151
|
Feng L, Chen Z, Bian H. Skeletal muscle: molecular structure, myogenesis, biological functions, and diseases. MedComm (Beijing) 2024; 5:e649. [PMID: 38988494 PMCID: PMC11234433 DOI: 10.1002/mco2.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Skeletal muscle is an important motor organ with multinucleated myofibers as its smallest cellular units. Myofibers are formed after undergoing cell differentiation, cell-cell fusion, myonuclei migration, and myofibril crosslinking among other processes and undergo morphological and functional changes or lesions after being stimulated by internal or external factors. The above processes are collectively referred to as myogenesis. After myofibers mature, the function and behavior of skeletal muscle are closely related to the voluntary movement of the body. In this review, we systematically and comprehensively discuss the physiological and pathological processes associated with skeletal muscles from five perspectives: molecule basis, myogenesis, biological function, adaptive changes, and myopathy. In the molecular structure and myogenesis sections, we gave a brief overview, focusing on skeletal muscle-specific fusogens and nuclei-related behaviors including cell-cell fusion and myonuclei localization. Subsequently, we discussed the three biological functions of skeletal muscle (muscle contraction, thermogenesis, and myokines secretion) and its response to stimulation (atrophy, hypertrophy, and regeneration), and finally settled on myopathy. In general, the integration of these contents provides a holistic perspective, which helps to further elucidate the structure, characteristics, and functions of skeletal muscle.
Collapse
Affiliation(s)
- Lan‐Ting Feng
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Huijie Bian
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
152
|
Stevanovic S, Dalmao-Fernandez A, Mohamed D, Nyman TA, Kostovski E, Iversen PO, Savikj M, Nikolic N, Rustan AC, Thoresen GH, Kase ET. Time-dependent reduction in oxidative capacity among cultured myotubes from spinal cord injured individuals. Acta Physiol (Oxf) 2024; 240:e14156. [PMID: 38711362 DOI: 10.1111/apha.14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Skeletal muscle adapts in reaction to contractile activity to efficiently utilize energy substrates, primarily glucose and free fatty acids (FA). Inactivity leads to atrophy and a change in energy utilization in individuals with spinal cord injury (SCI). The present study aimed to characterize possible inactivity-related differences in the energy metabolism between skeletal muscle cells cultured from satellite cells isolated 1- and 12-months post-SCI. METHODS To characterize inactivity-related disturbances in spinal cord injury, we studied skeletal muscle cells isolated from SCI subjects. Cell cultures were established from biopsy samples from musculus vastus lateralis from subjects with SCI 1 and 12 months after the injury. The myoblasts were proliferated and differentiated into myotubes before fatty acid and glucose metabolism were assessed and gene and protein expressions were measured. RESULTS The results showed that glucose uptake was increased, while oleic acid oxidation was reduced at 12 months compared to 1 month. mRNA expressions of PPARGC1α, the master regulator of mitochondrial biogenesis, and MYH2, a determinant of muscle fiber type, were significantly reduced at 12 months. Proteomic analysis showed reduced expression of several mitochondrial proteins. CONCLUSION In conclusion, skeletal muscle cells isolated from immobilized subjects 12 months compared to 1 month after SCI showed reduced fatty acid metabolism and reduced expression of mitochondrial proteins, indicating an increased loss of oxidative capacity with time after injury.
Collapse
Affiliation(s)
- Stanislava Stevanovic
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Andrea Dalmao-Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Derya Mohamed
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Emil Kostovski
- Vestre Viken Hospital Trust, Drammen, Norway
- Manifestsenteret, Røyken, Norway
| | - Per Ole Iversen
- Department of Nutrition, IMB, University of Oslo, Oslo, Norway
- Department of Hematology, Oslo University Hospital, Oslo, Norway
| | - Mladen Savikj
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Natasa Nikolic
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eili T Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
153
|
Lin S, Zhang Y, Ye P, Zhao H, Yang K, Hao G. Oyster ( Ostrea Plicatula Gmelin) Peptides Improve Exercise Endurance Capacity via Activating AMPK and HO-1. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:437-451. [PMID: 38305833 DOI: 10.1080/27697061.2024.2306516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
OBJECTIVE Previous studies have shown that oyster peptides (OPs) have antioxidant and anti-fatigue activities. This study aimed to investigate the effects of OPs on swimming endurance in mice and the underlying mechanisms. METHODS The mice were subjected to gavage with OPs and subjected to exercise training. After 14 days, various biochemical indicators in the blood and gastrocnemius muscle of mice were assessed, and real-time PCR was utilized to detect the level of signal pathway regulation by OPs in the gastrocnemius muscle. Molecular docking technology was employed to observe the potential active components in OPs that regulate signal pathways. RESULTS In this study, OPs supplementation combined with and without exercise significantly extended swimming time compared to the sedentary group. OPs supplementation with exercise also increased glycogen levels and decreased blood urea nitrogen, lactate dehydrogenase, and lactic acid levels. Additionally, mice in the exercise with OPs group exhibited higher activities of antioxidant enzymes. OPs can upregulate metabolic regulatory factors such as AMP-activated protein kinase, peroxisome proliferator-activated receptor gamma coactivator-1 alpha, peroxisome proliferator-activated receptor delta, and glucose transporter 4, thereby increasing energy supply during exercise. Additionally, OPs enhances the expression of heme oxygenase 1 and superoxide dismutase 2, thereby reducing oxidative stress during physical activity. Molecular docking analyses revealed that peptides found in OPs formed hydrogen bonds with AMPK and HO-1, indicating that they can exert bioactivity by activating target proteins such as AMPK and HO-1. CONCLUSIONS OPs supplementation improved energy reserves, modulated energy metabolism pathways, and coordinated antioxidative stress responses, ultimately enhancing swimming endurance. These findings suggest that OPs have the potential to improve exercise levels by promoting metabolism and improving energy utilization efficiency.
Collapse
Affiliation(s)
- Shuting Lin
- Central Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Yuni Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Peng Ye
- Technology Center, Xiamen Customs District P. R. China, Xiamen, China
| | - Houhua Zhao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Keyu Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Gengxin Hao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
154
|
Valente CRM, Marques CG, Nakamoto FP, Salvalágio BR, Lucin GA, Velido LCSB, Dos Reis AS, Mendes GL, Bergamo ME, Okada DN, D Angelo RA, de Lázari EC, Dos Santos Quaresma MVL. Household food insecurity among child and adolescent athletics practitioners: A cross-sectional, descriptive, and exploratory study. Nutrition 2024; 123:112407. [PMID: 38503001 DOI: 10.1016/j.nut.2024.112407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE The aim of the study was to explore the prevalence of food insecurity among child and adolescent athletics practitioners and to investigate factors associated with exercise performance, dietary habits, body composition, sleep, and socioeconomic status based on food security status. METHODS This was a cross-sectional, descriptive, and exploratory study conducted in Campinas, São Paulo, Brazil, between June and July 2023. The convenience sample included children and adolescents (7-17 y old) of both sexes. We evaluated exercise performance, household food insecurity (HFI), dietary-related parameters, and other body composition, lifestyle, and social-related variables. Exercise performance was assessed using the counter movement jump (CMJ), squat jump (SJ), horizontal long jump (HLJ), 50-m sprint test (50-m ST) and throwing strength test (TST). The assessment of HFI was conducted using the food insecurity experience scale (FIES). Comparisons and associations were investigated based on food security status. RESULTS The total sample size was comprised of 138 children (n = 42; 30.4%) and adolescents (n = 96; 69.6%). We found an association between food security status and sex (X2(138,1) = 4.42; P = 0.036). SJ was higher in the food security group than in the HFI group (t(117) = 2.112; P = 0.037; ES = 0.39). Sleep- and dietary-related factors did not differ between the groups. CONCLUSIONS In summary, the prevalence of HFI among child and adolescent athletics participants was approximately 40%. Regarding exercise performance, SJ was better in the food security group than in the HFI group. Concerning dietary-related data, the HFI group had a lower number of meals per day than the food security group, and other dietary data did not differ between the groups. Body composition and sleep-related parameters were similar between the groups.
Collapse
Affiliation(s)
| | - Camila G Marques
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo SP, Brasil
| | | | - Beatriz R Salvalágio
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo SP, Brasil
| | | | | | | | - Gabriela L Mendes
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo SP, Brasil
| | - Maria Eduarda Bergamo
- Curso de Nutrição, Centro Universitário São Camilo, São Paulo SP, Brasil; Instituto Vanderlei Cordeiro de Lima, Campinas SP, Brasil
| | - Daniele N Okada
- Curso de Nutrição, Centro Universitário São Camilo, São Paulo SP, Brasil
| | - Ricardo Antônio D Angelo
- Instituto Vanderlei Cordeiro de Lima, Campinas SP, Brasil; Departamento de Ciências do Esporte, Universidade Estadual de Campinas, Campinas SP, Brasil
| | - Evandro C de Lázari
- Instituto Vanderlei Cordeiro de Lima, Campinas SP, Brasil; Departamento de Ciências do Esporte, Universidade Estadual de Campinas, Campinas SP, Brasil
| | - Marcus Vinicius L Dos Santos Quaresma
- Curso de Pós-Graduação Stricto Sensu em Nutrição, Centro Universitário São Camilo, São Paulo SP, Brasil; Curso de Nutrição, Centro Universitário São Camilo, São Paulo SP, Brasil; Instituto Vanderlei Cordeiro de Lima, Campinas SP, Brasil.
| |
Collapse
|
155
|
Ayaz A, Zaman W, Radák Z, Gu Y. Green strength: The role of micronutrients in plant-based diets for athletic performance enhancement. Heliyon 2024; 10:e32803. [PMID: 38975163 PMCID: PMC11225853 DOI: 10.1016/j.heliyon.2024.e32803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
This review examines the correlation between plant-based diets and athletic performance, with a specific emphasis on the vital aspect of optimizing micronutrients for athletes. In light of the increasing prevalence of plant-based nutrition among athletes due to its perceived advantages in terms of health, ethics, and the environment, this study investigates the ability of these diets to satisfy the demanding nutritional requirements essential for achieving optimal performance and facilitating recovery. The article emphasizes the significance of essential micronutrients such as iron, vitamin B12, calcium, vitamin D, zinc, and omega-3 fatty acids and also addressing the challenges with their absorption and bioavailability from plant sources. The review consolidates existing scientific knowledge to propose strategies for improving micronutrient consumption, comparing the effects of supplements against whole foods, and highlighting the significance of enhancing bioavailability. The proposal supports the implementation of personalized meal planning, with the assistance of sports nutritionists or dietitians, and is substantiated by case studies showcasing the success of plant-based athletes. Future research directions examine the long-term effects of plant-based diets on micronutrient status and athletic performance, as well as developing nutritional trends and technology. The review concludes that plant-based diets can meet athletes' nutritional demands and improve peak performance while aligning with personal and ethical values with strategic planning and professional guidance. This study intends to help athletes, coaches, and nutritionists understand plant-based nutrition for enhanced athletic performance.
Collapse
Affiliation(s)
- Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, 1123, Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
156
|
Domaradzki J, Koźlenia D. Cardiovascular and cardiorespiratory effects of high-intensity interval training in body fat responders and non-responders. Sci Rep 2024; 14:14631. [PMID: 38918508 PMCID: PMC11199575 DOI: 10.1038/s41598-024-65444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
This study aimed to investigate cardiovascular and cardiorespiratory adaptations to exercise intervention among participants who showed higher (responders-RSBFP) and lower (non-responders-NRSBFP) levels of body fat percentage (BFP) responsiveness. Adolescents (42.5% males) participated in a ten-week school-based high-intensity interval training (HIIT), followed by a comparison of BFP, blood pressure (BP), and cardiorespiratory fitness (CRF). RSBFP age of 16.15 ± 0.36 years, body height 170.82 ± 8.16 cm, weight 61.23 ± 12.80 kg, and BMI 20.86 ± 3.29 kg/m2. Meanwhile, NRSBFP age of 16.04 ± 0.36 years, body height 168.17 ± 8.64 cm, weight 57.94 ± 8.62 kg, and BMI 20.47 ± 2.24 kg/m2. HIIT intervention impacted BFP, with a higher decrease in the RSBFP than the NRSBFP (ΔBFPRs = - 2.30 ± 3.51(10.34%) vs. ΔBFPNRs = 1.51 ± 1.54(6.96%) p < 0.001). The primary comparison showed a statistically significant interaction effect in relation to CRF (F(1,71) = 14.12; p < 0.001). Detailed comparisons showed large and significant CRF changes in RSBFP (7.52%; d = 0.86; p < 0.001) but not in NRSBFP (2.01%; d = 0.11; p = 0.576). In addition, RSBFP and NRSBFP benefited equally in SBP (5.49%, d = 0.75; p < 0.001; 4.95%, d = 0.74; p < 0.001, respectively). These findings highlight that exercise benefits on body fat may be mainly related to gains in CRF. Due to substantial intra-individual variability in adaptation, there is a need for personalized intervention tailored for those with different reaction thresholds in body mass components.
Collapse
Affiliation(s)
- Jarosław Domaradzki
- Unit of Biostructure, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, al. I.J. Paderewskiego 35, 51-612, Wroclaw, Poland
| | - Dawid Koźlenia
- Unit of Biostructure, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, al. I.J. Paderewskiego 35, 51-612, Wroclaw, Poland.
| |
Collapse
|
157
|
Cabre HE, Gould LM, Redman LM, Smith-Ryan AE. Effects of the Menstrual Cycle and Hormonal Contraceptive Use on Metabolic Outcomes, Strength Performance, and Recovery: A Narrative Review. Metabolites 2024; 14:347. [PMID: 39057670 PMCID: PMC11278889 DOI: 10.3390/metabo14070347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The effects of female sex hormones on optimal performance have been increasingly recognized as an important consideration in exercise and sport science research. This narrative review explores the findings of studies evaluating the effects of menstrual cycle phase in eumenorrheic women and the use of hormonal contraception (oral contraceptives and hormonal intrauterine devices) on metabolism, muscular strength, and recovery in active females. Ovarian hormones are known to influence metabolism because estrogen is a master regulator of bioenergetics. Importantly, the menstrual cycle may impact protein synthesis, impacting skeletal muscle quality and strength. Studies investigating muscular strength in eumenorrheic women report equivocal findings between the follicular phase and luteal phase with no differences compared to oral contraceptive users. Studies examining recovery measures (using biomarkers, blood lactate, and blood flow) do not report clear or consistent effects of the impact of the menstrual cycle or hormonal contraception use on recovery. Overall, the current literature may be limited by the evaluation of only one menstrual cycle and the use of group means for statistical significance. Hence, to optimize training and performance in females, regardless of hormonal contraception use, there is a need for future research to quantify the intra-individual impact of the menstrual cycle phases and hormonal contraceptive use in active females.
Collapse
Affiliation(s)
- Hannah E. Cabre
- Reproductive Endocrinology and Women’s Health Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | | | - Leanne M. Redman
- Reproductive Endocrinology and Women’s Health Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | - Abbie E. Smith-Ryan
- Human Movement Sciences Curriculum, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
158
|
Lee MC, Hsu YJ, Chen MT, Kuo YW, Lin JH, Hsu YC, Huang YY, Li CM, Tsai SY, Hsia KC, Ho HH, Huang CC. Efficacy of Lactococcus lactis subsp. lactis LY-66 and Lactobacillus plantarum PL-02 in Enhancing Explosive Strength and Endurance: A Randomized, Double-Blinded Clinical Trial. Nutrients 2024; 16:1921. [PMID: 38931275 PMCID: PMC11206817 DOI: 10.3390/nu16121921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Probiotics are posited to enhance exercise performance by influencing muscle protein synthesis, augmenting glycogen storage, and reducing inflammation. This double-blind study randomized 88 participants to receive a six-week intervention with either a placebo, Lactococcus lactis subsp. lactis LY-66, Lactobacillus plantarum PL-02, or a combination of both strains, combined with a structured exercise training program. We assessed changes in maximal oxygen consumption (VO2max), exercise performance, and gut microbiota composition before and after the intervention. Further analyses were conducted to evaluate the impact of probiotics on exercise-induced muscle damage (EIMD), muscle integrity, and inflammatory markers in the blood, 24 and 48 h post-intervention. The results demonstrated that all probiotic groups exhibited significant enhancements in exercise performance and attenuation of muscle strength decline post-exercise exhaustion (p < 0.05). Notably, PL-02 intake significantly increased muscle mass, whereas LY-66 and the combination therapy significantly reduced body fat percentage (p < 0.05). Analysis of intestinal microbiota revealed an increase in beneficial bacteria, especially a significant rise in Akkermansia muciniphila following supplementation with PL-02 and LY-66 (p < 0.05). Overall, the combination of exercise training and supplementation with PL-02, LY-66, and their combination improved muscle strength, explosiveness, and endurance performance, and had beneficial effects on body composition and gastrointestinal health, as evidenced by data obtained from non-athlete participants.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Mu-Tsung Chen
- Committee on General Studies, Shih Chien University, Taipei City 104, Taiwan;
| | - Yi-Wei Kuo
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Jia-Hung Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Yu-Chieh Hsu
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Yen-Yu Huang
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Ching-Min Li
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Shin-Yu Tsai
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Ko-Chiang Hsia
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Hsieh-Hsun Ho
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
- Tajen University, Pingtung 907101, Taiwan
| |
Collapse
|
159
|
Shoemaker ME, Dicks ND, Northrup MJ, Daughters SW, Krings TN, Barry AM. Evaluation of Nutrition and Performance Parameters in Division 1 Collegiate Athletes. Nutrients 2024; 16:1896. [PMID: 38931251 PMCID: PMC11206669 DOI: 10.3390/nu16121896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Testing and evaluating athletes is necessary and should include performance, body composition, and nutrition. The purpose of this study was to report assessments of dietary intake, V˙O2max, and body composition in D1 collegiate athletes and examine relationships between these assessments. METHODS Dietary intake was assessed with 3-day recalls and compared to recommendations, and body composition was assessed via bioelectrical impedance analysis (BIA) (n = 48). V˙O2max was evaluated using a graded exercise test (GXT) with a verification bout (n = 35). Reliability between "true" V˙O2max and verification was determined. Correlations and regressions were performed. RESULTS Energy, carbohydrate, and micronutrient intake was lower than recommendations. Mean V˙O2max was 47.3 and 47.4 mL·kg-1·min-1 for GXT and verification, respectively. While correlations were apparent among dietary intake, V˙O2max, and body composition, percent fat-free mass (%FFM) predicted 36% of V˙O2max. CONCLUSIONS Collegiate athletes are not meeting energy and carbohydrate recommendations and exceed fat recommendations. Vitamin D and magnesium were low in all sports, and iron and calcium were low in females. V˙O2max ranged from 35.6 to 63.0 mL·kg-1·min-1, with females below average and males meeting typical values for their designated sport. Assessing D1 athletes can provide guidance for sports dietitians, coaches, and strength and conditioning specialists to track and monitor nutrition in athletes.
Collapse
Affiliation(s)
- Marni E. Shoemaker
- School of Health and Consumer Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.J.N.); (S.W.D.); (T.N.K.); (A.M.B.)
| | - Nathan D. Dicks
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND 58102, USA;
| | - Megan J. Northrup
- School of Health and Consumer Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.J.N.); (S.W.D.); (T.N.K.); (A.M.B.)
| | - Seth W. Daughters
- School of Health and Consumer Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.J.N.); (S.W.D.); (T.N.K.); (A.M.B.)
| | - Taylor N. Krings
- School of Health and Consumer Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.J.N.); (S.W.D.); (T.N.K.); (A.M.B.)
| | - Allison M. Barry
- School of Health and Consumer Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.J.N.); (S.W.D.); (T.N.K.); (A.M.B.)
| |
Collapse
|
160
|
Reinpõld K, Rannama I, Port K. Comparative Bilateral Measurements of Vastus Lateralis Muscle Oxygen Desaturation Kinetics during 30 S Sprint Cycling Exercise: Effects of Age and Performance. J Funct Morphol Kinesiol 2024; 9:104. [PMID: 38921640 PMCID: PMC11205145 DOI: 10.3390/jfmk9020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The study assessed vastus lateralis oxygen desaturation kinetics (SmO2) in 32 male cyclists (16 Seniors, 16 Juniors) during a 30 s sprint, examining effects of age and performance. An incremental test was used to determine ventilatory thresholds (VT1, VT2) and maximal oxygen uptake (VO2kg), followed by a sprint test to evaluate anaerobic performance. Cyclists' performance phenotype was determined as the ratio of power at VT2 to 5 s peak sprint power. Juniors exhibited sprinter-like traits, excelling in all functional tests except for lactate levels post-sprint. SmO2 data showed no age-related or bilateral differences across participants. The combined mean response time (MRT) revealed stronger bilateral goodness of fit (R2 = 0.64) than individual time delay (TD) and time constant (τ). Higher VO2kg at VT2, peak power, and maximal uptake were linked to longer TD, while shorter TD correlated with higher lactate production and increased fatigue. Bilaterally averaged SmO2 kinetics distinguished between sprint and endurance athletes, indicating the potential to reflect the alactic anaerobic system's capacity and depletion. Age did not affect desaturation rates, but younger cyclists showed greater response amplitude, attributed to a higher initial baseline rather than maximal desaturation at the end of the exercise.
Collapse
Affiliation(s)
- Karmen Reinpõld
- School of Natural Sciences and Health, University of Tallinn, 10120 Tallinn, Estonia
| | | | - Kristjan Port
- School of Natural Sciences and Health, University of Tallinn, 10120 Tallinn, Estonia
| |
Collapse
|
161
|
Kump DS. Mechanisms Underlying the Rarity of Skeletal Muscle Cancers. Int J Mol Sci 2024; 25:6480. [PMID: 38928185 PMCID: PMC11204341 DOI: 10.3390/ijms25126480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Skeletal muscle (SKM), despite comprising ~40% of body mass, rarely manifests cancer. This review explores the mechanisms that help to explain this rarity, including unique SKM architecture and function, which prohibits the development of new cancer as well as negates potential metastasis to SKM. SKM also presents a unique immune environment that may magnify the anti-tumorigenic effect. Moreover, the SKM microenvironment manifests characteristics such as decreased extracellular matrix stiffness and altered lactic acid, pH, and oxygen levels that may interfere with tumor development. SKM also secretes anti-tumorigenic myokines and other molecules. Collectively, these mechanisms help account for the rarity of SKM cancer.
Collapse
Affiliation(s)
- David S Kump
- Department of Biological Sciences, Winston-Salem State University, 601 Martin Luther King Jr. Dr., Winston-Salem, NC 27110, USA
| |
Collapse
|
162
|
Abi Akar E, Weill L, El Khoury M, Caradeuc C, Bertho G, Boutary S, Bezier C, Clerc Z, Sapaly D, Bendris S, Cheguillaume F, Giraud N, Eid AA, Charbonnier F, Biondi O. The analysis of the skeletal muscle metabolism is crucial for designing optimal exercise paradigms in type 2 diabetes mellitus. Mol Med 2024; 30:80. [PMID: 38858657 PMCID: PMC11165837 DOI: 10.1186/s10020-024-00850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that commonly results from a high-calorie diet and sedentary lifestyle, leading to insulin resistance and glucose homeostasis perturbation. Physical activity is recommended as one first-line treatment in T2DM, but it leads to contrasted results. We hypothesized that, instead of applying standard exercise protocols, the prescription of personalized exercise programs specifically designed to reverse the potential metabolic alterations in skeletal muscle could result in better results. METHODS To test this hypothesis, we drew the metabolic signature of the fast-twitch quadriceps muscle, based on a combined unbiased NMR spectroscopy and RT-qPCR study, in several T2DM mouse models of different genetic background (129S1/SvImJ, C57Bl/6J), sex and aetiology (high-fat diet (HFD) or HFD/Streptozotocin (STZ) induction or transgenic MKR (FVB-Tg Ckm-IGF1R*K1003R)1Dlr/J) mice. Three selected mouse models with unique muscular metabolic signatures were submitted to three different swimming-based programs, designed to address each metabolic specificity. RESULTS We found that depending on the genetic background, the sex, and the mode of T2DM induction, specific muscular adaptations occurred, including depressed glycolysis associated with elevated PDK4 expression, shift to β-oxidation, or deregulation of amino-acid homeostasis. Interestingly, dedicated swimming-based exercises designed to restore specific metabolic alterations in muscle were found optimal in improving systemic T2DM hallmarks, including a significant reduction in insulin resistance, the improvement of glucose homeostasis, and a delay in sensorimotor function alterations. CONCLUSION The muscle metabolism constitutes an important clue for the design of precision exercises with potential clinical implications for T2DM patients.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Diabetes Mellitus, Type 2/genetics
- Muscle, Skeletal/metabolism
- Physical Conditioning, Animal
- Mice
- Male
- Female
- Disease Models, Animal
- Diet, High-Fat/adverse effects
- Mice, Inbred C57BL
- Insulin Resistance
- Metabolome
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/therapy
- Mice, Transgenic
- Metabolomics/methods
Collapse
Affiliation(s)
- Elias Abi Akar
- Faculty of Basic and Biomedical Sciences, Université Paris Cité & Inserm UMR_S1124, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon
| | - Laure Weill
- Faculty of Basic and Biomedical Sciences, Université Paris Cité & Inserm UMR_S1124, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Mirella El Khoury
- Faculty of Basic and Biomedical Sciences, Université Paris Cité & Inserm UMR_S1124, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Cédric Caradeuc
- Faculty of Basic and Biomedical Sciences, Université Paris Cité & UMR8601 CNRS, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Gildas Bertho
- Faculty of Basic and Biomedical Sciences, Université Paris Cité & UMR8601 CNRS, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Suzan Boutary
- Inserm U1195, Bâtiment Gregory Pincus, 80 rue du Général Leclerc, 94276, Le Kremlin Bicêtre, France
| | - Cynthia Bezier
- Faculty of Basic and Biomedical Sciences, Université Paris Cité & Inserm UMR_S1124, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Zoé Clerc
- Faculty of Basic and Biomedical Sciences, Université Paris Cité & Inserm UMR_S1124, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Delphine Sapaly
- Faculty of Basic and Biomedical Sciences, Université Paris Cité & Inserm UMR_S1124, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Sabrina Bendris
- Faculty of Basic and Biomedical Sciences, Université Paris Cité & Inserm UMR_S1124, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Flore Cheguillaume
- Faculty of Basic and Biomedical Sciences, Université Paris Cité & Inserm UMR_S1124, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Nicolas Giraud
- Faculty of Basic and Biomedical Sciences, Université Paris Cité & UMR8601 CNRS, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon.
| | - Frédéric Charbonnier
- Faculty of Basic and Biomedical Sciences, Université Paris Cité & Inserm UMR_S1124, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France.
| | - Olivier Biondi
- Faculty of Basic and Biomedical Sciences, Université Paris Cité & Inserm UMR_S1124, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
- Laboratoire de Biologie de l'Exercice Pour la Performance et la Santé (LBEPS), UMR, Université d'Evry, IRBA, Université de Paris Saclay, 91025, Evry-Courcouronnes, France
| |
Collapse
|
163
|
Zhang Y, Cao C, Li C, Witt RG, Huang H, Tsung A, Zhang H. Physical exercise in liver diseases. Hepatology 2024:01515467-990000000-00900. [PMID: 38836646 DOI: 10.1097/hep.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Liver diseases contribute to ~2 million deaths each year and account for 4% of all deaths globally. Despite various treatment options, the management of liver diseases remains challenging. Physical exercise is a promising nonpharmacological approach to maintain and restore homeostasis and effectively prevent and mitigate liver diseases. In this review, we delve into the mechanisms of physical exercise in preventing and treating liver diseases, highlighting its effects on improving insulin sensitivity, regulating lipid homeostasis, and modulating immune function. In addition, we evaluate the impact of physical exercise on various liver diseases, including liver ischemia/reperfusion injury, cardiogenic liver disease, metabolic dysfunction-associated steatotic liver disease, portal hypertension, cirrhosis, and liver cancer. In conclusion, the review underscores the effectiveness of physical exercise as a beneficial intervention in combating liver diseases.
Collapse
Affiliation(s)
- Yunwei Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Chunyan Cao
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Chaofan Li
- Department of Medicine, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Russell G Witt
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hai Huang
- Division of Hepatology, Center for Immunology and Inflammation, Departments of Molecular Medicine, Medicine, and Surgery at the School of Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Allan Tsung
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hongji Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
164
|
Amar D, Gay NR, Jimenez-Morales D, Jean Beltran PM, Ramaker ME, Raja AN, Zhao B, Sun Y, Marwaha S, Gaul DA, Hershman SG, Ferrasse A, Xia A, Lanza I, Fernández FM, Montgomery SB, Hevener AL, Ashley EA, Walsh MJ, Sparks LM, Burant CF, Rector RS, Thyfault J, Wheeler MT, Goodpaster BH, Coen PM, Schenk S, Bodine SC, Lindholm ME. The mitochondrial multi-omic response to exercise training across rat tissues. Cell Metab 2024; 36:1411-1429.e10. [PMID: 38701776 PMCID: PMC11152996 DOI: 10.1016/j.cmet.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/27/2023] [Accepted: 12/15/2023] [Indexed: 05/05/2024]
Abstract
Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- David Amar
- Stanford University, Stanford, CA, USA; Insitro, San Francisco, CA, USA
| | | | | | | | | | | | | | - Yifei Sun
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - David A Gaul
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Ashley Xia
- National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lauren M Sparks
- Translational Research Institute AdventHealth, Orlando, FL, USA
| | | | | | - John Thyfault
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Paul M Coen
- Translational Research Institute AdventHealth, Orlando, FL, USA
| | - Simon Schenk
- University of California, San Diego, La Jolla, CA, USA
| | - Sue C Bodine
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | |
Collapse
|
165
|
King A, Kwan K, Jukic I, Zinn C, Helms E. Fueling for and recovering from resistance training: The periworkout nutrition practices of competitive powerlifters. Nutrition 2024; 122:112389. [PMID: 38428220 DOI: 10.1016/j.nut.2024.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE Nutrient timing is a concept that emphasizes the intentional ingestion of whole or fortified foods, and dietary supplements, to adequately fuel for, and recover from, acute and chronic exercise. The nutrition strategies used by powerlifters around training sessions have not, to our knowledge, been previously investigated. This study explored the self-reported periworkout (before, during, and after) nutrition practices of competitive powerlifters, including what, why, and information source that informed practice, with comparison to current sport nutrition guidelines. METHODS Actively competing male (n = 240) and female (n = 65) powerlifters completed a cross-sectional online survey of self-reported periworkout nutrition practices in the pre-, intra-, and postexercise periods, fasted training, and supplementation. Data are presented as the number (n) and percentage (%) of all powerlifters practicing a given strategy followed by a % of responses reporting various practices or beliefs within this strategy. Categorical subgroups (sex, age, and weight class; and competitive caliber) were analyzed with a chi-square test or Fisher's exact test and denoted where significant (P ≤ 0.05). RESULTS Most powerlifters reported paying specific attention to nutrition practices in the pre-exercise period (n = 261; 85.6%) by ingesting more carbohydrate (CHO) rich foods (n = 234; 89.6%) for the purpose of assisting in training performance (n = 222; 85.1%). Most powerlifters reported intraexercise nutrition strategies (n = 211; 69.2%), of which most included ingesting more CHO rich foods (n = 159; 74.5%) for the purpose of feeling less hungry and/or boosting energy levels during training (n = 129; 61.1%). Most powerlifters reported paying attention to postexercise nutrition (n = 244; 80%), by ingesting more protein rich foods (n = 182; 74.6%) for the purpose of recovering better for the whole day (n = 152; 62.3%) and enhancing the benefits of training (n = 149; 61.1%). Most powerlifters did not complete training sessions in the fasted state (n = 262; 85.9%). Most powerlifters reported paying attention to supplementation before training (n = 237; 77.7%), of which preworkout formulas (n = 137; 57.8%), energy drinks (n = 101; 42.6%), creatine (n = 88; 37.1%), and caffeine pills (n = 70; 29.5%) were most reported. Supplementation was used to assist in training performance (n = 197; 83.1%) and increase wakefulness/alertness (n = 183; 77.2%). Males reported more often than females that they informed multiple elements of their nutrition practices with the information they read or watched somewhere (P = 0.002-0.012). CONCLUSION The periworkout nutrition practices used by competitive powerlifters followed current sport nutrition guidelines, by using CHO sources to fuel for training and ensuring the provision of protein postexercise. Competitive powerlifters may wish to exert caution with supplementation, as there is a risk of harm or inadvertent doping.
Collapse
Affiliation(s)
- Andrew King
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Kedric Kwan
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Caryn Zinn
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Eric Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand; Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
166
|
Fernandez-Patron C, Lopaschuk GD, Hardy E. A self-reinforcing cycle hypothesis in heart failure pathogenesis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:627-636. [PMID: 39196226 DOI: 10.1038/s44161-024-00480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 08/29/2024]
Abstract
Heart failure is a progressive syndrome with high morbidity and mortality rates. Here, we suggest that chronic exposure of the heart to risk factors for heart failure damages heart mitochondria, thereby impairing energy production to levels that can suppress the heart's ability to pump blood and repair mitochondria (both energy-consuming processes). As damaged mitochondria accumulate, the heart becomes deprived of energy in a 'self-reinforcing cycle', which can persist after the heart is no longer chronically exposed to (or after antagonism of) the risk factors that initiated the cycle. Together with other previously described pathological mechanisms, this proposed cycle can help explain (1) why heart failure progresses, (2) why it can recur after cessation of treatment, and (3) why heart failure is often accompanied by dysfunction of multiple organs. Ideally, therapy of heart failure syndrome would be best attempted before the self-reinforcing cycle is triggered or designed to break the self-reinforcing cycle.
Collapse
Affiliation(s)
- Carlos Fernandez-Patron
- Cardiovascular Research Centre, Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
167
|
Xu L, Li N, Miao D, Huang C, Chen L, Yang H, Wang Z. Early manifestation of hypophosphatemic rickets in goslings: a potential role of insufficient muscular adenosine triphosphate in motility impairment of early P-deficient geese. Poult Sci 2024; 103:103736. [PMID: 38677064 PMCID: PMC11066551 DOI: 10.1016/j.psj.2024.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
We aimed to determine the onset time of hypophosphatemic rickets and investigate the mechanism of motility impairment through adenosine triphosphate (ATP) production in goslings. Two hundred and sixteen 1-day-old male Jiangnan white geese were randomly divided into 3 groups, with 6 replicates and 12 geese per replicate. Birds were fed on 3 diets: a control diet (nonphytic phosphorus, NPP, 0.38%), a P-deficient diet (PD; NPP, 0.08%), and a high P diet (HP; NPP, 0.80%) for 14 d. Subsequently, all birds were shifted to the control diet for an additional 14 d. The cumulative incidence of lameness increased significantly (P < 0.01) starting on d 4, reaching over 80% on d 7 and 100% on d 12 in the PD group. Drinking and eating frequency decreased from d 4 and d 5, respectively, in the PD group compared to the other groups (most P < 0.01). The PD group exhibited shorter and narrower beaks, higher (worse) curvature scores of the beak and costochondral junctions, swelling caput costae, and dirtier feathers since d 4, in contrast to the control and HP groups (most P < 0.01). The HP had bigger (P < 0.05) beak and sternum sizes than the control groups on d 4 to 11. Leg muscle ATP levels were lower (P < 0.01 or 0.05) on d 4 to 11; in contrast, adenosine diphosphate (d 7-11) was higher in PD compared to the control (P < 0.05). Leg muscle ATP level had positive linear (R2 > 0.40) correlations (r > 0.60) with eating and drinking frequencies on d 7 and 11 (P < 0.01). Bone stiffness, feather cleanliness, and ATP levels recovered (P > 0.05) to the control level, whereas bone size did not recover (P < 0.05) in PD and HP after eating the control diet for 2 wk. The onset time of hypophosphatemic rickets was around 4 d in goslings, and insufficient leg muscle ATP was related to the impaired motility observed in early P-deficient geese.
Collapse
Affiliation(s)
- Lei Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ning Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Dongzhi Miao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chunhui Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
168
|
Heidler J, Cabrera-Orefice A, Wittig I, Heyne E, Tomczak JN, Petersen B, Henze D, Pohjoismäki JLO, Szibor M. Hyperbaric oxygen treatment reveals spatiotemporal OXPHOS plasticity in the porcine heart. PNAS NEXUS 2024; 3:pgae210. [PMID: 38881840 PMCID: PMC11179111 DOI: 10.1093/pnasnexus/pgae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Cardiomyocytes meet their high ATP demand almost exclusively by oxidative phosphorylation (OXPHOS). Adequate oxygen supply is an essential prerequisite to keep OXPHOS operational. At least two spatially distinct mitochondrial subpopulations facilitate OXPHOS in cardiomyocytes, i.e. subsarcolemmal (SSM) and interfibrillar mitochondria (IFM). Their intracellular localization below the sarcolemma or buried deep between the sarcomeres suggests different oxygen availability. Here, we studied SSM and IFM isolated from piglet hearts and found significantly lower activities of electron transport chain enzymes and F1FO-ATP synthase in IFM, indicative for compromised energy metabolism. To test the contribution of oxygen availability to this outcome, we ventilated piglets under hyperbaric hyperoxic (HBO) conditions for 240 min. HBO treatment raised OXPHOS enzyme activities in IFM to the level of SSM. Complexome profiling analysis revealed that a high proportion of the F1FO-ATP synthase in the IFM was in a disassembled state prior to the HBO treatment. Upon increased oxygen availability, the enzyme was found to be largely assembled, which may account for the observed increase in OXPHOS complex activities. Although HBO also induced transcription of genes involved in mitochondrial biogenesis, a full proteome analysis revealed only minimal alterations, meaning that HBO-mediated tissue remodeling is an unlikely cause for the observed differences in OXPHOS. We conclude that a previously unrecognized oxygen-regulated mechanism endows cardiac OXPHOS with spatiotemporal plasticity that may underlie the enormous metabolic and contractile adaptability of the heart.
Collapse
Affiliation(s)
- Juliana Heidler
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Experimental Vascular Surgery, University Clinic of Vascular Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Alfredo Cabrera-Orefice
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
| | - Jan-Niklas Tomczak
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), 31535 Mariensee, Germany
| | - Dirk Henze
- Praxis für Anästhesiologie, Dr. Henze & Partner GbR, 06116 Halle (Saale), Germany
| | - Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Marten Szibor
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
169
|
Cai C, Zhu S, Qin M, Li X, Feng C, Yu B, Dai S, Qiu G, Li Y, Ye T, Zhong W, Shao Y, Zhang L, Jia P, Yang S. Long-term exposure to PM 2.5 chemical constituents and diabesity: evidence from a multi-center cohort study in China. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 47:101100. [PMID: 38881803 PMCID: PMC11179652 DOI: 10.1016/j.lanwpc.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024]
Abstract
Background Long-term exposure to PM2.5 is known to increase the risks for diabetes and obesity, but its effects on their coexistence, termed diabesity, remain uncertain. This study aimed to investigate the associations of long-term exposure to PM2.5 and its chemical constituents with the risks for diabesity, diabetes, and obesity. Methods This cross-sectional study used the baseline data of a multi-center cohort, consisting of three provincially representative cohorts comprising a total of 134,403 participants from the eastern (Fujian Province), central (Hubei Province), and western (Yunnan Province) regions of China. Obesity and diabetes, and diabesity were identified by a body mass index (BMI) ≥28 kg/m2 and fasting plasma glucose (FPG) ≥126 mg/dL. The average concentrations of PM2.5 and five chemical constituents (NO3 -, SO4 2-, NH4 +, organic matter, and black carbon) over participants' residence during the past three years were estimated using machine learning models. Logistic regression models with double robust estimators, Bayesian kernel machine regression, and weighted quantile sum regression were employed to estimate independent and joint effects of PM2.5 chemical constituents on the risks for diabesity, diabetes, and obesity, as well as the differences from the effects on obesity. Stratified analyses were performed to examine effect modification of sociodemographic and lifestyle factors. Findings There were 129,244 participants with a mean age of 54.1 ± 13.8 years included in the study. Each interquartile range increase in PM2.5 concentration (8.53 μg/m3) was associated with an increased risk for diabesity (OR = 1.23 [1.17, 1.30]), diabetes only (OR = 1.16 [1.13, 1.19]), and obesity only (OR = 1.03 [1.00, 1.05]). Long-term exposure to each PM2.5 chemical constituent was associated with an increased risk for diabesity, where organic matter exposure, with maximum weight (48%), was associated with a higher risk for diabesity (OR = 1.21 [1.16, 1.27]). Among those with obesity, black carbon contributed most (68%) to the joint effect of PM2.5 chemical constituents on diabesity (OR = 1.16 [1.11, 1.22]). Physical activity reduced adverse effects of PM2.5 on diabesity. Also, additive rather than multiplicative effects of obesity on the PM2.5-diabetes association were observed. Interpretation Long-term exposure to PM2.5 and its chemical constituents was associated with an increased risk for diabesity, stronger than associations for diabetes and obesity alone. The main constituents associated with diabesity and obesity were black carbon and organic matter. Funding National Natural Science Foundation of China (42271433, 723B2017), National Key R&D Program of China (2023YFC3604702), Fundamental Research Funds for the Central Universities (2042023kfyq04, 2042024kf1024), the Science and Technology Major Project of Tibetan Autonomous Region of China (XZ202201ZD0001G), Science and technology project of Tibet Autonomous Region(XZ202303ZY0007G), Key R&D Project of Sichuan Province (2023YFS0251), Renmin Hospital of Wuhan University (JCRCYG-2022-003), Jiangxi Provincial 03 Special Foundation and 5G Program (20224ABC03A05), Wuhan University Specific Fund for Major School-level Internationalization Initiatives (WHU-GJZDZX-PT07).
Collapse
Affiliation(s)
- Changwei Cai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
| | - Shuzhen Zhu
- Hubei Center for Disease Control and Prevention, Wuhan, China
| | - Mingfang Qin
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Xiaoqing Li
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Chuanteng Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Bin Yu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Shaoqing Dai
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- Faculty of Geo-information Science and Earth Observation, University of Twente, Enschede, the Netherlands
| | - Ge Qiu
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
| | - Yuchen Li
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Department of Geography, The Ohio State University, Columbus, OH, USA
| | - Tingting Ye
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wenling Zhong
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Ying Shao
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Lan Zhang
- Hubei Center for Disease Control and Prevention, Wuhan, China
| | - Peng Jia
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
- Hubei Luojia Laboratory, Wuhan, China
- Renmin Hospital, Wuhan University, Wuhan, China
- School of Public Health, Wuhan University, Wuhan, China
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, China
- Respiratory Department, Chengdu Seventh People's Hospital, Chengdu, China
| |
Collapse
|
170
|
Bertucci DR, de Carvalho CD, Scariot PPM, Kalva-Filho CA, Luches-Pereira G, Arruda TB, Alves IS, Gardim CB, Castiglia M, Riberto M, Gobatto CA, Papoti M. Four-week experimental plus 1-week taper period using live high train low does not alter muscle glycogen content. Eur J Appl Physiol 2024; 124:1795-1805. [PMID: 38231229 DOI: 10.1007/s00421-023-05404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
This study aimed to investigate the effects of a 4-week live high train low (LHTL; FiO2 ~ 13.5%), intervention, followed by a tapering phase, on muscle glycogen concentration. Fourteen physically active males (28 ± 6 years, 81.6 ± 15.4 kg, 179 ± 5.2 cm) were divided into a control group (CON; n = 5), and the group that performed the LHTL, which was exposed to hypoxia (LHTL; n = 9). The subjects trained using a one-legged knee extension exercise, which enabled four experimental conditions: leg training in hypoxia (TLHYP); leg control in hypoxia (CLHYP, n = 9); leg trained in normoxia (TLNOR, n = 5), and leg control in normoxia (CLNOR, n = 5). All participants performed 18 training sessions lasting between 20 and 45 min [80-200% of intensity corresponding to the time to exhaustion (TTE) reached in the graded exercise test]. Additionally, participants spent approximately 10 h day-1 in either a normobaric hypoxic environment (14.5% FiO2; ~ 3000 m) or a control condition (i.e., staying in similar tents on ~ 530 m). Thereafter, participants underwent a taper protocol consisting of six additional training sessions with a reduced training load. SpO2 was lower, and the hypoxic dose was higher in LHTL compared to CON (p < 0.001). After 4 weeks, glycogen had increased significantly only in the TLNOR and TLHYP groups and remained elevated after the taper (p < 0.016). Time to exhaustion in the LHTL increased after both the 4-week training period and the taper compared to the baseline (p < 0.001). Although the 4-week training promoted substantial increases in muscle glycogen content, TTE increased in LHTL condition.
Collapse
Affiliation(s)
- Danilo R Bertucci
- Triângulo Mineiro Federal University (UFTM), Av. Frei Paulino, nº 30, Abadia, Uberaba, MG, Brazil
| | - Carlos Dellavechia de Carvalho
- Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Prêto, SP, Brazil.
| | - Pedro P M Scariot
- Faculty of Applied Sciences, State University of Campinas (FCA-UNICAMP), R. Pedro Zaccaria, 1300, Limeira, SP, Brazil
| | - Carlos A Kalva-Filho
- Human Movement Research Laboratory (MOVI-LAB), São Paulo State University (UNESP), Av. Eng. Luiz Edmundo C. Coube, nº 14-01, Núcleo Habitacional Presidente Geisel, Bauru, SP, Brazil
| | - Gabriel Luches-Pereira
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo (EEFERP-USP), Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Tarine B Arruda
- Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Prêto, SP, Brazil
| | - Isabela S Alves
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo (EEFERP-USP), Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Camila B Gardim
- Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Prêto, SP, Brazil
| | - Marcelo Castiglia
- Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Prêto, SP, Brazil
| | - Marcelo Riberto
- Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Prêto, SP, Brazil
| | - Claudio Alexandre Gobatto
- Faculty of Applied Sciences, State University of Campinas (FCA-UNICAMP), R. Pedro Zaccaria, 1300, Limeira, SP, Brazil
| | - Marcelo Papoti
- Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Prêto, SP, Brazil
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo (EEFERP-USP), Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil
| |
Collapse
|
171
|
Yu S, Tang Q, Lu X, Chen G, Xie M, Yang J, Yin Y, Zheng W, Wang J, Han Y, Zhang L, Chen L. Time of exercise differentially impacts bone growth in mice. Nat Metab 2024; 6:1036-1052. [PMID: 38806654 DOI: 10.1038/s42255-024-01057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Although physical training has been shown to improve bone mass, the time of day to exercise for optimal bone growth remains uncertain. Here we show that engaging in physical activity during the early active phase, as opposed to the subsequent active or rest phase, results in a more substantial increase in bone length of male and female mice. Transcriptomic and metabolomic methodologies identify that exercise during the early active phase significantly upregulates genes associated with bone development and metabolism. Notably, oxidative phosphorylation-related genes show a rhythmic expression in the chondrification centre, with a peak at the early active phase, when more rhythmic genes in bone metabolism are expressed and bone growth is synergistically promoted by affecting oxidative phosphorylation, which is confirmed by subsequent pharmacological investigations. Finally, we construct a signalling network to predict the impact of exercise on bone growth. Collectively, our research sheds light on the intricacies of human exercise physiology, offering valuable implications for interventions.
Collapse
Affiliation(s)
- Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jingxi Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Wenhao Zheng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinyu Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.
| |
Collapse
|
172
|
Wang H, Li B, Li A, An C, Liu S, Zhuang Z. Integrative Metabolomics, Enzymatic Activity, and Gene Expression Analysis Provide Insights into the Metabolic Profile Differences between the Slow-Twitch Muscle and Fast-Twitch Muscle of Pseudocaranx dentex. Int J Mol Sci 2024; 25:6131. [PMID: 38892319 PMCID: PMC11172523 DOI: 10.3390/ijms25116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The skeletal muscles of teleost fish encompass heterogeneous muscle types, termed slow-twitch muscle (SM) and fast-twitch muscle (FM), characterized by distinct morphological, anatomical, histological, biochemical, and physiological attributes, driving different swimming behaviors. Despite the central role of metabolism in regulating skeletal muscle types and functions, comprehensive metabolomics investigations focusing on the metabolic differences between these muscle types are lacking. To reveal the differences in metabolic characteristics between the SM and FM of teleost, we conducted an untargeted metabolomics analysis using Pseudocaranx dentex as a representative model and identified 411 differential metabolites (DFMs), of which 345 exhibited higher contents in SM and 66 in FM. KEGG enrichment analysis showed that these DFMs were enriched in the metabolic processes of lipids, amino acids, carbohydrates, purines, and vitamins, suggesting that there were significant differences between the SM and FM in multiple metabolic pathways, especially in the metabolism of energy substances. Furthermore, an integrative analysis of metabolite contents, enzymatic activity assays, and gene expression levels involved in ATP-PCr phosphate, anaerobic glycolysis, and aerobic oxidative energy systems was performed to explore the potential regulatory mechanisms of energy metabolism differences. The results unveiled a set of differential metabolites, enzymes, and genes between the SM and FM, providing compelling molecular evidence of the FM achieving a higher anaerobic energy supply capacity through the ATP-PCr phosphate and glycolysis energy systems, while the SM obtains greater energy supply capacity via aerobic oxidation. These findings significantly advance our understanding of the metabolic profiles and related regulatory mechanisms of skeletal muscles, thereby expanding the knowledge of metabolic physiology and ecological adaptation in teleost fish.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Busu Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Ang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Changting An
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Shufang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhimeng Zhuang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| |
Collapse
|
173
|
Gay EL, Coen PM, Harrison S, Garcia RE, Qiao YS, Goodpaster BH, Forman DE, Toledo FGS, Distefano G, Kramer PA, Ramos SV, Molina AJA, Nicklas BJ, Cummings SR, Cawthon PM, Hepple RT, Newman AB, Glynn NW. Sex Differences in the Association between Skeletal Muscle Energetics and Perceived Physical Fatigability: The Study of Muscle, Mobility and Aging (SOMMA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.25.24307934. [PMID: 38853946 PMCID: PMC11160809 DOI: 10.1101/2024.05.25.24307934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Greater perceived physical fatigability and lower skeletal muscle energetics are predictors of mobility decline. Characterizing associations between muscle energetics and perceived fatigability may provide insight into potential targets to prevent mobility decline. We examined associations of in vivo (maximal ATP production, ATPmax) and ex vivo (maximal carbohydrate supported oxidative phosphorylation [max OXPHOS] and maximal fatty acid supported OXPHOS [max FAO OXPHOS]) measures of mitochondrial energetics with two measures of perceived physical fatigability, Pittsburgh Fatigability Scale (PFS, 0-50, higher=greater) and Rating of Perceived Exertion (RPE Fatigability, 6-20, higher=greater) after a slow treadmill walk. Participants from the Study of Muscle, Mobility and Aging (N=873) were 76.3±5.0 years old, 59.2% women, and 85.3% White. Higher muscle energetics (both in vivo and ex vivo ) were associated with lower perceived physical fatigability, all p<0.03. When stratified by sex, higher ATPmax was associated with lower PFS Physical for men only; higher max OXPHOS and max FAO OXPHOS were associated with lower RPE fatigability for both sexes. Higher skeletal muscle energetics were associated with 40-55% lower odds of being in the most (PFS≥25, RPE Fatigability≥12) vs least (PFS 0-4, RPE Fatigability 6-7) severe fatigability strata, all p<0.03. Being a woman was associated with 2-3 times higher odds of being in the most severe fatigability strata when controlling for ATPmax but not the in vivo measures (p<0.05). Better mitochondrial energetics were linked to lower fatigability and less severe fatigability in older adults. Findings imply that improving skeletal muscle energetics may mitigate perceived physical fatigability and prolong healthy aging.
Collapse
|
174
|
Vandecruys M, De Smet S, De Beir J, Renier M, Leunis S, Van Criekinge H, Glorieux G, Raes J, Vanden Wyngaert K, Nagler E, Calders P, Monbaliu D, Cornelissen V, Evenepoel P, Van Craenenbroeck AH. Revitalizing the Gut Microbiome in Chronic Kidney Disease: A Comprehensive Exploration of the Therapeutic Potential of Physical Activity. Toxins (Basel) 2024; 16:242. [PMID: 38922137 PMCID: PMC11209503 DOI: 10.3390/toxins16060242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Both physical inactivity and disruptions in the gut microbiome appear to be prevalent in patients with chronic kidney disease (CKD). Engaging in physical activity could present a novel nonpharmacological strategy for enhancing the gut microbiome and mitigating the adverse effects associated with microbial dysbiosis in individuals with CKD. This narrative review explores the underlying mechanisms through which physical activity may favorably modulate microbial health, either through direct impact on the gut or through interorgan crosstalk. Also, the development of microbial dysbiosis and its interplay with physical inactivity in patients with CKD are discussed. Mechanisms and interventions through which physical activity may restore gut homeostasis in individuals with CKD are explored.
Collapse
Affiliation(s)
- Marieke Vandecruys
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
| | - Stefan De Smet
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Jasmine De Beir
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Marie Renier
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Sofie Leunis
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Hanne Van Criekinge
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, 3000 Leuven, Belgium;
- VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
| | - Karsten Vanden Wyngaert
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Evi Nagler
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
- Transplantoux Foundation, 3000 Leuven, Belgium
| | - Véronique Cornelissen
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Amaryllis H. Van Craenenbroeck
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
175
|
Athanasiou A, Papazachou O, Rovina N, Nanas S, Dimopoulos S, Kourek C. The Effects of Exercise Training on Functional Capacity and Quality of Life in Patients with Rheumatoid Arthritis: A Systematic Review. J Cardiovasc Dev Dis 2024; 11:161. [PMID: 38921661 PMCID: PMC11203630 DOI: 10.3390/jcdd11060161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation. The purpose of this systematic review is to evaluate the effectiveness of exercise training on functional capacity and quality of life (QoL) in patients with RA. We performed a search in four databases, selecting clinical trials that included community or outpatient exercise training programs in patients with RA. The primary outcome was functional capacity assessed by peak VO2 or the 6 min walking test, and the secondary outcome was QoL assessed by questionnaires. Seven studies were finally included, identifying a total number of 448 patients. The results of the present systematic review show a statistically significant increase in peak VO2 after exercise training in four out of seven studies. In fact, the improvement was significantly higher in two out of these four studies compared to the controls. Six out of seven studies provided data on the patients' QoL, with five of them managing to show statistically significant improvement after exercise training, especially in pain, fatigue, vitality, and symptoms of anxiety and depression. This systematic review demonstrates the beneficial effects of exercise training on functional capacity and QoL in patients with RA.
Collapse
Affiliation(s)
- Amalia Athanasiou
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (A.A.); (O.P.); (S.N.); (S.D.)
| | - Ourania Papazachou
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (A.A.); (O.P.); (S.N.); (S.D.)
- Department of Cardiology, “Helena Venizelou” Hospital, 10676 Athens, Greece
| | - Nikoletta Rovina
- 1st Department of Respiratory Medicine, Sotiria Chest Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Serafim Nanas
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (A.A.); (O.P.); (S.N.); (S.D.)
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (A.A.); (O.P.); (S.N.); (S.D.)
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Christos Kourek
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (A.A.); (O.P.); (S.N.); (S.D.)
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 11521 Athens, Greece
| |
Collapse
|
176
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
177
|
Sergeeva XV, Lvova ID, Sharlo KA. Disuse-Induced Muscle Fatigue: Facts and Assumptions. Int J Mol Sci 2024; 25:4984. [PMID: 38732203 PMCID: PMC11084575 DOI: 10.3390/ijms25094984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Skeletal muscle unloading occurs during a wide range of conditions, from space flight to bed rest. The unloaded muscle undergoes negative functional changes, which include increased fatigue. The mechanisms of unloading-induced fatigue are far from complete understanding and cannot be explained by muscle atrophy only. In this review, we summarize the data concerning unloading-induced fatigue in different muscles and different unloading models and provide several potential mechanisms of unloading-induced fatigue based on recent experimental data. The unloading-induced changes leading to increased fatigue include both neurobiological and intramuscular processes. The development of intramuscular fatigue seems to be mainly contributed by the transformation of soleus muscle fibers from a fatigue-resistant, "oxidative" "slow" phenotype to a "fast" "glycolytic" one. This process includes slow-to-fast fiber-type shift and mitochondrial density decline, as well as the disruption of activating signaling interconnections between slow-type myosin expression and mitochondrial biogenesis. A vast pool of relevant literature suggests that these events are triggered by the inactivation of muscle fibers in the early stages of muscle unloading, leading to the accumulation of high-energy phosphates and calcium ions in the myoplasm, as well as NO decrease. Disturbance of these secondary messengers leads to structural changes in muscles that, in turn, cause increased fatigue.
Collapse
Affiliation(s)
| | | | - Kristina A. Sharlo
- Institute of Biomedical Problems, RAS, Khorosevskoye Shosse, 76a, 123007 Moscow, Russia; (X.V.S.); (I.D.L.)
| |
Collapse
|
178
|
Özen SD, Kir S. Ectodysplasin A2 receptor signaling in skeletal muscle pathophysiology. Trends Mol Med 2024; 30:471-483. [PMID: 38443222 DOI: 10.1016/j.molmed.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
Skeletal muscle is essential in generating mechanical force and regulating energy metabolism and body temperature. Pathologies associated with muscle tissue often lead to impaired physical activity and imbalanced metabolism. Recently, ectodysplasin A2 receptor (EDA2R) signaling has been shown to promote muscle loss and glucose intolerance. Upregulated EDA2R expression in muscle tissue was associated with aging, denervation, cancer cachexia, and muscular dystrophies. Here, we describe the roles of EDA2R signaling in muscle pathophysiology, including muscle atrophy, insulin resistance, and aging-related sarcopenia. We also discuss the EDA2R pathway, which involves EDA-A2 as the ligand and nuclear factor (NF)κB-inducing kinase (NIK) as a downstream mediator, and the therapeutic potential of targeting these proteins in the treatment of muscle wasting and metabolic dysfunction.
Collapse
Affiliation(s)
- Sevgi Döndü Özen
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey.
| |
Collapse
|
179
|
Trappe TA, Minchev K, Perkins RK, Lavin KM, Jemiolo B, Ratchford SM, Claiborne A, Lee GA, Finch WH, Ryder JW, Ploutz-Snyder L, Trappe SW. NASA SPRINT exercise program efficacy for vastus lateralis and soleus skeletal muscle health during 70 days of simulated microgravity. J Appl Physiol (1985) 2024; 136:1015-1039. [PMID: 38328821 PMCID: PMC11365553 DOI: 10.1152/japplphysiol.00489.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024] Open
Abstract
The efficacy of the NASA SPRINT exercise countermeasures program for quadriceps (vastus lateralis) and triceps surae (soleus) skeletal muscle health was investigated during 70 days of simulated microgravity. Individuals completed 6° head-down-tilt bedrest (BR, n = 9), bedrest with resistance and aerobic exercise (BRE, n = 9), or bedrest with resistance and aerobic exercise and low-dose testosterone (BRE + T, n = 8). All groups were periodically tested for muscle (n = 9 times) and aerobic (n = 4 times) power during bedrest. In BR, surprisingly, the typical bedrest-induced decrements in vastus lateralis myofiber size and power were either blunted (myosin heavy chain, MHC I) or eliminated (MHC IIa), along with no change (P > 0.05) in %MHC distribution and blunted quadriceps atrophy. In BRE, MHC I (vastus lateralis and soleus) and IIa (vastus lateralis) contractile performance was maintained (P > 0.05) or increased (P < 0.05). Vastus lateralis hybrid fiber percentage was reduced (P < 0.05) and energy metabolism enzymes and capillarization were generally maintained (P > 0.05), while not all of these positive responses were observed in the soleus. Exercise offsets 100% of quadriceps and approximately two-thirds of soleus whole muscle mass loss. Testosterone (BRE + T) did not provide any benefit over exercise alone for either muscle and for some myocellular parameters appeared detrimental. In summary, the periodic testing likely provided a partial exercise countermeasure for the quadriceps in the bedrest group, which is a novel finding given the extremely low exercise dose. The SPRINT exercise program appears to be viable for the quadriceps; however, refinement is needed to completely protect triceps surae myocellular and whole muscle health for astronauts on long-duration spaceflights.NEW & NOTEWORTHY This study provides unique exercise countermeasures development information for astronauts on long-duration spaceflights. The NASA SPRINT program was protective for quadriceps myocellular and whole muscle health, whereas the triceps surae (soleus) was only partially protected as has been shown with other programs. The bedrest control group data may provide beneficial information for overall exercise dose and targeting fast-twitch muscle fibers. Other unique approaches for the triceps surae are needed to supplement existing exercise programs.
Collapse
Affiliation(s)
- Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Ryan K Perkins
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kaleen M Lavin
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Stephen M Ratchford
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Alex Claiborne
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gary A Lee
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - W Holmes Finch
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Jeffrey W Ryder
- Universities Space Research Association, NASA Johnson Space Center, Houston, Texas, United States
| | - Lori Ploutz-Snyder
- Universities Space Research Association, NASA Johnson Space Center, Houston, Texas, United States
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
180
|
Kilpiö T, Skarp S, Perjés Á, Swan J, Kaikkonen L, Saarimäki S, Szokodi I, Penninger JM, Szabó Z, Magga J, Kerkelä R. Apelin regulates skeletal muscle adaptation to exercise in a high-intensity interval training model. Am J Physiol Cell Physiol 2024; 326:C1437-C1450. [PMID: 38525542 DOI: 10.1152/ajpcell.00427.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Plasma apelin levels are reduced in aging and muscle wasting conditions. We aimed to investigate the significance of apelin signaling in cardiac and skeletal muscle responses to physiological stress. Apelin knockout (KO) and wild-type (WT) mice were subjected to high-intensity interval training (HIIT) by treadmill running. The effects of apelin on energy metabolism were studied in primary mouse skeletal muscle myotubes and cardiomyocytes. Apelin increased mitochondrial ATP production and mitochondrial coupling efficiency in myotubes and promoted the expression of mitochondrial genes both in primary myotubes and cardiomyocytes. HIIT induced mild concentric cardiac hypertrophy in WT mice, whereas eccentric growth was observed in the left ventricles of apelin KO mice. HIIT did not affect myofiber size in skeletal muscles of WT mice but decreased the myofiber size in apelin KO mice. The decrease in myofiber size resulted from a fiber type switch toward smaller slow-twitch type I fibers. The increased proportion of slow-twitch type I fibers in apelin KO mice was associated with upregulation of myosin heavy chain slow isoform expression, accompanied with upregulated expression of genes related to fatty acid transport and downregulated expression of genes related to glucose metabolism. Mechanistically, skeletal muscles of apelin KO mice showed defective induction of insulin-like growth factor-1 signaling in response to HIIT. In conclusion, apelin is required for proper skeletal and cardiac muscle adaptation to high-intensity exercise. Promoting apelinergic signaling may have benefits in aging- or disease-related muscle wasting conditions.NEW & NOTEWORTHY Apelin levels decline with age. This study demonstrates that in trained mice, apelin deficiency results in a switch from fast type II myofibers to slow oxidative type I myofibers. This is associated with a concomitant change in gene expression profile toward fatty acid utilization, indicating an aged-muscle phenotype in exercised apelin-deficient mice. These data are of importance in the design of exercise programs for aging individuals and could offer therapeutic target to maintain muscle mass.
Collapse
Affiliation(s)
- Teemu Kilpiö
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Sini Skarp
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Ábel Perjés
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Julia Swan
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Leena Kaikkonen
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Samu Saarimäki
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - István Szokodi
- Heart Institute, Medical School, and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zoltán Szabó
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Johanna Magga
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
181
|
Sabag A, Ahmadi MN, Francois ME, Postnova S, Cistulli PA, Fontana L, Stamatakis E. Timing of Moderate to Vigorous Physical Activity, Mortality, Cardiovascular Disease, and Microvascular Disease in Adults With Obesity. Diabetes Care 2024; 47:890-897. [PMID: 38592034 PMCID: PMC11043226 DOI: 10.2337/dc23-2448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVE To assess the association between timing of aerobic moderate to vigorous physical activity (MVPA) and risk of cardiovascular disease (CVD), microvascular disease (MVD), and all-cause mortality in adults with obesity and a subset with obesity and type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS Participants included adults with obesity (BMI ≥30 kg/m2) and a subset of those with T2D from the UK Biobank accelerometry substudy. Aerobic MVPA was defined as bouts of MVPA lasting ≥3 continuous minutes. Participants were categorized into morning, afternoon, or evening MVPA based on when they undertook the majority of their aerobic MVPA. The reference group included participants with an average of less than one aerobic MVPA bout per day. Analyses were adjusted for established and potential confounders. RESULTS The core sample included 29,836 adults with obesity, with a mean age of 62.2 (SD 7.7) years. Over a mean follow-up period of 7.9 (SD 0.8) years, 1,425 deaths, 3,980 CVD events, and 2,162 MVD events occurred. Compared with activity in the reference group, evening MVPA was associated with the lowest risk of mortality (hazard ratio [HR] 0.39; 95% CI 0.27, 0.55), whereas afternoon (HR 0.60; 95% CI 0.51, 0.71) and morning MVPA (HR 0.67; 95% CI 0.56, 0.79) demonstrated significant but weaker associations. Similar patterns were observed for CVD and MVD incidence, with evening MVPA associated with the lowest risk of CVD (HR 0.64; 95% CI 0.54, 0.75) and MVD (HR 0.76; 95% CI 0.63, 0.92). Findings were similar in the T2D subset (n = 2,995). CONCLUSIONS Aerobic MVPA bouts undertaken in the evening were associated with the lowest risk of mortality, CVD, and MVD. Timing of physical activity may play a role in the future of obesity and T2D management.
Collapse
Affiliation(s)
- Angelo Sabag
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Health Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew N. Ahmadi
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Health Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Mackenzie Wearables Research Hub @ Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Monique E. Francois
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Svetlana Postnova
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Physics, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter A. Cistulli
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Luigi Fontana
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Emmanuel Stamatakis
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Health Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Mackenzie Wearables Research Hub @ Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
182
|
Reisman EG, Hawley JA, Hoffman NJ. Exercise-Regulated Mitochondrial and Nuclear Signalling Networks in Skeletal Muscle. Sports Med 2024; 54:1097-1119. [PMID: 38528308 PMCID: PMC11127882 DOI: 10.1007/s40279-024-02007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/27/2024]
Abstract
Exercise perturbs energy homeostasis in skeletal muscle and engages integrated cellular signalling networks to help meet the contraction-induced increases in skeletal muscle energy and oxygen demand. Investigating exercise-associated perturbations in skeletal muscle signalling networks has uncovered novel mechanisms by which exercise stimulates skeletal muscle mitochondrial biogenesis and promotes whole-body health and fitness. While acute exercise regulates a complex network of protein post-translational modifications (e.g. phosphorylation) in skeletal muscle, previous investigations of exercise signalling in human and rodent skeletal muscle have primarily focused on a select group of exercise-regulated protein kinases [i.e. 5' adenosine monophosphate-activated protein kinase (AMPK), protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase (CaMK) and mitogen-activated protein kinase (MAPK)] and only a small subset of their respective protein substrates. Recently, global mass spectrometry-based phosphoproteomic approaches have helped unravel the extensive complexity and interconnection of exercise signalling pathways and kinases beyond this select group and phosphorylation and/or translocation of exercise-regulated mitochondrial and nuclear protein substrates. This review provides an overview of recent advances in our understanding of the molecular events associated with acute endurance exercise-regulated signalling pathways and kinases in skeletal muscle with a focus on phosphorylation. We critically appraise recent evidence highlighting the involvement of mitochondrial and nuclear protein phosphorylation and/or translocation in skeletal muscle adaptive responses to an acute bout of endurance exercise that ultimately stimulate mitochondrial biogenesis and contribute to exercise's wider health and fitness benefits.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
183
|
Kedlian VR, Wang Y, Liu T, Chen X, Bolt L, Tudor C, Shen Z, Fasouli ES, Prigmore E, Kleshchevnikov V, Pett JP, Li T, Lawrence JEG, Perera S, Prete M, Huang N, Guo Q, Zeng X, Yang L, Polański K, Chipampe NJ, Dabrowska M, Li X, Bayraktar OA, Patel M, Kumasaka N, Mahbubani KT, Xiang AP, Meyer KB, Saeb-Parsy K, Teichmann SA, Zhang H. Human skeletal muscle aging atlas. NATURE AGING 2024; 4:727-744. [PMID: 38622407 PMCID: PMC11108788 DOI: 10.1038/s43587-024-00613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Skeletal muscle aging is a key contributor to age-related frailty and sarcopenia with substantial implications for global health. Here we profiled 90,902 single cells and 92,259 single nuclei from 17 donors to map the aging process in the adult human intercostal muscle, identifying cellular changes in each muscle compartment. We found that distinct subsets of muscle stem cells exhibit decreased ribosome biogenesis genes and increased CCL2 expression, causing different aging phenotypes. Our atlas also highlights an expansion of nuclei associated with the neuromuscular junction, which may reflect re-innervation, and outlines how the loss of fast-twitch myofibers is mitigated through regeneration and upregulation of fast-type markers in slow-twitch myofibers with age. Furthermore, we document the function of aging muscle microenvironment in immune cell attraction. Overall, we present a comprehensive human skeletal muscle aging resource ( https://www.muscleageingcellatlas.org/ ) together with an in-house mouse muscle atlas to study common features of muscle aging across species.
Collapse
Affiliation(s)
- Veronika R Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianliang Liu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Zhuojian Shen
- Department of Thoracic Surgery, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Eirini S Fasouli
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Jan Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - John E G Lawrence
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Qin Guo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinrui Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lu Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Krzysztof Polański
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nana-Jane Chipampe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Monika Dabrowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Xiaobo Li
- Core Facilities for Medical Science, Sun Yat-sen University, Guangzhou, China
| | - Omer Ali Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Natsuhiko Kumasaka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Collaborative Biorepository for Translational Medicine (CBTM), NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Andy Peng Xiang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK.
- Collaborative Biorepository for Translational Medicine (CBTM), NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
184
|
Granath-Panelo M, Kajimura S. Mitochondrial heterogeneity and adaptations to cellular needs. Nat Cell Biol 2024; 26:674-686. [PMID: 38755301 DOI: 10.1038/s41556-024-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Although it is well described that mitochondria are at the epicentre of the energy demands of a cell, it is becoming important to consider how each cell tailors its mitochondrial composition and functions to suit its particular needs beyond ATP production. Here we provide insight into mitochondrial heterogeneity throughout development as well as in tissues with specific energy demands and discuss how mitochondrial malleability contributes to cell fate determination and tissue remodelling.
Collapse
Affiliation(s)
- Melia Granath-Panelo
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA.
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
185
|
Logesh R, Hari B, Chidambaram K, Das N. Molecular effects of Vitamin-D and PUFAs metabolism in skeletal muscle combating Type-II diabetes mellitus. Gene 2024; 904:148216. [PMID: 38307219 DOI: 10.1016/j.gene.2024.148216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Multiple post-receptor intracellular alterations such as impaired glucose transfer, glucose phosphorylation, decreased glucose oxidation, and glycogen production contribute to insulin resistance (IR) in skeletal muscle, manifested by diminished insulin-stimulated glucose uptake. Type-2 diabetes mellites (T2DM) has caused by IR, which is also seen in obese patients and those with metabolic syndrome. The Vitamin-D receptor (VDR) and poly unsaturated fatty acids (PUFAs) roles in skeletal muscle growth, shapes, and function for combating type-2 diabetes have been clarified throughout this research. VDR and PUFAs appears to show a variety of effects on skeletal muscle, in addition it shows a promising role on bone and mineral homeostasis. Individuals having T2DM are reported to suffer from severe muscular weakness and alterations in shape of the muscle. Several studies have investigated the effect on VDR on muscular strength and mass, which leads to Vitamin-D deficiency (VDD) in individuals, in which most commonly seen in elderly. VDR has been shown to affect skeletal cellular proliferation, intracellular calcium handling, as well as genomic activity in a variety of different ways such as muscle metabolism, insulin sensitivity, which is the major characteristic pathogenesis for IR in combating T2DM. The identified VDR gene polymorphisms are ApaI, TaqI, FokI, and BsmI that are associated with T2DM. This review collates informations on the mechanisms by which VDR activation takes place in skeletal muscles. Despite the significant breakthroughs made in recent decades, various studies show that IR affects VDR and PUFAs metabolism in skeletal muscle. Therefore, this review collates the data to show the role of VDR and PUFAs in the skeletal muscles to combat T2DM.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Karnataka, India.
| | - Balaji Hari
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Al-Qara, Asir Province, Saudi Arabia
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India
| |
Collapse
|
186
|
Radulescu D, Mihai FD, Trasca MET, Caluianu EI, Calafeteanu CDM, Radulescu PM, Mercut R, Ciupeanu-Calugaru ED, Marinescu GA, Siloşi CA, Nistor CCE, Danoiu S. Oxidative Stress in Military Missions-Impact and Management Strategies: A Narrative Analysis. Life (Basel) 2024; 14:567. [PMID: 38792589 PMCID: PMC11121804 DOI: 10.3390/life14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review comprehensively examines the impact of oxidative stress on military personnel, highlighting the crucial role of physical exercise and tailored diets, particularly the ketogenic diet, in minimizing this stress. Through a meticulous analysis of the recent literature, the study emphasizes how regular physical exercise not only enhances cardiovascular, cognitive, and musculoskeletal health but is also essential in neutralizing the effects of oxidative stress, thereby improving endurance and performance during long-term missions. Furthermore, the implementation of the ketogenic diet provides an efficient and consistent energy source through ketone bodies, tailored to the specific energy requirements of military activities, and significantly contributes to the reduction in reactive oxygen species production, thus protecting against cellular deterioration under extreme stress. The study also underlines the importance of integrating advanced technologies, such as wearable devices and smart sensors that allow for the precise and real-time monitoring of oxidative stress and physiological responses, thus facilitating the customization of training and nutritional regimes. Observations from this review emphasize significant variability among individuals in responses to oxidative stress, highlighting the need for a personalized approach in formulating intervention strategies. It is crucial to develop and implement well-monitored, personalized supplementation protocols to ensure that each member of the military personnel receives a regimen tailored to their specific needs, thereby maximizing the effectiveness of measures to combat oxidative stress. This analysis makes a valuable contribution to the specialized literature, proposing a detailed framework for addressing oxidative stress in the armed forces and opening new directions for future research with the aim of optimizing clinical practices and improving the health and performance of military personnel under stress and specific challenges of the military field.
Collapse
Affiliation(s)
- Dumitru Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Florina-Diana Mihai
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Major Emil-Tiberius Trasca
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Elena-Irina Caluianu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Captain Dan Marian Calafeteanu
- Department of Ortopedics, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania;
| | - Patricia-Mihaela Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Razvan Mercut
- Department of Plastic and Reconstructive Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | | | - Georgiana-Andreea Marinescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Cristian-Adrian Siloşi
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | | | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
187
|
Benfica LF, Brito LF, do Bem RD, de Oliveira LF, Mulim HA, Braga LG, Cyrillo JNSG, Bonilha SFM, Mercadante MEZ. Detection and characterization of copy number variation in three differentially-selected Nellore cattle populations. Front Genet 2024; 15:1377130. [PMID: 38694873 PMCID: PMC11061390 DOI: 10.3389/fgene.2024.1377130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Nellore cattle (Bos taurus indicus) is the main beef cattle breed raised in Brazil. This breed is well adapted to tropical conditions and, more recently, has experienced intensive genetic selection for multiple performance traits. Over the past 43 years, an experimental breeding program has been developed in the Institute of Animal Science (IZ, Sertaozinho, SP, Brazil), which resulted in three differentially-selected lines known as Nellore Control (NeC), Nellore Selection (NeS), and Nellore Traditional (NeT). The primary goal of this selection experiment was to determine the response to selection for yearling weight (YW) and residual feed intake (RFI) on Nellore cattle. The main objectives of this study were to: 1) identify copy number variation (CNVs) in Nellore cattle from three selection lines; 2) identify and characterize CNV regions (CNVR) on these three lines; and 3) perform functional enrichment analyses of the CNVR identified. Results: A total of 14,914 unique CNVs and 1,884 CNVRs were identified when considering all lines as a single population. The CNVRs were non-uniformly distributed across the chromosomes of the three selection lines included in the study. The NeT line had the highest number of CNVRs (n = 1,493), followed by the NeS (n = 823) and NeC (n = 482) lines. The CNVRs covered 23,449,890 bp (0.94%), 40,175,556 bp (1.61%), and 63,212,273 bp (2.54%) of the genome of the NeC, NeS, and NeT lines, respectively. Two CNVRs were commonly identified between the three lines, and six, two, and four exclusive regions were identified for NeC, NeS, and NeT, respectively. All the exclusive regions overlap with important genes, such as SMARCD3, SLC15A1, and MAPK1. Key biological processes associated with the candidate genes were identified, including pathways related to growth and metabolism. Conclusion: This study revealed large variability in CNVs and CNVRs across three Nellore lines differentially selected for YW and RFI. Gene annotation and gene ontology analyses of the exclusive CNVRs to each line revealed specific genes and biological processes involved in the expression of growth and feed efficiency traits. These findings contribute to the understanding of the genetic mechanisms underlying the phenotypic differences among the three Nellore selection lines.
Collapse
Affiliation(s)
- Lorena F. Benfica
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Ricardo D. do Bem
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
| | | | - Henrique A. Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Larissa G. Braga
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Sarah F. M. Bonilha
- Beef Cattle Research Center, Institute of Animal Science, Sertaozinho, São Paulo, Brazil
| | - Maria Eugenia Z. Mercadante
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
- Beef Cattle Research Center, Institute of Animal Science, Sertaozinho, São Paulo, Brazil
| |
Collapse
|
188
|
Selmi MA, Ceylan HI, Hammami R, Sassi RH, González-Fernández FT, Morgans R, Bragazzi NL. Repeated-sprint sets test: a new method for evaluating and forecasting fitness in elite young male soccer players. Sci Rep 2024; 14:8542. [PMID: 38609417 PMCID: PMC11014943 DOI: 10.1038/s41598-024-58974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
The objective of the current study was to explore the correlation between repeated sprint sets (RSS) ability and several physical attributes, including maximum sprint speed, maximal aerobic speed, maximal anaerobic speed, aerobic capacity, and explosive strength. Moreover, the aim was to assess the suitability of RSS as a comprehensive evaluation tool for physical qualities and to determine which physical field tests most accurately predict RSS in elite young male soccer players. A total of thirty-two young elite male soccer players (mean age 14.6 ± 0.3 years; predicted years from peak height velocity (PHV): - 0.4 ± 0.3; years in training: 3.7 ± 0.5) voluntarily participated in the study. The players participated in eight consecutive specific physical tests, with a minimum 72-h recovery between each session to minimize the impact of fatigue during the second trial. The participants completed the tests in the following order: RSS test, Vam-Eval test, a constant velocity test performed until exhaustion at 100% of vVO2max (tlim100), 20-m Multi-Stage Shuttle Run test (VMSRT), Yo-Yo Intermittent Recovery Test level 1 (Yo-Yo IR1), Maximal Anaerobic Shuttle Running Test (VMASRT), Maximal Sprinting Speed Test (20-m flying sprint), Countermovement Jump (CMJ), and Standing Long Jump test (SLJ). The results of the study showed that there were very large negative correlations between tlim100 and SST (sum of sprint times), and large negative correlations between Yo-Yo IR1, Vam-Eval, and SST during RSS in young elite male soccer players (p < 0.05). Additionally, VMASRT and SLJ demonstrated a moderate negative correlation with SST (p < 0.05). In contrast, significant positive correlations were found between 20-m flying sprint and the SST (p < 0.05). According to the stepwise multiple linear regression analysis, the primary predictors of SST, ranked by importance, were tlim100 and Yo-Yo IR1. These two predictors collectively accounted for 72% of the variance in players' SST (p < 0.0001). Due to the importance of aerobic capacity and short repeated accelerations/sprint sets for overall competitive performance in soccer, in conclusion, our results suggest that elite young male soccer players should perform both high intensity interval training and aeorobic capactity exercises as part of soccer training if the primary outcome is to improve repeated sprint ability performance.
Collapse
Affiliation(s)
- Mohamed Amin Selmi
- Higher Institute of Sport and Physical Education of Ksar-Said, Manouba University, Tunis, Tunisia
- Tunisian Research Laboratory 'Sports Performance Optimization', National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Halil Ibrahim Ceylan
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, 25240, Erzurum, Turkey.
| | - Raouf Hammami
- Higher Institute of Sport and Physical Education of Ksar-Said, Manouba University, Tunis, Tunisia
- Tunisian Research Laboratory 'Sports Performance Optimization', National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Radhouane Haj Sassi
- Tunisian Research Laboratory 'Sports Performance Optimization', National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | | | - Ryland Morgans
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Canada.
- Human Nutrition Unit (HNU), Department of Food and Drugs, Medical School, University of Parma, Building C, Via Volturno, 39, 43125, Parma, Italy.
| |
Collapse
|
189
|
Nguyen NB, Le TT, Kang SW, Cha KH, Choi S, Youn HY, Jung SH, Kim M. Cornflower Extract and Its Active Components Alleviate Dexamethasone-Induced Muscle Wasting by Targeting Cannabinoid Receptors and Modulating Gut Microbiota. Nutrients 2024; 16:1130. [PMID: 38674820 PMCID: PMC11054969 DOI: 10.3390/nu16081130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Sarcopenia, a decline in muscle mass and strength, can be triggered by aging or medications like glucocorticoids. This study investigated cornflower (Centaurea cyanus) water extract (CC) as a potential protective agent against DEX-induced muscle wasting in vitro and in vivo. CC and its isolated compounds mitigated oxidative stress, promoted myofiber growth, and boosted ATP production in C2C12 myotubes. Mechanistically, CC reduced protein degradation markers, increased mitochondrial content, and activated protein synthesis signaling. Docking analysis suggested cannabinoid receptors (CB) 1 and 2 as potential targets of CC compounds. Specifically, graveobioside A from CC inhibited CB1 and upregulated CB2, subsequently stimulating protein synthesis and suppressing degradation. In vivo, CC treatment attenuated DEX-induced muscle wasting, as evidenced by enhanced grip strength, exercise performance, and modulation of muscle gene expression related to differentiation, protein turnover, and exercise performance. Moreover, CC enriched gut microbial diversity, and the abundance of Clostridium sensu stricto 1 positively correlated with muscle mass. These findings suggest a multifaceted mode of action for CC: (1) direct modulation of the muscle cannabinoid receptor system favoring anabolic processes and (2) indirect modulation of muscle health through the gut microbiome. Overall, CC presents a promising therapeutic strategy for preventing and treating muscle atrophy.
Collapse
Affiliation(s)
- Ngoc Bao Nguyen
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
- Department of Biochemistry and Molecular Biology, College of Dentistry, Gangneung Wonju National University, Gangneung 25451, Republic of Korea
| | - Tam Thi Le
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Suk Woo Kang
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Sowoon Choi
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Hye-Young Youn
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Sang Hoon Jung
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Myungsuk Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| |
Collapse
|
190
|
Ahmed MM, Alawna M, Youssef ASA, Amin WM, Alajam RA, Morsy WE, Fayed E, Mohamed AA. Immediate effect of physical activity on the autonomic nervous system in individuals with autism spectrum disorders of different age groups: a randomised trial. BMJ Open Sport Exerc Med 2024; 10:e001822. [PMID: 38617566 PMCID: PMC11015250 DOI: 10.1136/bmjsem-2023-001822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is one of the most complex neurodevelopmental disorders. It affects almost all human physiological systems. Individuals with ASD often display dysregulation in their autonomic nervous system (ANS), which may elicit differing effects across age groups. Also, studying the ANS missed several important parameters related to ANS. Studying the ANS is crucial in developing adaptive behavioural strategies and maintaining communication abilities and social behaviours. Thus, this study compared the immediate effect of physical activity on the ANS in individuals with ASD in different age groups. Methods 200 participants (106 males and 94 females) took part in a double-blinded randomised design. All participants were divided into four groups according to their age (4-7, 7-10, 10-13 and 14-18 years old). Participants performed a 60 min treadmill walk. The main outcome measurements were heart rate (HR), saturation of peripheral oxygen (SpO2), respiratory rate (RR) and end-tidal carbon dioxide (etCO2). Results Before the study, there were non-significant differences between groups in their physical characteristics (body mass index, Childhood Autism Rating Scale, physical activity level, both parents' existence, aerobic capacity and gender) (p>0.05). At baseline measurements, there were non-significant differences between all groups for all outcome measurements (p>0.05). Immediately after physical activity, there was significant difference between group 1 and other groups (p<0.05), while all other differences were non-significant (p>0.05). At the follow-up (after 15 min of rest), group 1 maintained significant differences with the other groups for all outcome measurements (p<0.05), while there were non-significant differences between the other three groups (p>0.05). Conclusion This study revealed that the SpO2 significantly decreased immediately after the physical activity, while HR, RR and etCO2 significantly increased immediately after physical activity in comparison to the baseline measurements. Contrary to other ANS parameters (SpO2, RR and etCO2), HR in early ages (4-7 years old) was higher after physical activity and remained elevated longer than other ages. The early ages (4-7 years old) take more time to return to the normal status of ANS parameters including SpO2, HR, RR and etCO2. Trial registration number NCT05725733.
Collapse
Affiliation(s)
- Mohamed M Ahmed
- Department of Physical Therapy, College of Applied Medical Sciences, Jazan University, Jazan, Jazan, Saudi Arabia
- Department of Basic Science for Physical Therapy, Faculty of Physical Therapy, Beni-Suef University, Beni Suef, Egypt
| | - Motaz Alawna
- Department of Health Sciences, Faculty of Graduate Studies, Arab American University, Jenin, Palestine, State of
| | - Ahmed S A Youssef
- Department of Basic Science for Physical Therapy, Faculty of Physical Therapy, Beni-Suef University, Beni Suef, Egypt
| | - Wafaa Mahmoud Amin
- Department of Physical Therapy, College of Applied Medical Sciences, Jazan University, Jazan, Jazan, Saudi Arabia
- Department of Basic Science for Physical Therapy, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Ramzi Abdu Alajam
- Department of Physical Therapy, College of Applied Medical Sciences, Jazan University, Jazan, Jazan, Saudi Arabia
| | - Walaa E Morsy
- Department of Physical Therapy, College of Applied Medical Sciences, Jazan University, Jazan, Jazan, Saudi Arabia
- Department of Pediatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Esraa Fayed
- Department of Physical Therapy, College of Applied Medical Sciences, Jazan University, Jazan, Jazan, Saudi Arabia
- Department of Pediatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Ayman A Mohamed
- Department of Basic Science for Physical Therapy, Faculty of Physical Therapy, Beni-Suef University, Beni Suef, Egypt
- Department of Basic Science for Physical Therapy, Faculty of Physical Therapy, Nahda University, Beni Suef, Egypt
- Department of Basic Science for Physical Therapy, Faculty of Physical Therapy, Galala University, Suez, Egypt
| |
Collapse
|
191
|
Moitzi AM, Krššák M, Klepochova R, Triska C, Csapo R, König D. Effects of a 10-Week Exercise and Nutritional Intervention with Variable Dietary Carbohydrates and Glycaemic Indices on Substrate Metabolism, Glycogen Storage, and Endurance Performance in Men: A Randomized Controlled Trial. SPORTS MEDICINE - OPEN 2024; 10:36. [PMID: 38600291 PMCID: PMC11006643 DOI: 10.1186/s40798-024-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Daily nutrition plays an important role in supporting training adaptions and endurance performance. The objective of this 10-week study was to investigate the consequences of varying carbohydrate consumption and the glycaemic index (GI) together with an endurance training regimen on substrate oxidation, muscle energy storage and endurance performance under free-living conditions. Sixty-five moderately trained healthy men (29 ± 4 years; VO2 peak 55 ± 8 mL min-1 kg-1) were randomized to one of three different nutritional regimes (LOW-GI: 50-60% CHO with ≥ 65% of these CHO with GI < 50 per day, n = 24; HIGH-GI: 50-60% CHO with ≥ 65% CHO with GI > 70 per day, n = 20; LCHF: ≤ 50 g CHO daily, n = 21). Metabolic alterations and performance were assessed at baseline (T0) and after 10 weeks (T10) during a graded exercise treadmill test. Additionally, a 5 km time trial on a 400-m outdoor track was performed and muscle glycogen was measured by magnet resonance spectroscopy. RESULTS Total fat oxidation expressed as area under the curve (AUC) during the graded exercise test increased in LCHF (1.3 ± 2.4 g min-1 × km h-1, p < 0.001), remained unchanged in LOW-GI (p > 0.05) and decreased in HIGH-GI (- 1.7 ± 1.5 g min-1 × km h-1, p < 0.001). After the intervention, LOW-GI (- 0.4 ± 0.5 mmol L-1 × km h-1, p < 0.001) and LCHF (- 0.8 ± 0.7 mmol L-1 × km h-1, p < 0.001) showed significantly lower AUC of blood lactate concentrations. Peak running speed increased in LOW-GI (T0: 4.3 ± 0.4 vs. T10: 4.5 ± 0.3 m s-1, p < 0.001) and HIGH-GI (T0: 4.4 ± 0.5 vs. T10: 4.6 ± 0.4 m s-1), while no improvement was observed in LCHF. Yet, time trial performance improved significantly in all groups. Muscle glycogen content increased for participants in HIGH-GI (T0: 97.3 ± 18.5 vs. T10: 144.5 ± 39.8 mmol L wet-tissue-1, p = 0.027) and remained unchanged in the LOW-GI and the LCHF group. At the last examination, muscle glycogen concentration was significantly higher in LOW-GI compared to LCHF (p = 0.014). CONCLUSION Changes in fat oxidation were only present in LCHF, however, lower lactate concentrations in LOW-GI resulted in changes indicating an improved substrate metabolism. Compared to a LCHF diet, changes in peak running speed, and muscle glycogen stores were superior in LOW- and HIGH-GI diets. The low GI diet seems to have an influence on substrate metabolism without compromising performance at higher intensities, suggesting that a high-carbohydrate diet with a low GI is a viable alternative to a LCHF or a high GI diet. TRIAL REGISTRATION Clinical Trials, NCT05241730. https://clinicaltrials.gov/study/NCT05241730 . Registered 25 January 2021.
Collapse
Affiliation(s)
- Anna Maria Moitzi
- Division of Nutrition, Exercise and Health, Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria.
- Division of Nurtition, Exercise and Health, Department of Sport and Human Movement Science, University of Vienna, Vienna, Austria.
| | - Martin Krššák
- Department of Biomedical Imaging and Image Guided Therapy, High Field MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Radka Klepochova
- Department of Biomedical Imaging and Image Guided Therapy, High Field MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christoph Triska
- Leistungssport Austria, High Performance Centre, Brunn am Gebirge, Lower Austria, Austria
- Division of Training Science, Department of Sport and Human Movement Science, University of Vienna, Vienna, Austria
| | - Robert Csapo
- Division of Training Science, Department of Sport and Human Movement Science, University of Vienna, Vienna, Austria
| | - Daniel König
- Division of Nutrition, Exercise and Health, Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Division of Nurtition, Exercise and Health, Department of Sport and Human Movement Science, University of Vienna, Vienna, Austria
| |
Collapse
|
192
|
Burke LM, Whitfield J. Ketogenic Diets Are Not Beneficial for Athletic Performance. Med Sci Sports Exerc 2024; 56:756-759. [PMID: 38079311 DOI: 10.1249/mss.0000000000003344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
Affiliation(s)
- Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | | |
Collapse
|
193
|
Noakes TD. Ketogenic Diets Are Beneficial for Athletic Performance. Med Sci Sports Exerc 2024; 56:753-755. [PMID: 38079303 DOI: 10.1249/mss.0000000000003343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
|
194
|
Ji X, Zhang C, Yang J, Tian Y, You L, Yang H, Li Y, Liu H, Pan D, Liu Z. Kaempferol Improves Exercise Performance by Regulating Glucose Uptake, Mitochondrial Biogenesis, and Protein Synthesis via PI3K/AKT and MAPK Signaling Pathways. Foods 2024; 13:1068. [PMID: 38611372 PMCID: PMC11011654 DOI: 10.3390/foods13071068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Kaempferol is a natural flavonoid with reported bioactivities found in many fruits, vegetables, and medicinal herbs. However, its effects on exercise performance and muscle metabolism remain inconclusive. The present study investigated kaempferol's effects on improving exercise performance and potential mechanisms in vivo and in vitro. The grip strength, exhaustive running time, and distance of mice were increased in the high-dose kaempferol group (p < 0.01). Also, kaempferol reduced fatigue-related biochemical markers and increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) related to antioxidant capacity. Kaempferol also increased the glycogen and adenosine triphosphate (ATP) content in the liver and skeletal muscle, as well as glucose in the blood. In vitro, kaempferol promoted glucose uptake, protein synthesis, and mitochondrial function and decreased oxidative stress in both 2D and 3D C2C12 myotube cultures. Moreover, kaempferol activated the PI3K/AKT and MAPK signaling pathways in the C2C12 cells. It also upregulated the key targets of glucose uptake, mitochondrial function, and protein synthesis. These findings suggest that kaempferol improves exercise performance and alleviates physical fatigue by increasing glucose uptake, mitochondrial biogenesis, and protein synthesis and by decreasing ROS. Kaempferol's molecular mechanism may be related to the regulation of the PI3K/AKT and MAPK signaling pathways.
Collapse
Affiliation(s)
- Xiaoning Ji
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Chaozheng Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Jing Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Yaru Tian
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Lijuan You
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Hui Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Yongning Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Haibo Liu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Deng Pan
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Zhaoping Liu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| |
Collapse
|
195
|
Wang S, Li J, Zhao Y. Construction and analysis of a network of exercise-induced mitochondria-related non-coding RNA in the regulation of diabetic cardiomyopathy. PLoS One 2024; 19:e0297848. [PMID: 38547044 PMCID: PMC10977711 DOI: 10.1371/journal.pone.0297848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major factor in the development of heart failure. Mitochondria play a crucial role in regulating insulin resistance, oxidative stress, and inflammation, which affect the progression of DCM. Regular exercise can induce altered non-coding RNA (ncRNA) expression, which subsequently affects gene expression and protein function. The mechanism of exercise-induced mitochondrial-related non-coding RNA network in the regulation of DCM remains unclear. This study seeks to construct an innovative exercise-induced mitochondrial-related ncRNA network. Bioinformatic analysis of RNA sequencing data from an exercise rat model identified 144 differentially expressed long non-coding RNA (lncRNA) with cutoff criteria of p< 0.05 and fold change ≥1.0. GSE6880 and GSE4745 were the differentially expressed mRNAs from the left ventricle of DCM rat that downloaded from the GEO database. Combined with the differentially expressed mRNA and MitoCarta 3.0 dataset, the mitochondrial located gene Pdk4 was identified as a target gene. The miRNA prediction analysis using miRanda and TargetScan confirmed that 5 miRNAs have potential to interact with the 144 lncRNA. The novel lncRNA-miRNA-Pdk4 network was constructed for the first time. According to the functional protein association network, the newly created exercise-induced ncRNA network may serve as a promising diagnostic marker and therapeutic target, providing a fresh perspective to understand the molecular mechanism of different exercise types for the prevention and treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shuo Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Jiacong Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
196
|
Chan WS, Ng CF, Pang BPS, Hang M, Tse MCL, Iu ECY, Ooi XC, Yang X, Kim JK, Lee CW, Chan CB. Exercise-induced BDNF promotes PPARδ-dependent reprogramming of lipid metabolism in skeletal muscle during exercise recovery. Sci Signal 2024; 17:eadh2783. [PMID: 38502732 PMCID: PMC11022078 DOI: 10.1126/scisignal.adh2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Post-exercise recovery is essential to resolve metabolic perturbations and promote long-term cellular remodeling in response to exercise. Here, we report that muscle-generated brain-derived neurotrophic factor (BDNF) elicits post-exercise recovery and metabolic reprogramming in skeletal muscle. BDNF increased the post-exercise expression of the gene encoding PPARδ (peroxisome proliferator-activated receptor δ), a transcription factor that is a master regulator of lipid metabolism. After exercise, mice with muscle-specific Bdnf knockout (MBKO) exhibited impairments in PPARδ-regulated metabolic gene expression, decreased intramuscular lipid content, reduced β-oxidation, and dysregulated mitochondrial dynamics. Moreover, MBKO mice required a longer period to recover from a bout of exercise and did not show increases in exercise-induced endurance capacity. Feeding naïve mice with the bioavailable BDNF mimetic 7,8-dihydroxyflavone resulted in effects that mimicked exercise-induced adaptations, including improved exercise capacity. Together, our findings reveal that BDNF is an essential myokine for exercise-induced metabolic recovery and remodeling in skeletal muscle.
Collapse
Affiliation(s)
- Wing Suen Chan
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Chun Fai Ng
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Brian Pak Shing Pang
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Miaojia Hang
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Margaret Chui Ling Tse
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Elsie Chit Yu Iu
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Xin Ci Ooi
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Xiuying Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing 101399, China
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Chi Wai Lee
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Chi Bun Chan
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
197
|
Li W, Zhang Z, Berik E, Liu Y, Pei W, Chen S, Wu W, Wang Z, Kong X, Long H, Lei M, Wang JY, Li Z, Liu L, Hou J, Wu W, Guo DA. Energy preservation for skeletal muscles: Shenqi Fuzheng injection prevents tissue wasting and restores bioenergetic profiles in a mouse model of chemotherapy-induced cachexia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155269. [PMID: 38237510 DOI: 10.1016/j.phymed.2023.155269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Energy deficiency is the characteristic of chemotherapy-induced cachexia (CIC) which is manifested by muscle wasting. glycolysis, tricarboxylic acid (TCA) cycle, and lipid metabolism are central to muscle bioenergy production, which is vulnerable to chemotherapy during cancer treatment. Recent investigations have spotlighted the potential of Shenqi Fuzheng injection (SQ), a Chinese proprietary medicine comprising Radix Codonopsis and Radix Astragali, in alleviating CIC. However, the specific effects of SQ on muscle energy metabolism remains less explored. PURPOSE AND METHODS Here, we integrated transcriptomics, spatial metabolomics, gas chromatography-mass spectrometry targeted quantitative analysis, and transmission electron microscopy techniques, combined with Seahorse live-cell metabolic analysis to reveal the changes in genes and pathways related to energy metabolism in the CIC model and SQ's protective effects at molecular and functional levels. RESULTS Our data showed that chemotherapeutic agents caused glycolysis imbalance, which further leads to metabolic derangements of TCA cycle intermediates. SQ maintained glycolysis balance by facilitating pyruvate fluxing to mitochondria for more efficient bioenergy production, which involved a dual effect on promoting functions of mitochondrial pyruvate dehydrogenase complexes and inhibiting lactate dehydrogenase for lactate production. As a result of the sustained pyruvate level achieved by SQ administration, glycolysis balance was maintained, which further led to the preservation of mitochondrial integrity and function of electron transport chain, thereby, ensuring the normal operation of the TCA cycle and the proper synthesis of adenosine triphosphate (ATP). The above results were further validated using the Seahorse live-cell assay. CONCLUSION In conclusion, our study highlights SQ as a promising strategy for CIC management, emphasizing its ability to harmonize the homeostasis of the muscle bioenergetic profile. Beyond its therapeutic implications, this study also offers a novel perspective for the development of innovative treatments in the realm of herbal medicine.
Collapse
Affiliation(s)
- Wei Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijia Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Entezar Berik
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yawen Liu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Pei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sihan Chen
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyong Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Zhaojun Wang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinqin Kong
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huali Long
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Lei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jennifer Yiyang Wang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhaoxia Li
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Liangfeng Liu
- Limin Pharmaceutical Factory, Livzon Group Limited, Shaoguan 512028, China; Guangdong Corporate Key Laboratory of High-End Liquid Medicine R&D, Industrilization, Shaoguan 512028, China
| | - Jinjun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wanying Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
198
|
Botella J, Shaw CS, Bishop DJ. Autophagy and Exercise: Current Insights and Future Research Directions. Int J Sports Med 2024; 45:171-182. [PMID: 37582398 DOI: 10.1055/a-2153-9258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Autophagy is a cellular process by which proteins and organelles are degraded inside the lysosome. Exercise is known to influence the regulation of autophagy in skeletal muscle. However, as gold standard techniques to assess autophagy flux in vivo are restricted to animal research, important gaps remain in our understanding of how exercise influences autophagy activity in humans. Using available datasets, we show how the gene expression profile of autophagy receptors and ATG8 family members differ between human and mouse skeletal muscle, providing a potential explanation for their differing exercise-induced autophagy responses. Furthermore, we provide a comprehensive view of autophagy regulation following exercise in humans by summarizing human transcriptomic and phosphoproteomic datasets that provide novel targets of potential relevance. These newly identified phosphorylation sites may provide an explanation as to why both endurance and resistance exercise lead to an exercise-induced reduction in LC3B-II, while possibly divergently regulating autophagy receptors, and, potentially, autophagy flux. We also provide recommendations to use ex vivo autophagy flux assays to better understand the influence of exercise, and other stimuli, on autophagy regulation in humans. This review provides a critical overview of the field and directs researchers towards novel research areas that will improve our understanding of autophagy regulation following exercise in humans.
Collapse
Affiliation(s)
- Javier Botella
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, VIC, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| |
Collapse
|
199
|
Baghdassarian HM, Lewis NE. Resource allocation in mammalian systems. Biotechnol Adv 2024; 71:108305. [PMID: 38215956 PMCID: PMC11182366 DOI: 10.1016/j.biotechadv.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cells execute biological functions to support phenotypes such as growth, migration, and secretion. Complementarily, each function of a cell has resource costs that constrain phenotype. Resource allocation by a cell allows it to manage these costs and optimize their phenotypes. In fact, the management of resource constraints (e.g., nutrient availability, bioenergetic capacity, and macromolecular machinery production) shape activity and ultimately impact phenotype. In mammalian systems, quantification of resource allocation provides important insights into higher-order multicellular functions; it shapes intercellular interactions and relays environmental cues for tissues to coordinate individual cells to overcome resource constraints and achieve population-level behavior. Furthermore, these constraints, objectives, and phenotypes are context-dependent, with cells adapting their behavior according to their microenvironment, resulting in distinct steady-states. This review will highlight the biological insights gained from probing resource allocation in mammalian cells and tissues.
Collapse
Affiliation(s)
- Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
200
|
Gaglianone RB, Launikonis BS. Muscle fibre mitochondrial [Ca 2+ ] dynamics during Ca 2+ waves in RYR1 gain-of-function mouse. Acta Physiol (Oxf) 2024; 240:e14098. [PMID: 38240476 DOI: 10.1111/apha.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/14/2023] [Accepted: 01/01/2024] [Indexed: 02/24/2024]
Abstract
AIM A fraction of the Ca2+ released from the sarcoplasmic reticulum (SR) enters mitochondria to transiently increase its [Ca2+ ] ([Ca2+ ]mito ). This transient [Ca2+ ]mito increase may be important in the resynthesis of ATP and other processes. The resynthesis of ATP in the mitochondria generates heat that can lead to hypermetabolic reactions in muscle with ryanodine receptor 1 (RyR1) variants during the cyclic releasing of SR Ca2+ in the presence of a RyR1 agonist. We aimed to analyse whether the mitochondria of RYR1 variant muscle handles Ca2+ differently from healthy muscle. METHODS We used confocal microscopy to track mitochondrial and cytoplasmic Ca2+ with fluorescent dyes simultaneously during caffeine-induced Ca2+ waves in extensor digitorum longus muscle fibres from healthy mice and mice heterozygous (HET) for a malignant hyperthermia-causative RYR1 variant. RESULTS Mitochondrial Ca2+ -transient peaks trailed the peak of cytoplasmic Ca2+ transients by many seconds with [Ca2+ ]mito not increasing by more than 250 nM. A strong linear relationship between cytoplasmic Ca2+ and [Ca2+ ]mito amplitudes was observed in HET RYR1 KI fibres but not wild type (WT). CONCLUSION Our results indicate that [Ca2+ ]mito change within the nM range during SR Ca2+ release. HET fibre mitochondria are more sensitive to SR Ca2+ release flux than WT. This may indicate post-translation modification differences of the mitochondrial Ca2+ uniporter between the genotypes.
Collapse
Affiliation(s)
- Rhayanna B Gaglianone
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Bradley S Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|