151
|
Hartley GE, Fryer HA, Gill PA, Boo I, Bornheimer SJ, Hogarth PM, Drummer HE, O'Hehir RE, Edwards ESJ, van Zelm MC. Homologous but not heterologous COVID-19 vaccine booster elicits IgG4+ B-cells and enhanced Omicron subvariant binding. NPJ Vaccines 2024; 9:129. [PMID: 39013889 PMCID: PMC11252355 DOI: 10.1038/s41541-024-00919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Booster vaccinations are recommended to improve protection against severe disease from SARS-CoV-2 infection. With primary vaccinations involving various adenoviral vector and mRNA-based formulations, it remains unclear if these differentially affect the immune response to booster doses. We examined the effects of homologous (mRNA/mRNA) and heterologous (adenoviral vector/mRNA) vaccination on antibody and memory B cell (Bmem) responses against ancestral and Omicron subvariants. Healthy adults who received primary BNT162b2 (mRNA) or ChAdOx1 (vector) vaccination were sampled 1-month and 6-months after their 2nd and 3rd dose (homologous or heterologous) vaccination. Recombinant spike receptor-binding domain (RBD) proteins from ancestral, Omicron BA.2 and BA.5 variants were produced for ELISA-based serology, and tetramerized for immunophenotyping of RBD-specific Bmem. Dose 3 boosters significantly increased ancestral RBD-specific plasma IgG and Bmem in both cohorts. Up to 80% of ancestral RBD-specific Bmem expressed IgG1+. IgG4+ Bmem were detectable after primary mRNA vaccination, and expanded significantly to 5-20% after dose 3, whereas heterologous boosting did not elicit IgG4+ Bmem. Recognition of Omicron BA.2 and BA.5 by ancestral RBD-specific plasma IgG increased from 20% to 60% after the 3rd dose in both cohorts. Reactivity of ancestral RBD-specific Bmem to Omicron BA.2 and BA.5 increased following a homologous booster from 40% to 60%, but not after a heterologous booster. A 3rd mRNA dose generates similarly robust serological and Bmem responses in homologous and heterologous vaccination groups. The expansion of IgG4+ Bmem after mRNA priming might result from the unique vaccine formulation or dosing schedule affecting the Bmem response duration and antibody maturation.
Collapse
Affiliation(s)
- Gemma E Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Holly A Fryer
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Paul A Gill
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Irene Boo
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
| | | | - P Mark Hogarth
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
152
|
Payne LA, Wise LA, Wesselink AK, Wang S, Missmer SA, Edelman A. Association between COVID-19 vaccination and menstruation: a state of the science review. BMJ SEXUAL & REPRODUCTIVE HEALTH 2024; 50:212-225. [PMID: 38857991 PMCID: PMC11246222 DOI: 10.1136/bmjsrh-2024-202274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Menstrual health is a key patient-reported outcome beyond its importance as a general indicator of health and fertility. However, menstrual function was not measured in the clinical trials of COVID-19 vaccines. The purpose of this review was to synthesise the existing literature on the relationship between COVID-19 vaccination and menstrual health outcomes. METHODS A PubMed search to 31 October 2023 identified a total of 53 publications: 11 prospective cohort studies, 11 retrospective cohort studies or registry-based cohort studies, and 31 cross-sectional or retrospective case-control studies. RESULTS Identified studies were generally at moderate-to-high risk of bias due to retrospective design, interviewer bias, and failure to include a non-vaccinated control group. Nonetheless, the bulk of the literature demonstrates that COVID-19 vaccine is associated with temporary changes in menstrual characteristics (cycle length and flow) and menstrual pain. Follicular phase (at the time of vaccination) is associated with greater increases in cycle length. Evidence suggests temporary post-vaccine menstrual changes in adolescents, abnormal vaginal bleeding in postmenopausal individuals, and a potential protective effect of using hormonal contraception. CONCLUSIONS In this review we found evidence supporting an association between the COVID-19 vaccine and menstrual health outcomes. Given the importance of menstrual function to overall health, we recommend that all future vaccine trials include menstruation as a study outcome. Future vaccine studies should include rigorous assessment of the menstrual cycle as an outcome variable to limit sources of bias, identify biological mechanisms, and elucidate the impact of stress.
Collapse
Affiliation(s)
- Laura A Payne
- McLean Hospital, Belmont, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren A Wise
- Boston University School of Public Health, Boston, Massachusetts, USA
| | | | - Siwen Wang
- Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Stacey A Missmer
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
- Michigan State University, East Lansing, Michigan, USA
| | - Alison Edelman
- Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
153
|
Batchi-Bouyou AL, Djontu JC, Ingoba LL, Mougany JS, Mouzinga FH, Dollon Mbama Ntabi J, Kouikani FY, Christ Massamba Ndala A, Diafouka-Kietela S, Ampa R, Ntoumi F. Neutralizing antibody responses assessment after vaccination in people living with HIV using a surrogate neutralization assay. BMC Immunol 2024; 25:43. [PMID: 38987686 PMCID: PMC11234560 DOI: 10.1186/s12865-024-00625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 06/01/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVE HIV has been reported to interfere with protective vaccination against multiple pathogens, usually through the decreased effectiveness of the antibody responses. We aimed to assess neutralizing antibody responses induced by COVID-19 vaccination in PLWH in Brazzaville, Republique of the Congo. METHOD The study was conducted at the Ambulatory Treatment Center of the National HIV Program, in charge of over 6000 PLWH, and the health center of FCRM in Brazzaville, Republic of the Congo. Participants were divided into two groups: PLWH with well-controlled HIV infection (CD4 counts no older than one week ≥ 800 / mm3, undetectable viral load of a period no older than one week and regularly taking Highly Active Antiretroviral Therapy for at least 6 months) and PLWOH. These groups were subdivided by vaccination status: fully vaccinated with adenovirus-based vaccines (Janssen/Ad26.COV2.S and Sputnik/Gam-COVID-Vac) or inactivated virus vaccine (Sinopharm/BBIP-CorV) and a control group of unvaccinated healthy individuals. All participants were RT-PCR negative at inclusion and/or with no documented history of SARS-CoV-2 infection. ELISA method was used for detecting IgG and neutralizing Antibodies against SARS-CoV-2 antigens using a commercial neutralizing assay. RESULTS We collected oropharyngeal and blood samples from 1016 participants including 684 PLWH and 332 PLWOH. Both PLWH and PLWOH elicited high levels of antibody responses after complete vaccination with inactivated virus vaccine (Sinopharm/BBIP-CorV) and adenovirus-based vaccines (Janssen/Ad26.COV2.S and Sputnik/Gam-COVID-Vac). Overall, no difference was observed in neutralization capacity between PLWOH and PLWH with well-controlled HIV infection. CONCLUSION The results from this study underline the importance of implementing integrated health systems that provide PLWH the opportunity to benefit HIV prevention and care, at the same time while monitoring their vaccine-induced antibody kinetics for appropriate booster schedules.
Collapse
Affiliation(s)
- Armel Landry Batchi-Bouyou
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo.
- Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Republic of the Congo.
- Global Clinical Scholars Research Training Program, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, School of Medicine, Washington University in St Louis, St Louis, MO, 63130, USA.
| | - Jean Claude Djontu
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo
| | - Line Lobaloba Ingoba
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo
- Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Jiré Séphora Mougany
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo
- Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Freisnel Hermeland Mouzinga
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo
- Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Jacques Dollon Mbama Ntabi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo
- Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Franck Yannis Kouikani
- Department of Health and Social Care, Ministry of Higher Education, Scientific Research and Technological Innovation, Brazzaville, Republic of the Congo
| | - Arcel Christ Massamba Ndala
- Ambulatory Treatment Center, National HIV Program, Ministry of Health and Population, Brazzaville, Republic of the Congo
| | - Steve Diafouka-Kietela
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo
| | - Raoul Ampa
- Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo.
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
154
|
Kawai A, Noda M, Hirata H, Munakata L, Matsuda T, Omata D, Takemura N, Onoe S, Hirose M, Kato T, Saitoh T, Hirai T, Suzuki R, Yoshioka Y. Lipid Nanoparticle with 1,2-Di-O-octadecenyl-3-trimethylammonium-propane as a Component Lipid Confers Potent Responses of Th1 Cells and Antibody against Vaccine Antigen. ACS NANO 2024; 18:16589-16609. [PMID: 38885198 PMCID: PMC11223497 DOI: 10.1021/acsnano.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Adjuvants are effective tools to enhance vaccine efficacy and control the type of immune responses such as antibody and T helper 1 (Th1)- or Th2-type responses. Several studies suggest that interferon (IFN)-γ-producing Th1 cells play a significant role against infections caused by intracellular bacteria and viruses; however, only a few adjuvants can induce a strong Th1-type immune response. Recently, several studies have shown that lipid nanoparticles (LNPs) can be used as vaccine adjuvants and that each LNP has a different adjuvant activity. In this study, we screened LNPs to develop an adjuvant that can induce Th1 cells and antibodies using a conventional influenza split vaccine (SV) as an antigen in mice. We observed that LNP with 1,2-di-O-octadecenyl-3-trimethylammonium-propane (DOTMA) as a component lipid (DOTMA-LNP) elicited robust SV-specific IgG1 and IgG2 responses compared with SV alone in mice and was as efficient as SV adjuvanted with other adjuvants in mice. Furthermore, DOTMA-LNPs induced robust IFN-γ-producing Th1 cells without inflammatory responses compared to those of other adjuvants, which conferred strong cross-protection in mice. We also demonstrated the high versatility of DOTMA-LNP as a Th1 cell-inducing vaccine adjuvant using vaccine antigens derived from severe acute respiratory syndrome coronavirus 2 and Streptococcus pneumoniae. Our findings suggest the potential of DOTMA-LNP as a safe and effective Th1 cell-inducing adjuvant and show that LNP formulations are potentially potent adjuvants to enhance the effectiveness of other subunit vaccines.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Noda
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruki Hirata
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lisa Munakata
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Teppei Matsuda
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daiki Omata
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Naoki Takemura
- Laboratory
of Bioresponse Regulation, Graduate School
of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sakura Onoe
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mika Hirose
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsuya Saitoh
- Laboratory
of Bioresponse Regulation, Graduate School
of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiro Hirai
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryo Suzuki
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Yasuo Yoshioka
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, The Research Foundation for Microbial Diseases of
Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
155
|
Pyarali M, Adeel M, Nawaz A, Uneeb S, Fazal dad AB, Amir S. Bell's Palsy, an Adverse Event Following COVID Vaccines. IRANIAN JOURNAL OF OTORHINOLARYNGOLOGY 2024; 36:527-535. [PMID: 39015690 PMCID: PMC11247443 DOI: 10.22038/ijorl.2024.69721.3364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/29/2024] [Indexed: 07/18/2024]
Abstract
Introduction Bell's palsy is one of the most concerning complications of the COVID vaccine that has impacted vaccine acceptance among the general population. These vaccines were introduced to provide immunity against the SARS-CoV-2 coronavirus and have been found to be quite effective. Little did we know that Bell's palsy could be one of its serious complications. Materials and Methods We used various search engines to gather data in the form of a case series and case reports related to patients who were affected by the vaccine and had developed Bell's palsy. Results A total of eleven case reports and 4 case series were included in the analysis. The vaccines mentioned in the case reports were Pfizer, Moderna, Sinovac, AstraZeneca, and Janssen, while the case series included Pfizer and Sinovac. The majority of patients were female and aged between 31-40 years. Right-sided laterality was observed in 45.45% of patients, left-sided laterality in 45.45% of patients, and bilateral laterality in 9.1% of patients. Three patients had a history of Bell's palsy or stroke. After treatment, three patients showed partial improvement, six patients fully recovered, and the status of two patients was unknown. Conclusions Bell's palsy is a rare complication that can occur after receiving the COVID-19 vaccine. This review aims to increase awareness about this rare adverse event of the vaccine so that it can be properly addressed and managed. Additionally, it will serve as a foundation for future research on the administration of the COVID-19 vaccine.
Collapse
Affiliation(s)
- Maheen Pyarali
- Department of Otorhinolaryngology-Head and Neck Surgery,
| | - Maira Adeel
- Department of Otorhinolaryngology-Head and Neck Surgery,
| | - Ahmad Nawaz
- Department of Otorhinolaryngology-Head and Neck Surgery,
| | - Saher Uneeb
- Liaquat National Hospital, Karachi, Pakistan.
| | | | - Saniya Amir
- Department of Pediatrics and child health, Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
156
|
Raheem MA, Rahim MA, Gul I, Reyad-Ul-Ferdous M, Zhang CY, Yu D, Pandey V, Du K, Wang R, Han S, Han Y, Qin P. COVID-19: Post infection implications in different age groups, mechanism, diagnosis, effective prevention, treatment, and recommendations. Life Sci 2024:122861. [PMID: 38925222 DOI: 10.1016/j.lfs.2024.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
SARS-CoV-2 is a highly contagious pathogen that predominantly caused the COVID-19 pandemic. The persistent effects of COVID-19 are defined as an inflammatory or host response to the virus that begins four weeks after initial infection and persists for an undetermined length of time. Chronic effects are more harmful than acute ones thus, this review explored the long-term effects of the virus on various human organs, including the pulmonary, cardiovascular, and neurological, reproductive, gastrointestinal, musculoskeletal, endocrine, and lymphoid systems and found that SARS-CoV-2 adversely affects these organs of older adults. Regarding diagnosis, the RT-PCR is a gold standard method of diagnosing COVID-19; however, it requires specialized equipment and personnel for performing assays and a long time for results production. Therefore, to overcome these limitations, artificial intelligence employed in imaging and microfluidics technologies is the most promising in diagnosing COVID-19. Pharmacological and non-pharmacological strategies are the most effective treatment for reducing the persistent impacts of COVID-19 by providing immunity to post-COVID-19 patients by reducing cytokine release syndrome, improving the T cell response, and increasing the circulation of activated natural killer and CD8 T cells in blood and tissues, which ultimately reduces fever, nausea, fatigue, and muscle weakness and pain. Vaccines such as inactivated viral, live attenuated viral, protein subunit, viral vectored, mRNA, DNA, or nanoparticle vaccines significantly reduce the adverse long-term virus effects in post-COVID-19 patients; however, no vaccine was reported to provide lifetime protection against COVID-19; consequently, protective measures such as physical separation, mask use, and hand cleansing are promising strategies. This review provides a comprehensive knowledge of the persistent effects of COVID-19 on people of varying ages, as well as diagnosis, treatment, vaccination, and future preventative measures against the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Muhammad Ajwad Rahim
- College of Animal Science and Technology, Ahnui Agricultural University, Hefei, PR China
| | - Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Md Reyad-Ul-Ferdous
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Runming Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Yuxing Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China.
| |
Collapse
|
157
|
Ahmed MI, Einhauser S, Peiter C, Senninger A, Baranov O, Eser TM, Huth M, Olbrich L, Castelletti N, Rubio-Acero R, Carnell G, Heeney J, Kroidl I, Held K, Wieser A, Janke C, Hoelscher M, Hasenauer J, Wagner R, Geldmacher C, on behalf of the KoCo19/ORCHESTRA working group. Evolution of protective SARS-CoV-2-specific B and T cell responses upon vaccination and Omicron breakthrough infection. iScience 2024; 27:110138. [PMID: 38974469 PMCID: PMC11225850 DOI: 10.1016/j.isci.2024.110138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/21/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron breakthrough infection (BTI) induced better protection than triple vaccination. To address the underlying immunological mechanisms, we studied antibody and T cell response dynamics during vaccination and after BTI. Each vaccination significantly increased peak neutralization titers with simultaneous increases in circulating spike-specific T cell frequencies. Neutralization titers significantly associated with a reduced hazard rate for SARS-CoV-2 infection. Yet, 97% of triple vaccinees became SARS-CoV-2 infected. BTI further boosted neutralization magnitude and breadth, broadened virus-specific T cell responses to non-vaccine-encoded antigens, and protected with an efficiency of 88% from further infections by December 2022. This effect was then assessed by utilizing mathematical modeling, which accounted for time-dependent infection risk, the antibody, and T cell concentration at any time point after BTI. Our findings suggest that cross-variant protective hybrid immunity induced by vaccination and BTI was an important contributor to the reduced virus transmission observed in Bavaria in late 2022 and thereafter.
Collapse
Affiliation(s)
- Mohamed I.M. Ahmed
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80799 Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Sebastian Einhauser
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | - Clemens Peiter
- Faculty of Mathematics and Natural Sciences, University of Bonn, 53113 Bonn, Germany
| | - Antonia Senninger
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | - Olga Baranov
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80799 Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Tabea M. Eser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80799 Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| | - Manuel Huth
- Faculty of Mathematics and Natural Sciences, University of Bonn, 53113 Bonn, Germany
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Laura Olbrich
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80799 Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Noemi Castelletti
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80799 Munich, Germany
| | - Raquel Rubio-Acero
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80799 Munich, Germany
| | - George Carnell
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jonathan Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Inge Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80799 Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80799 Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80799 Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| | - Christian Janke
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80799 Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80799 Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
- Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| | - Jan Hasenauer
- Faculty of Mathematics and Natural Sciences, University of Bonn, 53113 Bonn, Germany
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Center for Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Ralf Wagner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80799 Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| | - on behalf of the KoCo19/ORCHESTRA working group
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80799 Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
- Faculty of Mathematics and Natural Sciences, University of Bonn, 53113 Bonn, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
- Center for Mathematics, Technische Universität München, 85748 Garching, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
158
|
Claus J, ten Doesschate T, Taks E, Debisarun PA, Smits G, van Binnendijk R, van der Klis F, Verhagen LM, de Jonge MI, Bonten MJM, Netea MG, van de Wijgert JHHM. Determinants of Systemic SARS-CoV-2-Specific Antibody Responses to Infection and to Vaccination: A Secondary Analysis of Randomised Controlled Trial Data. Vaccines (Basel) 2024; 12:691. [PMID: 38932420 PMCID: PMC11209274 DOI: 10.3390/vaccines12060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
SARS-CoV-2 infections elicit antibodies against the viral spike (S) and nucleocapsid (N) proteins; COVID-19 vaccines against the S-protein only. The BCG-Corona trial, initiated in March 2020 in SARS-CoV-2-naïve Dutch healthcare workers, captured several epidemic peaks and the introduction of COVID-19 vaccines during the one-year follow-up. We assessed determinants of systemic anti-S1 and anti-N immunoglobulin type G (IgG) responses using trial data. Participants were randomised to BCG or placebo vaccination, reported daily symptoms, SARS-CoV-2 test results, and COVID-19 vaccinations, and donated blood for SARS-CoV-2 serology at two time points. In the 970 participants, anti-S1 geometric mean antibody concentrations (GMCs) were much higher than anti-N GMCs. Anti-S1 GMCs significantly increased with increasing number of immune events (SARS-CoV-2 infection or COVID-19 vaccination): 104.7 international units (IU)/mL, 955.0 IU/mL, and 2290.9 IU/mL for one, two, and three immune events, respectively (p < 0.001). In adjusted multivariable linear regression models, anti-S1 and anti-N log10 concentrations were significantly associated with infection severity, and anti-S1 log10 concentration with COVID-19 vaccine type/dose. In univariable models, anti-N log10 concentration was also significantly associated with acute infection duration, and severity and duration of individual symptoms. Antibody concentrations were not associated with long COVID or long-term loss of smell/taste.
Collapse
Affiliation(s)
- Juana Claus
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.C.); (T.t.D.); (J.H.H.M.v.d.W.)
| | - Thijs ten Doesschate
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.C.); (T.t.D.); (J.H.H.M.v.d.W.)
- Department of Internal Medicine, Jeroen Bosch Ziekenhuis, 5223 GZ Hertogenbosch, The Netherlands
| | - Esther Taks
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (E.T.); (P.A.D.); (M.G.N.)
| | - Priya A. Debisarun
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (E.T.); (P.A.D.); (M.G.N.)
| | - Gaby Smits
- National Institute of Public Health and the Environment, 3720 BA Bilthoven, The Netherlands; (G.S.); (R.v.B.); (F.v.d.K.)
| | - Rob van Binnendijk
- National Institute of Public Health and the Environment, 3720 BA Bilthoven, The Netherlands; (G.S.); (R.v.B.); (F.v.d.K.)
| | - Fiona van der Klis
- National Institute of Public Health and the Environment, 3720 BA Bilthoven, The Netherlands; (G.S.); (R.v.B.); (F.v.d.K.)
| | - Lilly M. Verhagen
- Department of Paediatric Infectious Diseases and Immunology, Amalia Children’s Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Marien I. de Jonge
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Marc J. M. Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.C.); (T.t.D.); (J.H.H.M.v.d.W.)
| | - Mihai G. Netea
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (E.T.); (P.A.D.); (M.G.N.)
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute, University of Bonn, 53113 Bonn, Germany
| | - Janneke H. H. M. van de Wijgert
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.C.); (T.t.D.); (J.H.H.M.v.d.W.)
| |
Collapse
|
159
|
Heo CK, Lim WH, Moon KB, Yang J, Kim SJ, Kim HS, Kim DJ, Cho EW. S2 Peptide-Conjugated SARS-CoV-2 Virus-like Particles Provide Broad Protection against SARS-CoV-2 Variants of Concern. Vaccines (Basel) 2024; 12:676. [PMID: 38932406 PMCID: PMC11209314 DOI: 10.3390/vaccines12060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Approved COVID-19 vaccines primarily induce neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, the emergence of variants of concern with RBD mutations poses challenges to vaccine efficacy. This study aimed to design a next-generation vaccine that provides broader protection against diverse coronaviruses, focusing on glycan-free S2 peptides as vaccine candidates to overcome the low immunogenicity of the S2 domain due to the N-linked glycans on the S antigen stalk, which can mask S2 antibody responses. Glycan-free S2 peptides were synthesized and attached to SARS-CoV-2 virus-like particles (VLPs) lacking the S antigen. Humoral and cellular immune responses were analyzed after the second booster immunization in BALB/c mice. Enzyme-linked immunosorbent assay revealed the reactivity of sera against SARS-CoV-2 variants, and pseudovirus neutralization assay confirmed neutralizing activities. Among the S2 peptide-conjugated VLPs, the S2.3 (N1135-K1157) and S2.5 (A1174-L1193) peptide-VLP conjugates effectively induced S2-specific serum immunoglobulins. These antisera showed high reactivity against SARS-CoV-2 variant S proteins and effectively inhibited pseudoviral infections. S2 peptide-conjugated VLPs activated SARS-CoV-2 VLP-specific T-cells. The SARS-CoV-2 vaccine incorporating conserved S2 peptides and CoV-2 VLPs shows promise as a universal vaccine capable of generating neutralizing antibodies and T-cell responses against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Chang-Kyu Heo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
| | - Won-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (K.-B.M.); (H.-S.K.)
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (K.-B.M.); (H.-S.K.)
| | - Doo-Jin Kim
- Chungbuk National University College of Medicine, 194-15 Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si 28160, Republic of Korea;
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
160
|
Wallace R, Bliss CM, Parker AL. The Immune System-A Double-Edged Sword for Adenovirus-Based Therapies. Viruses 2024; 16:973. [PMID: 38932265 PMCID: PMC11209478 DOI: 10.3390/v16060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive tools for therapeutic development. However, the immune system often poses a significant challenge that must be overcome for adenovirus-based therapies to be truly efficacious. Both pre-existing anti-Ad immunity in the population as well as the rapid development of an immune response against engineered adenoviral vectors can have detrimental effects on the downstream impact of an adenovirus-based therapeutic. This review focuses on the different challenges posed, including pre-existing natural immunity and anti-vector immunity induced by a therapeutic, in the context of innate and adaptive immune responses. We summarise different approaches developed with the aim of tackling these problems, as well as their outcomes and potential future applications.
Collapse
Affiliation(s)
- Rebecca Wallace
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
| | - Carly M. Bliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
161
|
Clegg LE, Stepanov O, Matthews S, White T, Seegobin S, Thomas S, Tuffy KM, Någård M, Esser MT, Streicher K, Cohen TS, Aksyuk AA. Serum AZD7442 (tixagevimab-cilgavimab) concentrations and in vitroIC 50 values predict SARS-CoV-2 neutralising antibody titres. Clin Transl Immunology 2024; 13:e1517. [PMID: 38873124 PMCID: PMC11175839 DOI: 10.1002/cti2.1517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Objectives The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates rapid methods for assessing monoclonal antibody (mAb) potency against emerging variants. Authentic virus neutralisation assays are considered the gold standard for measuring virus-neutralising antibody (nAb) titres in serum. However, authentic virus-based assays pose inherent practical challenges for measuring nAb titres against emerging SARS-CoV-2 variants (e.g. storing infectious viruses and testing at biosafety level-3 facilities). Here, we demonstrate the utility of pseudovirus neutralisation assay data in conjunction with serum mAb concentrations to robustly predict nAb titres in serum. Methods SARS-CoV-2 nAb titres were determined via authentic- and lentiviral pseudovirus-based neutralisation assays using serological data from three AZD7442 (tixagevimab-cilgavimab) studies: PROVENT (NCT04625725), TACKLE (NCT04723394) and a phase 1 dose-ranging study (NCT04507256). AZD7442 serum concentrations were assessed using immunocapture. Serum-based half-maximal inhibitory concentration (IC50) values were derived from pseudovirus nAb titres and serum mAb concentrations, and compared with in vitro IC50 measurements. Results nAb titres measured via authentic- and lentiviral pseudovirus-based neutralisation assays were strongly correlated for the ancestral SARS-CoV-2 virus and SARS-CoV-2 Alpha. Serum AZD7442 concentrations and pseudovirus nAb titres were strongly correlated for multiple SARS-CoV-2 variants with all Spearman correlation coefficients ≥ 0.78. Serum-based IC50 values were similar to in vitro IC50 values for AZD7442, for ancestral SARS-CoV-2 and Alpha, Delta, Omicron BA.2 and Omicron BA.4/5 variants. Conclusions These data highlight that serum mAb concentrations and pseudovirus in vitro IC50 values can be used to rapidly predict nAb titres in serum for emerging and historical SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Lindsay E Clegg
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&DAstraZenecaGaithersburgMDUSA
| | - Oleg Stepanov
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&DAstraZenecaCambridgeUK
| | - Sam Matthews
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaCambridgeUK
| | - Tom White
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaCambridgeUK
| | - Seth Seegobin
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaCambridgeUK
| | - Steven Thomas
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaDurhamNCUSA
| | - Kevin M Tuffy
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaGaithersburgMDUSA
| | - Mats Någård
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&DAstraZenecaGaithersburgMDUSA
| | - Mark T Esser
- Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaGaithersburgMDUSA
| | - Katie Streicher
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaGaithersburgMDUSA
| | - Taylor S Cohen
- Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaGaithersburgMDUSA
| | - Anastasia A Aksyuk
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaGaithersburgMDUSA
| |
Collapse
|
162
|
Li X, Mi Z, Liu Z, Rong P. SARS-CoV-2: pathogenesis, therapeutics, variants, and vaccines. Front Microbiol 2024; 15:1334152. [PMID: 38939189 PMCID: PMC11208693 DOI: 10.3389/fmicb.2024.1334152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in December 2019 with staggering economic fallout and human suffering. The unique structure of SARS-CoV-2 and its underlying pathogenic mechanism were responsible for the global pandemic. In addition to the direct damage caused by the virus, SARS-CoV-2 triggers an abnormal immune response leading to a cytokine storm, culminating in acute respiratory distress syndrome and other fatal diseases that pose a significant challenge to clinicians. Therefore, potential treatments should focus not only on eliminating the virus but also on alleviating or controlling acute immune/inflammatory responses. Current management strategies for COVID-19 include preventative measures and supportive care, while the role of the host immune/inflammatory response in disease progression has largely been overlooked. Understanding the interaction between SARS-CoV-2 and its receptors, as well as the underlying pathogenesis, has proven to be helpful for disease prevention, early recognition of disease progression, vaccine development, and interventions aimed at reducing immunopathology have been shown to reduce adverse clinical outcomes and improve prognosis. Moreover, several key mutations in the SARS-CoV-2 genome sequence result in an enhanced binding affinity to the host cell receptor, or produce immune escape, leading to either increased virus transmissibility or virulence of variants that carry these mutations. This review characterizes the structural features of SARS-CoV-2, its variants, and their interaction with the immune system, emphasizing the role of dysfunctional immune responses and cytokine storm in disease progression. Additionally, potential therapeutic options are reviewed, providing critical insights into disease management, exploring effective approaches to deal with the public health crises caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Xi Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
163
|
Cárdenas V, Le Gars M, Truyers C, Ruiz-Guiñazú J, Struyf F, Colfer A, Bonten M, Borobia A, Reisinger EC, Kamerling IMC, Douoguih M, Sadoff J. Safety and immunogenicity of Ad26.COV2.S in adults: A randomised, double-blind, placebo-controlled Phase 2a dose-finding study. Vaccine 2024; 42:3536-3546. [PMID: 38705804 DOI: 10.1016/j.vaccine.2024.04.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND A single dose of Ad26.COV2.S is well-tolerated and effective in preventing moderate-to-severe disease outcomes due to COVID-19. We evaluated the impact of dose level, number of doses, and dose interval on immunogenicity, reactogenicity, and safety of Ad26.COV2.S in adults. Anamnestic responses were also explored. METHODS This randomised, double-blind, placebo-controlled, Phase 2a study was conducted in adults aged 18-55 years and ≥ 65 years (NCT04535453). Four dose levels (1.25 × 1010, 2.5 × 1010, 5 × 1010, and 1 × 1011 viral particles [vp], single and 2-dose schedules, and dose intervals of 56 and 84 days, were assessed. Four or 6 months post-primary vaccination, Ad26.COV2.S 1.25 × 1010 vp was given to evaluate anamnestic responses. Humoral and cell-mediated immune responses were measured. Reactogenicity and safety were assessed in all participants. RESULTS All Ad26.COV2.S schedules induced humoral responses with evidence of a dose response relationship. A single dose of Ad26.COV2.S (5 × 1010 vp) induced antibody and cellular immune responses that persisted for up to at least 6 months. In the 2-dose regimens, antibody responses were higher than 1-dose regimens at comparable dose levels, and the magnitude of the immune response increased when the interval between doses was increased (84 days vs 56 days). Rapid, marked immune responses were observed in all groups after vaccine antigen exposure indicating immune memory. Durable immune responses were observed in all groups for up to at least 6 months post-antigen exposure. Strong and consistent correlations between neutralising and binding antibodies were observed CD4 + and CD8 + T cell responses were similar after all regimens. Reactogenicity within 7 days post-vaccination tended to be dose-related. CONCLUSION The study supports the primary, single dose schedule with Ad26.COV2.S at 5 × 1010 vp and homologous booster vaccination after a 6 month interval. Rapid and marked responses to vaccine antigen exposure indicate induction of immune memory by 1- and 2-dose primary vaccination.
Collapse
Affiliation(s)
- Vicky Cárdenas
- Janssen Research & Development LLC, Spring House, PA, United States.
| | | | | | | | | | - Alicia Colfer
- Janssen Research & Development LLC, Spring House, PA, United States.
| | - Marc Bonten
- Julius Center for Health Services and Primary Care, UMC Utrecht, Utrecht University and European Clinical Alliance on Infectious Diseases, Utrecht, the Netherlands.
| | - Alberto Borobia
- Clinical Pharmacology Department, La Paz University Hospital. School of Medicine, Universidad Autónoma de Madrid, IdiPAZ. CIBERINFECT, Spain.
| | - Emil C Reisinger
- Rostock University Medical Center, Dept. of Infectious Diseases and Tropical Medicine, Rostock, Germany.
| | - Ingrid M C Kamerling
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, the Netherlands.
| | | | - Jerald Sadoff
- Janssen Vaccines & Prevention, Leiden, the Netherlands.
| |
Collapse
|
164
|
Mateo-Urdiales A, Fabiani M, Mayer F, Sacco C, Belleudi V, Da Cas R, Fotakis EA, De Angelis L, Cutillo M, Petrone D, Morciano C, Cannone A, Del Manso M, Riccardo F, Bella A, Menniti-Ippolito F, Pezzotti P, Spila Alegiani S, Massari M. Risk of breakthrough infection and hospitalisation after COVID-19 primary vaccination by HIV status in four Italian regions during 2021. BMC Public Health 2024; 24:1569. [PMID: 38862939 PMCID: PMC11165887 DOI: 10.1186/s12889-024-19071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND As of 2024, vaccination remains the main mitigation measure against COVID-19, but there are contradictory results on whether people living with HIV (PLWH) are less protected by vaccines than people living without HIV (PLWoH). In this study we compared the risk of SARS-CoV-2 infection and COVID-19 hospitalisation following full vaccination in PLWH and PLWoH. METHODS We linked data from the vaccination registry, the COVID-19 surveillance system and from healthcare/pharmacological registries in four Italian regions. We identified PLWH fully vaccinated (14 days post completion of the primary cycle) and matched them at a ratio of 1:4 with PLWoH by week of vaccine administration, age, sex, region of residence and comorbidities. Follow-up started on January 24, 2021, and lasted for a maximum of 234 days. We used the Kaplan-Meier estimator to calculate the cumulative incidence of infection and COVID-19 hospitalisation in both groups, and we compared risks using risk differences and ratios taking PLWoH as the reference group. RESULTS We matched 42,771 PLWH with 171,084 PLWoH. The overall risk of breakthrough infection was similar in both groups with a rate ratio (RR) of 1.10 (95% confidence interval (CI):0.80-1.53). The absolute difference between groups at the end of the study period was 8.28 events per 10,000 person-days in the PLWH group (95%CI:-18.43-40.29). There was a non-significant increase the risk of COVID-19 hospitalisation among PLWH (RR:1.90; 95%CI:0.93-3.32) which corresponds to 6.73 hospitalisations per 10,000 individuals (95%CI: -0.57 to 14.87 per 10,000). CONCLUSIONS Our findings suggest PLWH were not at increased risk of breakthrough SARS-CoV-2 infection or COVID-19 hospitalisation following a primary cycle of mRNA vaccination.
Collapse
Affiliation(s)
| | - Massimo Fabiani
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Mayer
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Sacco
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- European Programme on Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Valeria Belleudi
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Roberto Da Cas
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Emmanouil Alexandros Fotakis
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- European Programme on Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Luigi De Angelis
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Cutillo
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Petrone
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Morciano
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Cannone
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Del Manso
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Riccardo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Antonino Bella
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Patrizio Pezzotti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Marco Massari
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
165
|
Gardner J, Abrams ST, Toh CH, Parker AL, Lovatt C, Nicolson PLR, Watson SP, Grice S, Hering L, Pirmohamed M, Naisbitt DJ. Identification of cross reactive T cell responses in adenovirus based COVID 19 vaccines. NPJ Vaccines 2024; 9:99. [PMID: 38839821 PMCID: PMC11153626 DOI: 10.1038/s41541-024-00895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Vaccination has proven to be a valuable tool to combat SARS-CoV-2. However, reports of rare adverse reactions such as thrombosis/thrombocytopenia syndrome after ChAdOx1 nCoV-19 vaccination have caused scientific, public and media concern. ChAdOx1 was vectorised from the Y25 chimpanzee adenovirus, which was selected due to low human seroprevalence to circumvent pre-existing immunity. In this study, we aimed to explore patterns of T-cell activation after SARS-CoV-2 COVID-19 vaccine exposure in vitro using PBMCs collected from pre-pandemic ChAdOx1 nCoV-19 naïve healthy donors (HDs), and ChAdOx1 nCoV-19 and Pfizer vaccinated controls. PBMCs were assessed for T-cell proliferation using the lymphocyte transformation test (LTT) following exposure to SARS-CoV-2 COVID-19 vaccines. Cytokine analysis was performed via intracellular cytokine staining, ELISpot assay and LEGENDplex immunoassays. T-cell assays performed in pre-pandemic vaccine naïve HDs, revealed widespread lymphocyte stimulation after exposure to ChAdOx1 nCoV-19 (95%), ChAdOx-spike (90%) and the Ad26.COV2. S vaccine, but not on exposure to the BNT162b2 vaccine. ICS analysis demonstrated that CD4+ CD45RO+ memory T-cells are activated by ChAdOx1 nCoV-19 in vaccine naïve HDs. Cytometric immunoassays showed ChAdOx1 nCoV-19 exposure was associated with the release of proinflammatory and cytotoxic molecules, such as IFN-γ, IL-6, perforin, granzyme B and FasL. These studies demonstrate a ubiquitous T-cell response to ChAdOx1 nCoV-19 and Ad26.COV2. S in HDs recruited prior to the SARS-CoV-2 pandemic, with T-cell stimulation also identified in vaccinated controls. This may be due to underlying T-cell cross-reactivity with prevalent human adenoviruses and further study will be needed to identify T-cell epitopes involved.
Collapse
Affiliation(s)
- Joshua Gardner
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom.
| | - Simon Timothy Abrams
- Institute of Infection, Veterinary Sciences and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Cheng-Hock Toh
- Institute of Infection, Veterinary Sciences and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Alan L Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Charlotte Lovatt
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Phillip L R Nicolson
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sophie Grice
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Luisa Hering
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Dean J Naisbitt
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
166
|
Lang AL, Hohmuth N, Višković V, Konigorski S, Scholz S, Balzer F, Remschmidt C, Leistner R. COVID-19 Vaccine Effectiveness and Digital Pandemic Surveillance in Germany (eCOV Study): Web Application-Based Prospective Observational Cohort Study. J Med Internet Res 2024; 26:e47070. [PMID: 38833299 PMCID: PMC11185909 DOI: 10.2196/47070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/18/2023] [Accepted: 03/22/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic posed significant challenges to global health systems. Efficient public health responses required a rapid and secure collection of health data to improve the understanding of SARS-CoV-2 and examine the vaccine effectiveness (VE) and drug safety of the novel COVID-19 vaccines. OBJECTIVE This study (COVID-19 study on vaccinated and unvaccinated subjects over 16 years; eCOV study) aims to (1) evaluate the real-world effectiveness of COVID-19 vaccines through a digital participatory surveillance tool and (2) assess the potential of self-reported data for monitoring key parameters of the COVID-19 pandemic in Germany. METHODS Using a digital study web application, we collected self-reported data between May 1, 2021, and August 1, 2022, to assess VE, test positivity rates, COVID-19 incidence rates, and adverse events after COVID-19 vaccination. Our primary outcome measure was the VE of SARS-CoV-2 vaccines against laboratory-confirmed SARS-CoV-2 infection. The secondary outcome measures included VE against hospitalization and across different SARS-CoV-2 variants, adverse events after vaccination, and symptoms during infection. Logistic regression models adjusted for confounders were used to estimate VE 4 to 48 weeks after the primary vaccination series and after third-dose vaccination. Unvaccinated participants were compared with age- and gender-matched participants who had received 2 doses of BNT162b2 (Pfizer-BioNTech) and those who had received 3 doses of BNT162b2 and were not infected before the last vaccination. To assess the potential of self-reported digital data, the data were compared with official data from public health authorities. RESULTS We enrolled 10,077 participants (aged ≥16 y) who contributed 44,786 tests and 5530 symptoms. In this young, primarily female, and digital-literate cohort, VE against infections of any severity waned from 91.2% (95% CI 70.4%-97.4%) at week 4 to 37.2% (95% CI 23.5%-48.5%) at week 48 after the second dose of BNT162b2. A third dose of BNT162b2 increased VE to 67.6% (95% CI 50.3%-78.8%) after 4 weeks. The low number of reported hospitalizations limited our ability to calculate VE against hospitalization. Adverse events after vaccination were consistent with previously published research. Seven-day incidences and test positivity rates reflected the course of the pandemic in Germany when compared with official numbers from the national infectious disease surveillance system. CONCLUSIONS Our data indicate that COVID-19 vaccinations are safe and effective, and third-dose vaccinations partially restore protection against SARS-CoV-2 infection. The study showcased the successful use of a digital study web application for COVID-19 surveillance and continuous monitoring of VE in Germany, highlighting its potential to accelerate public health decision-making. Addressing biases in digital data collection is vital to ensure the accuracy and reliability of digital solutions as public health tools.
Collapse
Affiliation(s)
| | - Nils Hohmuth
- d4l Data4Life gGmbH, Potsdam, Germany
- Institute of Medical Informatics, Charité University Medicine Berlin, Berlin, Germany
| | | | - Stefan Konigorski
- Digital Health Center, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Statistics, Harvard University, Cambridge, MA, United States
| | - Stefan Scholz
- Health Services Research and Health Economics, Martin Luther University Halle-Wittenberg, Halle Saale, Germany
| | - Felix Balzer
- Institute of Medical Informatics, Charité University Medicine Berlin, Berlin, Germany
| | | | - Rasmus Leistner
- Department of Gastroenterology, Infectiology and Rheumatology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
167
|
Kopańko M, Zabłudowska M, Zajkowska M, Gudowska-Sawczuk M, Mucha M, Mroczko B. The Impact of COVID-19 on the Guillain-Barré Syndrome Incidence. Biomedicines 2024; 12:1248. [PMID: 38927455 PMCID: PMC11201746 DOI: 10.3390/biomedicines12061248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the fact that the global COVID-19 pandemic has officially ended, we continue to feel its effects and discover new correlations between SARS-CoV-2 infection and changes in the organism that have occurred in patients. It has been shown that the disease can be associated with a variety of complications, including disorders of the nervous system such as a characteristic loss of smell and taste, as well as less commonly reported incidents such as cranial polyneuropathy or neuromuscular disorders. Nervous system diseases that are suspected to be related to COVID-19 include Guillain-Barré syndrome, which is frequently caused by viruses. During the course of the disease, autoimmunity destroys peripheral nerves, which despite its rare occurrence, can lead to serious consequences, such as symmetrical muscle weakness and deep reflexes, or even their complete abolition. Since the beginning of the pandemic, case reports suggesting a relationship between these two disease entities have been published, and in some countries, the increasing number of Guillain-Barré syndrome cases have also been reported. This suggests that previous contact with SARS-CoV-2 may have had an impact on their occurrence. This article is a review and summary of the literature that raises awareness of the neurological symptoms' prevalence, including Guillain-Barré syndrome, which may be impacted by the commonly occurring COVID-19 disease or vaccination against it. The aim of this review was to better understand the mechanisms of the virus's action on the nervous system, allowing for better detection and the prevention of its complications.
Collapse
Affiliation(s)
- Magdalena Kopańko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland (M.G.-S.); (B.M.)
| | - Magdalena Zabłudowska
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland (M.G.-S.); (B.M.)
| | - Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland (M.G.-S.); (B.M.)
| | - Mateusz Mucha
- Department of Oncological Surgery with Specialized Cancer Treatment Units, Maria Sklodowska-Curie Oncology Center, 15-027 Bialystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland (M.G.-S.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
168
|
Darpel KE, Corla A, Stedman A, Bellamy F, Flannery J, Rajko-Nenow P, Powers C, Wilson S, Charleston B, Baron MD, Batten C. Long-term trial of protection provided by adenovirus-vectored vaccine expressing the PPRV H protein. NPJ Vaccines 2024; 9:98. [PMID: 38830899 PMCID: PMC11148195 DOI: 10.1038/s41541-024-00892-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
A recombinant, replication-defective, adenovirus-vectored vaccine expressing the H surface glycoprotein of peste des petits ruminants virus (PPRV) has previously been shown to protect goats from challenge with wild-type PPRV at up to 4 months post vaccination. Here, we present the results of a longer-term trial of the protection provided by such a vaccine, challenging animals at 6, 9, 12 and 15 months post vaccination. Vaccinated animals developed high levels of anti-PPRV H protein antibodies, which were virus-neutralising, and the level of these antibodies was maintained for the duration of the trial. The vaccinated animals were largely protected against overt clinical disease from the challenge virus. Although viral genome was intermittently detected in blood samples, nasal and/or ocular swabs of vaccinated goats post challenge, viral RNA levels were significantly lower compared to unvaccinated control animals and vaccinated goats did not appear to excrete live virus. This protection, like the antibody response, was maintained at the same level for at least 15 months after vaccination. In addition, we showed that animals that have been vaccinated with the adenovirus-based vaccine can be revaccinated with the same vaccine after 12 months and showed an increased anti-PPRV antibody response after this boost vaccination. Such vaccines, which provide a DIVA capability, would therefore be suitable for use when the current live attenuated PPRV vaccines are withdrawn at the end of the ongoing global PPR eradication campaign.
Collapse
Affiliation(s)
- Karin E Darpel
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Amanda Corla
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Anna Stedman
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
- Veterinary Medicines Directorate, Woodham Lane, Addlestone, Surrey, KT15 3LS, UK
| | | | - John Flannery
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, Athlone, Ireland
| | - Paulina Rajko-Nenow
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, Athlone, Ireland
| | - Claire Powers
- Viral Vector Core Facility, Pandemic Sciences Institute, Oxford University, Oxford, UK
| | - Steve Wilson
- Global Alliance for Livestock Veterinary Medicines, Edinburgh, UK
| | - Bryan Charleston
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Michael D Baron
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Carrie Batten
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| |
Collapse
|
169
|
Gim H, Seo H, Chun BC. Vaccine Effectiveness Against Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection by Type and Frequency of Vaccine: A Community-Based Case-Control Study. J Korean Med Sci 2024; 39:e174. [PMID: 38832478 PMCID: PMC11147786 DOI: 10.3346/jkms.2024.39.e174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Although guidelines recommend vaccination for individuals who have recovered from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to prevent reinfection, comprehensive evaluation studies are limited. We aimed to evaluate vaccine effectiveness against SARS-CoV-2 reinfection according to the primary vaccination status, booster vaccination status, and vaccination methods used. METHODS This population-based case-control study enrolled all SARS-CoV-2-infected patients in Seoul between January 2020 and February 2022. Individuals were categorized into case (reinfection) and control (no reinfection) groups. Data were analyzed using conditional logistic regression after adjusting for underlying comorbidities using multiple regression. RESULTS The case group included 7,678 participants (average age: 32.26 years). In all vaccinated individuals, patients who received the first and second booster doses showed reduced reinfection rates compared with individuals who received basic vaccination (odds ratio [OR] = 0.605, P < 0.001 and OR = 0.002, P < 0.001). Patients who received BNT162b2 or mRNA-1273, NVX-CoV2373 and heterologous vaccination showed reduced reinfection rates compared with unvaccinated individuals (OR = 0.546, P < 0.001; OR = 0.356, P < 0.001; and OR = 0.472, P < 0.001). However, the ChAdOx1-S or Ad26.COV2.S vaccination group showed a higher reinfection rate than the BNT162b2 or mRNA-1273 vaccination group (OR = 4.419, P < 0.001). CONCLUSION In SARS-CoV-2-infected individuals, completion of the basic vaccination series showed significant protection against reinfection compared with no vaccination. If the first or second booster vaccination was received, the protective effect against reinfection was higher than that of basic vaccination; when vaccinated with BNT162b2 or mRNA-1273 only or heterologous vaccination, the protective effect was higher than that of ChAdOx1-S or Ad26.COV2.S vaccination only.
Collapse
Affiliation(s)
- Hyerin Gim
- Infectious Disease Research Center, Citizens' Health Bureau, Seoul Metropolitan Government, Seoul, Korea
| | - Haesook Seo
- Infectious Disease Research Center, Citizens' Health Bureau, Seoul Metropolitan Government, Seoul, Korea
| | - Byung Chul Chun
- Department of Epidemiology & Health Informatics, Graduate School of Public Health, Korea University, Seoul, Korea
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
170
|
Padilla‐Flores T, Sampieri A, Vaca L. Incidence and management of the main serious adverse events reported after COVID-19 vaccination. Pharmacol Res Perspect 2024; 12:e1224. [PMID: 38864106 PMCID: PMC11167235 DOI: 10.1002/prp2.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2n first appeared in Wuhan, China in 2019. Soon after, it was declared a pandemic by the World Health Organization. The health crisis imposed by a new virus and its rapid spread worldwide prompted the fast development of vaccines. For the first time in human history, two vaccines based on recombinant genetic material technology were approved for human use. These mRNA vaccines were applied in massive immunization programs around the world, followed by other vaccines based on more traditional approaches. Even though all vaccines were tested in clinical trials prior to their general administration, serious adverse events, usually of very low incidence, were mostly identified after application of millions of doses. Establishing a direct correlation (the cause-effect paradigm) between vaccination and the appearance of adverse effects has proven challenging. This review focuses on the main adverse effects observed after vaccination, including anaphylaxis, myocarditis, vaccine-induced thrombotic thrombocytopenia, Guillain-Barré syndrome, and transverse myelitis reported in the context of COVID-19 vaccination. We highlight the symptoms, laboratory tests required for an adequate diagnosis, and briefly outline the recommended treatments for these adverse effects. The aim of this work is to increase awareness among healthcare personnel about the serious adverse events that may arise post-vaccination. Regardless of the ongoing discussion about the safety of COVID-19 vaccination, these adverse effects must be identified promptly and treated effectively to reduce the risk of complications.
Collapse
Affiliation(s)
- Teresa Padilla‐Flores
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | - Alicia Sampieri
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | - Luis Vaca
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| |
Collapse
|
171
|
Prasad V, Haslam A. COVID-19 vaccines: history of the pandemic's great scientific success and flawed policy implementation. Monash Bioeth Rev 2024; 42:28-54. [PMID: 38459404 PMCID: PMC11368972 DOI: 10.1007/s40592-024-00189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/10/2024]
Abstract
The COVID-19 vaccine has been a miraculous, life-saving advance, offering staggering efficacy in adults, and was developed with astonishing speed. The time from sequencing the virus to authorizing the first COVID-19 vaccine was so brisk even the optimists appear close-minded. Yet, simultaneously, United States' COVID-19 vaccination roll-out and related policies have contained missed opportunities, errors, run counter to evidence-based medicine, and revealed limitations in the judgment of public policymakers. Misplaced utilization, contradictory messaging, and poor deployment in those who would benefit most-the elderly and high-risk-alongside unrealistic messaging, exaggeration, and coercion in those who benefit least-young, healthy Americans-is at the heart. It is important to consider the history of COVID-19 vaccines to identify where we succeeded and where we failed, and the effects that these errors may have more broadly on vaccination hesitancy and routine childhood immunization programs in the decades to come.
Collapse
Affiliation(s)
- Vinay Prasad
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16 St, 2 Fl, San Francisco, CA, 94158, USA.
| | - Alyson Haslam
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16 St, 2 Fl, San Francisco, CA, 94158, USA
| |
Collapse
|
172
|
Moore M, Zhu Y, Hirsch I, White T, Reiner RC, Barber RM, Pigott D, Collins JK, Santoni S, Sobieszczyk ME, Janes H. Estimating vaccine efficacy during open-label follow-up of COVID-19 vaccine trials based on population-level surveillance data. Epidemics 2024; 47:100768. [PMID: 38643547 PMCID: PMC11257040 DOI: 10.1016/j.epidem.2024.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024] Open
Abstract
While rapid development and roll out of COVID-19 vaccines is necessary in a pandemic, the process limits the ability of clinical trials to assess longer-term vaccine efficacy. We leveraged COVID-19 surveillance data in the U.S. to evaluate vaccine efficacy in U.S. Government-funded COVID-19 vaccine efficacy trials with a three-step estimation process. First, we used a compartmental epidemiological model informed by county-level surveillance data, a "population model", to estimate SARS-CoV-2 incidence among the unvaccinated. Second, a "cohort model" was used to adjust the population SARS-CoV-2 incidence to the vaccine trial cohort, taking into account individual participant characteristics and the difference between SARS-CoV-2 infection and COVID-19 disease. Third, we fit a regression model estimating the offset between the cohort-model-based COVID-19 incidence in the unvaccinated with the placebo-group COVID-19 incidence in the trial during blinded follow-up. Counterfactual placebo COVID-19 incidence was estimated during open-label follow-up by adjusting the cohort-model-based incidence rate by the estimated offset. Vaccine efficacy during open-label follow-up was estimated by contrasting the vaccine group COVID-19 incidence with the counterfactual placebo COVID-19 incidence. We documented good performance of the methodology in a simulation study. We also applied the methodology to estimate vaccine efficacy for the two-dose AZD1222 COVID-19 vaccine using data from the phase 3 U.S. trial (ClinicalTrials.gov # NCT04516746). We estimated AZD1222 vaccine efficacy of 59.1% (95% uncertainty interval (UI): 40.4%-74.3%) in April, 2021 (mean 106 days post-second dose), which reduced to 35.7% (95% UI: 15.0%-51.7%) in July, 2021 (mean 198 days post-second-dose). We developed and evaluated a methodology for estimating longer-term vaccine efficacy. This methodology could be applied to estimating counterfactual placebo incidence for future placebo-controlled vaccine efficacy trials of emerging pathogens with early termination of blinded follow-up, to active-controlled or uncontrolled COVID-19 vaccine efficacy trials, and to other clinical endpoints influenced by vaccination.
Collapse
Affiliation(s)
- Mia Moore
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| | | | - Ian Hirsch
- Biometrics, Vaccines, & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tom White
- Biometrics, Vaccines, & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Robert C Reiner
- Institute for Health Metrics and Evaluation within the Schools of Medicine at the University of Washington, Seattle, WA, USA
| | - Ryan M Barber
- Institute for Health Metrics and Evaluation within the Schools of Medicine at the University of Washington, Seattle, WA, USA
| | - David Pigott
- Institute for Health Metrics and Evaluation within the Schools of Medicine at the University of Washington, Seattle, WA, USA
| | - James K Collins
- Institute for Health Metrics and Evaluation within the Schools of Medicine at the University of Washington, Seattle, WA, USA
| | - Serena Santoni
- Institute for Health Metrics and Evaluation within the Schools of Medicine at the University of Washington, Seattle, WA, USA
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Holly Janes
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| |
Collapse
|
173
|
Stylianou E, Satti I. Inhaled aerosol viral-vectored vaccines against tuberculosis. Curr Opin Virol 2024; 66:101408. [PMID: 38574628 DOI: 10.1016/j.coviro.2024.101408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
Bacille Calmette-Guérin (BCG) remains the sole licensed vaccine against tuberculosis (TB), despite its variable efficacy in protecting against pulmonary TB. The development of effective TB vaccines faces significant challenges, marked by the absence of validated correlates of protection and predictive animal models. Strategic approaches to enhance TB vaccines and augment BCG efficacy include utilising prime-boost strategies with viral-vectored vaccines and exploring innovative delivery techniques, such as mucosal vaccine administration. Viral vectors offer numerous advantages, including the capacity to accommodate genes encoding extensive antigenic fragments and the induction of robust immune responses. Aerosol delivery aligns with the route of Mycobacterium tuberculosis infection and holds the potential to enhance protective mucosal immunity. Aerosolised viral-vectored vaccines overcome anti-vector immunity, facilitating repeated aerosol deliveries.
Collapse
Affiliation(s)
- Elena Stylianou
- The Jenner Institute, Old Road Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Iman Satti
- The Jenner Institute, Old Road Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
174
|
Rafati A, Jameie M, Amanollahi M, Pasebani Y, Jameie M, Kabiri A, Montazeri Namin S, Sakhaei D, Feizollahi F, Pasebani MY, Mohebbi H, Ilkhani S, Azadi M, Rahimlou M, Kwon CS. Association of New-Onset Seizures With SARS-CoV-2 Vaccines: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. JAMA Neurol 2024; 81:611-618. [PMID: 38683573 PMCID: PMC11059047 DOI: 10.1001/jamaneurol.2024.0967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
Importance Seizures have been reported as an adverse effect of the SARS-CoV-2 vaccine. However, no study has answered the question of whether there is any association between seizures in the general population and COVID-19 vaccination. Objective To evaluate the seizure incidence among SARS-CoV-2 vaccine recipients compared with those who received a placebo. Data Sources A systematic search of MEDLINE (via PubMed), Web of Science, Scopus, Cochrane Library, Google Scholar, review publications, editorials, letters to editors, and conference papers, along with the references of the included studies from December 2019 to July 7, 2023. Study Selection Randomized clinical trials (RCTs) reporting seizure incidence with SARS-CoV-2 vaccination were included. Data Extraction and Synthesis This study is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework and used the Mantel-Haenszel method with random- and common-effect models. The risk of bias of the studies was assessed using the Cochrane assessment tool for RCTs. Main Outcomes and Measures The outcome of interest was new-onset seizure incidence proportion compared among (1) SARS-CoV-2 vaccine recipients and (2) placebo recipients. Results Six RCTs were included in the study. Results of the pooled analysis comparing the incidence of new-onset seizure between the 63 521 vaccine and 54 919 placebo recipients in the 28-day follow-up after vaccine/placebo injection showed no statistically significant difference between the 2 groups (9 events [0.014%] in vaccine and 1 event [0.002%] in placebo recipients; odds ratio [OR], 2.70; 95% CI, 0.76-9.57; P = .12; I2 = 0%, τ2 = 0, Cochran Q P = .74). Likewise, in the entire blinded-phase period after injection, with a median of more than 43 days, no significant difference was identified between the vaccine and placebo groups regarding incident new-onset seizure (13/43 724 events [0.03%] in vaccine and 5/40 612 [0.012%] in placebo recipients; OR, 2.31; 95% CI, 0.86-6.23, P = .10, I2 = 0%, τ2 = 0, Cochran Q P = .95). Conclusions and Relevance According to this systematic review and meta-analysis, there was no statistically significant difference in the risk of new-onset seizure incidence between vaccinated individuals and placebo recipients.
Collapse
Affiliation(s)
- Ali Rafati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Amanollahi
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yeganeh Pasebani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mana Jameie
- Cardiovascular Diseases Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Kabiri
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Montazeri Namin
- Cardiovascular Diseases Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
- Cardiac Primary Prevention Research Center, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Delaram Sakhaei
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Fateme Feizollahi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Saba Ilkhani
- Center for Surgery and Public Health, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Churl-Su Kwon
- Departments of Neurology, Epidemiology, Neurosurgery and the Gertrude H. Sergievsky Center, Columbia University, New York, New York
| |
Collapse
|
175
|
Zarepoor M, Nazari A, Pourmasumi S. Impact of vitamin D supplementation as COVID-19 vaccine adjuvant on sperm parameters and sex hormones in men with idiopathic infertility: Two separate pre-post studies. Clin Exp Reprod Med 2024; 51:125-134. [PMID: 38263587 PMCID: PMC11140254 DOI: 10.5653/cerm.2023.06464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Vitamin D deficiency is a major problem for human health worldwide. The mechanisms of vitamin D in the male reproductive system are unknown. After coronavirus disease 2019 (COVID-19) vaccines were developed, doubts were raised about their possible effects on male fertility. Based on vitamin D's function in the immune system, its potential role as an adjuvant for COVID-19 vaccines is intriguing. The aims of this study were to assess the effects of vitamin D first on sperm parameters and sex hormones, and then as an immune adjuvant on sperm parameters and sex hormones after study participants had received their second doses of COVID-19 vaccines. METHODS Phase 1 (before the COVID-19 pandemic) included 72 men with idiopathic infertility, and phase 2 had 64 participants who received two doses of COVID-19 vaccines. Both groups were instructed to take 50,000 IU of vitamin D twice monthly for 3 months. Sperm parameters and sex hormones were assessed pre- and post-supplementation. RESULTS Regular vitamin D intake for 3 months significantly increased the participants' vitamin D levels (p=0.0001). Both phases showed a positive correlation between vitamin D intake and sperm parameters. Vaccination had no negative effects on sperm parameters and sex hormones. Vitamin D was associated with follicle-stimulating hormone (p=0.02) and testosterone (p=0.0001) in phase 2 after treatment. CONCLUSION Our results support vitamin D supplementation as an immune adjunct to COVID-19 vaccination for improving sperm parameters and hormone levels. COVID-19 vaccination is not harmful for male fertility potential, and vitamin D is an effective factor for male fertility.
Collapse
Affiliation(s)
- Mahtab Zarepoor
- Clinical Research Development Unit (CRDU), Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Nazari
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Surgery, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Soheila Pourmasumi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
176
|
Park JH, Kim KH. COVID-19 Vaccination-Related Myocarditis: What We Learned From Our Experience and What We Need to Do in The Future. Korean Circ J 2024; 54:295-310. [PMID: 38654456 PMCID: PMC11169908 DOI: 10.4070/kcj.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 has led to a global health crisis with substantial mortality and morbidity. To combat the COVID-19 pandemic, various vaccines have been developed, but unexpected serious adverse events including vaccine-induced thrombotic thrombocytopenia, carditis, and thromboembolic events have been reported and became a huddle for COVID-19 vaccination. Vaccine-related myocarditis (VRM) is a rare but significant adverse event associated primarily with mRNA vaccines. This review explores the incidence, risk factors, clinical presentation, pathogenesis, management strategies, and outcomes associated with VRM. The incidence of VRM is notably higher in male adolescents and young adults, especially after the second dose of mRNA vaccines. The pathogenesis appears to involve an immune-mediated process, but the precise mechanism remains mostly unknown so far. Most studies have suggested that VRM is mild and self-limiting, and responds well to conventional treatment. However, a recent nationwide study in Korea warns that severe cases, including fulminant myocarditis or death, are not uncommon in patients with COVID-19 VRM. The long-term cardiovascular consequences of VRM have not been well understood and warrant further investigation. This review also briefly addresses the critical balance between the substantial benefits of COVID-19 vaccination and the rare risks of VRM in the coming endemic era. It emphasizes the need for continued surveillance, research to understand the underlying mechanisms, and strategies to mitigate risk. Filling these knowledge gaps would be vital to refining vaccination recommendations and improving patient care in the evolving COVID-19 pandemic landscape.
Collapse
Affiliation(s)
- Jae-Hyeong Park
- Department of Cardiology in Internal Medicine, Chungnam National University Hospital, Chungnam National University, Daejeon, Korea
| | - Kye Hun Kim
- Department of Cardiovascular Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, Korea.
| |
Collapse
|
177
|
Malireddi RKS, Sharma BR, Kanneganti TD. Innate Immunity in Protection and Pathogenesis During Coronavirus Infections and COVID-19. Annu Rev Immunol 2024; 42:615-645. [PMID: 38941608 PMCID: PMC11373870 DOI: 10.1146/annurev-immunol-083122-043545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The COVID-19 pandemic was caused by the recently emerged β-coronavirus SARS-CoV-2. SARS-CoV-2 has had a catastrophic impact, resulting in nearly 7 million fatalities worldwide to date. The innate immune system is the first line of defense against infections, including the detection and response to SARS-CoV-2. Here, we discuss the innate immune mechanisms that sense coronaviruses, with a focus on SARS-CoV-2 infection and how these protective responses can become detrimental in severe cases of COVID-19, contributing to cytokine storm, inflammation, long-COVID, and other complications. We also highlight the complex cross talk among cytokines and the cellular components of the innate immune system, which can aid in viral clearance but also contribute to inflammatory cell death, cytokine storm, and organ damage in severe COVID-19 pathogenesis. Furthermore, we discuss how SARS-CoV-2 evades key protective innate immune mechanisms to enhance its virulence and pathogenicity, as well as how innate immunity can be therapeutically targeted as part of the vaccination and treatment strategy. Overall, we highlight how a comprehensive understanding of innate immune mechanisms has been crucial in the fight against SARS-CoV-2 infections and the development of novel host-directed immunotherapeutic strategies for various diseases.
Collapse
Affiliation(s)
- R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | | |
Collapse
|
178
|
Kim HR, Kim S, Chang MS, Lee CS, Byeon SH, Kim SS, Lee SW, Kim YJ. Uveitis Risk After the First Dose of COVID-19 Vaccination Based on Uveitis History: Matched Cohort and Crossover Case Series Study. Am J Ophthalmol 2024; 262:125-133. [PMID: 38341167 DOI: 10.1016/j.ajo.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE To investigate the risk of noninfectious uveitis following the first dose of coronavirus disease 2019 (COVID-19) vaccination based on the uveitis history. DESIGN Retrospective matched cohort and crossover case series study. METHODS A random sample of 7 917 457 individuals who received COVID-19 vaccine between January 2021 and March 2022 in Korea, and had no recorded history of COVID-19 were categorized into the control and uveitis groups based on their uveitis history. After performing 3:1 propensity score matching, we assessed the cumulative incidence and risk of noninfectious uveitis in the 180 days after COVID-19 vaccination. Additionally, we performed a crossover case series analysis to compare the pre- and postvaccination incidence rate ratios (IRRs) of uveitis in individuals with and without a history of uveitis. RESULTS In the matched cohort analysis, uveitis group had a significantly higher cumulative incidence of uveitis (15.4%) than control group (0.10%). The uveitis group exhibited increased risks of all uveitis types, anterior, and nonanterior uveitis in the first 60 days (hazard ratio [HR]: 169, 158, and 253, respectively) and in days 61 to 180 (HR: 166, 164, and 143, respectively) after vaccination. In the crossover case series analysis, uveitis occurred with relatively equal frequency in 20-day intervals during the 180 days before and after vaccination, regardless of uveitis history. For uveitis group, the adjusted IRRs for early and late postvaccination events were 0.92 (95% CI, 0.88-0.96) and 0.83 (95% CI, 0.80-0.85), respectively. CONCLUSIONS COVID-19 vaccination did not increase the risk of uveitis, regardless of uveitis history.
Collapse
Affiliation(s)
- Hae Rang Kim
- From the Department of Ophthalmology, Ajou University School of Medicine (H.R.K.), Suwon, Republic of Korea
| | - Sunyeup Kim
- Department of Medical AI, Sungkyunkwan University School of Medicine (S.K.), Suwon, Republic of Korea
| | - Myung Soo Chang
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine (M.S.C., C.S.L., S.H.B., S.S.K., Y.J.K.), Seoul, Republic of Korea
| | - Christopher Seungkyu Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine (M.S.C., C.S.L., S.H.B., S.S.K., Y.J.K.), Seoul, Republic of Korea
| | - Suk Ho Byeon
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine (M.S.C., C.S.L., S.H.B., S.S.K., Y.J.K.), Seoul, Republic of Korea
| | - Sung Soo Kim
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine (M.S.C., C.S.L., S.H.B., S.S.K., Y.J.K.), Seoul, Republic of Korea
| | - Seung Won Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (S.W.L.), Suwon, Republic of Korea.
| | - Yong Joon Kim
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine (M.S.C., C.S.L., S.H.B., S.S.K., Y.J.K.), Seoul, Republic of Korea.
| |
Collapse
|
179
|
Seo EJ, Jung MS, Lee K, Kim KT, Choi MY. Ischemic and Inflammatory Ocular Adverse Events Following Different Types of Vaccination for COVID-19 and Their Incidence Analysis. KOREAN JOURNAL OF OPHTHALMOLOGY 2024; 38:203-211. [PMID: 38622066 PMCID: PMC11175981 DOI: 10.3341/kjo.2023.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
PURPOSE To evaluate the ocular adverse event (OAE) and the incidence rate that can occur after the COVID-19 vaccination. METHODS Patients who visited with an ophthalmologic diagnosis within a month of COVID-19 vaccination were retrospectively analyzed. OAEs were categorized as ischemia and inflammation by their presumed pathogenesis and were compared by types of vaccine: messenger RNA (mRNA) and viral vector vaccine. The crude incidence rate was calculated using data from the Korea Disease Control and Prevention Agency. RESULTS Twenty-four patients with OAEs after COVID-19 vaccination were reviewed: 10 patients after mRNA and 14 after viral vector vaccine. Retinal vein occlusion (nine patients) and paralytic strabismus (four patients) were the leading diagnoses. Ischemic OAE was likely to occur after viral vector vaccines, while inflammatory OAE was closely related to mRNA vaccine (p = 0.017). The overall incidence rate of OAE was 5.8 cases per million doses: 11.5 per million doses in viral vector vaccine and 3.4 per million doses in mRNA vaccine. CONCLUSIONS OAEs can be observed shortly after the COVID-19 vaccination, and their category was different based on the types of vaccine. The information and incidence of OAE based on the type of vaccine can help monitor patients who were administered the COVID-19 vaccine.
Collapse
Affiliation(s)
- Eoi Jong Seo
- Department of Ophthalmology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Moon Sun Jung
- Department of Ophthalmology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Kibum Lee
- Department of Ophthalmology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Kyung Tae Kim
- Department of Ophthalmology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Mi Young Choi
- Department of Ophthalmology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| |
Collapse
|
180
|
Göttig L, Schreiner S. E4orf1: The triple agent of adenovirus - Unraveling its roles in oncogenesis, infectious obesity and immune responses in virus replication and vector therapy. Tumour Virus Res 2024; 17:200277. [PMID: 38428735 PMCID: PMC10937242 DOI: 10.1016/j.tvr.2024.200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Human Adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous sub-types that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating cellular pathways such as PI3K-Akt-mTOR, Ras, the immune response and further HAdV replication stages than previously anticipated. In this review, we aim to explore the structure, molecular mechanisms, and biological functions of E4orf1, shedding light on its potentially multifaceted roles during HAdV infection, including metabolic diseases and oncogenesis. Furthermore, we discuss the role of functional E4orf1 in biotechnological applications such as Adenovirus (AdV) vaccine vectors and oncolytic AdV. By dissecting the intricate relationships between HAdV types and E4orf1 proteins, this review provides valuable insights into viral pathogenesis and points to promising areas of future research.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover, Germany; Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
181
|
Romantowski J, Nazar W, Bojahr K, Popiołek I, Niedoszytko M. Analysis of Allergy and Hypersensitivity Reactions to COVID-19 Vaccines According to the EudraVigilance Database. Life (Basel) 2024; 14:715. [PMID: 38929698 PMCID: PMC11205009 DOI: 10.3390/life14060715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic presented a new challenge in modern medicine: the development of vaccines was followed by massive population vaccinations. A few reports on post-vaccination allergic reactions have made patients and medical personnel uneasy as to COVID-19 vaccines' allergic potential. Most of the studies in this area to date have been small, and some that were based on global databases skipped most of the allergic diseases and concentrated only on anaphylaxis. We aimed to analyze the incidence of serious allergic reactions based on the EudraVigilance (EV) database, regardless of the reported symptoms and allergy mechanism. METHODS The total number of administrated vaccine doses was extracted on 5 October 2023 from Vaccine Tracker and included all administrations since vaccinations began in the European Economic Area (EEA). Data on serious allergic reactions to COVID-19 vaccines were extracted from the EudraVigilance database with the same time point. The code names of 147 allergic symptoms or diseases were used. RESULTS The frequency of serious allergic reactions per 100,000 administered vaccine doses was 1.53 for Comirnaty, 2.16 for Spikevax, 88.6 for Vaxzevria, 2.11 for Janssen, 7.9 for Novavax, 13.3 for VidPrevtyn Beta, and 3.1 for Valneva. The most prevalent reported reactions were edema (0.46) and anaphylaxis (0.40). Only 6% of these reactions were delayed hypersensitivity-oriented. CONCLUSIONS The overall frequency of potential serious allergic reactions to COVID-19 is very rare. Therefore, COVID-19 vaccines seem to be safe for human use. The lowest frequency of allergic reaction was observed for Comirnaty and the highest for Vaxzevria.
Collapse
Affiliation(s)
- Jan Romantowski
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland (M.N.)
| | - Wojciech Nazar
- Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Kinga Bojahr
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland (M.N.)
| | - Iwona Popiołek
- Department of Toxicology and Environmental Diseases, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland (M.N.)
| |
Collapse
|
182
|
Liao Y, Su J, Zhao J, Qin Z, Zhang Z, Gao W, Wan J, Liao Y, Zou X, He X. The effectiveness of booster vaccination of inactivated COVID-19 vaccines against susceptibility, infectiousness, and transmission of omicron BA.2 variant: a retrospective cohort study in Shenzhen, China. Front Immunol 2024; 15:1359380. [PMID: 38881892 PMCID: PMC11176464 DOI: 10.3389/fimmu.2024.1359380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/04/2024] [Indexed: 06/18/2024] Open
Abstract
Little studies evaluated the effectiveness of booster vaccination of inactivated COVID-19 vaccines against being infected (susceptibility), infecting others (infectiousness), and spreading the disease from one to another (transmission). Therefore, we conducted a retrospective cohort study to evaluate the effectiveness of booster vaccination of inactivated COVID-19 vaccines against susceptibility, infectiousness, and transmission in Shenzhen during an Omicron BA.2 outbreak period from 1 February to 21 April 2022. The eligible individuals were classified as four sub-cohorts according to the inactivated COVID-19 vaccination status of both the close contacts and their index cases: group 2-2, fully vaccinated close contacts seeded by fully vaccinated index cases (reference group); group 2-3, booster-vaccinated close contacts seeded by fully vaccinated index cases; group 3-2, fully vaccinated close contacts seeded by booster-vaccinated index cases; and group 3-3, booster-vaccinated close contacts seeded by booster-vaccinated index cases. Univariate and multivariate logistic regression analyses were applied to estimate the effectiveness of booster vaccination. The sample sizes of groups 2-2, 2-3, 3-2, and 3-3 were 846, 1,115, 1,210, and 2,417, respectively. We found that booster vaccination had an effectiveness against infectiousness of 44.9% (95% CI: 19.7%, 62.2%) for the adults ≥ 18 years, 62.2% (95% CI: 32.0%, 78.9%) for the female close contacts, and 60.8% (95% CI: 38.5%, 75.1%) for the non-household close contacts. Moreover, booster vaccination had an effectiveness against transmission of 29.0% (95% CI: 3.2%, 47.9%) for the adults ≥ 18 years, 38.9% (95% CI: 3.3%, 61.3%) for the female close contacts, and 45.8% (95% CI: 22.1%, 62.3%) for the non-household close contacts. However, booster vaccination against susceptibility did not provide any protective effect. In summary, this study confirm that booster vaccination of the inactivated COVID-19 vaccines provides low level of protection and moderate level of protection against Omicron BA.2 transmission and infectiousness, respectively. However, booster vaccination does not provide any protection against Omicron BA.2 susceptibility.
Collapse
Affiliation(s)
- Yuxue Liao
- Office of Emergency, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jiao Su
- Department of Biochemistry, Changzhi Medical College, Changzhi, China
| | - Jieru Zhao
- Department of Infectious Disease, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Zhen Qin
- Class of 2002 of the Department of Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Zhuo'Ao Zhang
- Class of 2002 of the Department of Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Wei Gao
- Office of Emergency, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jia Wan
- Office of Emergency, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yi Liao
- Office of Emergency, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xuan Zou
- Office of Emergency, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaofeng He
- Institute of Evidence-Based Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
183
|
Wang W, Yellamsetty A, Edmonds RM, Barcavage SR, Bao S. COVID-19 vaccination-related tinnitus is associated with pre-vaccination metabolic disorders. Front Pharmacol 2024; 15:1374320. [PMID: 38841369 PMCID: PMC11150672 DOI: 10.3389/fphar.2024.1374320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Cases of tinnitus have been reported following administration of COVID-19 vaccines. The aim of this study was to characterize COVID-19 vaccination-related tinnitus to assess whether there is a causal relationship, and to examine potential risk factors for COVID-19 vaccination-related tinnitus. We analyzed a survey on 398 cases of COVID-19 vaccination-related tinnitus, and 699,839 COVID-19 vaccine-related reports in the Vaccine Adverse Effect Reporting System (VAERS) database that was retrieved on 4 December 2021. We found that following COVID-19 vaccination, 1) tinnitus report frequencies for Pfizer, Moderna and Janssen vaccines in VAERS are 47, 51 and 70 cases per million full vaccination; 2) the symptom onset was often rapid; 3) more women than men reported tinnitus and the sex difference increased with age; 4) for 2-dose vaccines, the frequency of tinnitus was higher following the first dose than the second dose; 5) for 2-dose vaccines, the chance of worsening tinnitus symptoms after second dose was approximately 50%; 6) tinnitus was correlated with other neurological and psychiatric symptoms; 7) pre-existing metabolic syndromes were correlated with the severity of the reported tinnitus. These findings suggest that COVID-19 vaccination increases the risk of tinnitus, and metabolic disorders is a risk factor for COVID-19 vaccination-related tinnitus.
Collapse
Affiliation(s)
- Weihua Wang
- Department of Physiology and Department of Otolaryngology—Head and Neck Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Anusha Yellamsetty
- Department of Audiology, College of Health and Human Sciences, San José State University, San José, CA, United States
| | | | | | - Shaowen Bao
- Department of Physiology and Department of Otolaryngology—Head and Neck Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
184
|
Anastassopoulou C, Ferous S, Medić S, Siafakas N, Boufidou F, Gioula G, Tsakris A. Vaccines for the Elderly and Vaccination Programs in Europe and the United States. Vaccines (Basel) 2024; 12:566. [PMID: 38932295 PMCID: PMC11209271 DOI: 10.3390/vaccines12060566] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The share of the elderly population is growing worldwide as life expectancy increases. Immunosenescence and comorbidities increase infectious diseases' morbidity and mortality in older adults. Here, we aimed to summarize the latest findings on vaccines for the elderly against herpes zoster, influenza, respiratory syncytial virus (RSV), COVID-19, and pneumococcal disease and to examine vaccine recommendation differences for this age group in Europe and the United States. PubMed was searched using the keywords "elders" and "vaccine" alongside the disease/pathogen in question and paraphrased or synonymous terms. Vaccine recommendations were also sought in the European and US Centers for Disease Control and Prevention databases. Improved vaccines, tailored for the elderly, mainly by using novel adjuvants or by increasing antigen concentration, are now available. Significant differences exist between immunization policies, especially between European countries, in terms of the recipient's age, number of doses, vaccination schedule, and implementation (mandatory or recommended). Understanding the factors that influence the immune response to vaccination in the elderly may help to design vaccines that offer long-term protection for this vulnerable age group. A consensus-based strategy in Europe could help to fill the gaps in immunization policy in the elderly, particularly regarding vaccination against RSV and pneumococcus.
Collapse
Affiliation(s)
- Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.F.); (A.T.)
| | - Stefanos Ferous
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.F.); (A.T.)
| | - Snežana Medić
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- Center for Disease Control and Prevention, Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
| | - Nikolaos Siafakas
- Clinical Microbiology Laboratory, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Fotini Boufidou
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Georgia Gioula
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.F.); (A.T.)
| |
Collapse
|
185
|
Li J, Hsu KS, Howe SE, Hoang T, Xia Z, Berzofsky JA, Sui Y. Sex-biased immunogenicity of a mucosal subunit vaccine against SARS-CoV-2 in mice. Front Immunol 2024; 15:1386243. [PMID: 38835757 PMCID: PMC11148259 DOI: 10.3389/fimmu.2024.1386243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Current vaccines against COVID-19 administered via parenteral route have limited ability to induce mucosal immunity. There is a need for an effective mucosal vaccine to combat SARS-CoV-2 virus replication in the respiratory mucosa. Moreover, sex differences are known to affect systemic antibody responses against vaccines. However, their role in mucosal cellular responses against a vaccine remains unclear and is underappreciated. Methods We evaluated the mucosal immunogenicity of a booster vaccine regimen that is recombinant protein-based and administered intranasally in mice to explore sex differences in mucosal humoral and cellular responses. Results Our results showed that vaccinated mice elicited strong systemic antibody (Ab), nasal, and bronchiole alveolar lavage (BAL) IgA responses, and local T cell immune responses in the lung in a sex-biased manner irrespective of mouse genetic background. Monocytes, alveolar macrophages, and CD103+ resident dendritic cells (DCs) in the lungs are correlated with robust mucosal Ab and T cell responses induced by the mucosal vaccine. Discussion Our findings provide novel insights into optimizing next-generation booster vaccines against SARS-CoV-2 by inducing spike-specific lung T cell responses, as well as optimizing mucosal immunity for other respiratory infections, and a rationale for considering sex differences in future vaccine research and vaccination practice.
Collapse
MESH Headings
- Animals
- Female
- Mice
- SARS-CoV-2/immunology
- COVID-19 Vaccines/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19/virology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Male
- Immunity, Mucosal
- Immunogenicity, Vaccine
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Lung/immunology
- Lung/virology
- T-Lymphocytes/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Mice, Inbred C57BL
- Administration, Intranasal
- Sex Factors
- Immunoglobulin A/immunology
- Dendritic Cells/immunology
- Immunization, Secondary
- Immunity, Humoral
Collapse
Affiliation(s)
- Jianping Li
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kevin S Hsu
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Savannah E Howe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tanya Hoang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Zheng Xia
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
186
|
Sun Y, Huang W, Xiang H, Nie J. SARS-CoV-2 Neutralization Assays Used in Clinical Trials: A Narrative Review. Vaccines (Basel) 2024; 12:554. [PMID: 38793805 PMCID: PMC11125816 DOI: 10.3390/vaccines12050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Since the emergence of COVID-19, extensive research efforts have been undertaken to accelerate the development of multiple types of vaccines to combat the pandemic. These include inactivated, recombinant subunit, viral vector, and nucleic acid vaccines. In the development of these diverse vaccines, appropriate methods to assess vaccine immunogenicity are essential in both preclinical and clinical studies. Among the biomarkers used in vaccine evaluation, the neutralizing antibody level serves as a pivotal indicator for assessing vaccine efficacy. Neutralizing antibody detection methods can mainly be classified into three types: the conventional virus neutralization test, pseudovirus neutralization test, and surrogate virus neutralization test. Importantly, standardization of these assays is critical for their application to yield results that are comparable across different laboratories. The development and use of international or regional standards would facilitate assay standardization and facilitate comparisons of the immune responses induced by different vaccines. In this comprehensive review, we discuss the principles, advantages, limitations, and application of different SARS-CoV-2 neutralization assays in vaccine clinical trials. This will provide guidance for the development and evaluation of COVID-19 vaccines.
Collapse
Affiliation(s)
- Yeqing Sun
- School of Life Sciences, Jilin University, Changchun 130012, China;
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Hongyu Xiang
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| |
Collapse
|
187
|
Jacob-Dolan C, Lifton M, Powers OC, Miller J, Hachmann NP, Vu M, Surve N, Mazurek CR, Fisher JL, Rodrigues S, Patio RC, Anand T, Le Gars M, Sadoff J, Schmidt AG, Barouch DH. B cell somatic hypermutation following COVID-19 vaccination with Ad26.COV2.S. iScience 2024; 27:109716. [PMID: 38655202 PMCID: PMC11035370 DOI: 10.1016/j.isci.2024.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/02/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024] Open
Abstract
The viral vector-based COVID-19 vaccine Ad26.COV2.S has been recommended by the WHO since 2021 and has been administered to over 200 million people. Prior studies have shown that Ad26.COV2.S induces durable neutralizing antibodies (NAbs) that increase in coverage of variants over time, even in the absence of boosting or infection. Here, we studied humoral responses following Ad26.COV2.S vaccination in individuals enrolled in the initial Phase 1/2a trial of Ad26.COV2.S in 2020. Through 8 months post vaccination, serum NAb responses increased to variants, including B.1.351 (Beta) and B.1.617.2 (Delta), without additional boosting or infection. The level of somatic hypermutation, measured by nucleotide changes in the VDJ region of the heavy and light antibody chains, increased in Spike-specific B cells. Highly mutated mAbs from these sequences neutralized more SARS-CoV-2 variants than less mutated comparators. These findings suggest that the increase in NAb breadth over time following Ad26.COV2.S vaccination is mediated by affinity maturation.
Collapse
Affiliation(s)
- Catherine Jacob-Dolan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Department of Microbiology, Boston, MA, USA
- Harvard Medical School, Department of Immunology, Boston, MA, USA
| | - Michelle Lifton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Olivia C. Powers
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jessica Miller
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicole P. Hachmann
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mya Vu
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Nehalee Surve
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Camille R. Mazurek
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jana L. Fisher
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Stefanie Rodrigues
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert C. Patio
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Trisha Anand
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mathieu Le Gars
- Janssen Vaccines and Prevention B.V., Leiden, the Netherlands
| | - Jerald Sadoff
- Janssen Vaccines and Prevention B.V., Leiden, the Netherlands
| | - Aaron G. Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Department of Microbiology, Boston, MA, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Department of Immunology, Boston, MA, USA
| |
Collapse
|
188
|
Faraji N, Zeinali T, Joukar F, Aleali MS, Eslami N, Shenagari M, Mansour-Ghanaei F. Mutational dynamics of SARS-CoV-2: Impact on future COVID-19 vaccine strategies. Heliyon 2024; 10:e30208. [PMID: 38707429 PMCID: PMC11066641 DOI: 10.1016/j.heliyon.2024.e30208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
The rapid emergence of multiple strains of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has sparked profound concerns regarding the ongoing evolution of the virus and its potential impact on global health. Classified by the World Health Organization (WHO) as variants of concern (VOC), these strains exhibit heightened transmissibility and pathogenicity, posing significant challenges to existing vaccine strategies. Despite widespread vaccination efforts, the continual evolution of SARS-CoV-2 variants presents a formidable obstacle to achieving herd immunity. Of particular concern is the coronavirus spike (S) protein, a pivotal viral surface protein crucial for host cell entry and infectivity. Mutations within the S protein have been shown to enhance transmissibility and confer resistance to antibody-mediated neutralization, undermining the efficacy of traditional vaccine platforms. Moreover, the S protein undergoes rapid molecular evolution under selective immune pressure, leading to the emergence of diverse variants with distinct mutation profiles. This review underscores the urgent need for vigilance and adaptation in vaccine development efforts to combat the evolving landscape of SARS-CoV-2 mutations and ensure the long-term effectiveness of global immunization campaigns.
Collapse
Affiliation(s)
- Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Sadat Aleali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
189
|
Lababidi G, Lababidi H, Bitar F, Arabi M. COVID-19 Vaccines in the Pediatric Population: A Focus on Cardiac Patients. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:2667033. [PMID: 38779616 PMCID: PMC11111306 DOI: 10.1155/2024/2667033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
Due to the deleterious global impact of the COVID-19 pandemic, tremendous effort has been invested in the development of vaccines against the virus. Vaccine candidates are first tested in adult populations, a number of which have been approved for EUL by the WHO, and are in use across the USA and MENA region. The question remains whether these (or other) vaccines should be recommended to a neonatal, pediatric, and/or adolescent cohort. Incidence and severity of COVID-19 infection are low in pediatric, neonatal, and adolescent patients. Since both overall incidence and severity are lower in children than in adults, safety is an important consideration in vaccine approval for these age groups, in addition to efficacy and a decreased risk of transmission. The following review discusses vaccine immunology in children aged 0-18 years, with emphasis on the negative impact of the COVID-19 pandemic on the lives of children, considerations for pediatric vaccine approval, and available vaccines for pediatric cohorts along with a breakdown of the efficacy, advantages, and disadvantages for each. This review also contains current and future perspectives, as well as a section on the cardiovascular implications and related dynamics of pediatric COVID-19 vaccination.
Collapse
Affiliation(s)
- Ghena Lababidi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hossam Lababidi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fadi Bitar
- Children's Heart Center, Division of Pediatric Cardiology, Pediatric Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mariam Arabi
- Children's Heart Center, Division of Pediatric Cardiology, Pediatric Department, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
190
|
Parcesepe AM, Nash D, Shen J, Kulkarni SG, Zimba R, You W, Berry A, Piltch-Loeb R, Fleary SA, Stanton E, Grov C, Robertson MM. The Impact of COVID-19 Vaccination on Symptoms of Anxiety and Depression before and after COVID-19 Vaccines Were Universally Available for Adults in the United States. Depress Anxiety 2024; 2024:9682710. [PMID: 40226656 PMCID: PMC11918965 DOI: 10.1155/2024/9682710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/15/2025] Open
Abstract
Our objective was to examine the influence of COVID-19 vaccination on recent (i.e., past month) moderate or severe symptoms of anxiety (GAD-7 ≥ 10) or depression (PHQ-8 ≥ 10) before and after the COVID-19 vaccine became universally available for adults in the U.S. Participants belonged to the Communities, Households, and SARS-CoV-2 Epidemiology Cohort (CHASING COVID), a national longitudinal study. Our analytic population included 4,832 participants who reported vaccination status from December 2020 to December 2021 with follow-up outcomes assessed through March 2022. We emulated a hypothetical randomized experiment, a target trial, to estimate the effect of COVID-19 vaccination on symptoms of anxiety or depression. Before vaccines were universally available, participants who were vaccinated versus not had significantly lower adjusted odds of symptoms of moderate or severe anxiety (aOR: 0.79; 95% CI: 0.70-0.89). In the universal vaccine era, vaccination was associated with marginally higher adjusted odds of symptoms of moderate or severe anxiety (aOR: 1.23; 95% CI: 1.00-1.50). Vaccination did not influence subsequent moderate or severe depressive symptoms in the preuniversal vaccine era (aOR: 0.92; 95% CI: 0.82-1.03) or universal vaccine era (aOR: 1.11; 95% CI: 0.91-1.36). Research into the longitudinal relationship between COVID-19 vaccination and symptoms of depression and anxiety is warranted, with a focus on advancing understanding of potential mediators on the pathway between vaccination and mental health as well as modifiable factors, such as vaccine hesitancy or vaccine beliefs, that may help identify populations for whom vaccination may be particularly beneficial to their mental health.
Collapse
Affiliation(s)
- Angela M. Parcesepe
- Department of Maternal and Child Health, Gillings School of Public Health, University of North Carolina, 427 Rosenau Hall, CB #7445, Chapel Hill, NC 27599-7445, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Denis Nash
- Institute for Implementation Science in Population Health (ISPH), City University of New York (CUNY), New York, NY, USA
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York (CUNY), New York, NY, USA
| | - Jenny Shen
- Institute for Implementation Science in Population Health (ISPH), City University of New York (CUNY), New York, NY, USA
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York (CUNY), New York, NY, USA
| | - Sarah G. Kulkarni
- Institute for Implementation Science in Population Health (ISPH), City University of New York (CUNY), New York, NY, USA
| | - Rebecca Zimba
- Institute for Implementation Science in Population Health (ISPH), City University of New York (CUNY), New York, NY, USA
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York (CUNY), New York, NY, USA
| | - William You
- Institute for Implementation Science in Population Health (ISPH), City University of New York (CUNY), New York, NY, USA
| | - Amanda Berry
- Institute for Implementation Science in Population Health (ISPH), City University of New York (CUNY), New York, NY, USA
| | - Rachael Piltch-Loeb
- Emergency Preparedness Research Evaluation and Practice (EPREP) Program, Harvard T.H. Chan School of Public Health, 90 Smith St, Boston, MA 02120, USA
| | - Sasha A. Fleary
- Department of Community Health and Social Sciences, Graduate School of Public Health and Health Policy, City University of New York (CUNY), 55 W 125th St, New York, NY 10027, USA
| | - Eva Stanton
- Emergency Preparedness Research Evaluation and Practice (EPREP) Program, Harvard T.H. Chan School of Public Health, 90 Smith St, Boston, MA 02120, USA
| | - Christian Grov
- Institute for Implementation Science in Population Health (ISPH), City University of New York (CUNY), New York, NY, USA
- Department of Community Health and Social Sciences, Graduate School of Public Health and Health Policy, City University of New York (CUNY), 55 W 125th St, New York, NY 10027, USA
| | - McKaylee M. Robertson
- Institute for Implementation Science in Population Health (ISPH), City University of New York (CUNY), New York, NY, USA
| |
Collapse
|
191
|
Yang L, Zeng T, Li Y, Guo Q, Jiang D. Poor immune response to inactivated COVID-19 vaccine in patients with hypertension. Front Med (Lausanne) 2024; 11:1329607. [PMID: 38756945 PMCID: PMC11096495 DOI: 10.3389/fmed.2024.1329607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose The safety and efficacy of vaccination in people with hypertension (HTN) is important. There are currently a few data on the immunogenicity and safety of inactivated SARS-CoV-2 vaccinations in hypertension patients. Methods After receiving a two-dose immunization, 94 hypertension adult patients and 74 healthy controls (HCs) in this study, the evaluation included looking at antibodies (Abs) against receptor binding domain (RBD) IgG, SARS-CoV-2 neutralizing antibodies (NAbs), RBD-specific B cells, and memory B cells (MBCs). Results There was no discernible difference in the overall adverse events (AEs) over the course of 7 or 30 days between HTN patients and HCs. HTN patients had lower frequencies of RBD-specific memory B cells and the seropositivity rates and titers of Abs compared with HCs (all, p < 0.05). HTN patients with cardiovascular and cerebrovascular conditions (CCVD) have lower titers of CoV-2 NAb than in HCs. The titers of both Abs in HTN declined gradually over time. Conclusion Inactivated COVID-19 vaccinations were safe in hypertension patients; however humoral immune was limited, especially merged CCVD and declined gradually over time.
Collapse
Affiliation(s)
- Lei Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - TingTing Zeng
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yang Li
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qiao Guo
- Department of General and Practice, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - DePeng Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
192
|
Samdaengpan C, Sungkasubun P, Chaiwiriyawong W, Supavavej A, Siripaibun J, Phanthunane C, Tantiyavarong W, Lamlertthon W, Ungtrakul T, Tawinprai K, Soonklang K, Thongchai T, Limpawittayakul P. Effect of Corticosteroid on Immunogenicity of SARS-CoV-2 Vaccines in Patients With Solid Cancer. JCO Glob Oncol 2024; 10:e2300458. [PMID: 38781552 DOI: 10.1200/go.23.00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE Corticosteroids are known to diminish immune response ability, which is generally used in routine premedication for chemotherapy. The intersecting of timeframe between the corticosteroid's duration of action and peak COVID-19 vaccine efficacy could impair vaccine immunogenicity. Thus, inquiring about corticosteroids affecting the efficacy of vaccines to promote effective immunity in this population is needed. METHODS This was a prospective longitudinal observational cohort study that enrolled patients with solid cancer classified into dexamethasone- and nondexamethasone-receiving groups. All participants were immunized with two doses of ChAdOx1 nCoV-19 or CoronaVac vaccines. This study's purpose was to compare corticosteroid's effect on immunogenicity responses to the SARS-CoV-2 S protein in patients with cancer after two doses of COVID-19 vaccine in the dexamethasone and nondexamethasone group. Secondary outcomes included the postimmunization anti-spike (S) immunoglobin G (IgG) seroconversion rate, the association of corticosteroid dosage, time duration, and immunogenicity level. RESULTS Among the 161 enrolled patients with solid cancer, 71 and 90 were in the dexamethasone and nondexamethasone groups, respectively. The median anti-S IgG titer after COVID-19 vaccination in the dexamethasone group was lower than that in the nondexamethasone group with a statistically significant difference (47.22 v 141.09 U/mL, P = .035). The anti-S IgG seroconversion rate was also significantly lower in the dexamethasone group than in the nondexamethasone group (93.83% v 80.95%, P = .023). The lowest median anti-SARS-CoV-2 IgG titer level at 7.89 AU/mL was observed in patients with the highest dose of steroid group (≥37 mg of dexamethasone cumulative dose throughout the course of chemotherapy [per course]) and patients who were injected with COVID-19 vaccines on the same day of receiving dexamethasone, 25.41 AU/mL. CONCLUSION Patients with solid cancer vaccinated against COVID-19 disease while receiving dexamethasone had lower immunogenicity responses than those who got vaccines without dexamethasone. The direct association between the immunogenicity level and steroid dosage, as well as length of duration from vaccination to dexamethasone, was observed.
Collapse
Affiliation(s)
- Chayanee Samdaengpan
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Prakongboon Sungkasubun
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Worawit Chaiwiriyawong
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Archara Supavavej
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Jomtana Siripaibun
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Chumut Phanthunane
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Walaipan Tantiyavarong
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Wisut Lamlertthon
- Faculty of Medicine and Public Health, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Teerapat Ungtrakul
- Faculty of Medicine and Public Health, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kriangkrai Tawinprai
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kamonwan Soonklang
- Chulabhorn Learning and Research Center, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Thitapha Thongchai
- Chulabhorn Learning and Research Center, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Piyarat Limpawittayakul
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
193
|
Chen SY, Hsieh TYJ, Hung YM, Oh JW, Chen SK, Wang SI, Chang R, Wei JCC. Prior COVID-19 vaccination and reduced risk of cerebrovascular diseases among COVID-19 survivors. J Med Virol 2024; 96:e29648. [PMID: 38727032 DOI: 10.1002/jmv.29648] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
The effects of COVID-19 vaccination on short-term and long-term cerebrovascular risks among COVID-19 survivors remained unknown. We conducted a national multi-center retrospective cohort study with 151 597 vaccinated and 151 597 unvaccinated COVID-19 patients using the TriNetX database, from January 1, 2020 to December 31, 2023. Patients baseline characteristics were balanced with propensity score matching (PSM). The outcomes were incident cerebrovascular diseases occurred between 1st and 30th days (short-term) after COVID-19 diagnosis. Nine subgroup analyses were conducted to explore potential effect modifications. We performed six sensitivity analyses, including evaluation of outcomes between 1st to 180th days, accounting for competing risk, and incorporating different variant timeline to test the robustness of our results. Kaplan-Meier curves and Log-Rank tests were performed to evaluate survival difference. Cox proportional hazards regressions were adopted to estimate the PSM-adjusted hazard ratios (HR). The overall short-term cerebrovascular risks were lower in the vaccinated group compared to the unvaccinated group (HR: 0.66, 95% CI: 0.56-0.77), specifically cerebral infarction (HR: 0.62, 95% CI: 0.48-0.79), occlusion and stenosis of precerebral arteries (HR: 0.74, 95% CI: 0.53-0.98), other cerebrovascular diseases (HR: 0.57, 95% CI: 0.42-0.77), and sequelae of cerebrovascular disease (HR: 0.39, 95% CI:0.23-0.68). Similarly, the overall cerebrovascular risks were lower in those vaccinated among most subgroups. The long-term outcomes, though slightly attenuated, were consistent (HR: 0.80, 95% CI: 0.73-0.87). Full 2-dose vaccination was associated with a further reduced risk of cerebrovascular diseases (HR: 0.63, 95% CI: 0.50-0.80) compared to unvaccinated patients. Unvaccinated COVID-19 survivors have significantly higher cerebrovascular risks than their vaccinated counterparts. Thus, clinicians are recommended to monitor this population closely for stroke events during postinfection follow-up.
Collapse
Affiliation(s)
- Sheng-Yin Chen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Tina Yi Jin Hsieh
- Department of Obstetrics & Gynecology, Beth Israel Deaconess Medical Center, Boston, MA
- Department of Bioinformatics, Harvard Medical School, Boston, MA
| | - Yao-Min Hung
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital Taitung Branch, Taiwan
- Master Program in Biomedicine, College of Science and Engineering, National Taitung University, Taitung, Taiwan
- College of Health and Nursing, Meiho University, Pingtung, Taiwan
| | - Jae Won Oh
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shen-Kai Chen
- Department of Education, Kaohsiung Chang Gung Memorial Hospital, Boston, Massachusetts, USA
| | - Shiow-Ing Wang
- Center for Health Data Science, Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Renin Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Recreation and Sports Management, Tajen University, Pintung, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Nursing, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Office of Research and Development, Asia University, Taichung, Taiwan
| |
Collapse
|
194
|
Fisher LH, Kee JJ, Liu A, Espinosa CM, Randhawa AK, Ludwig J, Magaret CA, Robinson ST, Gilbert PB, Hyrien O, Kublin JG, Rouphael N, Falsey AR, Sobieszczyk ME, El Sahly HM, Grinsztejn B, Gray GE, Kotloff KL, Gay CL, Leav B, Hirsch I, Struyf F, Dunkle LM, Neuzil KM, Corey L, Huang Y, Goepfert PA, Walsh SR, Baden LR, Janes H. SARS-CoV-2 Viral Load in the Nasopharynx at Time of First Infection Among Unvaccinated Individuals: A Secondary Cross-Protocol Analysis of 4 Randomized Trials. JAMA Netw Open 2024; 7:e2412835. [PMID: 38780941 PMCID: PMC11117088 DOI: 10.1001/jamanetworkopen.2024.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
Importance SARS-CoV-2 viral load (VL) in the nasopharynx is difficult to quantify and standardize across settings, but it may inform transmission potential and disease severity. Objective To characterize VL at COVID-19 diagnosis among previously uninfected and unvaccinated individuals by evaluating the association of demographic and clinical characteristics, viral variant, and trial with VL, as well as the ability of VL to predict severe disease. Design, Setting, and Participants This secondary cross-protocol analysis used individual-level data from placebo recipients from 4 harmonized, phase 3 COVID-19 vaccine efficacy trials sponsored by Moderna, AstraZeneca, Janssen, and Novavax. Participants were SARS-CoV-2 negative at baseline and acquired COVID-19 during the blinded phase of the trials. The setting included the US, Brazil, South Africa, Colombia, Argentina, Peru, Chile, and Mexico; start dates were July 27, 2020, to December 27, 2020; data cutoff dates were March 26, 2021, to July 30, 2021. Statistical analysis was performed from November 2022 to June 2023. Main Outcomes and Measures Linear regression was used to assess the association of demographic and clinical characteristics, viral variant, and trial with polymerase chain reaction-measured log10 VL in nasal and/or nasopharyngeal swabs taken at the time of COVID-19 diagnosis. Results Among 1667 participants studied (886 [53.1%] male; 995 [59.7%] enrolled in the US; mean [SD] age, 46.7 [14.7] years; 204 [12.2%] aged 65 years or older; 196 [11.8%] American Indian or Alaska Native, 150 [9%] Black or African American, 1112 [66.7%] White; 762 [45.7%] Hispanic or Latino), median (IQR) log10 VL at diagnosis was 6.18 (4.66-7.12) log10 copies/mL. Participant characteristics and viral variant explained only 5.9% of the variability in VL. The independent factor with the highest observed differences was trial: Janssen participants had 0.54 log10 copies/mL lower mean VL vs Moderna participants (95% CI, 0.20 to 0.87 log10 copies/mL lower). In the Janssen study, which captured the largest number of COVID-19 events and variants and used the most intensive post-COVID surveillance, neither VL at diagnosis nor averaged over days 1 to 28 post diagnosis was associated with COVID-19 severity. Conclusions and Relevance In this study of placebo recipients from 4 randomized phase 3 trials, high variability was observed in SARS-CoV-2 VL at the time of COVID-19 diagnosis, and only a fraction was explained by individual participant characteristics or viral variant. These results suggest challenges for future studies of interventions seeking to influence VL and elevates the importance of standardized methods for specimen collection and viral load quantitation.
Collapse
Affiliation(s)
- Leigh H. Fisher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jia Jin Kee
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Albert Liu
- Bridge HIV, San Francisco Department of Public Health, San Francisco, California
| | | | - April K. Randhawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - James Ludwig
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Craig A. Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Samuel T. Robinson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - James G. Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | | | - Ann R. Falsey
- Infectious Disease Division, University of Rochester, Rochester, New York
| | | | - Hana M. El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Beatriz Grinsztejn
- Evandro Chagas National Institute of Infectious Diseases-Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Glenda E. Gray
- South African Medical Research Council, Cape Town, South Africa
| | - Karen L. Kotloff
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore
| | - Cynthia L. Gay
- University of North Carolina School of Medicine, Chapel Hill
| | | | - Ian Hirsch
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Frank Struyf
- Janssen Research and Development, Beerse, Belgium
| | | | - Kathleen M. Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Paul A. Goepfert
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham
| | | | | | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| |
Collapse
|
195
|
Hamouda NI, Amin AM, Hasan MT, Baghagho E. Persistence of COVID-19 Human Milk Antibodies After Maternal COVID-19 Vaccination: Systematic Review and Meta-Regression Analysis. Cureus 2024; 16:e59500. [PMID: 38826925 PMCID: PMC11144042 DOI: 10.7759/cureus.59500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
The World Health Organization (WHO) declared COVID-19 a pandemic. The Centers for Disease Control and Prevention (CDC), WHO, and American College of Obstetricians and Gynecologists (ACOG) recommend vaccination of pregnant and lactating women, aiming to protect both mothers and their infants through transplacental and human milk antibody transmission. This study aims to assess the quantity of antibodies in human milk and determine the effect of time, vaccine type, and dose on antibody level. Single-arm prospective observational studies reporting the COVID-19-specific antibody level in human milk after COVID-19 vaccination during pregnancy or lactation were included. PubMed, Scopus, Cochrane, EBSCO, and Web of Science were searched from December 2019 to November 22, 2022. Data were extracted in a uniform Google sheet. A total of 2657 studies were identified. After the removal of duplicates and screening, 24 studies were included in the systematic review and meta-regression. Human milk COVID-19-specific antibody levels increased with subsequent vaccine doses, as reflected by a positive relationship for the second (coefficient=0.91, P-value 0.043 for IgA and coefficient=1.77, P-value 0.009 for IgG) and third (coefficient=1.23, P-value 0.0029 for IgA and coefficient=3.73, P-value 0.0068 for IgG) doses. The antibody level exhibited a weak positive relationship with the follow-up time (coefficient=0.13, P-value 0.0029 for IgA and coefficient=0.18, P-value 0.016 for IgG). Only one of the 38 infants showed detectable COVID-19 IgM and IgA antibody levels in their blood. There was an increase in the neutralizing activity of COVID-19 antibodies in human milk following the COVID-19 vaccination. From the analysis of published data, we found high positive levels of antibodies in human milk that increased with subsequent doses. Additionally, the human milk antibodies exhibit a positive neutralizing effect. Only one infant had detectable COVID-19 IgM+IgA antibodies in the blood. Further research is needed to discuss infant protection through a mother's vaccination.
Collapse
Affiliation(s)
- Naema I Hamouda
- Neonatology, El-Sahel Teaching Hospital/General Organization for Teaching Hospitals and Institutes, Cairo, EGY
| | | | - Mohammed T Hasan
- Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, EGY
| | - Ehssan Baghagho
- Public Health, General Organization for Teaching Hospitals and Institutes, Cairo, EGY
| |
Collapse
|
196
|
Kashyap H, Manoharan A, Mahendradas P, Agarwal A, Majumder PD. A COVID-19 perspective of multiple evanescent white dot syndrome (MEWDS). Indian J Ophthalmol 2024; 72:620-625. [PMID: 38189327 PMCID: PMC11168566 DOI: 10.4103/ijo.ijo_2029_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 01/09/2024] Open
Abstract
Multiple evanescent white dot syndrome (MEWDS) is a rare form of posterior uveitis characterized by involvement in the posterior pole and mid-periphery. A viral etiology that provokes an immune-mediated response has been hypothesized to be the inciting factor of the pathology. Recently, there has been an increase in the literature regarding new-onset uveitis and reactivation of previously diagnosed cases of uveitis following COVID-19 vaccinations. The COVID-19 vaccination has been speculated to trigger an immunomodulatory shift in recipients, resulting in an autoimmune event. MEWDS following COVID-19 vaccination was reported in 31 patients. It was most commonly observed following the first dose, affecting 15 patients, and least commonly after the booster dose, in only one patient. MEWDS-like disease following anti-SARS-CoV-2 vaccinations was reported the most in 16 cases after the Pfizer-BioNTech vaccination (BNT162b2 mRNA). Most of these cases had Primary MEWDS without any previous history of a similar event in the past.
Collapse
Affiliation(s)
- Himanshu Kashyap
- Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Anitha Manoharan
- Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Padmamalini Mahendradas
- Department of Uveitis and Ocular Immunology Services, Narayana Nethralaya, Bengaluru, Karnataka
| | - Aniruddha Agarwal
- Eye Institute, Cleveland Clinic Abu Dhabi (CCAD), Abu Dhabi, UAE
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Ophthalmology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | |
Collapse
|
197
|
Nie J, Ren H, Sun Y, Li Y, Zhang Y, Bai Z. Application of Multivariate Data Analysis on Historical Recombinant Adenovirus Zoster Vaccine Production Data for Upstream Process Improvements. J Pharm Sci 2024; 113:1168-1176. [PMID: 38447668 DOI: 10.1016/j.xphs.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
In recent years, multivariate data analysis (MVDA) has been widely used for process characterization and fault diagnosis in the biopharmaceutical industry. This study aims to investigate the feasibility of using MVDA for the development and scale-up of a perfusion process for HEK293 cell-based recombinant adenovirus zoster vaccine (Ad-HER) production. The Principal Component Analysis (PCA) results suggested comparable performance among the ATF, PATFP, and BFP perfusion systems in benchtop-scale stirred-tank bioreactor (STR). Then a Batch Evolution Model (BEM) was built using representative data from 10 L STR with a BFP system to assess the Ad-HER perfusion process performance at pilot-scale bioreactor (50 L STR and 50 L wave bioreactor). Furthermore, another BEM model and Batch Level Model (BLM) were built to monitor process parameters over time and predict the final adenovirus titer in 50 L wave bioreactor. The loading plot revealed that lactate dehydrogenase activity, viable cell diameter, and base-added during the virus production phase could be used as preliminary indicators of adenovirus yield. Finally, an adenovirus titer of 2.0±0.3×1010 IFU/mL was achieved in the 50 L wave bioreactor with BFP system, highlighting the robustness of the Ad-HER perfusion process at pilot-scale. Overall, this study emphasizes the effectiveness of MVDA as a tool for advancing the understanding of recombinant adenovirus vaccine perfusion production process development and scale-up.
Collapse
Affiliation(s)
- Jianqi Nie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - He Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Yang Sun
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ye Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
198
|
Iwata S, Pollard AJ, Tada Y, Omoto S, Shibata RY, Igarashi K, Hasegawa T, Ariyasu M, Sonoyama T. A phase 3 randomized controlled trial of a COVID-19 recombinant vaccine S-268019-b versus ChAdOx1 nCoV-19 in Japanese adults. Sci Rep 2024; 14:9830. [PMID: 38684712 PMCID: PMC11059267 DOI: 10.1038/s41598-024-57308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/17/2024] [Indexed: 05/02/2024] Open
Abstract
We assessed S-268019-b, a recombinant spike protein vaccine with a squalene-based adjuvant, for superiority in its immunogenicity over ChAdOx1 nCoV-19 vaccine among adults in Japan. In this multicenter, randomized, observer-blinded, phase 3 study, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-naïve participants (aged ≥ 18 years, without prior infection or vaccination against SARS-CoV-2) were randomized (1:1) to receive either S-268019-b or ChAdOx1 nCoV-19 as two intramuscular injections given 28 days apart. Participants who provided consent for a booster administration received S-268019-b at Day 211. The primary endpoint was SARS-CoV-2 neutralizing antibody (NAb) titer on Day 57; the key secondary endpoint was the seroconversion rate for SARS-CoV-2 NAb titer on Day 57. Other endpoints included anti-SARS-CoV-2 S-protein immunoglobulin (Ig)G antibody titer and safety. The demographic and baseline characteristics were generally comparable between S-268019-b (n = 611) and ChAdOx1 nCoV-19 (n = 610) groups. S-268019-b showed superior immunogenicity over ChAdOx1 nCoV-19, based on their geometric mean titers (GMTs) and GMT ratios of SARS-CoV-2 NAb on Day 57 by cytopathic effect assay (GMT [95% confidence interval {CI}] 19.92 [18.68, 21.23] versus 3.63 [3.41, 3.87]; GMT ratio [95% CI] 5.48 [5.01, 6.00], respectively; two-sided p-values < 0.0001). Additionally, NAb measured using a cell viability assay also showed similar results (GMT [95% CI] 183.25 [168.04, 199.84] versus 24.79 [22.77, 27.00]; GMT ratio [95% CI] 7.39 [6.55, 8.35] for S-268019-b versus ChAdOx1 nCoV-19, respectively; p < 0.0001). The GMT of anti-SARS-CoV-2 S-protein IgG antibody was 370.05 for S-268019-b versus 77.92 for ChAdOx1 nCoV-19 on Day 57 (GMT ratio [95% CI] 4.75 [4.34, 5.20]). Notably, immune responses were durable through the end of the study. S-268019-b elicited T-helper 1 skewed T-cell response, comparable to that of ChAdOx1 nCoV-19. After the first dose, the incidence of solicited systemic treatment-related adverse events (TRAEs) was higher in the ChAdOx1 nCoV-19 group, but after the second dose, the incidence was higher in the S-268019-b group. Headache, fatigue, and myalgia were the most commonly reported solicited systemic TRAEs, while pain at the injection site was the most frequently reported solicited local TRAE following both doses in both groups. No serious treatment-related adverse serious TRAEs events were reported in the two groups. S-268019-b was more immunogenic than ChAdOx1 nCoV-19 vaccine and was well tolerated (jRCT2051210151).
Collapse
Affiliation(s)
- Satoshi Iwata
- Department of Infectious Diseases, National Cancer Center Hospital, Tokyo, Japan
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Yukio Tada
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Shinya Omoto
- Biopharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Risa Y Shibata
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Kenji Igarashi
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Takahiro Hasegawa
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Mari Ariyasu
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan.
| | - Takuhiro Sonoyama
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
199
|
Ghasemiyeh P, Mohammadi-Samani S. Lessons we learned during the past four challenging years in the COVID-19 era: pharmacotherapy, long COVID complications, and vaccine development. Virol J 2024; 21:98. [PMID: 38671455 PMCID: PMC11055380 DOI: 10.1186/s12985-024-02370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
About four years have passed since the detection of the first cases of COVID-19 in China. During this lethal pandemic, millions of people have lost their lives around the world. Since the first waves of COVID-19 infection, various pharmacotherapeutic agents have been examined in the management of COVID-19. Despite all these efforts in pharmacotherapy, drug repurposing, and design and development of new drugs, multiple organ involvement and various complications occurred during COVID-19. Some of these complications became chronic and long-lasting which led to the "long COVID" syndrome appearance. Therefore, the best way to eradicate this pandemic is prophylaxis through mass vaccination. In this regard, various vaccine platforms including inactivated vaccines, nucleic acid-based vaccines (mRNA and DNA vaccines), adenovirus-vectored vaccines, and protein-based subunit vaccines have been designed and developed to prevent or reduce COVID-19 infection, hospitalization, and mortality rates. In this focused review, at first, the most commonly reported clinical presentations of COVID-19 during these four years have been summarized. In addition, different therapeutic regimens and their latest status in COVID-19 management have been listed. Furthermore, the "long COVID" and related signs, symptoms, and complications have been mentioned. At the end, the effectiveness of available COVID-19 vaccines with different platforms against early SARS-CoV-2 variants and currently circulating variants of interest (VOI) and the necessity of booster vaccine shots have been summarized and discussed in more detail.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
200
|
Kumar A, Tripathi P, Kumar P, Shekhar R, Pathak R. From Detection to Protection: Antibodies and Their Crucial Role in Diagnosing and Combatting SARS-CoV-2. Vaccines (Basel) 2024; 12:459. [PMID: 38793710 PMCID: PMC11125746 DOI: 10.3390/vaccines12050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Understanding the antibody response to SARS-CoV-2, the virus responsible for COVID-19, is crucial to comprehending disease progression and the significance of vaccine and therapeutic development. The emergence of highly contagious variants poses a significant challenge to humoral immunity, underscoring the necessity of grasping the intricacies of specific antibodies. This review emphasizes the pivotal role of antibodies in shaping immune responses and their implications for diagnosing, preventing, and treating SARS-CoV-2 infection. It delves into the kinetics and characteristics of the antibody response to SARS-CoV-2 and explores current antibody-based diagnostics, discussing their strengths, clinical utility, and limitations. Furthermore, we underscore the therapeutic potential of SARS-CoV-2-specific antibodies, discussing various antibody-based therapies such as monoclonal antibodies, polyclonal antibodies, anti-cytokines, convalescent plasma, and hyperimmunoglobulin-based therapies. Moreover, we offer insights into antibody responses to SARS-CoV-2 vaccines, emphasizing the significance of neutralizing antibodies in order to confer immunity to SARS-CoV-2, along with emerging variants of concern (VOCs) and circulating Omicron subvariants. We also highlight challenges in the field, such as the risks of antibody-dependent enhancement (ADE) for SARS-CoV-2 antibodies, and shed light on the challenges associated with the original antigenic sin (OAS) effect and long COVID. Overall, this review intends to provide valuable insights, which are crucial to advancing sensitive diagnostic tools, identifying efficient antibody-based therapeutics, and developing effective vaccines to combat the evolving threat of SARS-CoV-2 variants on a global scale.
Collapse
Affiliation(s)
- Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, India
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Prashant Kumar
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Ritu Shekhar
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|