupational Safety and Health Agency in 2011 and 2014. We performed chi-square tests to compare the different baseline and occupational characteristics and mental health status according to occupational dust exposure levels. The odds ratio (OR) and 95% confidence intervals (95% CIs) for mental health symptoms (fatigue, depression or anxiety, and insomnia or sleep disturbance) were calculated using adjusted multiple logistic regression models. A total of 78,512 participants (43,979 in men, 34,533 in women) were included in this study. Among them, 6,013 (7.7%) and 2,625 (3.3%) reported "moderate" and "severe" dust exposure, respectively. Among those who answered "yes" to depression or anxiety, fatigue, insomnia or sleep disturbance, 50 (4.6%), 961 (4.8%), and 123 (5.9%), respectively, demonstrated "severe" occupational dust exposure. Compared to "low" levels of dust exposure, "moderate" and "severe" exposure increased the risk of depression and anxiety (OR = 1.09, 95%CI: 0.88-1.36; OR = 1.16, 95%CI: 0.87-1.58, per exposure respectively); however, this was not statistically significant. For fatigue, significance was observed for "moderate" 1.54 (1.46-1.64) and "severe" 1.65 (1.52-1.80) exposure levels. "Severe" levels increased the risk of insomnia or sleep disturbance (OR = 1.52, 95%CI: 1.25-1.85). These results suggest that the "dust annoyance" concept of mental health, which may be explained by a neurocognitive mechanism, is plausible. Occupational "dust annoyance" has been linked to workers' mental health status, particularly in terms of fatigue and sleep disturbance; a dose-response relationship has been observed. Workers should be protected against dust to support their health and productivity.
Collapse
Affiliation(s)
- Wanhyung Lee
- Department of Occupational and Environmental Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jae-Gwang Lee
- Department of Occupational and Environmental Medicine, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Jin-Ha Yoon
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - June-Hee Lee
- Department of Occupational and Environmental Medicine, Soonchunhyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
191
|
Giannoccaro MP, Sallemi G, Liguori R, Plazzi G, Pizza F. Immunotherapy in Narcolepsy. Curr Treat Options Neurol 2020; 22:2. [PMID: 31997035 DOI: 10.1007/s11940-020-0609-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Narcolepsy type 1 (NT1) is a chronic and disabling sleep disorder due to the loss of hypocretinergic neurons in the lateral hypothalamus pathophysiologically linked to an autoimmune process. Current treatment is symptomatic, and no cure is available to date. Immunotherapy is considered a promising future therapeutic option, and this review discusses the rationale for immunotherapy in narcolepsy, current evidences of its effects, outcome measures, and future directions. RECENT FINDINGS A limited number of case reports and uncontrolled small case series have reported the effect of different immunotherapies in patients with NT1. These studies were mainly based on the use of intravenous immunoglobulin (IVig), followed by corticosteroids, plasmapheresis, and monoclonal antibodies. Although initial reports showed an improvement of symptoms, particularly when patients were treated close to disease onset, other observations have not confirmed these results. Inadequate timing of treatment, placebo effects, and spontaneous improvement due to the natural disease course can account for these contrasting findings. Moreover, clear endpoints and standardized outcome measures have not been used and are currently missing in the pediatric population. On the basis of the available data, there are no enough evidences to support the use of immunotherapy in NT1. Randomized, controlled studies using clear endpoints and new outcome measures are needed to achieve a definitive answer about the usefulness of these treatments in narcolepsy.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giombattista Sallemi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy. .,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
192
|
Ren C, Yao RQ, Zhang H, Feng YW, Yao YM. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression. J Neuroinflammation 2020; 17:14. [PMID: 31924221 PMCID: PMC6953314 DOI: 10.1186/s12974-020-1701-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is commonly complicated by septic conditions, and is responsible for increased mortality and poor outcomes in septic patients. Uncontrolled neuroinflammation and ischemic injury are major contributors to brain dysfunction, which arises from intractable immune malfunction and the collapse of neuroendocrine immune networks, such as the cholinergic anti-inflammatory pathway, hypothalamic-pituitary-adrenal axis, and sympathetic nervous system. Dysfunction in these neuromodulatory mechanisms compromised by SAE jeopardizes systemic immune responses, including those of neutrophils, macrophages/monocytes, dendritic cells, and T lymphocytes, which ultimately results in a vicious cycle between brain injury and a progressively aberrant immune response. Deep insight into the crosstalk between SAE and peripheral immunity is of great importance in extending the knowledge of the pathogenesis and development of sepsis-induced immunosuppression, as well as in exploring its effective remedies.
Collapse
Affiliation(s)
- Chao Ren
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ren-Qi Yao
- Department of Burn Surgery, Changhai Hospital, The Navy Medical University, Shanghai, 200433, People's Republic of China
| | - Hui Zhang
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Yong-Wen Feng
- Department of Critical Care Medicine, The Second People's Hospital of Shenzhen, Shenzhen, 518035, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China.
| |
Collapse
|
193
|
Labanski A, Langhorst J, Engler H, Elsenbruch S. Stress and the brain-gut axis in functional and chronic-inflammatory gastrointestinal diseases: A transdisciplinary challenge. Psychoneuroendocrinology 2020; 111:104501. [PMID: 31715444 DOI: 10.1016/j.psyneuen.2019.104501] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
Abstract
The broad role of stress in the brain-gut axis is widely acknowledged, with implications for multiple prevalent health conditions that are characterized by chronic gastrointestinal symptoms. These include the functional gastrointestinal disorders (FGID), such as irritable bowel syndrome and functional dyspepsia, as well as inflammatory bowel diseases (IBD) like ulcerative colitis and Crohn's disease. Although the afferent and efferent pathways linking the gut and the brain are modulated by stress, the fields of neurogastroenterology and psychoneuroendocrinology (PNE)/ psychoneuroimmunology (PNI) remain only loosely connected. We aim to contribute to bringing these fields closer together by drawing attention to a fascinating, evolving research area, targeting an audience with a strong interest in the role of stress in health and disease. To this end, this review introduces the concept of the brain-gut axis and its major pathways, and provides a brief introduction to epidemiological and clinical aspects of FGIDs and IBD. From an interdisciplinary PNE/PNI perspective, we then detail current knowledge regarding the role of chronic and acute stress in the pathophysiology of FGID and IBD. We provide an overview of evidence regarding non-pharmacological treatment approaches that target central or peripheral stress mechanisms, and conclude with future directions, particularly those arising from recent advances in the neurosciences and discoveries surrounding the gut microbiota.
Collapse
Affiliation(s)
- Alexandra Labanski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jost Langhorst
- Chair for Integrative Medicine, University of Duisburg-Essen, Essen, Germany; Clinic for Internal and Integrative Medicine, Klinikum Bamberg, Bamberg, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sigrid Elsenbruch
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
194
|
Hadamitzky M, Lückemann L, Pacheco-López G, Schedlowski M. Pavlovian Conditioning of Immunological and Neuroendocrine Functions. Physiol Rev 2020; 100:357-405. [DOI: 10.1152/physrev.00033.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of behaviorally conditioned immunological and neuroendocrine functions has been investigated for the past 100 yr. The observation that associative learning processes can modify peripheral immune functions was first reported and investigated by Ivan Petrovic Pavlov and his co-workers. Their work later fell into oblivion, also because so little was known about the immune system’s function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses. With the employment of a taste-avoidance paradigm in rats, this phenomenon was rediscovered 45 yr ago as one of the most fascinating examples of the reciprocal functional interaction between behavior, the brain, and peripheral immune functions, and it established psychoneuroimmunology as a new research field. Relying on growing knowledge about efferent and afferent communication pathways between the brain, neuroendocrine system, primary and secondary immune organs, and immunocompetent cells, experimental animal studies demonstrate that cellular and humoral immune and neuroendocrine functions can be modulated via associative learning protocols. These (from the classical perspective) learned immune responses are clinically relevant, since they affect the development and progression of immune-related diseases and, more importantly, are also inducible in humans. The increased knowledge about the neuropsychological machinery steering learning and memory processes together with recent insight into the mechanisms mediating placebo responses provide fascinating perspectives to exploit these learned immune and neuroendocrine responses as supportive therapies, the aim being to reduce the amount of medication required, diminishing unwanted drug side effects while maximizing the therapeutic effect for the patient’s benefit.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustavo Pacheco-López
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
195
|
Hammond TT, Blackwood PE, Shablin SA, Richards-Zawacki CL. Relationships between glucocorticoids and infection with Batrachochytrium dendrobatidis in three amphibian species. Gen Comp Endocrinol 2020; 285:113269. [PMID: 31493395 DOI: 10.1016/j.ygcen.2019.113269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022]
Abstract
It is often hypothesized that organisms exposed to environmental change may experience physiological stress, which could reduce individual quality and make them more susceptible to disease. Amphibians are amongst the most threatened taxa, particularly in the context of disease, but relatively few studies explore links between stress and disease in amphibian species. Here, we use the fungal pathogen Batrachochytrium dendrobatidis (Bd) and amphibians as an example to explore relationships between disease and glucocorticoids (GCs), metabolic hormones that comprise one important component of the stress response. While previous work is limited, it has largely identified positive relationships between GCs and Bd-infection. However, the causality remains unclear and few studies have integrated both baseline (GC release that is related to standard, physiological functioning) and stress-induced (GC release in response to an acute stressor) measures of GCs. Here, we examine salivary corticosterone before and after exposure to a stressor, in both field and captive settings. We present results for Bd-infected and uninfected individuals of three amphibian species with differential susceptibilities to this pathogen (Rana catesbeiana, R. clamitans, and R. sylvatica). We hypothesized that prior to stress, baseline GCs would be higher in Bd-infected animals, particularly in more Bd-susceptible species. We also expected that after exposure to a stressor, stress-induced GCs would be lower in Bd-infected animals. These species exhibited significant interspecific differences in baseline and stress induced corticosterone, though other variables like sex, body size, and day of year were usually not predictive of corticosterone. In contrast to most previous work, we found no relationships between Bd and corticosterone for two species (R. catesbeiana and R. clamitans), and in the least Bd-tolerant species (R. sylvatica) animals exhibited context-dependent differences in relationships between Bd infection and corticosterone: Bd-positive R. sylvatica had significantly lower baseline and stress-induced corticosterone, with this pattern being stronger in the field than in captivity. These results were surprising, as past work in other species has more often found elevated GCs in Bd-positive animals, a pattern that aligns with well-documented relationships between chronically high GCs, reduced individual quality, and immunosuppression. This work highlights the potential relevance of GCs to disease susceptibility in the context of amphibian declines, while underscoring the importance of characterizing these relationships in diverse contexts.
Collapse
Affiliation(s)
- Talisin T Hammond
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA; San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Rd., Escondido, CA 92027, USA.
| | - Paradyse E Blackwood
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| | - Samantha A Shablin
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| | - Corinne L Richards-Zawacki
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| |
Collapse
|
196
|
Martin LB, Kernbach ME, Unnasch TR. Distinct effects of acute versus chronic corticosterone exposure on Zebra finch responses to West Nile virus. CONSERVATION PHYSIOLOGY 2019; 7:coz094. [PMID: 31824675 PMCID: PMC6894510 DOI: 10.1093/conphys/coz094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/28/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Wild animals are exposed to both short- (acute) and long-term (chronic) stressors. The glucocorticoid hormones, such as corticosterone (CORT), facilitate coping with such stressors, but these hormones can have quite distinct effects contingent on the duration of their elevation. Previously, we found that experimental elevation of CORT for 2 days (via implantation) affected zebra finch (Taeniopygia guttata) responses to West Nile virus (WNV). CORT-elevated birds had higher viremia for at least 2 days longer than controls, and West Nile virus (WNV)-associated mortality occurred only in CORT-elevated birds. Here, we queried how acute elevations of CORT, via injection an hour prior to WNV exposure, would affect host responses, as short-term CORT elevations can be protective in other species. Although CORT injections and implantations elevated circulating CORT to a similar degree, the type of CORT exposure had quite distinct effects on WNV responses. CORT-implanted individuals reached higher viremia and suffered more mortality to WNV than control and CORT-injected individuals. However, CORT-implanted birds maintained body mass better during infection than the other two groups. Our results further support the possibility that chronic physiological stress affects aspects of host competence and potentially community-level WNV disease dynamics.
Collapse
Affiliation(s)
- Lynn B Martin
- Global Health and Infectious Disease Research Center, University of South Florida, Tampa, FL 33620, USA
| | - Meredith E Kernbach
- Global Health and Infectious Disease Research Center, University of South Florida, Tampa, FL 33620, USA
| | - Thomas R Unnasch
- Global Health and Infectious Disease Research Center, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
197
|
Chemical sympathectomy attenuates lipopolysaccharide-induced increase of plasma cytokine levels in rats pretreated by ACTH. J Neuroimmunol 2019; 337:577086. [DOI: 10.1016/j.jneuroim.2019.577086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022]
|
198
|
Qin X, Jin X, Zhou K, Li H, Wang Q, Li W, Wang Q. EsGPCR89 regulates cerebral antimicrobial peptides through hemocytes in Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2019; 95:151-162. [PMID: 31605765 DOI: 10.1016/j.fsi.2019.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/02/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
G protein-coupled receptors (GPCRs) are important transmembrane receptors that participate in diverse physiological processes including metabolism, cell growth and immune processes by transmitting extracellular signals to intracellular effectors. In this study, a gene belonging to the GPCR family was cloned from Eriocheir sinensis and named EsGPCR89. The full-length gene includes an open reading frame (ORF) of 465 amino acid residues, and bioinformatic analysis confirmed the high conservation between species. EsGPCR89 was detected in various tissues of E. sinensis, and was up-regulated in brain following Staphylococcus aureus infection. Expression levels of cerebral antimicrobial peptides (AMPs) were also up-regulated following bacterial challenge, reflecting their function in cerebral immunity. Additionally, EsGPCR89 silencing in hemocytes by RNA interference, down-regulated AMPs in brain after S. aureus infection. Moreover, through Immunisation assay and Polyacrylamide gel electrophoresis (SDS-PAGE) experiments, we could infer that bacterially infected hemocytes released effectors under the regulation of EsGPCR89, thereby activating transcription of cerebral AMPs. These results demonstrate that EsGPCR89 plays important roles in cerebral antimicrobial function via hemocytes.
Collapse
Affiliation(s)
- Xiang Qin
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China
| | - Xingkun Jin
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, PR China
| | - Kaimin Zhou
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China
| | - Hao Li
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China
| | - Qiying Wang
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China
| | - Weiwei Li
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China.
| | - Qun Wang
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China.
| |
Collapse
|
199
|
Packyanathan JS, Lakshmanan R, Jayashri P. Effect of music therapy on anxiety levels on patient undergoing dental extractions. J Family Med Prim Care 2019; 8:3854-3860. [PMID: 31879625 PMCID: PMC6924244 DOI: 10.4103/jfmpc.jfmpc_789_19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 09/22/2019] [Accepted: 10/14/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND AIMS Dental anxiety has been found to be a significant problem faced by patients undergoing extractions. Anxious patients tend to avoid dental care ultimately leading to complications. Treatment of anxious patients can be very challenging to the dentists, prolonging the treatment duration. There has been various methods to reduce anxiety of which non pharmacological ways include music and aroma therapy. Music has been known to reduce fear, stress and is a form of meditation and relaxation. Hence effect of music on the reduction of anxiety levels for patients undergoing extractions were assessed. The aim of this study is to assess the effect of music therapy on dental anxiety levels of patients undergoing extractions. METHODS 50 patients visiting the outpatient department of Saveetha Dental College for dental extractions were randomly selected and allocated to Test group and Control group. The test group (N = 25) were subjected to music during extractions and Control (N = 25) were not exposed. Dental anxiety levels and hemodynamic changes namely systolic pressure, diastolic pressure and heart rate were assessed before and after extraction. The data was collected and analyzed using SPSS software with Paired t Test. RESULTS The study showed that the control population had elevated hemodynamic changes with regard to systolic, diastolic blood pressure and heart rate, of which the diastolic pressure rise was significant. In the test population, there was fall in the hemodynamic changes with respect to systolic diastolic blood pressure and heart rate, all of which were statistically significant. This was evident in the modified dental anxiety scale as well. CONCLUSION Music seems to be a psychological and spiritual way to calm oneself down. Hence music therapy can be used as an anxiolytic agent for stressful dental procedures.
Collapse
Affiliation(s)
- Jerusha S. Packyanathan
- Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Reema Lakshmanan
- Department of Periodontology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - P Jayashri
- Department of Public Health Dentistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
200
|
Choudhary AK, Lee YY. Mechanistic Insights into Aspartame-induced Immune Dysregulation. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666181016124250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background & Objective:
Aspartame, (L-aspartyl-L-phenylalanine methyl ester) is a
widely used artificial sweetener but studies raise safety concerns regarding the use of aspartame
metabolites especially methanol. In this review, we aimed to provide mechanistic insights that may
explain aspartame-induced immune dysregulation.
Findings:
While evidence is limited, from the available literature, possible mechanisms for immune
dysfunction associated with aspartame include (1) alterations in bidirectional communication between
neuro-immune-endocrine responses (2) disruption of the brain-gut-microbiota-immune axis (3)
induction of oxidative stress in immune cells and organs and lastly (4) the immune-activation effect
of methanol.
Conclusion:
Further studies are needed to confirm above proposed mechanisms that may explain aspartame-
induce immune dysregulation.
Collapse
Affiliation(s)
- Arbind K. Choudhary
- Department of Physiology, Government Medical College, Shivpuri, (M.P.), India
| | - Yeong Y. Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|