151
|
Engelhardt T, Lowe PR, Galley HF, Webster NR. Inhibition of neuronal nitric oxide synthase reduces isoflurane MAC and motor activity even in nNOS knockout mice. Br J Anaesth 2006; 96:361-6. [PMID: 16431879 DOI: 10.1093/bja/ael010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The glutamate-nitric oxide-cyclic GMP pathway has been identified as a potential target for volatile anaesthetic agents as acute inhibition of nitric oxide synthase (NOS) reduces the minimum alveolar concentration (MAC) in most animal studies. However, mice deficient in the type I NOS isoform (nNOS) are reported to have a similar MAC for isoflurane and are not affected by non-isoform specific inhibitors. METHODS We determined whether the nNOS specific inhibitor, 7-nitroindazole (7-NI), had an effect on isoflurane MAC and righting reflex (RRF) and investigated spontaneous motor activity in an open-field study in wild-type (WT) and knockout (KO) mice. RESULTS 7-NI reduced isoflurane MAC and RRF in both WT and KO animals (all P<0.04). 7-NI profoundly reduced spontaneous motor activity in both the WT and KO animals in the open-field study as indicated by a reduction in the number of line crossings and rearings in both WT and KO mice (both P<0.001). CONCLUSION We conclude that isoform specific inhibition of nNOS reduces MAC and spontaneous motor activity even in nNOS KO animals. Our results indicate that the NMDA receptor-nitric oxide-cyclic GMP pathway remains a credible target in modulating the effects of isoflurane.
Collapse
Affiliation(s)
- T Engelhardt
- Academic Unit of Anaesthesia and Intensive Care, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK.
| | | | | | | |
Collapse
|
152
|
Migita CT, Togashi S, Minakawa M, Zhang X, Yoshida T. Evidence for the hydrophobic cavity of heme oxygenase-1 to be a CO-trapping site. Biochem Biophys Res Commun 2005; 338:584-9. [PMID: 16125669 DOI: 10.1016/j.bbrc.2005.08.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 08/04/2005] [Indexed: 12/27/2022]
Abstract
Carbon monoxide (CO) is produced during the heme catabolism by heme oxygenase. In brain or blood vessels, CO functions as a neurotransmitter or an endothelial-derived relaxing factor. To verify whether crystallographically proposed CO-trapping sites of rat and cyanobacterial heme oxygenase-1 really work, heme catabolism by heme oxygenase-1 from rat and cyanobacterial Synechocystis sp. PCC 6803 has been scrutinized in the presence of 2-propanol. If 2-propanol occupies the trapping sites, formation of CO-bound verdoheme should be enhanced. Although effects of 2-propanol on the rat heme oxygenase-1 reaction were obscure, the reaction of cyanobacterial enzyme in the presence of NADPH/ferredoxin reductase/ferredoxin was apparently affected. Relative amount of CO-verdoheme versus CO-free verdoheme detected by optical absorption spectra increased as the equivalent of 2-propanol increased, thereby supporting indirectly that the hydrophobic cavity in cyanobacterial enzyme traps CO to reduce CO inhibition of verdoheme degradation.
Collapse
Affiliation(s)
- Catharina T Migita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.
| | | | | | | | | |
Collapse
|
153
|
Kikuchi G, Yoshida T, Noguchi M. Heme oxygenase and heme degradation. Biochem Biophys Res Commun 2005; 338:558-67. [PMID: 16115609 DOI: 10.1016/j.bbrc.2005.08.020] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 08/03/2005] [Indexed: 01/05/2023]
Abstract
The microsomal heme oxygenase system consists of heme oxygenase (HO) and NADPH-cytochrome P450 reductase, and plays a key role in the physiological catabolism of heme which yields biliverdin, carbon monoxide, and iron as the final products. Heme degradation proceeds essentially as a series of autocatalytic oxidation reactions involving heme bound to HO. Large amounts of HO proteins from human and rat can now be prepared in truncated soluble form, and the crystal structures of some HO proteins have been determined. These advances have greatly facilitated the understanding of the mechanisms of individual steps of the HO reaction. HO can be induced in animals by the administration of heme or several other substances; the induction is shown to involve Bach1, a translational repressor. The induced HO is assumed to have cytoprotective effects. An uninducible HO isozyme, HO-2, has been identified, so the authentic HO is now called HO-1. HOs are also widely distributed in invertebrates, higher plants, algae, and bacteria, and function in various ways according to the needs of individual species.
Collapse
Affiliation(s)
- Goro Kikuchi
- Tohoku University School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
154
|
Schulz R, Rassaf T, Massion PB, Kelm M, Balligand JL. Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol Ther 2005; 108:225-56. [PMID: 15949847 DOI: 10.1016/j.pharmthera.2005.04.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 04/15/2005] [Indexed: 02/04/2023]
Abstract
Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide (NO) generation. To date, 3 distinct NOS isoforms have been identified: neuronal NOS (NOS1), inducible NOS (NOS2), and endothelial NOS (NOS3). Biochemically, NOS consists of a flavin-containing reductase domain, a heme-containing oxygenase domain, and regulatory sites. NOS catalyse an overall 5-electron oxidation of one Nomega-atom of the guanidino group of L-arginine to form NO and L-citrulline. NO exerts a plethora of biological effects in the cardiovascular system. The basal formation of NO in mitochondria by a mitochondrial NOS seems to be one of the main regulators of cellular respiration, mitochondrial transmembrane potential, and transmembrane proton gradient. This review focuses on recent advances in the understanding of the role of enzyme and enzyme-independent NO formation, regulation of NO bioactivity, new aspects of NO on cardiac function and morphology, and the clinical impact and perspectives of these recent advances in our knowledge on NO-related pathways.
Collapse
Affiliation(s)
- R Schulz
- Institut für Pathophysiologie, Zentrum für Innere Medizin des Universitätsklinikums Essen, Germany.
| | | | | | | | | |
Collapse
|
155
|
Castillo C, Salazar V, Ariznavarreta C, Fossati M, Tresguerres JAF, Vara E. Effect of S-adenosylmethionine on Age-induced Hepatocyte Damage in Old Wistar Rats. Biogerontology 2005; 6:313-23. [PMID: 16463108 DOI: 10.1007/s10522-005-4806-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 09/11/2005] [Indexed: 10/25/2022]
Abstract
Aging is accompanied by changes in the morphology and physiology of organs and tissues, such as the liver. This process might be due to the accumulation of oxidative damage induced by reactive oxygen (ROS) and reactive nitrogen species (RNS). Hepatocytes are very rich in mitochondria and have a high respiratory rate, so they are exposed to large amounts of ROS and permanent oxidative stress. S-Adenosylmethionine (SAMe) is an endogenous metabolite that has shown to exert protective effects on different experimental pathological models in which free radicals are involved. The aim of this study was to investigate the effect of SAMe on age-induced damage in hepatocytes. For this purpose, male and female Wistar rats of 18 and 2 months of age were used. Cells were isolated and, after incubation in the presence or in the absence of SAMe, different parameters were measured. Aging induced a significant increase in nitric oxide, carbon monoxide and cGMP, and a reduction in reduced glutathione, ATP and phosphatidylcholine synthesis, as well as in methionine- adenosyl-transferase and methyl-transferase activities. Incubation of old cells with SAMe prevented all these age-related changes, reaching values in some of the parameters similar to those found in young animals. In conclusion, SAMe seems to have beneficial effects against age-induced damage in hepatocytes.
Collapse
Affiliation(s)
- Carmen Castillo
- Laboratory of Experimental Endocrinology, Department of Physiology, School of Medicine, Complutense University, Avda. Complutense s/n, 28040, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
156
|
Chang EF, Claus CP, Vreman HJ, Wong RJ, Noble-Haeusslein LJ. Heme regulation in traumatic brain injury: relevance to the adult and developing brain. J Cereb Blood Flow Metab 2005; 25:1401-17. [PMID: 15917748 DOI: 10.1038/sj.jcbfm.9600147] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intracranial bleeding is one of the most prominent aspects in the clinical diagnosis and prognosis of traumatic brain injury (TBI). Substantial amounts of blood products, such as heme, are released because of traumatic subarachnoid hemorrhages, intraparenchymal contusions, and hematomas. Despite this, surprisingly few studies have directly addressed the role of blood products, in particular heme, in the setting of TBI. Heme is degraded by heme oxygenase (HO) into three highly bioactive products: iron, bilirubin, and carbon monoxide. The HO isozymes, in particular HO-1 and HO-2, exhibit significantly different expression patterns and appear to have specific roles after injury. Developmentally, differences between the adult and immature brain have implications for endogenous protection from oxidative stress. The aim of this paper is to review recent advances in the understanding of heme regulation and metabolism after brain injury and its specific relevance to the developing brain. These findings suggest novel clinical therapeutic options for further translational study.
Collapse
Affiliation(s)
- Edward F Chang
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California 94143-0520, USA
| | | | | | | | | |
Collapse
|
157
|
Kang SS, Lee JY, Choi YK, Song SS, Kim JS, Jeon SJ, Han YN, Son KH, Han BH. Neuroprotective effects of naturally occurring biflavonoids. Bioorg Med Chem Lett 2005; 15:3588-91. [PMID: 15978805 DOI: 10.1016/j.bmcl.2005.05.078] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/09/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
We examined neuroprotective effects of naturally occurring biflavonoids on oxidative stress-induced and amyloid beta peptide-induced cell death in neuronal cells. Among the nine biflavonoids tested, amentoflavone, ginkgetin, and isoginkgetin exhibited strong neuroprotection against cytotoxic insults induced by oxidative stress and amyloid beta, suggesting their therapeutic potential against neurodegenerative diseases, including ischemic stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Sam Sik Kang
- Department of Manufacturing Pharmacy, Seoul National University College of Pharmacy, Seoul 110-460, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Pereira MP, Hurtado O, Cárdenas A, Alonso-Escolano D, Boscá L, Vivancos J, Nombela F, Leza JC, Lorenzo P, Lizasoain I, Moro MA. The nonthiazolidinedione PPARgamma agonist L-796,449 is neuroprotective in experimental stroke. J Neuropathol Exp Neurol 2005; 64:797-805. [PMID: 16141790 DOI: 10.1097/01.jnen.0000178852.83680.3c] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Some agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma) belonging to the thiazolidinedione (TZD) family, as well as the cyclopentenone prostaglandin 15-dPGJ2, have been shown to cause neuroprotection in animal models of stroke. We have tested whether the TZD-unrelated PPARgamma agonist L-796,449 is neuroprotective after permanent middle cerebral artery occlusion (MCAO) in the rat brain. Our results show that L-796,449 decreases MCAO-induced infarct size and improves neurologic scores. This protection is concomitant to inhibition of MCAO-induced brain expression of inducible NO synthase (iNOS) and the matrix metalloproteinase MMP-9 and to upregulation of the cytoprotective stress protein heme oxygenase-1 (HO-1). Analysis of the NF-kappaB p65 monomer and the NF-kappaB inhibitor IkappaBalpha protein levels as well as gel mobility shift assays indicate that L-796,449 inhibits NF-kappaB signaling, and that it may be recruiting both PPARgamma-dependent and independent pathways. In summary, our results provide new insights for stroke treatment.
Collapse
Affiliation(s)
- Marta P Pereira
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Kemp PJ. Hemeoxygenase-2 as an O2 sensor in K+ channel-dependent chemotransduction. Biochem Biophys Res Commun 2005; 338:648-52. [PMID: 16137652 DOI: 10.1016/j.bbrc.2005.08.110] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 08/15/2005] [Indexed: 01/12/2023]
Abstract
The physiological response of the carotid body is critically dependent upon oxygen-sensing by potassium channels expressed in glomus cells. One such channel is the large conductance, voltage- and calcium-dependent potassium channel, BK(Ca). Although it is well known that a decrease in oxygen evokes glomus cell depolarization, voltage-gated calcium entry, and transmitter release, the molecular identity of the upstream oxygen sensor has been the subject of some controversy for decades. Recently, we have demonstrated that hemeoxygenase-2 associates tightly with recombinant BK(Ca) and that activity of this enzyme confers oxygen sensitivity to the BK(Ca) channel complex. Similar observations were also made in native channels recorded from carotid body glomus cells, suggesting that hemoxygenase-2 functions as an oxygen sensor of native and recombinant BK(Ca) channels.
Collapse
Affiliation(s)
- Paul J Kemp
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| |
Collapse
|
160
|
Maines MD, Gibbs PEM. 30 some years of heme oxygenase: from a "molecular wrecking ball" to a "mesmerizing" trigger of cellular events. Biochem Biophys Res Commun 2005; 338:568-77. [PMID: 16183036 DOI: 10.1016/j.bbrc.2005.08.121] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 08/16/2005] [Indexed: 12/20/2022]
Abstract
In the beginning, the microsomal HO system was presumed to be made of one isozymes, now known as HO-1, which was cytP450-dependent; and, was thought to be of physiological significance solely in the context of catalysis of hemoglobin heme to bile pigments and CO. A succession of discoveries including characterization of the system as an independent mono-oxygenase, identification of a second form, called HO-2, free radical quenching activity of bile pigments, analogous function of CO in cell signaling to NO, and characterization of the system as HSP32 cognates has led to such an impressive expansion in the number of reports dealing with the HO system that surpass anyone's expectation. This review is a compilation of certain older findings and recent events that together ensure placement of the HO system in the mainstream research for decades to come.
Collapse
Affiliation(s)
- Mahin D Maines
- University of Rochester Medical Center, Department of Biochemistry and Biophysics, 601 Elmwood Avenue Rochester, NY 14624, USA.
| | | |
Collapse
|
161
|
Ma X, Reyna A, Mani SK, Matzuk MM, Kumar TR. Impaired male sexual behavior in activin receptor type II knockout mice. Biol Reprod 2005; 73:1182-90. [PMID: 16093358 DOI: 10.1095/biolreprod.105.043794] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Integration of multiple hormonal and neuronal signaling pathways in the medial preoptic area (mPOA) is required for elicitation of male sexual behavior in most vertebrates. Perturbation of nitric oxide synthase (NOS) activity in the mPOA causes significant defects in male sexual behavior. Although activins and their signaling components are highly expressed throughout the brain, including the mPOA, their functional significance in the central nervous system (CNS) is unknown. Here, we demonstrate a neurophysiologic role for activin signaling in male reproductive behavior. Adult activin receptor type II null (Acvr2-/-) male mice display multiple reproductive behavioral deficits, including delayed initiation of copulation, reduced mount, and intromission frequencies, and increased mount, intromission, and ejaculation latencies. These behavioral defects in the adult mice are independent of gonadotropin-releasing hormone (GnRH) homeostasis or mating-induced changes in luteinizing hormone (LH) and testosterone levels. The impairment in behavior can be correlated to the nitric oxide content in the CNS because Acvr2-/- males have decreased NOS activity in the mPOA but not the rest of the hypothalamus or cortex. Olfactory acuity tests confirmed that Acvr2-/- mice have no defects in general odor or pheromone recognition. In addition, motor functions are not impaired and the mutants demonstrate normal neuromuscular coordination and balance. Furthermore, the penile histology in mutant mice appears normal, with no significant differences in the expression of penile differentiation marker genes compared with controls, suggesting the observed behavioral phenotypes are not due to structural defects in the penis. Our studies identify a previously unrecognized role of activin signaling in male sexual behavior and suggest that activins and/or related family members are upstream regulators of NOS activity within the mPOA of the forebrain.
Collapse
Affiliation(s)
- Xiaoping Ma
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
162
|
Huang E, Ong WY, Go ML, Garey LJ. Heme oxygenase-1 activity after excitotoxic injury: immunohistochemical localization of bilirubin in neurons and astrocytes and deleterious effects of heme oxygenase inhibition on neuronal survival after kainate treatment. J Neurosci Res 2005; 80:268-78. [PMID: 15751016 DOI: 10.1002/jnr.20444] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An increased expression of the inducible form of heme oxygenase (HO), HO-1, is found in the hippocampus after kainate injection, but thus far it is unclear whether the HO-1 is enzymatically active. The present study was carried out, using monoclonal antibodies to bilirubin and HO-1 and histochemical staining for iron, to compare the products of HO enzymatic activity, bilirubin and iron, with HO-1 expression in the kainate-lesioned hippocampus. There was a close correlation between bilirubin and HO-1 expression, and both bilirubin and HO-1 were observed in damaged neurons at early times, and astrocytes at later times (weeks), after kainate injection. These results indicate that the increased HO-1 in the hippocampus is enzymatically active. Too determine whether HO-1 activity after kainate could have a protective or, perhaps, destructive effect, kainate-injected rats were injected intraperitoneally with a blood-brain barrier-permeable inhibitor of HO, tin protoporphyrin (SnPP), and the effects of such treatment were compared with effects in rats that received kainate and saline injection. It was found that SnPP treatment did not improve neuronal survival. Instead, increased mortality was observed in rats treated with SnPP. Four SnPP-injected rats vs. one saline-injected rats died after kainate treatment. The surviving SnPP-treated rats showed significantly less hippocampal field that containing Nissl or MAP2 staining (an indicator of surviving neurons) compared with the saline-injected rats. These results indicate that HO-1 induction had a net protective effect on neurons in the kainate model of excitotoxic injury.
Collapse
Affiliation(s)
- En Huang
- Department of Anatomy, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
163
|
Bicker G. STOP and GO with NO: nitric oxide as a regulator of cell motility in simple brains. Bioessays 2005; 27:495-505. [PMID: 15832386 DOI: 10.1002/bies.20221] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During the formation of the brain, neuronal cell migration and neurite extension are controlled by extracellular guidance cues. Here, I discuss experiments showing that the messenger nitric oxide (NO) is an additional regulator of cell motility. NO is a membrane permeant molecule, which activates soluble guanylyl cyclase (sGC) and leads to the formation of cyclic GMP (cGMP) in target cells. The analysis of specific cells types in invertebrate models such as molluscs, insects and the medicinal leech provides insight how NO and cyclic nucleotides affect the wiring of nervous systems by regulating cell and growth-cone motility. Inhibition of the NOS and sGC enzymes combined with rescue experiments show that NO signalling orchestrates neurite outgrowth and filopodial dynamics, cell migration of enteric neurons, glial migration and axonogenesis of pioneer fibers. Cultured insect embryos are accessible model systems in which cellular mechanisms of NO-induced cytoskeletal reorganizations can be analyzed in natural settings. Finally, I will outline some indications that NO may also regulate cell motility in the developing and regenerating vertebrate nervous system.
Collapse
Affiliation(s)
- Gerd Bicker
- School of Veterinary Medicine Hannover, Cell Biology, Institute of Physiology Bischofsholer Damm 15, D-30173 Hannover, Germany.
| |
Collapse
|
164
|
Diaz Z, Assaraf MI, Miller WH, Schipper HM. Astroglial cytoprotection by erythropoietin pre-conditioning: implications for ischemic and degenerative CNS disorders. J Neurochem 2005; 93:392-402. [PMID: 15816862 DOI: 10.1111/j.1471-4159.2005.03038.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Erythropoietin (Epo) is a glycoprotein secreted by the kidney in response to hypoxia that stimulates erythropoiesis through interaction with cell surface Epo receptors. Pre-treatment with Epo has been shown to protect neurons in models of ischemic injury. The mechanism responsible for this neuroprotection and the effects of Epo on astroglial and other non-neuronal cell populations remain unknown. In the present study, we determined whether Epo pre-treatment protects neonatal rat astrocytes from apoptotic cell death resulting from treatment with nitric oxide, staurosporine (STS) and arsenic trioxide and possible mechanisms mediating Epo-related cytoprotection. Epo (5-20 U/mL) significantly attenuated multiple hallmarks of apoptotic cell death in astroglia exposed to nitric oxide and STS but not arsenic trioxide. Epo (20 U/mL) induced mild oxidative stress as shown by increases in heme oxygenase (HO)-1 mRNA and protein expression that could be suppressed by antioxidant coadministration. Moreover, coincubation with tin-mesoporphyrin, a competitive inhibitor of HO activity, abrogated the cytoprotective effects of Epo (20 U/mL) in the face of STS treatment. Thus, induction of the ho-1 gene may contribute to the glioprotection accruing from high-dose Epo exposure. Epo may augment astroglial resistance to certain chemical stressors by oxidative stress-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Zuanel Diaz
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
165
|
Muñoz AM, Rey P, Parga J, Guerra MJ, Labandeira-Garcia JL. Glial overexpression of heme oxygenase-1: a histochemical marker for early stages of striatal damage. J Chem Neuroanat 2005; 29:113-26. [PMID: 15652698 DOI: 10.1016/j.jchemneu.2004.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 07/31/2004] [Accepted: 10/02/2004] [Indexed: 11/19/2022]
Abstract
The level of heme oxygenase-1 (HO-1) in the normal striatum is below the limit of immunodetection. However, HO-1 is overexpressed in both neural and non-neural cells in response to a wide range of lesions. We induced different types of lesions affecting the striatal cells or the main striatal afferent systems in rats to investigate if overexpression of HO-1 could be a useful histochemical marker of striatal damage. Thirty-six hours after intrastriatal or intraventricular injection of excitotoxins that affect striatal neurons (ibotenic acid) or of neurotoxins that affect striatal dopaminergic (6-hydroxydopamine) or serotonergic (5,7-dihydroxytriptamine) afferent terminals, or after surgical lesioning of cortico-striatal projections, there was intense induction of striatal HO-1 immunoreactivity (HO-1-ir). Double immunolabeling revealed that the HO-1-ir was located in glial cells. After intrastriatal injection of ibotenic acid, a central zone of neuronal degeneration contained numerous round and pseudopodic HO-1-ir cells, and was surrounded by a ring of HO-1-ir cells, most of which were immunoreactive for astroglial markers. Intraventricular injection of neurotoxins induced astroglial HO-1-ir cells which were more evenly distributed throughout the lesioned or denervated areas. HO-1-ir microglial cells were also observed in areas subjected to mechanical damage. The HO-1-ir was markedly lower or absent 1 week after lesion, and even more so 3 weeks after, although some HO-1-ir cells were still observed after intrastriatal injection of ibotenic acid or surgical corticostriatal deafferentation. The results indicate that determination of glial HO-1-ir is a useful histochemical marker for early stages of striatal damage.
Collapse
Affiliation(s)
- Ana M Muñoz
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
166
|
Castillo C, Salazar V, Ariznavarreta C, Vara E, Tresguerres JAF. Effect of melatonin administration on parameters related to oxidative damage in hepatocytes isolated from old Wistar rats. J Pineal Res 2005; 38:240-6. [PMID: 15813900 DOI: 10.1111/j.1600-079x.2004.00199.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aging induces changes in several organs and tissues, such as the liver, and this process might be due to oxidative damage caused by free radicals and inflammatory mediators. Melatonin is a secretory product with well-known antioxidant properties. The aim of this study was to investigate the effect of melatonin administration on age-induced alterations in hepatocytes. Twenty-two-month old male Wistar rats were treated with oral melatonin for 10 wk. At the end of the treatment, hepatocytes were isolated and cultured, and different parameters were measured in both cells and medium. Aging induced a significant increase in lipid peroxidation, nitric oxide, carbon monoxide and cyclic guanosyl-monophosphate, as well as a reduction in adenosine triphosphate content and phosphatidylcholine synthesis when compared to young animals. Melatonin administration significantly ameliorated all these age-related changes in males. Melatonin administration seems to exert beneficial effects against age-induced changes in hepatocytes.
Collapse
Affiliation(s)
- Carmen Castillo
- Laboratory of Experimental Endocrinology, Department of Physiology, School of Medicine, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
167
|
Bau C, Middlemiss PJ, Hindley S, Jiang S, Ciccarelli R, Caciagli F, Diiorio P, Werstiuk ES, Rathbone MP. Guanosine stimulates neurite outgrowth in PC12 cells via activation of heme oxygenase and cyclic GMP. Purinergic Signal 2005; 1:161-72. [PMID: 18404501 PMCID: PMC2096532 DOI: 10.1007/s11302-005-6214-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 10/22/2004] [Indexed: 12/19/2022] Open
Abstract
Undifferentiated rat pheochromocytoma (PC12) cells extend neurites when cultured in the presence of nerve growth factor (NGF). Extracellular guanosine synergistically enhances NGF-dependent neurite outgrowth. We investigated the mechanism by which guanosine enhances NGF-dependent neurite outgrowth. Guanosine administration to PC12 cells significantly increased guanosine 3-5-cyclic monophosphate (cGMP) within the first 24 h whereas addition of soluble guanylate cyclase (sGC) inhibitors abolished guanosine-induced enhancement of NGF-dependent neurite outgrowth. sGC may be activated either by nitric oxide (NO) or by carbon monoxide (CO). \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$N^{\omega } $$
\end{document}-Nitro-l-arginine methyl ester (l-NAME), a non-isozyme selective inhibitor of nitric oxide synthase (NOS), had no effect on neurite outgrowth induced by guanosine. Neither nNOS (the constitutive isoform), nor iNOS (the inducible isoform) were expressed in undifferentiated PC12 cells, or under these treatment conditions. These data imply that NO does not mediate the neuritogenic effect of guanosine. Zinc protoporphyrin-IX, an inhibitor of heme oxygenase (HO), reduced guanosine-dependent neurite outgrowth but did not attenuate the effect of NGF. The addition of guanosine plus NGF significantly increased the expression of HO-1, the inducible isozyme of HO, after 12 h. These data demonstrate that guanosine enhances NGF-dependent neurite outgrowth by first activating the constitutive isozyme HO-2, and then by inducing the expression of HO-1, the enzymes responsible for CO synthesis, thus stimulating sGC and increasing intracellular cGMP.
Collapse
Affiliation(s)
- Christian Bau
- Department of Medicine, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Castillo C, Salazar V, Ariznavarreta C, Vara E, Tresguerres JAF. Effect of growth hormone and estrogen administration on hepatocyte alterations in old ovariectomized female wistar rats. Endocrine 2005; 26:11-8. [PMID: 15805580 DOI: 10.1385/endo:26:1:011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 12/17/2004] [Accepted: 12/17/2004] [Indexed: 12/21/2022]
Abstract
Aging could be due to the accumulation of oxidative damage. On the other hand, growth hormone (GH) and estrogen deficiency induce deleterious effects on different tissues, and hormonal replacement could counteract these effects. We have investigated whether GH and estrogen administration modify some parameters related to oxidative stress and inflammation in hepatocytes isolated from old ovariectomized female rats. Twenty-two month-old ovariectomized animals were divided into control rats, rats treated with GH, rats treated with estradiol, and rats treated with GH+estradiol. Two-month-old intact female rats were used as young reference group. Hepatocytes were isolated, cultured, and CO and NO release, ATP, cyclic-guanosyl monophosphate (cGMP), and lipid peroxide (LPO) content of cells, as well as phosphatidylcholine (PC)synthesis, were measured. Hepatocytes isolated from old ovariectomized rats showed a decrease in ATP content and PC synthesis compared to young rats. Age also induced an increase in LPO, NO, CO, and cGMP. Treating old rats with GH significantly increased ATP and reduced CO and cGMP levels. Estradiol administration improved all the parameters that were altered. Co-administration of GH and estrogens induced a more marked effect than estrogens alone only in cGMP content. In conclusion, administration of estrogens to old ovariectomized females seemed to prevent oxidative changes in hepatocytes, whereas the effect of GH is not so evident.
Collapse
Affiliation(s)
- Carmen Castillo
- Laboratory of Experimental Endocrinology, Department of Physiology, School of Medicine, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
169
|
Parfenova H, Carratu P, Tcheranova D, Fedinec A, Pourcyrous M, Leffler CW. Epileptic seizures cause extended postictal cerebral vascular dysfunction that is prevented by HO-1 overexpression. Am J Physiol Heart Circ Physiol 2005; 288:H2843-50. [PMID: 15681702 DOI: 10.1152/ajpheart.01274.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extended postictal state is characterized by neurological problems in patients. Inadequate blood supply to the brain and impaired cerebral autoregulation may contribute to seizure-induced neuronal damage. Recent evidence in newborn pigs indicates that activation of the antioxidative enzyme heme oxygenase (HO) at the onset of seizures is necessary for increased cerebral blood flow during the ictal episode and for normal cerebral vascular functioning during the immediate postictal period. We hypothesized that seizures cause prolonged postictal cerebral vascular dysfunction that can be accentuated by HO inhibition and rescued by HO overexpression. Cerebral vascular responses to endothelium-dependent (hypercapnia, bradykinin) and -independent (isoproterenol, sodium nitroprusside) stimuli were assessed 48 h after bicuculline-induced seizures in: 1) saline-control newborn piglets, 2) HO-inhibited animals (HO was inhibited by tin protoporphyrin, SnPP, 3 mg/kg iv), and 3) HO-overexpressing piglets (HO-1 was upregulated by cobalt protoporphyrin, CoPP, 50 mg/kg ip). Extended alterations of HO expression in cerebral microvessels were confirmed by measuring CO production and inducible HO (HO-1) and constitutive HO (HO-2) proteins. Our data provide evidence that seizures cause a severe, sustained, postictal cerebral vascular dysfunction as reflected by impaired vascular reactivity to physiologically relevant dilators. During the delayed postictal state, vascular reactivity to all dilator stimuli was reduced in saline control and, to a greater extent, in HO-inhibited animals. In CoPP-treated piglets, no reduction in postictal cerebral vascular reactivity was observed. These findings may indicate that CoPP prevents postictal cerebral vascular dysfunction by upregulating HO-1, a finding that might have implications for preventing postictal neurological complications.
Collapse
Affiliation(s)
- Helena Parfenova
- Dept. of Physiology, Univ. of Tennessee Health Science Center, 894 Union Ave., Memphis, TN 38163, USA.
| | | | | | | | | | | |
Collapse
|
170
|
Lee DW, Opanashuk LA. Polychlorinated biphenyl mixture aroclor 1254-induced oxidative stress plays a role in dopaminergic cell injury. Neurotoxicology 2005; 25:925-39. [PMID: 15474611 DOI: 10.1016/j.neuro.2004.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 05/20/2004] [Indexed: 12/21/2022]
Abstract
Oxidative stress (OS) is thought to participate in the pathogenesis of neurodegenerative disorders, including Parkinson's disease (PD). Excessive reactive oxygen species (ROS) production can occur during the normal aging process or following exposure to environmental toxicants. Dopamine neurons, which degenerate during PD, are particularly sensitive to oxidative stress. Polychlorinated biphenyls (PCBs), persistent and widespread pollutants, have been shown to adversely impact dopaminergic (DAergic) pathways, but the role ROS play in neurotoxicity remains unclear. To test the hypothesis that PCB exposure compromises dopamine neurons by stimulating ROS production, the direct toxicity and oxidative stress response following PCB exposure was examined both in MN9D dopamine cells and primary mesencephalic cultures. PCBs induced a time- and concentration-dependent increase in ROS production, which preceded cytotoxicity. Whereas intracellular GSH depletion exacerbated PCB effects, antioxidant pretreatment attenuated ROS production and cell death. Coincident alterations in antioxidant defense enzymes also accompanied ROS production, including decreased MnSOD and increased CuZnSOD protein levels. The robust elevation in heme oxygenase-1 levels further support the activation of oxidative stress mechanisms following PCB exposure. Furthermore, PCBs produced concentration-dependent reductions in intracellular dopamine levels and elevated dopamine turnover. Although the intracellular source of ROS remains unknown, these results suggest that sublethal PCB concentrations activate an oxidative stress-related pathway, which potentially disrupts dopamine neuron function.
Collapse
Affiliation(s)
- D W Lee
- Department of Environmental Medicine, Box EHSC, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
171
|
Kim HP, Wang X, Galbiati F, Ryter SW, Choi AMK. Caveolae compartmentalization of heme oxygenase-1 in endothelial cells. FASEB J 2005; 18:1080-9. [PMID: 15226268 DOI: 10.1096/fj.03-1391com] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The heme oxygenase (HO) and nitric oxide synthase (NOS) enzymes generate the gaseous signaling molecules carbon monoxide (CO) and nitric oxide, respectively. Constitutive NOSs localize to caveolae, and their activities are modulated by caveolin-1. Nothing is known of the localization of the inducible heme oxygenase-1 (HO-1) in plasma membrane caveolae. Thus, we examined the distribution and subcellular localization of HO-1, biliverdin reductase (BVR), and NADPH:cytochrome P450 reductase (NPR) in pulmonary artery endothelial cells. Each of these proteins localized in part to plasma membrane caveolae in endothelial cells. Inducers of HO-1 or overexpression of HO-1 increased the content of this protein in a detergent-resistant fraction containing caveolin-1. Inducible HO activity appeared in plasma membrane, cytosol, and isolated caveolae. In addition, caveolae contained endogenous BVR activity, supporting the same compartmentalization of both enzymes. Caveolin-1 physically interacted with HO-1, as shown by coimmunoprecipitation studies. HO activity dramatically increased in cells expressing caveolin-1 antisense transcripts, suggesting a negative regulatory role for caveolin-1. Conversely, caveolin-1 expression attenuated LPS-inducible HO activity. Since their initial characterization in 1969, HO enzymes have been described as endoplasmic reticulum-associated proteins. We demonstrate for the first time the localization of heme degradation enzymes to plasma membrane caveolae, and present novel evidence that caveolin-1 interacts with and modulates HO activity.
Collapse
Affiliation(s)
- Hong Pyo Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Dept. of Medicine, MUH 628NW, 3459 Fifth Ave., Pittsburgh, PA, 15213, USA.
| | | | | | | | | |
Collapse
|
172
|
Jiang S, Khan MI, Middlemiss PJ, Lu Y, Werstiuk ES, Crocker CE, Ciccarelli R, Caciagli F, Rathbone MP. AIT-082 and methylprednisolone singly, but not in combination, enhance functional and histological improvement after acute spinal cord injury in rats. Int J Immunopathol Pharmacol 2005; 17:353-66. [PMID: 15461869 DOI: 10.1177/039463200401700315] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Extracellular non-adenine based purines are neuroprotective. Preliminary studies indicate that administration of the synthetic purine 4-[[3-(1,6 dihydro-6-oxo-9-purine-9-yl)-1-oxypropyl] amino] benzoic acid (AIT-082, leteprinim potassium) to rats immediately after acute spinal cord injury (SCI), improves functional outcome. The effects of potential new agents are often compared to methylprednisolone (MPSS). We evaluated the effects of AIT-082 and MPSS, separately and in combination, on the functional and morphological outcome of acute SCI in adult rats. After standardized T11-12 spinal cord compression rats were given intraperitoneally one of the following: vehicle (saline); MPSS (30 mg/kg or 60 mg/kg body weight, first dose 15 min after crush); AIT-082 (60 mg/kg body weight daily, first dose 15 min after crush); or AIT-082 plus MPSS. After 1, 3, or 21 days, the rats were perfused for histological analysis. AIT-082 administrations significantly reduced locomotor impairment from 121 days post-operatively. At 1 and 3 days post injury, AIT-082-treatment reduced tissue swelling, tissue loss and astrogliosis at the injured cords but did not alter the extent of hemorrhage and the number of macrophages and/or microglia. MPSS reduced hemorrhage and the number of macrophages and/or microglia, but did not alter astrogliosis. At 21 days, either AIT-082 or MPSS administration improved function and morphology similarly (less tissue loss and astrogliosis). In contrast, administration of AIT-082 and MPSS together abolished the beneficial effects observed when either drug was given individually. These results suggest that MPSS and AIT-082 may exert their beneficial effects through different and potentially antagonistic pathways.
Collapse
Affiliation(s)
- S Jiang
- Department of Medicine, Division of Neurology, McMaster University Health Sciences Center, Hamilton, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Aziz MTA, El-Asmar MF, Mostafa T, Atta H, Wassef MAA, Fouad HH, Roshdy NK, Rashed LA, Sabry D. Effects of Nitric Oxide Synthase and Heme Oxygenase Inducers and Inhibitors on Molecular Signaling of Erectile Function. J Clin Biochem Nutr 2005. [DOI: 10.3164/jcbn.37.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
174
|
Schipper HM. Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med 2004; 37:1995-2011. [PMID: 15544918 DOI: 10.1016/j.freeradbiomed.2004.09.015] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 08/27/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
In the normal mammalian CNS, heme oxygenase-2 (HO-2) is constitutively, abundantly, and fairly ubiquitously expressed, whereas heme oxygenase-1 (HO-1) mRNA and protein are confined to small populations of scattered neurons and neuroglia. Unlike ho-2, the ho-1 gene in neural (and many systemic) tissues is exquisitely sensitive to upregulation by a host of pro-oxidant and other noxious stimuli. In Alzheimer disease, HO-1 immunoreactivity is significantly augmented in neurons and astrocytes of the hippocampus and cerebral cortex relative to age-matched, nondemented controls and colocalizes to senile plaques, neurofibrillary tangles, and corpora amylacea. In Parkinson disease, HO-1 decorates Lewy bodies of affected dopaminergic neurons and is highly overexpressed in astrocytes residing within the substantia nigra. The ho-1 gene is also upregulated in glial cells within multiple sclerosis plaques; in the vicinity of human cerebral infarcts, hemorrhages, and contusions; and in various other degenerative and nondegenerative human CNS disorders. The products of the heme oxygenase reaction, free ferrous iron, carbon monoxide, and biliverdin/bilirubin, are all biologically active molecules that may profoundly influence tissue redox homeostasis under a wide range of pathophysiological conditions. Evidence adduced from whole animal and in vitro studies indicates that enhanced HO-1 activity may either ameliorate or exacerbate neural injury, effects likely contingent upon the specific model employed, the duration and intensity of HO-1 induction, and the chemistry of the local redox microenvironment. HO-1 hyperactivity also promotes mitochondrial sequestration of nontransferrin iron in oxidatively challenged astroglia and may thereby contribute to the pathological iron deposition and bioenergetic failure amply documented in aging and degenerating human neural tissues.
Collapse
Affiliation(s)
- Hyman M Schipper
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, 3755 Cote St. Catherine Road, Montreal QC H3T 1E2, Canada.
| |
Collapse
|
175
|
Lin Z, Sandgren K, Ekblad E. Increased expression of nitric oxide synthase in cultured neurons from adult rat colonic submucous ganglia. Auton Neurosci 2004; 114:29-38. [PMID: 15331042 DOI: 10.1016/j.autneu.2004.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 05/27/2004] [Accepted: 06/14/2004] [Indexed: 02/09/2023]
Abstract
Neuronal plasticity in the enteric nervous system (ENS) is probably a key step in intestinal adaptation during growth, maturation and ageing as well as in several pathophysiological situations. Studies on cultured myenteric neurons have revealed an increased vasoactive intestinal peptide (VIP) expression in neuronal nitric oxide synthase (NOS)-expressing neurons. In addition, both VIP and nitric oxide (NO) promote survival of cultured myenteric neurons. The aim of the present study was to investigate possible changes in the expression of VIP and NOS in cultured submucous neurons from adult rat large intestine. Submucous neurons were cultured as explants or as dissociated neurons for 3 and 8 days. Immunocytochemistry was used to determine the proportions of neurons containing VIP or NOS in preparations of uncultured controls (reflects the conditions in vivo) and in cultured explants of submucosa and dissociated submucous neurons. In situ hybridization was used to determine changes in the expressions of NOS and VIP mRNA. The relative number of NOS-expressing neurons increased significantly during culturing. The percentage of all neurons expressing NOS was 22% in controls, while approximately 50% of the cultured submucous neurons expressed NOS. VIP-expressing neurons constituted approximately 80% of all submucous neurons in controls as well as in cultured explants or dissociated neurons. Studies on coexistence revealed that the VIP-containing neurons were the ones that started to express NOS during culture. The induced expression of NOS in cultured adult submucous neurons indicates that nitric oxide, possibly in cooperation with VIP, is important for neuronal adaptation, maintenance and survival.
Collapse
Affiliation(s)
- Zhong Lin
- Department of Internal Medicine, The Affiliated Hospital of Guilin Medical College, People's Republic of China
| | | | | |
Collapse
|
176
|
Higashimoto Y, Sakamoto H, Hayashi S, Sugishima M, Fukuyama K, Palmer G, Noguchi M. Involvement of NADPH in the interaction between heme oxygenase-1 and cytochrome P450 reductase. J Biol Chem 2004; 280:729-37. [PMID: 15516695 DOI: 10.1074/jbc.m406203200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase-1 (HO-1) catalyzes the physiological degradation of heme at the expense of molecular oxygen using electrons donated by NADPH-cytochrome P450 reductase (CPR). In this study, we investigated the effect of NADP(H) on the interaction of HO-1 with CPR by surface plasmon resonance. We found that HO-1 associated with CPR more tightly in the presence of NADP(+) (K(D) = 0.5 microm) than in its absence (K(D) = 2.4 microm). The HO-1 mutants, K149A, K149A/K153A, and R185A, showed almost no heme degradation activity with NADPH-CPR, whereas they exhibited activity comparable to that of the wild type when sodium ascorbate was used. R185A showed a 100-fold decreased affinity for CPR compared with wild type, even in the presence of NADP(+) (K(D) = 36.3 microm). The affinities of K149A and K149A/K153A for CPR were decreased 7- and 9-fold (K(D) = 16.8 and 21.8 microm), respectively. In contrast to R185A, the affinities of K149A and K149A/K153A were improved by the addition of NADP(+) (K(D) = 5.2 and 9.6 microm, respectively), as was the case with wild type. Computer modeling of the HO-1/CPR complex showed that the guanidino group of Arg(185) is located within the hydrogen bonding distance of 2'-phosphate of NADPH, suggesting that Arg(185) contributes to the binding to CPR through an electrostatic interaction with the phosphate group. On the other hand, Lys(149) is close to a cluster of acidic amino acids near the FMN binding site of CPR. Thus, Lys(149) and Lys(153) appear to interact with CPR in such a way as to orient the redox partners for optimal electron transfer from FMN of CPR to heme of HO-1.
Collapse
Affiliation(s)
- Yuichiro Higashimoto
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
177
|
Balashova N, Chang FJ, Lamothe M, Sun Q, Beuve A. Characterization of a novel type of endogenous activator of soluble guanylyl cyclase. J Biol Chem 2004; 280:2186-96. [PMID: 15509556 DOI: 10.1074/jbc.m411545200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nitric oxide (NO) remains the only firmly established endogenous modulator of soluble guanylyl cyclase (sGC) activity, but physiological, structural, and biochemical evidence now suggests that in vivo regulation of sGC involves direct interaction with other factors. We searched for such endogenous modulators in human umbilical vein endothelial cells and COS-7 cells. The cytosolic fraction of both cell types stimulated the activity of semipurified sGC severalfold in the absence or presence of a saturating concentration of NO. The cytosolic factor was sensitive to proteinase K and destroyed by boiling, suggesting that it contains a protein component. Size exclusion chromatography revealed peaks of activity between 40 and 70 kDa. The sGC-activating effect was further purified by ion exchange chromatography. In the presence of the benzylindazole YC-1 or NO, the partially purified factor synergistically activated sGC, suggesting that this factor had a mode of activation different from that of YC-1 or NO. Four candidate activators were identified from the final purification step by matrix-assisted laser desorption ionization mass spectrometry analysis. Using an sGC affinity matrix, one of them, the molecular chaperone Hsp70, was shown to directly interact with sGC. This interaction was further confirmed by co-immunoprecipitation in lung tissues and by co-localization in smooth muscle cells. sGC and Hsp70 co-localized at the plasma membrane, supporting the idea that sGC can be translocated to the membrane. Hsp70 co-purifies with the sGC-activating effect, and immunodepletion of Hsp70 from COS-7 cytosol coincided with a marked attenuation of the sGC-activating effect, yet the effect was not rescued by the addition of pure Hsp70. Thus, Hsp70 is a novel sGC-interacting protein that is responsible for the sGC-activating effect, probably in association with other factors or after covalent modification.
Collapse
Affiliation(s)
- Nataliya Balashova
- Department of Pharmacology and Physiology, New Jersey Medical School, UMDNJ, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
178
|
Takeda A, Itoyama Y, Kimpara T, Zhu X, Avila J, Dwyer BE, Perry G, Smith MA. Heme catabolism and heme oxygenase in neurodegenerative disease. Antioxid Redox Signal 2004; 6:888-94. [PMID: 15345149 DOI: 10.1089/ars.2004.6.888] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Heme oxygenase, the rate-limiting step in heme catabolism, appears to play an important role in a number of neurodegenerative disorders, such as Alzheimer disease. Interestingly, the spatial distribution of heme oxygenase-1 expression in diseased brain is essentially identical to that of the pathological expression of tau, suggesting a key role for both in disease progression. Like heme oxygenase, the expression, phosphorylation, and aggregation of tau are regulated through signal cascades, including the extracellular signal-regulated kinases, whose activities are modulated by oxidative stress. Therefore, the expression of tau and heme oxygenase-1 in a coordinated manner likely plays a pivotal role in the cytoprotection of neuronal cells. This places heme oxygenase at the center of disease pathogenesis and offers a novel therapeutic approach targeted at either the causes or consequences of enzyme induction.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Abstract
Heme oxygenase (HO) cleaves the tetrapyrrolic ring of cellular heme moieties liberating carbon monoxide (CO) and equimolar amounts of free iron and biliverdin (BV). BV is in turn converted into bilirubin (BR) by the cytosolic enzyme BV reductase. Three HO isoforms have been described to date: HO-1, HO-2, and HO-3. All these isoforms are present in nervous tissue with different localizations and regulation. CO, the gaseous product of HO, exerts its biological effects through the activation of soluble guanylyl cyclase, but alternative signaling pathways, such as the activation of cyclooxygenase, have also been reported in the brain. In vitro and in vivo studies showed that CO, at the hypothalamic level, plays a key role in the modulation of stress response because it inhibits the release of antiinflammatory neuropeptides, such as corticotropin-releasing hormone and arginine vasopressin, and increases body temperature in rodents exposed to psychological stressors (stress fever). In the last few years, a new role of BR as an endogenously produced antioxidant has emerged, and several reports have shown that BR contributes to prevent cell damage mediated by reactive oxygen species, as well as nitric oxide and its congeners.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| |
Collapse
|
180
|
Castillo C, Salazar V, Ariznavarreta C, Vara E, Tresguerres JAF. Effect of recombinant human growth hormone on age-related hepatocyte changes in old male and female Wistar rats. Endocrine 2004; 25:33-9. [PMID: 15545704 DOI: 10.1385/endo:25:1:33] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 09/08/2004] [Accepted: 09/17/2004] [Indexed: 01/01/2023]
Abstract
Aging induces changes in several organs, such as the liver, and this process might be due to damage caused by free radicals and inflammatory mediators. The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis shows a reduction with age, and this fact could be associated with some age-related changes. The aim of this study was to investigate the effect of GH administration on age-induced alterations in hepatocytes. Two and twenty two month-old male and female Wistar rats were used. Old rats were treated with human recombinant GH for 10 wk. At the end of the treatment, hepatocytes were isolated from the liver and cultured, and different parameters were measured in cells and medium. Plasma IGF-1 was also measured. Aging significantly decreased plasma IGF-1 in males. In females, plasma IGF-1 was also reduced, but not significantly. GH treatment restored plasma IGF-1 levels to values similar to young males. Aging was associated with a significant increase in lipid peroxidation (LPO), nitric oxide (NO), carbon monoxide (CO) and cyclic guanosyl-monophosphate (cGMP), as well as a reduction in adenosyl triphosphate (ATP) and phosphatidylcholine (PC) synthesis. GH administration partially prevented all these changes in males. In females, some of the parameters were significantly improved by GH (ATP, CO, cGMP), while others showed a tendency to improvement, although differences did not reach significance. In conclusion, GH administration could exert beneficial effects against age-related changes in hepatocytes, mainly in males.
Collapse
Affiliation(s)
- Carmen Castillo
- Laboratory of Experimental Endocrinology, Department of Physiology, School of Medicine, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
181
|
Sears CE, Ashley EA, Casadei B. Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component? Philos Trans R Soc Lond B Biol Sci 2004; 359:1021-44. [PMID: 15306414 PMCID: PMC1693378 DOI: 10.1098/rstb.2004.1477] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nitric oxide (NO) has been shown to regulate cardiac function, both in physiological conditions and in disease states. However, several aspects of NO signalling in the myocardium remain poorly understood. It is becoming increasingly apparent that the disparate functions ascribed to NO result from its generation by different isoforms of the NO synthase (NOS) enzyme, the varying subcellular localization and regulation of NOS isoforms and their effector proteins. Some apparently contrasting findings may have arisen from the use of non-isoform-specific inhibitors of NOS, and from the assumption that NO donors may be able to mimic the actions of endogenously produced NO. In recent years an at least partial explanation for some of the disagreements, although by no means all, may be found from studies that have focused on the role of the neuronal NOS (nNOS) isoform. These data have shown a key role for nNOS in the control of basal and adrenergically stimulated cardiac contractility and in the autonomic control of heart rate. Whether or not the role of nNOS carries implications for cardiovascular disease remains an intriguing possibility requiring future study.
Collapse
Affiliation(s)
- Claire E Sears
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | |
Collapse
|
182
|
Sugishima M, Sakamoto H, Noguchi M, Fukuyama K. CO-trapping site in heme oxygenase revealed by photolysis of its co-bound heme complex: mechanism of escaping from product inhibition. J Mol Biol 2004; 341:7-13. [PMID: 15312758 DOI: 10.1016/j.jmb.2004.05.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 05/12/2004] [Accepted: 05/23/2004] [Indexed: 11/12/2022]
Abstract
Heme oxygenase (HO) catalyzes physiological heme degradation using O(2) and reducing equivalents to produce biliverdin, iron, and CO. Notably, the HO reaction proceeds without product inhibition by CO, which is generated in the conversion reaction of alpha-hydroxyheme to verdoheme, although CO is known to be a potent inhibitor of HO and other heme proteins. In order to probe how endogenous CO is released from the reaction site, we collected X-ray diffraction data from a crystal of the CO-bound form of the ferrous heme-HO complex in the dark and under illumination by a red laser at approximately 35 K. The difference Fourier map indicates that the CO ligand is partially photodissociated from the heme and that the photolyzed CO is trapped in a hydrophobic cavity adjacent to the heme pocket. This hydrophobic cavity was occupied also by xenon, which is similar to CO in terms of size and properties. Taking account of the affinity of CO for the ferrous verdoheme-HO complex being much weaker than that for the ferrous heme complex, the CO derived from alpha-hydroxyheme would be trapped preferentially in the hydrophobic cavity but not coordinated to the iron of verdoheme. This structural device would ensure the smooth progression of the subsequent reaction, from verdoheme to biliverdin, which requires O(2) binding to verdoheme.
Collapse
Affiliation(s)
- Masakazu Sugishima
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
183
|
Parfenova H, Daley ML, Carratu P, Leffler CW. Heme oxygenase inhibition reduces neuronal activation evoked by bicuculline in newborn pigs. Brain Res 2004; 1014:87-96. [PMID: 15212995 DOI: 10.1016/j.brainres.2004.03.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2004] [Indexed: 11/17/2022]
Abstract
Carbon monoxide (CO) is a product of heme degradation by heme oxygenase (HO) that is highly expressed in the brain. The present study addresses the hypothesis that CO can be involved in brain neuronal function. The effects of the HO inhibitor, tin protoporphyrin (SnPP), on brain electrical activity and pial arteriolar diameter were examined using quantitative electroencephalography (EEG) and cranial window techniques in the bicuculline model of sustained generalized seizures in newborn pigs. SnPP (3 mg/kg i.v.) inhibits brain HO as indicated by blocking cerebral vasodilation to heme and decreasing CO concentration in cortical periarachnoid cerebrospinal fluid. The quantitative spectral analysis of digitalized scalp EEG recordings was performed to determine the EEG amplitude and spectral power within a 1-15-Hz frequency range. SnPP did not affect basal brain EEG parameters. Bicuculline (3 mg/kg i.v.) immediately (in <1 min) evoked bursts of brain electrical activity characterized by four- to seven-fold increases in EEG amplitude and power in all analyzed frequency bands that occurred simultaneously with cerebral vasodilation. Increased EEG activity and cerebral vasodilation were sustained for a 2h period. SnPP inhibited cerebral vasodilation but did not affect the EEG amplitude evoked by bicuculline. However, 20-40% reductions of the power in 7.5 Hz (theta), 10 and 12.5 Hz (alpha), and a 15-Hz (beta) bands, the major evoked EEG spectral components, were observed for the duration of seizures in SnPP-treated animals. These findings suggest that endogenous CO can have proconvulsant action and affect neuronal activation during seizures.
Collapse
Affiliation(s)
- Helena Parfenova
- Laboratory for Research in Neonatal Physiology, Departments of Physiology and Pediatrics, Vascular Biology Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
184
|
Kim HW, Batista LA, Hoppes JL, Lee KJ, Mykles DL. A crustacean nitric oxide synthase expressed in nerve ganglia, Y-organ,gill and gonad of the tropical land crab,Gecarcinus lateralis. J Exp Biol 2004; 207:2845-57. [PMID: 15235013 DOI: 10.1242/jeb.01117] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYNO signaling is involved in many physiological processes in invertebrates. In crustaceans, it plays a role in the regulation of the nervous system and muscle contraction. Nested reverse transcription-polymerase chain reaction(RT-PCR) and 5′ and 3′ rapid amplification of cDNA ends (RACE) PCR generated a full-length cDNA sequence (3982 bp) of land crab NO synthase(Gl-NOS) from molting gland (Y-organ) and thoracic ganglion mRNA. The open reading frame encoded a protein of 1199 amino acids with an estimated mass of 135 624 Da. Gl-NOS had the highest sequence identity with insect NOS. The amino acid sequences for binding heme and tetrahydrobiopterin in the oxygenase domain, binding calmodulin and binding FMN, FAD and NADPH in the reductase domain were highly conserved. Gl-NOS had single amino acid differences in all three highly conserved FAD-binding sequences, which distinguished it from other NOS sequences. RT-PCR showed that the Gl-NOS mRNA was present in testis,ovary, gill, eyestalk neural ganglia, thoracic ganglion and Y-organ. NOS mRNA varied between preparations of Y-organ, thoracic ganglion and gill, while NOS mRNA was at consistently high levels in the ovary, testis and eyestalk ganglia. Immunohistochemistry confirmed that the Gl-NOS protein was expressed in Y-organ, ovary and gill. These results suggest that NOS has functions in addition to neuromodulation in adults, such as regulating or modulating ecdysteroid synthesis in the Y-organ.
Collapse
Affiliation(s)
- Hyun-Woo Kim
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
185
|
Alcaraz MJ, Vicente AM, Araico A, Dominguez JN, Terencio MC, Ferrándiz ML. Role of nuclear factor-kappaB and heme oxygenase-1 in the mechanism of action of an anti-inflammatory chalcone derivative in RAW 264.7 cells. Br J Pharmacol 2004; 142:1191-9. [PMID: 15249426 PMCID: PMC1575177 DOI: 10.1038/sj.bjp.0705821] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The synthetic chalcone 3',4',5',3,4,5-hexamethoxy-chalcone (CH) is an anti-inflammatory compound able to reduce nitric oxide (NO) production by inhibition of inducible NO synthase protein synthesis. In this work, we have studied the mechanisms of action of this compound. CH (10-30 microm) prevents the overproduction of NO in RAW 264.7 macrophages stimulated with lipopolysaccharide (1 microg ml(-1)) due to the inhibition of nuclear factor kappaB (NF-kappaB) activation. We have shown that treatment of cells with CH results in diminished degradation of the NF-kappaB-IkappaB complex leading to inhibition of NF-kappaB translocation into the nucleus, DNA binding and transcriptional activity. We also demonstrate the ability of this compound to activate NfE2-related factor (Nrf2) and induce heme oxygenase-1 (HO-1). Our results indicate that CH determines a rapid but nontoxic increase of intracellular oxidative species, which could be responsible for Nrf2 activation and HO-1 induction by this chalcone derivative. This novel anti-inflammatory agent simultaneously induces a cytoprotective response (HO-1) and downregulates an inflammatory pathway (NF-kappaB) with a mechanism of action different from antioxidant chalcones.
Collapse
Affiliation(s)
- María José Alcaraz
- Department of Pharmacology, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjasot, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
186
|
Schipper HM. Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res Rev 2004; 3:265-301. [PMID: 15231237 DOI: 10.1016/j.arr.2004.02.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 02/13/2004] [Indexed: 11/20/2022]
Abstract
The central hypothesis of this paper states that oxidative stress, augmented iron deposition, and mitochondrial insufficiency in the ageing and degenerating CNS constitute a single neuropathological 'lesion', and that the advent of one component of this triad obligates the appearance of the others. Evidence in support of this unifying perspective is adduced from human neuropathological studies, experimental paradigms of ageing-associated neurological disorders, and a comprehensive model of astroglial senescence. A pivotal role for the enzyme, heme oxygenase-1 (HO-1) in consolidating this tripartite lesion in the ageing and diseased CNS is emphasized. The data are discussed in the context of a revised 'free radical-mitochondrial-metal' theory of brain ageing, and some scientific and clinical implications of the latter are considered.
Collapse
Affiliation(s)
- Hyman M Schipper
- Centre for Neurotranslational Research and Bloomfield Centre for Research in Ageing, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Que., Canada. hyman@
| |
Collapse
|
187
|
Affiliation(s)
- Thomas W Sedlak
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
188
|
Ding JD, Burette A, Nedvetsky PI, Schmidt HHHW, Weinberg RJ. Distribution of soluble guanylyl cyclase in the rat brain. J Comp Neurol 2004; 472:437-48. [PMID: 15065118 DOI: 10.1002/cne.20054] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The diffusible messenger nitric oxide (NO) acts in the brain largely through activation of soluble guanylyl cyclase (sGC), a heterodimer comprising alpha and beta subunits. We used immunohistochemistry to study the distribution of both sGC subunits in the brain of adult rats. alpha and beta subunits gave similar widespread staining throughout the CNS, which was strongest in neostriatum, olfactory tubercle, and supraoptic nucleus. Double-labeling experiments showed striking cellular colocalization in most brain regions, suggesting that the two subunits may be organized into enzymatically active alpha/beta heteromers. Mismatches were observed in cerebellar cortex: Purkinje cells and Bergmann glia were positive for both subunits, whereas granule cells and interneurons in the molecular layer were strongly immunopositive for beta but only weakly stained for the alpha subunit. By using multiple labeling, we compared the localization of sGC with neuronal nitric oxide synthase (NOS-I, the NO-producing enzyme in neurons). In forebrain, the distribution of sGC and NOS-I was complementary, with only occasional colocalization. In contrast, cellular colocalization was common in midbrain and cerebellum. These data support a widespread role for the NO/sGC/cGMP pathway in the CNS and suggest that, in addition to its role as paracrine messenger, NO may also be an intracellular autocrine agent.
Collapse
Affiliation(s)
- Jin-Dong Ding
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
189
|
Cooper AJL. The role of glutamine transaminase K (GTK) in sulfur and alpha-keto acid metabolism in the brain, and in the possible bioactivation of neurotoxicants. Neurochem Int 2004; 44:557-77. [PMID: 15016471 DOI: 10.1016/j.neuint.2003.12.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glutamine transaminase K (GTK), which is a freely reversible glutamine (methionine) aromatic amino acid aminotransferase, is present in most mammalian tissues, including brain. Quantitatively, the most important amine donor in vivo is glutamine. The product of glutamine transamination (i.e., alpha-ketoglutaramate; alphaKGM) is rapidly removed by cyclization and/or conversion to alpha-ketoglutarate. Transamination is therefore "pulled" in the direction of glutamine utilization. Major biological roles of GTK are to maintain low levels of phenylpyruvate and to close the methionine salvage pathway. GTK also catalyzes the transamination of cystathionine, lanthionine, and thialysine to the corresponding alpha-keto acids, which cyclize to ketimines. The cyclic ketimines and several metabolites derived therefrom are found in brain. It is not clear whether these compounds have a biological function or are metabolic dead-ends. However, high-affinity binding of lanthionine ketimine (LK) to brain membranes has been reported. Mammalian tissues possess several enzymes capable of catalyzing transamination of kynurenine in vitro. Two of these kynurenine aminotransferases (KATs), namely KAT I and KAT II, are present in brain and have been extensively studied. KAT I and KAT II are identical to GTK and alpha-aminoadipate aminotransferase, respectively. GTK/KAT I is largely cytosolic in kidney, but mostly mitochondrial in brain. The same gene codes for both forms, but alternative splicing dictates whether a 32-amino acid mitochondrial-targeting sequence is present in the expressed protein. The activity of KAT I is altered by a missense mutation (E61G) in the spontaneously hypertensive rat. The symptoms may be due in part to alteration of kynurenine transamination. However, owing to strong competition from other amino acid substrates, the turnover of kynurenine to kynurenate by GTK/KAT I in nervous tissue must be slow unless kynurenine and GTK are sequestered in a compartment distinct from the major amino acid pools. The possibility is discussed that the spontaneous hypertension in rats carrying the GTK/KAT I mutation may be due in part to disruption of glutamine transamination. GTK is one of several pyridoxal 5'-phosphate (PLP)-containing enzymes that can catalyze non-physiological beta-elimination reactions with cysteine S-conjugates containing a good leaving group attached at the sulfur. These elimination reactions may contribute to the bioactivation of certain electrophiles, resulting in toxicity to kidney, liver, brain, and possibly other organs. On the other hand, the beta-lyase reaction catalyzed by GTK may be useful in the conversion of some cysteine S-conjugate prodrugs to active components in vivo. The roles of GTK in (a) brain nitrogen, sulfur, and aromatic amino acid/kynurenine metabolism, (b) brain alpha-keto acid metabolism, (c) bioactivation of certain electrophiles in brain, (d) prodrug targeting, and (e) maintenance of normal blood pressure deserve further study.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry, Weill Medical College of Cornell University, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| |
Collapse
|
190
|
Chantôme A, Pance A, Gauthier N, Vandroux D, Chenu J, Solary E, Jeannin JF, Reveneau S. Casein kinase II-mediated phosphorylation of NF-kappaB p65 subunit enhances inducible nitric-oxide synthase gene transcription in vivo. J Biol Chem 2004; 279:23953-60. [PMID: 15033982 DOI: 10.1074/jbc.m313731200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nitric oxide (NO) produced by inducible nitric-oxide synthase (NOSII) is mainly regulated at the transcriptional level by the nuclear factor-kappaB (NF-kappaB). In the present study, we further analyzed the role of NF-kappaB in the in vivo transcriptional regulation of NOSII gene by comparing two clones isolated from the EMT-6 mouse mammary cancer cell line. In response to interleukin (IL)-1beta or lipopolysaccharide (LPS), EMT-6 clone J (EMT-6J) cells produce 3-fold more NO than EMT-6 clone H (EMT-6H) cells, an effect correlated with enhanced activation of NF-kappaB in EMT-6J cells. In response to IL-1beta, the kinetics of degradation of NF-kappaB inhibitors IkappaB-alpha and IkappaB-beta, the nucleo-cytoplasmic shuttling of the transcription factor and its binding to a specific DNA sequence were similar in both clones. In contrast, an IL-1beta-induced phosphorylation of serine residues in NF-kappaB p65 subunit was observed in EMT-6J, but not in EMT-6H, cells. This IL-1beta-induced phosphorylation of p65 was specifically prevented by pretreatment of EMT-6J cells with the casein kinase II inhibitor DRB. Small interfering RNA-mediated depletion of casein kinase II-alpha subunit also decreased NF-kappaB transcriptional activity and NOSII gene transcription in IL-1beta and LPS-stimulated EMT-6J cells to the levels observed in EMT-6H cells treated in the same conditions. Altogether, these data indicate that casein kinase II-mediated phosphorylation of p65 subunit can enhance the transcriptional activity of NF-kappaB in vivo. This post-translational modification of the transcription factor can be responsible for increased NOSII gene transcription and NO production in tumor cells exposed to either IL-1beta or LPS.
Collapse
Affiliation(s)
- Aurélie Chantôme
- Cancer Immunotherapy Laboratory, Ecole Pratique des Hautes Etudes, INSERM U517, Faculty of Medicine, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Schipper HM. Heme Oxygenase-1: Transducer of Pathological Brain Iron Sequestration under Oxidative Stress. Ann N Y Acad Sci 2004; 1012:84-93. [PMID: 15105257 DOI: 10.1196/annals.1306.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mechanisms responsible for the pathological deposition of redox-active brain iron in human neurological disorders remain incompletely understood. Heme oxygenase-1 (HO-1) is a 32-kDa stress protein that degrades heme to biliverdin, free iron, and carbon monoxide. In this chapter, we review evidence that (1) HO-1 is overexpressed in CNS tissues affected by Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and other degenerative and nondegenerative CNS diseases; (2) the pro-oxidant effects of dopamine, hydrogen peroxide, beta-amyloid, and proinflammatory cytokines stimulate HO-1 expression in some of these conditions; and (3) upregulation of HO-1 in astrocytes exacerbates intracellular oxidative stress and promotes sequestration of nontransferrin-derived iron by the mitochondrial compartment. A model is presented implicating glial HO-1 induction as a "final common pathway" leading to pathological iron sequestration and mitochondrial insufficiency in a host of human CNS disorders.
Collapse
Affiliation(s)
- Hyman M Schipper
- Center for Neurotranslational Research, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
192
|
Mancuso C, Bonsignore A, Di Stasio E, Mordente A, Motterlini R. Bilirubin and S-nitrosothiols interaction: evidence for a possible role of bilirubin as a scavenger of nitric oxide. Biochem Pharmacol 2003; 66:2355-63. [PMID: 14637193 DOI: 10.1016/j.bcp.2003.08.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bilirubin (BR), the final product of heme catabolism, plays a crucial role in the defense against reactive oxygen species in various cell types. In this study, we addressed the hypothesis that BR can act as a physiological scavenger of nitric oxide (NO), a gaseous mediator involved in many cellular functions and able to trigger the formation of reactive nitrogen species with pro-oxidant activity. We found that S-nitrosocysteine (SNOC) and S-nitrosoglutathione (GSNO), which have a half-life of 0.52+/-0.07 hr and 38+/-5 hr and release NO at a constant rate of 1.42+/-0.2 hr(-1) and 0.018+/-0.002 hr(-1), respectively, were able to decrease BR half-life in a concentration-dependent manner under physiological conditions. This effect appears to be dependent on NO formation as L-cysteine and GSH did not affect BR consumption and nitrite was four to five times less efficient than SNOC in reducing BR half-life. Oxyhemoglobin, a well-known scavenger of NO, protected BR from SNOC-mediated degradation. In addition, the reaction between SNOC/GSNO and BR modified the absorption spectrum of the bile pigment showing a gradual increase in the absorbance at 316 nm. This change in the BR spectrum indicates that the bile pigment could be a target for N-nitrosation reactions, since it resembles the modifications occurred when other molecules such as di-peptides and uric acid are nitrosated. Taken together, these data suggest that BR should not be considered only as an endogenous antioxidant but also as a molecule with the potential ability to counteract intracellular nitrosative stress reactions.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Largo Francesco Vito 1, 00168 Rome, Italy.
| | | | | | | | | |
Collapse
|
193
|
Christie AE, Edwards JM, Cherny E, Clason TA, Graubard K. Immunocytochemical evidence for nitric oxide- and carbon monoxide-producing neurons in the stomatogastric nervous system of the crayfishCherax quadricarinatus. J Comp Neurol 2003; 467:293-306. [PMID: 14608595 DOI: 10.1002/cne.10926] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nitric oxide (NO) and carbon monoxide (CO) have been shown to serve neuromodulatory roles in both vertebrates and invertebrates. Here, we use antibodies to their respective biosynthetic enzymes, nitric oxide synthase (NOS) and heme oxygenase 2 (HO-2), to map the distribution of putative gas-producing neurons in the stomatogastric nervous system (STNS) of the crayfish Cherax quadricarinatus. In this species, NOS immunolabeling is found in the neuropil of the stomatogastric ganglion (STG). This staining originates from two immunopositive axons that project to the STG through the superior oesophageal and stomatogastric nerves, presumably from cell bodies located in the commissural ganglia (CoGs). HO-2 immunoreactivity is present in small diameter fibers and varicosities in the periphery of nerves located in the anterior portion of the STNS. This labeling originates from approximately 12 somata in each CoG. Transmission electron microscopy done on the nerves of the anterior STNS shows they contain a neuroendocrine plexus. Collectively, our results indicate that NO- and CO-producing neurons are likely to exist in the crayfish STNS. Moreover, these gases appear to be produced by distinct subsets of the neurons present there. The localization of NO to the STG neuropil suggests that it serves as a locally released modulator or is involved in the local release of other substances within this ganglion. The presence of CO in the neurohemal plexus of the anterior STNS suggests that it serves as a circulating hormone or is involved in the control of neuroendocrine release from this plexus.
Collapse
Affiliation(s)
- Andrew E Christie
- Department of Biology, University of Washington, Seattle, Washington 98195-1800, USA.
| | | | | | | | | |
Collapse
|
194
|
Lundquist I, Alm P, Salehi A, Henningsson R, Grapengiesser E, Hellman B. Carbon monoxide stimulates insulin release and propagates Ca2+ signals between pancreatic beta-cells. Am J Physiol Endocrinol Metab 2003; 285:E1055-63. [PMID: 14534076 DOI: 10.1152/ajpendo.00498.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A key question for understanding the mechanisms of pulsatile insulin release is how the underlying beta-cell oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i) are synchronized within and among the islets in the pancreas. Nitric oxide has been proposed to coordinate the activity of the beta-cells by precipitating transients of [Ca2+]i. Comparing ob/ob mice and lean controls, we have now studied the action of carbon monoxide (CO), another neurotransmitter with stimulatory effects on cGMP production. A strong immunoreactivity for the CO-producing constitutive heme oxygenase (HO-2) was found in ganglionic cells located in the periphery of the islets and in almost all islet endocrine cells. Islets from ob/ob mice had sixfold higher generation of CO (1 nmol.min-1.mg protein-1) than the lean controls. This is 100-fold the rate for their constitutive production of NO. Moreover, islets from ob/ob mice showed a threefold increase in HO-2 expression and expressed inducible HO (HO-1). The presence of an excessive islet production of CO in the ob/ob mouse had its counterpart in a pronounced suppression of the glucose-stimulated insulin release from islets exposed to the HO inhibitor Zn-protoporhyrin (10 microM) and in a 16 times higher frequency of [Ca2+]i transients in their beta-cells. Hemin (0.1 and 1.0 microM), the natural substrate for HO, promoted the appearance of [Ca2+]i transients, and 10 microM of the HO inhibitors Zn-protoporphyrin and Cr-mesoporphyrin had a suppressive action both on the firing of transients and their synchronization. It is concluded that the increased islet production of CO contributes to the hyperinsulinemia in ob/ob mice. In addition to serving as a positive modulator of glucose-stimulated insulin release, CO acts as a messenger propagating Ca2+ signals with coordinating effects on the beta-cell rhythmicity.
Collapse
Affiliation(s)
- Ingmar Lundquist
- Department of Pharmacology, Institute of Physiological Sciences, University of Lund, BMC F13, S-221 84 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
195
|
Boehning D, Moon C, Sharma S, Hurt KJ, Hester LD, Ronnett GV, Shugar D, Snyder SH. Carbon monoxide neurotransmission activated by CK2 phosphorylation of heme oxygenase-2. Neuron 2003; 40:129-37. [PMID: 14527438 DOI: 10.1016/s0896-6273(03)00596-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO) is a putative gaseous neurotransmitter that lacks vesicular storage and must be synthesized rapidly following neuronal depolarization. We show that the biosynthetic enzyme for CO, heme oxygenase-2 (HO2), is activated during neuronal stimulation by phosphorylation by CK2 (formerly casein kinase 2). Phorbol ester treatment of hippocampal cultures results in the phosphorylation and activation of HO2 by CK2, implicating protein kinase C (PKC) in CK2 stimulation. Odorant treatment of olfactory receptor neurons augments HO2 phosphorylation and activity as well as cyclic guanosine monophosphate (cGMP) levels, with all of these effects selectively blocked by CK2 inhibitors. Likewise, CO-mediated nonadrenergic, noncholinergic (NANC) relaxation of the internal anal sphincter requires CK2 activity. Our findings provide a molecular mechanism for the rapid neuronal activation of CO biosynthesis, as required for a gaseous neurotransmitter.
Collapse
Affiliation(s)
- Darren Boehning
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Vicente AM, Guillén MI, Habib A, Alcaraz MJ. Beneficial effects of heme oxygenase-1 up-regulation in the development of experimental inflammation induced by zymosan. J Pharmacol Exp Ther 2003; 307:1030-7. [PMID: 14561852 DOI: 10.1124/jpet.103.057992] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is part of the integrated response to oxidative stress. This enzyme may exert anti-inflammatory effects in some animal models, although the precise mechanisms are not fully understood. We have examined the role of HO-1 in the inflammatory response induced by zymosan in the mouse air pouch. Zymosan administration induced HO-1 protein expression in leukocytes migrating to exudates, with maximal levels in the late phase of this response (24-48 h). This was accompanied by ferritin induction and bilirubin accumulation, indicating that this enzyme is active in our model. HO-1 expression by zymosan treatment was partly reduced by aminoguanidine, suggesting the participation of endogenous nitric oxide in the mechanisms leading to HO-1 synthesis in the zymosan-injected mouse air pouch. Up-regulation of HO-1 by hemin administration resulted in inhibition of nitric-oxide synthase-2 activity, cellular infiltration into the air pouch exudate, and plasmatic exudation. Leukotriene B4 levels in exudates were significantly decreased in the early phase of this response (4 h), whereas interleukin-1beta and tumor necrosis factor-alpha were inhibited at all time points. Inhibition of HO-1 activity by zinc protoporphyrin IX prevented most of the effects caused by hemin administration. Our results indicate that HO-1 exerts anti-inflammatory effects on the response to zymosan in the mouse air pouch and support a role for this enzyme in the modulation of inflammatory processes.
Collapse
Affiliation(s)
- Ana María Vicente
- Department of Pharmacology, University of Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjasot, Valencia, Spain
| | | | | | | |
Collapse
|
197
|
Friedman J, Lad L, Deshmukh R, Li H, Wilks A, Poulos TL. Crystal structures of the NO- and CO-bound heme oxygenase from Neisseriae meningitidis. Implications for O2 activation. J Biol Chem 2003; 278:34654-9. [PMID: 12819228 DOI: 10.1074/jbc.m302985200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenases catalyze the oxidation of heme to biliverdin, carbon monoxide, and free iron while playing a critical role in mammalian heme homeostasis. Pathogenic bacteria such as Neisseriae meningitidis also produce heme oxygenase as part of a mechanism to mine host iron. The key step in heme oxidation is the regioselective oxidation of the heme alpha-meso-carbon by an activated Fe(III)-OOH complex. The structures of various diatomic ligands bound to the heme iron can mimic the dioxygen complex and provide important insights on the mechanism of O2 activation. Here we report the crystal structures of N. meningitidis heme oxygenase (nm-HO) in the Fe(II), Fe(II)-CO, and Fe(II)-NO states and compare these to the NO complex of human heme oxygenase-1 (Lad, L., Wang, J., Li, H., Friedman, J., Bhaskar, B., Ortiz de Montellano, P. R., and Poulos, T. L. (2003) J. Mol. Biol. 330, 527-538). Coordination of NO or CO results in a reorientation of Arg-77 that enables Arg-77 to participate in an active site H-bonded network involving a series of water molecules. One of these water molecules directly H-bonds to the Fe(II)-linked ligand and very likely serves as the proton source required for oxygen activation. Although the active site residues differ between nm-HO and human HO-1, the close similarity in the H-bonded water network suggests a common mechanism shared by all heme oxygenases.
Collapse
Affiliation(s)
- Jonathan Friedman
- Department of Molecular Biology and Biochemistry, and Program in Macromolecular Structure, University of California, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
198
|
Wagener FADTG, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, Figdor CG. Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev 2003; 55:551-71. [PMID: 12869663 DOI: 10.1124/pr.55.3.5] [Citation(s) in RCA: 422] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heme-heme oxygenase system has recently been recognized to possess important regulatory properties. It is tightly involved in both physiological as well as pathophysiological processes, such as cytoprotection, apoptosis, and inflammation. Heme functions as a double-edged sword. In moderate quantities and bound to protein, it forms an essential element for various biological processes, but when unleashed in large amounts, it can become toxic by mediating oxidative stress and inflammation. The effect of this free heme on the vascular system is determined by extracellular factors, such as hemoglobin/heme-binding proteins, haptoglobin, albumin, and hemopexin, and intracellular factors, including heme oxygenases and ferritin. Heme oxygenase (HO) enzyme activity results in the degradation of heme and the production of iron, carbon monoxide, and biliverdin. All these heme-degradation products are potentially toxic, but may also provide strong cytoprotection, depending on the generated amounts and the microenvironment. Pre-induction of HO activity has been demonstrated to ameliorate inflammation and mediate potent resistance to oxidative injury. A better understanding of the complex heme-heme
Collapse
Affiliation(s)
- Frank A D T G Wagener
- Department of Tumor Immunology, University Medical Center Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
199
|
Abstract
Nitric oxide (NO) modulates many behavioral and neuroendocrine responses. Genetic or pharmacological inhibition of the synthetic enzyme that produces NO in neurons evokes elevated and sustained aggression in male mice. Recently, the excessive aggressive and impulsive traits of neuronal NO synthase knockout (nNOS-/-) mice were shown to be caused by reductions in serotonin (5-HT) turnover and deficient 5-HT1A and 5-HT1B receptor function in brain regions regulating emotion. The consistently high levels of aggression observed in nNOS-/- mice could be reversed by 5-HT precursors and by treatment with specific 5-HT1A and 5-HT1B receptor agonists. The expression of the aggressive phenotype of nNOS-/- knockout mice requires isolated housing prior to testing. The effects of social factors such as housing condition and maternal care can affect 5-HT and aggression, but the interaction among extrinsic factors, 5-HT, NO, and aggression remains unspecified. Taken together, NO appears to play an important role in normal brain 5-HT function and may have significant implications for the treatment of psychiatric disorders characterized by aggressive and impulsive behaviors.
Collapse
Affiliation(s)
- Silvana Chiavegatto
- Department and Institute of Psychiatry and Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | | |
Collapse
|
200
|
Haase A, Bicker G. Nitric oxide and cyclic nucleotides are regulators of neuronal migration in an insect embryo. Development 2003; 130:3977-87. [PMID: 12874120 DOI: 10.1242/dev.00612] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dynamic regulation of nitric oxide synthase (NOS) activity and cGMP levels suggests a functional role in the development of nervous systems. We report evidence for a key role of the NO/cGMP signalling cascade on migration of postmitotic neurons in the enteric nervous system of the embryonic grasshopper. During embryonic development, a population of enteric neurons migrates several hundred micrometers on the surface of the midgut. These midgut neurons (MG neurons) exhibit nitric oxide-induced cGMP-immunoreactivity coinciding with the migratory phase. Using a histochemical marker for NOS, we identified potential sources of NO in subsets of the midgut cells below the migrating MG neurons. Pharmacological inhibition of endogenous NOS, soluble guanylyl cyclase (sGC) and protein kinase G (PKG) activity in whole embryo culture significantly blocks MG neuron migration. This pharmacological inhibition can be rescued by supplementing with protoporphyrin IX free acid, an activator of sGC, and membrane-permeant cGMP, indicating that NO/cGMP signalling is essential for MG neuron migration. Conversely, the stimulation of the cAMP/protein kinase A signalling cascade results in an inhibition of cell migration. Activation of either the cGMP or the cAMP cascade influences the cellular distribution of F-actin in neuronal somata in a complementary fashion. The cytochemical stainings and experimental manipulations of cyclic nucleotide levels provide clear evidence that NO/cGMP/PKG signalling is permissive for MG neuron migration, whereas the cAMP/PKA cascade may be a negative regulator. These findings reveal an accessible invertebrate model in which the role of the NO and cyclic nucleotide signalling in neuronal migration can be analyzed in a natural setting.
Collapse
Affiliation(s)
- Annely Haase
- School of Veterinary Medicine Hannover, Cell Biology, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | | |
Collapse
|