151
|
Liontos A, Asimakopoulos AG, Markopoulos GS, Biros D, Athanasiou L, Tsourlos S, Dova L, Rapti IC, Tsiakas I, Ntzani E, Evangelou E, Tzoulaki I, Tsilidis K, Vartholomatos G, Dounousi E, Milionis H, Christaki E. Correlation of Lymphocyte Subpopulations, Clinical Features and Inflammatory Markers during Severe COVID-19 Onset. Pathogens 2023; 12:pathogens12030414. [PMID: 36986336 PMCID: PMC10057940 DOI: 10.3390/pathogens12030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Dysregulation of the immune response in the course of COVID-19 has been implicated in critical outcomes. Lymphopenia is evident in severe cases and has been associated with worse outcomes since the early phases of the pandemic. In addition, cytokine storm has been associated with excessive lung injury and concomitant respiratory failure. However, it has also been hypothesized that specific lymphocyte subpopulations (CD4 and CD8 T cells, B cells, and NK cells) may serve as prognostic markers for disease severity. The aim of this study was to investigate possible associations of lymphocyte subpopulations alterations with markers of disease severity and outcomes in patients hospitalized with COVID-19. Materials/Methods: A total of 42 adult hospitalized patients were included in this study, from June to July 2021. Flow-cytometry was used to calculate specific lymphocyte subpopulations on day 1 (admission) and on day 5 of hospitalization (CD45, CD3, CD3CD8, CD3CD4, CD3CD4CD8, CD19, CD16CD56, CD34RA, CD45RO). Markers of disease severity and outcomes included: burden of disease on CT (% of affected lung parenchyma injury), C-reactive protein and interleukin-6 levels. PO2/FiO2 ratio and differences in lymphocytes subsets between two timepoints were also calculated. Logistic and linear regressions were used for the analyses. All analyses were performed using Stata (version 13.1; Stata Corp, College Station, TX, USA). Results: Higher levels of CD16CD56 cells (Natural Killer cells) were associated with higher risk of lung injury (>50% of lung parenchyma). An increase in CD3CD4 and CD4RO cell count difference between day 5 and day 1 resulted in a decrease of CRP difference between these timepoints. On the other hand, CD45RARO difference was associated with an increase in the difference of CRP levels between the two timepoints. No other significant differences were found in the rest of the lymphocyte subpopulations. Conclusions: Despite a low patient number, this study showed that alterations in lymphocyte subpopulations are associated with COVID-19 severity markers. It was observed that an increase in lymphocytes (CD4 and transiently CD45RARO) resulted in lower CRP levels, perhaps leading to COVID-19 recovery and immune response homeostasis. However, these findings need further evaluation in larger scale trials.
Collapse
Affiliation(s)
- Angelos Liontos
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros-George Asimakopoulos
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios S. Markopoulos
- Haematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Biros
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Lazaros Athanasiou
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Stavros Tsourlos
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Leukothea Dova
- Haematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45110 Ioannina, Greece
| | - Iro-Chrisavgi Rapti
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Ilias Tsiakas
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Ntzani
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelos Evangelou
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Ioanna Tzoulaki
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Tsilidis
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - George Vartholomatos
- Haematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Haralampos Milionis
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Eirini Christaki
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
- Correspondence: ; Tel.: +30-26-5109-9640
| |
Collapse
|
152
|
Rabaan AA, Al-Ahmed SH, Albayat H, Alwarthan S, Alhajri M, Najim MA, AlShehail BM, Al-Adsani W, Alghadeer A, Abduljabbar WA, Alotaibi N, Alsalman J, Gorab AH, Almaghrabi RS, Zaidan AA, Aldossary S, Alissa M, Alburaiky LM, Alsalim FM, Thakur N, Verma G, Dhawan M. Variants of SARS-CoV-2: Influences on the Vaccines' Effectiveness and Possible Strategies to Overcome Their Consequences. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:507. [PMID: 36984508 PMCID: PMC10051174 DOI: 10.3390/medicina59030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
The immune response elicited by the current COVID-19 vaccinations declines with time, especially among the immunocompromised population. Furthermore, the emergence of novel SARS-CoV-2 variants, particularly the Omicron variant, has raised serious concerns about the efficacy of currently available vaccines in protecting the most vulnerable people. Several studies have reported that vaccinated people get breakthrough infections amid COVID-19 cases. So far, five variants of concern (VOCs) have been reported, resulting in successive waves of infection. These variants have shown a variable amount of resistance towards the neutralising antibodies (nAbs) elicited either through natural infection or the vaccination. The spike (S) protein, membrane (M) protein, and envelope (E) protein on the viral surface envelope and the N-nucleocapsid protein in the core of the ribonucleoprotein are the major structural vaccine target proteins against COVID-19. Among these targets, S Protein has been extensively exploited to generate effective vaccines against COVID-19. Hence, amid the emergence of novel variants of SARS-CoV-2, we have discussed their impact on currently available vaccines. We have also discussed the potential roles of S Protein in the development of novel vaccination approaches to contain the negative consequences of the variants' emergence and acquisition of mutations in the S Protein of SARS-CoV-2. Moreover, the implications of SARS-CoV-2's structural proteins were also discussed in terms of their variable potential to elicit an effective amount of immune response.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mustafa A. Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Wasl Al-Adsani
- Department of Medicine, Infectious Diseases Hospital, Kuwait City 63537, Kuwait
- Department of Infectious Diseases, Hampton Veterans Administration Medical Center, Hampton, VA 23667, USA
| | - Ali Alghadeer
- Department of Anesthesia, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Nouf Alotaibi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Ali H. Gorab
- Al Kuzama Primary Health Care Center, Al Khobar Health Network, Eastern Health Cluster, Al Khobar 34446, Saudi Arabia
| | - Reem S. Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ali A. Zaidan
- Gastroenterology Department, King Fahad Armed Forces Hospital, Jeddah 23831, Saudi Arabia
| | - Sahar Aldossary
- Pediatric Infectious Diseases, Women and Children’s Health Institute, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Lamees M. Alburaiky
- Pediatric Department, Safwa General Hospital, Eastern Health Cluster, Safwa 31921, Saudi Arabia
| | - Fatimah Mustafa Alsalim
- Department of Family Medicine, Primary Health Care, Qatif Health Cluster, Qatif 32434, Saudi Arabia
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Geetika Verma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| |
Collapse
|
153
|
Cable J, Balachandran S, Daley-Bauer LP, Rustagi A, Antony F, Frere JJ, Strampe J, Kedzierska K, Cannon JL, McGargill MA, Weiskopf D, Mettelman RC, Niessl J, Thomas PG, Briney B, Valkenburg SA, Bloom JD, Bjorkman PJ, Iketani S, Rappazzo CG, Crooks CM, Crofts KF, Pöhlmann S, Krammer F, Sant AJ, Nabel GJ, Schultz-Cherry S. Viral immunity: Basic mechanisms and therapeutic applications-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1521:32-45. [PMID: 36718537 DOI: 10.1111/nyas.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Viruses infect millions of people each year. Both endemic viruses circulating throughout the population as well as novel epidemic and pandemic viruses pose ongoing threats to global public health. Developing more effective tools to address viruses requires not only in-depth knowledge of the virus itself but also of our immune system's response to infection. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Viral Immunity: Basic Mechanisms and Therapeutic Applications." This report presents concise summaries from several of the symposium presenters.
Collapse
Affiliation(s)
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Lisa P Daley-Bauer
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Arjun Rustagi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Justin J Frere
- East Harlem Health Outreach Partnership; Department of Medical Education; and Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jamie Strampe
- Bioinformatics Program, Boston University and National Emerging Infectious Diseases Laboratories, Boston, Massachusetts, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Judy L Cannon
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, California, USA
| | - Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Julia Niessl
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Jesse D Bloom
- Basic Sciences Division and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Microbiology and Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | - Chelsea M Crooks
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kali F Crofts
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center and Faculty of Biology and Psychology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea J Sant
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gary J Nabel
- Modex Therapeutics Inc., an OPKO Health Company, Natick, Massachusetts, USA
| | - Stacey Schultz-Cherry
- Department of Laboratory Medicine and Department of Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
154
|
Kumar K, Tan WS, Arshad SS, Ho KL. Virus-like Particles of Nodavirus Displaying the Receptor Binding Domain of SARS-CoV-2 Spike Protein: A Potential VLP-Based COVID-19 Vaccine. Int J Mol Sci 2023; 24:ijms24054398. [PMID: 36901827 PMCID: PMC10001971 DOI: 10.3390/ijms24054398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Since the outbreak of the coronavirus disease 2019 (COVID-19), various vaccines have been developed for emergency use. The efficacy of the initial vaccines based on the ancestral strain of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has become a point of contention due to the emergence of new variants of concern (VOCs). Therefore, continuous innovation of new vaccines is required to target upcoming VOCs. The receptor binding domain (RBD) of the virus spike (S) glycoprotein has been extensively used in vaccine development due to its role in host cell attachment and penetration. In this study, the RBDs of the Beta (β) and Delta (δ) variants were fused to the truncated Macrobrachium rosenbergii nodavirus capsid protein without the protruding domain (CΔ116-MrNV-CP). Immunization of BALB/c mice with the virus-like particles (VLPs) self-assembled from the recombinant CP showed that, with AddaVax as an adjuvant, a significantly high level of humoral response was elicited. Specifically, mice injected with equimolar of adjuvanted CΔ116-MrNV-CP fused with the RBD of the β- and δ-variants increased T helper (Th) cell production with a CD8+/CD4+ ratio of 0.42. This formulation also induced proliferation of macrophages and lymphocytes. Overall, this study demonstrated that the nodavirus truncated CP fused with the SARS-CoV-2 RBD has potential to be developed as a VLP-based COVID-19 vaccine.
Collapse
Affiliation(s)
- Kiven Kumar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Siti Suri Arshad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-9769-2729
| |
Collapse
|
155
|
Hattab D, Amer MFA, Mohd Gazzali A, Chuah LH, Bakhtiar A. Current status in cellular-based therapies for prevention and treatment of COVID-19. Crit Rev Clin Lab Sci 2023:1-25. [PMID: 36825325 DOI: 10.1080/10408363.2023.2177605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) outbreaks that resulted in a catastrophic threat to global health, with more than 500 million cases detected and 5.5 million deaths worldwide. Patients with a COVID-19 infection presented with clinical manifestations ranging from asymptomatic to severe symptoms, resulting in acute lung injury, acute respiratory distress syndrome, and even death. Immune dysregulation through delayed innate immune response or impairment of the adaptive immune response is the key contributor to the pathophysiology of COVID-19 and SARS-CoV-2-induced cytokine storm. Symptomatic and supportive therapy is the fundamental strategy in treating COVID-19 infection, including antivirals, steroid-based therapies, and cell-based immunotherapies. Various studies reported substantial effects of immune-based therapies for patients with COVID-19 to modulate the over-activated immune system while simultaneously refining the body's ability to destroy the virus. However, challenges may arise from the complexity of the disease through the genetic variance of the virus itself and patient heterogeneity, causing increased transmissibility and heightened immune system evasion that rapidly change the intervention and prevention measures for SARS-CoV-2. Cell-based therapy, utilizing stem cells, dendritic cells, natural killer cells, and T cells, among others, are being extensively explored as other potential immunological approaches for preventing and treating SARS-CoV-2-affected patients the similar process was effectively proven in SARS-CoV-1 and MERS-CoV infections. This review provides detailed insights into the innate and adaptive immune response-mediated cell-based immunotherapies in COVID-19 patients. The immune response linking towards engineered autologous or allogenic immune cells for either treatment or preventive therapies is subsequently highlighted in an individual study or in combination with several existing treatments. Up-to-date data on completed and ongoing clinical trials of cell-based agents for preventing or treating COVID-19 are also outlined to provide a guide that can help in treatment decisions and future trials.
Collapse
Affiliation(s)
- Dima Hattab
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mumen F A Amer
- Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Lay Hong Chuah
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
156
|
Swadling L, Maini MK. Can T Cells Abort SARS-CoV-2 and Other Viral Infections? Int J Mol Sci 2023; 24:4371. [PMID: 36901802 PMCID: PMC10002440 DOI: 10.3390/ijms24054371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Despite the highly infectious nature of the SARS-CoV-2 virus, it is clear that some individuals with potential exposure, or even experimental challenge with the virus, resist developing a detectable infection. While a proportion of seronegative individuals will have completely avoided exposure to the virus, a growing body of evidence suggests a subset of individuals are exposed, but mediate rapid viral clearance before the infection is detected by PCR or seroconversion. This type of "abortive" infection likely represents a dead-end in transmission and precludes the possibility for development of disease. It is, therefore, a desirable outcome on exposure and a setting in which highly effective immunity can be studied. Here, we describe how early sampling of a new pandemic virus using sensitive immunoassays and a novel transcriptomic signature can identify abortive infections. Despite the challenges in identifying abortive infections, we highlight diverse lines of evidence supporting their occurrence. In particular, expansion of virus-specific T cells in seronegative individuals suggests abortive infections occur not only after exposure to SARS-CoV-2, but for other coronaviridae, and diverse viral infections of global health importance (e.g., HIV, HCV, HBV). We discuss unanswered questions related to abortive infection, such as: 'Are we just missing antibodies? Are T cells an epiphenomenon? What is the influence of the dose of viral inoculum?' Finally, we argue for a refinement of the current paradigm that T cells are only involved in clearing established infection; instead, we emphasise the importance of considering their role in terminating early viral replication by studying abortive infections.
Collapse
Affiliation(s)
- Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| |
Collapse
|
157
|
Kim MI, Lee C. Human Coronavirus OC43 as a Low-Risk Model to Study COVID-19. Viruses 2023; 15:v15020578. [PMID: 36851792 PMCID: PMC9965565 DOI: 10.3390/v15020578] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had irreversible and devastating impacts on every aspect of human life. To better prepare for the next similar pandemic, a clear understanding of coronavirus biology is a prerequisite. Nevertheless, the high-risk nature of the causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), requires the use of a cumbersome biosafety level-3 (BSL-3) confinement facility. To facilitate the development of preventive and therapeutic measures against SARS-CoV-2, one of the endemic strains of low-risk coronaviruses has gained attention as a useful research alternative: human coronavirus OC43 (HCoV-OC43). In this review, its history, classification, and clinical manifestations are first summarized. The characteristics of its viral genomes, genes, and evolution process are then further explained. In addition, the host factors necessary to support the life cycle of HCoV-OC43 and the innate, as well as adaptive, immunological responses to HCoV-OC43 infection are discussed. Finally, the development of in vitro and in vivo systems to study HCoV-OC43 and its application to the discovery of potential antivirals for COVID-19 by using HCoV-OC43 models are also presented. This review should serve as a concise guide for those who wish to use HCoV-OC43 to study coronaviruses in a low-risk research setting.
Collapse
|
158
|
Brown B, Ojha V, Fricke I, Al-Sheboul SA, Imarogbe C, Gravier T, Green M, Peterson L, Koutsaroff IP, Demir A, Andrieu J, Leow CY, Leow CH. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel) 2023; 11:408. [PMID: 36851285 PMCID: PMC9962967 DOI: 10.3390/vaccines11020408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic was caused by a positive sense single-stranded RNA (ssRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, other human coronaviruses (hCoVs) exist. Historical pandemics include smallpox and influenza, with efficacious therapeutics utilized to reduce overall disease burden through effectively targeting a competent host immune system response. The immune system is composed of primary/secondary lymphoid structures with initially eight types of immune cell types, and many other subtypes, traversing cell membranes utilizing cell signaling cascades that contribute towards clearance of pathogenic proteins. Other proteins discussed include cluster of differentiation (CD) markers, major histocompatibility complexes (MHC), pleiotropic interleukins (IL), and chemokines (CXC). The historical concepts of host immunity are the innate and adaptive immune systems. The adaptive immune system is represented by T cells, B cells, and antibodies. The innate immune system is represented by macrophages, neutrophils, dendritic cells, and the complement system. Other viruses can affect and regulate cell cycle progression for example, in cancers that include human papillomavirus (HPV: cervical carcinoma), Epstein-Barr virus (EBV: lymphoma), Hepatitis B and C (HB/HC: hepatocellular carcinoma) and human T cell Leukemia Virus-1 (T cell leukemia). Bacterial infections also increase the risk of developing cancer (e.g., Helicobacter pylori). Viral and bacterial factors can cause both morbidity and mortality alongside being transmitted within clinical and community settings through affecting a host immune response. Therefore, it is appropriate to contextualize advances in single cell sequencing in conjunction with other laboratory techniques allowing insights into immune cell characterization. These developments offer improved clarity and understanding that overlap with autoimmune conditions that could be affected by innate B cells (B1+ or marginal zone cells) or adaptive T cell responses to SARS-CoV-2 infection and other pathologies. Thus, this review starts with an introduction into host respiratory infection before examining invaluable cellular messenger proteins and then individual immune cell markers.
Collapse
Affiliation(s)
| | | | - Ingo Fricke
- Independent Immunologist and Researcher, 311995 Lamspringe, Germany
| | - Suhaila A Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Medical Microbiology, International School of Medicine, Medipol University-Istanbul, Istanbul 34810, Turkey
| | | | - Tanya Gravier
- Independent Researcher, MPH, San Francisco, CA 94131, USA
| | | | | | | | - Ayça Demir
- Faculty of Medicine, Afyonkarahisar University, Istanbul 03030, Turkey
| | - Jonatane Andrieu
- Faculté de Médecine, Aix–Marseille University, 13005 Marseille, France
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| |
Collapse
|
159
|
Blyakher MS, Fedorova IM, Tulskaya E, Kapustin IV, Koteleva SI, Ramazanova ZK, Odintsov EE, Sandalova SV, Novikova LI. [Assesment of specific T-cell immunity to SARS-CoV-2 virus antigens in COVID-19 reconvalescents]. Vopr Virusol 2023; 67:527-537. [PMID: 37264842 DOI: 10.36233/0507-4088-151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Indexed: 06/03/2023]
Abstract
INTRODUCTION The development of the COVID-19 pandemic has stimulated the scientific research aimed at studying of the mechanisms of formation the immunity against SARS-CoV-2. Currently, there is a need to develop a domestic simple and cost-effective specific method suitable for monitoring of T-cell response against SARS-CoV-2 in reconvalescents and vaccinated individuals. AIM Development of a screening method for evaluation specific T-cell immunity against SARS-CoV-2. MATERIALS AND METHODS Total 40 individuals who had mild to moderate COVID-19 and 20 healthy volunteers who did not have a history of this disease were examined. The presence and levels of IgG and IgM antibodies to SARS-CoV-2 were identified in participants sera by ELISA using the diagnostic kits from JSC Vector-Best (Novosibirsk, Russian Federation). Antigenic stimulation of mononuclear cells was carried out on commercial plates with adsorbed whole-virion inactivated SARS-CoV-2 antigen (State Research Center of Virology and Biotechnology VECTOR Novosibirsk, Russian Federation). The concentration of IFN- was measured in ELISA using the test systems from JSC Vector-Best (Novosibirsk, Russian Federation). The immunophenotyping of lymphocytes was performed on a flow cytometer Cytomics FC500 (Beckman Coulter, USA). Statistical data processing was carried out using the Microsoft Excel and STATISTICA 10 software package. RESULTS Stimulation of mononuclear cells isolated from the peripheral blood with whole-virion inactivated SARS-CoV-2 antigen fixed at the bottom of the wells of a polystyrene plate showed a significantly higher median response in terms of IFN- production in 40 people who had history of COVID-19 compared to 20 healthy blood donors (172.1 [34.3575.1] pg/ml versus 15.4 [6.925.8] pg/ml, p 0.0001). There was no difference in median IFN- levels in supernatants collected from unstimulated mononuclear cells from COVID-19 reconvalescents and healthy donors (2.7 [0.411.4] pg/ml versus 0.8 [0.023.3] pg/ml, p 0.05). The overall sensitivity and specificity of this method were 73% (95% CI 5888%) and 100% (95% CI 100100%), respectively, at a cut-off of 50 pg/ml. CONCLUSION The developed method for assessment of the cellular immune response to SARS-CoV-2 can be used as a screening method for monitoring the T-cell response in a population against a new coronavirus infection in recovered people.
Collapse
Affiliation(s)
- M S Blyakher
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - I M Fedorova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - E Tulskaya
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - I V Kapustin
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - S I Koteleva
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - Z K Ramazanova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - E E Odintsov
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - S V Sandalova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - L I Novikova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| |
Collapse
|
160
|
Lesteberg KE, Araya P, Waugh KA, Chauhan L, Espinosa JM, Beckham JD. Severely ill and high-risk COVID-19 patients exhibit increased peripheral circulation of CD62L+ and perforin+ T cells. Front Immunol 2023; 14:1113932. [PMID: 36817450 PMCID: PMC9932815 DOI: 10.3389/fimmu.2023.1113932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The emergence of SARS-CoV-2, which causes COVID-19, has led to over 400 million reported cases worldwide. COVID-19 disease ranges from asymptomatic infection to severe disease and may be impacted by individual immune differences. Methods We used multiparameter flow cytometry to compare CD4+ and CD8+ T cell responses in severe (ICU admitted) and non-severe (admitted to observational unit) hospitalized COVID-19 patients. Results We found that patients with severe COVID- 19 had greater frequencies of CD4+ T cells expressing CD62L compared to non-severe patients and greater frequencies of perforin+ CD8+ T cells compared to recovered patients. Furthermore, greater frequencies of CD62L+ CD4+ and CD8+ T cells were seen in severely ill diabetic patients compared to non-severe and non-diabetic patients, and increased CD62L+ CD4+ T cells were also seen in severely ill patients with hypertension. Discussion This is the first report to show that CD62L+ T cells and perforin+ T cells are associated with severe COVID-19 illness and are significantly increased in patients with high-risk pre-existing conditions including older age and diabetes. These data provide a potential biological marker for severe COVID-19.
Collapse
Affiliation(s)
- Kelsey E. Lesteberg
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katherine A. Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lakshmi Chauhan
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, United States
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - J. David Beckham
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Rocky Mountain VA Medical Center, Aurora, CO, United States
| |
Collapse
|
161
|
Rodríguez JP, Eguíluz VM. Coupling between infectious diseases leads to synchronization of their dynamics. CHAOS (WOODBURY, N.Y.) 2023; 33:021103. [PMID: 36859206 DOI: 10.1063/5.0137380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Interactions between different diseases may change their dynamics. Thus, these interactions represent a source of uncertainty in the modeling of empirical data when the symptoms of both infections are hard to distinguish. We recall previously proposed models of interacting infections, generalizing them to non-symmetric scenarios, showing that both cooperative and competitive interactions lead to synchronization of the maximum fraction of infected individuals in their dynamics. We exemplify this framework with a model coupling the dynamics of COVID-19 and seasonal influenza, simulating cooperation, competition, and asymmetric interactions. We find that the coupling synchronizes both infections, with a stronger influence on the dynamics of influenza.
Collapse
Affiliation(s)
- Jorge P Rodríguez
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA), CSIC-UIB, 07190 Esporles, Spain
| | - Víctor M Eguíluz
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, 07122 Palma de Mallorca, Spain
| |
Collapse
|
162
|
Ruiz Ortega M, Spisak N, Mora T, Walczak AM. Modeling and predicting the overlap of B- and T-cell receptor repertoires in healthy and SARS-CoV-2 infected individuals. PLoS Genet 2023; 19:e1010652. [PMID: 36827454 PMCID: PMC10075420 DOI: 10.1371/journal.pgen.1010652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/05/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Adaptive immunity's success relies on the extraordinary diversity of protein receptors on B and T cell membranes. Despite this diversity, the existence of public receptors shared by many individuals gives hope for developing population-wide vaccines and therapeutics. Using probabilistic modeling, we show many of these public receptors are shared by chance in healthy individuals. This predictable overlap is driven not only by biases in the random generation process of receptors, as previously reported, but also by their common functional selection. However, the model underestimates sharing between repertoires of individuals infected with SARS-CoV-2, suggesting strong specific antigen-driven convergent selection. We exploit this discrepancy to identify COVID-associated receptors, which we validate against datasets of receptors with known viral specificity. We study their properties in terms of sequence features and network organization, and use them to design an accurate diagnostic tool for predicting SARS-CoV-2 status from repertoire data.
Collapse
Affiliation(s)
- María Ruiz Ortega
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Natanael Spisak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Thierry Mora
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| |
Collapse
|
163
|
Zinatizadeh MR, Zarandi PK, Ghiasi M, Kooshki H, Mohammadi M, Amani J, Rezaei N. Immunosenescence and inflamm-ageing in COVID-19. Ageing Res Rev 2023; 84:101818. [PMID: 36516928 PMCID: PMC9741765 DOI: 10.1016/j.arr.2022.101818] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The destructive effects of coronavirus disease 2019 (COVID-19) on the elderly and people with cardiovascular disease have been proven. New findings shed light on the role of aging pathways on life span and health age. New therapies that focus on aging-related pathways may positively impact the treatment of this acute respiratory infection. Using new therapies that boost the level of the immune system can support the elderly with co-morbidities against the acute form of COVID-19. This article discusses the effect of the aging immune system against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the pathways affecting this severity of infection.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohsen Ghiasi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamid Kooshki
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
164
|
Hebel C, Thomsen AR. A survey of mechanisms underlying current and potential COVID-19 vaccines. APMIS 2023; 131:37-60. [PMID: 36394112 DOI: 10.1111/apm.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The emergence of SARS-CoV-2 caught the world off guard resulting in a global health crisis. Even though COVID-19 have caused the death of millions of people and many countries are still battling waves of infections, the odds of the pandemic ending soon have turned significantly in our favor. The key has been the development and distribution of a broad range of vaccines in record time. In this survey, we summarize the immunology required to understand the mechanisms underlying current and potential COVID-19 vaccines. Furthermore, we provide an up to date (according to data from WHO May 27, 2022) overview of the vaccine landscape consisting of 11 approved vaccines in phase 4, and a pipeline consisting of 161 vaccine candidates in clinical development and 198 in preclinical development (World Health Organization, Draft landscape and tracker of COVID-19 candidate vaccines [Internet], WHO, 2022). Our focus is to provide an understanding of the underlying biological mode of action of different vaccine platform designs, their advantages and disadvantages, rather than a deep dive into safety and efficacy data. We further present arguments concerning why a broad range of vaccines are needed and discuss future challenges.
Collapse
Affiliation(s)
- Christian Hebel
- Department of Immunology and Microbiology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
165
|
Iavarone M, Tosetti G, Facchetti F, Topa M, Er JM, Hang SK, Licari D, Lombardi A, D'Ambrosio R, Degasperi E, Loglio A, Oggioni C, Perbellini R, Caccia R, Bandera A, Gori A, Ceriotti F, Scudeller L, Bertoletti A, Lampertico P. Spike-specific humoral and cellular immune responses after COVID-19 mRNA vaccination in patients with cirrhosis: A prospective single center study. Dig Liver Dis 2023; 55:160-168. [PMID: 36266209 PMCID: PMC9575378 DOI: 10.1016/j.dld.2022.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS COVID-19 mRNA vaccines were approved to prevent severe forms of the disease, but their immunogenicity and safety in cirrhosis is poorly known. METHOD In this prospective single-center study enrolling patients with cirrhosis undergoing COVID-19 vaccination (BNT162b2 and mRNA-1273), we assessed humoral and cellular responses vs healthy controls, the incidence of breakthrough infections and adverse events (AEs). Antibodies against spike- and nucleocapsid-protein (anti-S and anti-N) and Spike-specific T-cells responses were quantified at baseline, 21 days after the first and second doses and during follow-up. RESULTS 182 cirrhotics (85% SARS-CoV-2-naïve) and 38 controls were enrolled. After 2 doses of vaccine, anti-S titres were significantly lower in cirrhotics vs controls [1,751 (0.4-25,000) U/mL vs 4,523 (259-25,000) U/mL, p=0.012] and in SARS-CoV-2-naïve vs previously infected cirrhotics [999 (0.4-17,329) U/mL vs 7,500 (12.5-25,000) U/mL, (p<0.001)]. T-cell responses in cirrhotics were similar to controls, although with different kinetics. In SARS-CoV-2-naïve cirrhotics, HCC, Child-Pugh B/C and BNT162b2 were independent predictors of low response. Neither unexpected nor severe AEs emerged. During follow-up, 2% turned SARS-CoV-2 positive, all asymptomatic. CONCLUSION Humoral response to COVID-19 vaccines appeared suboptimal in patients with cirrhosis, particularly in SARS-CoV-2-naïve decompensated cirrhotics, although cellular response appeared preserved, and low breakthrough infections rate was registered.
Collapse
Affiliation(s)
- Massimo Iavarone
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy.
| | - Giulia Tosetti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Floriana Facchetti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Matilde Topa
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Joey Ming Er
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Shou Kit Hang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Debora Licari
- Clinical Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Lombardi
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| | - Roberta D'Ambrosio
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Elisabetta Degasperi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Alessandro Loglio
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Chiara Oggioni
- IRCCS Humanitas Research Hospital, Quality and Patient Safety Unit, Rozzano, Milano, Italy
| | - Riccardo Perbellini
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Riccardo Caccia
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| | - Ferruccio Ceriotti
- Clinical Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigia Scudeller
- Research and Innovation Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Singapore Immunology Network, A*STAR, Singapore
| | - Pietro Lampertico
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy; CRC "A. M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
166
|
State of the art in epitope mapping and opportunities in COVID-19. Future Sci OA 2023; 16:FSO832. [PMID: 36897962 PMCID: PMC9987558 DOI: 10.2144/fsoa-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The understanding of any disease calls for studying specific biological structures called epitopes. One important tool recently drawing attention and proving efficiency in both diagnosis and vaccine development is epitope mapping. Several techniques have been developed with the urge to provide precise epitope mapping for use in designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping with a special emphasis on accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines, immunological profile-based patient stratification, and finally, exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19.
Collapse
|
167
|
Nyagwange J, Kutima B, Mwai K, Karanja HK, Gitonga JN, Mugo D, Sein Y, Wright D, Omuoyo DO, Nyiro JU, Tuju J, Nokes DJ, Agweyu A, Bejon P, Ochola-Oyier LI, Scott JAG, Lambe T, Nduati E, Agoti C, Warimwe GM. Serum immunoglobulin G and mucosal immunoglobulin A antibodies from prepandemic samples collected in Kilifi, Kenya, neutralize SARS-CoV-2 in vitro. Int J Infect Dis 2023; 127:11-16. [PMID: 36476349 PMCID: PMC9721188 DOI: 10.1016/j.ijid.2022.11.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
OBJECTIVES Many regions of Africa have experienced lower COVID-19 morbidity and mortality than Europe. Pre-existing humoral responses to endemic human coronaviruses (HCoV) may cross-protect against SARS-CoV-2. We investigated the neutralizing capacity of SARS-CoV-2 spike reactive and nonreactive immunoglobulin (Ig)G and IgA antibodies in prepandemic samples. METHODS To investigate the presence of pre-existing immunity, we performed enzyme-linked immunosorbent assay using spike antigens from reference SARS-CoV-2, HCoV HKU1, OC43, NL63, and 229E using prepandemic samples from Kilifi in coastal Kenya. In addition, we performed neutralization assays using pseudotyped reference SARS-CoV-2 to determine the functionality of the identified reactive antibodies. RESULTS We demonstrate the presence of HCoV serum IgG and mucosal IgA antibodies, which cross-react with the SARS-CoV-2 spike. We show pseudotyped reference SARS-CoV-2 neutralization by prepandemic serum, with a mean infective dose 50 of 1: 251, which is 10-fold less than that of the pooled convalescent sera from patients with COVID-19 but still within predicted protection levels. The prepandemic naso-oropharyngeal fluid neutralized pseudo-SARS-CoV-2 at a mean infective dose 50 of 1: 5.9 in the neutralization assay. CONCLUSION Our data provide evidence for pre-existing functional humoral responses to SARS-CoV-2 in Kilifi, coastal Kenya and adds to data showing pre-existing immunity for COVID-19 from other regions.
Collapse
Affiliation(s)
- James Nyagwange
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya.
| | | | - Kennedy Mwai
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 27 St Andrews Road, Parktown 2193, Johannesburg, South Africa
| | - Henry K Karanja
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - John N Gitonga
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - Daisy Mugo
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - Yiakon Sein
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - Daniel Wright
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | - Joyce U Nyiro
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - James Tuju
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - D James Nokes
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya; The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, CV4 7AL, United Kingdom; School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ambrose Agweyu
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | - J Anthony G Scott
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom; Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street WC1E 7HT, London, United Kingdom
| | - Teresa Lambe
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Eunice Nduati
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - Charles Agoti
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - George M Warimwe
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
168
|
Idowu AO, Omosun YO, Igietseme JU, Azenabor AA. The COVID-19 pandemic in sub-Saharan Africa: The significance of presumed immune sufficiency. Afr J Lab Med 2023; 12:1964. [PMID: 36756213 PMCID: PMC9900247 DOI: 10.4102/ajlm.v12i1.1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/24/2022] [Indexed: 02/04/2023] Open
Abstract
A novel coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in China in 2019 and later ignited a global pandemic. Contrary to expectations, the effect of the pandemic was not as devastating to Africa and its young population compared to the rest of the world. To provide insight into the possible reasons for the presumed immune sufficiency to coronavirus disease 2019 (COVID-19) in Africa, this review critically examines literature published from 2020 onwards on the dynamics of COVID-19 infection and immunity and how other prevalent infectious diseases in Africa might have influenced the outcome of COVID-19. Studies characterising the immune response in patients with COVID-19 show that the correlates of protection in infected individuals are T-cell responses against the SARS-CoV-2 spike protein and neutralising titres of immunoglobin G and immunoglobin A antibodies. In some other studies, substantial pre-existing T-cell reactivity to SARS-CoV-2 was detected in many people from diverse geographical locations without a history of exposure. Certain studies also suggest that innate immune memory, which offers protection against reinfection with the same or another pathogen, might influence the severity of COVID-19. In addition, an initial analysis of epidemiological data showed that COVID‑19 cases were not severe in some countries that implemented universal Bacillus Calmette-Guerin (BCG) vaccination policies, thus supporting the potential of BCG vaccination to boost innate immunity. The high burden of infectious diseases and the extensive vaccination campaigns previously conducted in Africa could have induced specific and non-specific protective immunity to infectious pathogens in Africans.
Collapse
Affiliation(s)
- Abel O Idowu
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Yusuf O Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Joseph U Igietseme
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States
| | - Anthony A Azenabor
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
169
|
Liu H, Aviszus K, Zelarney P, Liao SY, Gerber AN, Make B, Wechsler ME, Marrack P, Reinhardt RL. Vaccine-elicited B and T cell immunity to SARS-CoV-2 is impaired in chronic lung disease patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.25.23284971. [PMID: 36747750 PMCID: PMC9901055 DOI: 10.1101/2023.01.25.23284971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The protection afforded by vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to individuals with chronic lung disease is not well established. To understand how chronic lung disease impacts SARS-CoV-2 vaccine-elicited immunity we performed deep immunophenotyping of the humoral and cell mediated SARS-CoV-2 vaccine response in an investigative cohort of vaccinated patients with diverse pulmonary conditions including asthma, chronic obstructive pulmonary disease (COPD), and interstitial lung disease (ILD). Compared to healthy controls, 48% of vaccinated patients with chronic lung diseases had reduced antibody titers to the SARS-CoV-2 vaccine antigen as early as 3-4 months after vaccination, correlating with decreased vaccine-specific memory B cells. Vaccine-specific CD4 and CD8 T cells were also significantly reduced in patients with asthma, COPD, and a subset of ILD patients compared to healthy controls. These findings reveal the complex nature of vaccine-elicited immunity in high-risk patients with chronic lung disease.
Collapse
Affiliation(s)
- Haolin Liu
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Katja Aviszus
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Pearlanne Zelarney
- Research Informatics Services, National Jewish Health, Denver, CO, 80206, USA
| | - Shu-Yi Liao
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver CO, 80206, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Anthony N Gerber
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver CO, 80206, USA
| | - Barry Make
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver CO, 80206, USA
| | - Michael E Wechsler
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver CO, 80206, USA
| | - Philippa Marrack
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - R Lee Reinhardt
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
170
|
Almendro-Vázquez P, Laguna-Goya R, Paz-Artal E. Defending against SARS-CoV-2: The T cell perspective. Front Immunol 2023; 14:1107803. [PMID: 36776863 PMCID: PMC9911802 DOI: 10.3389/fimmu.2023.1107803] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
SARS-CoV-2-specific T cell response has been proven essential for viral clearance, COVID-19 outcome and long-term memory. Impaired early T cell-driven immunity leads to a severe form of the disease associated with lymphopenia, hyperinflammation and imbalanced humoral response. Analyses of acute SARS-CoV-2 infection have revealed that mild COVID-19 course is characterized by an early induction of specific T cells within the first 7 days of symptoms, coordinately followed by antibody production for an effective control of viral infection. In contrast, patients who do not develop an early specific cellular response and initiate a humoral immune response with subsequent production of high levels of antibodies, develop severe symptoms. Yet, delayed and persistent bystander CD8+ T cell activation has been also reported in hospitalized patients and could be a driver of lung pathology. Literature supports that long-term maintenance of T cell response appears more stable than antibody titters. Up to date, virus-specific T cell memory has been detected 22 months post-symptom onset, with a predominant IL-2 memory response compared to IFN-γ. Furthermore, T cell responses are conserved against the emerging variants of concern (VoCs) while these variants are mostly able to evade humoral responses. This could be partly explained by the high HLA polymorphism whereby the viral epitope repertoire recognized could differ among individuals, greatly decreasing the likelihood of immune escape. Current COVID-19-vaccination has been shown to elicit Th1-driven spike-specific T cell response, as does natural infection, which provides substantial protection against severe COVID-19 and death. In addition, mucosal vaccination has been reported to induce strong adaptive responses both locally and systemically and to protect against VoCs in animal models. The optimization of vaccine formulations by including a variety of viral regions, innovative adjuvants or diverse administration routes could result in a desirable enhanced cellular response and memory, and help to prevent breakthrough infections. In summary, the increasing evidence highlights the relevance of monitoring SARS-CoV-2-specific cellular immune response, and not only antibody levels, as a correlate for protection after infection and/or vaccination. Moreover, it may help to better identify target populations that could benefit most from booster doses and to personalize vaccination strategies.
Collapse
Affiliation(s)
- Patricia Almendro-Vázquez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Laguna-Goya
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
171
|
Jian X, Zhang Y, Zhao J, Zhao Z, Lu M, Xie L. CoV2-TCR: A web server for screening TCR CDR3 from TCR immune repertoire of COVID-19 patients and their recognized SARS-CoV-2 epitopes. Comput Struct Biotechnol J 2023; 21:1362-1371. [PMID: 36741787 PMCID: PMC9882952 DOI: 10.1016/j.csbj.2023.01.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/08/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
Although multiple vaccines have been developed and widely administered, several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been reported to evade immune responses and spread diffusely. Here, 108 RNA-seq files from coronavirus disease 2019 (COVID-19) patients and healthy donors (HD) were downloaded to extract their TCR immune repertoire by MiXCR. Those extracted TCR repertoire were compared and it was found that disease progression was related negatively with diversity and positively with clonality. Specifically, greater proportions of high-abundance clonotypes were observed in active and severe COVID-19 samples, probably resulting from strong stimulation of SARS-CoV-2 epitopes and a continued immune response in host. To investigate the specific recognition between TCR CDR3 and SARS-CoV-2 epitopes, we constructed an accurate classifier CoV2-TCR with an AUC of 0.967 in an independent dataset, which outperformed several similar tools. Based on this model, we observed a huge range in the number of those TCR CDR3 recognizing those different peptides, including 28 MHC-I epitopes from SARS-CoV-2 and 22 immunogenic peptides from SARS-CoV-2 variants. Interestingly, their proportions of high-abundance, low-abundance and rare clonotypes were close for each peptide. To expand the potential application of this model, we established the webserver, CoV2-TCR, in which users can obtain those recognizing CDR3 sequences from the TCR repertoire of COVID-19 patients based on the 9-mer peptides containing mutation site(s) on the four main proteins of SARS-CoV-2 variants. Overall, this study provides preliminary screening for candidate antigen epitopes and the TCR CDR3 that recognizes them, and should be helpful for vaccine design on SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Xingxing Jian
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders & Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China,Corresponding author.
| | - Yu Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China,School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jingjing Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhuoming Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Manman Lu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Lu Xie
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders & Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China,Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China,Corresponding author at: Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders & Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
172
|
Sejdic A, Frische A, Jørgensen CS, Rasmussen LD, Trebbien R, Dungu A, Holler JG, Ostrowski SR, Eriksson R, Søborg C, Nielsen TL, Fischer TK, Lindegaard B, Franck KT, Harboe ZB. High titers of neutralizing SARS-CoV-2 antibodies six months after symptom onset are associated with increased severity in COVID-19 hospitalized patients. Virol J 2023; 20:14. [PMID: 36698135 PMCID: PMC9875770 DOI: 10.1186/s12985-023-01974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Viral shedding and neutralizing antibody (NAb) dynamics among patients hospitalized with severe coronavirus disease 2019 (COVID-19) and immune correlates of protection have been key questions throughout the pandemic. We investigated the duration of reverse transcriptase-polymerase chain reaction (RT-PCR) positivity, infectious viral shedding and NAb titers as well as the association between NAb titers and disease severity in hospitalized COVID-19 patients in Denmark 2020-2021. MATERIALS AND METHODS Prospective single-center observational cohort study of 47 hospitalized COVID-19 patients. Oropharyngeal swabs were collected at eight time points during the initial 30 days of inclusion. Serum samples were collected after a median time of 7 (IQR 5 - 10), 37 (IQR 35 - 38), 97 (IQR 95 - 100), and 187 (IQR 185 - 190) days after symptom onset. NAb titers were determined by an in-house live virus microneutralization assay. Viral culturing was performed in Vero E6 cells. RESULTS Patients with high disease severity had higher mean log2 NAb titers at day 37 (1.58, 95% CI [0.34 -2.81]), 97 (2.07, 95% CI [0.53-3.62]) and 187 (2.49, 95% CI [0.20- 4.78]) after symptom onset, compared to patients with low disease severity. Peak viral load (0.072, 95% CI [- 0.627 - 0.728]), expressed as log10 SARS-CoV-2 copies/ml, was not associated with disease severity. Virus cultivation attempts were unsuccessful in almost all (60/61) oropharyngeal samples collected shortly after hospital admission. CONCLUSIONS We document an association between high disease severity and high mean NAb titers at days 37, 97 and 187 after symptom onset. However, peak viral load during admission was not associated with disease severity. TRIAL REGISTRATION The study is registered at https://clinicaltrials.gov/ (NCT05274373).
Collapse
Affiliation(s)
- Adin Sejdic
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark.
- Statens Serum Institut, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | - Arnold Dungu
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Jon G Holler
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Robert Eriksson
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
- Department of Infectious Diseases, Karolinska Institutet, Solna, Sweden
| | - Christian Søborg
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Thyge L Nielsen
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Thea K Fischer
- Department of Clinical Research, Copenhagen University Hospital - North Zealand, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Lindegaard
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Zitta Barrella Harboe
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
- Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
173
|
Somogyi E, Kremlitzka M, Csiszovszki Z, Molnár L, Lőrincz O, Tóth J, de Waal L, Pattijn S, Reineking W, Beineke A, Tőke ER. T cell immunity ameliorates COVID-19 disease severity and provides post-exposure prophylaxis after peptide-vaccination, in Syrian hamsters. Front Immunol 2023; 14:1111629. [PMID: 36761759 PMCID: PMC9902696 DOI: 10.3389/fimmu.2023.1111629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
Background The emergence of novel SARS-CoV-2 variants that resist neutralizing antibodies drew the attention to cellular immunity and calls for the development of alternative vaccination strategies to combat the pandemic. Here, we have assessed the kinetics of T cell responses and protective efficacy against severe COVID-19 in pre- and post-exposure settings, elicited by PolyPEPI-SCoV-2, a peptide based T cell vaccine. Methods 75 Syrian hamsters were immunized subcutaneously with PolyPEPI-SCoV-2 on D0 and D14. On D42, hamsters were intranasally challenged with 102 TCID50 of the virus. To analyze immunogenicity by IFN-γ ELISPOT and antibody secretion, lymphoid tissues were collected both before (D0, D14, D28, D42) and after challenge (D44, D46, D49). To measure vaccine efficacy, lung tissue, throat swabs and nasal turbinate samples were assessed for viral load and histopathological changes. Further, body weight was monitored on D0, D28, D42 and every day after challenge. Results The vaccine induced robust activation of T cells against all SARS-CoV-2 structural proteins that were rapidly boosted after virus challenge compared to control animals (~4-fold, p<0.05). A single dose of PolyPEPI-SCoV-2 administered one day after challenge also resulted in elevated T cell response (p<0.01). The vaccination did not induce virus-specific antibodies and viral load reduction. Still, peptide vaccination significantly reduced body weight loss (p<0.001), relative lung weight (p<0.05) and lung lesions (p<0.05), in both settings. Conclusion Our study provides first proof of concept data on the contribution of T cell immunity on disease course and provide rationale for the use of T cell-based peptide vaccines against both novel SARS-CoV-2 variants and supports post-exposure prophylaxis as alternative vaccination strategy against COVID-19.
Collapse
Affiliation(s)
- Eszter Somogyi
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- PepTC Vaccines Ltd, London, United Kingdom
| | - Mariann Kremlitzka
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- PepTC Vaccines Ltd, London, United Kingdom
| | - Zsolt Csiszovszki
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- PepTC Vaccines Ltd, London, United Kingdom
| | - Levente Molnár
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- PepTC Vaccines Ltd, London, United Kingdom
| | - Orsolya Lőrincz
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- PepTC Vaccines Ltd, London, United Kingdom
| | - József Tóth
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- PepTC Vaccines Ltd, London, United Kingdom
| | - Leon de Waal
- Viroclinics Biosciences B.V., Viroclinics Xplore, Schaijk, Netherlands
| | - Sofie Pattijn
- ImmunXperts Société Anonyme, Q2 Solutions Company, Gosselies, Belgium
| | - Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Enikő R. Tőke
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- PepTC Vaccines Ltd, London, United Kingdom
| |
Collapse
|
174
|
Touizer E, Alrubayyi A, Ford R, Hussain N, Gerber PP, Shum HL, Rees-Spear C, Muir L, Gea-Mallorquí E, Kopycinski J, Jankovic D, Jeffery-Smith A, Pinder CL, Fox TA, Williams I, Mullender C, Maan I, Waters L, Johnson M, Madge S, Youle M, Barber TJ, Burns F, Kinloch S, Rowland-Jones S, Gilson R, Matheson NJ, Morris E, Peppa D, McCoy LE. Attenuated humoral responses in HIV after SARS-CoV-2 vaccination linked to B cell defects and altered immune profiles. iScience 2023; 26:105862. [PMID: 36590902 PMCID: PMC9788849 DOI: 10.1016/j.isci.2022.105862] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
We assessed a cohort of people living with human immunodeficiency virus (PLWH) (n = 110) and HIV negative controls (n = 64) after 1, 2 or 3 SARS-CoV-2 vaccine doses. At all timepoints, PLWH had significantly lower neutralizing antibody (nAb) titers than HIV-negative controls. We also observed a delayed development of neutralization in PLWH that was underpinned by a reduced frequency of spike-specific memory B cells (MBCs). Improved neutralization breadth was seen against the Omicron variant (BA.1) after the third vaccine dose in PLWH but lower nAb responses persisted and were associated with global MBC dysfunction. In contrast, SARS-CoV-2 vaccination induced robust T cell responses that cross-recognized variants in PLWH. Strikingly, individuals with low or absent neutralization had detectable functional T cell responses. These PLWH had reduced numbers of circulating T follicular helper cells and an enriched population of CXCR3+CD127+CD8+T cells after two doses of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Emma Touizer
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Aljawharah Alrubayyi
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rosemarie Ford
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Noshin Hussain
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Hiu-Long Shum
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Chloe Rees-Spear
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Luke Muir
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | | | - Jakub Kopycinski
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dylan Jankovic
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Anna Jeffery-Smith
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Christopher L. Pinder
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Thomas A. Fox
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Ian Williams
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
| | - Claire Mullender
- Institute for Global Health, University College London, London, UK
| | - Irfaan Maan
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
- Institute for Global Health, University College London, London, UK
| | - Laura Waters
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
| | - Margaret Johnson
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sara Madge
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Michael Youle
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Tristan J. Barber
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Fiona Burns
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sabine Kinloch
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | | | - Richard Gilson
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
- Institute for Global Health, University College London, London, UK
| | - Nicholas J. Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Emma Morris
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Dimitra Peppa
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Laura E. McCoy
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
175
|
Nicolas A, Sannier G, Dubé M, Nayrac M, Tauzin A, Painter MM, Goel RR, Laporte M, Gendron-Lepage G, Medjahed H, Williams JC, Brassard N, Niessl J, Gokool L, Morrisseau C, Arlotto P, Tremblay C, Martel-Laferrière V, Finzi A, Greenplate AR, Wherry EJ, Kaufmann DE. An extended SARS-CoV-2 mRNA vaccine prime-boost interval enhances B cell immunity with limited impact on T cells. iScience 2023; 26:105904. [PMID: 36594081 PMCID: PMC9797215 DOI: 10.1016/j.isci.2022.105904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/10/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Spacing the first two doses of SARS-CoV-2 mRNA vaccines beyond 3-4 weeks raised initial concerns about vaccine efficacy. While studies have since shown that long-interval regimens induce robust antibody responses, their impact on B and T cell immunity is poorly known. Here, we compare SARS-CoV-2 naive donors B and T cell responses to two mRNA vaccine doses administered 3-4 versus 16 weeks apart. After boost, the longer interval results in a higher magnitude and a more mature phenotype of RBD-specific B cells. While the two geographically distinct cohorts present quantitative and qualitative differences in T cell responses at baseline and after priming, the second dose led to convergent features with overall similar magnitude, phenotype, and function of CD4+ and CD8+ T cell responses at post-boost memory time points. Therefore, compared to standard regimens, a 16-week interval has a favorable impact on the B cell compartment but minimally affects T cell immunity.
Collapse
Affiliation(s)
- Alexandre Nicolas
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Gérémy Sannier
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
| | - Manon Nayrac
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Mark M. Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Immune Health®, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rishi R. Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Immune Health®, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | - Justine C. Williams
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Julia Niessl
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Laurie Gokool
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
| | | | | | - Cécile Tremblay
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Allison R. Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Immune Health®, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - E. John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Immune Health®, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel E. Kaufmann
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Division of Infectious Diseases, Department of Medicine, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
176
|
Gfeller D, Schmidt J, Croce G, Guillaume P, Bobisse S, Genolet R, Queiroz L, Cesbron J, Racle J, Harari A. Improved predictions of antigen presentation and TCR recognition with MixMHCpred2.2 and PRIME2.0 reveal potent SARS-CoV-2 CD8 + T-cell epitopes. Cell Syst 2023; 14:72-83.e5. [PMID: 36603583 PMCID: PMC9811684 DOI: 10.1016/j.cels.2022.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
The recognition of pathogen or cancer-specific epitopes by CD8+ T cells is crucial for the clearance of infections and the response to cancer immunotherapy. This process requires epitopes to be presented on class I human leukocyte antigen (HLA-I) molecules and recognized by the T-cell receptor (TCR). Machine learning models capturing these two aspects of immune recognition are key to improve epitope predictions. Here, we assembled a high-quality dataset of naturally presented HLA-I ligands and experimentally verified neo-epitopes. We then integrated these data in a refined computational framework to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). The depth of our training data and the algorithmic developments resulted in improved predictions of HLA-I ligands and neo-epitopes. Prospectively applying our tools to SARS-CoV-2 proteins revealed several epitopes. TCR sequencing identified a monoclonal response in effector/memory CD8+ T cells against one of these epitopes and cross-reactivity with the homologous peptides from other coronaviruses.
Collapse
Affiliation(s)
- David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland,Agora Cancer Research Centre, 1011 Lausanne, Switzerland,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland,Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland,Corresponding author
| | - Julien Schmidt
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland,Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Giancarlo Croce
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland,Agora Cancer Research Centre, 1011 Lausanne, Switzerland,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland,Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Philippe Guillaume
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland,Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Sara Bobisse
- Agora Cancer Research Centre, 1011 Lausanne, Switzerland,Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland,Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Raphael Genolet
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland,Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Lise Queiroz
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland,Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Julien Cesbron
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland,Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Julien Racle
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland,Agora Cancer Research Centre, 1011 Lausanne, Switzerland,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland,Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Alexandre Harari
- Agora Cancer Research Centre, 1011 Lausanne, Switzerland,Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland,Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| |
Collapse
|
177
|
Schnizer C, Andreas N, Vivas W, Kamradt T, Baier M, Kiehntopf M, Glöckner S, Scherag A, Löffler B, Kolanos S, Guerra J, Pletz MW, Weis S. Persistent humoral and CD4 + T H cell immunity after mild SARS-COV-2 infection-The CoNAN long-term study. Front Immunol 2023; 13:1095129. [PMID: 36713390 PMCID: PMC9880277 DOI: 10.3389/fimmu.2022.1095129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Understanding persistent cellular and humoral immune responses to SARS-CoV-2 will be of major importance to terminate the ongoing pandemic. Here, we assessed long-term immunity in individuals with mild COVID-19 up to 1 year after a localized SARS-CoV-2 outbreak. CoNAN was a longitudinal population-based cohort study performed 1.5 months, 6 months, and 12 months after a SARS-CoV-2 outbreak in a rural German community. We performed a time series of five different IgG immunoassays assessing SARS-CoV-2 antibody responses on serum samples from individuals that had been tested positive after a SARS-CoV-2 outbreak and in control individuals who had a negative PCR result. These analyses were complemented with the determination of spike-antigen specific TH cell responses in the same individuals. All infected participants were presented as asymptomatic or mild cases. Participants initially tested positive for SARS-CoV-2 infection either with PCR, antibody testing, or both had a rapid initial decline in the serum antibody levels in all serological tests but showed a persisting TH cell immunity as assessed by the detection of SARS-CoV-2 specificity of TH cells for up to 1 year after infection. Our data support the notion of a persistent T-cell immunity in mild and asymptomatic cases of SARS-CoV-2 up to 1 year after infection. We show that antibody titers decline over 1 year, but considering several test results, complete seroreversion is rare. Trial registration German Clinical Trials Register DRKS00022416.
Collapse
Affiliation(s)
- Clara Schnizer
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Nico Andreas
- Institute of Immunology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Wolfgang Vivas
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany,Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany,Department of Anesthesiology and Intensive Care, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Thomas Kamradt
- Institute of Immunology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Michael Baier
- Institute of Medical Microbiology, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Stefan Glöckner
- Institute of Medical Microbiology, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - André Scherag
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Steffi Kolanos
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Joel Guerra
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany,Department of Anesthesiology and Intensive Care, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Mathias W. Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany,Center for Sepsis Control and Care, Jena University Hospital- Friedrich Schiller University, Jena, Germany,*Correspondence: Sebastian Weis, ; Mathias W. Pletz,
| | - Sebastian Weis
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany,Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany,Department of Anesthesiology and Intensive Care, Jena University Hospital- Friedrich Schiller University, Jena, Germany,*Correspondence: Sebastian Weis, ; Mathias W. Pletz,
| |
Collapse
|
178
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
179
|
Rivera-Torres J, Girón N, San José E. COVID-19: A Comprehensive Review on Cardiovascular Alterations, Immunity, and Therapeutics in Older Adults. J Clin Med 2023; 12:488. [PMID: 36675416 PMCID: PMC9865642 DOI: 10.3390/jcm12020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Here, we present a review focusing on three relevant issues related to COVID-19 and its impact in older adults (60 years and older). SARS-CoV-2 infection starts in the respiratory system, but the development of systemic diseases accompanied by severe clinical manifestations has also been reported, with cardiovascular and immune system dysfunction being the major ones. Additionally, the presence of comorbidities and aging represent major risk factors for the severity and poor prognosis of the disease. Since aging-associated decline has been largely related to immune and cardiovascular alterations, we sought to investigate the consequences and the underlying mechanisms of these pathologies to understand the severity of the illness in this population. Understanding the effects of COVID-19 on both systems should translate into comprehensive and improved medical care for elderly COVID-19 patients, preventing cardiovascular as well as immunological alterations in this population. Approved therapies that contribute to the improvement of symptoms and a reduction in mortality, as well as new therapies in development, constitute an approach to managing these disorders. Among them, we describe antivirals, cytokine antagonists, cytokine signaling pathway inhibitors, and vaccines.
Collapse
Affiliation(s)
- José Rivera-Torres
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Natalia Girón
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Esther San José
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| |
Collapse
|
180
|
Tarke A, Zhang Y, Methot N, Narowski TM, Phillips E, Mallal S, Frazier A, Filaci G, Weiskopf D, Dan JM, Premkumar L, Scheuermann RH, Sette A, Grifoni A. Targets and cross-reactivity of human T cell recognition of Common Cold Coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522794. [PMID: 36656777 PMCID: PMC9844015 DOI: 10.1101/2023.01.04.522794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Coronavirus (CoV) family includes a variety of viruses able to infect humans. Endemic CoVs that can cause common cold belong to the alphaCoV and betaCoV genera, with the betaCoV genus also containing subgenera with zoonotic and pandemic concern, including sarbecoCoV (SARS-CoV and SARS-CoV-2) and merbecoCoV (MERS-CoV). It is therefore warranted to explore pan-CoV vaccine concepts, to provide adaptive immune protection against new potential CoV outbreaks, particularly in the context of betaCoV sub lineages. To explore the feasibility of eliciting CD4 + T cell responses widely cross-recognizing different CoVs, we utilized samples collected pre-pandemic to systematically analyze T cell reactivity against representative alpha (NL63) and beta (OC43) common cold CoVs (CCC). Similar to previous findings on SARS-CoV-2, the S, N, M, and nsp3 antigens were immunodominant for both viruses while nsp2 and nsp12 were immunodominant for NL63 and OC43, respectively. We next performed a comprehensive T cell epitope screen, identifying 78 OC43 and 87 NL63-specific epitopes. For a selected subset of 18 epitopes, we experimentally assessed the T cell capability to cross-recognize sequences from representative viruses belonging to alphaCoV, sarbecoCoV, and beta-non-sarbecoCoV groups. We found general conservation within the alpha and beta groups, with cross-reactivity experimentally detected in 89% of the instances associated with sequence conservation of >67%. However, despite sequence conservation, limited cross-reactivity was observed in the case of sarbecoCoV (50% of instances), indicating that previous CoV exposure to viruses phylogenetically closer to this subgenera is a contributing factor in determining cross-reactivity. Overall, these results provided critical insights in the development of future pan-CoV vaccines.
Collapse
Affiliation(s)
- Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Experimental Medicine and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, 16132, Italy
| | - Yun Zhang
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Nils Methot
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Tara M Narowski
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Gilberto Filaci
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jennifer M Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Pathology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- These authors contributed equally
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- These authors contributed equally
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- These authors contributed equally
- Lead Contact
| |
Collapse
|
181
|
Wang H, Gan M, Wu B, Zeng R, Wang Z, Xu J, Li J, Zhang Y, Cao J, Chen L, Di D, Peng S, Lei J, Zhao Y, Song X, Yuan T, Zhou T, Liu Q, Yi J, Wang X, Cai H, Lei Y, Wen Y, Li W, Chen Q, Wang Y, Long P, Yuan Y, Wang C, Pan A, Wang Q, Gong R, Fan X, Wu T, Liu L. Humoral and cellular immunity of two-dose inactivated COVID-19 vaccination in Chinese children: A prospective cohort study. J Med Virol 2023; 95:e28380. [PMID: 36478357 PMCID: PMC9877748 DOI: 10.1002/jmv.28380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Children are the high-risk group for COVID-19, and in need of vaccination. However, humoral and cellular immune responses of COVID-19 vaccine remain unclear in vaccinated children. To establish the rational immunization strategy of inactivated COVID-19 vaccine for children, the immunogenicity of either one dose or two doses of the vaccine in children was evaluated. A prospective cohort study of 322 children receiving inactivated COVID-19 vaccine was established in China. The baseline was conducted after 28 days of the first dose, and the follow-up was conducted after 28 days of the second dose. The median titers of receptor binding domain (RBD)-IgG, and neutralizing antibody (NAb) against prototype strain and Omicron variant after the second dose increased significantly compared to those after the first dose (first dose: 70.0, [interquartile range, 30.0-151.0] vs. second dose: 1261.0 [636.0-2060.0] for RBD-IgG; 2.5 [2.5-18.6] vs. 252.0 [138.6-462.1] for NAb against prototype strain; 2.5 [2.5-2.5] vs. 15.0 [7.8-26.5] for NAb against Omicron variant, all p < 0.05). The flow cytometry results showed that the first dose elicited SARS-CoV-2 specific cellular immunity, while the second dose strengthened SARS-CoV-2 specific IL-2+ or TNF-α+ monofunctional, IFN-γ+ TNF-α+ bifunctional, and IFN-γ- IL-2+ TNF-α+ multifunctional CD4+ T cell responses (p < 0.05). Moreover, SARS-CoV-2 specific memory T cells were generated after the first vaccination, including the central memory T cells and effector memory T cells. The present findings provide scientific evidence for the vaccination strategy of the inactive vaccines among children against COVID-19 pandemic.
Collapse
Affiliation(s)
- Hao Wang
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Mengze Gan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bihao Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Rui Zeng
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Wang
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Jun Xu
- Qichun Center for Disease Control and PreventionHuanggangChina
| | - Jia Li
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Yandi Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jinge Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Dongsheng Di
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Siyuan Peng
- Qichun Center for Disease Control and PreventionHuanggangChina
| | - Jinfeng Lei
- Qichun Center for Disease Control and PreventionHuanggangChina
| | - Yingying Zhao
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Xuemei Song
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Tingting Yuan
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Tingting Zhou
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Qian Liu
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Jing Yi
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Xi Wang
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Hao Cai
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Yanshou Lei
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Yuying Wen
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Wenhui Li
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Qinlin Chen
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Yufei Wang
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Pinpin Long
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Yu Yuan
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Chaolong Wang
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - An Pan
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Qi Wang
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tangchun Wu
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Li Liu
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
182
|
Dunay GA, Barroso M, Woidy M, Danecka MK, Engels G, Hermann K, Neumann FS, Paul K, Beime J, Escherich G, Fehse K, Grinstein L, Haniel F, Haupt LJ, Hecher L, Kehl T, Kemen C, Kemper MJ, Kobbe R, Kohl A, Klokow T, Nörz D, Olfe J, Schlenker F, Schmiesing J, Schrum J, Sibbertsen F, Stock P, Tiede S, Vettorazzi E, Zazara DE, Zapf A, Lütgehetmann M, Oh J, Mir TS, Muntau AC, Gersting SW. Long-Term Antibody Response to SARS-CoV-2 in Children. J Clin Immunol 2023; 43:46-56. [PMID: 36121535 PMCID: PMC9483535 DOI: 10.1007/s10875-022-01355-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/18/2022] [Indexed: 01/21/2023]
Abstract
Almost 2 years into the pandemic and with vaccination of children significantly lagging behind adults, long-term pediatric humoral immune responses to SARS-CoV-2 are understudied. The C19.CHILD Hamburg (COVID-19 Child Health Investigation of Latent Disease) Study is a prospective cohort study designed to identify and follow up children and their household contacts infected in the early 2020 first wave of SARS-CoV-2. We screened 6113 children < 18 years by nasopharyngeal swab-PCR in a low-incidence setting after general lockdown, from May 11 to June 30, 2020. A total of 4657 participants underwent antibody testing. Positive tests were followed up by repeated PCR and serological testing of all household contacts over 6 months. In total, the study identified 67 seropositive children (1.44%); the median time after infection at first presentation was 83 days post-symptom onset (PSO). Follow-up of household contacts showed less than 100% seroprevalence in most families, with higher seroprevalence in families with adult index cases compared to pediatric index cases (OR 1.79, P = 0.047). Most importantly, children showed sustained seroconversion up to 9 months PSO, and serum antibody concentrations persistently surpassed adult levels (ratio serum IgG spike children vs. adults 90 days PSO 1.75, P < 0.001; 180 days 1.38, P = 0.01; 270 days 1.54, P = 0.001). In a low-incidence setting, SARS-CoV-2 infection and humoral immune response present distinct patterns in children including higher antibody levels, and lower seroprevalence in families with pediatric index cases. Children show long-term SARS-CoV-2 antibody responses. These findings are relevant to novel variants with increased disease burden in children, as well as for the planning of age-appropriate vaccination strategies.
Collapse
Affiliation(s)
- Gabor A. Dunay
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Madalena Barroso
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Mathias Woidy
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Marta K. Danecka
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Geraldine Engels
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Katharina Hermann
- Department of Pediatrics, Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Friederike S. Neumann
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Kevin Paul
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Jan Beime
- Department of Pediatrics, Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Gabriele Escherich
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Kristin Fehse
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Lev Grinstein
- Department of Pediatrics, Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Franziska Haniel
- Department of Pediatric Cardiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Luka J. Haupt
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Laura Hecher
- Department of Pediatrics, Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Torben Kehl
- Department of Pediatric Cardiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Christoph Kemen
- Wilhelmstift Children’s Hospital, Liliencronstraße 130, 22149 Hamburg, Germany
| | - Markus J. Kemper
- Asklepios Klinik Nord – Heidberg, Tangstedter Landstraße 400, 22417 Hamburg, Germany
| | - Robin Kobbe
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Aloisa Kohl
- Department of Pediatrics, Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Thomas Klokow
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Dominik Nörz
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Jakob Olfe
- Department of Pediatric Cardiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Friderike Schlenker
- Department of Pediatrics, Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Jessica Schmiesing
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Johanna Schrum
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Freya Sibbertsen
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Philippe Stock
- Altona Children’s Hospital, Bleickenallee 38, 22763 Hamburg, Germany
| | - Stephan Tiede
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Eik Vettorazzi
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Dimitra E. Zazara
- Department of Pediatrics, Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany ,Department of Obstetrics and Prenatal Medicine, Division for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Antonia Zapf
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Jun Oh
- Department of Pediatrics, Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Thomas S. Mir
- Department of Pediatric Cardiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Ania C. Muntau
- Department of Pediatrics, Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | - Søren W. Gersting
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
| | | |
Collapse
|
183
|
Henze L, Braun J, Meyer-Arndt L, Jürchott K, Schlotz M, Michel J, Grossegesse M, Mangold M, Dingeldey M, Kruse B, Holenya P, Mages N, Reimer U, Eckey M, Schnatbaum K, Wenschuh H, Timmermann B, Klein F, Nitsche A, Giesecke-Thiel C, Loyal L, Thiel A. Primary ChAdOx1 vaccination does not reactivate pre-existing, cross-reactive immunity. Front Immunol 2023; 14:1056525. [PMID: 36798117 PMCID: PMC9927399 DOI: 10.3389/fimmu.2023.1056525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Currently available COVID-19 vaccines include inactivated virus, live attenuated virus, mRNA-based, viral vectored and adjuvanted protein-subunit-based vaccines. All of them contain the spike glycoprotein as the main immunogen and result in reduced disease severity upon SARS-CoV-2 infection. While we and others have shown that mRNA-based vaccination reactivates pre-existing, cross-reactive immunity, the effect of vector vaccines in this regard is unknown. Here, we studied cellular and humoral responses in heterologous adenovirus-vector-based ChAdOx1 nCOV-19 (AZ; Vaxzeria, AstraZeneca) and mRNA-based BNT162b2 (BNT; Comirnaty, BioNTech/Pfizer) vaccination and compared it to a homologous BNT vaccination regimen. AZ primary vaccination did not lead to measurable reactivation of cross-reactive cellular and humoral immunity compared to BNT primary vaccination. Moreover, humoral immunity induced by primary vaccination with AZ displayed differences in linear spike peptide epitope coverage and a lack of anti-S2 IgG antibodies. Contrary to primary AZ vaccination, secondary vaccination with BNT reactivated pre-existing, cross-reactive immunity, comparable to homologous primary and secondary mRNA vaccination. While induced anti-S1 IgG antibody titers were higher after heterologous vaccination, induced CD4+ T cell responses were highest in homologous vaccinated. However, the overall TCR repertoire breadth was comparable between heterologous AZ-BNT-vaccinated and homologous BNT-BNT-vaccinated individuals, matching TCR repertoire breadths after SARS-CoV-2 infection, too. The reasons why AZ and BNT primary vaccination elicits different immune response patterns to essentially the same antigen, and the associated benefits and risks, need further investigation to inform vaccine and vaccination schedule development.
Collapse
Affiliation(s)
- Larissa Henze
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| | - Julian Braun
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| | - Lil Meyer-Arndt
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karsten Jürchott
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Janine Michel
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Marica Grossegesse
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Maike Mangold
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| | - Manuela Dingeldey
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| | - Beate Kruse
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| | | | - Norbert Mages
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Berlin, Germany
| | - Maren Eckey
- JPT Peptide Technologies GmbH, Berlin, Germany
| | | | | | | | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | | | - Lucie Loyal
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| | - Andreas Thiel
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
184
|
Khoo WH, Jackson K, Phetsouphanh C, Zaunders JJ, Alquicira-Hernandez J, Yazar S, Ruiz-Diaz S, Singh M, Dhenni R, Kyaw W, Tea F, Merheb V, Lee FXZ, Burrell R, Howard-Jones A, Koirala A, Zhou L, Yuksel A, Catchpoole DR, Lai CL, Vitagliano TL, Rouet R, Christ D, Tang B, West NP, George S, Gerrard J, Croucher PI, Kelleher AD, Goodnow CG, Sprent JD, Powell JE, Brilot F, Nanan R, Hsu PS, Deenick EK, Britton PN, Phan TG. Tracking the clonal dynamics of SARS-CoV-2-specific T cells in children and adults with mild/asymptomatic COVID-19. Clin Immunol 2023; 246:109209. [PMID: 36539107 PMCID: PMC9758763 DOI: 10.1016/j.clim.2022.109209] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop less severe coronavirus disease 2019 (COVID-19) than adults. The mechanisms for the age-specific differences and the implications for infection-induced immunity are beginning to be uncovered. We show by longitudinal multimodal analysis that SARS-CoV-2 leaves a small footprint in the circulating T cell compartment in children with mild/asymptomatic COVID-19 compared to adult household contacts with the same disease severity who had more evidence of systemic T cell interferon activation, cytotoxicity and exhaustion. Children harbored diverse polyclonal SARS-CoV-2-specific naïve T cells whereas adults harbored clonally expanded SARS-CoV-2-specific memory T cells. A novel population of naïve interferon-activated T cells is expanded in acute COVID-19 and is recruited into the memory compartment during convalescence in adults but not children. This was associated with the development of robust CD4+ memory T cell responses in adults but not children. These data suggest that rapid clearance of SARS-CoV-2 in children may compromise their cellular immunity and ability to resist reinfection.
Collapse
Affiliation(s)
- Weng Hua Khoo
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | | | | | - John J Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia
| | - José Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Seyhan Yazar
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia
| | | | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Rama Dhenni
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Wunna Kyaw
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Fiona Tea
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Vera Merheb
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Fiona X Z Lee
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Rebecca Burrell
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | | | - Archana Koirala
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Li Zhou
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Aysen Yuksel
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Daniel R Catchpoole
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Catherine L Lai
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | | | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Benjamin Tang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia; Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, Australia; Respiratory Tract Infection Research Node, Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney, Australia
| | - Nicholas P West
- Systems Biology and Data Science, Menzies Health Institute QLD, Griffith University, Parklands, Australia
| | - Shane George
- Departments of Emergency Medicine and Children's Critical Care, Gold Coast University Hospital, Southport, QLD, Australia; School of Medicine and Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - John Gerrard
- Department of Infectious Diseases and Immunology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | | | - Christopher G Goodnow
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia; UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Jonathan D Sprent
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia; UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia; Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia; Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Ralph Nanan
- Charles Perkins Centre Nepean, University of Sydney, Sydney, Australia
| | - Peter S Hsu
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Elissa K Deenick
- Garvan Institute of Medical Research, Sydney, Australia; Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Philip N Britton
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
185
|
Seidel A, Jacobsen EM, Fabricius D, Class M, Zernickel M, Blum C, Conzelmann C, Weil T, Groß R, Bode SFN, Renk H, Elling R, Stich M, Kirchhoff F, Debatin KM, Münch J, Janda A. Serum neutralizing capacity and T-cell response against the omicron BA.1 variant in seropositive children and their parents one year after SARS-CoV-2 infection. Front Pediatr 2023; 11:1020865. [PMID: 37051428 PMCID: PMC10083310 DOI: 10.3389/fped.2023.1020865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
Introduction Durability of immune protection against reinfection with SARS-CoV-2 remains enigmatic, especially in the pediatric population and in the context of immune-evading variants of concern. Obviously, this knowledge is required for measures to contain the spread of infection and in selecting rational preventive measures. Methods Here, we investigated the serum neutralization capacity of 36 seropositive adults and 34 children approximately one year after infection with the ancestral Wuhan strain of SARS-CoV-2 by using a pseudovirus neutralization assay. Results We found that 88.9% of seropositive adult (32/36) and 94.1% of seropositive children (32/34) convalescents retained the neutralizing activity against the SARS-CoV-2 Wuhan strain (WT). Although, the neutralization effect against Omicron BA.1 (B.1.1.529.1) was significantly lower, 70.6% (24/34) of children and 41.7% (15/36) of adults possessed BA.1 cross-neutralizing antibodies. The spike 1 (S1)-specific T cell recall capacity using an activation-induced marker assay was analyzed in 18 adults and 16 children. All participants had detectable S1-specific CD4 T cells against WT, and 72.2% (13/18) adults and 81,3% (13/16) children had detectable S1 WT-specific CD8 T cells. CD4 cross-reactivity against BA.1 was demonstrated in all investigated adults (18/18), and 66.7% (12/18) adult participants had also detectable specific CD8 BA.1 T cells while we detected BA.1 S1 reactive CD4 and CD8 T cells in 81.3% (13/16) children. Discussion Together, our findings demonstrate that infection with the ancestral strain of SARS-CoV-2 in children as well as in adults induces robust serological as well as T cell memory responses that persist over at least 12 months. This suggests persistent immunological memory and partial cross-reactivity against Omicron BA.1.
Collapse
Affiliation(s)
- Alina Seidel
- UlmUniversity Medical Center, Institute of Molecular Virology, Ulm, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm,Germany
| | - Dorit Fabricius
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm,Germany
| | - Magdalena Class
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm,Germany
| | - Maria Zernickel
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm,Germany
| | - Carmen Blum
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm,Germany
| | - Carina Conzelmann
- UlmUniversity Medical Center, Institute of Molecular Virology, Ulm, Germany
| | - Tatjana Weil
- UlmUniversity Medical Center, Institute of Molecular Virology, Ulm, Germany
| | - Rüdiger Groß
- UlmUniversity Medical Center, Institute of Molecular Virology, Ulm, Germany
| | - Sebastian F. N. Bode
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm,Germany
| | - Hanna Renk
- University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Roland Elling
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Maximillian Stich
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Frank Kirchhoff
- UlmUniversity Medical Center, Institute of Molecular Virology, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm,Germany
| | - Jan Münch
- UlmUniversity Medical Center, Institute of Molecular Virology, Ulm, Germany
| | - Aleš Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm,Germany
- Correspondence: Aleš Janda
| |
Collapse
|
186
|
Sun Y, Luo B, Liu Y, Wu Y, Chen Y. Immune damage mechanisms of COVID-19 and novel strategies in prevention and control of epidemic. Front Immunol 2023; 14:1130398. [PMID: 36960050 PMCID: PMC10028144 DOI: 10.3389/fimmu.2023.1130398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has diverse clinical manifestations, which is the main feature of the disease, and the fundamental reason is the different immune responses in different bodies among the population. The damage mechanisms of critical illness by SARS-CoV-2 and its variants, such as hyperinflammatory response, a double-edged function of type I interferon, and hyperactivation of the complement system, are the same as other critical illnesses. Targeting specific immune damage mechanisms of COVID-19, we scored the first to put forward that the responses of T cells induced by acute virus infection result in "acute T-cell exhaustion" in elderly patients, which is not only the peripheral exhaustion with quantity reduction and dysfunction of T cells but also the central exhaustion that central immune organs lost immune homeostasis over peripheral immune organs, whereas the increased thymic output could alleviate the severity and reduce the mortality of the disease with the help of medication. We discovered that immune responses raised by SARS-CoV-2 could also attack secondary lymphoid organs, such as the spleen, lymphoid nodes, and kidneys, in addition to the lung, which we generally recognize. Integrated with the knowledge of mechanisms of immune protection, we developed a coronavirus antigen diagnostic kit and therapeutic monoclonal antibody. In the future, we will further investigate the mechanisms of immune damage and protection raised by coronavirus infection to provide more scientific strategies for developing new vaccines and immunotherapies.
Collapse
Affiliation(s)
- Yuting Sun
- School of Medicine, Chongqing University, Chongqing, China
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Bin Luo
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Yueping Liu
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
- *Correspondence: Yongwen Chen,
| |
Collapse
|
187
|
Perico L, Todeschini M, Casiraghi F, Mister M, Pezzotta A, Peracchi T, Tomasoni S, Trionfini P, Benigni A, Remuzzi G. Long-term adaptive response in COVID-19 vaccine recipients and the effect of a booster dose. Front Immunol 2023; 14:1123158. [PMID: 36926327 PMCID: PMC10011096 DOI: 10.3389/fimmu.2023.1123158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
We examined the immune response in subjects previously infected with SARS-CoV2 and infection-naïve 9 months after primary 2-dose COVID-19 mRNA vaccination and 3 months after the booster dose in a longitudinal cohort of healthcare workers. Nine months after primary vaccination, previously infected subjects exhibited higher residual antibody levels, with significant neutralizing activity against distinct variants compared to infection-naïve subjects. The higher humoral response was associated with higher levels of receptor binding domain (RBD)-specific IgG+ and IgA+ memory B cells. The booster dose increased neither neutralizing activity, nor the B and T cell frequencies. Conversely, infection-naïve subjects needed the booster to achieve comparable levels of neutralizing antibodies as those found in previously infected subjects after primary vaccination. The neutralizing titer correlated with anti-RBD IFNγ producing T cells, in the face of sustained B cell response. Notably, pre-pandemic samples showed high Omicron cross-reactivity. These data show the importance of the booster dose in reinforcing immunological memory and increasing circulating antibodies in infection-naïve subjects.
Collapse
Affiliation(s)
- Luca Perico
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marta Todeschini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marilena Mister
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Anna Pezzotta
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Tobia Peracchi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Susanna Tomasoni
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Piera Trionfini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
188
|
Respiratory mucosal vaccination of peptide-poloxamine-DNA nanoparticles provides complete protection against lethal SARS-CoV-2 challenge. Biomaterials 2023; 292:121907. [PMID: 36436305 PMCID: PMC9673044 DOI: 10.1016/j.biomaterials.2022.121907] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
The ongoing SARS-CoV-2 pandemic represents a brutal reminder of the continual threat of mucosal infectious diseases. Mucosal immunity may provide robust protection at the predominant sites of SARS-CoV-2 infection. However, it remains unclear whether respiratory mucosal administration of DNA vaccines could confer protective immune responses against SARS-CoV-2 challenge due to insurmountable barriers posed by the airway. Here, we applied self-assembled peptide-poloxamine nanoparticles with mucus-penetrating properties for pulmonary inoculation of a COVID-19 DNA vaccine (pSpike/PP-sNp). The pSpike/PP-sNp not only displays superior gene transfection and favorable biocompatibility in the mouse airway, but also promotes a tripartite immunity consisting of systemic, cellular, and mucosal immune responses that are characterized by mucosal IgA secretion, high levels of neutralizing antibodies, and resident memory phenotype T-cell responses in the lungs of mice. Most importantly, immunization with pSpike/PP-sNp completely eliminates SARS-CoV-2 infection in both upper and lower respiratory tracts and enables 100% survival rate of mice following lethal SARS-CoV-2 challenge. Our findings indicate PP-sNp is a promising platform in mediating DNA vaccines to elicit all-around mucosal immunity against SARS-CoV-2.
Collapse
|
189
|
Dhawan M, Rabaan AA, Fawarah MMA, Almuthree SA, Alsubki RA, Alfaraj AH, Mashraqi MM, Alshamrani SA, Abduljabbar WA, Alwashmi ASS, Ibrahim FA, Alsaleh AA, Khamis F, Alsalman J, Sharma M, Emran TB. Updated Insights into the T Cell-Mediated Immune Response against SARS-CoV-2: A Step towards Efficient and Reliable Vaccines. Vaccines (Basel) 2023; 11:101. [PMID: 36679947 PMCID: PMC9861463 DOI: 10.3390/vaccines11010101] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The emergence of novel variants of SARS-CoV-2 and their abilities to evade the immune response elicited through presently available vaccination makes it essential to recognize the mechanisms through which SARS-CoV-2 interacts with the human immune response. It is essential not only to comprehend the infection mechanism of SARS-CoV-2 but also for the generation of effective and reliable vaccines against COVID-19. The effectiveness of the vaccine is supported by the adaptive immune response, which mainly consists of B and T cells, which play a critical role in deciding the prognosis of the COVID-19 disease. T cells are essential for reducing the viral load and containing the infection. A plethora of viral proteins can be recognized by T cells and provide a broad range of protection, especially amid the emergence of novel variants of SARS-CoV-2. However, the hyperactivation of the effector T cells and reduced number of lymphocytes have been found to be the key characteristics of the severe disease. Notably, excessive T cell activation may cause acute respiratory distress syndrome (ARDS) by producing unwarranted and excessive amounts of cytokines and chemokines. Nevertheless, it is still unknown how T-cell-mediated immune responses function in determining the prognosis of SARS-CoV-2 infection. Additionally, it is unknown how the functional perturbations in the T cells lead to the severe form of the disease and to reduced protection not only against SARS-CoV-2 but many other viral infections. Hence, an updated review has been developed to understand the involvement of T cells in the infection mechanism, which in turn determines the prognosis of the disease. Importantly, we have also focused on the T cells' exhaustion under certain conditions and how these functional perturbations can be modulated for an effective immune response against SARS-CoV-2. Additionally, a range of therapeutic strategies has been discussed that can elevate the T cell-mediated immune response either directly or indirectly.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mahmoud M. Al Fawarah
- Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fatimah Al Ibrahim
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
190
|
Pappas AG, Chaliasou AL, Panagopoulos A, Dede K, Daskalopoulou S, Moniem E, Polydora E, Grigoriou E, Psarra K, Tsirogianni A, Kalomenidis I. Kinetics of Immune Subsets in COVID-19 Patients Treated with Corticosteroids. Viruses 2022; 15:51. [PMID: 36680091 PMCID: PMC9865280 DOI: 10.3390/v15010051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/03/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Changes in anti-SARS-CoV-2 defense immune subsets in patients treated with dexamethasone (DXM) for severe COVID-19 and their relation to disease outcomes are poorly understood. METHODS Blood-lymphocyte subsets of 110 hospitalized COVID-19 patients were prospectively examined. A first sample was taken at enrollment and a second one 7-10 days later. Total B-, T-lymphocytes, CD4+, CD8+, T-regulatory (Treg), Natural-Killer (NK) and NK T-cells were counted using flow cytometry. RESULTS At enrollment, patients with respiratory failure, characterized by DXM failure (intubation/death) or DXM success (hospital discharge) exhibited significantly fewer CD3+, CD4+ and CD8+ cells and B-lymphocytes compared to the control group (no respiratory failure/no DXM). At the time of treatment completion, the DXM-failure group exhibited significantly fewer CD3+, CD4+ and CD8+ cells, memory CD4+ and CD8+ T-lymphocytes, compared to the control and the DXM-success groups and fewer activated CD4+ T-lymphocytes, Tregs and NK cells compared to the control group. At the time of treatment completion, the number of all investigated lymphocyte subsets increased in the DXM-success group and was similar to those of the control group. NK cells significantly decreased over time in the DXM-failure group. CONCLUSION The lymphocyte kinetics differ between DXM-treated and control COVID-19 patients and are associated with clinical outcomes.
Collapse
Affiliation(s)
- Apostolos Georgios Pappas
- 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, “Evangelismos” General Hospital, 10676 Athens, Greece
- Intensive Care Unit, “G. Gennimatas” General Hospital, 11527 Athens, Greece
- COVID-19 Unit, “Evangelismos” General Hospital, 10676 Athens, Greece
| | - Anna-Louiza Chaliasou
- COVID-19 Unit, “Evangelismos” General Hospital, 10676 Athens, Greece
- 4th Department of Internal Medicine, “Evangelismos” General Hospital, 10676 Athens, Greece
| | - Andreas Panagopoulos
- COVID-19 Unit, “Evangelismos” General Hospital, 10676 Athens, Greece
- 3rd Department of Internal Medicine, “Evangelismos” General Hospital, 10676 Athens, Greece
| | - Konstantina Dede
- 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, “Evangelismos” General Hospital, 10676 Athens, Greece
| | - Stavroula Daskalopoulou
- COVID-19 Unit, “Evangelismos” General Hospital, 10676 Athens, Greece
- 5th Department of Internal Medicine, “Evangelismos” General Hospital, 10676 Athens, Greece
| | - Evie Moniem
- COVID-19 Unit, “Evangelismos” General Hospital, 10676 Athens, Greece
- 5th Department of Internal Medicine, “Evangelismos” General Hospital, 10676 Athens, Greece
| | - Eftychia Polydora
- 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, “Evangelismos” General Hospital, 10676 Athens, Greece
- COVID-19 Unit, “Evangelismos” General Hospital, 10676 Athens, Greece
| | - Eirini Grigoriou
- Department of Immunology—Histocompatibility, “Evangelismos” General Hospital, 10676 Athens, Greece
| | - Katherina Psarra
- Department of Immunology—Histocompatibility, “Evangelismos” General Hospital, 10676 Athens, Greece
| | - Alexandra Tsirogianni
- Department of Immunology—Histocompatibility, “Evangelismos” General Hospital, 10676 Athens, Greece
| | - Ioannis Kalomenidis
- 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, “Evangelismos” General Hospital, 10676 Athens, Greece
- COVID-19 Unit, “Evangelismos” General Hospital, 10676 Athens, Greece
| |
Collapse
|
191
|
Maringer Y, Nelde A, Schroeder SM, Schuhmacher J, Hörber S, Peter A, Karbach J, Jäger E, Walz JS. Durable spike-specific T cell responses after different COVID-19 vaccination regimens are not further enhanced by booster vaccination. Sci Immunol 2022; 7:eadd3899. [PMID: 36318037 PMCID: PMC9798886 DOI: 10.1126/sciimmunol.add3899] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several COVID-19 vaccines are approved to prevent severe disease outcome after SARS-CoV-2 infection. Whereas induction and functionality of antiviral antibody response are largely studied, the induction of T cells upon vaccination with the different approved COVID-19 vaccines is less studied. Here, we report on T cell immunity 4 weeks and 6 months after different vaccination regimens and 4 weeks after an additional booster vaccination in comparison with SARS-CoV-2 T cell responses in convalescents and prepandemic donors using interferon-gamma ELISpot assays and flow cytometry. Increased T cell responses and cross-recognition of B.1.1.529 Omicron variant-specific mutations were observed ex vivo in mRNA- and heterologous-vaccinated donors compared with vector-vaccinated donors. Nevertheless, potent expandability of T cells targeting the spike protein was observed for all vaccination regimens, with frequency, diversity, and the ability to produce several cytokines of vaccine-induced T cell responses comparable with those in convalescent donors. T cell responses for all vaccinated donors significantly exceeded preexisting cross-reactive T cell responses in prepandemic donors. Booster vaccination led to a significant increase in anti-spike IgG responses, which showed a marked decline 6 months after complete vaccination. In contrast, T cell responses remained stable over time after complete vaccination with no significant effect of booster vaccination on T cell responses and cross-recognition of Omicron BA.1 and BA.2 mutations. This suggested that booster vaccination is of particular relevance for the amelioration of antibody response. Together, our work shows that different vaccination regimens induce broad and long-lasting spike-specific CD4+ and CD8+ T cell immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Yacine Maringer
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Sarah M. Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Juliane Schuhmacher
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Julia Karbach
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Elke Jäger
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Juliane S. Walz
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Corresponding author.
| |
Collapse
|
192
|
Wang C, Yang S, Duan L, Du X, Tao J, Wang Y, Yang J, Lv Y, Li J, Zhang C, Wen J, Zhu Y, Chang L, Wang H, Wang Q, Zhao W. Adaptive immune responses and cytokine immune profiles in humans following prime and boost vaccination with the SARS-CoV-2 CoronaVac vaccine. Virol J 2022; 19:223. [PMID: 36550578 PMCID: PMC9774075 DOI: 10.1186/s12985-022-01957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Adaptive immune response has been thought to play a key role in SARS-CoV-2 infection. The role of B cells, CD4+T, and CD8+T cells are different in vaccine-induced immune response, thus it is imperative to explore the functions and kinetics of adaptive immune response. We collected blood samples from unvaccinated and vaccinated individuals. To assess the mechanisms contributing to protective immunity of CoronaVac vaccines, we mapped the kinetics and durability of humoral and cellular immune responses after primary and boost vaccination with CoronaVac vaccine in different timepoints. MATERIALS AND METHODS We separate PBMC and plasma from blood samples. The differentiation and function of RBD-spcific CD4+T and CD8+T cells were analyzed by flow cytometry and ELISA. Antibodies response was analyzed by ELISA. ELISPOT analysis was perfomed to detected the RBD-spcific memory B cells. CBA analysis was performed to detected the cytokine immune profiles. Graphpad prism 8 and Origin 2021 were used for statistical analysis. RESULTS Vaccine-induced CD4+T cell responses to RBD were more prominent than CD8+T cell responses, and characterized by a predominant Th1 and weak Th17 helper response. CoronaVac vaccine triggered predominant IgG1 antibody response and effectively recalled specific antibodies to RBD protein after booster vaccination. Robust antigen-specific memory B cells were detected (p < 0.0001) following booster vaccination and maintained at 6 months (p < 0.0001) following primary vaccination. Vaccine-induced CD4+T cells correlated with CD8+T cells (r = 0.7147, 0.3258, p < 0.0001, p = 0.04), memory B cell responses (r = 0.7083, p < 0.0001), and IgG and IgA (r = 0.6168, 0.5519, p = 0.0006, 0.003) after vaccination. In addition, vaccine induced a broader and complex cytokine pattern in plasma at early stage. CONCLUSION Taken together, these results highlight the potential role of B cell and T cell responses in vaccine-induced long-term immunity.
Collapse
Affiliation(s)
- Chan Wang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
- Key Laboratory of Hydatid Disease of Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
| | - Songhao Yang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
- Key Laboratory of Hydatid Disease of Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
| | - Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiancai Du
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
- Key Laboratory of Hydatid Disease of Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
| | - Jia Tao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
- Key Laboratory of Hydatid Disease of Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
| | - Yana Wang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
| | - Jihui Yang
- Key Laboratory of Hydatid Disease of Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
| | - Yongxue Lv
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
- Key Laboratory of Hydatid Disease of Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
| | - Junliang Li
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
- Key Laboratory of Hydatid Disease of Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
| | - Cuiying Zhang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
- Key Laboratory of Hydatid Disease of Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
| | - Jia Wen
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
- Key Laboratory of Hydatid Disease of Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
| | - Yazhou Zhu
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
- Key Laboratory of Hydatid Disease of Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
| | - Liangliang Chang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
- Key Laboratory of Hydatid Disease of Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Qi Wang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
| | - Wei Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
- Key Laboratory of Hydatid Disease of Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, 750004 Ningxia Hui Autonomous Region People’s Republic of China
| |
Collapse
|
193
|
Phetsouphanh C, Khoo WH, Jackson K, Klemm V, Howe A, Aggarwal A, Akerman A, Milogiannakis V, Stella AO, Rouet R, Schofield P, Faulks ML, Law H, Danwilai T, Starr M, Munier CML, Christ D, Singh M, Croucher PI, Brilot-Turville F, Turville S, Phan TG, Dore GJ, Darley D, Cunningham P, Matthews GV, Kelleher AD, Zaunders JJ. High titre neutralizing antibodies in response to SARS-CoV-2 infection require RBD-specific CD4 T cells that include proliferative memory cells. Front Immunol 2022; 13:1032911. [PMID: 36544780 PMCID: PMC9762180 DOI: 10.3389/fimmu.2022.1032911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background Long-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the population in order to reduce ongoing disease burden. Methods We have investigated the association between memory CD4 and CD8 T cells and levels of neutralizing antibodies in convalescent COVID-19 subjects. Findings Higher titres of convalescent neutralizing antibodies were associated with significantly higher levels of RBD-specific CD4 T cells, including specific memory cells that proliferated vigorously in vitro. Conversely, up to half of convalescent individuals had low neutralizing antibody titres together with a lack of receptor binding domain (RBD)-specific memory CD4 T cells. These low antibody subjects had other, non-RBD, spike-specific CD4 T cells, but with more of an inhibitory Foxp3+ and CTLA-4+ cell phenotype, in contrast to the effector T-bet+, cytotoxic granzymes+ and perforin+ cells seen in RBD-specific memory CD4 T cells from high antibody subjects. Single cell transcriptomics of antigen-specific CD4+ T cells from high antibody subjects similarly revealed heterogenous RBD-specific CD4+ T cells that comprised central memory, transitional memory and Tregs, as well as cytotoxic clusters containing diverse TCR repertoires, in individuals with high antibody levels. However, vaccination of low antibody convalescent individuals led to a slight but significant improvement in RBD-specific memory CD4 T cells and increased neutralizing antibody titres. Interpretation Our results suggest that targeting CD4 T cell epitopes proximal to and within the RBD-region should be prioritized in booster vaccines.
Collapse
Affiliation(s)
| | - Weng Hua Khoo
- Garvan Institute of Medical Research, Sydney, NSW, Australia,St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | | | - Vera Klemm
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Annett Howe
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Anupriya Aggarwal
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Anouschka Akerman
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | | | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Megan L. Faulks
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hannah Law
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Thidarat Danwilai
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Mitchell Starr
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
| | - C. Mee Ling Munier
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, NSW, Australia,St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | | | - Fabienne Brilot-Turville
- Brain and Mind Centre, Children’s Hospital at Westmead, University of Sydney, Sydney, NSW, Australia,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | - Stuart Turville
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, NSW, Australia,St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Gregory J. Dore
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia,Department of Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - David Darley
- Department of Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Philip Cunningham
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Gail V. Matthews
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia,Department of Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia,Department of Immunology, St Vincent's Hospital, Sydney, NSW, Australia
| | - John J. Zaunders
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia,*Correspondence: John J. Zaunders,
| |
Collapse
|
194
|
Vishweshwaraiah YL, Hnath B, Rackley B, Wang J, Gontu A, Chandler M, Afonin KA, Kuchipudi SV, Christensen N, Yennawar NH, Dokholyan NV. Adaptation-proof SARS-CoV-2 vaccine design. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2206055. [PMID: 36590650 PMCID: PMC9799234 DOI: 10.1002/adfm.202206055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/12/2022] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface spike glycoprotein - a major antibody target - is critical for virus entry via engagement of human angiotensin-converting enzyme 2 (ACE2) receptor. Despite successes with existing vaccines and therapies that primarily target the receptor binding domain (RBD) of the spike protein, the susceptibility of RBD to mutations provides escape routes for the SARS-CoV-2 from neutralizing antibodies. On the other hand, structural conservation in the spike protein can be targeted to reduce escape mutations and achieve broad protection. Here, we designed candidate stable immunogens that mimic surface features of selected conserved regions of spike protein through 'epitope grafting,' in which we present the target epitope topology on diverse heterologous scaffolds that can structurally accommodate the spike epitopes. Structural characterization of the epitope-scaffolds showed stark agreement with our computational models and target epitopes. The sera from mice immunized with engineered designs display epitope-scaffolds and spike binding activity. We also demonstrated the utility of the designed epitope-scaffolds in diagnostic applications. Taken all together, our study provides important methodology for targeting the conserved, non-RBD structural motifs of spike protein for SARS-CoV-2 epitope vaccine design and demonstrates the potential utility of 'epitope grafting' in rational vaccine design.
Collapse
Affiliation(s)
| | - Brianna Hnath
- Department of PharmacologyPenn State College of MedicineHersheyPA17033‐0850USA
| | - Brendan Rackley
- Department of PharmacologyPenn State College of MedicineHersheyPA17033‐0850USA
| | - Jian Wang
- Department of PharmacologyPenn State College of MedicineHersheyPA17033‐0850USA
| | - Abhinay Gontu
- Department of Veterinary and Biomedical Sciences and The Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Morgan Chandler
- Department of ChemistryUniversity of North Carolina at CharlotteCharlotteNC28223USA
| | - Kirill A. Afonin
- Department of ChemistryUniversity of North Carolina at CharlotteCharlotteNC28223USA
| | - Suresh V. Kuchipudi
- Department of Veterinary and Biomedical Sciences and The Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Neil Christensen
- Department of Microbiology and ImmunologyPenn State College of MedicineHersheyPA17033‐0850USA
| | - Neela H. Yennawar
- The Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Nikolay V. Dokholyan
- Department of PharmacologyPenn State College of MedicineHersheyPA17033‐0850USA
- Department of Biochemistry & Molecular BiologyPenn State College of MedicineHersheyPA17033‐0850USA
| |
Collapse
|
195
|
Tye EXC, Jinks E, Haigh TA, Kaul B, Patel P, Parry HM, Newby ML, Crispin M, Kaur N, Moss P, Drennan SJ, Taylor GS, Long HM. Mutations in SARS-CoV-2 spike protein impair epitope-specific CD4 + T cell recognition. Nat Immunol 2022; 23:1726-1734. [PMID: 36456735 DOI: 10.1038/s41590-022-01351-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022]
Abstract
CD4+ T cells are essential for protection against viruses, including SARS-CoV-2. The sensitivity of CD4+ T cells to mutations in SARS-CoV-2 variants of concern (VOCs) is poorly understood. Here, we isolated 159 SARS-CoV-2-specific CD4+ T cell clones from healthcare workers previously infected with wild-type SARS-CoV-2 (D614G) and defined 21 epitopes in spike, membrane and nucleoprotein. Lack of CD4+ T cell cross-reactivity between SARS-CoV-2 and endemic beta-coronaviruses suggested these responses arose from naïve rather than pre-existing cross-reactive coronavirus-specific T cells. Of the 17 epitopes located in the spike protein, 10 were mutated in VOCs and CD4+ T cell clone recognition of 7 of them was impaired, including 3 of the 4 epitopes mutated in omicron. Our results indicated that broad targeting of epitopes by CD4+ T cells likely limits evasion by current VOCs. However, continued genomic surveillance is vital to identify new mutations able to evade CD4+ T cell immunity.
Collapse
Affiliation(s)
- Emily X C Tye
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Elizabeth Jinks
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Tracey A Haigh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Baksho Kaul
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Prashant Patel
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, UK
| | - Helen M Parry
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Nayandeep Kaur
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Samantha J Drennan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Graham S Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Heather M Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
196
|
Zheng W, Yan L, Gou C, Wang FY. An ACP-Based Parallel Approach for Color Image Encryption Using Redundant Blocks. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:13181-13196. [PMID: 34818199 DOI: 10.1109/tcyb.2021.3105568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Public concerns on image encryption grow significantly as the development and application of edge computing and the Internet of Things intensified recently. However, most existing image cryptosystems are not sophisticated enough to resist the two major attack strategies available currently, that is: 1) differential attacks and 2) chosen-plaintext attacks, which are famous for their destructive power, especially their capability of exploiting cryptosystems' features to recover the secret key. In this article, we propose an artificial image, computational experiment, and parallel execution (ACP)-based color image encryption approach using redundant blocks. First, a redundant blocks strategy with redundant spaces is proposed to prevent differential attacks and accelerate operating speed while guaranteeing the security of image cryptosystems. Second, real-world chaotic data (e.g., stock data) are obtained to generate artificial images and conduct computational experiments. Furthermore, artificial images are encrypted via real-world chaos, while the original images are encrypted via simulated chaos (such as Chen's hyperchaos). Finally, we design the process of parallel execution for image encryption and use DNA XOR to merge two groups of encrypted subimages to fuse the effect of the chaotic characteristics in both the real world and the simulation. The final encrypted image is realized through the recovery of redundant blocks. The ACP mechanism of color image encryption achieves the goal of improving the sophistication of chaos-based cryptosystems and resists both the differential and chosen-plaintext attacks. Experimental results and security analysis show that our approach provides not only excellent encryption but also security sufficient to prevent known attacks.
Collapse
|
197
|
Taira N, Toguchi S, Miyagi M, Mori T, Tomori H, Oshiro K, Tamai O, Kina M, Miyagi M, Tamaki K, Collins MK, Ishikawa H. Altered pre-existing SARS-CoV-2-specific T cell responses in elderly individuals. CLINICAL IMMUNOLOGY COMMUNICATIONS 2022; 2:6-11. [PMID: 38621014 PMCID: PMC8694817 DOI: 10.1016/j.clicom.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 01/13/2023]
Abstract
Pre-existing SARS-CoV-2-specific T cells, but not antibodies, have been detected in some unexposed individuals. This may account for some of the diversity in clinical outcomes ranging from asymptomatic infection to severe COVID-19. Although age is a risk factor for COVID-19, how age affects SARS-CoV-2-specific T cell responses remains unknown. We found that pre-existing T cell responses to specific SARS-CoV-2 proteins, Spike (S) and Nucleoprotein (N), were significantly lower in elderly donors (>70 years old) than in young donors. However, substantial pre-existing T cell responses to the viral membrane (M) protein were detected in both young and elderly donors. In contrast, young and elderly donors exhibited comparable T cell responses to S, N, and M proteins after infection with SARS-CoV-2. These data suggest that although SARS-CoV-2 infection can induce T cell responses specific to various viral antigens regardless of age, diversity of target antigen repertoire for long-lived memory T cells specific for SARS-CoV-2 may decline with age; however, memory T cell responses can be maintained by T cells reactive to specific viral proteins such as M. A better understanding of the role of pre-existing SARS-CoV-2-specific T cells that are less susceptible to age-related loss may contribute to development of more effective vaccines for elderly people.
Collapse
Affiliation(s)
- Naoyuki Taira
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa, Japan
| | - Sakura Toguchi
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa, Japan
| | - Mio Miyagi
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa, Japan
| | - Tomoari Mori
- Research Support Division, Occupational Health and Safety, OIST, Onna-son, Okinawa, Japan
| | | | | | | | | | | | - Kentaro Tamaki
- Naha-Nishi Clinic, Department of Breast Surgery, Naha-city, Okinawa, Japan
| | - Mary K Collins
- Research Support Division, Office of the Provost, OIST, Onna-son, Okinawa, Japan
| | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa, Japan
| |
Collapse
|
198
|
Lu L, Li Y, Ao X, Huang J, Liu B, Wu L, Li D. The risk of COVID-19 can be predicted by a nomogram based on m6A-related genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 106:105389. [PMID: 36460278 PMCID: PMC9707050 DOI: 10.1016/j.meegid.2022.105389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND The expression of m6A-related genes and their significance in COVID-19 patients are still unknown. METHODS The GSE177477 and GSE157103 datasets of the Gene Expression Omnibus were used to extract RNA-seq data. The expression of 26 m6A-related genes and immune cell infiltration in COVID-19 patients were analyzed. Finally, we built and validated a nomogram model to predict the risk of COVID-19 infection. RESULTS There were significant differences in 11 m6A regulatory factors between patients with COVID-19 and healthy individuals. The classification of disease subtypes based on m6A-related gene levels can be distinguished. COVID-19 patients in GSE177477 were classified into two categories based on m6A-related genes. The patients in cluster A were all symptomatic, while those in cluster B were asymptomatic. A significant correlation was also found between immune cells and m6A-related genes. Finally, seven m6A-related disease-characteristic genes, HNRNPA2B1, ELAVL1, RBM15, RBM15B, YTHDC1, HNRNPC, and WTAP, were screened to construct a nomogram model for predicting risk. The calibration curve, decision curve analysis, and clinical impact curve analysis were used to show that the nomogram model was effective and had a high net efficacy for risk prediction. CONCLUSIONS m6A-related genes were correlated with immune cells. The nomogram model effectively predicted COVID-19 risk. Moreover, m6A-related genes may be associated with the presence or absence of symptoms in COVID-19 patients.
Collapse
Affiliation(s)
- Lingling Lu
- Fuzong Clinical Medical College of Fujian Medical University, The 900th hospital. No.156 Xierhuan Road, Fuzhou, Fujian 350025, China,Department of Hepatobiliary Disease, 900th Hospital of Joint Logistics Support Force, No.156 Xierhuan Road, Fuzhou, Fujian 350025, China
| | - Yijing Li
- Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China
| | - Xiulan Ao
- Department of Hepatobiliary Disease, 900th Hospital of Joint Logistics Support Force, No.156 Xierhuan Road, Fuzhou, Fujian 350025, China
| | - Jiaofeng Huang
- Fuzong Clinical Medical College of Fujian Medical University, The 900th hospital. No.156 Xierhuan Road, Fuzhou, Fujian 350025, China
| | - Bang Liu
- Fuzong Clinical Medical College of Fujian Medical University, The 900th hospital. No.156 Xierhuan Road, Fuzhou, Fujian 350025, China,Department of Hepatobiliary Disease, 900th Hospital of Joint Logistics Support Force, No.156 Xierhuan Road, Fuzhou, Fujian 350025, China
| | - Liqing Wu
- Department of Hepatobiliary Disease, 900th Hospital of Joint Logistics Support Force, No.156 Xierhuan Road, Fuzhou, Fujian 350025, China
| | - Dongliang Li
- Fuzong Clinical Medical College of Fujian Medical University, The 900th hospital. No.156 Xierhuan Road, Fuzhou, Fujian 350025, China,Department of Hepatobiliary Disease, 900th Hospital of Joint Logistics Support Force, No.156 Xierhuan Road, Fuzhou, Fujian 350025, China,Corresponding author at: Fuzong Clinical Medical College of Fujian Medical University, The 900th hospital of Joint Logistics Support Force. No.156 Xierhuan Road, Fuzhou, Fujian 350025, China
| |
Collapse
|
199
|
Ronzón-Ronzón AA, Salinas BAA, Chapol JAM, Soto Valdez DM, Sánchez SR, Martínez BL, Parra-Ortega I, Zurita-Cruz J. Usefulness of High-Resolution Computed Tomography in Early Diagnosis of Patients with Suspected COVID-19. Curr Med Imaging 2022; 18:1510-1516. [PMID: 35670347 DOI: 10.2174/1573405618666220606161924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/22/2022] [Accepted: 04/07/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Diagnosis of coronavirus disease 2019 (COVID-19) is mainly based on molecular testing. General population studies have shown that chest Computed Tomography (CT) can also be useful. OBJECTIVE The study aims to examine the usefulness of high-resolution chest CT for early diagnosis of patients with suspected COVID-19. DESIGN AND SETTING This is a cross-sectional study from May 1, 2020, to August 31, 2021, at the COVID Hospital, Mexico City. METHODS This study examined the clinical, high-resolution chest CT imaging, and laboratory data of 160 patients who were suspected to have COVID-19. Patients with positive Reverse Transcription- Polymerase Chain Reaction (RT-PCR) testing and those with negative RT-PCR testing but clinical data compatible with COVID-19 and positive antibody testing were considered to have COVID-19 (positive). Sensitivity and specificity of CT for diagnosis of COVID-19 were calculated. p < 0.05 was considered significant. RESULTS Median age of 160 study patients was 58 years. The proportion of patients with groundglass pattern was significantly higher in patients with COVID-19 than in those without COVID (65.1% versus 0%; P = 0.005). COVID-19 was ruled out in sixteen (11.1%). Only four of the 132 patients diagnosed with COVID-19 (3.0%) did not show CT alterations (p < 0.001). Sensitivity and specificity of CT for COVID-19 diagnosis were 96.7% and 42.8%, respectively. CONCLUSIONS Chest CT can identify patients with COVID-19, as characteristic disease patterns are observed on CT in the early disease stage.
Collapse
Affiliation(s)
- Alma Angélica Ronzón-Ronzón
- Radiology and Imaging Department, Hospital General de Zona #48, Instituto Mexicano del Seguro Social, México City, México
| | - Brenda Aida Acevedo Salinas
- Radiology and Imaging Department, Hospital General de Zona #48, Instituto Mexicano del Seguro Social, México City, México
| | - José Agustín Mata Chapol
- Coordination of Diagnostic Assistants Department, Hospital General de Zona #48, Instituto Mexicano del Seguro Social, México City, México
| | - Dalia María Soto Valdez
- Radiology and Imaging Department, Hospital General de Zona #48, Instituto Mexicano del Seguro Social, México City, México
| | | | | | - Israel Parra-Ortega
- Clinical Laboratory Department, Children's Hospital Federico Gómez, México City, México
| | - Jessie Zurita-Cruz
- Metabolic & Surgical Clinical Research Department, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Children's Hospital Federico Gómez, México City, México
| |
Collapse
|
200
|
Becerra-Artiles A, Nanaware PP, Muneeruddin K, Weaver GC, Shaffer SA, Calvo-Calle JM, Stern LJ. Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.01.518643. [PMID: 36482973 PMCID: PMC9727760 DOI: 10.1101/2022.12.01.518643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but identification and characterization of the T cell response to seasonal human coronaviruses remain largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal human coronavirus OC43. We identified MHC-I and MHC-II bound peptides derived from the viral spike, nucleocapsid, hemagglutinin-esterase, 3C-like proteinase, and envelope proteins. Only three MHC-I bound OC43-derived peptides were observed, possibly due to the potent MHC-I downregulation induced by OC43 infection. By contrast, 80 MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. These peptides elicited low-abundance recall T cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T cell lines. Among the validated epitopes, S 903-917 presented by DPA1*01:03/DPB1*04:01 and S 1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. N 54-68 and HE 128-142 presented by DRB1*15:01 and HE 259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow T cell cross-reactivity after infection or vaccination and could aid in the selection of epitopes for inclusion in pan-coronavirus vaccines. Author Summary There is much current interest in cellular immune responses to seasonal common-cold coronaviruses because of their possible role in mediating protection against SARS-CoV-2 infection or pathology. However, identification of relevant T cell epitopes and systematic studies of the T cell responses responding to these viruses are scarce. We conducted a study to identify naturally processed and presented MHC-I and MHC-II epitopes from human cells infected with the seasonal coronavirus HCoV-OC43, and to characterize the T cell responses associated with these epitopes. We found epitopes specific to the seasonal coronaviruses, as well as epitopes cross-reactive between HCoV-OC43 and SARS-CoV-2. These epitopes should be useful in following immune responses to seasonal coronaviruses and identifying their roles in COVID-19 vaccination, infection, and pathogenesis.
Collapse
Affiliation(s)
- Aniuska Becerra-Artiles
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Padma P. Nanaware
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Khaja Muneeruddin
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury MA
| | - Grant C. Weaver
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Scott A. Shaffer
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury MA
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - J. Mauricio Calvo-Calle
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Lawrence J. Stern
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|