151
|
Levit A, Gibson A, Hough O, Jung Y, Agca Y, Agca C, Hachinski V, Allman BL, Whitehead SN. Precocious White Matter Inflammation and Behavioural Inflexibility Precede Learning and Memory Impairment in the TgAPP21 Rat Model of Alzheimer Disease. Mol Neurobiol 2021; 58:5014-5030. [PMID: 34232476 DOI: 10.1007/s12035-021-02476-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
Neuroinflammation and behavioural inflexibility are both common in late adulthood but far more profound in Alzheimer disease (AD). To investigate the relationship between ageing, AD, neuroinflammation, and behavioural flexibility, male wild-type Fischer 344 (Wt) and the transgenic APP21 (TgAPP21) rats were aged to 4, 8, 13, and 22 months and evaluated for neuroinflammation and cognitive impairment. TgAPP21 rats overexpress a pathogenic variant of the human amyloid precursor protein (hAPP; Swedish and Indiana mutations) but do not spontaneously develop overt pathology related to AD. In both genotypes, learning and memory were similarly impaired in older rats. However, at 8 months of age, TgAPP21 rats demonstrated behavioural inflexibility in set shifting, reversal, and the Morris water maze, while Wt rats showed inflexibility at 13 and 22 months of age. This early inflexibility in TgAPP21 rats was accompanied by a precocious increase in microglia activation within the corpus callosum; 8- and 13-month-old TgAPP21 rats had similar levels of microglia activation as 13- and 22-month-old Wt rats, respectively. However, while neuroinflammation within the white matter continued to progress with age, behavioural inflexibility peaked in 8-month-old TgAPP21 rats; in older TgAPP21 rats, memory and learning impairments masked inflexibility. These findings suggest that the behavioural inflexibility and white matter inflammation seen in normal ageing are accelerated in AD and may precede impairments of learning and memory.
Collapse
Affiliation(s)
- Alexander Levit
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Andrew Gibson
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Olivia Hough
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Youngkyung Jung
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Yuksel Agca
- Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, MO, USA
| | - Cansu Agca
- Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, MO, USA
| | - Vladimir Hachinski
- Department of Clinical Neurological Sciences, University Hospital, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Brian L Allman
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Shawn N Whitehead
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.
- Department of Clinical Neurological Sciences, University Hospital, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
152
|
Snijders GJLJ, Sneeboer MAM, Fernández-Andreu A, Udine E, Boks MP, Ormel PR, van Berlekom AB, van Mierlo HC, Bӧttcher C, Priller J, Raj T, Hol EM, Kahn RS, de Witte LD. Distinct non-inflammatory signature of microglia in post-mortem brain tissue of patients with major depressive disorder. Mol Psychiatry 2021; 26:3336-3349. [PMID: 33028963 DOI: 10.1038/s41380-020-00896-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/22/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Findings from epidemiological studies, biomarker measurements and animal experiments suggest a role for aberrant immune processes in the pathogenesis of major depressive disorder (MDD). Microglia, the resident immune cells of the brain, are likely to play a key role in these processes. Previous post-mortem studies reported conflicting findings regarding microglial activation and an in-depth profiling of those cells in MDD is lacking. The aim of this study was therefore to characterize the phenotype and function of microglia in MDD. We isolated microglia from post-mortem brain tissue of patients with MDD (n = 13-19) and control donors (n = 12-25). Using flow cytometry and quantitative Polymerase Chain Reaction (qPCR), we measured protein and mRNA levels of a panel of microglial markers across four different brain regions (medial frontal gyrus, superior temporal gyrus, thalamus, and subventricular zone). In MDD cases, we found a significant upregulation of CX3CR1 and TMEM119 mRNA expression and a downregulation of CD163 mRNA expression and CD14 protein expression across the four brain regions. Expression levels of microglial activation markers, such as HLA-DRA, IL6, and IL1β, as well as the inflammatory responses to lipopolysaccharide and dexamethasone were unchanged. Our findings suggest that microglia enhance homeostatic functions in MDD but are not immune activated.
Collapse
Affiliation(s)
- Gijsje J L J Snijders
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| | - Marjolein A M Sneeboer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands.,Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Alba Fernández-Andreu
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Evan Udine
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Marco P Boks
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Paul R Ormel
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands.,Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands.,Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Hans C van Mierlo
- Department of Psychiatry, St. Antonius Hospital, Nieuwegein, Koekoekslaan 1, 3430, EM, Nieuwegein, The Netherlands
| | - Chotima Bӧttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.,DZNE and BIH, 10117, Berlin, Germany.,University of Edinburgh and UK DRI, Edinburgh, EH16 4SB, UK
| | - Towfique Raj
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands.,Neuroimmunology, Netherlands Institute for Neuroscience, an institute of the royal academy of arts and sciences, 1105, BA, Amsterdam, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands.,Mental Illness Research Education Clinical, Centers of Excellence, VA, Mental Health, Veterans, Bronx, NY, USA
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands.,Mental Illness Research Education Clinical, Centers of Excellence, VA, Mental Health, Veterans, Bronx, NY, USA
| |
Collapse
|
153
|
Fusco L, Orecchioni M, Reina G, Bordoni V, Fuoco C, Gurcan C, Guo S, Zoccheddu M, Collino F, Zavan B, Treossi E, Yilmazer A, Palermo V, Bianco A, Delogu LG. Lateral dimension and amino-functionalization on the balance to assess the single-cell toxicity of graphene on fifteen immune cell types. NANOIMPACT 2021; 23:100330. [PMID: 35559831 DOI: 10.1016/j.impact.2021.100330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 06/15/2023]
Abstract
Given the wide variety of potential applications of graphene oxide (GO), its consequent release into the environment poses serious concerns on its safety. The future production and exploitation of graphene in the years to come should be guided by its specific chemical-physical characteristics. The unparalleled potential of single-cell mass cytometry (CyTOF) to dissect by high-dimensionality the specific immunological effects of nanomaterials, represents a turning point in nanotoxicology. It helps us to identify the safe graphene in terms of physical-chemical properties and therefore to direct its future safe production. Here we present a high-dimensional study to evaluate two historically indicated as key parameters for the safe exploitation: functionalization and dimension. The role of lateral dimension and the amino-functionalization of GO on their immune impact were here evaluated as synergistic players. To this end, we dissected the effects of GO, characterized by a large or small lateral size (GO 1.32 μm and GO 0.13 μm, respectively), and its amino-functionalized counterpart (GONH2 1.32 μm and GONH2 0.13 μm, respectively) on fifteen cell types of human primary peripheral blood mononuclear cells (PBMCs). We describe how the smallest later size not only evokes pronounced toxicity on the pool of PBMCs compared to larger GOs but also towards the distinct immune cell subpopulations, in particular on non-classical monocytes, plasmacytoid dendritic cells (pDCs), natural killer cells (NKs) and B cells. The amino-functionalization was able to improve the biocompatibility of classical and non-classical monocytes, pDCs, NKs, and B cells. Detailed single-cell analysis further revealed a complex interaction of all GOs with the immune cells, and in particular monocyte subpopulations, with different potency depending on their physicochemical properties. Overall, by high-dimensional profiling, our study demonstrates that the lateral dimension is an important factor modulating immune cells and specifically monocyte activation, but a proper surface functionalization is the dominant characteristic in its immune effects. In particular, the amino-functionalization can critically modify graphene impact dampening the immune cell activation. Our study can serve as a guide for the future broad production and use of graphene in our everyday life.
Collapse
Affiliation(s)
- Laura Fusco
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Marco Orecchioni
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, Strasbourg, France
| | - Valentina Bordoni
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Claudia Fuoco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cansu Gurcan
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey; Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, Strasbourg, France
| | - Martina Zoccheddu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Federica Collino
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Medical Sciences, University of Ferrara, Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | | | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey; Stem Cell Institute, Ankara University, Ankara, Turkey
| | | | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, Strasbourg, France.
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
| |
Collapse
|
154
|
De Schepper S, Crowley G, Hong S. Understanding microglial diversity and implications for neuronal function in health and disease. Dev Neurobiol 2021; 81:507-523. [PMID: 32757416 PMCID: PMC8438703 DOI: 10.1002/dneu.22777] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/21/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022]
Abstract
Genetic data implicate microglia as central players in brain health and disease, urging the need to better understand what microglia do in the brain. Microglia are critical partners in neuronal wiring and function during development and disease. Emerging literature suggests that microglia have diverse functional roles, raising the intriguing question of which functions of microglia become impaired in disease to undermine proper neuronal function. It is also becoming increasingly clear that microglia exist in heterogeneous cell states. Microglial cell states appear context-dependent, that is, age, sex, location, and health of their microenvironment; these are further influenced by external signaling factors including gut microbiota and lipid metabolites. These data altogether suggest that microglia exist in functional clusters that impact, and are impacted by, surrounding neuronal microenvironment. However, we still lack understanding of how we can translate microglia cell states into function. Here, we summarize the state-of-the-art on the diverse functions of microglia in relation to neuronal health. Then, we discuss heterogeneity during developing, healthy adult and diseased brains, and whether this may be predetermined by origin and/or regulated by local milieu. Finally, we propose that it is critical to gain high-resolution functional discernment into microglia-neuron interactions while preserving the spatial architecture of the tissue. Such insight will reveal specific targets for biomarker and therapeutic development toward microglia-neuron crosstalk in disease.
Collapse
Affiliation(s)
| | - Gerard Crowley
- UK Dementia Research InstituteUniversity College LondonLondonUK
| | - Soyon Hong
- UK Dementia Research InstituteUniversity College LondonLondonUK
| |
Collapse
|
155
|
Psenicka MW, Smith BC, Tinkey RA, Williams JL. Connecting Neuroinflammation and Neurodegeneration in Multiple Sclerosis: Are Oligodendrocyte Precursor Cells a Nexus of Disease? Front Cell Neurosci 2021; 15:654284. [PMID: 34234647 PMCID: PMC8255483 DOI: 10.3389/fncel.2021.654284] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
The pathology in neurodegenerative diseases is often accompanied by inflammation. It is well-known that many cells within the central nervous system (CNS) also contribute to ongoing neuroinflammation, which can promote neurodegeneration. Multiple sclerosis (MS) is both an inflammatory and neurodegenerative disease in which there is a complex interplay between resident CNS cells to mediate myelin and axonal damage, and this communication network can vary depending on the subtype and chronicity of disease. Oligodendrocytes, the myelinating cell of the CNS, and their precursors, oligodendrocyte precursor cells (OPCs), are often thought of as the targets of autoimmune pathology during MS and in several animal models of MS; however, there is emerging evidence that OPCs actively contribute to inflammation that directly and indirectly contributes to neurodegeneration. Here we discuss several contributors to MS disease progression starting with lesion pathology and murine models amenable to studying particular aspects of disease. We then review how OPCs themselves can play an active role in promoting neuroinflammation and neurodegeneration, and how other resident CNS cells including microglia, astrocytes, and neurons can impact OPC function. Further, we outline the very complex and pleiotropic role(s) of several inflammatory cytokines and other secreted factors classically described as solely deleterious during MS and its animal models, but in fact, have many neuroprotective functions and promote a return to homeostasis, in part via modulation of OPC function. Finally, since MS affects patients from the onset of disease throughout their lifespan, we discuss the impact of aging on OPC function and CNS recovery. It is becoming clear that OPCs are not simply a bystander during MS progression and uncovering the active roles they play during different stages of disease will help uncover potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Morgan W. Psenicka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Brandon C. Smith
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Rachel A. Tinkey
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
156
|
Piirainen S, Chithanathan K, Bisht K, Piirsalu M, Savage JC, Tremblay ME, Tian L. Microglia contribute to social behavioral adaptation to chronic stress. Glia 2021; 69:2459-2473. [PMID: 34145941 DOI: 10.1002/glia.24053] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Microglial activation has been regarded mainly as an exacerbator of stress response, a common symptom in psychiatric disorders. This study aimed to determine whether microglia contribute to adaptive response of the brain and behavior toward stress using a mild and adaptive stress model - chronic restraint stress (CRS) - with wild type (WT) and CX3CR1-GFP (CX3CR1[G]) mice and human schizophrenia patients' data. Our results revealed that CRS did not exacerbate anxiety and depressive-like behaviors, but instead strengthened social dominance and short-term spatial learning in WT mice. Compared to WT and CX3CR1(+/G) heterozygous mice, CX3CR1(G/G) homozygotes were subordinate in social interaction before and after CRS. Microglia in WT mice underwent a series of region-specific changes involving their phagocytosis of presynaptic vesicular glutamate transporter 2 protein, contacts with synaptic elements, CD206+ microglial proportion, and gene expressions such as Cx3cr1. By contrast, CX3CR1-deficient microglia showed decreased CD206+ while increased MHCII+ subpopulations and hypo-ramification in the hippocampus, as well as sensitized polarization and morphological change in response to CRS. Furthermore, CD206+ microglial abundancy was positively correlated with social dominancy and microglial ramification in CX3CR1-GFP mice. Moreover, CX3CR1 mRNA level was reduced in CRS-treated mouse brains and showed a smaller interactome with other brain genes in the dorsal-lateral prefrontal cortices of patients with schizophrenia. Our findings overall highlight microglia and its receptor CX3CR1 as key contributors in regulation of social behavioral adaptation to chronic stress.
Collapse
Affiliation(s)
- Sami Piirainen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Keerthana Chithanathan
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Kanchan Bisht
- Axe Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, Virginia, USA
| | - Maria Piirsalu
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Julie Conner Savage
- Axe Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University, Beijing, China
| |
Collapse
|
157
|
Di Nunzio M, Di Sapia R, Sorrentino D, Kebede V, Cerovic M, Gullotta GS, Bacigaluppi M, Audinat E, Marchi N, Ravizza T, Vezzani A. Microglia proliferation plays distinct roles in acquired epilepsy depending on disease stages. Epilepsia 2021; 62:1931-1945. [PMID: 34128226 DOI: 10.1111/epi.16956] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Microgliosis occurs in animal models of acquired epilepsy and in patients. It includes cell proliferation that is associated with seizure frequency and decreased neuronal cells in human epilepsy. The role of microglia proliferation in the development of acquired epilepsy is unknown; thus, we examined its contribution to spontaneous seizure, neurodegeneration, and cognitive deficits in different disease phases. METHODS We used a model of acquired epilepsy triggered by intra-amygdala kainic acid in C57BL6N adult male mice. Mice were electroencephalographically (EEG) monitored (24/7) during status epilepticus and in early and chronic disease. Microglia proliferation was blocked by GW2580, a selective CSF1 receptor inhibitor, supplemented in the diet for 21 days from status epilepticus onset. Then, mice were returned to placebo diet until experiment completion. Control mice were exposed to status epilepticus and fed with placebo diet. Experimental mice were tested in the novel object recognition test (NORT) and in Barnes maze, and compared to control and sham mice. At the end of the behavioral test, mice were killed for brain histopathological analysis. Additionally, seizure baseline was monitored in chronic epileptic mice, then mice were fed for 14 days with GW2580 or placebo diet under 24/7 EEG recording. RESULTS GW2580 prevented microglia proliferation in mice undergoing epilepsy, whereas it did not affect microglia or basal excitatory neurotransmission in the hippocampus of naive mice. Mice with occluded microglia proliferation during early disease development underwent status epilepticus and subsequent epilepsy similar to placebo diet mice, and were similarly impaired in NORT, with improvement in Barnes maze. GW2580-treated mice displayed neuroprotection in the hippocampus. In contrast, blockade of microglia proliferation in chronic epileptic mice resulted in spontaneous seizure reduction versus placebo mice. SIGNIFICANCE Microglia proliferation during early disease contributes to neurodegeneration, whereas in late chronic disease it contributes to seizures. Timely pharmacological interference with microglia proliferation may offer a potential target for improving disease outcomes.
Collapse
Affiliation(s)
- Martina Di Nunzio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Rossella Di Sapia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Diletta Sorrentino
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Valentina Kebede
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Milica Cerovic
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giorgia S Gullotta
- Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Etienne Audinat
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM), University of Montpellier, Montpellier, France
| | - Nicola Marchi
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM), University of Montpellier, Montpellier, France
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
158
|
Ohgomori T, Iinuma K, Yamada J, Jinno S. A unique subtype of ramified microglia associated with synapses in the rat hippocampus. Eur J Neurosci 2021; 54:4740-4754. [PMID: 34110047 DOI: 10.1111/ejn.15330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
To date, a number of studies have reported the heterogeneity of activated microglia. However, there is increasing evidence suggests that ramified, so-called resting, microglia may also be heterogeneous, and they may play diverse roles in normal brain homeostasis. Here, we found that both 5D4 keratan sulfate epitope-positive (5D4+ ) and 5D4-negative (5D4- ) microglia coexisted in the hippocampus of normal rats, while all microglia were negative for the 5D4 epitope in the hippocampus of normal mice. We thus aimed to determine the potential heterogeneity of microglia related to the 5D4 epitope in the normal rat hippocampus. The optical disector analysis showed that the densities of 5D4+ microglia were higher in the stratum oriens of the CA3 region than in other layers and regions. Although both 5D4+ and 5D4- microglia exhibited a ramified morphology, the three-dimensional reconstruction analysis showed that the node numbers, end numbers, and complexity of processes were higher in 5D4+ than in 5D4- microglia. The linear discriminant analysis showed that 5D4+ and 5D4- microglia can be classified into distinct morphometric subtypes. The ratios of contact between synaptic boutons and microglial processes were higher in 5D4+ than in 5D4- microglia. The gene expressions of pro-inflammatory cytokine interleukin-1β and purinergic receptor P2Y12 (P2Y12 R) were higher in 5D4+ than in 5D4- microglia. Together, these results indicate that at least two different subtypes of ramified microglia coexist in the normal rat hippocampus and also suggest that 5D4+ microglia may represent a unique subtype associated with synapses.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Japan
| | - Kyoko Iinuma
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
159
|
Cruz-Herranz A, Oertel FC, Kim K, Cantó E, Timmons G, Sin JH, Devereux M, Baker N, Michel B, Schubert RD, Rani L, Cordano C, Baranzini SE, Green AJ. Distinctive waves of innate immune response in the retina in experimental autoimmune encephalomyelitis. JCI Insight 2021; 6:e149228. [PMID: 34100385 PMCID: PMC8262300 DOI: 10.1172/jci.insight.149228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022] Open
Abstract
Neurodegeneration mediates neurological disability in inflammatory demyelinating diseases of the CNS. The role of innate immune cells in mediating this damage has remained controversial with evidence for destructive and protective effects. This has complicated efforts to develop treatment. The time sequence and dynamic evolution of the opposing functions are especially unclear. Given limits of in vivo monitoring in human diseases such as multiple sclerosis (MS), animal models are warranted to investigate the association and timing of innate immune activation with neurodegeneration. Using noninvasive in vivo retinal imaging of experimental autoimmune encephalitis (EAE) in CX3CR1GFP/+–knock-in mice followed by transcriptional profiling, we are able to show 2 distinct waves separated by a marked reduction in the number of innate immune cells and change in cell morphology. The first wave is characterized by an inflammatory phagocytic phenotype preceding the onset of EAE, whereas the second wave is characterized by a regulatory, antiinflammatory phenotype during the chronic stage. Additionally, the magnitude of the first wave is associated with neuronal loss. Two transcripts identified — growth arrest–specific protein 6 (GAS6) and suppressor of cytokine signaling 3 (SOCS3) — might be promising targets for enhancing protective effects of microglia in the chronic phase after initial injury.
Collapse
Affiliation(s)
- Andrés Cruz-Herranz
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Frederike C Oertel
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, California, USA.,Experimental and Clinical Research Center (ECRC), Max-Delbrück-Centrum for Molecular Medicine, and.,NeuroCure Clinical Research Center (NCRC), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kicheol Kim
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Ester Cantó
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Garrett Timmons
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Jung H Sin
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Michael Devereux
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Nicholas Baker
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Brady Michel
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Ryan D Schubert
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Lakshmisahithi Rani
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Christian Cordano
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Sergio E Baranzini
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Ari J Green
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, California, USA.,Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
160
|
Süß P, Schlachetzki JCM. Microglia in Alzheimer's Disease. Curr Alzheimer Res 2021; 17:29-43. [PMID: 32048973 DOI: 10.2174/1567205017666200212155234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is the most frequent neurodegenerative disorder. Although proteinaceous aggregates of extracellular Amyloid-β (Aβ) and intracellular hyperphosphorylated microtubule- associated tau have long been identified as characteristic neuropathological hallmarks of AD, a disease- modifying therapy against these targets has not been successful. An emerging concept is that microglia, the innate immune cells of the brain, are major players in AD pathogenesis. Microglia are longlived tissue-resident professional phagocytes that survey and rapidly respond to changes in their microenvironment. Subpopulations of microglia cluster around Aβ plaques and adopt a transcriptomic signature specifically linked to neurodegeneration. A plethora of molecules and pathways associated with microglia function and dysfunction has been identified as important players in mediating neurodegeneration. However, whether microglia exert either beneficial or detrimental effects in AD pathology may depend on the disease stage. In this review, we summarize the current knowledge about the stage-dependent role of microglia in AD, including recent insights from genetic and gene expression profiling studies as well as novel imaging techniques focusing on microglia in human AD pathology and AD mouse models.
Collapse
Affiliation(s)
- Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universitat, Erlangen- Nürnberg, Germany
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, United States
| |
Collapse
|
161
|
Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. ACTA ACUST UNITED AC 2021; 2:723-740. [DOI: 10.1038/s43018-021-00201-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/18/2021] [Indexed: 12/23/2022]
Abstract
AbstractThe dynamics and phenotypes of intratumoral myeloid cells during tumor progression are poorly understood. Here we define myeloid cellular states in gliomas by longitudinal single-cell profiling and demonstrate their strict control by the tumor genotype: in isocitrate dehydrogenase (IDH)-mutant tumors, differentiation of infiltrating myeloid cells is blocked, resulting in an immature phenotype. In late-stage gliomas, monocyte-derived macrophages drive tolerogenic alignment of the microenvironment, thus preventing T cell response. We define the IDH-dependent tumor education of infiltrating macrophages to be causally related to a complex re-orchestration of tryptophan metabolism, resulting in activation of the aryl hydrocarbon receptor. We further show that the altered metabolism of IDH-mutant gliomas maintains this axis in bystander cells and that pharmacological inhibition of tryptophan metabolism can reverse immunosuppression. In conclusion, we provide evidence of a glioma genotype-dependent intratumoral network of resident and recruited myeloid cells and identify tryptophan metabolism as a target for immunotherapy of IDH-mutant tumors.
Collapse
|
162
|
Turkin A, Tuchina O, Klempin F. Microglia Function on Precursor Cells in the Adult Hippocampus and Their Responsiveness to Serotonin Signaling. Front Cell Dev Biol 2021; 9:665739. [PMID: 34109176 PMCID: PMC8182052 DOI: 10.3389/fcell.2021.665739] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Microglia are the resident immune cells of the adult brain that become activated in response to pathogen- or damage-associated stimuli. The acute inflammatory response to injury, stress, or infection comprises the release of cytokines and phagocytosis of damaged cells. Accumulating evidence indicates chronic microglia-mediated inflammation in diseases of the central nervous system, most notably neurodegenerative disorders, that is associated with disease progression. To understand microglia function in pathology, knowledge of microglia communication with their surroundings during normal state and the release of neurotrophins and growth factors in order to maintain homeostasis of neural circuits is of importance. Recent evidence shows that microglia interact with serotonin, the neurotransmitter crucially involved in adult neurogenesis, and known for its role in antidepressant action. In this chapter, we illustrate how microglia contribute to neuroplasticity of the hippocampus and interact with local factors, e.g., BDNF, and external stimuli that promote neurogenesis. We summarize the recent findings on the role of various receptors in microglia-mediated neurotransmission and particularly focus on microglia’s response to serotonin signaling. We review microglia function in neuroinflammation and neurodegeneration and discuss their novel role in antidepressant mechanisms. This synopsis sheds light on microglia in healthy brain and pathology that involves serotonin and may be a potential therapeutic model by which microglia play a crucial role in the maintenance of mood.
Collapse
Affiliation(s)
- Andrei Turkin
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Oksana Tuchina
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Friederike Klempin
- Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
163
|
Zilberman A, Cornelison RC. Microphysiological models of the central nervous system with fluid flow. Brain Res Bull 2021; 174:72-83. [PMID: 34029679 DOI: 10.1016/j.brainresbull.2021.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
There are over 1,000 described neurological and neurodegenerative disorders affecting nearly 100 million Americans - roughly one third of the U.S. population. Collectively, treatment of neurological conditions is estimated to cost $800 billion every year. Lowering this societal burden will require developing better model systems in which to study these diverse disorders. Microphysiological systems are promising tools for modeling healthy and diseased neural tissues to study mechanisms and treatment of neuropathology. One major benefit of microphysiological systems is the ability to incorporate biophysical forces, namely the forces derived from biological fluid flow. Fluid flow in the central nervous system (CNS) is a complex but important element of physiology, and pathologies as diverse as traumatic or ischemic injury, cancer, neurodegenerative disease, and natural aging have all been found to alter flow pathways. In this review, we summarize recent advances in three-dimensional microphysiological systems for studying the biology and therapy of CNS disorders and highlight the ability and growing need to incorporate biological fluid flow in these miniaturized model systems.
Collapse
Affiliation(s)
- Aleeza Zilberman
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States
| | - R Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States.
| |
Collapse
|
164
|
Role of microglia and P2X4 receptors in chronic pain. Pain Rep 2021; 6:e864. [PMID: 33981920 PMCID: PMC8108579 DOI: 10.1097/pr9.0000000000000864] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
This study summarizes current understanding of the role of microglia and P2X4 receptor in chronic pain including neuropathic pain and of their therapeutic potential. Pain plays an indispensable role as an alarm system to protect us from dangers or injuries. However, neuropathic pain, a debilitating pain condition caused by damage to the nervous system, persists for a long period even in the absence of dangerous stimuli or after injuries have healed. In this condition, pain becomes a disease itself rather than the alarm system and is often resistant to currently available medications. A growing body of evidence indicates that microglia, a type of macrophages residing in the central nervous system, play a crucial role in the pathogenesis of neuropathic pain. Whenever microglia in the spinal cord detect a damaging signal within the nervous system, they become activated and cause diverse alterations that change neural excitability, leading to the development of neuropathic pain. For over a decade, several lines of molecular and cellular mechanisms that define microglial activation and subsequently altered pain transmission have been proposed. In particular, P2X4 receptors (a subtype of purinergic receptors) expressed by microglia have been investigated as an essential molecule for neuropathic pain. In this review article, we describe our understanding of the mechanisms by which activated microglia cause neuropathic pain through P2X4 receptors, their involvement in several pathological contexts, and recent efforts to develop new drugs targeting microglia and P2X4 receptors.
Collapse
|
165
|
Ma C, Hunt JB, Kovalenko A, Liang H, Selenica MLB, Orr MB, Zhang B, Gensel JC, Feola DJ, Gordon MN, Morgan D, Bickford PC, Lee DC. Myeloid Arginase 1 Insufficiency Exacerbates Amyloid-β Associated Neurodegenerative Pathways and Glial Signatures in a Mouse Model of Alzheimer's Disease: A Targeted Transcriptome Analysis. Front Immunol 2021; 12:628156. [PMID: 34046031 PMCID: PMC8144303 DOI: 10.3389/fimmu.2021.628156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Brain myeloid cells, include infiltrating macrophages and resident microglia, play an essential role in responding to and inducing neurodegenerative diseases, such as Alzheimer's disease (AD). Genome-wide association studies (GWAS) implicate many AD casual and risk genes enriched in brain myeloid cells. Coordinated arginine metabolism through arginase 1 (Arg1) is critical for brain myeloid cells to perform biological functions, whereas dysregulated arginine metabolism disrupts them. Altered arginine metabolism is proposed as a new biomarker pathway for AD. We previously reported Arg1 deficiency in myeloid biased cells using lysozyme M (LysM) promoter-driven deletion worsened amyloidosis-related neuropathology and behavioral impairment. However, it remains unclear how Arg1 deficiency in these cells impacts the whole brain to promote amyloidosis. Herein, we aim to determine how Arg1 deficiency driven by LysM restriction during amyloidosis affects fundamental neurodegenerative pathways at the transcriptome level. By applying several bioinformatic tools and analyses, we found that amyloid-β (Aβ) stimulated transcriptomic signatures in autophagy-related pathways and myeloid cells' inflammatory response. At the same time, myeloid Arg1 deficiency during amyloidosis promoted gene signatures of lipid metabolism, myelination, and migration of myeloid cells. Focusing on Aβ associated glial transcriptomic signatures, we found myeloid Arg1 deficiency up-regulated glial gene transcripts that positively correlated with Aβ plaque burden. We also observed that Aβ preferentially activated disease-associated microglial signatures to increase phagocytic response, whereas myeloid Arg1 deficiency selectively promoted homeostatic microglial signature that is non-phagocytic. These transcriptomic findings suggest a critical role for proper Arg1 function during normal and pathological challenges associated with amyloidosis. Furthermore, understanding pathways that govern Arg1 metabolism may provide new therapeutic opportunities to rebalance immune function and improve microglia/macrophage fitness.
Collapse
Affiliation(s)
- Chao Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Jerry B. Hunt
- Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Andrii Kovalenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Huimin Liang
- Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Maj-Linda B. Selenica
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
- Sanders-Brown Center on Aging, Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Michael B. Orr
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Bei Zhang
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - John C. Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - David J. Feola
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Marcia N. Gordon
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Dave Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Paula C. Bickford
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Research Service, James A. Haley Veterans Affairs Hospital, Tampa, FL, United States
| | - Daniel C. Lee
- Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| |
Collapse
|
166
|
Woolf Z, Swanson MEV, Smyth LC, Mee EW, Schweder P, Heppner P, Kim BJH, Turner C, Oldfield RL, Curtis MA, Faull RLM, Scotter EL, Park TIH, Dragunow M. Single-cell image analysis reveals a protective role for microglia in glioblastoma. Neurooncol Adv 2021; 3:vdab031. [PMID: 34286275 PMCID: PMC8284623 DOI: 10.1093/noajnl/vdab031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Microglia and tumor-associated macrophages (TAMs) constitute up to half of the total tumor mass of glioblastomas. Despite these myeloid populations being ontogenetically distinct, they have been largely conflated. Recent single-cell transcriptomic studies have identified genes that distinguish microglia from TAMs. Here we investigated whether the translated proteins of genes enriched in microglial or TAM populations can be used to differentiate these myeloid cells in immunohistochemically stained human glioblastoma tissue. Methods Tissue sections from resected low-grade, meningioma, and glioblastoma (grade IV) tumors and epilepsy tissues were immunofluorescently triple-labeled for Iba1 (pan-myeloid marker), CD14 or CD163 (preferential TAM markers), and either P2RY12 or TMEM119 (microglial-specific markers). Using a single-cell-based image analysis pipeline, we quantified the abundance of each marker within single myeloid cells, allowing the identification and analysis of myeloid populations. Results P2RY12 and TMEM119 successfully discriminated microglia from TAMs in glioblastoma. In contrast, CD14 and CD163 expression were not restricted to invading TAMs and were upregulated by tumor microglia. Notably, a higher ratio of microglia to TAMs significantly correlated with increased patient survival. Conclusions We demonstrate the validity of previously defined microglial-specific genes P2RY12 and TMEM119 as robust discriminators of microglia and TAMs at the protein level in human tissue. Moreover, our data suggest that a higher proportion of microglia may be beneficial for patient survival in glioblastoma. Accordingly, this tissue-based method for myeloid population differentiation could serve as a useful prognostic tool.
Collapse
Affiliation(s)
- Zoe Woolf
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Molly E V Swanson
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Leon C Smyth
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| | - Edward W Mee
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Peter Heppner
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Bernard J H Kim
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Clinton Turner
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Robyn L Oldfield
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Emma L Scotter
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Michael Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
167
|
Snijders GJLJ, van Zuiden W, Sneeboer MAM, Berdenis van Berlekom A, van der Geest AT, Schnieder T, MacIntyre DJ, Hol EM, Kahn RS, de Witte LD. A loss of mature microglial markers without immune activation in schizophrenia. Glia 2021; 69:1251-1267. [PMID: 33410555 PMCID: PMC7986895 DOI: 10.1002/glia.23962] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Microglia, the immune cells of the brain, are important for neurodevelopment and have been hypothesized to play a role in the pathogenesis of schizophrenia (SCZ). Although previous postmortem studies pointed toward presence of microglial activation, this view has been challenged by more recent hypothesis-driven and hypothesis-free analyses. The aim of the present study is to further understand the observed microglial changes in SCZ. We first performed a detailed meta-analysis on studies that analyzed microglial cell density, microglial morphology, and expression of microglial-specific markers. We then further explored findings from the temporal cortex by performing immunostainings and qPCRs on an additional dataset. A random effect meta-analysis showed that the density of microglial cells was unaltered in SCZ (ES: 0.144 95% CI: 0.102 to 0.390, p = .250), and clear changes in microglial morphology were also absent. The expression of several microglial specific genes, such as CX3CR1, CSF1R, IRF8, OLR1, and TMEM119 was decreased in SCZ (ES: -0.417 95% CI: -0.417 to -0.546, p < .0001), consistent with genome-wide transcriptome meta-analysis results. These results indicate a change in microglial phenotype rather than density, which was validated with the use of TMEM119/Iba1 immunostainings on temporal cortex of a separate cohort. Changes in microglial gene expression were overlapping between SCZ and other psychiatric disorders, but largely opposite from changes reported in Alzheimer's disease. This distinct microglial phenotype provides a crucial molecular hallmark for future research into the role of microglia in SCZ and other psychiatric disorders.
Collapse
Affiliation(s)
- Gijsje J. L. J. Snijders
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Brain Center Rudolf MagnusUniversity Medical Center Utrecht, Utrecht University (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
| | | | | | - Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Brain Center Rudolf MagnusUniversity Medical Center Utrecht, Utrecht University (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Department of Translational Neuroscience (BCRM‐UMCU‐UU)UtrechtThe Netherlands
| | | | | | - Donald J. MacIntyre
- Division of Psychiatry, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Elly M. Hol
- Department of Translational Neuroscience (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and SciencesAmsterdamThe Netherlands
| | - René S. Kahn
- Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical CenterBronxNew YorkUSA
| | - Lot D. de Witte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Brain Center Rudolf MagnusUniversity Medical Center Utrecht, Utrecht University (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical CenterBronxNew YorkUSA
| |
Collapse
|
168
|
Dixon MA, Greferath U, Fletcher EL, Jobling AI. The Contribution of Microglia to the Development and Maturation of the Visual System. Front Cell Neurosci 2021; 15:659843. [PMID: 33967697 PMCID: PMC8102829 DOI: 10.3389/fncel.2021.659843] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), were once considered quiescent cells that sat in readiness for reacting to disease and injury. Over the last decade, however, it has become clear that microglia play essential roles in maintaining the normal nervous system. The retina is an easily accessible part of the central nervous system and therefore much has been learned about the function of microglia from studies in the retina and visual system. Anatomically, microglia have processes that contact all synapses within the retina, as well as blood vessels in the major vascular plexuses. Microglia contribute to development of the visual system by contributing to neurogenesis, maturation of cone photoreceptors, as well as refining synaptic contacts. They can respond to neural signals and in turn release a range of cytokines and neurotrophic factors that have downstream consequences on neural function. Moreover, in light of their extensive contact with blood vessels, they are also essential for regulation of vascular development and integrity. This review article summarizes what we have learned about the role of microglia in maintaining the normal visual system and how this has helped in understanding their role in the central nervous system more broadly.
Collapse
Affiliation(s)
- Michael A Dixon
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew I Jobling
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
169
|
Greenwood EK, Brown DR. Senescent Microglia: The Key to the Ageing Brain? Int J Mol Sci 2021; 22:4402. [PMID: 33922383 PMCID: PMC8122783 DOI: 10.3390/ijms22094402] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ageing represents the single biggest risk factor for development of neurodegenerative disease. Despite being such long-lived cells, microglia have been relatively understudied for their role in the ageing process. Reliably identifying aged microglia has proven challenging, not least due to the diversity of cell populations, and the limitations of available models, further complicated by differences between human and rodent cells. Consequently, the literature contains multiple descriptions and categorisations of microglia with neurotoxic phenotypes, including senescence, without any unifying markers. The role of microglia in brain homeostasis, particularly iron storage and metabolism, may provide a key to reliable identification.
Collapse
Affiliation(s)
| | - David R. Brown
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK;
| |
Collapse
|
170
|
Bouadi O, Tay TL. More Than Cell Markers: Understanding Heterogeneous Glial Responses to Implantable Neural Devices. Front Cell Neurosci 2021; 15:658992. [PMID: 33912015 PMCID: PMC8071943 DOI: 10.3389/fncel.2021.658992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ouzéna Bouadi
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Faculty of Life Sciences, University of Strasbourg, Strasbourg, France
| | - Tuan Leng Tay
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, Germany.,Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
171
|
Uriarte Huarte O, Richart L, Mittelbronn M, Michelucci A. Microglia in Health and Disease: The Strength to Be Diverse and Reactive. Front Cell Neurosci 2021; 15:660523. [PMID: 33867943 PMCID: PMC8044310 DOI: 10.3389/fncel.2021.660523] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the resident immune effector cells of the central nervous system (CNS) rapidly reacting to any perturbation in order to maintain CNS homeostasis. Although their outstanding reactive properties have been elucidated over the last decades, their heterogeneity in healthy tissue, such as across brain regions, as well as their diversity in the development and progression of brain diseases, are currently opening new avenues to understand the cellular and functional states of microglia subsets in a context-dependent manner. Here, we review the main breakthrough studies that helped in elucidating microglia heterogeneity in the healthy and diseased brain and might pave the way to critical functional screenings of the inferred cellular diversity. We suggest that unraveling the cellular and molecular mechanisms underlying specific functionalities of microglial subpopulations, which may ultimately support or harm the neuronal network in neurodegenerative diseases, or may acquire pro- or anti-tumorigenic phenotypes in brain tumors, will possibly uncover new therapeutic avenues for to date non-curable neurological disorders.
Collapse
Affiliation(s)
- Oihane Uriarte Huarte
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Luxembourg Center of Neuropathology, Luxembourg, Luxembourg
| | - Lorraine Richart
- Luxembourg Center of Neuropathology, Luxembourg, Luxembourg.,Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Luxembourg Center of Neuropathology, Luxembourg, Luxembourg.,Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| |
Collapse
|
172
|
Buonfiglioli A, Hambardzumyan D. Macrophages and microglia: the cerberus of glioblastoma. Acta Neuropathol Commun 2021; 9:54. [PMID: 33766119 PMCID: PMC7992800 DOI: 10.1186/s40478-021-01156-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and deadliest of the primary brain tumors, characterized by malignant growth, invasion into the brain parenchyma, and resistance to therapy. GBM is a heterogeneous disease characterized by high degrees of both inter- and intra-tumor heterogeneity. Another layer of complexity arises from the unique brain microenvironment in which GBM develops and grows. The GBM microenvironment consists of neoplastic and non-neoplastic cells. The most abundant non-neoplastic cells are those of the innate immune system, called tumor-associated macrophages (TAMs). TAMs constitute up to 40% of the tumor mass and consist of both brain-resident microglia and bone marrow-derived myeloid cells from the periphery. Although genetically stable, TAMs can change their expression profiles based upon the signals that they receive from tumor cells; therefore, heterogeneity in GBM creates heterogeneity in TAMs. By interacting with tumor cells and with the other non-neoplastic cells in the tumor microenvironment, TAMs promote tumor progression. Here, we review the origin, heterogeneity, and functional roles of TAMs. In addition, we discuss the prospects of therapeutically targeting TAMs alone or in combination with standard or newly-emerging GBM targeting therapies.
Collapse
|
173
|
Blériot C, Chakarov S, Ginhoux F. Determinants of Resident Tissue Macrophage Identity and Function. Immunity 2021; 52:957-970. [PMID: 32553181 DOI: 10.1016/j.immuni.2020.05.014] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/27/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
Resident tissue macrophages (RTMs) have a broad spectrum of immune- and non-immune-related tissue-supporting activities. The roots of this heterogeneity and versatility are only beginning to be understood. Here, we propose a conceptual framework for considering the RTM heterogeneity that organizes the factors shaping RTM identity within four cardinal points: (1) ontogeny and the view that adult RTM populations comprise a defined mixture of cells that arise from either embryonic precursors or adult monocytes; (2) local factors unique to the niche of residence, evolving during development and aging; (3) inflammation status; and (4) the cumulative effect of time spent in a specific tissue that contributes to the resilient adaptation of macrophages to their dynamic environment. We review recent findings within this context and discuss the technological advances that are revolutionizing the study of macrophage biology.
Collapse
Affiliation(s)
- Camille Blériot
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648, Singapore
| | - Svetoslav Chakarov
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648, Singapore; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore.
| |
Collapse
|
174
|
Sokolova D, Childs T, Hong S. Insight into the role of phosphatidylserine in complement-mediated synapse loss in Alzheimer's disease. Fac Rev 2021; 10:19. [PMID: 33718936 PMCID: PMC7946395 DOI: 10.12703/r/10-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The innate immune system plays an integral role in the brain. Synaptic pruning, a fundamental process in developmental circuit refinement, is partially mediated by neuroimmune signalling at the synapse. In particular, microglia, the major tissue-resident macrophages of the brain, and the classical complement cascade, an innate immune pathway that aids in the clearance of unwanted material, have been implicated in mediating synapse elimination. Emerging data suggest that improper signalling of the innate immune pathway at the synapse leads to pathological synapse loss in age-related neurodegenerative diseases, including Alzheimer's disease. Now the key questions are whether synapses are targeted by complement and, if so, which synapses are vulnerable to elimination. Here, we review recent work implicating C1q, the initiator of the classical complement cascade, and surrounding glia as mediators of synapse loss. We examine how synapses could undergo apoptosis-like pathways in the Alzheimer brain, which may lead to the externalisation of phosphatidylserine on synapses. Finally, we discuss potential roles for microglia and astrocytes in this 'synaptic apoptosis'. Critical insight into neuroimmune regulatory pathways on synapses will be key to developing effective targets against pathological synapse loss in dementia.
Collapse
Affiliation(s)
- Dimitra Sokolova
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London WC1E 6BT, UK
| | - Thomas Childs
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London WC1E 6BT, UK
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
175
|
Masuda T, Sankowski R, Staszewski O, Prinz M. Microglia Heterogeneity in the Single-Cell Era. Cell Rep 2021; 30:1271-1281. [PMID: 32023447 DOI: 10.1016/j.celrep.2020.01.010] [Citation(s) in RCA: 419] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/19/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system (CNS) that are capable of carrying out prominent and various functions during development and adulthood under both homeostatic and disease conditions. Although microglia are traditionally thought to be heterogeneous populations, which potentially allows them to achieve a wide range of responses to environmental changes for the maintenance of CNS homeostasis, a lack of unbiased and high-throughput methods to assess microglia heterogeneity has prevented the study of spatially and temporally distributed microglia subsets. The recent emergence of novel single-cell techniques, such as cytometry by time-of-flight mass spectrometry (CyTOF) and single-cell RNA sequencing, enabled scientists to overcome such limitations and reveal the surprising context-dependent heterogeneity of microglia. In this review, we summarize the current knowledge about the spatial, temporal, and functional diversity of microglia during development, homeostasis, and disease in mice and humans.
Collapse
Affiliation(s)
- Takahiro Masuda
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ori Staszewski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
176
|
Ochocka N, Kaminska B. Microglia Diversity in Healthy and Diseased Brain: Insights from Single-Cell Omics. Int J Mol Sci 2021; 22:3027. [PMID: 33809675 PMCID: PMC8002227 DOI: 10.3390/ijms22063027] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) that have distinct ontogeny from other tissue macrophages and play a pivotal role in health and disease. Microglia rapidly react to the changes in their microenvironment. This plasticity is attributed to the ability of microglia to adapt a context-specific phenotype. Numerous gene expression profiling studies of immunosorted CNS immune cells did not permit a clear dissection of their phenotypes, particularly in diseases when peripheral cells of the immune system come to play. Only recent advances in single-cell technologies allowed studying microglia at high resolution and revealed a spectrum of discrete states both under homeostatic and pathological conditions. Single-cell technologies such as single-cell RNA sequencing (scRNA-seq) and mass cytometry (Cytometry by Time-Of-Flight, CyTOF) enabled determining entire transcriptomes or the simultaneous quantification of >30 cellular parameters of thousands of individual cells. Single-cell omics studies demonstrated the unforeseen heterogeneity of microglia and immune infiltrates in brain pathologies: neurodegenerative disorders, stroke, depression, and brain tumors. We summarize the findings from those studies and the current state of knowledge of functional diversity of microglia under physiological and pathological conditions. A precise definition of microglia functions and phenotypes may be essential to design future immune-modulating therapies.
Collapse
Affiliation(s)
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| |
Collapse
|
177
|
Microglial Heterogeneity and Its Potential Role in Driving Phenotypic Diversity of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22052780. [PMID: 33803478 PMCID: PMC7967159 DOI: 10.3390/ijms22052780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is increasingly recognized as a highly heterogeneous disorder occurring under distinct clinical and neuropathological phenotypes. Despite the molecular determinants of such variability not being well defined yet, microglial cells may play a key role in this process by releasing distinct pro- and/or anti-inflammatory cytokines, potentially affecting the expression of the disease. We carried out a neuropathological and biochemical analysis on a series of AD brain samples, gathering evidence about the heterogeneous involvement of microglia in AD. The neuropathological studies showed differences concerning morphology, density and distribution of microglial cells among AD brains. Biochemical investigations showed increased brain levels of IL-4, IL-6, IL-13, CCL17, MMP-7 and CXCL13 in AD in comparison with control subjects. The molecular profiling achieved by measuring the brain levels of 25 inflammatory factors known to be involved in neuroinflammation allowed a stratification of the AD patients in three distinct “neuroinflammatory clusters”. These findings strengthen the relevance of neuroinflammation in AD pathogenesis suggesting, in particular, that the differential involvement of neuroinflammatory molecules released by microglial cells during the development of the disease may contribute to modulate the characteristics and the severity of the neuropathological changes, driving—at least in part—the AD phenotypic diversity.
Collapse
|
178
|
Clarke BE, Patani R. The microglial component of amyotrophic lateral sclerosis. Brain 2021; 143:3526-3539. [PMID: 33427296 PMCID: PMC7805793 DOI: 10.1093/brain/awaa309] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Abstract
Microglia are the primary immune cells of the CNS, carrying out key homeostatic roles and undergoing context-dependent and temporally regulated changes in response to injury and neurodegenerative diseases. Microglia have been implicated in playing a role in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by extensive motor neuron loss leading to paralysis and premature death. However, as the pathomechansims of ALS are increasingly recognized to involve a multitude of different cell types, it has been difficult to delineate the specific contribution of microglia to disease. Here, we review the literature of microglial involvement in ALS and discuss the evidence for the neurotoxic and neuroprotective pathways that have been attributed to microglia in this disease. We also discuss accumulating evidence for spatiotemporal regulation of microglial activation in this context. A deeper understanding of the role of microglia in the ‘cellular phase’ of ALS is crucial in the development of mechanistically rationalized therapies.
Collapse
Affiliation(s)
- Benjamin E Clarke
- Department of Neuromuscular disease, Institute of Neurology, University College London, Queen Square, London, UK.,The Francis Crick Institute, 1 Midland Road, London, UK
| | - Rickie Patani
- Department of Neuromuscular disease, Institute of Neurology, University College London, Queen Square, London, UK.,The Francis Crick Institute, 1 Midland Road, London, UK
| |
Collapse
|
179
|
Hypothalamic Microglial Heterogeneity and Signature under High Fat Diet-Induced Inflammation. Int J Mol Sci 2021; 22:ijms22052256. [PMID: 33668314 PMCID: PMC7956484 DOI: 10.3390/ijms22052256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Under high-fat feeding, the hypothalamus atypically undergoes pro-inflammatory signaling activation. Recent data from transcriptomic analysis of microglia from rodents and humans has allowed the identification of several microglial subpopulations throughout the brain. Numerous studies have clarified the roles of these cells in hypothalamic inflammation, but how each microglial subset plays its functions upon inflammatory stimuli remains unexplored. Fortunately, these data unveiling microglial heterogeneity have triggered the development of novel experimental models for studying the roles and characteristics of each microglial subtype. In this review, we explore microglial heterogeneity in the hypothalamus and their crosstalk with astrocytes under high fat diet-induced inflammation. We present novel currently available ex vivo and in vivo experimental models that can be useful when designing a new research project in this field of study. Last, we examine the transcriptomic data already published to identify how the hypothalamic microglial signature changes upon short-term and prolonged high-fat feeding.
Collapse
|
180
|
Kenkhuis B, Somarakis A, de Haan L, Dzyubachyk O, IJsselsteijn ME, de Miranda NFCC, Lelieveldt BPF, Dijkstra J, van Roon-Mom WMC, Höllt T, van der Weerd L. Iron loading is a prominent feature of activated microglia in Alzheimer's disease patients. Acta Neuropathol Commun 2021; 9:27. [PMID: 33597025 PMCID: PMC7887813 DOI: 10.1186/s40478-021-01126-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/30/2021] [Indexed: 12/19/2022] Open
Abstract
Brain iron accumulation has been found to accelerate disease progression in amyloid-β(Aβ) positive Alzheimer patients, though the mechanism is still unknown. Microglia have been identified as key players in the disease pathogenesis, and are highly reactive cells responding to aberrations such as increased iron levels. Therefore, using histological methods, multispectral immunofluorescence and an automated in-house developed microglia segmentation and analysis pipeline, we studied the occurrence of iron-accumulating microglia and the effect on its activation state in human Alzheimer brains. We identified a subset of microglia with increased expression of the iron storage protein ferritin light chain (FTL), together with increased Iba1 expression, decreased TMEM119 and P2RY12 expression. This activated microglia subset represented iron-accumulating microglia and appeared morphologically dystrophic. Multispectral immunofluorescence allowed for spatial analysis of FTL+Iba1+-microglia, which were found to be the predominant Aβ-plaque infiltrating microglia. Finally, an increase of FTL+Iba1+-microglia was seen in patients with high Aβ load and Tau load. These findings suggest iron to be taken up by microglia and to influence the functional phenotype of these cells, especially in conjunction with Aβ.
Collapse
Affiliation(s)
- Boyd Kenkhuis
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Antonios Somarakis
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lorraine de Haan
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Jouke Dijkstra
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Thomas Höllt
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Intelligent Systems, Delft University of Technology, Delft, The Netherlands
| | - Louise van der Weerd
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
181
|
Joshi L, Plastira I, Bernhart E, Reicher H, Koyani CN, Madl T, Madreiter-Sokolowski C, Koshenov Z, Graier WF, Hallström S, Sattler W. Lysophosphatidic Acid Induces Aerobic Glycolysis, Lipogenesis, and Increased Amino Acid Uptake in BV-2 Microglia. Int J Mol Sci 2021; 22:1968. [PMID: 33671212 PMCID: PMC7923140 DOI: 10.3390/ijms22041968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023] Open
Abstract
Lysophosphatidic acid (LPA) species are a family of bioactive lipids that transmit signals via six cognate G protein-coupled receptors, which are required for brain development and function of the nervous system. LPA affects the function of all cell types in the brain and can display beneficial or detrimental effects on microglia function. During earlier studies we reported that LPA treatment of microglia induces polarization towards a neurotoxic phenotype. In the present study we investigated whether these alterations are accompanied by the induction of a specific immunometabolic phenotype in LPA-treated BV-2 microglia. In response to LPA (1 µM) we observed slightly decreased mitochondrial respiration, increased lactate secretion and reduced ATP/ADP ratios indicating a switch towards aerobic glycolysis. Pathway analyses demonstrated induction of the Akt-mTOR-Hif1α axis under normoxic conditions. LPA treatment resulted in dephosphorylation of AMP-activated kinase, de-repression of acetyl-CoA-carboxylase and increased fatty acid content in the phospholipid and triacylglycerol fraction of BV-2 microglia lipid extracts, indicating de novo lipogenesis. LPA led to increased intracellular amino acid content at one or more time points. Finally, we observed LPA-dependent generation of reactive oxygen species (ROS), phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), upregulated protein expression of the Nrf2 target regulatory subunit of glutamate-cysteine ligase and increased glutathione synthesis. Our observations suggest that LPA, as a bioactive lipid, induces subtle alterations of the immunometabolic program in BV-2 microglia.
Collapse
Affiliation(s)
- Lisha Joshi
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (C.N.K.); (T.M.); (C.M.-S.); (Z.K.); (W.F.G.)
| | - Ioanna Plastira
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (C.N.K.); (T.M.); (C.M.-S.); (Z.K.); (W.F.G.)
| | - Eva Bernhart
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (C.N.K.); (T.M.); (C.M.-S.); (Z.K.); (W.F.G.)
| | - Helga Reicher
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (C.N.K.); (T.M.); (C.M.-S.); (Z.K.); (W.F.G.)
| | - Chintan N. Koyani
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (C.N.K.); (T.M.); (C.M.-S.); (Z.K.); (W.F.G.)
| | - Tobias Madl
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (C.N.K.); (T.M.); (C.M.-S.); (Z.K.); (W.F.G.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Corina Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (C.N.K.); (T.M.); (C.M.-S.); (Z.K.); (W.F.G.)
| | - Zhanat Koshenov
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (C.N.K.); (T.M.); (C.M.-S.); (Z.K.); (W.F.G.)
| | - Wolfgang F. Graier
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (C.N.K.); (T.M.); (C.M.-S.); (Z.K.); (W.F.G.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Seth Hallström
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria;
| | - Wolfgang Sattler
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (C.N.K.); (T.M.); (C.M.-S.); (Z.K.); (W.F.G.)
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
182
|
Prinz M, Masuda T, Wheeler MA, Quintana FJ. Microglia and Central Nervous System-Associated Macrophages-From Origin to Disease Modulation. Annu Rev Immunol 2021; 39:251-277. [PMID: 33556248 DOI: 10.1146/annurev-immunol-093019-110159] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The immune system of the central nervous system (CNS) consists primarily of innate immune cells. These are highly specialized macrophages found either in the parenchyma, called microglia, or at the CNS interfaces, such as leptomeningeal, perivascular, and choroid plexus macrophages. While they were primarily thought of as phagocytes, their function extends well beyond simple removal of cell debris during development and diseases. Brain-resident innate immune cells were found to be plastic, long-lived, and host to an outstanding number of risk genes for multiple pathologies. As a result, they are now considered the most suitable targets for modulating CNS diseases. Additionally, recent single-cell technologies enhanced our molecular understanding of their origins, fates, interactomes, and functional cell statesduring health and perturbation. Here, we review the current state of our understanding and challenges of the myeloid cell biology in the CNS and treatment options for related diseases.
Collapse
Affiliation(s)
- Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany; .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, D-79104 Freiburg, Germany
| | - Takahiro Masuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 812-8582 Fukuoka, Japan;
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; , .,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; , .,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
183
|
Comparative Analysis Identifies Similarities between the Human and Murine Microglial Sensomes. Int J Mol Sci 2021; 22:ijms22031495. [PMID: 33540859 PMCID: PMC7867338 DOI: 10.3390/ijms22031495] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/31/2022] Open
Abstract
One of the essential functions of microglia is to continuously sense changes in their environment and adapt to those changes. For this purpose, they use a set of genes termed the sensome. This sensome is comprised of the most abundantly expressed receptors on the surface of microglia. In this study, we updated previously identified mouse microglial sensome by incorporating an additional published RNAseq dataset into the data-analysis pipeline. We also identified members of the human microglial sensome using two independent human microglia RNAseq data sources. Using both the mouse and human microglia sensomes, we identified a key set of genes conserved between the mouse and human microglial sensomes as well as some differences between the species. We found a key set of 57 genes to be conserved in both mouse and human microglial sensomes. We define these genes as the “microglia core sensome”. We then analyzed expression of genes in this core sensome in five different datasets from two neurodegenerative disease models at various stages of the diseases and found that, overall, changes in the level of expression of microglial sensome genes are specific to the disease or condition studied. Our results highlight the relevance of data generated in mice for understanding the biology of human microglia, but also stress the importance of species-specific gene sets for the investigation of diseases involving microglia. Defining this microglial specific core sensome may help identify pathological changes in microglia in humans and mouse models of human disease.
Collapse
|
184
|
Hemonnot-Girard AL, Ben Haim L, Escartin C, Hirbec H. [New technologies to unveil the role of brain glial cells]. Med Sci (Paris) 2021; 37:59-67. [PMID: 33492220 DOI: 10.1051/medsci/2020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Brain function relies on complex interactions between neurons and different types of glial cells, such as astrocytes, microglia and oligodendrocytes. The relatively young field of "gliobiology" is thriving. Thanks to various technical innovations, it is now possible to address challenging biological questions on glial cells and unravel their multiple roles in brain function and dysfunction.
Collapse
Affiliation(s)
| | - Lucile Ben Haim
- Université Paris-Saclay, CEA, CNRS, MIRCen (Molecular Imaging Research Center), Laboratoire des maladies neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen (Molecular Imaging Research Center), Laboratoire des maladies neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Hélène Hirbec
- IGF, Univ Montpellier, CNRS, Inserm, Montpellier, France
| |
Collapse
|
185
|
Role of Microgliosis and NLRP3 Inflammasome in Parkinson's Disease Pathogenesis and Therapy. Cell Mol Neurobiol 2021; 42:1283-1300. [PMID: 33387119 DOI: 10.1007/s10571-020-01027-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked primarily by motor symptoms such as rigidity, bradykinesia, postural instability and resting tremor associated with dopaminergic neuronal loss in the Substantia Nigra pars compacta (SNpc) and deficit of dopamine in the basal ganglia. These motor symptoms can be preceded by pre-motor symptoms whose recognition can be useful to apply different strategies to evaluate risk, early diagnosis and prevention of PD progression. Although clinical characteristics of PD are well defined, its pathogenesis is still not completely known, what makes discoveries of therapies capable of curing patients difficult to be reached. Several theories about the cause of idiopathic PD have been investigated and among them, the key role of inflammation, microglia and the inflammasome in the pathogenesis of PD has been considered. In this review, we describe the role and relation of both the inflammasome and microglial activation with the pathogenesis, symptoms, progression and the possibilities for new therapeutic strategies in PD.
Collapse
|
186
|
Ohm DT, Fought AJ, Martersteck A, Coventry C, Sridhar J, Gefen T, Weintraub S, Bigio E, Mesulam M, Rogalski E, Geula C. Accumulation of neurofibrillary tangles and activated microglia is associated with lower neuron densities in the aphasic variant of Alzheimer's disease. Brain Pathol 2021; 31:189-204. [PMID: 33010092 PMCID: PMC7855834 DOI: 10.1111/bpa.12902] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
The neurofibrillary tangles (NFT) and amyloid-ß plaques (AP) that comprise Alzheimer's disease (AD) neuropathology are associated with neurodegeneration and microglial activation. Activated microglia exist on a dynamic spectrum of morphologic subtypes that include resting, surveillant microglia capable of converting to activated, hypertrophic microglia closely linked to neuroinflammatory processes and AD neuropathology in amnestic AD. However, quantitative analyses of microglial subtypes and neurons are lacking in non-amnestic clinical AD variants, including primary progressive aphasia (PPA-AD). PPA-AD is a language disorder characterized by cortical atrophy and NFT densities concentrated to the language-dominant hemisphere. Here, a stereologic investigation of five PPA-AD participants determined the densities and distributions of neurons and microglial subtypes to examine how cellular changes relate to AD neuropathology and may contribute to cortical atrophy. Adjacent series of sections were immunostained for neurons (NeuN) and microglia (HLA-DR) from bilateral language and non-language regions where in vivo cortical atrophy and Thioflavin-S-positive APs and NFTs were previously quantified. NeuN-positive neurons and morphologic subtypes of HLA-DR-positive microglia (i.e., resting [ramified] microglia and activated [hypertrophic] microglia) were quantified using unbiased stereology. Relationships between neurons, microglia, AD neuropathology, and cortical atrophy were determined using linear mixed models. NFT densities were positively associated with hypertrophic microglia densities (P < 0.01) and inversely related to neuron densities (P = 0.01). Hypertrophic microglia densities were inversely related to densities of neurons (P < 0.01) and ramified microglia (P < 0.01). Ramified microglia densities were positively associated with neuron densities (P = 0.02) and inversely related to cortical atrophy (P = 0.03). Our findings provide converging evidence of divergent roles for microglial subtypes in patterns of neurodegeneration, which includes hypertrophic microglia likely driving a neuroinflammatory response more sensitive to NFTs than APs in PPA-AD. Moreover, the accumulation of both NFTs and activated hypertrophic microglia in association with low neuron densities suggest they may collectively contribute to focal neurodegeneration characteristic of PPA-AD.
Collapse
Affiliation(s)
- Daniel T. Ohm
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| | - Angela J. Fought
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Adam Martersteck
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| | - Christina Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| | - Jaiashre Sridhar
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIL
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIL
| | - Eileen Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoIL
| | - M.‐Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIL
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIL
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| |
Collapse
|
187
|
Hashioka S, Wu Z, Klegeris A. Glia-Driven Neuroinflammation and Systemic Inflammation in Alzheimer's Disease. Curr Neuropharmacol 2021; 19:908-924. [PMID: 33176652 PMCID: PMC8686312 DOI: 10.2174/1570159x18666201111104509] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022] Open
Abstract
The neuroinflammatory hypothesis of Alzheimer's disease (AD) was proposed more than 30 years ago. The involvement of the two main types of glial cells microglia and astrocytes, in neuroinflammation, was suggested early on. In this review, we highlight that the exact contributions of reactive glia to AD pathogenesis remain difficult to define, likely due to the heterogeneity of glia populations and alterations in their activation states through the stages of AD progression. In the case of microglia, it is becoming apparent that both beneficially and adversely activated cell populations can be identified at various stages of AD, which could be selectively targeted to either limit their damaging actions or enhance beneficial functions. In the case of astrocytes, less information is available about potential subpopulations of reactive cells; it also remains elusive whether astrocytes contribute to the neuropathology of AD by mainly gaining neurotoxic functions or losing their ability to support neurons due to astrocyte damage. We identify L-type calcium channel blocker, nimodipine, as a candidate drug for AD, which potentially targets both astrocytes and microglia. It has already shown consistent beneficial effects in basic experimental and clinical studies. We also highlight the recent evidence linking peripheral inflammation and neuroinflammation. Several chronic systemic inflammatory diseases, such as obesity, type 2 diabetes mellitus, and periodontitis, can cause immune priming or adverse activation of glia, thus exacerbating neuroinflammation and increasing risk or facilitating the progression of AD. Therefore, reducing peripheral inflammation is a potentially effective strategy for lowering AD prevalence.
Collapse
Affiliation(s)
- Sadayuki Hashioka
- Address correspondence to these authors at the Department of Psychiatry, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan;, E-mail: and Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada; E-mail:
| | | | - Andis Klegeris
- Address correspondence to these authors at the Department of Psychiatry, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan;, E-mail: and Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada; E-mail:
| |
Collapse
|
188
|
Chase Huizar C, Raphael I, Forsthuber TG. Genomic, proteomic, and systems biology approaches in biomarker discovery for multiple sclerosis. Cell Immunol 2020; 358:104219. [PMID: 33039896 PMCID: PMC7927152 DOI: 10.1016/j.cellimm.2020.104219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disorder characterized by autoimmune-mediated inflammatory lesions in CNS leading to myelin damage and axonal loss. MS is a heterogenous disease with variable and unpredictable disease course. Due to its complex nature, MS is difficult to diagnose and responses to specific treatments may vary between individuals. Therefore, there is an indisputable need for biomarkers for early diagnosis, prediction of disease exacerbations, monitoring the progression of disease, and for measuring responses to therapy. Genomic and proteomic studies have sought to understand the molecular basis of MS and find biomarker candidates. Advances in next-generation sequencing and mass-spectrometry techniques have yielded an unprecedented amount of genomic and proteomic data; yet, translation of the results into the clinic has been underwhelming. This has prompted the development of novel data science techniques for exploring these large datasets to identify biologically relevant relationships and ultimately point towards useful biomarkers. Herein we discuss optimization of omics study designs, advances in the generation of omics data, and systems biology approaches aimed at improving biomarker discovery and translation to the clinic for MS.
Collapse
Affiliation(s)
- Carol Chase Huizar
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, UPMC Children's Hospital, Pittsburgh, PA, USA.
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
189
|
Xu S, Liu M, Bai Y, Liu H. Multi-Dimensional Organic Mass Cytometry: Simultaneous Analysis of Proteins and Metabolites on Single Cells. Angew Chem Int Ed Engl 2020; 60:1806-1812. [PMID: 33085796 DOI: 10.1002/anie.202009682] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Mass cytometry is attracting significant attention for enabling spatiotemporal high-throughput single-cell analysis. As the first demonstration of the simultaneous detection of single-cell proteins and untargeted metabolites, a multi-dimensional organic mass-cytometry system was established by a simple microfluidic chip connected to a nanoelectrospray mass spectrometer, providing useful heterogeneous information about the cells. A series of mass probes with online-dissociated mass tags were developed, ensuring the semi-quantification of cell-surface proteins and the compatibility of endogenous metabolite detection at the single-cell level. Six cell surface antigens and ≈100 metabolites from three ovarian-cancer cell types and two breast-cancer cell types were successfully monitored and contributed to highly sensitive and specific cell typing. Doxorubicin-resistant cancer-cell analysis confirmed the applications in distinguishing rare cell phenotypes. The proposed system is simple, extensible, and promising for cell typing, drug-resistance analysis of tumor cells, and clinical diagnosis and therapy at the single-cell level.
Collapse
Affiliation(s)
- Shuting Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Mingxia Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
190
|
Xu S, Liu M, Bai Y, Liu H. Multi‐Dimensional Organic Mass Cytometry: Simultaneous Analysis of Proteins and Metabolites on Single Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shuting Xu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Mingxia Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
191
|
Timmerman R, Burm SM, Bajramovic JJ. Tissue-specific features of microglial innate immune responses. Neurochem Int 2020; 142:104924. [PMID: 33248205 DOI: 10.1016/j.neuint.2020.104924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
As tissue-resident macrophages of the brain, microglia are increasingly considered as cellular targets for therapeutical intervention. Innate immune responses in particular have been implicated in central nervous system (CNS) infections, neuro-oncology, neuroinflammatory and neurodegenerative diseases. We here review the impact of 'nature and nurture' on microglial innate immune responses and summarize documented tissue-specific adaptations. Overall, such adaptations are associated with regulatory processes rather than with overt differences in the expressed repertoire of activating receptors of different tissue-resident macrophages. Microglial responses are characterized by slower kinetics, by a more persistent nature and by a differential usage of downstream enzymes and accessory receptors. We further consider factors like aging, previous exposure to inflammatory stimuli, and differences in the microenvironment that can modulate innate immune responses. The long-life span of microglia in the metabolically active CNS renders them susceptible to the phenomenon of 'inflammaging', and major challenges lie in the unraveling of the factors that underlie age-related alterations in microglial behavior.
Collapse
Affiliation(s)
- R Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - S M Burm
- Genmab, Utrecht, the Netherlands
| | - J J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, the Netherlands.
| |
Collapse
|
192
|
Kinuthia UM, Wolf A, Langmann T. Microglia and Inflammatory Responses in Diabetic Retinopathy. Front Immunol 2020; 11:564077. [PMID: 33240260 PMCID: PMC7681237 DOI: 10.3389/fimmu.2020.564077] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy is a vision-threatening disease affecting neurons and microvasculature of the retina. The development of this disease is associated with the action of inflammatory factors that are connected to the activation of microglial cells, the resident tissue macrophages of the CNS. In the quiescent state, microglial cells help maintain tissue homeostasis in the retina through phagocytosis and control of low-grade inflammation. However, prolonged tissue stress due to hyperglycemia primes microglia to become overly reactive with the concomitant production of pro-inflammatory cytokines and chemokines causing chronic inflammation. In this review, we provide evidence of microglial cell activation and pro-inflammatory molecules associated with the development and progression of diabetic retinopathy. We further highlight innovative animal models that can mimic the disease in humans and discuss strategies in modulating microglial-mediated inflammation as potential therapeutic approaches in managing the disease.
Collapse
Affiliation(s)
- Urbanus Muthai Kinuthia
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
193
|
Reed-Geaghan EG, Croxford AL, Becher B, Landreth GE. Plaque-associated myeloid cells derive from resident microglia in an Alzheimer's disease model. J Exp Med 2020; 217:133630. [PMID: 31967645 PMCID: PMC7144522 DOI: 10.1084/jem.20191374] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/13/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is accompanied by a robust inflammatory response mediated by plaque-associated myeloid cells of the brain. These cells exhibit altered gene expression profiles and serve as a barrier, preventing neuritic dystrophy. The origin of these cells has been controversial and is of therapeutic importance. Here, we genetically labeled different myeloid populations and unequivocally demonstrated that plaque-associated myeloid cells in the AD brain are derived exclusively from resident microglia, with no contribution from circulating peripheral monocytes.
Collapse
Affiliation(s)
- Erin G Reed-Geaghan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Andrew L Croxford
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Gary E Landreth
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, School of Medicine, Indiana University, Indianapolis, IN
| |
Collapse
|
194
|
Zia S, Rawji KS, Michaels NJ, Burr M, Kerr BJ, Healy LM, Plemel JR. Microglia Diversity in Health and Multiple Sclerosis. Front Immunol 2020; 11:588021. [PMID: 33240276 PMCID: PMC7677361 DOI: 10.3389/fimmu.2020.588021] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple Sclerosis (MS) is a neurodegenerative disease characterized by multiple focal lesions, ongoing demyelination and, for most people, a lack of remyelination. MS lesions are enriched with monocyte-derived macrophages and brain-resident microglia that, together, are likely responsible for much of the immune-mediated neurotoxicity. However, microglia and macrophage also have documented neuroprotective and regenerative roles, suggesting a potential diversity in their functions. Linked with microglial functional diversity, they take on diverse phenotypes developmentally, regionally and across disease conditions. Advances in technologies such as single-cell RNA sequencing and mass cytometry of immune cells has led to dramatic developments in understanding the phenotypic changes of microglia and macrophages. This review highlights the origins of microglia, their heterogeneity throughout normal ageing and their contribution to pathology and repair, with a specific focus on autoimmunity and MS. As phenotype dictates function, the emerging heterogeneity of microglia and macrophage populations in MS offers new insights into the potential immune mechanisms that result in inflammation and regeneration.
Collapse
Affiliation(s)
- Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Khalil S Rawji
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Campus, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Nathan J Michaels
- Ministry of Health, British Columbia Government, Victoria, BC, Canada
| | - Mena Burr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Luke M Healy
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
195
|
Spanos F, Liddelow SA. An Overview of Astrocyte Responses in Genetically Induced Alzheimer's Disease Mouse Models. Cells 2020; 9:E2415. [PMID: 33158189 PMCID: PMC7694249 DOI: 10.3390/cells9112415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Despite many years of intense research, there is currently still no effective treatment. Multiple cell types contribute to disease pathogenesis, with an increasing body of data pointing to the active participation of astrocytes. Astrocytes play a pivotal role in the physiology and metabolic functions of neurons and other cells in the central nervous system. Because of their interactions with other cell types, astrocyte functions must be understood in their biologic context, thus many studies have used mouse models, of which there are over 190 available for AD research. However, none appear able to fully recapitulate the many functional changes in astrocytes reported in human AD brains. Our review summarizes the observations of astrocyte biology noted in mouse models of familial and sporadic AD. The limitations of AD mouse models will be discussed and current attempts to overcome these disadvantages will be described. With increasing understanding of the non-neuronal contributions to disease, the development of new methods and models will provide further insights and address important questions regarding the roles of astrocytes and other non-neuronal cells in AD pathophysiology. The next decade will prove to be full of exciting opportunities to address this devastating disease.
Collapse
Affiliation(s)
- Fokion Spanos
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA;
| | - Shane A. Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA;
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
196
|
Ormel PR, Böttcher C, Gigase FAJ, Missall RD, van Zuiden W, Fernández Zapata MC, Ilhan D, de Goeij M, Udine E, Sommer IEC, Priller J, Raj T, Kahn RS, Hol EM, de Witte LD. A characterization of the molecular phenotype and inflammatory response of schizophrenia patient-derived microglia-like cells. Brain Behav Immun 2020; 90:196-207. [PMID: 32798663 DOI: 10.1016/j.bbi.2020.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/28/2020] [Accepted: 08/12/2020] [Indexed: 01/02/2023] Open
Abstract
Different lines of evidence support a causal role for microglia in the pathogenesis of schizophrenia. However, how schizophrenia patient-derived microglia are affected at the phenotypic and functional level is still largely unknown. We used a recently described model to induce patient-derived microglia-like cells and used this to analyze changes in the molecular phenotype and function of myeloid cells in schizophrenia. We isolated monocytes from twenty recent-onset schizophrenia patients and twenty non-psychiatric controls. We cultured the cells towards an induced microglia-like phenotype (iMG), analyzed the phenotype of the cells by RNA sequencing and mass cytometry, and their response to LPS. Mass cytometry showed a high heterogeneity of iMG in cells derived from patients as well as controls. The prevalence of two iMG clusters was significantly higher in schizophrenia patients (adjusted p-value < 0.001). These subsets are characterized by expression of ApoE, Ccr2, CD18, CD44, and CD95, as well as IRF8, P2Y12, Cx3cr1 and HLA-DR. In addition, we found that patient-derived iMG show an enhanced response to LPS, with increased secretion of TNF-α. Further studies are needed to replicate these findings, to determine whether similar subclusters are present in schizophrenia patients in vivo, and to address how these subclusters are related to the increased response to LPS, as well as other microglial functions.
Collapse
Affiliation(s)
- Paul R Ormel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands; Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frederieke A J Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roy D Missall
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Welmoed van Zuiden
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Camila Fernández Zapata
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dilara Ilhan
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Michelle de Goeij
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Evan Udine
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iris E C Sommer
- Department of Neuroscience, University Medical Center Groningen, Groningen, The Netherlands
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Deutsches Zentrum Für Neurodegenartive Erkrankungen (DZNE), Bonn, Germany; Cluster of Excellence NeuroCure, Berlin, Germany; University of Edinburgh and UK Dementia Research Institute, Edinburgh, UK
| | - Towfique Raj
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
197
|
Fernández‐Zapata C, Leman JKH, Priller J, Böttcher C. The use and limitations of single-cell mass cytometry for studying human microglia function. Brain Pathol 2020; 30:1178-1191. [PMID: 33058349 PMCID: PMC8018011 DOI: 10.1111/bpa.12909] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 08/23/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia, the resident innate immune cells of the central nervous system (CNS), play an important role in brain development and homoeostasis, as well as in neuroinflammatory, neurodegenerative and psychiatric diseases. Studies in animal models have been used to determine the origin and development of microglia, and how these cells alter their transcriptional and phenotypic signatures during CNS pathology. However, little is known about their human counterparts. Recent studies in human brain samples have harnessed the power of multiplexed single-cell technologies such as single-cell RNA sequencing (scRNA-seq) and mass cytometry (cytometry by time-of-flight [CyTOF]) to provide a comprehensive molecular view of human microglia in healthy and diseased brains. CyTOF is a powerful tool to study high-dimensional protein expression of human microglia (huMG) at the single-cell level. This technology widens the possibilities of high-throughput quantification (of over 60 targeted molecules) at a single-cell resolution. CyTOF can be combined with scRNA-seq for comprehensive analysis, as it allows single-cell analysis of post-translational modifications of proteins, which provides insights into cell signalling dynamics in targeted cells. In addition, imaging mass cytometry (IMC) has recently become commercially available, and will be useful for analysing multiple cell types in human brain sections. IMC leverages mass spectrometry to acquire spatial data of cell-cell interactions on tissue sections, using (theoretically) over 40 markers at the same time. In this review, we summarise recent studies of huMG using CyTOF and IMC analyses. The uses and limitations as well as future directions of these technologies are discussed.
Collapse
Affiliation(s)
- Camila Fernández‐Zapata
- Department of Neuropsychiatry and Laboratory of Molecular PsychiatryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Julia K. H. Leman
- Department of Neuropsychiatry and Laboratory of Molecular PsychiatryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular PsychiatryCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE)BerlinGermany
- UK Dementia Research Institute (DRI)University of EdinburghEdinburghUK
| | - Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular PsychiatryCharité – Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
198
|
Wu S, Nguyen LTM, Pan H, Hassan S, Dai Y, Xu J, Wen Z. Two phenotypically and functionally distinct microglial populations in adult zebrafish. SCIENCE ADVANCES 2020; 6:6/47/eabd1160. [PMID: 33208372 PMCID: PMC7673811 DOI: 10.1126/sciadv.abd1160] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/02/2020] [Indexed: 05/23/2023]
Abstract
Microglia are the tissue-resident macrophages in the central nervous system and are critically involved in immune defense, neural development and function, and neuroinflammation. The versatility of microglia has long been attributed to heterogeneity. Recent studies have revealed possible heterogeneity in human but not in murine microglia, yet a firm demonstration linking microglial heterogeneity to functional phenotypes remains scarce. Here, we identified two distinct microglial populations in adult zebrafish that differ in morphology, distribution, development, and function. The predominant population, phagocytotic microglia, which expresses ccl34b.1, is broadly distributed, amoeboid in shape, highly mobile, and phagocytotic. The other white matter-enriched ccl34b.1- population, regulatory microglia, has ramified protrusions but has limited mobility and phagocytosis capability. These functional differences are further supported by distinct transcriptomes and responses to bacterial infection, where ccl34b.1+ microglia function in tissue clearance and ccl34b.1- microglia release immune regulators. Our study sheds light on the heterogeneity and functional diversification of microglia.
Collapse
Affiliation(s)
- Shuting Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Linh T M Nguyen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hongru Pan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shaoli Hassan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yimei Dai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangdong, Guangzhou 510630, China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518055, China
| |
Collapse
|
199
|
Lyu J, Jiang X, Leak RK, Shi Y, Hu X, Chen J. Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Transl Stroke Res 2020; 12:474-495. [PMID: 33128703 DOI: 10.1007/s12975-020-00857-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022]
Abstract
As an integral part of the innate immune system of the brain, resident microglia must react rapidly to the onset of brain injury and neurological disease. These dynamic cells then continue to shift their phenotype along a multidimensional continuum with overlapping pro- and anti-inflammatory states, allowing them to adapt to microenvironmental changes during the progression of brain disorders. However, the ability of microglia to shift phenotype through nimble molecular, structural, and functional changes comes at a cost, as the extreme pro-inflammatory states may prevent these professional phagocytes from clearing toxic debris and secreting tissue-repairing neurotrophic factors. Evolution has strongly favored heterogeneity in microglia in both the spatial and temporal dimensions-they can assume diverse roles in different brain regions, throughout the course of brain development and aging, and during the spatiotemporal progression of brain injuries and neurological diseases. Age and sex differences add further diversity to microglia functional status under physiological and pathological conditions. This article reviews recent advances in our knowledge of microglia with emphases on molecular mediators of phenotype shifts and functional diversity. We describe microglia-targeted therapeutic opportunities, including pharmacologic modulation of phenotype and repopulation of the brain with fresh microglia. With the advent of powerful new tools, research on microglia has recently accelerated in pace and may translate into potential therapeutics against brain injury and neurological disease.
Collapse
Affiliation(s)
- Junxuan Lyu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
200
|
Wu Q, Shi J, Ji X, Xia T, Zeng L, Li G, Wang Y, Gao J, Yao L, Ma J, Liu X, Liu N, Hu L, He B, Liang Y, Qu G, Jiang G. Heterogenous Internalization of Nanoparticles at Ultra-Trace Concentration in Environmental Individual Unicellular Organisms Unveiled by Single-Cell Mass Cytometry. ACS NANO 2020; 14:12828-12839. [PMID: 32931264 DOI: 10.1021/acsnano.0c03587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The application and consumption of nanoparticles (NPs) inevitably result in the contamination of environmental water. The internalized NPs in unicellular organisms could travel to human bodies along food chains and raise health concerns. Current research failed to determine the characteristics of cellular uptake of NPs by unicellular organisms at extremely low concentration in the real environment. We here developed a label-free high-throughput mass cytometry method to investigate gold NP (AuNP) uptake in a unicellular organism (Tetrahymena thermophila) at the single-cell level. The limit of detection for Au is as low as to 6.67 × 10-18 g/cell, which equals ∼5.3 5 nm AuNPs. We demonstrated that active engulfment pathways were responsible for the cellular accumulation of AuNPs and T. thermophila could also eliminate the cellular AuNPs rapidly. The interaction between AuNPs and T. thermophila is highly dependent on the sizes of nanoparticles; i.e., the population of T. thermophila containing AuNPs decreased with the increment of the diameters of AuNPs when exposed to the same mass concentration. For each type of AuNP, distinct heterogeneous cellular uptake of AuNPs by T. thermophila was observed. Intriguingly, for 5 nm AuNP, even at 0.001 ng/mL, some T. thermophila cells could concentrate AuNPs, indicating a real environmental concern even when water was contaminated by only trace level of NPs. This method represents a promising tool for simultaneous determination of physiological status of cells together with the intracellular level of heavy metal or metallic NPs in study of biological effects.
Collapse
Affiliation(s)
- Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xiaomeng Ji
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Gengtan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Junjie Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaolei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Nian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|