151
|
Aghaei S, Nilforoushzadeh MA, Aghaei M. The role of peroxisome proliferator-activated receptor-coactivator-1 gene in skin aging. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2016; 21:36. [PMID: 27904582 PMCID: PMC5122240 DOI: 10.4103/1735-1995.183999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 12/23/2015] [Accepted: 03/31/2016] [Indexed: 01/09/2023]
Abstract
Skin aging is a continuous process that exhibits fine and deep wrinkles, thin and transparent skin, loss of underlying fat, dry skin and itch, following decreased collagen and elastin synthesis. Both extrinsic and intrinsic agents are considered in the pathogenesis on skin aging. Extrinsic factors such as sun exposure, windy and dry weather, nutrition, and lifestyle may induce premature aging, toxic-free radicals, and reactive oxygen species due to decreasing normal function of mitochondria which play the major intrinsic factors in premature skin aging. One of the major genetic factors in mitochondrial function is peroxisome proliferator-activated receptor-coactivator-1 (PGC-1) gene. This factor could delay skin aging by increasing the mitochondrial biogenesis and replication and oxidative phosphorylation and so may induce free radical scavenging. This review is focused on intrinsic skin aging and the role of PGC-1 protein in decreasing effect of aging causes.
Collapse
Affiliation(s)
- Shahrzad Aghaei
- Department of Genetics, Shahrekord University, Shahrekord, Iran
| | | | - Maryam Aghaei
- Skin Disease and Leishmaniasis Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
152
|
Wu H, Deng X, Shi Y, Su Y, Wei J, Duan H. PGC-1α, glucose metabolism and type 2 diabetes mellitus. J Endocrinol 2016; 229:R99-R115. [PMID: 27094040 DOI: 10.1530/joe-16-0021] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by glucose metabolic disturbance. A number of transcription factors and coactivators are involved in this process. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is an important transcription coactivator regulating cellular energy metabolism. Accumulating evidence has indicated that PGC-1α is involved in the regulation of T2DM. Therefore, a better understanding of the roles of PGC-1α may shed light on more efficient therapeutic strategies. Here, we review the most recent progress on PGC-1α and discuss its regulatory network in major glucose metabolic tissues such as the liver, skeletal muscle, pancreas and kidney. The significant associations between PGC-1α polymorphisms and T2DM are also discussed in this review.
Collapse
Affiliation(s)
- Haijiang Wu
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Xinna Deng
- Departments of Oncology & ImmunotherapyHebei General Hospital, Shijiazhuang, China
| | - Yonghong Shi
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Ye Su
- Mathew Mailing Centre for Translational Transplantation StudiesLawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada Departments of Medicine and PathologyUniversity of Western Ontario, London, Ontario, Canada
| | - Jinying Wei
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Huijun Duan
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| |
Collapse
|
153
|
Poosala P, Ichinose H, Kitaoka T. Spatial Geometries of Self-Assembled Chitohexaose Monolayers Regulate Myoblast Fusion. Int J Mol Sci 2016; 17:ijms17050686. [PMID: 27164094 PMCID: PMC4881512 DOI: 10.3390/ijms17050686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 01/31/2023] Open
Abstract
Myoblast fusion into functionally-distinct myotubes to form in vitro skeletal muscle constructs under differentiation serum-free conditions still remains a challenge. Herein, we report that our microtopographical carbohydrate substrates composed of bioactive hexa-N-acetyl-d-glucosamine (GlcNAc6) modulated the efficiency of myoblast fusion without requiring horse serum or any differentiation medium during cell culture. Promotion of the differentiation of dissociated mononucleated skeletal myoblasts (C2C12; a mouse myoblast cell line) into robust myotubes was found only on GlcNAc6 micropatterns, whereas the myoblasts on control, non-patterned GlcNAc6 substrates or GlcNAc6-free patterns exhibited an undifferentiated form. We also examined the possible role of GlcNAc6 micropatterns with various widths in the behavior of C2C12 cells in early and late stages of myogenesis through mRNA expression of myosin heavy chain (MyHC) isoforms. The spontaneous contraction of myotubes was investigated via the regulation of glucose transporter type 4 (GLUT4), which is involved in stimulating glucose uptake during cellular contraction. Narrow patterns demonstrated enhanced glucose uptake rate and generated a fast-twitch muscle fiber type, whereas the slow-twitch muscle fiber type was dominant on wider patterns. Our findings indicated that GlcNAc6-mediated integrin interactions are responsible for guiding myoblast fusion forward along with myotube formation.
Collapse
Affiliation(s)
- Pornthida Poosala
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Hirofumi Ichinose
- Faculty of Agriculture, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Takuya Kitaoka
- Faculty of Agriculture, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
154
|
Hjorth M, Pourteymour S, Görgens SW, Langleite TM, Lee S, Holen T, Gulseth HL, Birkeland KI, Jensen J, Drevon CA, Norheim F. Myostatin in relation to physical activity and dysglycaemia and its effect on energy metabolism in human skeletal muscle cells. Acta Physiol (Oxf) 2016; 217:45-60. [PMID: 26572800 DOI: 10.1111/apha.12631] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/24/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022]
Abstract
AIM Some health benefits of exercise may be explained by an altered secretion of myokines. Because previous focus has been on upregulated myokines, we screened for downregulated myokines and identified myostatin. We studied the expression of myostatin in relation to exercise and dysglycaemia in skeletal muscle, adipose tissue and plasma. We further examined some effects of myostatin on energy metabolism in primary human muscle cells and Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. METHODS Sedentary men with or without dysglycaemia underwent a 45-min acute bicycle test before and after 12 weeks of combined endurance and strength training. Blood samples and biopsies from m. vastus lateralis and adipose tissue were collected. RESULTS Myostatin mRNA expression was reduced in skeletal muscle after acute as well as long-term exercise and was even further downregulated by acute exercise on top of 12-week training. Furthermore, the expression of myostatin at baseline correlated negatively with insulin sensitivity. Myostatin expression in the adipose tissue increased after 12 weeks of training and correlated positively with insulin sensitivity markers. In cultured muscle cells but not in SGBS cells, myostatin promoted an insulin-independent increase in glucose uptake. Furthermore, muscle cells incubated with myostatin had an enhanced rate of glucose oxidation and lactate production. CONCLUSION Myostatin was differentially expressed in the muscle and adipose tissue in relation to physical activity and dysglycaemia. Recombinant myostatin increased the consumption of glucose in human skeletal muscle cells, suggesting a complex regulatory role of myostatin in skeletal muscle homeostasis.
Collapse
Affiliation(s)
- M. Hjorth
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - S. Pourteymour
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - S. W. Görgens
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
| | - T. M. Langleite
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - S. Lee
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - T. Holen
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - H. L. Gulseth
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - K. I. Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - J. Jensen
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| | - C. A. Drevon
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - F. Norheim
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| |
Collapse
|
155
|
Epigenetic changes in diabetes. Neurosci Lett 2016; 625:64-9. [PMID: 27130819 DOI: 10.1016/j.neulet.2016.04.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
The incidence of diabetes is increasing worldwide. Diabetes is quickly becoming one of the leading causes of death. Diabetes is a genetic disease; however, the environment plays critical roles in its development and progression. Epigenetic changes often translate environmental stimuli to changes in gene expression. Changes in epigenetic marks and differential regulation of epigenetic modulators have been observed in different models of diabetes and its associated complications. In this minireview, we will focus DNA methylation, Histone acetylation and methylation and their roles in the pathogenesis of diabetes.
Collapse
|
156
|
Shimamoto S, Ijiri D, Kawaguchi M, Nakashima K, Ohtsuka A. Gene expression pattern of glucose transporters in the skeletal muscles of newly hatched chicks. Biosci Biotechnol Biochem 2016; 80:1382-5. [PMID: 27008100 DOI: 10.1080/09168451.2016.1162088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The gene expression pattern of the glucose transporters (GLUT1, GLUT3, GLUT8, and GLUT12) among pectoralis major and minor, biceps femoris, and sartorius muscles from newly hatched chicks was examined. GLUT1 mRNA level was higher in pectoralis major muscle than in the other muscles. Phosphorylated AKT level was also high in the same muscle, suggesting a relationship between AKT and GLUT1 expression.
Collapse
Affiliation(s)
- Saki Shimamoto
- a Department of Biochemical Science and Technology , Kagoshima University , Kagoshima , Japan
| | - Daichi Ijiri
- a Department of Biochemical Science and Technology , Kagoshima University , Kagoshima , Japan
| | - Mana Kawaguchi
- a Department of Biochemical Science and Technology , Kagoshima University , Kagoshima , Japan
| | - Kazuki Nakashima
- b Animal Physiology and Nutrition Division , NARO Institute of Livestock and Grassland Science , Tsukuba , Japan
| | - Akira Ohtsuka
- a Department of Biochemical Science and Technology , Kagoshima University , Kagoshima , Japan
| |
Collapse
|
157
|
Hyatt JPK, Nguyen L, Hall AE, Huber AM, Kocan JC, Mattison JA, de Cabo R, LaRocque JR, Talmadge RJ. Muscle-Specific Myosin Heavy Chain Shifts in Response to a Long-Term High Fat/High Sugar Diet and Resveratrol Treatment in Nonhuman Primates. Front Physiol 2016; 7:77. [PMID: 26973542 PMCID: PMC4773583 DOI: 10.3389/fphys.2016.00077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/15/2016] [Indexed: 01/14/2023] Open
Abstract
Shifts in myosin heavy chain (MHC) expression within skeletal muscle can be induced by a host of stimuli including, but not limited to, physical activity, alterations in neural activity, aging, and diet or obesity. Here, we hypothesized that both age and a long-term (2 year) high fat/high sugar diet (HFS) would induce a slow to fast MHC shift within the plantaris, soleus, and extensor digitorum longus (EDL) muscles from rhesus monkeys. Furthermore, we tested whether supplementation with resveratrol, a naturally occurring compound that has been attributed with augmenting aerobic potential through mitochondrial proliferation, would counteract any diet-induced MHC changes by promoting a fast to slow isoform switch. In general, we found that MHC isoforms were not altered by aging during mid-life. The HFS diet had the largest impact within the soleus muscle where the greatest slow to fast isoform shifts were observed in both mRNA and protein indicators. As expected, long-term resveratrol treatment counteracted, or blunted, these diet-induced shifts within the soleus muscle. The plantaris muscle also demonstrated a fast-to-slow phenotypic response to resveratrol treatment. In conclusion, diet or resveratrol treatment impacts skeletal muscle phenotype in a muscle-specific manner and resveratrol supplementation may be one approach for promoting the fatigue-resistant MHC (type I) isoform especially if its expression is blunted as a result of a long-term high fat/sugar diet.
Collapse
Affiliation(s)
| | - Lisa Nguyen
- Department of Biological Sciences, California State Polytechnic University Pomona, CA, USA
| | - Allison E Hall
- Department of Human Science, Georgetown University Washington, DC, USA
| | - Ashley M Huber
- Department of Human Science, Georgetown University Washington, DC, USA
| | - Jessica C Kocan
- Department of Human Science, Georgetown University Washington, DC, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | | | - Robert J Talmadge
- Department of Biological Sciences, California State Polytechnic University Pomona, CA, USA
| |
Collapse
|
158
|
Nuclear Mechanisms of Insulin Resistance. Trends Cell Biol 2016; 26:341-351. [PMID: 26822036 DOI: 10.1016/j.tcb.2016.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a sine qua non of type 2 diabetes and is associated with many other clinical conditions. Decades of research into mechanisms underlying insulin resistance have mostly focused on problems in insulin signal transduction and other mitochondrial and cytosolic pathways. By contrast, relatively little attention has been focused on transcriptional and epigenetic contributors to insulin resistance, despite strong evidence that such nuclear mechanisms play a major role in the etiopathogenesis of this condition. In this review, we summarize the evidence for nuclear mechanisms of insulin resistance, focusing on three transcription factors with a major impact on insulin action in liver, muscle, and fat.
Collapse
|
159
|
Abstract
The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions.
Collapse
Affiliation(s)
- Dan Shao
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
160
|
trans-Cinnamaldehyde stimulates mitochondrial biogenesis through PGC-1α and PPARβ/δ leading to enhanced GLUT4 expression. Biochimie 2015; 119:45-51. [DOI: 10.1016/j.biochi.2015.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/01/2015] [Indexed: 11/22/2022]
|
161
|
Fentz J, Kjøbsted R, Kristensen CM, Hingst JR, Birk JB, Gudiksen A, Foretz M, Schjerling P, Viollet B, Pilegaard H, Wojtaszewski JFP. AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2015; 309:E900-14. [PMID: 26419588 DOI: 10.1152/ajpendo.00157.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/28/2015] [Indexed: 01/10/2023]
Abstract
Exercise training increases skeletal muscle expression of metabolic proteins improving the oxidative capacity. Adaptations in skeletal muscle by pharmacologically induced activation of 5'-AMP-activated protein kinase (AMPK) are dependent on the AMPKα2 subunit. We hypothesized that exercise training-induced increases in exercise capacity and expression of metabolic proteins, as well as acute exercise-induced gene regulation, would be compromised in muscle-specific AMPKα1 and -α2 double-knockout (mdKO) mice. An acute bout of exercise increased skeletal muscle mRNA content of cytochrome c oxidase subunit I, glucose transporter 4, and VEGF in an AMPK-dependent manner, whereas cluster of differentiation 36 and fatty acid transport protein 1 mRNA content increased similarly in AMPKα wild-type (WT) and mdKO mice. During 4 wk of voluntary running wheel exercise training, the AMPKα mdKO mice ran less than WT. Maximal running speed was lower in AMPKα mdKO than in WT mice but increased similarly in both genotypes with exercise training. Exercise training increased quadriceps protein content of ubiquinol-cytochrome c reductase core protein 1 (UQCRC1), cytochrome c, hexokinase II, plasma membrane fatty acid-binding protein, and citrate synthase activity more in AMPKα WT than in mdKO muscle. However, analysis of a subgroup of mice matched for running distance revealed that only UQCRC1 protein content increased more in WT than in mdKO mice with exercise training. Thus, AMPKα1 and -α2 subunits are important for acute exercise-induced mRNA responses of some genes and may be involved in regulating basal metabolic protein expression but seem to be less important in exercise training-induced adaptations in metabolic proteins.
Collapse
Affiliation(s)
- Joachim Fentz
- Section of Molecular Physiology, the August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- Section of Molecular Physiology, the August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Maag Kristensen
- Centre of Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Janne Rasmus Hingst
- Section of Molecular Physiology, the August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Bratz Birk
- Section of Molecular Physiology, the August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Anders Gudiksen
- Centre of Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- Institut National de la Sante et de la Recherche Medicale, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Descartes, Sorbonne Paris Cité, Paris, France
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- Institut National de la Sante et de la Recherche Medicale, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Descartes, Sorbonne Paris Cité, Paris, France
| | - Henriette Pilegaard
- Centre of Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, the August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark;
| |
Collapse
|
162
|
Petrov PD, Ribot J, López-Mejía IC, Fajas L, Palou A, Bonet ML. Retinoblastoma Protein Knockdown Favors Oxidative Metabolism and Glucose and Fatty Acid Disposal in Muscle Cells. J Cell Physiol 2015; 231:708-18. [DOI: 10.1002/jcp.25121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/31/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Petar D. Petrov
- Laboratory of Molecular Biology, Nutrition and Biotechnology-Nutrigenomics, Universitat de les Illes Balears, Palma de Mallorca; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology-Nutrigenomics, Universitat de les Illes Balears, Palma de Mallorca; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Spain
| | | | - Lluís Fajas
- Department of Physiology; Université de Lausanne; Switzerland
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology-Nutrigenomics, Universitat de les Illes Balears, Palma de Mallorca; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Spain
| | - M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology-Nutrigenomics, Universitat de les Illes Balears, Palma de Mallorca; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Spain
| |
Collapse
|
163
|
Abstract
Diabetic neuropathy is a dying back neurodegenerative disease of the peripheral nervous system where mitochondrial dysfunction has been implicated as an etiological factor. Diabetes (type 1 or type 2) invokes an elevation of intracellular glucose concentration simultaneously with impaired growth factor support by insulin, and this dual alteration triggers a maladaptation in metabolism of adult sensory neurons. The energy sensing pathway comprising the AMP-activated protein kinase (AMPK)/sirtuin (SIRT)/peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) signaling axis is the target of these damaging changes in nutrient levels, e.g., induction of nutrient stress, and loss of insulin-dependent growth factor support and instigates an aberrant metabolic phenotype characterized by a suppression of mitochondrial oxidative phosphorylation and shift to anaerobic glycolysis. There is discussion of how this loss of mitochondrial function and transition to overreliance on glycolysis contributes to the diminishment of collateral sprouting and axon regeneration in diabetic neuropathy in the context of the highly energy-consuming nerve growth cone.
Collapse
Affiliation(s)
- Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, R4046-351 Taché Ave, Winnipeg, Manitoba, R2H 2A6, Canada.
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, R3E 0T6, Canada.
| |
Collapse
|
164
|
Yan C, Xia X, He J, Ren Z, Xu D, Xiong Y, Zuo B. MyoD Is a Novel Activator of Porcine FIT1 Gene by Interacting with the Canonical E-Box Element during Myogenesis. Int J Mol Sci 2015; 16:25014-30. [PMID: 26492245 PMCID: PMC4632787 DOI: 10.3390/ijms161025014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 10/12/2015] [Indexed: 11/17/2022] Open
Abstract
Fat-induced transcript 1 (FIT1/FITM1) gene is a member of the conserved gene family important for triglyceride-rich lipid droplet accumulation. FIT1 gene displays a similar muscle-specific expression across pigs, mice, and humans. Thus pigs can act as a useful model of many human diseases resulting from misexpression of FIT1 gene. Triglyceride content in skeletal muscle plays a key role in pork meat quality and flavors. An insertion/deletion mutation in porcine FIT1 coding region shows a high correlation with a series of fat traits. To gain better knowledge of the potential role of FIT1 gene in human diseases and the correlations with pork meat quality, our attention is given to the region upstream of the porcine FIT1 coding sequence. We cloned ~1 kb of the 5′-flanking region of porcine FIT1 gene to define the role of this sequence in modulating the myogenic expression. A canonical E-box element that activated porcine FIT1 promoter activity during myogenesis was identified. Further analysis demonstrated that promoter activity was induced by overexpression of MyoD1, which bound to this canonical E-box during C2C12 differentiation. This is the first evidence that FIT1 as the direct novel target of MyoD is involved in muscle development.
Collapse
Affiliation(s)
- Chi Yan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoliang Xia
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junxian He
- Yuguan Agricultural Inc., Shuining 629208, China.
| | - Zhuqing Ren
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dequan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuanzhu Xiong
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
165
|
Co-activator binding protein PIMT mediates TNF-α induced insulin resistance in skeletal muscle via the transcriptional down-regulation of MEF2A and GLUT4. Sci Rep 2015; 5:15197. [PMID: 26468734 PMCID: PMC4606566 DOI: 10.1038/srep15197] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022] Open
Abstract
The mechanisms underlying inflammation induced insulin resistance are poorly understood. Here, we report that the expression of PIMT, a transcriptional co-activator binding protein, was up-regulated in the soleus muscle of high sucrose diet (HSD) induced insulin resistant rats and TNF-α exposed cultured myoblasts. Moreover, TNF-α induced phosphorylation of PIMT at the ERK1/2 target site Ser298. Wild type (WT) PIMT or phospho-mimic Ser298Asp mutant but not phospho-deficient Ser298Ala PIMT mutant abrogated insulin stimulated glucose uptake by L6 myotubes and neonatal rat skeletal myoblasts. Whereas, PIMT knock down relieved TNF-α inhibited insulin signaling. Mechanistic analysis revealed that PIMT differentially regulated the expression of GLUT4, MEF2A, PGC-1α and HDAC5 in cultured cells and skeletal muscle of Wistar rats. Further characterization showed that PIMT was recruited to GLUT4, MEF2A and HDAC5 promoters and overexpression of PIMT abolished the activity of WT but not MEF2A binding defective mutant GLUT4 promoter. Collectively, we conclude that PIMT mediates TNF-α induced insulin resistance at the skeletal muscle via the transcriptional modulation of GLUT4, MEF2A, PGC-1α and HDAC5 genes.
Collapse
|
166
|
Salma N, Song JS, Arany Z, Fisher DE. Transcription Factor Tfe3 Directly Regulates Pgc-1alpha in Muscle. J Cell Physiol 2015; 230:2330-6. [PMID: 25736533 DOI: 10.1002/jcp.24978] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
Abstract
The microphthalmia (MiT) family of transcription factors is an important mediator of metabolism. Family members Mitf and Tfeb directly regulate the expression of the master regulator of metabolism, peroxisome-proliferator activated receptor gamma coactivator-1 alpha (Pgc-1alpha), in melanomas and in the liver, respectively. Pgc-1alpha is enriched in tissues with high oxidative capacity and plays an important role in the regulation of mitochondrial biogenesis and cellular metabolism. In skeletal muscle, Pgc-1alpha affects many aspects of muscle functionally such as endurance, fiber-type switching, and insulin sensitivity. Tfe3 also regulates muscle metabolic genes that enhance insulin sensitivity in skeletal muscle. Tfe3 has not yet been shown to regulate Pgc-1alpha expression. Our results reported here show that Tfe3 directly regulates Pgc-1alpha expression in myotubes. Tfe3 ectopic expression induces Pgc-1alpha, and Tfe3 silencing suppresses Pgc-1alpha expression. This regulation is direct, as shown by Tfe3's binding to E-boxes on the Pgc-1alpha proximal promoter. We conclude that Tfe3 is a critical transcription factor that regulates Pgc-1alpha gene expression in myotubes. Since Pgc-1alpha coactivates numerous biological programs in diverse tissues, the regulation of its expression by upstream transcription factors such Tfe3 implies potential opportunities for the treatment of diseases where modulation of Pgc-1alpha expression may have important clinical outcomes.
Collapse
Affiliation(s)
- Nunciada Salma
- Department of Dermatology, Cutaneous Biology Research Center (CBRC), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Jun S Song
- Institute for Genomic Biology, CDMC Theme, Urbana, Illinois.,Department of Bioengineering, University of Illinois, Urbana, Illinois.,Department of Physics, University of Illinois, Urbana, Illinois
| | - Zoltan Arany
- Cardiovascular Institute Perelman School of Medicine. University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania
| | - David E Fisher
- Department of Dermatology, Cutaneous Biology Research Center (CBRC), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
167
|
Ihsan M, Watson G, Choo HC, Lewandowski P, Papazzo A, Cameron-Smith D, Abbiss CR. Postexercise muscle cooling enhances gene expression of PGC-1α. Med Sci Sports Exerc 2015; 46:1900-7. [PMID: 24561815 DOI: 10.1249/mss.0000000000000308] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to investigate the influence of localized muscle cooling on postexercise vascular, metabolic, and mitochondrial-related gene expression. METHODS Nine physically active males performed 30 min of continuous running at 70% of their maximal aerobic velocity, followed by intermittent running to exhaustion at 100% maximal aerobic velocity. After exercise, subjects immersed one leg in a cold water bath (10°C, COLD) to the level of their gluteal fold for 15 min. The contralateral leg remained outside the water bath and served as control (CON). Core body temperature was monitored throughout the experiment, whereas muscle biopsies and muscle temperature (Tm) measurements were obtained from the vastus lateralis before exercise (PRE), immediately postexercise (POST-EX, Tm only), immediately after cooling, and 3 h postexercise (POST-3H). RESULTS Exercise significantly increased core body temperature (PRE, 37.1°C ± 0.4°C vs POST-EX, 39.3°C ± 0.5°C, P < 0.001) and Tm in both CON (PRE, 33.9°C ± 0.7°C vs POST-EX, 39.1°C ± 0.5°C) and COLD legs (PRE, 34.2°C ± 0.9°C vs POST-EX, 39.4°C ± 0.3°C), respectively (P < 0.001). After cooling, Tm was significantly lower in COLD (28.9°C ± 2.3°C vs 37.0°C ± 0.8°C, P < 0.001) whereas PGC-1α messenger RNA expression was significantly higher in COLD at POST-3H (P = 0.014). Significant time effects were evident for changes in vascular endothelial growth factor (P = 0.038) and neuronal nitric oxide synthase (P = 0.019) expression. However, no significant condition effects between COLD and CON were evident for changes in both vascular endothelial growth factor and neuronal nitric oxide synthase expressions. CONCLUSIONS These data indicate that an acute postexercise cooling intervention enhances the gene expression of PGC-1α and may therefore provide a valuable strategy to enhance exercise-induced mitochondrial biogenesis.
Collapse
Affiliation(s)
- Mohammed Ihsan
- 1Centre for Sports and Exercise Science Research, School of Exercise and Health Sciences, Edith Cowan University, Perth, AUSTRALIA; 2School of Human Life Sciences, University of Tasmania, Launceston, AUSTRALIA; 3School of Medicine, Deakin University, Melbourne, AUSTRALIA; and 4Liggins Institute, University of Auckland, Auckland, NEW ZEALAND
| | | | | | | | | | | | | |
Collapse
|
168
|
Krüppel-like factor 14 increases insulin sensitivity through activation of PI3K/Akt signal pathway. Cell Signal 2015; 27:2201-8. [PMID: 26226221 DOI: 10.1016/j.cellsig.2015.07.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/19/2015] [Accepted: 07/22/2015] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies (GWAS) have shown that Krüppel-like factor 14 (KLF14) is associated with type 2 diabetes mellitus (T2DM). However, no report has demonstrated a relationship between KLF14 and glucose metabolism. The aim of this study was to determine whether KLF14 is associated with glucose metabolism and insulin signaling in vitro. The mRNA and protein expressions of KLF14 were determined by Real-time PCR and Western blotting. Glucose uptake was assessed by 2-[(3)H]-deoxyglucose (2-DG) uptake. Western blotting was used to identify the activation of insulin signaling proteins. KLF14 mRNA and protein in fat and muscle were significantly decreased in HFD-fed mice, db/db mice and T2DM patients. Overexpression of KLF14 enhanced insulin-stimulated glucose uptake and the activation of Akt kinase in Hepa1-6 cells. The phosphorylation of insulin receptor (InsR), insulin receptor substrate-1(IRS-1), glycogen synthase kinase-3β (GSK-3β) and Akt also elevated significantly by up-regulation of KLF14. KLF14 overexpression in Hepa1-6 cells prevented the inhibition of glucose uptake and Akt phosphorylation induced by high glucose and/or high insulin, or T2DM serum. However, KLF14's ability to increase glucose uptake and Akt activation was significantly attenuated by LY294002, a PI3-kinase inhibitor. These data suggested that KLF14 could increase insulin sensitivity probably through the PI3K/Akt pathway.
Collapse
|
169
|
Padmaja Divya S, Pratheeshkumar P, Son YO, Vinod Roy R, Andrew Hitron J, Kim D, Dai J, Wang L, Asha P, Huang B, Xu M, Luo J, Zhang Z. Arsenic Induces Insulin Resistance in Mouse Adipocytes and Myotubes Via Oxidative Stress-Regulated Mitochondrial Sirt3-FOXO3a Signaling Pathway. Toxicol Sci 2015; 146:290-300. [PMID: 25979314 DOI: 10.1093/toxsci/kfv089] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chronic exposure to arsenic via drinking water is associated with an increased risk for development of type 2 diabetes mellitus (T2DM). This study investigates the role of mitochondrial oxidative stress protein Sirtuin 3 (Sirt3) and its targeting proteins in chronic arsenic-induced T2DM in mouse adipocytes and myotubes. The results show that chronic arsenic exposure significantly decreased insulin-stimulated glucose uptake (ISGU) in correlation with reduced expression of insulin-regulated glucose transporter type 4 (Glut4). Expression of Sirt3, a mitochondrial deacetylase, was dramatically decreased along with its associated transcription factor, forkhead box O3 (FOXO3a) upon arsenic exposure. A decrease in mitochondrial membrane potential (Δψm) was observed in both 3T3L1 adipocytes and C2C12 myotubes treated by arsenic. Reduced FOXO3a activity by arsenic exhibited a decreased binding affinity to the promoters of both manganese superoxide dismutase (MnSOD) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α, a broad and powerful regulator of reactive oxygen species (ROS) metabolism. Forced expression of Sirt3 or MnSOD in mouse myotubes elevated Δψm and restored ISGU inhibited by arsenic exposure. Our results suggest that Sirt3/FOXO3a/MnSOD signaling plays a significant role in the inhibition of ISGU induced by chronic arsenic exposure.
Collapse
Affiliation(s)
- Sasidharan Padmaja Divya
- *Center for Research on Environmental Disease, Department of Toxicology and Cancer Biology, University of Kentucky, 1095 Veterans Drive, Lexington, KY 40536, USA
| | | | | | | | - John Andrew Hitron
- *Center for Research on Environmental Disease, Department of Toxicology and Cancer Biology, University of Kentucky, 1095 Veterans Drive, Lexington, KY 40536, USA
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 Veterans Drive, Lexington, KY 40536, USA
| | - Jin Dai
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 Veterans Drive, Lexington, KY 40536, USA
| | - Lei Wang
- *Center for Research on Environmental Disease
| | - Padmaja Asha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Bin Huang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40504 and
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 Veterans Drive, Lexington, KY 40536, USA,
| |
Collapse
|
170
|
Cheema AK, Li T, Liuzzi JP, Zarini GG, Dorak MT, Huffman FG. Genetic Associations of PPARGC1A with Type 2 Diabetes: Differences among Populations with African Origins. J Diabetes Res 2015; 2015:921274. [PMID: 25977930 PMCID: PMC4419207 DOI: 10.1155/2015/921274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to assess the differences in correlation of PPARGC1A polymorphisms with type 2 diabetes (T2D) risk in adults of African origins: African Americans and Haitian Americans. The case-control study consisted of >30 years old, self-identified Haitian Americans (n = 110 cases and n = 116 controls) and African Americans (n = 124 cases and n = 122 controls) living in South Florida with and without T2D. Adjusted logistic regression indicated that both SNP rs7656250 (OR = 0.22, P = 0.005) and rs4235308 (OR = 0.42, P = 0.026) showed protective association with T2D in Haitian Americans. In African Americans, however, rs4235308 showed significant risk association with T2D (OR = 2.53, P = 0.028). After stratification with sex, in Haitian Americans, both rs4235308 (OR = 0.38, P = 0.026) and rs7656250 (OR = 0.23, P = 0.006) showed protective association with T2D in females whereas in African American males rs7656250 had statistically significant protective effect on T2D (OR = 0.37, P = 0.043). The trends observed for genetic association of PPARGC1A SNPs, rs4235308, and rs7656250 for T2D between Haitian Americans and African Americans point out differences in Black race and warrant replicative study with larger sample size.
Collapse
Affiliation(s)
- Amanpreet K. Cheema
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Tan Li
- Department of Biostatistics, Robert Stempel College of Public Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Juan P. Liuzzi
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Gustavo G. Zarini
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Mehmet T. Dorak
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK
| | - Fatma G. Huffman
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| |
Collapse
|
171
|
Rosiglitazone, but not epigallocatechin-3-gallate, attenuates the decrease in PGC-1α protein levels in palmitate-induced insulin-resistant C2C12 cells. Lipids 2015; 50:521-8. [PMID: 25893813 DOI: 10.1007/s11745-015-4016-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/27/2015] [Indexed: 01/29/2023]
Abstract
Alteration of lipid metabolism is an important mechanism for the treatment of insulin resistance. PGC-1α, a key regulator of mitochondrial biogenesis and function, plays an important role in the improvement of insulin sensitivity by increasing fatty acids β-oxidation. In the present study, the effects of epigallocatechin-3-gallate (EGCG), an anti-obesity agent and enhancer of lipid catabolism, on PGC-1α protein expression was examined and compared with anti-diabetic drug rosiglitazone (RGZ). After differentiation of C2C12 myoblasts to myotubes, insulin resistance was induced by palmitate treatment. Then the expression of the PGC-1a gene and glucose uptake were evaluated before and after treatment with RGZ and EGCG. Palmitate treatment significantly decreased PGC-1α protein expression in C2C12 cells (P < 0.05). RGZ could restore the expression of PGC-1α in palmitate treated cells (P > 0.05), while EGCG had no significant effect on the expression of this gene (P < 0.05). RGZ and EGCG significantly improved glucose uptake (by 2- and 1.54-fold, respectively) in myotubes treated with palmitate. These data suggest that RGZ and EGCG both exert their anti-diabetic activity by increasing insulin sensitivity, but with different molecular mechanisms. This effect of RGZ, unlike EGCG, is mediated, at least partly, by increasing PGC-1α protein expression.
Collapse
|
172
|
Besseiche A, Riveline JP, Gautier JF, Bréant B, Blondeau B. Metabolic roles of PGC-1α and its implications for type 2 diabetes. DIABETES & METABOLISM 2015; 41:347-57. [PMID: 25753246 DOI: 10.1016/j.diabet.2015.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/07/2015] [Accepted: 02/01/2015] [Indexed: 12/25/2022]
Abstract
PGC-1α is a transcriptional coactivator expressed in brown adipose tissue, liver, pancreas, kidney, skeletal and cardiac muscles, and the brain. This review presents data illustrating how PGC-1α regulates metabolic adaptations and participates in the aetiology of type 2 diabetes (T2D). Studies in mice have shown that increased PGC-1α expression may be beneficial or deleterious, depending on the tissue: in adipose tissue, it promotes thermogenesis and thus protects against energy overload, such as seen in diabetes and obesity; in muscle, PGC-1α induces a change of phenotype towards oxidative metabolism. In contrast, its role is clearly deleterious in the liver and pancreas, where it induces hepatic glucose production and inhibits insulin secretion, changes that promote diabetes. Previous studies by our group have also demonstrated the role of PGC-1α in the fetal origins of T2D. Overexpression of PGC-1α in β cells during fetal life in mice is sufficient to induce β-cell dysfunction in adults, leading to glucose intolerance. PGC-1α also is associated with glucocorticoid receptors in repressing expression of Pdx1, a key β-cell transcription factor. In conclusion, PGC-1α participates in the onset of diabetes through regulation of major metabolic tissues. Yet, it may not represent a useful target for therapeutic strategies against diabetes as it exerts both beneficial and deleterious actions on glucose homoeostasis, and because PGC-1α modulation is involved in neurodegenerative diseases. However, its role in cellular adaptation shows that greater comprehension of PGC-1α actions is needed.
Collapse
Affiliation(s)
- A Besseiche
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France
| | - J-P Riveline
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France; University Center of Diabetes and Complications in Lariboisière hospital, Université Paris-Diderot Paris-7, Public Assistance-Paris Hospitals, 75010 Paris, France
| | - J-F Gautier
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France; University Center of Diabetes and Complications in Lariboisière hospital, Université Paris-Diderot Paris-7, Public Assistance-Paris Hospitals, 75010 Paris, France
| | - B Bréant
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France
| | - B Blondeau
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France.
| |
Collapse
|
173
|
Villena JA. New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J 2015; 282:647-72. [DOI: 10.1111/febs.13175] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/31/2014] [Accepted: 12/10/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Josep A. Villena
- Laboratory of Metabolism and Obesity; Vall d'Hebron-Institut de Recerca; Universitat Autònoma de Barcelona; Spain
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas); Instituto de Salud Carlos III; Barcelona Spain
| |
Collapse
|
174
|
Maniam J, Antoniadis CP, Wang KW, Morris MJ. Early Life Stress Induced by Limited Nesting Material Produces Metabolic Resilience in Response to a High-Fat and High-Sugar Diet in Male Rats. Front Endocrinol (Lausanne) 2015; 6:138. [PMID: 26441828 PMCID: PMC4561522 DOI: 10.3389/fendo.2015.00138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 08/21/2015] [Indexed: 12/16/2022] Open
Abstract
Environmental conditions experienced in early life can profoundly influence long-term metabolic health, but the additive impact of poor nutrition is poorly understood. Here, we tested the hypothesis that early life stress (ELS) induced by limited nesting material (LN) combined with high-fat and high-sugar diet (HFHS) post-weaning would worsen diet-related metabolic risk. Sprague-Dawley male rats were exposed to LN, postnatal days 2-9, and at weaning (3 weeks), siblings were given unlimited access to chow or HFHS resulting in (Con-Chow, Con-HFHS, LN-Chow, and LN-HFHS, n = 11-15/group). Glucose and insulin tolerance were tested and rats were killed at 13 weeks. LN rats weighed less at weaning but were not different to control at 13 weeks; HFHS diet led to similar increases in body weight. LN-chow rats had improved glucose and insulin tolerance relative to Con-Chow, whereas LN-HFHS improved insulin sensitivity versus Con-HFHS, associated with increased peroxisome proliferator-activated receptor gamma co-activator-1-alpha (Pgc-1α) mRNA in muscle. No effect of LN on plasma or liver triglycerides was observed, and hepatic gluconeogenic regulatory genes were unaltered. In summary, this study demonstrates that ELS induced by LN conferred some metabolic protection against insulin and/or glucose intolerance in a diet-dependent manner during adulthood.
Collapse
Affiliation(s)
- Jayanthi Maniam
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | | | - Kristy W. Wang
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
- *Correspondence: Margaret J. Morris, Department of Pharmacology, UNSW Australia, Sydney, NSW 2052, Australia,
| |
Collapse
|
175
|
Kim JH, Kim YJ. Effects of genistein in combination with conjugated estrogens on endometrial hyperplasia and metabolic dysfunction in ovariectomized mice. Endocr J 2015; 62:531-42. [PMID: 25877295 DOI: 10.1507/endocrj.ej15-0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tissue-selective estrogen complex (TSEC), which combines a selective estrogen receptor modulator (SERM) with one or more estrogens, is a novel approach to menopausal therapy. It has been demonstrated that the phytoestrogen genistein (GEN) exhibits mixed estrogen receptor agonist and antagonist activity, suggesting that GEN may have potential for use as a natural SERM. We evaluated, for the first time, the effects of GEN, conjugated estrogens (CE), and their pairing effects as a TSEC treatment on estrogen-induced endometrial hyperplasia and metabolic dysfunction in ovariectomized (OVX) mice fed a high-fat diet. CE replacement prevented fat accumulation in the adipose tissue and liver, improved glucose homeostasis, and induced endometrial hyperplasia in OVX mice. GEN at 100 mg/kg showed CE mimetic effects in preventing ovariectomy-induced metabolic dysfunctions without endometrial stimulation. Combination treatments with CE and GEN prevented metabolic dysfunctions more strongly than CE alone, but at both low and high doses, GEN did not reverse CE-induced endometrial hyperplasia. In addition, we found that in a TSEC regimen, a typical SERM raloxifene maintains the metabolic benefits of CE while simultaneously protecting the endometrium in OVX mice. These findings indicate that GEN acts as an estrogen agonist in metabolic regulation, but has no SERM function in the uteri of OVX mice.
Collapse
Affiliation(s)
- Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Sejong, 339-700, South Korea
| | | |
Collapse
|
176
|
Petrie MA, Suneja M, Faidley E, Shields RK. A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury. PLoS One 2014; 9:e115791. [PMID: 25531450 PMCID: PMC4274164 DOI: 10.1371/journal.pone.0115791] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/26/2014] [Indexed: 11/18/2022] Open
Abstract
Paralysis after a spinal cord injury (SCI) induces physiological adaptations that compromise the musculoskeletal and metabolic systems. Unlike non-SCI individuals, people with spinal cord injury experience minimal muscle activity which compromises optimal glucose utilization and metabolic control. Acute or chronic muscle activity, induced through electrical stimulation, may regulate key genes that enhance oxidative metabolism in paralyzed muscle. We investigated the short and long term effects of electrically induced exercise on mRNA expression of human paralyzed muscle. We developed an exercise dose that activated the muscle for only 0.6% of the day. The short term effects were assessed 3 hours after a single dose of exercise, while the long term effects were assessed after training 5 days per week for at least one year (adherence 81%). We found a single dose of exercise regulated 117 biological pathways as compared to 35 pathways after one year of training. A single dose of electrical stimulation increased the mRNA expression of transcriptional, translational, and enzyme regulators of metabolism important to shift muscle toward an oxidative phenotype (PGC-1α, NR4A3, IFRD1, ABRA, PDK4). However, chronic training increased the mRNA expression of specific metabolic pathway genes (BRP44, BRP44L, SDHB, ACADVL), mitochondrial fission and fusion genes (MFF, MFN1, MFN2), and slow muscle fiber genes (MYH6, MYH7, MYL3, MYL2). These findings support that a dose of electrical stimulation (∼10 minutes/day) regulates metabolic gene signaling pathways in human paralyzed muscle. Regulating these pathways early after SCI may contribute to reducing diabetes in people with longstanding paralysis from SCI.
Collapse
Affiliation(s)
- Michael A. Petrie
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Manish Suneja
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Elizabeth Faidley
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Richard K. Shields
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Veterans Affairs, VA Medical Center, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
177
|
Sato S, Ogura Y, Tajrishi MM, Kumar A. Elevated levels of TWEAK in skeletal muscle promote visceral obesity, insulin resistance, and metabolic dysfunction. FASEB J 2014; 29:988-1002. [PMID: 25466899 DOI: 10.1096/fj.14-260703] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Skeletal muscle is responsible for the majority of glucose disposal in body. Impairment in skeletal muscle glucose handling capacity leads to the state of insulin resistance. The TNF-like weak inducer of apoptosis (TWEAK) cytokine has now emerged as a major regulator of skeletal muscle mass and function. However, the role of TWEAK in skeletal muscle metabolic function remains less understood. Here, we demonstrate that with progressive age, skeletal muscle-specific TWEAK-transgenic (TWEAK-Tg) mice gain increased body weight (∼16%) and fat mass (∼64%) and show glucose intolerance and insulin insensitivity. TWEAK-Tg mice also exhibit adipocyte hypertrophy in the epididymal fat. Oxygen uptake, voluntary physical activity, and exercise capacity were significantly reduced in TWEAK-Tg mice compared with controls. Overexpression of TWEAK inhibited (∼31%) 5' AMP-activated protein kinase (AMPK) and reduced (∼31%) the levels of glucose transporter type 4 (GLUT4) without affecting the Akt pathway. TWEAK also inhibited insulin-stimulated glucose uptake (∼32%) and repressed the levels of GLUT4 (∼50%) in cultured myotubes from C57BL6 mice. TWEAK represses the levels of Krüppel-like factor 15; myocyte enhancer factor 2, and peroxisome proliferator-activated receptor-γ coactivator-1α, which are required for the activation of the GLUT4 locus. Collectively our study demonstrates that elevated levels of TWEAK in skeletal muscle cause metabolic abnormalities. Inhibition of TWEAK could be a potential approach to prevent weight gain and type 2 diabetes.
Collapse
Affiliation(s)
- Shuichi Sato
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yuji Ogura
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Marjan M Tajrishi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
178
|
Li J, Zhang Y, Liu Y, Shen T, Zhang H, Xing Y, Zhu D. PGC-1α plays a major role in the anti-apoptotic effect of 15-HETE in pulmonary artery endothelial cells. Respir Physiol Neurobiol 2014; 205:84-91. [PMID: 25447678 DOI: 10.1016/j.resp.2014.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/27/2014] [Accepted: 10/22/2014] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator activated receptor gamma coactivator 1α (PGC-1α) has been confirmed as a key regulatory factor in pulmonary artery smooth muscle cells to mediate mitochondrial biogenesis and proliferation during hypoxia. However, the functional role of PGC-1α in hypoxic pulmonary artery endothelial cells (PAECs) still needs to be determined. In the present study, we found a marked elevation in the expression of PGC-1α under hypoxia, which was predominate in the nucleus of PAECs. This alteration of PGC-1α showed a significant association with 15-Hydroxyeicosatetraenoic acid (15-HETE), a regulator known to be protective against apoptosis at the concentration of 1 μM. By silencing PGC-1α, the action against cell viability suppression induced by 15-HETE was blocked, not only in normoxic condition but also in hypoxia-stimulated condition. Likewise, the tendency to reduce TUNEL-positive cells, abnormal nuclei and apoptotic cells in response to 15-HETE was depending on PGC-1α. Furthermore, 15-HETE and PGC-1α siRNA caused significant alterations in related mechanisms including caspase activity, mitochondrial membrane potential, and Bcl-2 expression. Taken together, these results provide the first evidence to confirm the importance of PGC-1α in mediating the protective effect of 15-HETE against apoptosis. Therefore, a clear role of PGC-1α in hypoxic PAECs is demonstrated, which may be attributed to pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Jing Li
- Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China; Department of Biopharmaceutical Sciences, Harbin Medical University -Daqing, Daqing, Heilongjiang, China
| | - Yueming Zhang
- Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China; Department of Biopharmaceutical Sciences, Harbin Medical University -Daqing, Daqing, Heilongjiang, China
| | - Ying Liu
- Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China; Department of Biopharmaceutical Sciences, Harbin Medical University -Daqing, Daqing, Heilongjiang, China
| | - Tingting Shen
- Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China; Department of Biopharmaceutical Sciences, Harbin Medical University -Daqing, Daqing, Heilongjiang, China
| | - Hongyue Zhang
- Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China; Department of Biopharmaceutical Sciences, Harbin Medical University -Daqing, Daqing, Heilongjiang, China
| | - Yan Xing
- Department of Biopharmaceutical Sciences, Harbin Medical University -Daqing, Daqing, Heilongjiang, China
| | - Daling Zhu
- Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China; Department of Biopharmaceutical Sciences, Harbin Medical University -Daqing, Daqing, Heilongjiang, China.
| |
Collapse
|
179
|
Gannon NP, Conn CA, Vaughan RA. Dietary stimulators of GLUT4 expression and translocation in skeletal muscle: a mini-review. Mol Nutr Food Res 2014; 59:48-64. [PMID: 25215442 DOI: 10.1002/mnfr.201400414] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022]
Abstract
Chronic insulin resistance can lead to type II diabetes mellitus, which is also directly influenced by an individual's genetics as well as their lifestyle. Under normal circumstances, insulin facilitates glucose uptake in skeletal muscle and adipose tissue by stimulating glucose transporter 4 (GLUT4) translocation and activity. GLUT4 activity is directly correlated with the ability to clear elevated blood glucose and insulin sensitivity. In diabetes, energy excess and prolonged hyperinsulinemia suppress muscle and adipose response to insulin, in part through reduced GLUT4 membrane levels. This work uniquely describes much of the experimental data demonstrating the effects of various dietary components on GLUT4 expression and translocation in skeletal muscle. These observations implicate several individual dietary chemicals as potential adjuvant therapies in the maintenance of diabetes and insulin resistance.
Collapse
Affiliation(s)
- Nicholas P Gannon
- Department of Biochemistry and Molecular Biology, University of New Mexico, Health Sciences Center, School of Medicine, Albuquerque, NM, USA
| | | | | |
Collapse
|
180
|
Jung S, Kim K. Exercise-induced PGC-1α transcriptional factors in skeletal muscle. Integr Med Res 2014; 3:155-160. [PMID: 28664092 PMCID: PMC5481761 DOI: 10.1016/j.imr.2014.09.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle is adapting to the needs of the body by changes of various gene expression that control mitochondrial biogenesis, angiogenesis, and the composition of muscle fiber types. Recently, it was revealed that PGC-1α, which is an auxiliary transcription factor, plays a key role in the aforementioned adaptation phenomena. It means that various signal transduction systems within muscle directly affect the expression and activation of PGC-1α and also PGC-1s activates various programs for muscle adaptation. Therefore, this review assessed PGC-1α to understand the reaction and adaptation phenomena of muscle against the biological stimulus such as exercise and came to the conclusion that PGC-1α and PGC-1β significantly affect skeletal muscle in various ways, and also have an affect on the increase of exercise capacity, inducing of angiogenesis and the prevention of muscle atrophy and degeneration.
Collapse
Affiliation(s)
| | - Kijin Kim
- Corresponding author. Department of Physical Education, Keimyung University, 1000 Shindang-dong, Dalseo-gu, Daegu, 704-701, Korea.
| |
Collapse
|
181
|
Shokouhi S, Haghani K, Borji P, Bakhtiyari S. Association between PGC-1alpha gene polymorphisms and type 2 diabetes risk: a case-control study of an Iranian population. Can J Diabetes 2014; 39:65-72. [PMID: 25282005 DOI: 10.1016/j.jcjd.2014.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/29/2014] [Accepted: 05/05/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) gene could play a role in the onset of type 2 diabetes mellitus. The aim of this study was to explore the possible associations among polymorphisms Gly482Ser, Thr394Thr and Thr528Thr of the PGC-1alpha gene and the risk of type 2 diabetes in Kurdish-Iranians. METHODS DNA specimens from all 173 type 2 diabetes subjects and 173 normoglycemic subjects were genotyped by the polymerase chain reaction-restriction fragment length polymorphism method. Genotypic and allelic frequencies were analyzed in each group. Serum lipids, fasting glucose, fasting serum insulin, homeostasis model assessment of insulin resistance and glycated hemoglobin levels were determined using the conventional methods. The data were analyzed using SPSS software. RESULTS The GA genotype of Gly482Ser was associated with a significant susceptibility for type 2 diabetes (odds ratio 5.23, p<0.000). Furthermore, the GA genotype of Thr528Thr had a higher risk for type 2 diabetes (odds ratio 2.37, p<0.002). Normoglycemic persons carrying the GA+AA genotypes of Gly482Ser variation had significantly lower high-density lipoprotein cholesterol in comparison with persons having GG genotype. In comparison with GG genotype carriers, normoglycemic subjects carrying the GA+AA genotypes of Thr394Thr variation had significantly higher fasting blood sugar, fasting serum insulin and homeostasis model assessment of insulin resistance. Normoglycemic subjects with the GA+AA genotypes of Thr528Thr variation had significantly higher levels of low-density lipoprotein cholesterol compared with subjects having the GG genotype. Type 2 diabetes subjects carrying the GA+AA genotypes of this polymorphism had significantly higher waist-hip ratio in comparison with the GG genotype carriers. We also found that haplotype 394-GG/482-GA/528-GG of PGC-1alpha was significantly associated with higher risk of type 2 diabetes. CONCLUSIONS Our findings revealed significant associations between PGC-1alpha Gly482Ser and Thr528Thr polymorphisms and type 2 diabetes in Kurdish-Iranians.
Collapse
Affiliation(s)
- Shabnam Shokouhi
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Parveneh Borji
- Department of Biology, Faculty of Basic Sciences, Payame Noor University, Tehran, Iran
| | - Salar Bakhtiyari
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
182
|
Ritchie IRW, Wright DC, Dyck DJ. Adiponectin is not required for exercise training-induced improvements in glucose and insulin tolerance in mice. Physiol Rep 2014; 2:2/9/e12146. [PMID: 25214523 PMCID: PMC4270243 DOI: 10.14814/phy2.12146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adiponectin (Ad) is a potent insulin‐sensitizing adipokine that has been found to activate pathways involved in the adaptation to exercise. Therefore, we examined whether Ad is required for the increased insulin response observed following exercise training in Ad knockout mice (AdKO). Eight weeks of exercise training significantly increased glucose and insulin tolerance in both wild type (WT) and AdKO mice. There were no differences in glucose tolerance between genotypes but insulin tolerance was improved to a greater extent in AdKO compared to WT mice following exercise training (+26%, P < 0.05). There were no genotype differences in the insulin‐stimulated phosphorylation of AKT or AS160 in red or white gastrocnemius muscle (RG, WG). Exercise training increased total AKT and AS160 protein content in RG and total AS160 protein content in WG. There were no genotype differences in total AKT or AS160. However, exercise training induced a more robust increase in total AS160 in RG from AdKO (+44 ± 8%, P < 0.05) compared to WT mice (+28 ± 7%, P = 0.06). There were no differences in total GLUT4 or FAT/CD36 in RG or WG in WT or AdKO, with or without exercise training. Similarly, there were no differences in RER, VO2, or activity between any groups. Our results indicate the presence of Ad is not required for exercise‐induced increases in insulin response. Furthermore, it appears that exercise may improve insulin sensitivity to a greater extent in the absence of Ad, suggesting the presence of an unknown compensatory mechanism. Collectively, our results demonstrate that the absence of Ad does not impair the capacity of endurance exercise training to increase glucose and insulin tolerance in AdKO mice. In addition, there were no impairments in insulin signaling or in the protein content of AKT or AS160. Taken together with previous findings, our data indicate that AdKO mice may have sufficient compensations to override the absence of Ad.
Collapse
Affiliation(s)
- Ian R W Ritchie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David J Dyck
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
183
|
Cyclosporine A enhances gluconeogenesis while sirolimus impairs insulin signaling in peripheral tissues after 3 weeks of treatment. Biochem Pharmacol 2014; 91:61-73. [DOI: 10.1016/j.bcp.2014.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023]
|
184
|
Sanchez-Roige S, Lalanza JF, Alvarez-López MJ, Cosín-Tomás M, Griñan-Ferré C, Pallàs M, Kaliman P, Escorihuela RM. Long-term wheel running changes on sensorimotor activity and skeletal muscle in male and female mice of accelerated senescence. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9697. [PMID: 25129573 PMCID: PMC4159468 DOI: 10.1007/s11357-014-9697-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/27/2014] [Indexed: 06/03/2023]
Abstract
The senescence-accelerated mouse prone 8 (SAMP8) is considered a useful non-transgenic model for studying aspects of aging. Using SAM resistant 1 (SAMR1) as controls, the long-term effects of wheel running on skeletal muscle adaptations and behavioral traits were evaluated in senescent (P8) and resistant (R1) male and female mice. Long-term wheel running (WR) led to increases in locomotor activity, benefits in sensorimotor function, and changes in body weight in a gender-dependent manner. WR increased body weight and baseline levels of locomotor activity in female mice and improved balance and strength in male mice, compared to sedentary-control mice. WR resulted in key metabolic adaptations in skeletal muscle, associated with an increased activity of the sirtuin 1-AMP-activated protein kinase (AMPK)-PGC-1 alpha axis and changes in vascular endothelial growth factor A (Vegfa), glucose transporter type 4 (Glut4), and Cluster of Differentiation 36 (Cd36) gene expression. Overall, our data indicate that activity, balance, and strength decrease with age and that long-term WR may significantly improve the motor function in a mouse model of senescence in a gender-dependent manner.
Collapse
Affiliation(s)
| | - Jaume F. Lalanza
- />Institut de Neurociències, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - María Jesús Alvarez-López
- />Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028 Barcelona, Spain
| | - Marta Cosín-Tomás
- />Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028 Barcelona, Spain
| | - Christian Griñan-Ferré
- />Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028 Barcelona, Spain
| | - Merce Pallàs
- />Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028 Barcelona, Spain
- />Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Perla Kaliman
- />Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Villarroel 170, 08036 Barcelona, Spain
| | - Rosa M. Escorihuela
- />Institut de Neurociències, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
185
|
Ferraro E, Giammarioli AM, Chiandotto S, Spoletini I, Rosano G. Exercise-induced skeletal muscle remodeling and metabolic adaptation: redox signaling and role of autophagy. Antioxid Redox Signal 2014; 21:154-76. [PMID: 24450966 PMCID: PMC4048572 DOI: 10.1089/ars.2013.5773] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Skeletal muscle is a highly plastic tissue. Exercise evokes signaling pathways that strongly modify myofiber metabolism and physiological and contractile properties of skeletal muscle. Regular physical activity is beneficial for health and is highly recommended for the prevention of several chronic conditions. In this review, we have focused our attention on the pathways that are known to mediate physical training-induced plasticity. RECENT ADVANCES An important role for redox signaling has recently been proposed in exercise-mediated muscle remodeling and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) activation. Still more currently, autophagy has also been found to be involved in metabolic adaptation to exercise. CRITICAL ISSUES Both redox signaling and autophagy are processes with ambivalent effects; they can be detrimental and beneficial, depending on their delicate balance. As such, understanding their role in the chain of events induced by exercise and leading to skeletal muscle remodeling is a very complicated matter. Moreover, the study of the signaling induced by exercise is made even more difficult by the fact that exercise can be performed with several different modalities, with this having different repercussions on adaptation. FUTURE DIRECTIONS Unraveling the complexity of the molecular signaling triggered by exercise on skeletal muscle is crucial in order to define the therapeutic potentiality of physical training and to identify new pharmacological compounds that are able to reproduce some beneficial effects of exercise. In evaluating the effect of new "exercise mimetics," it will also be necessary to take into account the involvement of reactive oxygen species, reactive nitrogen species, and autophagy and their controversial effects.
Collapse
Affiliation(s)
- Elisabetta Ferraro
- 1 Pathophysiology and Treatment of Muscle Wasting Disorders Unit, IRCCS San Raffaele Pisana , Rome, Italy
| | | | | | | | | |
Collapse
|
186
|
Santos JM, Tewari S, Benite-Ribeiro SA. The effect of exercise on epigenetic modifications of PGC1: The impact on type 2 diabetes. Med Hypotheses 2014; 82:748-53. [DOI: 10.1016/j.mehy.2014.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/10/2014] [Indexed: 12/16/2022]
|
187
|
Yokoyama M, Okada S, Nakagomi A, Moriya J, Shimizu I, Nojima A, Yoshida Y, Ichimiya H, Kamimura N, Kobayashi Y, Ohta S, Fruttiger M, Lozano G, Minamino T. Inhibition of Endothelial p53 Improves Metabolic Abnormalities Related to Dietary Obesity. Cell Rep 2014; 7:1691-1703. [DOI: 10.1016/j.celrep.2014.04.046] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 01/09/2014] [Accepted: 04/21/2014] [Indexed: 11/27/2022] Open
|
188
|
Selenium-enriched exopolysaccharides improve skeletal muscle glucose uptake of diabetic KKAy mice via AMPK pathway. J Physiol Biochem 2014; 70:547-54. [DOI: 10.1007/s13105-014-0334-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/20/2014] [Indexed: 11/26/2022]
|
189
|
Abstract
Skeletal muscle is the largest organ in the body and contributes to innumerable aspects of organismal biology. Muscle dysfunction engenders numerous diseases, including diabetes, cachexia, and sarcopenia. At the same time, skeletal muscle is also the main engine of exercise, one of the most efficacious interventions for prevention and treatment of a wide variety of diseases. The transcriptional coactivator PGC-1α has emerged as a key driver of metabolic programming in skeletal muscle, both in health and in disease. We review here the many aspects of PGC-1α function in skeletal muscle, with a focus on recent developments.
Collapse
Affiliation(s)
- Mun Chun Chan
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Zolt Arany
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School.
| |
Collapse
|
190
|
Bolado-Carrancio A, Riancho JA, Sainz J, Rodríguez-Rey JC. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells. Biochem Biophys Res Commun 2014; 446:614-9. [PMID: 24632207 DOI: 10.1016/j.bbrc.2014.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 12/19/2022]
Abstract
NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.
Collapse
Affiliation(s)
- A Bolado-Carrancio
- Department of Molecular Biology, University of Cantabria, IDIVAL, Santander, Spain
| | - J A Riancho
- Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander, Spain
| | - J Sainz
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander, Spain
| | - J C Rodríguez-Rey
- Department of Molecular Biology, University of Cantabria, IDIVAL, Santander, Spain.
| |
Collapse
|
191
|
Vettor R, Valerio A, Ragni M, Trevellin E, Granzotto M, Olivieri M, Tedesco L, Ruocco C, Fossati A, Fabris R, Serra R, Carruba MO, Nisoli E. Exercise training boosts eNOS-dependent mitochondrial biogenesis in mouse heart: role in adaptation of glucose metabolism. Am J Physiol Endocrinol Metab 2014; 306:E519-28. [PMID: 24381004 DOI: 10.1152/ajpendo.00617.2013] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endurance exercise training increases cardiac energy metabolism through poorly understood mechanisms. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) in cardiomyocytes contributes to cardiac adaptation. Here we demonstrate that the NO donor diethylenetriamine-NO (DETA-NO) activated mitochondrial biogenesis and function, as assessed by upregulated peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial transcription factor A (Tfam) expression, and by increased mitochondrial DNA content and citrate synthase activity in primary mouse cardiomyocytes. DETA-NO also induced mitochondrial biogenesis and function and enhanced both basal and insulin-stimulated glucose uptake in HL-1 cardiomyocytes. The DETA-NO-mediated effects were suppressed by either PGC-1α or Tfam small-interference RNA in HL-1 cardiomyocytes. Wild-type and eNOS(-/-) mice were subjected to 6 wk graduated swim training. We found that eNOS expression, mitochondrial biogenesis, mitochondrial volume density and number, and both basal and insulin-stimulated glucose uptake were increased in left ventricles of swim-trained wild-type mice. On the contrary, the genetic deletion of eNOS prevented all these adaptive phenomena. Our findings demonstrate that exercise training promotes eNOS-dependent mitochondrial biogenesis in heart, which behaves as an essential step in cardiac glucose transport.
Collapse
Affiliation(s)
- Roberto Vettor
- Internal Medicine Unit and Center for the Study and Integrated Treatment of Obesity, Department of Medicine, Padua University, Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Abstract
Type II diabetes and its complications are a tremendous health burden throughout the world. Our understanding of the changes that lead to glucose imbalance and insulin resistance and ultimately diabetes remain incompletely understood. Many signaling and transcriptional pathways have been identified as being important to maintain normal glucose balance, including that of the peroxisome proliferator activated receptor gamma coactivator (PGC-1) family. This family of transcriptional coactivators strongly regulates mitochondrial and metabolic biology in numerous organs. The use of genetic models of PGC-1s, including both tissue-specific overexpression and knock-out models, has helped to reveal the specific roles that these coactivators play in each tissue. This review will thus focus on the PGC-1s and recently developed genetic rodent models that have highlighted the importance of these molecules in maintaining normal glucose homeostasis.
Collapse
Affiliation(s)
- Glenn C. Rowe
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston MA 02215, USA
| | - Zolt Arany
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston MA 02215, USA
| |
Collapse
|
193
|
Abstract
Resveratrol is a stilbene compound, and a phytoalexin, synthesized by plants in response to stressful stimuli, usually caused by infection. It is abundantly present in red wine, ports and sherries, red grapes, blueberries, peanuts, itadori tea, as well as hops, pistachios, and in grape and cranberry juices. The anti-hyperglycemic effects of resveratrol seem to be the result of an increased action of the glucose transporter in the cytoplasmic membrane. Studies on rats with streptozotocin-induced diabetes have demonstrated that the expression of the insulin-dependent glucose transporter, GLUT4, is increased after resveratrol ingestion. Also, resveratrol enhances adiponectin levels, which could be one of the potential mechanisms by which it improves insulin sensitivity. Another important observation is that resveratrol induces the secretion of the gut incretin hormone, glucagon-like peptide-1. Resveratrol is also reported to activate Sir2 (silent information regulatory 2), a SIRT1 homolog, thus mimicking the benefits of calorie restriction. It produces a wide variety of effects in mammalian cells, including activation of AMP-activated protein kinase, which is involved in some of the same metabolic pathways as SIRT1, which may influence other mechanisms via the involvement of nuclear factor kappa B (NF-κB). In the near future, resveratrol-based therapies with either resveratrol or its analogs that have better bioavailability could be useful in the treatment of diabetes and its complications, either alone or in combination with other anti-diabetic drugs.
Collapse
Affiliation(s)
- Natalia G Vallianou
- First Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece
| | | | - Christos Kazazis
- Honorary Lecturer, School of Medicine, University of Leicester, University Rd, Leicester, LE1 9HN, UK
| |
Collapse
|
194
|
Gillberg L, Jacobsen SC, Rönn T, Brøns C, Vaag A. PPARGC1A DNA methylation in subcutaneous adipose tissue in low birth weight subjects--impact of 5 days of high-fat overfeeding. Metabolism 2014; 63:263-71. [PMID: 24262291 DOI: 10.1016/j.metabol.2013.10.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/16/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Increased DNA methylation of the metabolic regulator peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) has been reported in skeletal muscle from type 2 diabetes (T2D) subjects and from low birth weight (LBW) subjects with an increased risk of T2D. High-fat overfeeding increases PPARGC1A DNA methylation in muscle in a birth weight dependent manner. However, PPARGC1A DNA methylation in subcutaneous adipose tissue (SAT) in LBW subjects has not previously been investigated. Our objective was to determine PPARGC1A DNA methylation and mRNA expression in basal and insulin-stimulated SAT from LBW and matched normal birth weight (NBW) subjects during control and high-fat overfeeding. MATERIALS/METHODS Nineteen young healthy men with LBW and 26 NBW controls were studied after both a 5-day high-fat overfeeding and a control diet in a randomized crossover setting. DNA methylation was assessed with bisulfite sequencing and mRNA expression with quantitative real-time PCR. RESULTS Following high-fat overfeeding, increased SAT PPARGC1A DNA methylation was observed in LBW subjects but not in NBW controls. Basal SAT PPARGC1A mRNA expression was unaffected by diet and similar in the two groups. However, LBW subjects showed an increased SAT PPARGC1A mRNA expression during insulin-stimulation. SAT PPARGC1A methylation correlated inversely with mRNA expression during insulin-stimulation. CONCLUSIONS The study adds to the increasing awareness of PPARGC1A DNA methylation being flexible and influenced by high-fat overfeeding in a birth weight dependent manner with muscle and fat responding differently. Further data are needed to understand the role of PPARGC1A DNA methylation in insulin resistance and developmental programming of T2D.
Collapse
Affiliation(s)
- Linn Gillberg
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark; Steno Diabetes Center, Niels Steensensvej 2, DK-2820 Gentofte, Denmark.
| | - Stine C Jacobsen
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark; Steno Diabetes Center, Niels Steensensvej 2, DK-2820 Gentofte, Denmark
| | - Tina Rönn
- Department of Clinical Sciences, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Charlotte Brøns
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark; Steno Diabetes Center, Niels Steensensvej 2, DK-2820 Gentofte, Denmark
| | - Allan Vaag
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark; Steno Diabetes Center, Niels Steensensvej 2, DK-2820 Gentofte, Denmark; Department of Clinical Sciences, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden; Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| |
Collapse
|
195
|
Sczelecki S, Besse-Patin A, Abboud A, Kleiner S, Laznik-Bogoslavski D, Wrann CD, Ruas JL, Haibe-Kains B, Estall JL. Loss of Pgc-1α expression in aging mouse muscle potentiates glucose intolerance and systemic inflammation. Am J Physiol Endocrinol Metab 2014; 306:E157-67. [PMID: 24280126 PMCID: PMC4073996 DOI: 10.1152/ajpendo.00578.2013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetes risk increases significantly with age and correlates with lower oxidative capacity in muscle. Decreased expression of peroxisome proliferator-activated receptor-γ coactivator-1α (Pgc-1α) and target gene pathways involved in mitochondrial oxidative phosphorylation are associated with muscle insulin resistance, but a causative role has not been established. We sought to determine whether a decline in Pgc-1α and oxidative gene expression occurs during aging and potentiates the development of age-associated insulin resistance. Muscle-specific Pgc-1α knockout (MKO) mice and wild-type littermate controls were aged for 2 yr. Genetic signatures of skeletal muscle (microarray and mRNA expression) and metabolic profiles (glucose homeostasis, mitochondrial metabolism, body composition, lipids, and indirect calorimetry) of mice were compared at 3, 12, and 24 mo of age. Microarray and gene set enrichment analysis highlighted decreased function of the electron transport chain as characteristic of both aging muscle and loss of Pgc-1α expression. Despite significant reductions in oxidative gene expression and succinate dehydrogenase activity, young mice lacking Pgc-1α in muscle had lower fasting glucose and insulin. Consistent with loss of oxidative capacity during aging, Pgc-1α and Pgc-1β expression were reduced in aged wild-type mouse muscle. Interestingly, the combination of age and loss of muscle Pgc-1α expression impaired glucose tolerance and led to increased fat mass, insulin resistance, and inflammatory markers in white adipose and liver tissues. Therefore, loss of Pgc-1α expression and decreased mitochondrial oxidative capacity contribute to worsening glucose tolerance and chronic systemic inflammation associated with aging.
Collapse
|
196
|
β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab 2014; 19:96-108. [PMID: 24411942 PMCID: PMC4017355 DOI: 10.1016/j.cmet.2013.12.003] [Citation(s) in RCA: 478] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/09/2013] [Accepted: 12/10/2013] [Indexed: 02/07/2023]
Abstract
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) regulates metabolic genes in skeletal muscle and contributes to the response of muscle to exercise. Muscle PGC-1α transgenic expression and exercise both increase the expression of thermogenic genes within white adipose. How the PGC-1α-mediated response to exercise in muscle conveys signals to other tissues remains incompletely defined. We employed a metabolomic approach to examine metabolites secreted from myocytes with forced expression of PGC-1α, and identified β-aminoisobutyric acid (BAIBA) as a small molecule myokine. BAIBA increases the expression of brown adipocyte-specific genes in white adipocytes and β-oxidation in hepatocytes both in vitro and in vivo through a PPARα-mediated mechanism, induces a brown adipose-like phenotype in human pluripotent stem cells, and improves glucose homeostasis in mice. In humans, plasma BAIBA concentrations are increased with exercise and inversely associated with metabolic risk factors. BAIBA may thus contribute to exercise-induced protection from metabolic diseases.
Collapse
|
197
|
Wu HH, Liu NJ, Yang Z, Tao XM, Du YP, Wang XC, Lu B, Zhang ZY, Hu RM, Wen J. Association and interaction analysis of PPARGC1A and serum uric acid on type 2 diabetes mellitus in Chinese Han population. Diabetol Metab Syndr 2014; 6:107. [PMID: 25302081 PMCID: PMC4190481 DOI: 10.1186/1758-5996-6-107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor gamma coactivator-1α (PPARGC1A/ PGC-1α) is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. The activity of PGC-1α or genetic variations in the gene encoding the enzyme may contribute to individual variations in mitochondrial function and insulin resistance or diabetes. The objective of this study was to assess the extent to which PPARGC1A (rs8192678) and serum uric acid (UA) and its interaction impact on T2DM susceptibility in Chinese Han population. METHOD We conducted a study in a cohort that included 1166 T2DM patients and 1135 controls, and was genotyped for the presence of the PPARGC1A rs8192678 polymorphisms. Genotyping was performed by iPLEX technology. The association between rs8192678 or UA and T2DM was assessed by univariate and multivariate logistic regression (MLR) analysis controlling for confounders. The interaction between rs8192678 and UA for T2DM susceptibility was also assessed by MLR analysis. RESULTS The generalized linear regression analysis failed to show an association between the PPARGC1A rs8192678 polymorphisms and T2DM. Interestingly, the present study provided data suggesting that the minor A-allele of PPARGC1A (rs8192678) had a protective effect against T2DM in subjects with higher level of UA (ORint =1.50 95% CI: 1.06-2.12 for allele and P = 0.02, ORint =1.63 95% CI: 1.17-2.26 for genotype and P = 0.004). CONCLUSION The combination of higher level of UA and PPARGC1A (rs8192678) was an independent predictor for T2DM.
Collapse
Affiliation(s)
- Hui-Hui Wu
- />Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing’an District, Shanghai 200040 China
| | - Nai-Jia Liu
- />Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing’an District, Shanghai 200040 China
| | - Zhen Yang
- />Department of Endocrinology and Metabolism, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, 200020 China
| | - Xiao-Ming Tao
- />Department of Endocrinology and Metabolism, Hua Dong Hospital, Fudan University, Shanghai, 200040 China
| | - Yan-Ping Du
- />Department of Endocrinology and Metabolism, Hua Dong Hospital, Fudan University, Shanghai, 200040 China
| | - Xuan-Chun Wang
- />Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing’an District, Shanghai 200040 China
| | - Bin Lu
- />Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing’an District, Shanghai 200040 China
| | - Zhao-Yun Zhang
- />Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing’an District, Shanghai 200040 China
| | - Ren-Ming Hu
- />Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing’an District, Shanghai 200040 China
| | - Jie Wen
- />Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing’an District, Shanghai 200040 China
- />Department of Endocrinology and Metabolism, Jing’an District Center Hospital of Shanghai, Shanghai, 200040 China
| |
Collapse
|
198
|
Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 2013; 53:124-44. [PMID: 24362249 DOI: 10.1016/j.plipres.2013.12.001] [Citation(s) in RCA: 548] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022]
Abstract
In mammals, excess energy is stored primarily as triglycerides, which are mobilized when energy demands arise. This review mainly focuses on the role of long chain fatty acids (LCFAs) in regulating energy metabolism as ligands of peroxisome proliferator-activated receptors (PPARs). PPAR-alpha expressed primarily in liver is essential for metabolic adaptation to starvation by inducing genes for beta-oxidation and ketogenesis and by downregulating energy expenditure through fibroblast growth factor 21. PPAR-delta is highly expressed in skeletal muscle and induces genes for LCFA oxidation during fasting and endurance exercise. PPAR-delta also regulates glucose metabolism and mitochondrial biogenesis by inducing FOXO1 and PGC1-alpha. Genes targeted by PPAR-gamma in adipocytes suggest that PPAR-gamma senses incoming non-esterified LCFAs and induces the pathways to store LCFAs as triglycerides. Adiponectin, another important target of PPAR-gamma may act as a spacer between adipocytes to maintain their metabolic activity and insulin sensitivity. Another topic of this review is effects of skin LCFAs on energy metabolism. Specific LCFAs are required for the synthesis of skin lipids, which are essential for water barrier and thermal insulation functions of the skin. Disturbance of skin lipid metabolism often causes apparent resistance to developing obesity at the expense of normal skin function.
Collapse
Affiliation(s)
- Manabu T Nakamura
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA.
| | - Barbara E Yudell
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Juan J Loor
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
199
|
Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology. Semin Immunopathol 2013; 36:27-53. [DOI: 10.1007/s00281-013-0406-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/29/2013] [Indexed: 02/06/2023]
|
200
|
Holloszy JO. Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Compr Physiol 2013; 1:921-40. [PMID: 23737207 DOI: 10.1002/cphy.c100052] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endurance exercise training can induce large increases mitochondria and the GLUT4 isoform of the glucose transporter in skeletal muscle. For a long time after the discovery in the 1960s that exercise results in an increase in muscle mitochondria, there was no progress in elucidation of the mechanisms involved. The reason for this lack of progress was that nothing was known regarding how expression of the genes-encoding mitochondrial proteins is coordinately regulated. This situation changed rapidly after discovery of transcription factors that control transcription of genes-encoding mitochondrial proteins and, most importantly, the discovery of peroxisome proliferator-gamma coactivator-1α (PGC-1α). This transcription coactivator binds to and activates transcription factors that regulate transcription of genes-encoding mitochondrial proteins. Thus, PGC-1α activates and coordinates mitochondrial biogenesis. It is now known that exercise rapidly activates and induces increased expression of PGC-1α. The exercise-generated signals that lead to PGC-1α activation and increased expression are the increases in cytosolic Ca(2+) and decreases in ATP and creatine phosphate (∼P). Ca(2+) mediates its effect by activating CAMKII, while the decrease in ∼P mediates its effect via activation of AMPK. Expression of the GLUT4 isoform of the glucose transporter is regulated in parallel with mitochondrial biogenesis via the same signaling pathways. This review describes what is known regarding the regulation of mitochondrial biogenesis and GLUT4 expression by exercise. A major component of this review deals with the physiological and metabolic consequences of the exercise-induced increase in mitochondria and GLUT4.
Collapse
Affiliation(s)
- John O Holloszy
- Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|