151
|
Vermehren-Schmaedick A, Jacob T, Vu TQ. Methodology for Detecting and Tracking Brain-Derived Neurotrophic Factor Complexes in Neurons Using Single Quantum Dots. BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF) 2018. [DOI: 10.1007/7657_2018_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
152
|
N-3 PUFA diet enrichment prevents amyloid beta-induced depressive-like phenotype. Pharmacol Res 2017; 129:526-534. [PMID: 29203442 DOI: 10.1016/j.phrs.2017.11.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
Abstract
Among neuropsychiatric diseases, depression is one of the most prevalent. Many pathologies have been indicated as comorbid with depression and in particular, neurodegenerative disorders such as Alzheimer's diseases (AD). In this regard, several evidences endorse a strong relationship between depression and AD, so much that this mental illness has been proposed either as a risk factor for AD or as a prodromic AD phase. Furthermore, amyloid beta (Aβ) peptide, the main constituent of amyloid plaques commonly considered the principal hallmark of AD brains, has been shown to be increased, in its soluble form, in depressed patients. Accordingly, we have previously found that Aβ, intracerebroventricularly (i.c.v.) injected, is able to evoke a depressive-like profile in rats accompanied by low cortical serotonin and reduced neurotrophin content. Taking into account the great increase in AD and depression prevalence, many environmental factors have been under study, particularly dietary factors, and the role of polyunsaturated fatty acids (PUFA) is becoming central in this field of research. Thus, aim of the present study was to evaluate the neurobehavioral effects of lifelong exposure to either n-3 PUFA rich or n-3 PUFA poor diet after Aβ central administration. Results showed that n-3 PUFA enriched diet prevented the Aβ- induced depressive-like behaviors, as reveled by the reduction in the immobility time in the FST test. Furthermore, n-3 PUFA rich diet exposure reverted also serotonin and neurotrophin level reduction in prefrontal cortex of Aβ treated rats. Taken together, our data support the concept that supplementation of diet with n-3 PUFA represents a valid approach to reduce the risk of developing depressive symptoms, as well as reducing the risk of Aβ-related pathologies, such as AD.
Collapse
|
153
|
Senegenin exerts anti-depression effect in mice induced by chronic un-predictable mild stress via inhibition of NF-κB regulating NLRP3 signal pathway. Int Immunopharmacol 2017; 53:24-32. [DOI: 10.1016/j.intimp.2017.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/22/2017] [Accepted: 10/01/2017] [Indexed: 01/19/2023]
|
154
|
Szilasi ME, Pak K, Kardos L, Varga VE, Seres I, Mikaczo A, Fodor A, Szilasi M, Tajti G, Papp C, Gesztelyi R, Zsuga J. The Alteration of Irisin-Brain-Derived Neurotrophic Factor Axis Parallels Severity of Distress Disorder in Bronchial Asthma Patients. Front Neurosci 2017; 11:653. [PMID: 29217995 PMCID: PMC5703837 DOI: 10.3389/fnins.2017.00653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/09/2017] [Indexed: 01/27/2023] Open
Abstract
Distress disorder (a collective term for generalized anxiety disorder and major depressive disorder) is a well-known co-morbidity of bronchial asthma. The irisin-brain-derived neurotrophic factor (BDNF) axis is a pathway that influences several neurobehavioral mechanisms involved in the pathogenesis of distress disorder. Thus, the aim of the present study was to quantify the serum irisin and BDNF concentrations in order to investigate the possible link between the irisin/BDNF axis and distress disorder in an asthma patient cohort. Data of 167 therapy-controlled asthma patients were analyzed. Demographic, anthropometric, and anamnestic data were collected, routine laboratory parameters supplemented with serum irisin and BDNF levels were determined, pulmonary function test was performed using whole-body plethysmography, and quality of life was quantified by means of the St. George's Respiratory Questionnaire (SGRQ). Correlation analysis as well as simple and multiple linear regression were used to assess the relationship between the irisin level and the Impacts score of SGRQ, which latter is indicative of the presence and severity of distress disorder. We have found a significant, positive linear relationship between the Impacts score and the reciprocal of irisin level. This association was stronger in patients whose BDNF level was higher, and it was weaker (and statistically non-significant) in patients whose BDNF level was lower. Our results indicate that higher serum irisin level together with higher serum BDNF level are associated with milder (or no) distress disorder. This finding suggests that alteration of the irisin/BDNF axis influences the presence and severity of distress disorder in asthma patients.
Collapse
Affiliation(s)
- Magdolna E Szilasi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztian Pak
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Kardos
- Institute of Clinical Pharmacology, Infectious Diseases and Allergology, Kenezy Gyula Teaching County Hospital and Outpatient Clinic, University of Debrecen, Debrecen, Hungary
| | - Viktoria E Varga
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildiko Seres
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Angela Mikaczo
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Fodor
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Maria Szilasi
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Tajti
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Csaba Papp
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Zsuga
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
155
|
|
156
|
Torres OV, Jayanthi S, McCoy MT, Cadet JL. Selective Activation of Striatal NGF-TrkA/p75NTR/MAPK Intracellular Signaling in Rats That Show Suppression of Methamphetamine Intake 30 Days following Drug Abstinence. Int J Neuropsychopharmacol 2017; 21:281-290. [PMID: 29165617 PMCID: PMC5838829 DOI: 10.1093/ijnp/pyx105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The continuing epidemic of methamphetamine addiction has prompted research aimed at understanding striatal dysfunctions potentially associated with long-term methamphetamine use. METHODS Here, we investigated transcriptional and translational alterations in the expression of neurotrophic factors in the rat striatum at 30 days following methamphetamine self-administration and footshock punishment. Male Sprague-Dawley rats were trained to self-administer methamphetamine (0.1 mg/kg/injection, i.v.) or saline during twenty-two 9-hour sessions. Subsequently, rats were subjected to incremental footshocks for 13 additional methamphetamine self-administration sessions. This paradigm led to the identification of rats with shock-resistant and shock-sensitive phenotypes. Thirty days following the last footshock session, the dorsal striatum was dissected and processed for gene expression and protein analyses. RESULTS PCR arrays revealed significant differences in neurotrophins and their receptors between the 2 phenotypes. Brain-derived neurotrophic factor and nerve growth factor protein levels were increased in the dorsal striatum of both shock-resistant and shock-sensitive rats. However, neurotrophic receptor tyrosine kinase 1 phosphorylation and nerve growth factor receptor protein expression were increased only in the shock-sensitive phenotype. Moreover, shock-sensitive rats showed increased abundance of several phosphorylated proteins known to participate in Ras/Raf/MEK/ERK signaling cascade including cRaf, ERK1/2, MSK1, and CREB. CONCLUSIONS These findings support the notion that animals with distinct phenotypes for methamphetamine intake in the presence of adverse consequences also display differential changes in an intracellular signaling cascade activated by nerve growth factor-TrkA/p75NTR interactions. Thus, the development of pharmacological agents that can activate nerve growth factor-dependent pathways may be a promising therapeutic approach to combat methamphetamine addiction.
Collapse
Affiliation(s)
- Oscar V Torres
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Baltimore, Maryland
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Baltimore, Maryland
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Baltimore, Maryland
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Baltimore, Maryland,Correspondence: Jean Lud Cadet, MD, Chief, Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA IRP, 251 Bayview Boulevard, Baltimore, MD 21224 ()
| |
Collapse
|
157
|
García-Marchena N, Silva-Peña D, Martín-Velasco AI, Villanúa MÁ, Araos P, Pedraz M, Maza-Quiroga R, Romero-Sanchiz P, Rubio G, Castilla-Ortega E, Suárez J, Rodríguez de Fonseca F, Serrano A, Pavón FJ. Decreased plasma concentrations of BDNF and IGF-1 in abstinent patients with alcohol use disorders. PLoS One 2017; 12:e0187634. [PMID: 29108028 PMCID: PMC5673472 DOI: 10.1371/journal.pone.0187634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/23/2017] [Indexed: 12/27/2022] Open
Abstract
The identification of growth factors as potential biomarkers in alcohol addiction may help to understand underlying mechanisms associated with the pathogenesis of alcohol use disorders (AUDs). Previous studies have linked growth factors to neural plasticity in neurocognitive impairment and mental disorders. In order to further clarify the impact of chronic alcohol consumption on circulating growth factors, a cross-sectional study was performed in abstinent AUD patients (alcohol group, N = 91) and healthy control subjects (control group, N = 55) to examine plasma concentrations of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1) and IGF-1 binding protein-3 (IGFBP-3). The association of these plasma peptides with relevant AUD-related variables and psychiatric comorbidity was explored. The alcohol group was diagnosed with severe AUD and showed an average of 13 years of problematic use and 10 months of abstinence at the moment of participating in the study. Regarding common medical conditions associated with AUD, we observed an elevated incidence of alcohol-induced liver and pancreas diseases (18.7%) and psychiatric comorbidity (76.9%). Thus, AUD patients displayed a high prevalence of dual diagnosis (39.3%) [mainly depression (19.9%)] and comorbid substance use disorders (40.7%). Plasma BDNF and IGF-1 concentrations were significantly lower in the alcohol group than in the control group (p<0.001). Remarkably, there was a negative association between IGF-1 concentrations and age in the control group (r = -0.52, p<0.001) that was not found in the alcohol group. Concerning AUD-related variables, AUD patients with liver and pancreas diseases showed even lower concentrations of BDNF (p<0.05). In contrast, the changes in plasma concentrations of these peptides were not associated with abstinence, problematic use, AUD severity or lifetime psychiatric comorbidity. These results suggest that further research is necessary to elucidate the role of BDNF in alcohol-induced toxicity and the biological significance of the lack of correlation between age and plasma IGF-1 levels in abstinent AUD patients.
Collapse
Affiliation(s)
- Nuria García-Marchena
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Daniel Silva-Peña
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | | | - María Ángeles Villanúa
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Pedro Araos
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - María Pedraz
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Rosa Maza-Quiroga
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Pablo Romero-Sanchiz
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Gabriel Rubio
- Instituto i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Castilla-Ortega
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- * E-mail: (FRF); (AS); (FJP)
| | - Antonia Serrano
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- * E-mail: (FRF); (AS); (FJP)
| | - Francisco Javier Pavón
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- * E-mail: (FRF); (AS); (FJP)
| |
Collapse
|
158
|
Hoffmann C, Weigert C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029793. [PMID: 28389517 DOI: 10.1101/cshperspect.a029793] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exercise stimulates the release of proteins with autocrine, paracrine, or endocrine functions produced in skeletal muscle, termed myokines. Based on the current state of knowledge, the major physiological function of myokines is to protect the functionality and to enhance the exercise capacity of skeletal muscle. Myokines control adaptive processes in skeletal muscle by acting as paracrine regulators of fuel oxidation, hypertrophy, angiogenesis, inflammatory processes, and regulation of the extracellular matrix. Endocrine functions attributed to myokines are involved in body weight regulation, low-grade inflammation, insulin sensitivity, suppression of tumor growth, and improvement of cognitive function. Muscle-derived regulatory RNAs and metabolites, as well as the design of modified myokines, are promising novel directions for treatment of chronic diseases.
Collapse
Affiliation(s)
- Christoph Hoffmann
- Division of Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Cora Weigert
- Division of Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| |
Collapse
|
159
|
Francardo V, Schmitz Y, Sulzer D, Cenci MA. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp Neurol 2017; 298:137-147. [PMID: 28988910 DOI: 10.1016/j.expneurol.2017.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
Disease-modifying treatments remain an unmet medical need in Parkinson's disease (PD). Such treatments can be operationally defined as interventions that slow down the clinical evolution to advanced disease milestones. A treatment may achieve this outcome by either inhibiting primary neurodegenerative events ("neuroprotection") or boosting compensatory and regenerative mechanisms in the brain ("neurorestoration"). Here we review experimental paradigms that are currently used to assess the neuroprotective and neurorestorative potential of candidate treatments in animal models of PD. We review some key molecular mediators of neuroprotection and neurorestoration in the nigrostriatal dopamine pathway that are likely to exert beneficial effects on multiple neural systems affected in PD. We further review past and current strategies to therapeutically stimulate these mediators, and discuss the preclinical evidence that exercise training can have neuroprotective and neurorestorative effects. A future translational task will be to combine behavioral and pharmacological interventions to exploit endogenous mechanisms of neuroprotection and neurorestoration for therapeutic purposes. This type of approach is likely to provide benefit to many PD patients, despite the clinical, etiological, and genetic heterogeneity of the disease.
Collapse
Affiliation(s)
- Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Yvonne Schmitz
- Departments Neurology, Psychiatry, Pharmacology, Columbia University Medical Center: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York 10032, NY, USA
| | - David Sulzer
- Departments Neurology, Psychiatry, Pharmacology, Columbia University Medical Center: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York 10032, NY, USA
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
160
|
Kim E, Lim SM, Kim MS, Yoo SH, Kim Y. Phyllodulcin, a Natural Sweetener, Regulates Obesity-Related Metabolic Changes and Fat Browning-Related Genes of Subcutaneous White Adipose Tissue in High-Fat Diet-Induced Obese Mice. Nutrients 2017; 9:nu9101049. [PMID: 28934139 PMCID: PMC5691666 DOI: 10.3390/nu9101049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/25/2017] [Accepted: 09/18/2017] [Indexed: 11/21/2022] Open
Abstract
Phyllodulcin is a natural sweetener found in Hydrangea macrophylla var. thunbergii. This study investigated whether phyllodulcin could improve metabolic abnormalities in high-fat diet (HFD)-induced obese mice. Animals were fed a 60% HFD for 6 weeks to induce obesity, followed by 7 weeks of supplementation with phyllodulcin (20 or 40 mg/kg body weight (b.w.)/day). Stevioside (40 mg/kg b.w./day) was used as a positive control. Phyllodulcin supplementation reduced subcutaneous fat mass, levels of plasma lipids, triglycerides, total cholesterol, and low-density lipoprotein cholesterol and improved the levels of leptin, adiponectin, and fasting blood glucose. In subcutaneous fat tissues, supplementation with stevioside or phyllodulcin significantly decreased mRNA expression of lipogenesis-related genes, including CCAAT/enhancer-binding protein α (C/EBPα), peroxisome proliferator activated receptor γ (PPARγ), and sterol regulatory element-binding protein-1C (SREBP-1c) compared to the high-fat group. Phyllodulcin supplementation significantly increased the expression of fat browning-related genes, including PR domain containing 16 (Prdm16), uncoupling protein 1 (UCP1), and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), compared to the high-fat group. Hypothalamic brain-derived neurotrophic factor-tropomyosin receptor kinase B (BDNF-TrkB) signaling was upregulated by phyllodulcin supplementation. In conclusion, phyllodulcin is a potential sweetener that could be used to combat obesity by regulating levels of leptin, fat browning-related genes, and hypothalamic BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Soo-Min Lim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Min-Soo Kim
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea.
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea.
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
161
|
Kennedy AE, Vohra R, Scott JA, Ross GM. Effects of serum albumin on SPR-measured affinity of small molecule inhibitors binding to nerve growth factor. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
162
|
O’Tuathaigh CMP, Mathur N, O’Callaghan MJ, MacIntyre L, Harvey R, Lai D, Waddington JL, Pickard BS, Watson DG, Moran PM. Specialized Information Processing Deficits and Distinct Metabolomic Profiles Following TM-Domain Disruption of Nrg1. Schizophr Bull 2017; 43:1100-1113. [PMID: 28338897 PMCID: PMC5581893 DOI: 10.1093/schbul/sbw189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although there is considerable genetic and pathologic evidence for an association between neuregulin 1 (NRG1) dysregulation and schizophrenia, the underlying molecular and cellular mechanisms remain unclear. Mutant mice containing disruption of the transmembrane (TM) domain of the NRG1 gene constitute a heuristic model for dysregulation of NRG1-ErbB4 signaling in schizophrenia. The present study focused on hitherto uncharacterized information processing phenotypes in this mutant line. Using a mass spectrometry-based metabolomics approach, we also quantified levels of unique metabolites in brain. Across 2 different sites and protocols, Nrg1 mutants demonstrated deficits in prepulse inhibition, a measure of sensorimotor gating, that is, disrupted in schizophrenia; these deficits were partially reversed by acute treatment with second, but not first-, generation antipsychotic drugs. However, Nrg1 mutants did not show a specific deficit in latent inhibition, a measure of selective attention that is also disrupted in schizophrenia. In contrast, in a "what-where-when" object recognition memory task, Nrg1 mutants displayed sex-specific (males only) disruption of "what-when" performance, indicative of impaired temporal aspects of episodic memory. Differential metabolomic profiling revealed that these behavioral phenotypes were accompanied, most prominently, by alterations in lipid metabolism pathways. This study is the first to associate these novel physiological mechanisms, previously independently identified as being abnormal in schizophrenia, with disruption of NRG1 function. These data suggest novel mechanisms by which compromised neuregulin function from birth might lead to schizophrenia-relevant behavioral changes in adulthood.
Collapse
Affiliation(s)
| | - Naina Mathur
- School of Psychology, University of Nottingham, Nottingham, UK
| | | | - Lynsey MacIntyre
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Richard Harvey
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Donna Lai
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Benjamin S Pickard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Paula M Moran
- School of Psychology, University of Nottingham, Nottingham, UK
| |
Collapse
|
163
|
Daugherty D, Goldberg J, Fischer W, Dargusch R, Maher P, Schubert D. A novel Alzheimer's disease drug candidate targeting inflammation and fatty acid metabolism. ALZHEIMERS RESEARCH & THERAPY 2017; 9:50. [PMID: 28709449 PMCID: PMC5513091 DOI: 10.1186/s13195-017-0277-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022]
Abstract
Background CAD-31 is an Alzheimer’s disease (AD) drug candidate that was selected on the basis of its ability to stimulate the replication of human embryonic stem cell-derived neural precursor cells as well as in APPswe/PS1ΔE9 AD mice. To move CAD-31 toward the clinic, experiments were undertaken to determine its neuroprotective and pharmacological properties, as well as to assay its therapeutic efficacy in a rigorous mouse model of AD. Results CAD-31 has potent neuroprotective properties in six distinct nerve cell assays that mimic toxicities observed in the old brain. Pharmacological and preliminary toxicological studies show that CAD-31 is brain-penetrant and likely safe. When fed to old, symptomatic APPswe/PS1ΔE9 AD mice starting at 10 months of age for 3 additional months in a therapeutic model of the disease, there was a reduction in the memory deficit and brain inflammation, as well as an increase in the expression of synaptic proteins. Small-molecule metabolic data from the brain and plasma showed that the major effect of CAD-31 is centered on fatty acid metabolism and inflammation. Pathway analysis of gene expression data showed that CAD-31 had major effects on synapse formation and AD energy metabolic pathways. Conclusions All of the multiple physiological effects of CAD-31 were favorable in the context of preventing some of the toxic events in old age-associated neurodegenerative diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0277-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Daugherty
- Cellular Neuroendocrinology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA
| | - Joshua Goldberg
- Cellular Neuroendocrinology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA
| | - Wolfgang Fischer
- Cellular Neuroendocrinology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA
| | - Richard Dargusch
- Cellular Neuroendocrinology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA
| | - Pamela Maher
- Cellular Neuroendocrinology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA
| | - David Schubert
- Cellular Neuroendocrinology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA.
| |
Collapse
|
164
|
Mortezaei Z, Lanjanian H, Masoudi-Nejad A. Candidate novel long noncoding RNAs, MicroRNAs and putative drugs for Parkinson's disease using a robust and efficient genome-wide association study. Genomics 2017; 109:158-164. [DOI: 10.1016/j.ygeno.2017.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/02/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
|
165
|
Miranda A, Cordeiro T, dos Santos Lacerda Soares TM, Ferreira R, Simões e Silva A. Kidney–brain axis inflammatory cross-talk: from bench to bedside. Clin Sci (Lond) 2017; 131:1093-1105. [DOI: 10.1042/cs20160927] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Epidemiologic data suggest that individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing neuropsychiatric disorders, cognitive impairment, and dementia. This risk is generally explained by the high prevalence of both symptomatic and subclinical ischemic cerebrovascular lesions. However, other potential mechanisms, including cytokine/chemokine release, production of reactive oxygen species (ROS), circulating and local formation of trophic factors and of renin–angiotensin system (RAS) molecules, could also be involved, especially in the absence of obvious cerebrovascular disease. In this review, we discuss experimental and clinical evidence for the role of these mechanisms in kidney–brain cross-talk. In addition, we hypothesize potential pathways for the interactions between kidney and brain and their pathophysiological role in neuropsychiatric and cognitive changes found in patients with CKD. Understanding the pathophysiologic interactions between renal impairment and brain function is important in order to minimize the risk for future cognitive impairment and to develop new strategies for innovative pharmacological treatment.
Collapse
Affiliation(s)
- Aline Silva Miranda
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | - Thiago Macedo Cordeiro
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | | | - Rodrigo Novaes Ferreira
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Ana Cristina Simões e Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| |
Collapse
|
166
|
Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacol Res 2017; 120:68-87. [DOI: 10.1016/j.phrs.2017.03.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/23/2017] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
|
167
|
Leviton A, Allred EN, Yamamoto H, Fichorova RN, Kuban K, O'Shea TM, Dammann O. Antecedents and correlates of blood concentrations of neurotrophic growth factors in very preterm newborns. Cytokine 2017; 94:21-28. [PMID: 28396037 PMCID: PMC5464409 DOI: 10.1016/j.cyto.2017.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022]
Abstract
AIM To identify the antecedents and very early correlates of low concentrations of neurotrophic growth factors in the blood of extremely preterm newborns during the first postnatal month. METHODS Using an immunobead assay, we measured the concentrations of neurotrophin 4 (NT4), brain-derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF) in blood spots collected on postnatal days 1 (N=1062), 7 (N=1087), 14 (N=989), 21 (N=940) and 28 (N=880) from infants born before the 28th week of gestation. We then sought the correlates of measurements in the top and bottom quartiles for gestational age and day the specimen was collected. RESULTS The concentrations of 2 neurotrophic proteins, NT4 and BDNF, were low among children delivered for medical (maternal or fetal) indications, and among those who were growth restricted. Children who had top quartile concentrations of NT4, BDNF, and bFGF tended to have elevated concentrations of inflammation-related proteins that day. This pattern persisted for much of the first postnatal month. CONCLUSIONS Delivery for medical indications and fetal growth restriction are associated with a relative paucity of NT4 and BDNF concentrations during the first 24 h after very preterm birth. Elevated blood concentrations of NT4, BDNF, and bFGF tended to co-occur with indicators of systemic inflammation on the same day.
Collapse
Affiliation(s)
- Alan Leviton
- Boston Children's Hospital, and Harvard Medical School, Boston, MA, United States.
| | - Elizabeth N Allred
- Boston Children's Hospital, and Harvard Medical School, Boston, MA, United States
| | | | - Raina N Fichorova
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Karl Kuban
- Boston Medical Center and Boston University, Boston, MA, United States
| | | | - Olaf Dammann
- Tufts University School of Medicine, Boston, MA, United States; Hannover Medical School, Hannover, Germany
| |
Collapse
|
168
|
Park JK, Hong YP, Lee SJ. Effects of exercise on mature or precursor brain‑derived neurotrophic factor pathways in ovariectomized rats. Mol Med Rep 2017; 16:435-440. [PMID: 28534952 DOI: 10.3892/mmr.2017.6614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 02/27/2017] [Indexed: 11/06/2022] Open
Abstract
Ovariectomy (OVX) is a method used to block estrogen in female rats that induces hippocampal dysfunction and affects brain‑derived neurotrophic factor (BDNF) pathways. The majority of previous studies investigating OVX focused on BDNF expression in the hippocampus and cognitive function. The present study focused on the pathways of each BDNF type, precursor (proBDNF) and mature (mBDNF), and the effects of regular exercise in the hippocampus of ovariectomized rats. Female Sprague‑Dawely rats were used and OVX surgery was performed. After 1 week of recovery from surgery, two groups of rats that received OVX surgery were subjected to regular treadmill exercise for 8 weeks. The results of protein levels by western blotting indicated that the expression of proBDNF, p75 neurotrophin receptor (p75NTR) and c‑Jun N‑terminal protein kinase (JNK) was increased, and mBDNF, tropomyosin‑related kinase B (TrkB) and nuclear factor‑κB expression was significantly reduced in the OVX control group compared with the sham control group SC (P<0.05). Thus, the survival pathway by mBDNF was impaired and the pro‑apoptotic response was activated by increased JNK expression due to proBDNF‑p75NTR binding in the hippocampus of ovariectomized rats. By contrast, exercise reduced activation of the pro‑apoptotic response and increased mBDNF‑TrkB expression in the hippocampus of ovariectomized rats. Thus, regular exercise may increase the activation of survival pathways via mBDNF and reducing the activation of the pro‑apoptotic pathway of proBDNF in the hippocampus of ovariectomized rats.
Collapse
Affiliation(s)
- Joon-Ki Park
- Division of Exercise and Health Science, College of Arts and Physical Education, Incheon National University, Incheon 22012, Republic of Korea
| | - Young-Pyo Hong
- Health Education Laboratory, Department of Physical Education, Korea National Sport University, Seoul 05541, Republic of Korea
| | - Sam-Jun Lee
- Department of Physical Education, College of Health, Social Welfare and Education, Tong Myong University, Busan 48520, Republic of Korea
| |
Collapse
|
169
|
Lu Z, Lei D, Jiang T, Yang L, Zheng L, Zhao J. Nerve growth factor from Chinese cobra venom stimulates chondrogenic differentiation of mesenchymal stem cells. Cell Death Dis 2017; 8:e2801. [PMID: 28518137 PMCID: PMC5520725 DOI: 10.1038/cddis.2017.208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 01/08/2023]
Abstract
Growth factors such as transforming growth factor beta1 (TGF-β1), have critical roles in the regulation of the chondrogenic differentiation of mesenchymal stem cells (MSCs), which promote cartilage repair. However, the clinical applications of the traditional growth factors are limited by their high cost, functional heterogeneity and unpredictable effects, such as cyst formation. It may be advantageous for cartilage regeneration to identify a low-cost substitute with greater chondral specificity and easy accessibility. As a neuropeptide, nerve growth factor (NGF) was involved in cartilage metabolism and NGF is hypothesized to mediate the chondrogenic differentiation of MSCs. We isolated NGF from Chinese cobra venom using a three-step procedure that we had improved upon from previous studies, and investigated the chondrogenic potential of NGF on bone marrow MSCs (BMSCs) both in vitro and in vivo. The results showed that NGF greatly upregulated the expression of cartilage-specific markers. When applied to cartilage repair for 4, 8 and 12 weeks, NGF-treated BMSCs have greater therapeutic effect than untreated BMSCs. Although inferior to TGF-β1 regarding its chondrogenic potential, NGF showed considerably lower expression of collagen type I, which is a fibrocartilage marker, and RUNX2, which is critical for terminal chondrocyte differentiation than TGF-β1, indicating its chondral specificity. Interestingly, NGF rarely induced BMSCs to differentiate into a neuronal phenotype, which may be due to the presence of other chondrogenic supplements. Furthermore, the underlying mechanism revealed that NGF-mediated chondrogenesis may be associated with the activation of PI3K/AKT and MAPK/ERK signaling pathways via the specific receptor of NGF, TrkA. In addition, NGF is easily accessed because of the abundance and low price of cobra venom, as well as the simplified methods for separation and purification. This study was the first to demonstrate the chondrogenic potential of NGF, which may provide a reference for cartilage regeneration in the clinic.
Collapse
Affiliation(s)
- Zhenhui Lu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danqing Lei
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, China
| | - Tongmeng Jiang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lihui Yang
- School of Nursing, Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
170
|
Freeman MR, Sathish V, Manlove L, Wang S, Britt RD, Thompson MA, Pabelick CM, Prakash YS. Brain-derived neurotrophic factor and airway fibrosis in asthma. Am J Physiol Lung Cell Mol Physiol 2017; 313:L360-L370. [PMID: 28522569 DOI: 10.1152/ajplung.00580.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/17/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Airway remodeling in asthma driven by inflammation involves proliferation of epithelial cells and airway smooth muscle (ASM), as well as enhanced extracellular matrix (ECM) generation and deposition, i.e., fibrosis. Accordingly, understanding profibrotic mechanisms is important for developing novel therapeutic strategies in asthma. Recent studies, including our own, have suggested a role for locally produced growth factors such as brain-derived neurotrophic factor (BDNF) in mediating and modulating inflammation effects. In this study, we explored the profibrotic influence of BDNF in the context of asthma by examining expression, activity, and deposition of ECM proteins in primary ASM cells isolated from asthmatic vs. nonasthmatic patients. Basal BDNF expression and secretion, and levels of the high-affinity BDNF receptor TrkB, were higher in asthmatic ASM. Exogenous BDNF significantly increased ECM production and deposition, especially of collagen-1 and collagen-3 (less so fibronectin) and the activity of matrix metalloproteinases (MMP-2, MMP-9). Exposure to the proinflammatory cytokine TNFα significantly increased BDNF secretion, particularly in asthmatic ASM, whereas no significant changes were observed with IL-13. Chelation of BDNF using TrkB-Fc reversed TNFα-induced increase in ECM deposition. Conditioned media from asthmatic ASM enhanced ECM generation in nonasthmatic ASM, which was blunted by BDNF chelation. Inflammation-induced changes in MMP-2, MMP-9, and tissue inhibitor metalloproteinases (TIMP-1, TIMP-2) were reversed in the presence of TrkB-Fc. These novel data suggest ASM as an inflammation-sensitive source of BDNF within human airways, with autocrine effects on fibrosis relevant to asthma.
Collapse
Affiliation(s)
- Michelle R Freeman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Venkatachalem Sathish
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Logan Manlove
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Shengyu Wang
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Respiratory Medicine, First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Rodney D Britt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota; .,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
171
|
Genzer Y, Chapnik N, Froy O. Effect of brain-derived neurotrophic factor (BDNF) on hepatocyte metabolism. Int J Biochem Cell Biol 2017; 88:69-74. [PMID: 28483667 DOI: 10.1016/j.biocel.2017.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/28/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays crucial roles in the development, maintenance, plasticity and homeostasis of the central and peripheral nervous systems. Perturbing BDNF signaling in mouse brain results in hyperphagia, obesity, hyperinsulinemia and hyperglycemia. Currently, little is known whether BDNF affects liver tissue directly. Our aim was to determine the metabolic signaling pathways activated after BDNF treatment in hepatocytes. Unlike its effect in the brain, BDNF did not lead to activation of the liver AKT pathway. However, AMP protein activated kinase (AMPK) was ∼3 times more active and fatty acid synthase (FAS) ∼2-fold less active, suggesting increased fatty acid oxidation and reduced fatty acid synthesis. In addition, cAMP response element binding protein (CREB) was ∼3.5-fold less active together with its output the gluconeogenic transcript phosphoenolpyruvate carboxykinase (Pepck), suggesting reduced gluconeogenesis. The levels of glycogen synthase kinase 3b (GSK3b) was ∼3-fold higher suggesting increased glycogen synthesis. In parallel, the expression levels of the clock genes Bmal1 and Cry1, whose protein products play also a metabolic role, were ∼2-fold increased and decreased, respectively. In conclusion, BDNF binding to hepatocytes leads to activation of catabolic pathways, such as fatty acid oxidation. In parallel gluconeogenesis is inhibited, while glycogen storage is triggered. This metabolic state mimics that of after breakfast, in which the liver continues to oxidize fat, stops gluconeogenesis and replenishes glycogen stores.
Collapse
Affiliation(s)
- Yoni Genzer
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
172
|
Severini C, Petrocchi Passeri P, Ciotti M, Florenzano F, Petrella C, Malerba F, Bruni B, D'Onofrio M, Arisi I, Brandi R, Possenti R, Calissano P, Cattaneo A. Nerve growth factor derivative NGF61/100 promotes outgrowth of primary sensory neurons with reduced signs of nociceptive sensitization. Neuropharmacology 2017; 117:134-148. [DOI: 10.1016/j.neuropharm.2017.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/09/2017] [Accepted: 01/29/2017] [Indexed: 12/16/2022]
|
173
|
Calabrese F, Savino E, Mocaer E, Bretin S, Racagni G, Riva MA. Upregulation of neurotrophins by S 47445, a novel positive allosteric modulator of AMPA receptors in aged rats. Pharmacol Res 2017; 121:59-69. [PMID: 28442348 DOI: 10.1016/j.phrs.2017.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 02/06/2023]
Abstract
At molecular levels, it has been shown that aging is associated with alterations in neuroplastic mechanisms. In this study, it was examined if the altered expression of neurotrophins observed in aged rats could be corrected by a chronic treatment with S 47445 (1-3-10mg/kg, p.o.), a novel selective positive allosteric modulator of the AMPA receptors. Both the mRNA and the protein levels of the neurotrophins Bdnf, NT-3 and Ngf were specifically measured in the prefrontal cortex and hippocampus (ventral and dorsal) of aged rats. It was found that 2-week-treatment with S 47445 corrected the age-related deficits of these neurotrophins and/or positively modulated their expression in comparison to vehicle aged rats in the range of procognitive and antidepressant active doses in rodents. Collectively, the ability of S 47445 to modulate various neurotrophins demonstrated its neurotrophic properties in two major brain structures involved in cognition and mood regulation suggesting its therapeutic potential for improving several diseases such as Alzheimer's disease and/or Major Depressive Disorders.
Collapse
Affiliation(s)
- Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Milan, Italy
| | - Elisa Savino
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Milan, Italy
| | - Elisabeth Mocaer
- Neuropsychiatric Innovation Therapeutic Pole, Institut de Recherches Internationales Servier, Suresnes, France
| | - Sylvie Bretin
- Neuropsychiatric Innovation Therapeutic Pole, Institut de Recherches Internationales Servier, Suresnes, France
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Milan, Italy.
| |
Collapse
|
174
|
Abstract
In the last few years, exciting properties have emerged regarding the activation, signaling, mechanisms of action, and therapeutic targeting of the two types of neurotrophin receptors: the p75NTR with its intracellular and extracellular peptides, the Trks, their precursors and their complexes. This review summarizes these new developments, with particular focus on neurodegenerative diseases. Based on the evolving knowledge, innovative concepts have been formulated regarding the pathogenesis of these diseases, especially the Alzheimer's and two other, the Parkinson's and Huntington's diseases. The medical progresses include original procedures of diagnosis, started from studies in mice and now investigated for human application, based on innovative classes of receptor agonists and blockers. In parallel, comprehensive studies have been and are being carried out for the development of drugs. The relevance of these studies is based on the limitations of the therapies employed until recently, especially for the treatment of Alzheimer's patients. Starting from well known drugs, previously employed for non-neurodegenerative diseases, the ongoing progress has lead to the development of small molecules that cross rapidly the blood-brain barrier. Among these molecules the most promising are specific blockers of the p75NTR receptor. Additional drugs, that activate Trk receptors, were shown effective against synaptic loss and memory deficits. In the near future such approaches, coordinated with treatments with monoclonal antibodies and with developments in the microRNA field, are expected to improve the therapy of neurodegenerative diseases, and may be relevant also for other human disease conditions.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Department of Neuroscience, Vita-Salute San Raffaele University and Scientific Institute San Raffaele, via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
175
|
Onufriev MV, Freiman SV, Peregud DI, Kudryashova IV, Tishkina AO, Stepanichev MY, Gulyaeva NV. Neonatal Proinflammatory Stress Induces Accumulation of Corticosterone and Interleukin-6 in the Hippocampus of Juvenile Rats: Potential Mechanism of Synaptic Plasticity Impairments. BIOCHEMISTRY (MOSCOW) 2017; 82:275-281. [PMID: 28320268 DOI: 10.1134/s0006297917030051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Infectious diseases in early postnatal ontogenesis can induce neuroinflammation, disrupt normal central nervous system development, and contribute to pathogenesis of cerebral pathologies in adults. To study long-term consequences of such early stress, we induced neonatal proinflammatory stress (NPS) by injecting bacterial lipopolysaccharide into rat pups on postnatal days 3 and 5 and then assessed the levels of corticosterone, proinflammatory cytokines and their mRNAs, and neurotrophins and their mRNAs in the hippocampus and neocortex of the one-month-old animals. Long-term potentiation (LTP) was studied in hippocampal slices as an index of synaptic plasticity. NPS-induced impairments of LTP were accompanied by the accumulation of corticosterone and IL-6 in the hippocampus. In the neocortex, a decrease in exon IV BDNF mRNA was detected. We suggest that excessive corticosterone delivery to hippocampal receptors and proinflammatory changes persisting during brain maturation are among the principal molecular mechanisms responsible for NPS-induced neuroplasticity impairments.
Collapse
Affiliation(s)
- M V Onufriev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | | | | | | | | | | | | |
Collapse
|
176
|
N-Propargyl Caffeamide (PACA) Ameliorates Dopaminergic Neuronal Loss and Motor Dysfunctions in MPTP Mouse Model of Parkinson's Disease and in MPP +-Induced Neurons via Promoting the Conversion of proNGF to NGF. Mol Neurobiol 2017; 55:2258-2267. [PMID: 28321769 DOI: 10.1007/s12035-017-0486-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
Insufficient production of nerve growth factor (NGF) is implicated in Parkinson's disease (PD). We recently discovered that caffeic acid derivative N-propargyl caffeamide (PACA) not only potentiated NGF-induced neurite outgrowth but also attenuated 6-hydroxydopamine neurotoxicity in neuronal culture. The aim of the present study was to investigate whether PACA could increase NGF levels against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) neurotoxicity in a mouse PD model. We induced parkinsonism in mice by intraperitoneal injection of MPTP for seven consecutive days. Animal motor functions were assessed by rotarod test and pole test. Our results showed that PACA ameliorated motor impairments in MPTP-challenged mice. Based on Western blot analysis and/or immunofluorescence staining of NGF and tyrosine hydroxylase (TH), PACA preserved TH levels in the midbrain substantia nigra pars compacta. PACA also increased NGF expression while it decreased proNGF accumulation. Interestingly, NGF was widely induced in the midbrains including astrocytes. To elucidate the mechanisms by which PACA induces NGF, we focused on the effects of PACA on two neurotrophic signaling pathways, the PI3K and MEK pathways. We found that PACA induced the phosphorylation of Akt, ERK, and CREB against MPTP-mediated alterations. Importantly, PACA increased NGF levels and subsequently induced TrkA activation in MPTP-treated mice. Consistently, PACA also increased NGF levels in dopaminergic PC12 cells and primary rat midbrain neurons against N-methyl-4-phenylpyridinium iodide (MPP+) toxicity. ERK and PI3K inhibitors attenuated the effects of PACA on NGF levels. Collectively, our results suggest that PACA may rescue NGF insufficiency via sequential activation of PI3K/Akt, ERK1/2, and CREB signaling pathways. Graphical Abstract ᅟ.
Collapse
|
177
|
The Neuroprotective Effects of Brazilian Green Propolis on Neurodegenerative Damage in Human Neuronal SH-SY5Y Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7984327. [PMID: 28265338 PMCID: PMC5317132 DOI: 10.1155/2017/7984327] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/19/2016] [Accepted: 12/28/2016] [Indexed: 12/31/2022]
Abstract
Oxidative stress and synapse dysfunction are the major neurodegenerative damage correlated to cognitive impairment in Alzheimer's disease (AD). We have found that Brazilian green propolis (propolis) improves the cognitive functions of mild cognitive impairment patients living at high altitude; however, mechanism underlying the effects of propolis is unknown. In the present study, we investigated the effects of propolis on oxidative stress, expression of brain-derived neurotrophic factor (BDNF), and activity-regulated cytoskeleton-associated protein (Arc), the critical factors of synapse efficacy, using human neuroblastoma SH-SY5Y cells. Pretreatment with propolis significantly ameliorated the hydrogen peroxide- (H2O2-) induced cytotoxicity in SH-SY5Y cells. Furthermore, propolis significantly reduced the H2O2-generated reactive oxygen species (ROS) derived from mitochondria and 8-oxo-2'-deoxyguanosine (8-oxo-dG, the DNA oxidative damage marker) but significantly reversed the fibrillar β-amyloid and IL-1β-impaired BDNF-induced Arc expression in SH-SY5Y cells. Furthermore, propolis significantly upregulated BDNF mRNA expression in time- and dose-dependent manners. In addition, propolis induced Arc mRNA and protein expression via phosphoinositide-3 kinase (PI3K). These observations strongly suggest that propolis protects from the neurodegenerative damage in neurons through the properties of various antioxidants. The present study provides a potential molecular mechanism of Brazilian green propolis in prevention of cognitive impairment in AD as well as aging.
Collapse
|
178
|
Sreenivasmurthy SG, Liu JY, Song JX, Yang CB, Malampati S, Wang ZY, Huang YY, Li M. Neurogenic Traditional Chinese Medicine as a Promising Strategy for the Treatment of Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18020272. [PMID: 28134846 PMCID: PMC5343808 DOI: 10.3390/ijms18020272] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
Hippocampal neurogenesis plays a critical role in the formation of new neurons during learning and memory development. Attenuation of neurogenesis in the brain is one of the primary causes of dementia in Alzheimer’s disease (AD), and, conversely, modulating the process of hippocampal neurogenesis benefit patients with AD. Traditional Chinese medicine (TCM), particularly herbal medicine, has been in use for thousands of years in Asia and many regions of the world for the treatment of cancer, cardiovascular diseases and neurodegenerative diseases. In this review, we summarize the role of neurotrophic factors, signal transducing factors, epigenetic modulators and neurotransmitters in neurogenesis, and we also discuss the functions of several Chinese herbs and their active molecules in activating multiple pathways involved in neurogenesis. TCM herbs target pathways such as Notch, Wnt, Sonic Hedgehog and receptor tyrosine kinase pathway, leading to activation of a signaling cascade that ultimately enhances the transcription of several important genes necessary for neurogenesis. Given these pathway activating effects, the use of TCM herbs could be an effective therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Sravan Gopalkrishnashetty Sreenivasmurthy
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Jing-Yi Liu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ju-Xian Song
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chuan-Bin Yang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Sandeep Malampati
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Zi-Ying Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ying-Yu Huang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
179
|
Uruska A, Niedzwiecki P, Araszkiewicz A, Zozulinska-Ziolkiewicz D. Brain-derived neurotrophic factor and insulin resistance during hyperinsulinaemic-euglycaemic clamp in type 1 diabetes patients in the PoProStu. DIABETES & METABOLISM 2017; 43:472-474. [PMID: 28139435 DOI: 10.1016/j.diabet.2016.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Affiliation(s)
- A Uruska
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Raszeja Hospital, Mickiewicza 2, 60-834 Poznan, Poland.
| | - P Niedzwiecki
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Raszeja Hospital, Mickiewicza 2, 60-834 Poznan, Poland
| | - A Araszkiewicz
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Raszeja Hospital, Mickiewicza 2, 60-834 Poznan, Poland
| | - D Zozulinska-Ziolkiewicz
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Raszeja Hospital, Mickiewicza 2, 60-834 Poznan, Poland
| |
Collapse
|
180
|
Darabi S, Tiraihi T, Delshad A, Sadeghizadeh M, Khalil W, Taheri T. In vitro non-viral murine pro-neurotrophin 3 gene transfer into rat bone marrow stromal cells. J Neurol Sci 2017; 375:137-145. [PMID: 28320116 DOI: 10.1016/j.jns.2017.01.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
Neurotrophin 3 (NT-3) is an important factor for promoting prenatal neural development, as well as regeneration, axogenesis and plasticity in postnatal life. Therapy with NT-3 was reported to improve the condition of patients suffering from degenerative diseases and traumatic injuries, however, the disadvantage of NT-3 protein delivery is its short half-life, thus our alternative approach is the use of NT-3 gene therapy. In this study, the bone marrow stromal cells (BMSCs) were isolated from adult rats, cultured for 4 passages and transfected with either pEGFP-N1 or a constructed vector containing murine proNT-3 (pSecTag2/HygroB-murine proNT-3) using Lipofectamine 2000 followed by Hygromycin B (200mg/kg). The transfection efficiency of the transiently transfected BMSCs was evaluated using the green fluorescence protein containing vector (pEGFP-N1). A quantitative evaluation of the NT-3 expression of mRNA using real time qRT-PCR shows that there was double fold increase in NT-3 gene expression compared with non-transfected BMSCs, also, the culture supernatant yielded double fold increase in NT-3 using ELISA technique, the data were supported by immunoblotting technique. This suggests that the use of this transfection technique can be useful for gene therapy in different neurological disorders with neurodegenerative or traumatic origins.
Collapse
Affiliation(s)
- Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Taki Tiraihi
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Wisam Khalil
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Taher Taheri
- Shefa Neurosciences Research Center, Khatam Al-Anbia Hospital, Tehran, Iran
| |
Collapse
|
181
|
Neuroprotection and neurotoxicity in the developing brain: an update on the effects of dexmedetomidine and xenon. Neurotoxicol Teratol 2017; 60:102-116. [PMID: 28065636 DOI: 10.1016/j.ntt.2017.01.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Growing and consistent preclinical evidence, combined with early clinical epidemiological observations, suggest potentially neurotoxic effects of commonly used anesthetic agents in the developing brain. This has prompted the FDA to issue a safety warning for all sedatives and anesthetics approved for use in children under three years of age. Recent studies have identified dexmedetomidine, the potent α2-adrenoceptor agonist, and xenon, the noble gas, as effective anesthetic adjuvants that are both less neurotoxic to the developing brain, and also possess neuroprotective properties in neonatal and other settings of acute ongoing neurologic injury. Dexmedetomidine and xenon are effective anesthetic adjuvants that appear to be less neurotoxic than other existing agents and have the potential to be neuroprotective in the neonatal and pediatric settings. Although results from recent clinical trials and case reports have indicated the neuroprotective potential of xenon and dexmedetomidine, additional randomized clinical trials corroborating these studies are necessary. By reviewing both the existing preclinical and clinical evidence on the neuroprotective effects of dexmedetomidine and xenon, we hope to provide insight into the potential clinical efficacy of these agents in the management of pediatric surgical patients.
Collapse
|
182
|
Eyileten C, Kaplon-Cieslicka A, Mirowska-Guzel D, Malek L, Postula M. Antidiabetic Effect of Brain-Derived Neurotrophic Factor and Its Association with Inflammation in Type 2 Diabetes Mellitus. J Diabetes Res 2017; 2017:2823671. [PMID: 29062839 PMCID: PMC5618763 DOI: 10.1155/2017/2823671] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/12/2017] [Accepted: 08/22/2017] [Indexed: 01/07/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin, which plays an important role in the central nervous system, and systemic or peripheral inflammatory conditions, such as acute coronary syndrome and type 2 diabetes mellitus (T2DM). BDNF is also expressed in several nonneuronal tissues, and platelets are the major source of peripheral BDNF. Here, we reviewed the potential role of BDNF in platelet reactivity in T2DM and its association with selected inflammatory and platelet activation mediators. Besides that, we focused on adipocytokines such as leptin, resistin, and adiponectin which are considered to take part in inflammation and both lipid and glucose metabolism in diabetic patients as previous studies showed the relation between adipocytokines and BDNF. We also reviewed the evidences of the antidiabetic effect of BDNF and the association with circulating inflammatory cytokines in T2DM.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | | | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Lukasz Malek
- Faculty of Rehabilitation, University of Physical Education, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| |
Collapse
|
183
|
Dhobale M. Neurotrophic Factors and Maternal Nutrition During Pregnancy. VITAMINS AND HORMONES 2017; 104:343-366. [DOI: 10.1016/bs.vh.2016.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
184
|
Cobianchi S, Arbat-Plana A, López-Álvarez VM, Navarro X. Neuroprotective Effects of Exercise Treatments After Injury: The Dual Role of Neurotrophic Factors. Curr Neuropharmacol 2017; 15:495-518. [PMID: 27026050 PMCID: PMC5543672 DOI: 10.2174/1570159x14666160330105132] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/19/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Shared connections between physical activity and neuroprotection have been studied for decades, but the mechanisms underlying this effect of specific exercise were only recently brought to light. Several evidences suggest that physical activity may be a reasonable and beneficial method to improve functional recovery in both peripheral and central nerve injuries and to delay functional decay in neurodegenerative diseases. In addition to improving cardiac and immune functions, physical activity may represent a multifunctional approach not only to improve cardiocirculatory and immune functions, but potentially modulating trophic factors signaling and, in turn, neuronal function and structure at times that may be critical for neurodegeneration and regeneration. METHODS Research content related to the effects of physical activity and specific exercise programs in normal and injured nervous system have been reviewed. RESULTS Sustained exercise, particularly if applied at moderate intensity and early after injury, exerts anti-inflammatory and pro-regenerative effects, and may boost cognitive and motor functions in aging and neurological disorders. However, newest studies show that exercise modalities can differently affect the production and function of brain-derived neurotrophic factor and other neurotrophins involved in the generation of neuropathic conditions. These findings suggest the possibility that new exercise strategies can be directed to nerve injuries with therapeutical benefits. CONCLUSION Considering the growing burden of illness worldwide, understanding of how modulation of neurotrophic factors contributes to exercise-induced neuroprotection and regeneration after peripheral nerve and spinal cord injuries is a relevant topic for research, and represents the beginning of a new non-pharmacological therapeutic approach for better rehabilitation of neural disorders.
Collapse
Affiliation(s)
- Stefano Cobianchi
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Ariadna Arbat-Plana
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Víctor M. López-Álvarez
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
185
|
Villarin JM, McCurdy EP, Martínez JC, Hengst U. Local synthesis of dynein cofactors matches retrograde transport to acutely changing demands. Nat Commun 2016; 7:13865. [PMID: 28000671 PMCID: PMC5187584 DOI: 10.1038/ncomms13865] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/07/2016] [Indexed: 01/16/2023] Open
Abstract
Cytoplasmic dynein mediates retrograde transport in axons, but it is unknown how its transport characteristics are regulated to meet acutely changing demands. We find that stimulus-induced retrograde transport of different cargos requires the local synthesis of different dynein cofactors. Nerve growth factor (NGF)-induced transport of large vesicles requires local synthesis of Lis1, while smaller signalling endosomes require both Lis1 and p150Glued. Lis1 synthesis is also triggered by NGF withdrawal and required for the transport of a death signal. Association of Lis1 transcripts with the microtubule plus-end tracking protein APC is required for their translation in response to NGF stimulation but not for their axonal recruitment and translation upon NGF withdrawal. These studies reveal a critical role for local synthesis of dynein cofactors for the transport of specific cargos and identify association with RNA-binding proteins as a mechanism to establish functionally distinct pools of a single transcript species in axons.
The molecular mechanisms underlying retrograde transport in axons are only partially understood. Villarin et al. show that in cultured DRG neurons, extracellular trophic cues such as NGF dynamically regulate local protein synthesis of dynein cofactors, thus controlling retrograde trafficking in neurons.
Collapse
Affiliation(s)
- Joseph M Villarin
- Medical Scientist Training Program, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Ethan P McCurdy
- Integrated Program in Cellular, Molecular and Biomedical Studies, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - José C Martínez
- Medical Scientist Training Program, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| |
Collapse
|
186
|
Pandini G, Satriano C, Pietropaolo A, Gianì F, Travaglia A, La Mendola D, Nicoletti VG, Rizzarelli E. The Inorganic Side of NGF: Copper(II) and Zinc(II) Affect the NGF Mimicking Signaling of the N-Terminus Peptides Encompassing the Recognition Domain of TrkA Receptor. Front Neurosci 2016; 10:569. [PMID: 28090201 PMCID: PMC5201159 DOI: 10.3389/fnins.2016.00569] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/25/2016] [Indexed: 12/31/2022] Open
Abstract
The nerve growth factor (NGF) N-terminus peptide, NGF(1–14), and its acetylated form, Ac-NGF(1–14), were investigated to scrutinize the ability of this neurotrophin domain to mimic the whole protein. Theoretical calculations demonstrated that non-covalent forces assist the molecular recognition of TrkA receptor by both peptides. Combined parallel tempering/docking simulations discriminated the effect of the N-terminal acetylation on the recognition of NGF(1–14) by the domain 5 of TrkA (TrkA-D5). Experimental findings demonstrated that both NGF(1–14) and Ac-NGF(1–14) activate TrkA signaling pathways essential for neuronal survival. The NGF-induced TrkA internalization was slightly inhibited in the presence of Cu2+ and Zn2+ ions, whereas the metal ions elicited the NGF(1–14)-induced internalization of TrkA and no significant differences were found in the weak Ac-NGF(1–14)-induced receptor internalization. The crucial role of the metals was confirmed by experiments with the metal-chelator bathocuproine disulfonic acid, which showed different inhibitory effects in the signaling cascade, due to different metal affinity of NGF, NGF(1–14) and Ac-NGF(1–14). The NGF signaling cascade, activated by the two peptides, induced CREB phosphorylation, but the copper addition further stimulated the Akt, ERK and CREB phosphorylation in the presence of NGF and NGF(1–14) only. A dynamic and quick influx of both peptides into PC12 cells was tracked by live cell imaging with confocal microscopy. A significant role of copper ions was found in the modulation of peptide sub-cellular localization, especially at the nuclear level. Furthermore, a strong copper ionophoric ability of NGF(1–14) was measured. The Ac-NGF(1–14) peptide, which binds copper ions with a lower stability constant than NGF(1–14), exhibited a lower nuclear localization with respect to the total cellular uptake. These findings were correlated to the metal-induced increase of CREB and BDNF expression caused by NGF(1–14) stimulation. In summary, we here validated NGF(1–14) and Ac-NGF(1–14) as first examples of monomer and linear peptides able to activate the NGF-TrkA signaling cascade. Metal ions modulated the activity of both NGF protein and the NGF-mimicking peptides. Such findings demonstrated that NGF(1–14) sequence can reproduce the signal transduction of whole protein, therefore representing a very promising drug candidate for further pre-clinical studies.
Collapse
Affiliation(s)
- Giuseppe Pandini
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of CataniaCatania, Italy; Institute of Biostructures and Bioimages - Catania, National Research CouncilCatania, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of CataniaCatania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi BiologiciBari, Italy
| | | | - Fiorenza Gianì
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of CataniaCatania, Italy; Institute of Biostructures and Bioimages - Catania, National Research CouncilCatania, Italy
| | | | - Diego La Mendola
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi BiologiciBari, Italy; Department of Pharmacy, University of PisaPisa, Italy
| | - Vincenzo G Nicoletti
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi BiologiciBari, Italy; Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of CataniaCatania, Italy
| | - Enrico Rizzarelli
- Institute of Biostructures and Bioimages - Catania, National Research CouncilCatania, Italy; Department of Chemical Sciences, University of CataniaCatania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi BiologiciBari, Italy
| |
Collapse
|
187
|
Arango-Dávila CA, Rincón-Hoyos HG. Depressive Disorder, Anxiety Disorder and Chronic Pain: Multiple Manifestations of a Common Clinical and Pathophysiological Core. ACTA ACUST UNITED AC 2016; 47:46-55. [PMID: 29428122 DOI: 10.1016/j.rcp.2016.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/10/2016] [Accepted: 10/31/2016] [Indexed: 02/03/2023]
Abstract
INTRODUCTION A high proportion of depressive disorders are accompanied by anxious manifestations, just as depression and anxiety often present with many painful manifestations, or conversely, painful manifestations cause or worsen depressive and anxious expressions. There is increasingly more evidence of the pathophysiological, and neurophysiological and technical imaging similarity of pain and depression. METHODS Narrative review of the pathophysiological and clinical aspects of depression and chronic pain comorbidity. Research articles are included that emphasise the most relevant elements related to understanding the pathophysiology of both manifestations. RESULTS The pathological origin, physiology and clinical approach to these disorders have been more clearly established with the latest advances in biochemical and cellular techniques, as well as the advent of imaging technologies. This information is systematised with comprehensive images and clinical pictures. CONCLUSIONS The recognition that the polymorphism of inflammation-related genes generates susceptibility to depressive manifestations and may modify the response to antidepressant treatments establishes that the inflammatory response is not only an aetiopathogenic component of pain, but also of stress and depression. Likewise, the similarity in approach with images corroborates not only the structural, but the functional and pathophysiological analogy between depression and chronic pain. Knowledge of depression-anxiety-chronic pain comorbidity is essential in the search for effective therapeutic interventions.
Collapse
Affiliation(s)
- Cesar A Arango-Dávila
- Sección de Psiquiatría y Psicología, Fundación Valle del Lili, Cali, Colombia; Grupo de Investigación Biomédica, Universidad Icesi, Cali, Colombia.
| | - Hernán G Rincón-Hoyos
- Sección de Psiquiatría y Psicología, Fundación Valle del Lili, Cali, Colombia; Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, Estados Unidos
| |
Collapse
|
188
|
Tan H, Pan P, Zhang L, Cao Z, Liu B, Li H, Su X. Nerve growth factor promotes expression of costimulatory molecules and release of cytokines in dendritic cells involved in Th2 response through LPS-induced p75NTR. J Asthma 2016; 53:989-98. [PMID: 27437725 DOI: 10.1080/02770903.2016.1185440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Nerve growth factor (NGF) plays an important role in asthmatic inflammatory responses. However, the effects of NGF on dendritic cells (DCs) in asthmatic inflammation remain unknown. Therefore, we examined the effects of NGF on co-stimulatory molecules and the release of cytokines after ovalbumin (OVA) and a low dose of LPS (low LPS) stimulation of dendritic cells. METHODS Bone-marrow-derived dendritic cells (BMDCs) were collected from 6- to 8-week-old wide or TLR4(-/-) mice. BMDCs were treated with OVA and/or low LPS for 12h, and then stimulated with NGF for 24h. ELISA and flow cytometry were performed to measure TSLP, IL-6, IL-10, and IL-12 production and MHCII and CD86 expression on BMDCs. BMDCs were exposed to p75 neurotrophin receptor (p75NTR) inhibitor (TAT-Pep5) or NF-kB inhibitor (QNZ) 30 min prior to NGF 1 h after NGF intervention, the levels of RelA and RelB in cytoplasmic and nuclear were detected by west blot. Co-cultured BMDCs with naïve CD4(+) T cells, and ELISA was used to detect IL-4 and INF-γ levels. RESULTS NGF was found to markedly promote OVA and low LPS-induced expression of MHCII, CD86, secretion of TSLP and IL-6, and Th2-response-stimulating capacity of BMDCs. NGF affected BMDCs through LPS-induced p75NTR expression. TAT-Pep5 or QNZ could attenuate the promotive effect of NGF. CONCLUSIONS NGF facilitates OVA with lowLPS-induced maturation of mouse BMDCs through LPS-up-regulated p75 NTR via activation of NF-κB pathways, providing another mechanism for the involvement of NGF in the Th2 response.
Collapse
Affiliation(s)
- Hongyi Tan
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Pinhua Pan
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Lemeng Zhang
- b Department of Thoracic Medicine , Hunan Cancer Hospital and the Affiliated Cancer Hospital to Xiangya Medical School, Central South University , Changsha, Hunan , China
| | - Zu Cao
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Ben Liu
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Haitao Li
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Xiaoli Su
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| |
Collapse
|
189
|
Rocha RB, Dondossola ER, Grande AJ, Colonetti T, Ceretta LB, Passos IC, Quevedo J, da Rosa MI. Increased BDNF levels after electroconvulsive therapy in patients with major depressive disorder: A meta-analysis study. J Psychiatr Res 2016; 83:47-53. [PMID: 27552533 DOI: 10.1016/j.jpsychires.2016.08.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/06/2016] [Accepted: 08/04/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE We performed a systematic review and meta-analysis to estimate brain-derived neurotrophic factor (BDNF) level in patients with major depressive disorder (MDD) after electroconvulsive therapy (ECT). METHOD A comprehensive search of the Cochrane Library, MEDLINE, LILACS, Grey literature, and EMBASE was performed for papers published from January 1990 to April 2016. The following key terms were searched: "major depressive disorder", "unipolar depression", "brain-derived neurotrophic factor", and "electroconvulsive therapy". RESULTS A total of 252 citations were identified by the search strategy, and nine studies met the inclusion criteria of the meta-analysis. BDNF levels were increased among patients with MDD after ECT (P value = 0.006). The standardized mean difference was 0.56 (95% CI: 0.17-0.96). Additionally, we found significant heterogeneity between studies (I2 = 73%). CONCLUSION Our findings suggest a potential role of BDNF as a marker of treatment response after ECT in patients with MDD.
Collapse
Affiliation(s)
- Renan Boeira Rocha
- Laboratório de Epidemiologia, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | - Antônio José Grande
- Laboratório de Epidemiologia, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Programa de Pós-graduação em Saúde Coletiva, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Tamy Colonetti
- Laboratório de Epidemiologia, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Luciane Bisognin Ceretta
- Programa de Pós-graduação em Saúde Coletiva, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Ives C Passos
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA; Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Joao Quevedo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Maria Inês da Rosa
- Laboratório de Epidemiologia, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Programa de Pós-graduação em Saúde Coletiva, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
| |
Collapse
|
190
|
Marosi K, Kim SW, Moehl K, Scheibye-Knudsen M, Cheng A, Cutler R, Camandola S, Mattson MP. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem 2016; 139:769-781. [PMID: 27739595 DOI: 10.1111/jnc.13868] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
During fasting and vigorous exercise, a shift of brain cell energy substrate utilization from glucose to the ketone 3-hydroxybutyrate (3OHB) occurs. Studies have shown that 3OHB can protect neurons against excitotoxicity and oxidative stress, but the underlying mechanisms remain unclear. Neurons maintained in the presence of 3OHB exhibited increased oxygen consumption and ATP production, and an elevated NAD+ /NADH ratio. We found that 3OHB metabolism increases mitochondrial respiration which drives changes in expression of brain-derived neurotrophic factor (BDNF) in cultured cerebral cortical neurons. The mechanism by which 3OHB induces Bdnf gene expression involves generation of reactive oxygen species, activation of the transcription factor NF-κB, and activity of the histone acetyltransferase p300/EP300. Because BDNF plays important roles in synaptic plasticity and neuronal stress resistance, our findings suggest cellular signaling mechanisms by which 3OHB may mediate adaptive responses of neurons to fasting, exercise, and ketogenic diets.
Collapse
Affiliation(s)
- Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Sang Woo Kim
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Roy Cutler
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
191
|
Wang XL, Iwanami J, Min LJ, Tsukuda K, Nakaoka H, Bai HY, Shan BS, Kan-No H, Kukida M, Chisaka T, Yamauchi T, Higaki A, Mogi M, Horiuchi M. Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function. NPJ Aging Mech Dis 2016; 2:16024. [PMID: 28721275 PMCID: PMC5515001 DOI: 10.1038/npjamd.2016.24] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/15/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
The classical renin–angiotensin system (RAS), known as the angiotensin (Ang)-converting enzyme (ACE)/Ang II/Ang II type 1 (AT1) receptor axis, induces various organ damages including cognitive decline. On the other hand, the ACE2/Ang-(1–7)/Mas receptor axis has been highlighted as exerting antagonistic actions against the classical RAS axis in the cardiovascular system. However, the roles of the ACE2/Ang-(1–7)/Mas axis in cognitive function largely remain to be elucidated, and we therefore examined possible roles of ACE2 in cognitive function. Male, 10-week-old C57BL6 (wild type, WT) mice and ACE2 knockout (KO) mice were subjected to the Morris water maze task and Y maze test to evaluate cognitive function. ACE2KO mice exhibited significant impairment of cognitive function, compared with that in WT mice. Superoxide anion production increased in ACE2KO mice, with increased mRNA levels of NADPH oxidase subunit, p22phox, p40phox, p67phox, and gp91phox in the hippocampus of ACE2KO mice compared with WT mice. The protein level of SOD3 decreased in ACE2KO mice compared with WT mice. The AT1 receptor mRNA level in the hippocampus was higher in ACE2KO mice compared with WT mice. In contrast, the AT2 receptor mRNA level in the hippocampus did not differ between the two strains. Mas receptor mRNA was highly expressed in the hippocampus compared with the cortex. Brain-derived neurotrophic factor (BDNF) mRNA and protein levels were lower in the hippocampus in ACE2KO mice compared with WT mice. Taken together, ACE2 deficiency resulted in impaired cognitive function, probably at least in part because of enhanced oxidative stress and a decrease in BDNF.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Li-Juan Min
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Kana Tsukuda
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Hirotomo Nakaoka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Hui-Yu Bai
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Harumi Kan-No
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Masayoshi Kukida
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan.,Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Toshiyuki Chisaka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan.,Department of Pediatrics, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Toshifumi Yamauchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan.,Department of Pediatrics, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Akinori Higaki
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan.,Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
192
|
Yan YH, Li SH, Gao Z, Zou SF, Li HY, Tao ZY, Song J, Yang JX. Neurotrophin-3 promotes proliferation and cholinergic neuronal differentiation of bone marrow- derived neural stem cells via notch signaling pathway. Life Sci 2016; 166:131-138. [PMID: 27720999 DOI: 10.1016/j.lfs.2016.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 01/09/2023]
Abstract
AIMS Recently, the potential for neural stem cells (NSCs) to be used in the treatment of Alzheimer's disease (AD) has been reported; however, the therapeutic effects are modest by virtue of the low neural differentiation rate. In our study, we transfected bone marrow-derived NSCs (BM-NSCs) with Neurotrophin-3 (NT-3), a superactive neurotrophic factor that promotes neuronal survival, differentiation, and migration of neuronal cells, to investigate the effects of NT-3 gene overexpression on the proliferation and differentiation into cholinergic neuron of BM-NSCs in vitro and its possible molecular mechanism. MAIN METHODS BM-NSCs were generated from BM mesenchymal cells of adult C57BL/6 mice and cultured in vitro. After transfected with NT-3 gene, immunofluorescence and RT-PCR method were used to determine the ability of BM-NSCs on proliferation and differentiation into cholinergic neuron; Acetylcholine Assay Kit was used for acetylcholine (Ach). RT-PCR and WB analysis were used to characterize mRNA and protein level related to the Notch signaling pathway. KEY FINDINGS We found that NT-3 can promote the proliferation and differentiation of BM-NSCs into cholinergic neurons and elevate the levels of acetylcholine (ACh) in the supernatant. Furthermore, NT-3 gene overexpression increase the expression of Hes1, decreased the expression of Mash1 and Ngn1 during proliferation of BM-NSCs. Whereas, the expression of Hes1 was down-regulated, and Mash1 and Ngn1 expression were up-regulated during differentiation of BM-NSCs. SIGNIFICANCE Our findings support the prospect of using NT-3-transduced BM-NSCs in developing therapies for AD due to their equivalent therapeutic potential as subventricular zone-derived NSCs (SVZ-NSCs), greater accessibility, and autogenous attributes.
Collapse
Affiliation(s)
- Yu-Hui Yan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Shao-Heng Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Zhong Gao
- Department of Interventional Therapy, Department of Rehabilitation, Dalian Municipal Central Hospital, Dalian 116033, PR China
| | - Sa-Feng Zou
- Department of Interventional Therapy, Department of Rehabilitation, Dalian Municipal Central Hospital, Dalian 116033, PR China
| | - Hong-Yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Zhen-Yu Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Jie Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Jing-Xian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China.
| |
Collapse
|
193
|
Atorvastatin Protects from Aβ 1-40-Induced Cell Damage and Depressive-Like Behavior via ProBDNF Cleavage. Mol Neurobiol 2016; 54:6163-6173. [PMID: 27709490 DOI: 10.1007/s12035-016-0134-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022]
Abstract
Intracerebroventricular (icv) amyloid-beta (Aβ)1-40 infusion to mice has been demonstrated to cause neurotoxicty and depressive-like behavior and it can be used to evaluate antidepressant and neuroprotective effect of drugs. Atorvastatin is a widely used statin that has demonstrated antidepressant-like effect in predictable animal behavioral models and neuroprotective effect against Aβ1-40 infusion. The purpose of this study was to determine the effect of in vivo atorvastatin treatment against Aβ1-40-induced changes in mood-related behaviors and biochemical parameters in ex vivo hippocampal slices from mice. Atorvastatin treatment (10 mg/kg, p.o., once a day for seven consecutive days) abolished depressive-like and anhedonic-like behaviors induced by Aβ1-40 (400 pmol/site, icv) infusion. Aβ1-40-induced hippocampal cell damage was reversed by atorvastatin treatment. Aβ1-40 infusion decreased glutamate uptake in hippocampal slices, and atorvastatin did not altered it. Glutamine synthetase activity was not altered by any treatment. Atorvastatin also increased hippocampal mature brain-derived neurotrophic factor (mBDNF)/precursor BDNF (proBDNF) ratio, suggesting an increase of proBDNF to mBDNF cleavage. Accordingly, increased tissue-type plasminogen activator (tPA) and p11 genic expression were observed in hippocampus of atorvastatin-treated mice. Atorvastatin displays antidepressant-like and neuroprotective effects against Aβ1-40-induced toxicity, and these effects may involve tPA- and p11-mediated cleavage of proBDNF to mBDNF.
Collapse
|
194
|
Dincheva I, Lynch NB, Lee FS. The Role of BDNF in the Development of Fear Learning. Depress Anxiety 2016; 33:907-916. [PMID: 27699937 PMCID: PMC5089164 DOI: 10.1002/da.22497] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/22/2016] [Indexed: 01/15/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor that is dynamically expressed in the brain across postnatal development, regulating neuronal differentiation and synaptic plasticity. The neurotrophic hypothesis of psychiatric mood disorders postulates that in the adult brain, decreased BDNF levels leads to altered neural plasticity, contributing to disease. Although BDNF has been established as a key factor regulating the critical period plasticity in the developing visual system, it has recently been shown to also play a role in fear circuitry maturation, which has implications for the emergence of fear-related mood disorders. This review provides a detailed overview of developmental changes in expression of BDNF isoforms, as well as their receptors across postnatal life. In addition, recent developmental studies utilizing a genetic BDNF single nucleotide polymorphism (Val66Met) knock-in mouse highlight the impact of BDNF on fear learning during a sensitive period spanning the transition into adolescent time frame. We hypothesize that BDNF in the developing brain regulates fear circuit plasticity during a sensitive period in early adolescence, and alterations in BDNF expression (genetic or environmental) have a persistent impact on fear behavior and fear-related disorders.
Collapse
Affiliation(s)
- Iva Dincheva
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York.
| | - Niccola B. Lynch
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York,Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York,Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, New York, New York
| |
Collapse
|
195
|
Kadmiel M, Janoshazi A, Xu X, Cidlowski JA. Glucocorticoid action in human corneal epithelial cells establishes roles for corticosteroids in wound healing and barrier function of the eye. Exp Eye Res 2016; 152:10-33. [PMID: 27600171 DOI: 10.1016/j.exer.2016.08.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/23/2022]
Abstract
Glucocorticoids play diverse roles in almost all physiological systems of the body, including both anti-inflammatory and immunosuppressive roles. Synthetic glucocorticoids are one of the most widely prescribed drugs and are used in the treatment of conditions such as autoimmune diseases, allergies, ocular disorders and certain types of cancers. In the interest of investigating glucocorticoid actions in the cornea of the eye, we established that multiple cell types in mouse corneas express functional glucocorticoid receptor (GR) with corneal epithelial cells having robust expression. To define glucocorticoid actions in a cell type-specific manner, we employed immortalized human corneal epithelial (HCE) cell line to define the glucocorticoid transcriptome and elucidated its functions in corneal epithelial cells. Over 4000 genes were significantly regulated within 6 h of dexamethasone treatment, and genes associated with cell movement, cytoskeletal remodeling and permeability were highly regulated. Real-time in vitro wound healing assays revealed that glucocorticoids delay wound healing by attenuating cell migration. These functional alterations were associated with cytoskeletal remodeling at the wounded edge of a scratch-wounded monolayer. However, glucocorticoid treatment improved the organization of tight-junction proteins and enhanced the epithelial barrier function. Our results demonstrate that glucocorticoids profoundly alter corneal epithelial gene expression and many of these changes likely impact both wound healing and epithelial cell barrier function.
Collapse
Affiliation(s)
- Mahita Kadmiel
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Agnes Janoshazi
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
196
|
Malki K, Du Rietz E, Crusio WE, Pain O, Paya-Cano J, Karadaghi RL, Sluyter F, de Boer SF, Sandnabba K, Schalkwyk LC, Asherson P, Tosto MG. Transcriptome analysis of genes and gene networks involved in aggressive behavior in mouse and zebrafish. Am J Med Genet B Neuropsychiatr Genet 2016; 171:827-38. [PMID: 27090961 DOI: 10.1002/ajmg.b.32451] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/01/2016] [Indexed: 01/01/2023]
Abstract
Despite moderate heritability estimates, the molecular architecture of aggressive behavior remains poorly characterized. This study compared gene expression profiles from a genetic mouse model of aggression with zebrafish, an animal model traditionally used to study aggression. A meta-analytic, cross-species approach was used to identify genomic variants associated with aggressive behavior. The Rankprod algorithm was used to evaluated mRNA differences from prefrontal cortex tissues of three sets of mouse lines (N = 18) selectively bred for low and high aggressive behavior (SAL/LAL, TA/TNA, and NC900/NC100). The same approach was used to evaluate mRNA differences in zebrafish (N = 12) exposed to aggressive or non-aggressive social encounters. Results were compared to uncover genes consistently implicated in aggression across both studies. Seventy-six genes were differentially expressed (PFP < 0.05) in aggressive compared to non-aggressive mice. Seventy genes were differentially expressed in zebrafish exposed to a fight encounter compared to isolated zebrafish. Seven genes (Fos, Dusp1, Hdac4, Ier2, Bdnf, Btg2, and Nr4a1) were differentially expressed across both species 5 of which belonging to a gene-network centred on the c-Fos gene hub. Network analysis revealed an association with the MAPK signaling cascade. In human studies HDAC4 haploinsufficiency is a key genetic mechanism associated with brachydactyly mental retardation syndrome (BDMR), which is associated with aggressive behaviors. Moreover, the HDAC4 receptor is a drug target for valproic acid, which is being employed as an effective pharmacological treatment for aggressive behavior in geriatric, psychiatric, and brain-injury patients. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karim Malki
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Ebba Du Rietz
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Wim E Crusio
- University of Bordeaux, Aquitaine Institute for Cognitive and Integrative Neuroscience, Bordeaux, France.,CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, Bordeaux, France
| | - Oliver Pain
- Centre of Brain and Cognitive Development, Birkbeck, University of London, United Kingdom.,Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jose Paya-Cano
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Rezhaw L Karadaghi
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Frans Sluyter
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Sietse F de Boer
- Groningen Institute for Evolutionary LifeSciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Kenneth Sandnabba
- Faculty of Arts, Psychology and Theology, Åbo Akademi University, Turku, Finland
| | - Leonard C Schalkwyk
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Philip Asherson
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Maria Grazia Tosto
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom.,Laboratory for Cognitive Investigations and Behavioural Genetics, Tomsk State University, Tomsk, Russia
| |
Collapse
|
197
|
Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, Janke E, Lubejko ST, Greig NH, Mattison JA, Duzel E, van Praag H. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function. Cell Metab 2016; 24:332-40. [PMID: 27345423 PMCID: PMC6029441 DOI: 10.1016/j.cmet.2016.05.025] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/16/2016] [Accepted: 05/27/2016] [Indexed: 02/01/2023]
Abstract
Peripheral processes that mediate beneficial effects of exercise on the brain remain sparsely explored. Here, we show that a muscle secretory factor, cathepsin B (CTSB) protein, is important for the cognitive and neurogenic benefits of running. Proteomic analysis revealed elevated levels of CTSB in conditioned medium derived from skeletal muscle cell cultures treated with AMP-kinase agonist AICAR. Consistently, running increased CTSB levels in mouse gastrocnemius muscle and plasma. Furthermore, recombinant CTSB application enhanced expression of brain-derived neurotrophic factor (BDNF) and doublecortin (DCX) in adult hippocampal progenitor cells through a mechanism dependent on the multifunctional protein P11. In vivo, in CTSB knockout (KO) mice, running did not enhance adult hippocampal neurogenesis and spatial memory function. Interestingly, in Rhesus monkeys and humans, treadmill exercise elevated CTSB in plasma. In humans, changes in CTSB levels correlated with fitness and hippocampus-dependent memory function. Our findings suggest CTSB as a mediator of effects of exercise on cognition.
Collapse
Affiliation(s)
- Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | - Andreas Becke
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - David Berron
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Benjamin Becker
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | - Nirnath Sah
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | - Galit Benoni
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | - Emma Janke
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | - Susan T Lubejko
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | - Nigel H Greig
- Drug Design and Development Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Non-human Primate Core, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Emrah Duzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA.
| |
Collapse
|
198
|
MicroRNA Profiling in the Medial and Lateral Habenula of Rats Exposed to the Learned Helplessness Paradigm: Candidate Biomarkers for Susceptibility and Resilience to Inescapable Shock. PLoS One 2016; 11:e0160318. [PMID: 27494716 PMCID: PMC4975463 DOI: 10.1371/journal.pone.0160318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022] Open
Abstract
Depression is a highly heterogeneous disorder presumably caused by a combination of several factors ultimately causing the pathological condition. The genetic liability model of depression is likely to be of polygenic heterogeneity. miRNAs can regulate multiple genes simultaneously and therefore are candidates that align with this model. The habenula has been linked to depression in both clinical and animal studies, shifting interest towards this region as a neural substrate in depression. The goal of the present study was to search for alterations in miRNA expression levels in the medial and lateral habenula of rats exposed to the learned helplessness (LH) rat model of depression. Ten miRNAs showed significant alterations associating with their response to the LH paradigm. Of these, six and four miRNAs were significantly regulated in the MHb and LHb, respectively. In the MHb we identified miR-490, miR-291a-3p, MiR-467a, miR-216a, miR-18b, and miR-302a. In the LHb miR-543, miR-367, miR-467c, and miR-760-5p were significantly regulated. A target gene analysis showed that several of the target genes are involved in MAPK signaling, neutrophin signaling, and ErbB signaling, indicating that neurotransmission is affected in the habenula as a consequence of exposure to the LH paradigm.
Collapse
|
199
|
The neurotrophin receptor p75 mediates gp120-induced loss of synaptic spines in aging mice. Neurobiol Aging 2016; 46:160-8. [PMID: 27498053 DOI: 10.1016/j.neurobiolaging.2016.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/28/2016] [Accepted: 07/01/2016] [Indexed: 01/12/2023]
Abstract
Human immunodeficiency virus 1 and its envelope protein gp120 reduce synaptodendritic complexity. However, the mechanisms contributing to this pathological feature are still not understood. The proneurotrophin brain-derived neurotrophic factor promotes synaptic simplification through the activation of the p75 neurotrophin receptor (p75NTR). Here, we have used gp120 transgenic (gp120tg) mice to investigate whether p75NTR has a role in gp120-mediated neurotoxicity. Old (∼10 months) gp120tg mice exhibited an increase in proneurotrophin brain-derived neurotrophic factor levels in the hippocampus as well as a decrease in the number of dendritic spines when compared to age-matched wild type. These effects were not observed in 3- or 6-month-old mice. To test if the reduction in spine density and morphology is caused by the activation of p75NTR, we crossed gp120tg mice with p75NTR null mice. We found that deletion of only 1 copy of the p75NTR gene in gp120tg mice is sufficient to normalize the number of hippocampal spines, strongly suggesting that the neurotoxic effect of gp120 is mediated by p75NTR. These data indicate that p75NTR antagonists could provide an adjunct therapy against synaptic simplification caused by human immunodeficiency virus 1.
Collapse
|
200
|
Ceccanti M, Coccurello R, Carito V, Ciafrè S, Ferraguti G, Giacovazzo G, Mancinelli R, Tirassa P, Chaldakov GN, Pascale E, Ceccanti M, Codazzo C, Fiore M. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addict Biol 2016; 21:776-87. [PMID: 25940002 DOI: 10.1111/adb.12255] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ethanol (EtOH) exposure during pregnancy induces cognitive and physiological deficits in the offspring. However, the role of paternal alcohol exposure (PAE) on offspring EtOH sensitivity and neurotrophins has not received much attention. The present study examined whether PAE may disrupt nerve growth factor (NGF) and/or brain-derived neurotrophic factor (BDNF) and affect EtOH preference/rewarding properties in the male offspring. CD1 sire mice were chronically addicted for EtOH or administered with sucrose. Their male offsprings when adult were assessed for EtOH preference by a conditioned place preference paradigm. NGF and BDNF, their receptors (p75(NTR) , TrkA and TrkB), dopamine active transporter (DAT), dopamine receptors D1 and D2, pro-NGF and pro-BDNF were also evaluated in brain areas. PAE affected NGF levels in frontal cortex, striatum, olfactory lobes, hippocampus and hypothalamus. BDNF alterations in frontal cortex, striatum and olfactory lobes were found. PAE induced a higher susceptibility to the EtOH rewarding effects mostly evident at the lower concentration (0.5 g/kg) that was ineffective in non-PAE offsprings. Moreover, higher ethanol concentrations (1.5 g/kg) produced an aversive response in PAE animals and a significant preference in non-PAE offspring. PAE affected also TrkA in the hippocampus and p75(NTR) in the frontal cortex. DAT was affected in the olfactory lobes in PAE animals treated with 0.5 g/kg of ethanol while no differences were found on D1/D2 receptors and for pro-NGF or pro-BDNF. In conclusion, this study shows that: PAE affects NGF and BDNF expression in the mouse brain; PAE may induce ethanol intake preference in the male offspring.
Collapse
Affiliation(s)
- Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio; Sapienza University of Rome; Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Stefania Ciafrè
- Institute of Translational Pharmacology (IFT); National Research Council of Italy (C.N.R.); Italy
| | - Giampiero Ferraguti
- Department of Cellular Biotechnologies and Hematology; Sapienza University of Rome; Italy
| | - Giacomo Giacovazzo
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Rosanna Mancinelli
- Centro Nazionale Sostanze Chimiche; Instituto Superiore di Sanità; Rome Italy
| | - Paola Tirassa
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | | | - Esterina Pascale
- Department of Medical-Surgical Sciences and Biotechnologies; Sapienza University of Rome; Italy
| | - Marco Ceccanti
- Department of Neurology and Psychiatry; Sapienza University of Rome; Italy
| | - Claudia Codazzo
- Centro Riferimento Alcologico Regione Lazio; Sapienza University of Rome; Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| |
Collapse
|