151
|
Stinkens R, Goossens GH, Jocken JWE, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 2015; 16:715-57. [PMID: 26179344 DOI: 10.1111/obr.12298] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 12/15/2022]
Abstract
Disturbances in fatty acid metabolism in adipose tissue, liver, skeletal muscle, gut and pancreas play an important role in the development of insulin resistance, impaired glucose metabolism and type 2 diabetes mellitus. Alterations in diet composition may contribute to prevent and/or reverse these disturbances through modulation of fatty acid metabolism. Besides an increased fat mass, adipose tissue dysfunction, characterized by an altered capacity to store lipids and an altered secretion of adipokines, may result in lipid overflow, systemic inflammation and excessive lipid accumulation in non-adipose tissues like liver, skeletal muscle and the pancreas. These impairments together promote the development of impaired glucose metabolism, insulin resistance and type 2 diabetes mellitus. Furthermore, intrinsic functional impairments in either of these organs may contribute to lipotoxicity and insulin resistance. The present review provides an overview of fatty acid metabolism-related pathways in adipose tissue, liver, skeletal muscle, pancreas and gut, which can be targeted by diet or food components, thereby improving glucose metabolism.
Collapse
Affiliation(s)
- R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
152
|
Lei L, Li YM, Wang X, Liu Y, Ma KY, Wang L, Man SW, Zhang C, Huang Y, Chen ZY. Plasma triacylglycerol-lowering activity of citrus polymethoxylated flavones is mediated by modulating the genes involved in lipid metabolism in hamsters. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lin Lei
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT Hong Kong P. R. China
| | - Yuk Man Li
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT Hong Kong P. R. China
| | - Xiaobo Wang
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT Hong Kong P. R. China
| | - Yuwei Liu
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT Hong Kong P. R. China
| | - Ka Ying Ma
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT Hong Kong P. R. China
| | - Lijun Wang
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT Hong Kong P. R. China
| | - Sun Wa Man
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT Hong Kong P. R. China
| | - Chengnan Zhang
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT Hong Kong P. R. China
| | - Yu Huang
- School of Biomedical Sciences; The Chinese University of Hong Kong; Shatin NT Hong Kong P. R. China
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT Hong Kong P. R. China
| |
Collapse
|
153
|
Liu W, Cao H, Yan J, Huang R, Ying H. 'Micro-managers' of hepatic lipid metabolism and NAFLD. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015. [PMID: 26198708 DOI: 10.1002/wrna.1295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is tightly associated with insulin resistance, type 2 diabetes, and obesity. As the defining feature of NAFLD, hepatic steatosis develops as a consequence of metabolic dysregulation of de novo lipogenesis, fatty acid uptake, fatty acid oxidation, and triglycerides (TG) export. MicroRNAs (miRNAs), a class of endogenous small noncoding RNAs, play critical roles in various biological processes through regulating gene expression at post-transcriptional level. A growing body of evidence suggests that miRNAs not only maintain hepatic TG homeostasis under physiological condition, but also participate in the pathogenesis of NAFLD. In this review, we focus on the current knowledge of the hepatic miRNAs associated with the development of liver steatosis and the regulatory mechanisms involved, which might be helpful to further understand the nature of NAFLD and provide a sound scientific basis for the drug development.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, China
| | - Hongchao Cao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yan
- Model Animal Research Center, and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China
| | - Ruimin Huang
- SIBS (Institute of Health Sciences)-Changhai Hospital Joint Center for Translational Research, Institutes for Translational Research (CAS-SMMU), Shanghai, China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| |
Collapse
|
154
|
Yamashita H. Biological Function of Acetic Acid–Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats. Crit Rev Food Sci Nutr 2015; 56 Suppl 1:S171-5. [DOI: 10.1080/10408398.2015.1045966] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
155
|
Garcia GM, Oliveira LT, Pitta IDR, de Lima MDCA, Vilela JMC, Andrade MS, Abdalla DSP, Mosqueira VCF. Improved nonclinical pharmacokinetics and biodistribution of a new PPAR pan-agonist and COX inhibitor in nanocapsule formulation. J Control Release 2015; 209:207-18. [DOI: 10.1016/j.jconrel.2015.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 04/16/2015] [Accepted: 04/25/2015] [Indexed: 01/21/2023]
|
156
|
Jan M, Medh JD. ShRNA-mediated gene silencing of lipoprotein lipase improves insulin sensitivity in L6 skeletal muscle cells. Biochem Biophys Res Commun 2015; 462:33-7. [PMID: 25931001 DOI: 10.1016/j.bbrc.2015.04.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 12/25/2022]
Abstract
In previous studies, we demonstrated that down-regulation of lipoprotein lipase in L6 muscle cells increased insulin-stimulated glucose uptake. In the current study, we used RNA interference technology to silence the LPL gene in L6 cells and generate a LPL-knock-down (LPL-KD) cell line. ShRNA transfected cells showed a 88% reduction in the level of LPL expression. The metabolic response to insulin was compared in wild-type (WT) and LPL-KD cells. Insulin-stimulated glycogen synthesis and glucose oxidation were respectively, 2.4-fold and 2.6-fold greater in LPL-KD cells compared to WT cells. Oxidation of oleic acid was reduced by 50% in LPL-KD cells compared to WT cells even in the absence of insulin. The contribution of LPL in regulating fuel metabolism was confirmed by adding back purified LPL to the culture media of LPL-KD cells. The presence of 10 μg/mL LPL resulted in LPL-KD cells reverting back to lower glycogen synthesis and glucose oxidation and increased fatty acid oxidation. Thus, LPL depletion appeared to mimic the action of insulin. These finding suggests an inverse correlation between muscle LPL levels and insulin-stimulated fuel homeostasis.
Collapse
Affiliation(s)
- Majib Jan
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262, USA
| | - Jheem D Medh
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262, USA.
| |
Collapse
|
157
|
Tong X, Zhang D, Arthurs B, Li P, Durudogan L, Gupta N, Yin L. Palmitate Inhibits SIRT1-Dependent BMAL1/CLOCK Interaction and Disrupts Circadian Gene Oscillations in Hepatocytes. PLoS One 2015; 10:e0130047. [PMID: 26075729 PMCID: PMC4468094 DOI: 10.1371/journal.pone.0130047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/15/2015] [Indexed: 12/12/2022] Open
Abstract
Elevated levels of serum saturated fatty acid palmitate have been shown to promote insulin resistance, increase cellular ROS production, and trigger cell apoptosis in hepatocytes during the development of obesity. However, it remains unclear whether palmitate directly impacts the circadian clock in hepatocytes, which coordinates nutritional inputs and hormonal signaling with downstream metabolic outputs. Here we presented evidence that the molecular clock is a novel target of palmitate in hepatocytes. Palmitate exposure at low dose inhibits the molecular clock activity and suppresses the cyclic expression of circadian targets including Dbp, Nr1d1 and Per2 in hepatocytes. Palmitate treatment does not seem to alter localization or reduce protein expression of BMAL1 and CLOCK, the two core components of the molecular clock in hepatocytes. Instead, palmitate destabilizes the protein-protein interaction between BMAL1-CLOCK in a dose and time-dependent manner. Furthermore, we showed that SIRT1 activators could reverse the inhibitory action of palmitate on BMAL1-CLOCK interaction and the clock gene expression, whereas inhibitors of NAD synthesis mimic the palmitate effects on the clock function. In summary, our findings demonstrated that palmitate inhibits the clock function by suppressing SIRT1 function in hepatocytes.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Deqiang Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Blake Arthurs
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Pei Li
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Leigh Durudogan
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Neil Gupta
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
158
|
Berlanga A, Guiu-Jurado E, Porras JA, Aragonès G, Auguet T. [Role of metabolic lipases and lipotoxicity in the development of non-alcoholic steatosis and non-alcoholic steatohepatitis]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2015; 28:47-61. [PMID: 26049666 DOI: 10.1016/j.arteri.2015.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disease in developed countries, covering a spectrum of pathological conditions ranging from single steatosis to non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. Its pathogenesis has been often interpreted by the "double-hit" hypothesis, where the lipid accumulation in the liver is followed by proinflammatory mediators inducing inflammation, hepatocellular injury and fibrosis. Nowadays, a more complex model suggests that free fatty acids and their metabolites could be the true lipotoxic agents that contribute to the development of NAFLD and hepatic insulin resistance, suggesting a central role for metabolic lipases in that process.
Collapse
Affiliation(s)
- Alba Berlanga
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España
| | - Esther Guiu-Jurado
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España
| | - José Antonio Porras
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España; Servicio de Medicina Interna, Hospital Universitario Joan XXIII, Tarragona, España
| | - Gemma Aragonès
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España
| | - Teresa Auguet
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España; Servicio de Medicina Interna, Hospital Universitario Joan XXIII, Tarragona, España.
| |
Collapse
|
159
|
Asrih M, Altirriba J, Rohner-Jeanrenaud F, Jornayvaz FR. Ketogenic Diet Impairs FGF21 Signaling and Promotes Differential Inflammatory Responses in the Liver and White Adipose Tissue. PLoS One 2015; 10:e0126364. [PMID: 25973847 PMCID: PMC4431718 DOI: 10.1371/journal.pone.0126364] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/01/2015] [Indexed: 12/25/2022] Open
Abstract
Background/Hypothesis Beside its beneficial effects on weight loss, ketogenic diet (KD) causes dyslipidemia, a pro-inflammatory state involved in the development of hepatic steatosis, glucose intolerance and insulin resistance, although the latter is still being debated. Additionally, KD is known to increase fibroblast growth factor 21 (FGF21) plasma levels. However, FGF21 cannot initiate its beneficial actions on metabolism in these conditions. We therefore hypothesized and tested in the present study that KD may impair FGF21 signaling. Methods/Results Using indirect calorimetry, we found that KD-fed mice exhibited higher energy expenditure than regular chow (RC)-fed mice associated with increased Ucp1 levels in white adipose tissue (WAT), along with increased plasma FGF21 levels. We then assessed the effect of KD on FGF21 signaling in both the liver and WAT. We found that Fgfr4 and Klb (β-klotho) were downregulated in the liver, while Fgfr1 was downregulated in WAT of KD-fed mice. Because inflammation could be one of the mechanisms linking KD to impaired FGF21 signaling, we measured the expression levels of inflammatory markers and macrophage accumulation in WAT and liver and found an increased inflammation and macrophage accumulation in the liver, but surprisingly, a reduction of inflammation in WAT.We also showed that KD enhances lipid accumulation in the liver, which may explain hepatic inflammation and impaired Fgfr4 and Klb expression. In contrast, import of lipids from the circulation was significantly reduced in WAT of KD-fed mice, as suggested by a downregulation of Lpl and Cd36. This was further associated with reduced inflammation in WAT. Conclusion Altogether, these results indicate that KD could be beneficial for a given tissue but deleterious for another.
Collapse
Affiliation(s)
- Mohamed Asrih
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva, 14, Switzerland
| | - Jordi Altirriba
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva, 14, Switzerland
| | - Françoise Rohner-Jeanrenaud
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva, 14, Switzerland
| | - François R. Jornayvaz
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva, 14, Switzerland
- * E-mail:
| |
Collapse
|
160
|
Yu N, Barros SP, Zhang S, Moss KL, Phillips ST, Offenbacher S. Insulin Response Genes in Different Stages of Periodontal Disease. J Dent Res 2015; 94:194S-200S. [PMID: 25924856 DOI: 10.1177/0022034515584384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bacterial infections are known to alter glucose metabolism within tissues via mechanisms of inflammation. We conducted this study to examine whether insulin response genes are differentially expressed in gingival tissues, comparing samples from experimental gingivitis and periodontitis subjects to those from healthy individuals. Total RNA was extracted from gingival biopsies from 26 participants: 8 periodontally healthy, 9 experimental gingivitis, and 9 periodontitis subjects. Gene expression patterns were evaluated with a polymerase chain reaction array panel to examine 84 candidate genes involved with glucose metabolism, insulin resistance, and obesity. Array data were evaluated with a t test adjusted by the false discover rate (P < 0.05), and ingenuity pathway analysis was performed for statistical testing of pathways. Although tissue samples were not sufficient to enable protein quantification, we confirmed the upregulation of the key gene using lipopolysaccharide-stimulated primary gingival epithelial cells by Western blot. The mRNA expression patterns of genes that are associated with insulin response and glucose metabolism are markedly different in experimental gingivitis subjects compared with healthy controls. Thirty-two genes are upregulated significantly by at least 2-fold, adjusted for false discover rate (P < 0.05). Periodontitis subjects show similar but attenuated changes in gene expression patterns, and no genes meet the significance criteria. Ingenuity pathway analysis demonstrates significant activation of the carbohydrate metabolism network in experimental gingivitis but not in periodontitis. G6PD protein increases in response to lipopolysaccharide stimulation in primary gingival epithelial cells, which is in the same direction as upregulated mRNA in tissues. Acute gingival inflammation may be associated with tissue metabolism changes, but these changes are not evident in chronic periodontitis. This study suggests that acute gingival inflammation may induce localized changes that modify tissue insulin/glucose metabolism.
Collapse
Affiliation(s)
- N Yu
- Center for Oral and Systemic Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Oral Biology Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S P Barros
- Center for Oral and Systemic Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S Zhang
- Center for Oral and Systemic Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - K L Moss
- Center for Oral and Systemic Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S T Phillips
- Center for Oral and Systemic Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S Offenbacher
- Center for Oral and Systemic Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
161
|
Chan SMH, Zeng XY, Sun RQ, Jo E, Zhou X, Wang H, Li S, Xu A, Watt MJ, Ye JM. Fenofibrate insulates diacylglycerol in lipid droplet/ER and preserves insulin signaling transduction in the liver of high fat fed mice. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1511-9. [PMID: 25906681 DOI: 10.1016/j.bbadis.2015.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/27/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
Hepatic steatosis is often associated with insulin resistance as a hallmark of the metabolic syndrome in the liver. The present study investigated the effects of PPARα activation induced by fenofibrate (FB) on the relationship of insulin resistance and hepatic steatosis in mice fed a high-fat (HF) diet, which increases lipid influx into the liver. Mice were fed HF diet to induce insulin resistance and hepatic steatosis with or without FB. FB activated PPARα and ameliorated HF diet-induced glucose intolerance and hepatic insulin resistance without altering either hepatic steatosis or inflammation signaling (JNK or IKK). Interestingly, FB treatment simultaneously increased fatty acid (FA) synthesis (50%) and oxidation (66%, both p<0.01) into intermediate lipid metabolites, suggesting a FA oxidation-synthesis cycling in operation. Associated with these effects, diacylglycerols (DAGs) were sequestered within the lipid droplet/ER compartment, thus reducing their deposition in the cellular membrane, which is known to impair insulin signal transduction. These findings suggest that the reduction in membrane DAGs (rather than total hepatic steatosis) may be critical for the protection by fenofibrate-induced PPARα activation against hepatic insulin resistance induced by dietary fat.
Collapse
Affiliation(s)
- Stanley M H Chan
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Xiao-Yi Zeng
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ruo-Qiong Sun
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Eunjung Jo
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Xiu Zhou
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Hao Wang
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Songpei Li
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Matthew J Watt
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Ji-Ming Ye
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
162
|
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a chronic, progressive neurodegenerative disease that manifests clinically as a slow global decline in cognitive function, including deterioration of memory, reasoning, abstraction, language and emotional stability, culminating in a patient with end-stage disease, totally dependent on custodial care. With a global ageing population, it is predicted that there will be a marked increase in the number of people diagnosed with AD in the coming decades, making this a significant challenge to socio-economic policy and aged care. Global estimates put a direct cost for treating and caring for people with dementia at $US604 billion, an estimate that is expected to increase markedly. According to recent global statistics, there are 35.6 million dementia sufferers, the number of which is predicted to double every 20 years, unless strategies are implemented to reduce this burden. Currently, there is no cure for AD; while current therapies may temporarily ameliorate symptoms, death usually occurs approximately 8 years after diagnosis. A greater understanding of AD pathophysiology is paramount, and attention is now being directed to the discovery of biomarkers that may not only facilitate pre-symptomatic diagnosis, but also provide an insight into aberrant biochemical pathways that may reveal potential therapeutic targets, including nutritional ones. AD pathogenesis develops over many years before clinical symptoms appear, providing the opportunity to develop therapy that could slow or stop disease progression well before any clinical manifestation develops.
Collapse
|
163
|
Walton RG, Zhu B, Unal R, Spencer M, Sunkara M, Morris AJ, Charnigo R, Katz WS, Daugherty A, Howatt DA, Kern PA, Finlin BS. Increasing adipocyte lipoprotein lipase improves glucose metabolism in high fat diet-induced obesity. J Biol Chem 2015; 290:11547-56. [PMID: 25784555 DOI: 10.1074/jbc.m114.628487] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Indexed: 01/26/2023] Open
Abstract
Lipid accumulation in liver and skeletal muscle contributes to co-morbidities associated with diabetes and obesity. We made a transgenic mouse in which the adiponectin (Adipoq) promoter drives expression of lipoprotein lipase (LPL) in adipocytes to potentially increase adipose tissue lipid storage. These mice (Adipoq-LPL) have improved glucose and insulin tolerance as well as increased energy expenditure when challenged with a high fat diet (HFD). To identify the mechanism(s) involved, we determined whether the Adipoq-LPL mice diverted dietary lipid to adipose tissue to reduce peripheral lipotoxicity, but we found no evidence for this. Instead, characterization of the adipose tissue of the male mice after HFD challenge revealed that the mRNA levels of peroxisome proliferator-activated receptor-γ (PPARγ) and a number of PPARγ-regulated genes were higher in the epididymal fat pads of Adipoq-LPL mice than control mice. This included adiponectin, whose mRNA levels were increased, leading to increased adiponectin serum levels in the Adipoq-LPL mice. In many respects, the adipose phenotype of these animals resembles thiazolidinedione treatment except for one important difference, the Adipoq-LPL mice did not gain more fat mass on HFD than control mice and did not have increased expression of genes in adipose such as glycerol kinase, which are induced by high affinity PPAR agonists. Rather, there was selective induction of PPARγ-regulated genes such as adiponectin in the adipose of the Adipoq-LPL mice, suggesting that increasing adipose tissue LPL improves glucose metabolism in diet-induced obesity by improving the adipose tissue phenotype. Adipoq-LPL mice also have increased energy expenditure.
Collapse
Affiliation(s)
- R Grace Walton
- From the Department of Medicine, Division of Endocrinology, Barnstable Brown Diabetes and Obesity Center
| | - Beibei Zhu
- From the Department of Medicine, Division of Endocrinology, Barnstable Brown Diabetes and Obesity Center
| | - Resat Unal
- the Department of Molecular Biology and Genetics, Faculty of Life Sciences, Mugla Sitki Kocman University, 48000 Mugla, Turkey
| | - Michael Spencer
- From the Department of Medicine, Division of Endocrinology, Barnstable Brown Diabetes and Obesity Center
| | | | | | | | - Wendy S Katz
- Department of Pharmacology and Nutritional Sciences, and
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky 40536 and
| | - Deborah A Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky 40536 and
| | - Philip A Kern
- From the Department of Medicine, Division of Endocrinology, Barnstable Brown Diabetes and Obesity Center
| | - Brian S Finlin
- From the Department of Medicine, Division of Endocrinology, Barnstable Brown Diabetes and Obesity Center,
| |
Collapse
|
164
|
Gao S, McMillan RP, Zhu Q, Lopaschuk GD, Hulver MW, Butler AA. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Mol Metab 2015; 4:310-24. [PMID: 25830094 PMCID: PMC4354928 DOI: 10.1016/j.molmet.2015.01.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 12/11/2022] Open
Abstract
Objective The peptide hormone adropin regulates fuel selection preferences in skeletal muscle under fed and fasted conditions. Here, we investigated whether adropin treatment can ameliorate the dysregulation of fuel substrate metabolism, and improve aspects of glucose homeostasis in diet-induced obesity (DIO) with insulin resistance. Methods DIO C57BL/6 mice maintained on a 60% kcal fat diet received five intraperitoneal (i.p.) injections of the bioactive peptide adropin34-76 (450 nmol/kg/i.p.). Following treatment, glucose tolerance and whole body insulin sensitivity were assessed and indirect calorimetry was employed to analyze whole body substrate oxidation preferences. Biochemical assays performed in skeletal muscle samples analyzed insulin signaling action and substrate oxidation. Results Adropin treatment improved glucose tolerance, enhanced insulin action and augmented metabolic flexibility towards glucose utilization. In muscle, adropin treatment increased insulin-induced Akt phosphorylation and cell-surface expression of GLUT4 suggesting sensitization of insulin signaling pathways. Reduced incomplete fatty acid oxidation and increased CoA/acetyl-CoA ratio suggested improved mitochondrial function. The underlying mechanisms appear to involve suppressions of carnitine palmitoyltransferase-1B (CPT-1B) and CD36, two key enzymes in fatty acid utilization. Adropin treatment activated pyruvate dehydrogenase (PDH), a rate-limiting enzyme in glucose oxidation, and downregulated PDH kinase-4 (PDK-4) that inhibits PDH. Along with these changes, adropin treatment downregulated peroxisome proliferator-activated receptor-gamma coactivator-1α that regulates expression of Cpt1b, Cd36 and Pdk4. Conclusions Adropin treatment of DIO mice enhances glucose tolerance, ameliorates insulin resistance and promotes preferential use of carbohydrate over fat in fuel selection. Skeletal muscle is a key organ in mediating adropin's whole-body effects, sensitizing insulin signaling pathways and altering fuel selection preference to favor glucose while suppressing fat oxidation.
Collapse
Affiliation(s)
- Su Gao
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL, USA
| | - Ryan P. McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Qingzhang Zhu
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL, USA
| | - Gary D. Lopaschuk
- Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Matthew W. Hulver
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Andrew A. Butler
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL, USA
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO, USA
- Corresponding author. Pharmacological & Physiological Science, Saint Louis University School of Medicine, 1402 S Grand Blvd, St Louis, MO 63104, USA. Tel.: +1 314 977 6425; fax: +1 314 977 6410.
| |
Collapse
|
165
|
A concise review of non-alcoholic fatty liver disease. Atherosclerosis 2015; 239:192-202. [PMID: 25617860 DOI: 10.1016/j.atherosclerosis.2015.01.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome and the incidence of which is rising rapidly due to the increasing epidemic of obesity in both adults and children. The initial accumulation of fat followed by subsequent inflammation is central to the development of liver damage, and is critically influenced by host factors including age, gender, presence of diabetes, genetic polymorphisms and more recently by the gut microbiome. An increasing body of data suggest that NAFLD is also an independent risk factor of cardiovascular disease, which remains the commonest cause of mortality in such patients. This review focusses on the pathogenesis of NAFLD, and the evolution of new approaches to the management and treatment of NAFLD.
Collapse
|
166
|
Salvadó MJ, Casanova E, Fernández-Iglesias A, Arola L, Bladé C. Roles of proanthocyanidin rich extracts in obesity. Food Funct 2015; 6:1053-71. [DOI: 10.1039/c4fo01035c] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity is a multifactorial disorder involving an abnormal or excessive amount of body fat.
Collapse
Affiliation(s)
- M. Josepa Salvadó
- Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- Tarragona
- Spain
| | - Ester Casanova
- Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- Tarragona
- Spain
| | | | - Lluis Arola
- Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- Tarragona
- Spain
| | - Cinta Bladé
- Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- Tarragona
- Spain
| |
Collapse
|
167
|
Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Prog Lipid Res 2015; 57:40-54. [DOI: 10.1016/j.plipres.2014.12.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/30/2014] [Accepted: 12/18/2014] [Indexed: 01/12/2023]
|
168
|
Camporez JPG, Kanda S, Petersen MC, Jornayvaz FR, Samuel VT, Bhanot S, Petersen KF, Jurczak MJ, Shulman GI. ApoA5 knockdown improves whole-body insulin sensitivity in high-fat-fed mice by reducing ectopic lipid content. J Lipid Res 2014; 56:526-536. [PMID: 25548259 PMCID: PMC4340301 DOI: 10.1194/jlr.m054080] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
ApoA5 has a critical role in the regulation of plasma TG concentrations. In order to determine whether ApoA5 also impacts ectopic lipid deposition in liver and skeletal muscle, as well as tissue insulin sensitivity, we treated mice with an antisense oligonucleotide (ASO) to decrease hepatic expression of ApoA5. ASO treatment reduced ApoA5 protein expression in liver by 60–70%. ApoA5 ASO-treated mice displayed approximately 3-fold higher plasma TG concentrations, which were associated with decreased plasma TG clearance. Furthermore, ApoA5 ASO-treated mice fed a high-fat diet (HFD) exhibited reduced liver and skeletal muscle TG uptake and reduced liver and muscle TG and diacylglycerol (DAG) content. HFD-fed ApoA5 ASO-treated mice were protected from HFD-induced insulin resistance, as assessed by hyperinsulinemic-euglycemic clamps. This protection could be attributed to increases in both hepatic and peripheral insulin responsiveness associated with decreased DAG activation of protein kinase C (PKC)-ε and PKCθ in liver and muscle, respectively, and increased insulin-stimulated AKT2 phosphorylation in these tissues. In summary, these studies demonstrate a novel role for ApoA5 as a modulator of susceptibility to diet-induced liver and muscle insulin resistance through regulation of ectopic lipid accumulation in liver and skeletal muscle.
Collapse
Affiliation(s)
| | - Shoichi Kanda
- Departments of Internal Medicine Yale University School of Medicine, New Haven, CT
| | - Max C Petersen
- Departments of Internal Medicine Yale University School of Medicine, New Haven, CT; Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - François R Jornayvaz
- Departments of Internal Medicine Yale University School of Medicine, New Haven, CT
| | - Varman T Samuel
- Departments of Internal Medicine Yale University School of Medicine, New Haven, CT
| | | | - Kitt Falk Petersen
- Departments of Internal Medicine Yale University School of Medicine, New Haven, CT
| | - Michael J Jurczak
- Departments of Internal Medicine Yale University School of Medicine, New Haven, CT
| | - Gerald I Shulman
- Departments of Internal Medicine Yale University School of Medicine, New Haven, CT; Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
169
|
Abstract
The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
170
|
Intrinsic and extrinsic regulation of cardiac lipoprotein lipase following diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:163-71. [PMID: 25463481 DOI: 10.1016/j.bbalip.2014.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
Cardiac lipoprotein lipase (LPL) is a pivotal enzyme controlling heart metabolism by providing the majority of fatty acids required by this organ. From activation in cardiomyocytes to secretion to the vascular lumen, cardiac LPL is regulated by multiple pathways, which are altered during diabetes. Hence, dimerization/activation of LPL is modified following diabetes, a process controlled by lipase maturation factor 1. The role of AMP-activated protein kinase, protein kinase D, and heparan sulfate proteoglycans, intrinsic factors that regulate the intracellular transport of LPL is also shifted, and is discussed. More recent studies have identified several exogenous factors released from endothelial cells (EC) and adipose tissue that are required for proper functioning of LPL. In response to hyperglycemia, both active and latent heparanase are released from EC to facilitate LPL secretion. Diabetes also increased the expression of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in EC, which mediates the transport of LPL across EC. Angiopoietin-like protein 4 secreted from the adipose tissue has the potential to reduce coronary LPL activity. Knowledge of these intrinsic and extrinsic factors could be used develop therapeutic targets to normalize LPL function, and maintain cardiac energy homeostasis after diabetes.
Collapse
|
171
|
Differential effects of angiopoietin-like 4 in brain and muscle on regulation of lipoprotein lipase activity. Mol Metab 2014; 4:144-50. [PMID: 25685701 PMCID: PMC4314546 DOI: 10.1016/j.molmet.2014.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Lipoprotein lipase (LPL) is a key regulator of circulating triglyceride rich lipoprotein hydrolysis. In brain LPL regulates appetite and energy expenditure. Angiopoietin-like 4 (Angptl4) is a secreted protein that inhibits LPL activity and, thereby, triglyceride metabolism, but the impact of Angptl4 on central lipid metabolism is unknown. METHODS We induced type 1 diabetes by streptozotocin (STZ) in whole-body Angptl4 knockout mice (Angptl4(-/-) ) and their wildtype littermates to study the role of Angptl4 in central lipid metabolism. RESULTS In type 1 (streptozotocin, STZ) and type 2 (ob/ob) diabetic mice, there is a ~2-fold increase of Angptl4 in the hypothalamus and skeletal muscle. Intracerebroventricular insulin injection into STZ mice at levels which have no effect on plasma glucose restores Angptl4 expression in hypothalamus. Isolation of cells from the brain reveals that Angptl4 is produced in glia, whereas LPL is present in both glia and neurons. Consistent with the in vivo experiment, in vitro insulin treatment of glial cells causes a 50% reduction of Angptl4 and significantly increases LPL activity with no change in LPL expression. In Angptl4(-/-) mice, LPL activity in skeletal muscle is increased 3-fold, and this is further increased by STZ-induced diabetes. By contrast, Angptl4(-/-) mice show no significant difference in LPL activity in hypothalamus or brain independent of diabetic and nutritional status. CONCLUSION Thus, Angptl4 in brain is produced in glia and regulated by insulin. However, in contrast to the periphery, central Angptl4 does not regulate LPL activity, but appears to participate in the metabolic crosstalk between glia and neurons.
Collapse
Key Words
- ARC, arcuate nucleus
- AgRP, agouti-related protein
- Angptl4
- Angptl4, angiopoietin-like 4
- CART, cocaine-and-amphetamine-regulated transcript
- CNS, central nervous system
- FFA, free fatty acid
- LPL, lipoprotein lipase
- Lipid metabolism
- Lipoprotein lipase
- NPY, neuropeptide-Y
- POMC, pro-opiomelanocortin
- STZ, streptozotocin
- TG, triglyceride
Collapse
|
172
|
Ageing, adipose tissue, fatty acids and inflammation. Biogerontology 2014; 16:235-48. [PMID: 25367746 DOI: 10.1007/s10522-014-9536-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022]
Abstract
A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults.
Collapse
|
173
|
Li Y, He PP, Zhang DW, Zheng XL, Cayabyab FS, Yin WD, Tang CK. Lipoprotein lipase: from gene to atherosclerosis. Atherosclerosis 2014; 237:597-608. [PMID: 25463094 DOI: 10.1016/j.atherosclerosis.2014.10.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/13/2014] [Accepted: 10/13/2014] [Indexed: 01/21/2023]
Abstract
Lipoprotein lipase (LPL) is a key enzyme in lipid metabolism and responsible for catalyzing lipolysis of triglycerides in lipoproteins. LPL is produced mainly in adipose tissue, skeletal and heart muscle, as well as in macrophage and other tissues. After synthesized, it is secreted and translocated to the vascular lumen. LPL expression and activity are regulated by a variety of factors, such as transcription factors, interactive proteins and nutritional state through complicated mechanisms. LPL with different distributions may exert distinct functions and have diverse roles in human health and disease with close association with atherosclerosis. It may pose a pro-atherogenic or an anti-atherogenic effect depending on its locations. In this review, we will discuss its gene, protein, synthesis, transportation and biological functions, and then focus on its regulation and relationship with atherosclerosis and potential underlying mechanisms. The goal of this review is to provide basic information and novel insight for further studies and therapeutic targets.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China; School of Nursing, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Fracisco S Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wei-Dong Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
174
|
Affiliation(s)
- Gerald I Shulman
- From the Howard Hughes Medical Institute and the Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
175
|
Rodriguez S, Ellis JM, Wolfgang MJ. Chemical-genetic induction of Malonyl-CoA decarboxylase in skeletal muscle. BMC BIOCHEMISTRY 2014; 15:20. [PMID: 25152047 PMCID: PMC4236586 DOI: 10.1186/1471-2091-15-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/13/2014] [Indexed: 01/02/2023]
Abstract
Background Defects in skeletal muscle fatty acid oxidation have been implicated in the etiology of insulin resistance. Malonyl-CoA decarboxylase (MCD) has been a target of investigation because it reduces the concentration of malonyl-CoA, a metabolite that inhibits fatty acid oxidation. The in vivo role of muscle MCD expression in the development of insulin resistance remains unclear. Results To determine the role of MCD in skeletal muscle of diet induced obese and insulin resistant mouse models we generated mice expressing a muscle specific transgene for MCD (Tg-fMCDSkel) stabilized posttranslationally by the small molecule, Shield-1. Tg-fMCDSkel and control mice were placed on either a high fat or low fat diet for 3.5 months. Obese and glucose intolerant as well as lean control Tg-fMCDSkel and nontransgenic control mice were treated with Shield-1 and changes in their body weight and insulin sensitivity were determined upon induction of MCD. Inducing MCD activity >5-fold in skeletal muscle over two weeks did not alter body weight or glucose intolerance of obese mice. MCD induction further potentiated the defects in insulin signaling of obese mice. In addition, key enzymes in fatty acid oxidation were suppressed following MCD induction. Conclusion Acute induction of MCD in the skeletal muscle of obese and glucose intolerant mice did not improve body weight and decreased insulin sensitivity compared to obese nontransgenic controls. Induction of MCD in skeletal muscle resulted in a suppression of mitochondrial oxidative genes suggesting a redundant and metabolite driven regulation of gene expression.
Collapse
Affiliation(s)
| | | | - Michael J Wolfgang
- Department of Biological Chemistry, Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, 725 N, Wolfe St,, 475 Rangos Building, Baltimore, Maryland 21205, USA.
| |
Collapse
|
176
|
Müller C, Kanawati B, Rock TM, Forcisi S, Moritz F, Schmitt-Kopplin P. Dimer ion formation and intermolecular fragmentation of 1,2-diacylglycerols revealed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for more comprehensive lipid analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1735-1744. [PMID: 24975254 DOI: 10.1002/rcm.6956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 05/27/2014] [Accepted: 06/01/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE The ionization of neutral diacylglycerols (DAGs) by electrospray ionization mass spectrometry (ESI-MS) is challenging compared with other lipid classes which possess ionic head group conjugations. Although ESI-MS is the method of choice in lipidomic analysis, it is questionable whether all lipid classes can be efficiently ionized by this method. Actually, various lipids were not efficiently detected (due to poor ionization) in many studies which claimed to comprehensively describe lipid profiles. Since neutral lipids are precursors for the biosynthesis of most other lipid classes, the necessity for improved or alternative ionization and identification schemes becomes obvious. METHODS We identified the 1,2-diacylglycerol (DAG) dimer ion formation in the gas phase by ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in negative electrospray ionization ((-)ESI) mode. The geometry of the dimer ion was investigated by accurate density functional theory (DFT) calculations at the B3LYP/6-311+G(d)//B3LYP/LANL2DZ level of theory. Fragmentation of the dimer ions of many investigated DAGs has been achieved via collision-induced dissociation (CID) experiments with several elevated collision energies (0-12 eV). RESULTS We revealed the possibility to ionize neutral DAGs as dimer ions in the negative ESI mode. Quantum mechanical calculations revealed a polar head-to-head intermolecular interaction between one charged DAG and one DAG neutral. This represents an energy minimum structure for the DAG dimer ions. We could furthermore detect CID fragmentation product ions that can only result from intermolecular reactions in this head-to-head conformation (SN2 nucleophilic substitution reactions inside the dimer DAG ion). CONCLUSIONS Here, we present for the first time the opportunity to ionize and identify DAGs as dimer ions. This new finding provides a new alternative for investigations of important diacylglycerol lipids and provides the opportunity to obtain complementary and more comprehensive results in future lipidomic studies.
Collapse
Affiliation(s)
- Constanze Müller
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, Germany
| | | | | | | | | | | |
Collapse
|
177
|
Zhou P, Hummel AD, Pywell CM, Dong XC, Duffield GE. High fat diet rescues disturbances to metabolic homeostasis and survival in the Id2 null mouse in a sex-specific manner. Biochem Biophys Res Commun 2014; 451:374-81. [PMID: 25108156 DOI: 10.1016/j.bbrc.2014.07.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/24/2022]
Abstract
Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have altered expression of circadian genes involved in lipid metabolism, altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue. Here we further characterized the Id2-/- mouse metabolic phenotype in a sex-specific context and under low and high fat diets, and examined metabolic and endocrine parameters associated with lipid and glucose metabolism. Under the low-fat diet Id2-/- mice showed decreased weight gain, reduced gonadal fat mass, and a lower survival rate. Under the high-fat diet, body weight and gonadal fat gain of Id2-/- male mice was comparable to control mice and survival rate improved markedly. Furthermore, the high-fat diet treated Id2-/- male mice lost the enhanced glucose tolerance feature observed in the other Id2-/- groups, and there was a sex-specific difference in white adipose tissue storage of Id2-/- mice. Additionally, a distinct pattern of hepatic lipid accumulation was observed in Id2-/- males: low lipids on the low-fat diet and steatosis on the high-fat diet. In summary, these data provides valuable insights into the impact of Id2 deficiency on metabolic homeostasis of mice in a sex-specific manner.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alyssa D Hummel
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cameron M Pywell
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Giles E Duffield
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
178
|
Evidence of endoplasmic reticulum stress and liver inflammation in the American mink Neovison vison with benign hepatic steatosis. J Comp Physiol B 2014; 184:913-27. [PMID: 25079677 DOI: 10.1007/s00360-014-0845-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/18/2014] [Accepted: 07/06/2014] [Indexed: 01/11/2023]
Abstract
We investigated the presence of inflammatory signs in the progression of fatty liver disease induced by fasting. Sixty standard black American mink (Neovison vison) were fasted for 0, 1, 3, 5, or 7 days and one group for 7 days followed by re-feeding for 28 days. Liver sections were evaluated histologically and liver mRNA levels indicating endoplasmic reticulum (ER) stress, adipogenic transformation, and inflammation were assessed by quantitative real-time PCR. After 3 days of fasting, the mink had developed moderate liver steatosis. Increased hyaluronan reactivity in lymphocytic foci but no Mallory-Denk bodies were seen in livers of the mink fasted for 5-7 days. Up-regulation of glucose-regulated protein, 78 kDa was observed on day 7 indicating ER stress, especially in the females. Liver lipoprotein lipase and monocyte chemoattractant protein 1 mRNA levels increased in response to 5-7 days of food deprivation, while tumor necrosis factor α (TNF-α) was the highest in the mink fasted for 5 days. The expression of the genes of interest, except for TNF-α, correlated with each other and with the liver fat content. The mRNA levels were found to change more rapidly below n-3/n-6 polyunsaturated fatty acid ratio threshold of 0.15. Following re-feeding, hepatocyte morphology and mRNA abundance returned to pre-fasting levels. Within the studied timeframe, evidence for ER stress, adipogenic transformation, and liver inflammation suggested incipient transition from steatosis to steatohepatitis with potential for development of more severe liver disease. This may present a possibility to influence disease progression before histologically observable steatohepatitis.
Collapse
|
179
|
Chen Y, Varghese Z, Ruan XZ. The molecular pathogenic role of inflammatory stress in dysregulation of lipid homeostasis and hepatic steatosis. Genes Dis 2014; 1:106-112. [PMID: 30258859 PMCID: PMC6150078 DOI: 10.1016/j.gendis.2014.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/20/2014] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) is becoming the leading cause of chronic liver injury in developed countries and China. Chronic systemic inflammation plays a decisive role and is fundamental in the progression of NAFLD from simple steatosis (SS) toward higher risk nonalcoholic steatohepatitis (NASH) states. However, the exact mechanisms by which inflammation leading to NASH are incompletely understood. In this review, we focus the role of the cross talk between inflammation and lipid homeostasis on the progression of NAFLD.
Collapse
Affiliation(s)
- Yaxi Chen
- Centre for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zac Varghese
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, London, UK
| | - Xiong Z Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China.,John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, London, UK
| |
Collapse
|
180
|
The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014; 510:84-91. [PMID: 24899308 DOI: 10.1038/nature13478] [Citation(s) in RCA: 850] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease and its downstream sequelae, hepatic insulin resistance and type 2 diabetes, are rapidly growing epidemics, which lead to increased morbidity and mortality rates, and soaring health-care costs. Developing interventions requires a comprehensive understanding of the mechanisms by which excess hepatic lipid develops and causes hepatic insulin resistance and type 2 diabetes. Proposed mechanisms implicate various lipid species, inflammatory signalling and other cellular modifications. Studies in mice and humans have elucidated a key role for hepatic diacylglycerol activation of protein kinase Cε in triggering hepatic insulin resistance. Therapeutic approaches based on this mechanism could alleviate the related epidemics of non-alcoholic fatty liver disease and type 2 diabetes.
Collapse
|
181
|
Hage Hassan R, Bourron O, Hajduch E. Defect of insulin signal in peripheral tissues: Important role of ceramide. World J Diabetes 2014; 5:244-257. [PMID: 24936246 PMCID: PMC4058729 DOI: 10.4239/wjd.v5.i3.244] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/29/2014] [Accepted: 05/08/2014] [Indexed: 02/05/2023] Open
Abstract
In healthy people, balance between glucose production and its utilization is precisely controlled. When circulating glucose reaches a critical threshold level, pancreatic β cells secrete insulin that has two major actions: to lower circulating glucose levels by facilitating its uptake mainly into skeletal muscle while inhibiting its production by the liver. Interestingly, dietary triglycerides are the main source of fatty acids to fulfill energy needs of oxidative tissues. Normally, the unconsumed fraction of excess of fatty acids is stored in lipid droplets that are localized in adipocytes to provide energy during fasting periods. Thus, adipose tissue acts as a trap for fatty acid excess liberated from plasma triglycerides. When the buffering action of adipose tissue to store fatty acids is impaired, fatty acids that build up in other tissues are metabolized as sphingolipid derivatives such as ceramides. Several studies suggest that ceramides are among the most active lipid second messengers to inhibit the insulin signaling pathway and this review describes the major role played by ceramide accumulation in the development of insulin resistance of peripherals tissues through the targeting of specific proteins of the insulin signaling pathway.
Collapse
|
182
|
Kwon MJ, Ju TJ, Heo JY, Kim YW, Kim JY, Won KC, Kim JR, Bae YK, Park IS, Min BH, Lee IK, Park SY. Deficiency of clusterin exacerbates high-fat diet-induced insulin resistance in male mice. Endocrinology 2014; 155:2089-101. [PMID: 24684302 DOI: 10.1210/en.2013-1870] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The present study examined the role of clusterin in insulin resistance in high fat-fed wild-type and clusterin knockout (KO) mice. The plasma levels of glucose and C-peptide and islet size were increased in clusterin KO mice after an 8-week high-fat diet. In an ip glucose tolerance test, the area under the curve for glucose was not different, whereas the area under the curve for insulin was higher in clusterin KO mice. In a hyperinsulinemic-euglycemic clamp, the clamp insulin levels were higher in clusterin KO mice after the high-fat diet. After adjusting for the clamp insulin levels, the glucose infusion rate, suppression of hepatic glucose production, and glucose uptake were lower in clusterin KO mice in the high fat-fed group. The plasma levels of clusterin and clusterin mRNA levels in the skeletal muscle and liver were increased by the high-fat diet. The mRNA levels of the antioxidant enzymes were lower, and the mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 1 and cytokines and protein carbonylation were higher in the skeletal muscle and liver in clusterin KO mice after the high-fat diet. Palmitate-induced gene expressions of NOX1 and cytokines were higher in the primary cultured hepatocytes of clusterin KO mice compared with the wild-type mice. Clusterin inhibited the gene expression and reactive oxygen species generation by palmitate in the hepatocytes and C2C12. AKT phosphorylation by insulin was reduced in the hepatocytes of clusterin KO mice. These results suggest that clusterin plays a protective role against high-fat diet-induced insulin resistance through the suppression of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Min Jung Kwon
- Departments of Physiology (M.J.K., T.-j.J., J.-Y.H., Y.-W.K., J.-Y.K., S.-Y.P.), Internal Medicine (K.-C.W.), Biochemistry and Molecular Biology (J.-R.K.), and Pathology (Y.K.B.) and Aging-Associated Vascular Disease Research Center (T.-j.J., J.-Y.H., J.-R.K., S.-Y.P.), College of Medicine, Yeungnam University, Daegu 705-703, South Korea; Department of Anatomy (I.-S.P.), College of Medicine, Inha University, Incheon 400-712, South Korea; Department of Pharmacology (B.-H.M.), College of Medicine, Korea University, Seoul 136-705, South Korea; and Department of Internal Medicine (I.-K.L.), School of Medicine, Kyungpook National University, Daegu 700-712, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Kobayashi M, Io F, Kawai T, Nishimura M, Ohno T, Horio F. SMXA-5 Mouse as a Diabetic Model Susceptible to Feeding a High-fat Diet. Biosci Biotechnol Biochem 2014; 68:226-30. [PMID: 14745189 DOI: 10.1271/bbb.68.226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The SMXA-5 strain, a new mouse model for type 2 diabetes, is a recombinant inbred strain derived from non-diabetic SM/J and A/J strains. As dietary fat is a key component in the development of diabetes, we compared the glucose tolerance and diabetes-related traits among the SMXA-5, SM/J, and A/J strains while feeding a high-fat diet for 10 weeks. SMXA-5 fed on a high-fat diet showed an increased serum insulin concentration. Judging from the hyperinsulinemia in SMXA-5, this strain showed insulin resistance, an inability of peripheral tissues to respond to insulin, which was strengthened by feeding with a high-fat diet. When fed on a high-fat diet for 5 weeks, the SMXA-5 mice showed severely impaired glucose tolerance. On the other hand, SM/J showed mildly impaired glucose tolerance, even when fed on a high-fat diet for 10 weeks. These results indicate that SMXA-5 would be available for use as a diabetic model susceptible to a high-fat diet.
Collapse
Affiliation(s)
- Misato Kobayashi
- Department of Applied Molecular Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University
| | | | | | | | | | | |
Collapse
|
184
|
Imam MU, Ishaka A, Ooi DJ, Zamri NDM, Sarega N, Ismail M, Esa NM. Germinated brown rice regulates hepatic cholesterol metabolism and cardiovascular disease risk in hypercholesterolaemic rats. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
185
|
Cai HY, Li YZ, Li L, Tu Q. Relationship between viseral fat thickness measured by ultrasonography and nonalcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2014; 22:1451-1454. [DOI: 10.11569/wcjd.v22.i10.1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate relationship between visceral fat thickness measured by ultrasonography and nonalcoholic fatty liver disease (NAFLD).
METHODS: One hundred and seventy subjects were enrolled and divided into two groups: a NAFLD group (n = 110) and a healthy control group (n = 60). Blood pressure (BP), height, weight, waist circumference (WC), hip circumference, body mass index (BMI), waist-hip ratio (WHR), triglycerides (TG), total cholesterol (TC), fasting blood glucose, liver function and fasting insulin were measured in each subject, and the homeostasis model assessment of insulin resistance (HOMA-IR) was calculated according to the typical HOMA model. Visceral fat thickness was measured by ultrasonography.
RESULTS: The visceral fat thickness, BMI, WHR and HOMA-IR were significantly higher in the NAFLD group than in the normal control group (P < 0.05 for all). The visceral fat thickness had significant statistical difference between the mild, moderate and severe NAFLD groups. Correlation analysis showed that there were significantly positive correlations between visceral fat thickness and BMI, WHR and HOMA-IR (r = 0.62, 0.509, 0.596, P < 0.05 for all).
CONCLUSION: Visceral fat thickness measured by ultrasonography may be an important index for diagnosing nonalcoholic fatty liver disease.
Collapse
|
186
|
Mihailidou C, Papavassiliou AG, Kiaris H. A crosstalk between p21 and UPR-induced transcription factor C/EBP homologous protein (CHOP) linked to type 2 diabetes. Biochimie 2014; 99:19-27. [PMID: 24239558 DOI: 10.1016/j.biochi.2013.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/06/2013] [Indexed: 02/04/2023]
|
187
|
Zabielski P, Blachnio-Zabielska A, Lanza IR, Gopala S, Manjunatha S, Jakaitis DR, Persson XM, Gransee J, Klaus KA, Schimke JM, Jensen MD, Nair KS. Impact of insulin deprivation and treatment on sphingolipid distribution in different muscle subcellular compartments of streptozotocin-diabetic C57Bl/6 mice. Am J Physiol Endocrinol Metab 2014; 306:E529-42. [PMID: 24368672 PMCID: PMC3948970 DOI: 10.1152/ajpendo.00610.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/18/2013] [Indexed: 12/14/2022]
Abstract
Insulin deprivation in type 1 diabetes (T1D) individuals increases lipolysis and plasma free fatty acids (FFA) concentration, which can stimulate synthesis of intramyocellular bioactive lipids such as ceramides (Cer) and long-chain fatty acid-CoAs (LCFa-CoAs). Ceramide was shown to decrease muscle insulin sensitivity, and at mitochondrial levels it stimulates reactive oxygen species production. Here, we show that insulin deprivation in streptozotocin diabetic C57BL/6 mice increases quadriceps muscle Cer content, which was correlated with a concomitant decrease in the body fat and increased plasma FFA, glycosylated hemoglobin level (%Hb A1c), and muscular LCFa-CoA content. The alternations were accompanied by an increase in protein expression in LCFa-CoA and Cer synthesis (FATP1/ACSVL5, CerS1, CerS5), a decrease in the expression of genes implicated in muscle insulin sensitivity (GLUT4, GYS1), and inhibition of insulin signaling cascade by Aktα and GYS3β phosphorylation under acute insulin stimulation. Both the content and composition of sarcoplasmic fraction sphingolipids were most affected by insulin deprivation, whereas mitochondrial fraction sphingolipids remained stable. The observed effects of insulin deprivation were reversed, except for content and composition of LCFa-CoA, CerS protein expression, GYS1 gene expression, and phosphorylation status of Akt and GYS3β when exogenous insulin was provided by subcutaneous insulin implants. Principal component analysis and Pearson's correlation analysis revealed close relationships between the features of the diabetic phenotype, the content of LCFa-CoAs and Cers containing C18-fatty acids in sarcoplasm, but not in mitochondria. Insulin replacement did not completely rescue the phenotype, especially regarding the content of LCFa-CoA, or proteins implicated in Cer synthesis and muscle insulin sensitivity. These persistent changes might contribute to muscle insulin resistance observed in T1D individuals.
Collapse
Affiliation(s)
- Piotr Zabielski
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 2014; 59:713-23. [PMID: 23929732 PMCID: PMC3946772 DOI: 10.1002/hep.26672] [Citation(s) in RCA: 557] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), hepatic insulin resistance, and type 2 diabetes are all strongly associated and are all reaching epidemic proportions. Whether there is a causal link between NAFLD and hepatic insulin resistance is controversial. This review will discuss recent studies in both humans and animal models of NAFLD that have implicated increases in hepatic diacylglycerol (DAG) content leading to activation of novel protein kinase Cϵ (PKCϵ) resulting in decreased insulin signaling in the pathogenesis of NAFLD-associated hepatic insulin resistance and type 2 diabetes. The DAG-PKCϵ hypothesis can explain the occurrence of hepatic insulin resistance observed in most cases of NAFLD associated with obesity, lipodystrophy, and type 2 diabetes.
Collapse
Affiliation(s)
- Andreas L. Birkenfeld
- Charité - University School of Medicine, Department of Endocrinology Diabetes and Nutrition, Center for Cardiovascular Research, Berlin, Germany
- Howard Hughes Medical Institute and the Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald I. Shulman
- Howard Hughes Medical Institute and the Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
189
|
Mansour M. The Roles of Peroxisome Proliferator-Activated Receptors in the Metabolic Syndrome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:217-66. [DOI: 10.1016/b978-0-12-800101-1.00007-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
190
|
Wang G, Xu X, Yao X, Zhu Z, Yu L, Chen L, Chen J, Shen X. Latanoprost effectively ameliorates glucose and lipid disorders in db/db and ob/ob mice. Diabetologia 2013; 56:2702-12. [PMID: 23989723 DOI: 10.1007/s00125-013-3032-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/22/2013] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Improvement of glucose and lipid metabolic dysfunctions is a potent therapeutic strategy against type 2 diabetes mellitus, and identifying new functions for existing drugs may help accelerate the speed of new drug development. Here, we report that latanoprost, a clinical drug for treating primary open-angle glaucoma and intraocular hypertension, effectively ameliorated glucose and lipid disorders in two mouse models of type 2 diabetes. In addition, the glucose-lowering mechanisms of latanoprost were intensively investigated. METHODS A binding-affinity assay and enzymatic tests were used to determine the targets of latanoprost. Cell-based assays on 3T3-L1 adipocytes and C2C12 myotubes and animal model-based assays with db/db and ob/ob mice were further performed to clarify the mechanisms underlying latanoprost-regulated glucose and lipid metabolism. RESULTS Latanoprost functioned as both an indirect activator of AMP-activated protein kinase and a selective retinoid X receptor α (RXRα) antagonist able to selectively antagonise the transcription of a RXRα/peroxisome proliferator-activated receptor γ heterodimer. It promoted glucose uptake, inhibited pre-adipocyte differentiation and regulated the main genes responsible for glucose and lipid metabolism, including Fas, Scd1, Perilipin (also known as Plin1), Lpl and Pdk4. Chronic administration of latanoprost in mice potently decreased the levels of fasting blood glucose, HbA1c, fructosamine (FMN), NEFA and total cholesterol, and effectively improved glucose tolerance and glucose/lipid metabolism-related genes in vivo. CONCLUSIONS/INTERPRETATION Our studies demonstrate that the existing eye drug latanoprost is both an indirect activator of AMP-activated protein kinase and a selective RXRα antagonist. Latanoprost effectively ameliorated glucose and lipid disorders in diabetic mice, which strongly highlights the potential of latanoprost in the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Gaihong Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Li M, Reynolds CM, Sloboda DM, Gray C, Vickers MH. Effects of taurine supplementation on hepatic markers of inflammation and lipid metabolism in mothers and offspring in the setting of maternal obesity. PLoS One 2013; 8:e76961. [PMID: 24146946 PMCID: PMC3798342 DOI: 10.1371/journal.pone.0076961] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023] Open
Abstract
Maternal obesity is associated with obesity and metabolic disorders in offspring. However, intervention strategies to reverse or ameliorate the effects of maternal obesity on offspring health are limited. Following maternal undernutrition, taurine supplementation can improve outcomes in offspring, possibly via effects on glucose homeostasis and insulin secretion. The effects of taurine in mediating inflammatory processes as a protective mechanism has not been investigated. Further, the efficacy of taurine supplementation in the setting of maternal obesity is not known. Using a model of maternal obesity, we examined the effects of maternal taurine supplementation on outcomes related to inflammation and lipid metabolism in mothers and neonates. Time-mated Wistar rats were randomised to either: 1) control : control diet during pregnancy and lactation (CON); 2) CON supplemented with 1.5% taurine in drinking water (CT); 3) maternal obesogenic diet (high fat, high fructose) during pregnancy and lactation (MO); or 4) MO supplemented with taurine (MOT). Maternal and neonatal weights, plasma cytokines and hepatic gene expression were analysed. A MO diet resulted in maternal hyperinsulinemia and hyperleptinemia and increased plasma glucose, glutamate and TNF-α concentrations. Taurine normalised maternal plasma TNF-α and glutamate concentrations in MOT animals. Both MO and MOT mothers displayed evidence of fatty liver accompanied by alterations in key markers of hepatic lipid metabolism. MO neonates displayed a pro-inflammatory hepatic profile which was partially rescued in MOT offspring. Conversely, a pro-inflammatory phenotype was observed in MOT mothers suggesting a possible maternal trade-off to protect the neonate. Despite protective effects of taurine in MOT offspring, neonatal mortality was increased in CT neonates, indicating possible adverse effects of taurine in the setting of normal pregnancy. These data suggest that maternal taurine supplementation may ameliorate the adverse effects observed in offspring following a maternal obesogenic diet but these effects are dependent upon prior maternal nutritional background.
Collapse
Affiliation(s)
- Minglan Li
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Clare M. Reynolds
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Deborah M. Sloboda
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Clint Gray
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| |
Collapse
|
192
|
Zelber-Sagi S, Lotan R, Shibolet O, Webb M, Buch A, Nitzan-Kaluski D, Halpern Z, Santo E, Oren R. Non-alcoholic fatty liver disease independently predicts prediabetes during a 7-year prospective follow-up. Liver Int 2013; 33:1406-12. [PMID: 23656177 DOI: 10.1111/liv.12200] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 04/14/2013] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is suspected to confer an increased risk for developing type 2 diabetes (DM). However, only a few prospective studies evaluated NAFLD as a predictor for DM, most did not adjust for the full range of potential cofounders and none used an objectively quantified degree of steatosis. Our aim was to evaluate the independent role of NAFLD in predicting the development of pre-DM in a 7-year prospective follow-up of healthy volunteers. METHODS A prospective cohort of a subsample of the Israeli National Health Survey evaluated at baseline and after 7 years by identical protocols. Metabolic parameters and ultrasonographic evidence of NAFLD were evaluated in 213 subjects, without known liver disease or history of alcohol abuse. Exclusion criteria were pre-DM at the baseline survey. Steatosis was quantified by ultrasound with the hepato-renal ultrasound index (HRI). RESULTS The study included 141 volunteers (mean age 48.78 ± 9.68, 24.82% with NAFLD) without pre-DM/DM at baseline. Both NAFLD on regular US (OR=2.93, 1.02-8.41 95%CI) and HRI (OR=7.87, 1.83-33.82) were independent predictors for the development of pre-DM, adjusting for age, gender, BMI, family history of DM, baseline insulin, adiponectin and glucose. Further adjustment for physical activity and dietary intake did not weaken the association. Furthermore, NAFLD was a stronger predictor for pre-DM than the metabolic syndrome. Subjects with both NAFLD and glucose ≥89 had 93.3% incidence rate of pre-DM. CONCLUSION Non-alcoholic fatty liver disease is a strong and independent risk factor for pre-DM in the general adult population; thus, NAFLD patients should be classified as a population at risk.
Collapse
Affiliation(s)
- Shira Zelber-Sagi
- Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; School of Public Health, Haifa University, Haifa, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Yang J, Kang J, Guan Y. The mechanisms linking adiposopathy to type 2 diabetes. Front Med 2013; 7:433-44. [PMID: 24085616 DOI: 10.1007/s11684-013-0288-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 07/19/2013] [Indexed: 02/06/2023]
Abstract
Obesity is defined as excessive accumulation of body fat in proportion to body size. When obesity occurs, the functions of adipose tissue may be deregulated, which is termed as adiposopathy. Adiposopathy is an independent risk factor for many diseases, including diabetes and cardiovascular diseases. In overweight or obese subjects with adiposopathy, hyperlipidemia exerts lipotoxicity in pancreatic islet and liver and induces pancreatic β cell dysfunction and liver insulin resistance, which are the decisive factors causing type 2 diabetes. Moreover, adipokines have been shown to play important roles in the regulation of glucose homeostasis. When adiposopathy occurs, abnormal changes in the serum adipokine profile correlate with the development and progression of pancreatic β cell dysfunction and insulin resistance in peripheral tissue. The current paper briefly discusses the latest findings regarding the effects of adiposopathy-related lipotoxicity and cytokine toxicity on the development of type 2 diabetes.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Physiology and Pathophysiology, Peking University Diabetes Center, Peking University Health Science Center, Beijing, 100191, China
| | | | | |
Collapse
|
194
|
Chu MP, Klopfenstein BJ, Krisky CM, Urbanski HF, Rooney WD, Kohama SG, Purnell JQ. Intrahepatic lipid, not visceral or muscle fat, is correlated with insulin resistance in older, female rhesus macaques. Obesity (Silver Spring) 2013; 21:2021-8. [PMID: 23408675 PMCID: PMC3661746 DOI: 10.1002/oby.20339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/11/2012] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Little is known of the effect of body composition on glucose metabolism in the aging female non-human primate. These variables in older female Rhesus macaques were studied. DESIGN AND METHODS Female Rhesus macaques (Macaca mulatta, n = 19, age range 23-30 years) underwent magnetic resonance imaging and (1) H spectroscopy to quantify total abdominal fat, visceral fat (VF), subcutaneous fat (SF) area, extramyocellular lipid (EMCL), intramyocellular lipid (IMCL) and intrahepatic lipid (IHL) content, and DEXA scan for whole body composition. A subgroup (n = 12) underwent a fasting blood draw and intravenous glucose tolerance test. RESULTS SF correlated with homeostatic model assessment of insulin resistance (HOMAIR ) and quantitative insulin sensitivity check index (QUICKI), but not after adjustment for fat mass. IHL demonstrated the strongest correlation with HOMAIR , QUICKI and calculated insulin sensitivity index (CSI ), and remained significant after adjustment for fat mass. VF, IMCL, and EMCL did not correlate with any of our measures of insulin sensitivity. CONCLUSIONS Despite a greater amount of VF compared to SF, VF was not associated with markers of insulin resistance (IR) in the older female monkey. Instead, IHL is a marker for IR in the fasting and post-prandial state in these animals.
Collapse
Affiliation(s)
- Michael P Chu
- Department of Medicine, Division of Endocrinology, Diabetes, and Clinical Nutrition, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
195
|
Asrih M, Jornayvaz FR. Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance. J Endocrinol 2013; 218:R25-36. [PMID: 23833274 DOI: 10.1530/joe-13-0201] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a major health problem in developed countries. It has affected more than 30% of the general population and is commonly associated with insulin resistance, which is a major risk factor for the development of type 2 diabetes and a central feature of the metabolic syndrome. Furthermore, accumulating evidences reveal that NAFLD as well as insulin resistance is strongly related to inflammation. Cytokines and adipokines play a pivotal role in inflammatory processes. In addition, these inflammatory mediators regulate various functions including metabolic energy balance, inflammation, and immune response. However, their role in modulating ectopic lipids involved in the development of insulin resistance, such as diacylglycerols and ceramides, remains unknown. The aim of this review is first to describe the pathophysiology of insulin resistance in NAFLD. In particular, we discuss the role of ectopic lipid accumulation in the liver. Secondly, we also summarize recent findings emphasizing the role of main inflammatory markers in both NAFLD and insulin resistance and their potential role in modulating hepatic fat content in NAFLD and associated hepatic insulin resistance.
Collapse
Affiliation(s)
- Mohamed Asrih
- Service of Endocrinology, Diabetes, Hypertension and Nutrition, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | | |
Collapse
|
196
|
Fain JN. Impact of glucocorticoid hormones on adipokine secretion and human adipose tissue metabolism. Horm Mol Biol Clin Investig 2013; 14:25-32. [PMID: 25436717 DOI: 10.1515/hmbci-2013-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/08/2013] [Indexed: 11/15/2022]
Abstract
The glucocorticoid hormones alter the metabolism of the adipose tissue after an approximately 2-h lag period. The effects are mediated through the nuclear receptors that alter the expression of a wide variety of genes through the mechanisms that are similar to those seen in the other cells. There are many direct metabolic effects of the glucocorticoids on the adipose tissue metabolism, and every year, new effects are added to the list of proteins whose expression is influenced by the glucocorticoids. Furthermore, some enzymatic processes are affected by these hormones only in the presence of the other hormones such as growth hormone (GH) or insulin. Most of the effects of the glucocorticoids are on the gene transcription, and the effects on the mRNA are reflected in the altered levels of the target proteins. The glucocorticoids enhance the leptin release, while reducing that of the inflammatory adipokines and stimulating that of the lipoprotein lipase (LPL) in the presence of insulin. The activity of 11β-hydroxysteroid dehydrogenase type 1 (HSD1) is enhanced by the glucocorticoids along with that of α1 glycoprotein 1 and serum amyloid A release by the adipose tissue. In contrast, the tumor necrosis factor α (TNF)-stimulated lipolysis in the adipose tissue is blocked by the glucocorticoids. It is still unclear which, if any, of these effects account for the insulin resistance due to the glucocorticoids in the adipose tissue. However, recent work suggests that, at least in mice, the reduction in the osteocalcin release by the osteoblasts in the presence of the glucocorticoids accounts for much of the in vivo insulin resistance. In summary, there are multiple direct effects of the glucocorticoids, both anti-inflammatory and proinflammatory, on the adipose tissue.
Collapse
Affiliation(s)
- John N Fain
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
197
|
Peterson JM, Seldin MM, Wei Z, Aja S, Wong GW. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism. Am J Physiol Gastrointest Liver Physiol 2013; 305:G214-24. [PMID: 23744740 PMCID: PMC3742855 DOI: 10.1152/ajpgi.00102.2013] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CTRP3 is a secreted plasma protein of the C1q family that helps regulate hepatic gluconeogenesis and is downregulated in a diet-induced obese state. However, the role of CTRP3 in regulating lipid metabolism has not been established. Here, we used a transgenic mouse model to address the potential function of CTRP3 in ameliorating high-fat diet-induced metabolic stress. Both transgenic and wild-type mice fed a high-fat diet showed similar body weight gain, food intake, and energy expenditure. Despite similar adiposity to wild-type mice upon diet-induced obesity (DIO), CTRP3 transgenic mice were strikingly resistant to the development of hepatic steatosis, had reduced serum TNF-α levels, and demonstrated a modest improvement in systemic insulin sensitivity. Additionally, reduced hepatic triglyceride levels were due to decreased expression of enzymes (GPAT, AGPAT, and DGAT) involved in triglyceride synthesis. Importantly, short-term daily administration of recombinant CTRP3 to DIO mice for 5 days was sufficient to improve the fatty liver phenotype, evident as reduced hepatic triglyceride content and expression of triglyceride synthesis genes. Consistent with a direct effect on liver cells, recombinant CTRP3 treatment reduced fatty acid synthesis and neutral lipid accumulation in cultured rat H4IIE hepatocytes. Together, these results establish a novel role for CTRP3 hormone in regulating hepatic lipid metabolism and highlight its protective function and therapeutic potential in attenuating hepatic steatosis.
Collapse
Affiliation(s)
- Jonathan M. Peterson
- 1Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; ,3Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and ,4Department of Health Sciences, School of Public Health, East Tennessee State University, Johnson City, Tennessee
| | - Marcus M. Seldin
- 1Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; ,3Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Zhikui Wei
- 1Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; ,3Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Susan Aja
- 2Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; ,3Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - G. William Wong
- 1Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; ,3Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
198
|
|
199
|
Thibault O, Anderson KL, DeMoll C, Brewer LD, Landfield PW, Porter NM. Hippocampal calcium dysregulation at the nexus of diabetes and brain aging. Eur J Pharmacol 2013; 719:34-43. [PMID: 23872402 DOI: 10.1016/j.ejphar.2013.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/11/2013] [Indexed: 01/19/2023]
Abstract
Recently it has become clear that conditions of insulin resistance/metabolic syndrome, obesity and diabetes, are linked with moderate cognitive impairment in normal aging and elevated risk of Alzheimer's disease. It appears that a common feature of these conditions is impaired insulin signaling, affecting the brain as well as peripheral target tissues. A number of studies have documented that insulin directly affects brain processes and that reduced insulin signaling results in impaired learning and memory. Several studies have also shown that diabetes induces Ca(2+) dysregulation in neurons. Because brain aging is associated with substantial Ca(2+) dyshomeostasis, it has been proposed that impaired insulin signaling exacerbates or accelerates aging-related Ca(2+) dyshomeostasis. However, there have been few studies examining insulin interactions with Ca(2+) regulation in aging animals. We have been testing predictions of the Ca(2+) dysregulation/diabetes/brain aging hypothesis and have found that insulin and insulin-sensitizers (thiazolidinediones) target several hippocampal Ca(2+)-related processes affected by aging. The drugs appear able to reduce the age-dependent increase in Ca(2+) transients and the Ca(2+) -sensitive afterhyperpolarization. Thus, while additional testing is needed, the results to date are consistent with the view that strategies that enhance insulin signaling can counteract the effect of aging on Ca(2+) dysregulation.
Collapse
Affiliation(s)
- Olivier Thibault
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States.
| | - Katie L Anderson
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Chris DeMoll
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Lawrence D Brewer
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Philip W Landfield
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Nada M Porter
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| |
Collapse
|
200
|
Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo. Proc Natl Acad Sci U S A 2013; 110:12780-5. [PMID: 23840067 DOI: 10.1073/pnas.1311176110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hepatic insulin resistance is a principal component of type 2 diabetes, but the cellular and molecular mechanisms responsible for its pathogenesis remain unknown. Recent studies have suggested that saturated fatty acids induce hepatic insulin resistance through activation of the toll-like receptor 4 (TLR-4) receptor in the liver, which in turn transcriptionally activates hepatic ceramide synthesis leading to inhibition of insulin signaling. In this study, we demonstrate that TLR-4 receptor signaling is not directly required for saturated or unsaturated fat-induced hepatic insulin resistance in both TLR-4 antisense oligonucleotide treated and TLR-4 knockout mice, and that ceramide accumulation is not dependent on TLR-4 signaling or a primary event in hepatic steatosis and impairment of insulin signaling. Further, we show that both saturated and unsaturated fats lead to hepatic accumulation of diacylglycerols, activation of PKCε, and impairment of insulin-stimulated IRS-2 signaling. These data demonstrate that saturated fat-induced insulin resistance is independent of TLR-4 activation and ceramides.
Collapse
|