151
|
Golubkov VS, Chekanov AV, Doxsey SJ, Strongin AY. Centrosomal pericentrin is a direct cleavage target of membrane type-1 matrix metalloproteinase in humans but not in mice: potential implications for tumorigenesis. J Biol Chem 2005; 280:42237-41. [PMID: 16251193 DOI: 10.1074/jbc.m510139200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) exhibits distinctive and important pericellular cleavage functions. Recently, we determined that MT1-MMP was trafficked to the centrosomes in the course of endocytosis. Our data suggested that the functionally important, integral, centrosomal protein, pericentrin-2, was a cleavage target of MT1-MMP in human and in canine cells and that the sequence of the cleavage sites were ALRRLLG1156 downward arrow L1157FG and ALRRLLS2068 downward arrow L2069FG, respectively. The presence of Asp-948 at the P1 position inactivated the corresponding site (ALRRLLD948-L949FGD) in murine pericentrin. To confirm that MT1-MMP itself cleaves pericentrin directly, rather than indirectly, we analyzed the cleavage of the peptides that span the MT1-MMP cleavage site. In addition, we analyzed glioma U251 cells, which co-expressed MT1-MMP with the wild type murine pericentrin and the D948G mutant. We determined that the D948G mutant that exhibited the cleavage sequence of human pericentrin was sensitive to MT1-MMP, whereas unmodified murine pericentrin was resistant to proteolysis. Taken together, our results confirm that MT1-MMP cleaves pericentrin-2 in humans but not in mice and that mouse models of cancer probably cannot be used to critically examine MT1-MMP functionality.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- Cancer Research Center, The Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
152
|
Wu X, Gan B, Yoo Y, Guan JL. FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Dev Cell 2005; 9:185-96. [PMID: 16054026 DOI: 10.1016/j.devcel.2005.06.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 04/14/2005] [Accepted: 06/16/2005] [Indexed: 10/25/2022]
Abstract
Focal adhesion kinase (FAK) is an important mediator of integrin signaling in the regulation of cell proliferation, survival, migration, and invasion. To understand how FAK contributes to cell invasion, we explored the regulation of matrix metalloproteinases (MMPs) by FAK. We found that v-Src-transformed cells activate a FAK-dependent mechanism that attenuates endocytosis of MT1-MMP. This in turn increases cell-surface expression of MT1-MMP and cellular degradation of extracellular matrix. Further, we identified an interaction between FAK's second Pro-rich motif and endophilin A2's SH3 domain. This interaction served as an autophosphorylation-dependent scaffold to allow Src phosphorylation of endophilin A2 at Tyr315. Tyr315 phosphorylation inhibited endophilin/dynamin interactions, and blockade of Tyr315 phosphorylation promoted endocytosis of MT1-MMP. Together, these results suggest a regulatory mechanism of cell invasion whereby FAK promotes cell-surface presentation of MT1-MMP by inhibiting endophilin A2-dependent endocytosis.
Collapse
Affiliation(s)
- Xiaoyang Wu
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
153
|
Toth M, Osenkowski P, Hesek D, Brown S, Meroueh S, Sakr W, Mobashery S, Fridman R. Cleavage at the stem region releases an active ectodomain of the membrane type 1 matrix metalloproteinase. Biochem J 2005; 387:497-506. [PMID: 15560752 PMCID: PMC1134979 DOI: 10.1042/bj20041324] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
MT1-MMP (membrane type 1 matrix metalloproteinase) is a membrane-anchored MMP that can be shed to the extracellular milieu. In the present study we report the primary structure and activity of the major soluble form of MT1-MMP. MS analysis of the purified 50-kDa soluble MT1-MMP form shows that the enzyme extends from Tyr112 to Val524, indicating that formation of this species requires a proteolytic cleavage within the stem region. In agreement, deletion of the entire stem region of MT1-MMP inhibited shedding of the 50-kDa species. A recombinant 50-kDa species (Tyr112-Val524) expressed in cells exhibited enzymatic activity against pro-MMP-2 and galectin-3, and thus this species is a competent protease. The recombinant 50-kDa soluble form also decreased the level of surface-associated TIMP-2 (tissue inhibitor of metalloproteinase 2) when administered to cells expressing wild-type membrane-anchored MT1-MMP, suggesting that ectodomain shedding of MT1-MMP can alter the MMP/TIMP balance on the cell surface. A approximately 53-kDa species of MT1-MMP was also isolated from a non-detergent extract of human breast carcinoma tissue and was found to lack the cytosolic tail, as determined with specific MT1-MMP domain antibodies. Together, these data show that MT1-MMP ectodomain shedding is a physiological process that may broaden MT1-MMP activity to the pericellular space.
Collapse
Affiliation(s)
- Marta Toth
- *Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Pamela Osenkowski
- †Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, U.S.A
| | - Dusan Hesek
- *Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Stephen Brown
- *Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Samy Meroueh
- *Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Wael Sakr
- †Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, U.S.A
| | - Shahriar Mobashery
- *Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Rafael Fridman
- †Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
154
|
Langton KP, McKie N, Smith BM, Brown NJ, Barker MD. Sorsby's fundus dystrophy mutations impair turnover of TIMP-3 by retinal pigment epithelial cells. Hum Mol Genet 2005; 14:3579-86. [PMID: 16223891 DOI: 10.1093/hmg/ddi385] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sorsby's fundus dystrophy (SFD) is an autosomal dominant degenerative disease of the retina, caused by mutations in exon 5 of the gene for tissue inhibitor of metalloproteinases-3 (TIMP-3). The mechanism by which these mutations give rise to the disease phenotype is unknown. In an attempt to identify common properties of these molecules that might underlie the disease phenotype, a range of SFD mutants were expressed from human retinal pigment epithelial (RPE) cells. This showed that resistance to turnover, resulting from intermolecular disulfide bond formation, was a common property of all the SFD mutants examined, providing a possible explanation for the increased deposition of the protein observed in eyes from SFD patients. In contrast, SFD mutants varied in their ability to inhibit cell-surface activation of matrix metalloproteinase-2 (MMP-2), a potent mediator of angiogenesis, ranging from being fully active to totally inactive. These data show that increased deposition of active TIMP-3, rather than dysregulation of metalloproteinase inhibition, is likely to be the primary, initiating event in SFD.
Collapse
Affiliation(s)
- Kevin P Langton
- Academic Unit of Pathology, Division of Genomic Medicine, University of Sheffield, Sheffield S10 1EW, UK
| | | | | | | | | |
Collapse
|
155
|
Langlois S, Di Tomasso G, Boivin D, Roghi C, Murphy G, Gingras D, Béliveau R. Membrane type 1-matrix metalloproteinase induces endothelial cell morphogenic differentiation by a caspase-dependent mechanism. Exp Cell Res 2005; 307:452-64. [PMID: 15882863 DOI: 10.1016/j.yexcr.2005.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 03/17/2005] [Accepted: 04/07/2005] [Indexed: 11/26/2022]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been suggested to play an essential role in angiogenesis. Based on recent evidence suggesting that the sprouting and branching of capillaries during angiogenesis involves apoptosis, we investigated the involvement of this process in MT1-MMP-dependent morphogenic differentiation of EC into capillary-like structures. We found that MT1-MMP sensitizes EC to apoptosis, since reduction of MT1-MMP expression abolished vimentin fragmentation in apoptotic HUVECs while overexpression of the enzyme induced caspase-3 activity in BAECs subjected to pro-apoptotic treatments. MT1-MMP-mediated caspase-3 activation likely occurs through the mitochondrial pathway since it was abrogated by Bcl-2, but not by CrmA overexpression. Reduction of MT1-MMP expression in HUVECs reduced morphogenic differentiation that was correlated with diminished vimentin fragmentation, whereas its overexpression in BAECs stimulated both processes. Inactivation of the catalytic activity or removal of the cytoplasmic domain of MT1-MMP markedly reduced its ability to induce both morphogenic differentiation and caspase-3 activation. The inhibitory effects of the anti-apoptotic protein Bcl-2 and the caspase inhibitor zVAD-fmk further suggested the involvement of apoptosis during MT1-MMP-mediated morphogenic differentiation. Our results show that the ability of MT1-MMP to induce EC morphogenic differentiation involves its activation of a caspase-dependent mechanism.
Collapse
Affiliation(s)
- Stéphanie Langlois
- Laboratoire de Médecine moléculaire, Hôpital Ste-Justine-Université du Québec à Montréal, Centre de Cancérologie Charles-Bruneau, 3175 Chemin Côte-Ste-Catherine, Montréal, Québec, Canada H3T 1C5
| | | | | | | | | | | | | |
Collapse
|
156
|
Sounni NE, Noel A. Membrane type-matrix metalloproteinases and tumor progression. Biochimie 2005; 87:329-42. [PMID: 15781320 DOI: 10.1016/j.biochi.2004.07.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 07/16/2004] [Indexed: 01/30/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that process growth factors, growth factor binding proteins, cell surface proteins, degrade extracellular matrix (ECM) components and thereby play a central role in tissue remodeling and tumor progression. Membrane-type matrix metalloproteinases (MT-MMPs) are a recently discovered subgroup of intrinsic plasma membrane proteins. Their functions have been extended from pericellular proteolysis and control of cell migration to cell signaling, control of cell proliferation and regulation of multiple stages of tumor progression including growth and angiogenesis. This review sheds light on the new functions of MT-MMPs and their inhibitors in tumor development and angiogenesis, and presents recent investigations that document their influence on various cell functions.
Collapse
Affiliation(s)
- N E Sounni
- Laboratory of Tumor and Development Biology, University of Liège, Sart-Tilman B23, B4000 Liège, Belgium
| | | |
Collapse
|
157
|
Anilkumar N, Uekita T, Couchman JR, Nagase H, Seiki M, Itoh Y. Palmitoylation at Cys574is essential for MT1‐MMP to promote cell migration. FASEB J 2005; 19:1326-8. [PMID: 15946988 DOI: 10.1096/fj.04-3651fje] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MT1-MMP is a type I transmembrane proteinase that promotes cell migration and invasion. Here, we report that MT1-MMP is palmitoylated at Cys574 in the cytoplasmic domain, and this lipid modification is critical for its promotion of cell migration and clathrin-mediated internalization. The palmitoylation-defective mutant (C574A) failed to promote cell migration and was not internalized through clathrin pathway like wild-type, but it was internalized through the caveolae pathway. Reintroducing a cysteine at different positions in the cytoplasmic tail of the C574A mutant revealed that the position of the palmitoylated cysteine relative to LLY573, a motif that interacts with mu2 subunit of adaptor protein 2, is critical for the cell motility-promoting activity of MT1-MMP and its clathrin-mediated internalization. Taken together, palmitoylation of MT1-MMP is one of the key posttranslational modifications that determines MT1-MMP-dependent cell migration.
Collapse
Affiliation(s)
- Narayanapanicker Anilkumar
- Department of Matrix Biology, Kennedy Institute of Rheumatology Division, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
158
|
Abstract
Cells are regulated by many different means, and there is more and more evidence emerging that changes in the microenvironment greatly affect cell function. MT1-MMP is a type I transmembrane proteinase which participates in pericellular proteolysis of extracellular matrix (ECM) macromolecules. The enzyme is cellular collagenase essential for skeletal development, cancer invasion, growth, and angiogenesis. MT1-MMP promotes cell invasion and motility by pericellular ECM degradation, shedding of CD44 and syndecan1, and by activating ERK. Thus MT1-MMP is one of the factors that influence the cellular microenvironment and thereby affect cell-signaling pathways and eventually alters cellular behavior. As a proteinase, MT1-MMP is regulated by inhibitors, but it also requires formation of a homo-oligomer complex, localization to migration front of the cells, and internalization to become a "functionally active" cell function modifier. Developing new means to inhibit "functional activity" of MT1-MMP may be a new direction to establish treatments for the diseases that MT1-MMP mediates such as cancer and rheumatoid arthritis.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology Division, Imperial College London, Hammersmith, London, United Kingdom
| | | |
Collapse
|
159
|
Osenkowski P, Meroueh SO, Pavel D, Mobashery S, Fridman R. Mutational and structural analyses of the hinge region of membrane type 1-matrix metalloproteinase and enzyme processing. J Biol Chem 2005; 280:26160-8. [PMID: 15901740 DOI: 10.1074/jbc.m414379200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane type 1 (MT1)-matrix metalloproteinase (MMP) is a major mediator of collagen degradation in the pericellular space in both physiological and pathological conditions. Previous evidence has shown that on the cell surface, active MT1-MMP undergoes autocatalytic processing to a major membrane-tethered 44-kDa product lacking the catalytic domain and displaying Gly285 at its N terminus, which is at the beginning of the hinge domain. However, the importance of this site and the hinge region in MT1-MMP processing is unknown. In the current study, we generated mutations and deletions in the hinge of MT1-MMP and followed their effect on processing. These studies established Gly284-Gly285 as the main cleavage site involved in the formation of the 44-kDa species. However, alterations at this site did not prevent processing. Instead, they forced downstream cleavages within the stretch of residues flanked by Gln296 and Ser304 in the hinge region, as determined by the processing profile of various hinge deletion mutants. Also, replacement of the hinge of MT1-MMP with the longer MT3-MMP hinge did not prevent processing of MT1-MMP. Molecular dynamic studies using a computational model of MT1-MMP revealed that the hinge region is a highly motile element that undergoes significant motion in the highly exposed loop formed by Pro295-Arg302 consistent with being a prime target for proteolysis, in agreement with the mutational data. These studies suggest that the hinge of MT1-MMP evolved to facilitate processing, a promiscuous but compulsory event in the destiny of MT1-MMP, which may play a key role in the control of pericellular proteolysis.
Collapse
Affiliation(s)
- Pamela Osenkowski
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
160
|
Golubkov VS, Boyd S, Savinov AY, Chekanov AV, Osterman AL, Remacle A, Rozanov DV, Doxsey SJ, Strongin AY. Membrane type-1 matrix metalloproteinase (MT1-MMP) exhibits an important intracellular cleavage function and causes chromosome instability. J Biol Chem 2005; 280:25079-86. [PMID: 15878869 DOI: 10.1074/jbc.m502779200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated expression of membrane type-1 matrix metalloproteinase (MT1-MMP) is closely associated with malignancies. There is a consensus among scientists that cell surface-associated MT1-MMP is a key player in pericellular proteolytic events. Now we have identified an intracellular, hitherto unknown, function of MT1-MMP. We demonstrated that MT1-MMP is trafficked along the tubulin cytoskeleton. A fraction of cellular MT1-MMP accumulates in the centrosomal compartment. MT1-MMP targets an integral centrosomal protein, pericentrin. Pericentrin is known to be essential to the normal functioning of centrosomes and to mitotic spindle formation. Expression of MT1-MMP stimulates mitotic spindle aberrations and aneuploidy in non-malignant cells. Volumes of data indicate that chromosome instability is an early event of carcinogenesis. In agreement, the presence of MT1-MMP activity correlates with degraded pericentrin in tumor biopsies, whereas normal tissues exhibit intact pericentrin. We believe that our data show a novel proteolytic pathway to chromatin instability and elucidate the close association of MT1-MMP with malignant transformation.
Collapse
|
161
|
Björklund M, Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta Rev Cancer 2005; 1755:37-69. [PMID: 15907591 DOI: 10.1016/j.bbcan.2005.03.001] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 01/13/2023]
Abstract
The matrix metalloproteinases(MMP)-2 and -9, also known as the gelatinases have been long recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. In the recent years, a plethora of non-matrix proteins have also been identified as gelatinase substrates thus significantly broadening our understanding of these enzymes as proteolytic executors and regulators in various physiological and pathological states including embryonic growth and development, angiogenesis and tumor progression, inflammation, infective diseases, degenerative diseases of the brain and vascular diseases. Although the effect of broad-spectrum inhibitors of MMPs in the treatment of cancer has been disappointing in clinical trials, novel mechanisms of gelatinase inhibition have been now identified. Inhibition of the association of the gelatinases with cell-surface integrins appears to offer highly specific means to target these enzymes without inhibiting their catalytic activity in multiple cell types including endothelial cells, tumor cells and leukocytes. Here, we review the multiple functions of the gelatinases in cancer, and especially their role in the tumor cell migration and invasion.
Collapse
Affiliation(s)
- Mikael Björklund
- Department of Biological and Environmental Sciences, P.O. B 56 (Viikinkaari 5D), University of Helsinki, Finland
| | | |
Collapse
|
162
|
Deryugina EI, Ratnikov BI, Yu Q, Baciu PC, Rozanov DV, Strongin AY. Prointegrin maturation follows rapid trafficking and processing of MT1-MMP in Furin-Negative Colon Carcinoma LoVo Cells. Traffic 2005; 5:627-41. [PMID: 15260832 DOI: 10.1111/j.1600-0854.2004.00206.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the function of invasion-promoting membrane type-1 matrix metalloproteinase (MT1-MMP) is of paramount importance for understanding cancer biology. MT1-MMP is synthesized in cells as a latent zymogen that requires the cleavage of its prodomain to exert the proteolytic activity. The mature alphav integrin subunit is also generated by endoproteolytic cleavage of the alphav subunit precursor (pro-alphav). Cleavage by furin is considered to be a principal event in the activation of both MT1-MMP and pro-alphav. To elucidate the alternative activation pathway of MT1-MMP and pro-alphav, we employed furin-negative LoVo cells, which co-express MT1-MMP with integrin alphavbeta3. In these cells the MT1-MMP proenzyme was rapidly trafficked to the plasma membrane via an unconventional Brefeldin A-resistant pathway and, then, autocatalytically processed on the cell surface. Next, the MT1-MMP activity converted the cell surface-associated pro-alphav into the mature alphav integrin, represented by the disulfide-bonded heavy and light chains, and promoted the formation of the functional integrin alphavbeta3 heterodimer. These events stimulated cell motility in vitro, and malignant invasion and tumor growth in vivo. Our data suggest that in furin-negative colon carcinoma cells MT1-MMP is autocatalytically processed and the active protease then operates as a prointegrin convertase. Our findings argue strongly that the processing by furin is not a prerequisite for the activation of MT1-MMP.
Collapse
Affiliation(s)
- Elena I Deryugina
- Cancer Research Center, the Burnham Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
163
|
Lehti K, Allen E, Birkedal-Hansen H, Holmbeck K, Miyake Y, Chun TH, Weiss SJ. An MT1-MMP-PDGF receptor-beta axis regulates mural cell investment of the microvasculature. Genes Dev 2005; 19:979-91. [PMID: 15805464 PMCID: PMC1080136 DOI: 10.1101/gad.1294605] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Platelet-derived growth factor (PDGF)/PDGFRbeta-dependent investment of the vascular endothelium by mural cells (i.e., pericytes and vascular smooth muscle cells; VSMCs) is critical for normal vessel wall structure and function. In the developing vasculature, mural cell recruitment is associated with the functionally undefined expression of the type I transmembrane proteinase, membrane-type 1 matrix metalloproteinase (MT1-MMP). In this paper, using VSMCs and tissues isolated from gene-targeted mice, we identify MT1-MMP as a PDGF-B-selective regulator of PDGFRbeta-dependent signal transduction and mural cell function. In VSMCs, catalytically active MT1-MMP associates with PDGFRbeta in membrane complexes that support the efficient induction of mitogenic signaling by PDGF-B in a matrix metalloproteinase inhibitor-sensitive fashion. In contrast, MT1-MMP-deficient VSMCs display PDGF-B-selective defects in chemotaxis and proliferation as well as ERK1/2 and Akt activation that can be rescued in tandem fashion following retroviral transduction with the wild-type protease. Consistent with these in vitro findings, MT1-MMP-deficient brain tissues display a marked reduction in mural cell density as well as abnormal vessel wall morphology similar to that reported in mice expressing PDGF-B or PDGFRbeta hypomorphic alleles. Together, these data identify MT1-MMP as a novel proteolytic modifier of PDGF-B/PDGFRbeta signal transduction that cooperatively regulates vessel wall architecture in vivo.
Collapse
Affiliation(s)
- Kaisa Lehti
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Deschamps AM, Yarbrough WM, Squires CE, Allen RA, McClister DM, Dowdy KB, McLean JE, Mingoia JT, Sample JA, Mukherjee R, Spinale FG. Trafficking of the membrane type-1 matrix metalloproteinase in ischemia and reperfusion: relation to interstitial membrane type-1 matrix metalloproteinase activity. Circulation 2005; 111:1166-74. [PMID: 15723986 DOI: 10.1161/01.cir.0000157149.71297.3a] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The matrix metalloproteinases (MMPs) contribute to regional remodeling after prolonged periods of ischemia and reperfusion (I/R), but specific MMP types activated during this process remain poorly understood. A novel class, the membrane-type MMPs (MT-MMPs), has been identified in the myocardium, but activity of these MMP types has not been assessed in vivo, particularly during I/R. METHODS AND RESULTS Pigs (30 kg, n=8) were instrumented with microdialysis catheters to measure MT1-MMP activity in both ischemic and nonischemic (remote) myocardium. A validated MT1-MMP fluorogenic substrate was infused through the microdialysis system, and changes in fluorescence were reflective of MT1-MMP activity at steady state, during ischemia (90 minutes), and during reperfusion (120 minutes). At peak ischemia, MT1-MMP activity was increased by >40% in the ischemic region, with no change in the remote region, which persisted with reperfusion (P<0.05). After I/R, MT1-MMP abundance was increased by >50% (P<0.05). Differential centrifugation revealed that the endosomal fraction (which contains subcellular organelles) within the ischemic myocardium was associated with a >135% increase in MT1-MMP (P<0.05). Furthermore, in an isolated left ventricular myocyte model of I/R, hypoxia (simulated ischemia) induced a >70% increase in MT1-MMP abundance in myocytes, and confocal microscopy revealed MT1-MMP internalization during this time period and reemergence to the membrane with reperfusion. CONCLUSIONS These unique results demonstrate that a specific MMP type, MT1-MMP, is increased in abundance and activity with I/R and is likely attributed, at least in part, to changes in intracellular trafficking.
Collapse
Affiliation(s)
- Anne M Deschamps
- Division of Cardiothoracic Surgery, Medical University of South Carolina, and the Ralph H. Johnson Veteran's Affairs Medical Center, Charleston, SC 29403, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Guo C, Jiang J, Elliott JM, Piacentini L. Paradigmatic identification of MMP-2 and MT1-MMP activation systems in cardiac fibroblasts cultured as a monolayer. J Cell Biochem 2005; 94:446-59. [PMID: 15534869 DOI: 10.1002/jcb.20272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Activations of MMP-2 and membrane type 1-matrix metalloproteinase (MT1-MMP) have been correlated with cell migration, a key cellular event in the wound healing and tissue remodeling. We have previously demonstrated furin-dependent MMP-2 and MT1-MMP activations induced by type I collagen in cardiac fibroblasts. To understand mechanistic aspects of the regulation of MMP-2 and MT1-MMP activations by potential non-matrix factor(s) in cardiac fibroblasts, in the present study, we examined the effects of various agents including concanavalin A (ConA), a proteolytic phenotype-producing agent. We showed that treatment of cells with ConA activated pro-MMP-2, and that this activation concurred with elevated levels of cellular MT1-MMP and TIMP-2. The presence of active MT1-MMP and 43 and 36 kDa processed forms of MT1-MMP in a fraction of intracellular proteins prepared from ConA-treated cells suggests the possible internalization of differential forms of MT1-MMP. The appearance of 36 kDa processed form of MT1-MMP in conditioned media prepared from ConA-treated cells indicates the possible extracellular release of the further processed MT1-MMP fragment. Inhibition of furin in ConA-treated cells attenuated pro-MT1-MMP processing and the cellular TIMP-2 level, plus it reduced cell-released active MMP-2 in a time-dependent manner. These results suggest the involvement of furin in the ConA-induced activations of MT1-MMP and MMP-2. Furthermore, the existence of furin inhibitor-insensitive pro- and active MMP-2 species associated with ConA-treated cells implies that a mechanism independent of furin may perhaps account for the binding of the MMP-2 species to the cells. Supplementary material for this article can be found at http://www.mrw.interscience.wiley.com/suppmat/0730-2312/suppmat/94/suppmat_guo.tif.
Collapse
Affiliation(s)
- Chun Guo
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK.
| | | | | | | |
Collapse
|
166
|
Rozanov DV, Golubkov VS, Strongin AY. Membrane type-1 matrix metalloproteinase (MT1-MMP) protects malignant cells from tumoricidal activity of re-engineered anthrax lethal toxin. Int J Biochem Cell Biol 2005; 37:142-54. [PMID: 15381157 DOI: 10.1016/j.biocel.2004.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 06/07/2004] [Accepted: 06/07/2004] [Indexed: 11/28/2022]
Abstract
Protective antigen (PA) and lethal factor (LF) are the two components of anthrax lethal toxin. PA is responsible for interacting with cell receptors and for the subsequent translocation of LF inside the cell compartment. A re-engineered toxin comprised of PA and a fusion chimera LF/Pseudomonas exotoxin (FP59) is a promising choice for tumor cell surface targeting. We demonstrated, however, that in vitro in cell-free system and in cultured human colon carcinoma LoVo, fibrosarcoma HT1080 and glioma U251 cells membrane type-1 matrix metalloproteinase (MT1-MMP) cleaves both the PA83 precursor and the PA63 mature protein. Exhaustive MT1-MMP cleavage of PA83 in vitro generates several major degradation fragments with an N-terminus at Glu40, Leu48, and Gln512. In cultured cells, MT1-MMP-dependent cleavage releases the cell-bound PA83 and PA63 species from the cell surface. As a result, MT1-MMP expressing cells have less PA63 to internalize. In agreement, our observations demonstrate that MT1-MMP proteolysis of PA makes the MT1-MMP-expressing aggressive invasive cells resistant to the cytotoxic effect of a bipartite PA/FP59 toxin. We infer from our studies that synthetic inhibitors of MMPs are likely to increase the therapeutic anti-cancer effect of anthrax toxin. In addition, our study supports a unique role of furin in the activation of PA, thereby suggesting that furin inhibitors are the likely specific drugs for short-term therapy of anthrax infection.
Collapse
Affiliation(s)
- Dmitri V Rozanov
- Cancer Research Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
167
|
Wang P, Nie J, Pei D. The Hemopexin Domain of Membrane-type Matrix Metalloproteinase-1 (MT1-MMP) Is Not Required for Its Activation of proMMP2 on Cell Surface but Is Essential for MT1-MMP-mediated Invasion in Three-dimensional Type I Collagen. J Biol Chem 2004; 279:51148-55. [PMID: 15381707 DOI: 10.1074/jbc.m409074200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane-type matrix metalloproteinase-1 (MT1-MMP) plays a key role in tumor invasion and metastasis by degrading the extracellular matrix and activating proMMP2. Here we show that the conserved hemopexin domain is required for MT1-MMP-mediated invasion and growth in three-dimensional type I collagen matrix but not proMMP2 activation. Deletion of the hemopexin domains in MT1-, MT2-, MT3-, MT5-, and MT6-MMP does not impair their abilities to activate proMMP2. In fact, hemopexin-less MT5- and MT6-MMP activate proMMP2 better than their wild type counterparts. On the other hand, hemopexin-less MT1-MMP fails to promote cell invasion into type I collagen but retains the capacity to enhance the growth of Madin-Darby canine kidney cells as cysts in three-dimensional collagen matrix. Moreover, the hemopexin domain is also required for MT1-MMP-mediated invasion/scattering of MCF-7 cells in three-dimensional collagen matrix. Because growth and invasion in a three-dimensional model may correlate with tumor invasiveness in vivo, our data suggest that the hemopexin domains of MT-MMPs should be targeted for the development of anti-cancer therapies by employing screening assays developed for three-dimensional models rather than their enzymatic activity toward proMMP2.
Collapse
Affiliation(s)
- Ping Wang
- Department of Pharmacology, University of Minnesota School of Medicine, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
168
|
Gálvez BG, Genís L, Matías-Román S, Oblander SA, Tryggvason K, Apte SS, Arroyo AG. Membrane type 1-matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/ccl2 and interleukin-8/CXCL8 in endothelial cells during angiogenesis. J Biol Chem 2004; 280:1292-8. [PMID: 15516694 DOI: 10.1074/jbc.m408673200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have investigated the putative role and regulation of membrane type 1-matrix metalloproteinase (MT1-MMP) in angiogenesis induced by inflammatory factors of the chemokine family. The absence of MT1-MMP from null mice or derived mouse lung endothelial cells or the blockade of its activity with inhibitory antibodies resulted in the specific decrease of in vivo and in vitro angiogenesis induced by CCL2 but not CXCL12. Similarly, CCL2- and CXCL8-induced tube formation by human endothelial cells (ECs) was highly dependent on MT1-MMP activity. CCL2 and CXCL8 significantly increased MT1-MMP surface expression, clustering, activity, and function in human ECs. Investigation of the signaling pathways involved in chemokine-induced MT1-MMP activity in ECs revealed that CCL2 and CXCL8 induced cortical actin polymerization and sustained activation of phosphatidylinositol 3-kinase (PI3K) and the small GTPase Rac. Inhibition of PI3K or actin polymerization impaired CCL2-induced MT1-MMP activity. Finally, dimerization of MT1-MMP was found to be enhanced by CCL2 in ECs in a PI3K- and actin polymerization-dependent manner. In summary, we identify MT1-MMP as a molecular target preferentially involved in angiogenesis mediated by CCL2 and CXCL8, but not CXCL12, and suggest that MT1-MMP dimerization might be an important mechanism of its regulation during angiogenesis.
Collapse
Affiliation(s)
- Beatriz G Gálvez
- Departamento de Investigación Básica, Centro Nacional de Investigaciones Cardiovasculares, Ronda de Poniente, 5, 28760-Tres Cantos, Spain
| | | | | | | | | | | | | |
Collapse
|
169
|
Labrecque L, Nyalendo C, Langlois S, Durocher Y, Roghi C, Murphy G, Gingras D, Béliveau R. Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J Biol Chem 2004; 279:52132-40. [PMID: 15466865 DOI: 10.1074/jbc.m409617200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have recently shown that stimulation of endothelial cells with vascular endothelial growth factor (VEGF) induces dissociation of caveolin-1 from the VEGFR-2 receptor, followed by Src family kinase-dependent tyrosine phosphorylation of the protein (Labrecque, L., Royal, I., Surprenant, D. S., Patterson, C., Gingras, D., and Beliveau, R. (2003) Mol. Biol. Cell 14, 334-347). In this study, we provide evidence that the VEGF-dependent tyrosine phosphorylation of caveolin-1 induces interaction of the protein with the membrane-type 1 matrix metalloproteinase (MT1-MMP). This interaction requires the phosphorylation of caveolin-1 on tyrosine 14 by members of the Src family of protein kinases, such as Src and Fyn, because it is completely abolished by expression of a catalytically inactive Src mutant or by site-directed mutagenesis of tyrosine 14 of caveolin-1. Most interestingly, the association of MT1-MMP with phosphorylated caveolin-1 induced the recruitment of Src and a concomitant inhibition of the kinase activity of the enzyme, suggesting that this complex may be involved in the negative regulation of Src activity. The association of MT1-MMP with phosphorylated caveolin-1 occurs in caveolae membranes and involves the cytoplasmic domain of MT1-MMP because it was markedly reduced by mutation of Cys574 and Val582 residues of the cytoplasmic tail of the enzyme. Most interestingly, the reduction of the interaction between MT1-MMP and caveolin-1 by using these mutants also decreases MT1-MMP-dependent cell locomotion. Overall these results indicate that MT1-MMP associates with tyrosine-phosphorylated caveolin-1 and that this complex may play an important role in MT1-MMP regulation and function.
Collapse
Affiliation(s)
- Lyne Labrecque
- Laboratoire de Médecine Moléculaire, Hôpital Ste-Justine-Université du Québec à Montréal, Centre de Cancérologie Charles-Bruneau, 3175 Chemin Côte-Ste-Catherine, Montréal, Québec H3T 1C5
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Miyata T, Ohnishi H, Suzuki J, Yoshikumi Y, Ohno H, Mashima H, Yasuda H, Ishijima T, Osawa H, Satoh K, Sunada K, Kita H, Yamamoto H, Sugano K. Involvement of syntaxin 4 in the transport of membrane-type 1 matrix metalloproteinase to the plasma membrane in human gastric epithelial cells. Biochem Biophys Res Commun 2004; 323:118-24. [PMID: 15351710 DOI: 10.1016/j.bbrc.2004.08.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Indexed: 11/17/2022]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) localized on the plasma membrane plays a central role in various normal biological responses including tissue remodeling, wound heeling, and angiogenesis and in cancer cell invasion and metastasis, by functioning as a collagenase and activating other matrix metalloproteinases. In order to elucidate the molecular mechanism of the MT1-MMP targeted localization on the plasma membrane, we examined the participation of syntaxin proteins in MT1-MMP intracellular transport to the plasma membrane in human gastric epithelial AGS cells. Western blotting showed that syntaxin 3 and 4 proteins, which are known to function in intracellular transport towards the plasma membrane, were expressed in AGS cells. Immunocytochemistry revealed that transient transfection of AGS cells with dominant-negative mutant syntaxin 4 decreased plasma membrane MT1-MMP expression. In contrast, transient transfection with either dominant-negative mutant syntaxin 3 or 7 did not affect MT1-MMP localization on the plasma membrane. Cell surface biotinylation assay and Matrigel chamber assay demonstrated that stable transfection with dominant-negative mutant syntaxin 4 decreased the amount of MT1-MMP on the plasma membranes and inhibited the cell invasiveness. We suggest that syntaxin 4 is involved in the intracellular transport of MT1-MMP toward the plasma membrane.
Collapse
Affiliation(s)
- Tomohiko Miyata
- Department of Gastroenterology, Jichi Medical School, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Augé N, Maupas-Schwalm F, Elbaz M, Thiers JC, Waysbort A, Itohara S, Krell HW, Salvayre R, Nègre-Salvayre A. Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation. Circulation 2004; 110:571-8. [PMID: 15277330 DOI: 10.1161/01.cir.0000136995.83451.1d] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Oxidized LDLs (oxLDLs) and matrix metalloproteinases (MMPs) are present in atherosclerotic lesions. OxLDLs activate various signaling pathways potentially involved in atherogenesis. OxLDLs induce smooth muscle cell (SMC) proliferation mediated by the activation of the sphingomyelin/ceramide pathway and tyrosine kinase receptors. MMPs are also able to induce SMC migration and proliferation in addition to extracellular matrix degradation. The present study was designed to investigate whether MMPs play a role in the mitogenic effect of oxLDLs. METHODS AND RESULTS OxLDLs induce the release of activated MMP-2 in SMC culture medium. MMP-2 was identified by its 65-kDa gelatinase activity on zymography and by using specific blocking antibodies and MMP-2-/- cells. MMP inhibitors (batimastat and Ro28-2653) and the blocking antibodies anti-MMP-2 and anti-membrane type 1-MMP inhibited the oxLDL-induced sphingomyelin/ceramide pathway activation and subsequent activation of ERK1/2 and DNA synthesis but did not inhibit the oxLDL-induced epidermal growth factor receptor and platelet-derived growth factor receptor activation. Exogenously added activated MMP-2 or membrane type 1-MMP-1 triggered the activation of both sphingomyelin/ceramide and ERK1/2 pathways and DNA synthesis. Conversely, suppression of MMP-2 expression in MMP-2-/- cells or in SMCs treated by small-interference RNA also blocked both sphingomyelin/ceramide signaling and DNA synthesis. CONCLUSIONS Together, these data demonstrate that MMP-2 plays a pivotal role in oxLDL-induced activation of the sphingomyelin/ceramide signaling pathway and subsequent SMC proliferation. These pathways may constitute a potential therapeutic target for modulating the oxLDL-induced proliferation of SMCs in atherosclerosis or restenosis.
Collapse
MESH Headings
- Animals
- Cell Division/drug effects
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Ceramides/physiology
- DNA Replication/drug effects
- Enzyme Activation/drug effects
- ErbB Receptors/drug effects
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Humans
- Lipoproteins, LDL/pharmacology
- Lysophospholipids/physiology
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/pharmacology
- Matrix Metalloproteinase 2/physiology
- Matrix Metalloproteinase Inhibitors
- Matrix Metalloproteinases, Membrane-Associated
- Metalloendopeptidases/pharmacology
- Metalloendopeptidases/physiology
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/physiology
- Mitogen-Activated Protein Kinase 3/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phenylalanine/analogs & derivatives
- Phenylalanine/pharmacology
- Piperazines/pharmacology
- Protease Inhibitors/pharmacology
- Pyrimidines/pharmacology
- RNA, Small Interfering/pharmacology
- Rabbits
- Receptors, Platelet-Derived Growth Factor/drug effects
- Recombinant Proteins/pharmacology
- Signal Transduction/drug effects
- Sphingomyelin Phosphodiesterase/metabolism
- Sphingomyelins/physiology
- Sphingosine/analogs & derivatives
- Sphingosine/physiology
- Thiophenes/pharmacology
Collapse
Affiliation(s)
- Nathalie Augé
- INSERM U-466, Department of Biochemistry, CHU Rangueil, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Munshi HG, Wu YI, Mukhopadhyay S, Ottaviano AJ, Sassano A, Koblinski JE, Platanias LC, Stack MS. Differential regulation of membrane type 1-matrix metalloproteinase activity by ERK 1/2- and p38 MAPK-modulated tissue inhibitor of metalloproteinases 2 expression controls transforming growth factor-beta1-induced pericellular collagenolysis. J Biol Chem 2004; 279:39042-50. [PMID: 15247230 DOI: 10.1074/jbc.m404958200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acquisition of matrix metalloproteinase-2 (MMP-2) activity is temporally associated with increased migration and invasiveness of cancer cells. ProMMP-2 activation requires multimolecular complex assembly involving proMMP-2, membrane type 1-MMP (MT1-MMP, MMP-14), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Because transforming growth factor-beta1 (TGF-beta1) promotes tumor invasion in advanced squamous cell carcinomas, the role of TGF-beta1 in the regulation of MMP activity in a cellular model of invasive oral squamous cell carcinoma was examined. Treatment of oral squamous cell carcinoma cells with TGF-beta1 promoted MMP-dependent cell scattering and collagen invasion, increased expression of MMP-2 and MT1-MMP, and enhanced MMP-2 activation. TGF-beta1 induced concomitant activation of ERK1/2 and p38 MAPK, and kinase inhibition studies revealed a negative regulatory role for ERK1/2 in modulating acquisition of MMP-2 activity. Thus, a reciprocal effect on proMMP-2 activation was observed whereupon blocking ERK1/2 phosphorylation promoted proMMP-2 activation and MT1-MMP activity, whereas inhibiting p38 MAPK activity decreased proteolytic potential. The cellular mechanism for the control of MT1-MMP catalytic activity involved concurrent reciprocal modulation of TIMP-2 expression by ERK1/2 and p38 MAPKs, such that inhibition of ERK1/2 phosphorylation decreased TIMP-2 production, and down-regulation of p38 MAPK activity enhanced TIMP-2 synthesis. Further, p38 MAPK inhibition promoted ERK1/2 phosphorylation, providing additional evidence for cross-talk between MAPK pathways. These observations demonstrate the complex reciprocal effects of ERK1/2 and p38 MAPK in the regulation of MMP activity, which could complicate the use of MAPK-specific inhibitors as therapeutic agents to down-regulate the biologic effects of TGF-beta1 on pericellular collagen degradation and tumor invasion.
Collapse
Affiliation(s)
- Hidayatullah G Munshi
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Annabi B, Thibeault S, Moumdjian R, Béliveau R. Hyaluronan Cell Surface Binding Is Induced by Type I Collagen and Regulated by Caveolae in Glioma Cells. J Biol Chem 2004; 279:21888-96. [PMID: 15016831 DOI: 10.1074/jbc.m313694200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hyaluronan (HA) is a component of the brain extracellular matrix environment that is synthesized and secreted by glioma cells. The primary cell surface receptor for HA is CD44, a membrane glycoprotein that is functionally regulated by a membrane type 1 matrix metalloproteinase (MT1-MMP). Both CD44 and MT1-MMP are partially located in Triton X-100-insoluble domains, but no functional link has yet been established between them. In the present study, we studied the regulation of HA cell surface binding in U-87 glioma cells. We show that an MMP-dependent mechanism regulates the intrinsic cell surface binding of HA as ilomastat, a broad MMP inhibitor, increased HA binding to glioma cells. HA binding was also rapidly and specifically up-regulated by 3-fold by type I collagen in U-87 cells, which also induced a significant morphological reorganization associated with the activation of a latent form of MMP-2 through a MT1-MMP-mediated mechanism. Interestingly, caveolae depletion with a cell surface cholesterol-depleting agent beta-cyclodextrin triggered an additional increase (9-fold) in the binding of HA, in synergy with type I collagen. On the other hand, HA cell surface binding was diminished by the MEK inhibitor PD98059 and by the overexpression of a recombinant, wild type MT1-MMP, whereas its cytoplasmic-deleted form had no effect. Taken together, our results suggest that MT1-MMP regulates, through its cytoplasmic domain, the cell surface functions of CD44 in a collagen-rich pericellular environment. Additionally, we describe a new molecular mechanism regulating the invasive potential of glioma cells involving a MT1-MMP/CD44/caveolin interaction, which could represent a potential target for anti-cancer therapies.
Collapse
Affiliation(s)
- Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Chemistry Department, Université du Québec à Montréal
| | | | | | | |
Collapse
|
174
|
Wang P, Wang X, Pei D. Mint-3 Regulates the Retrieval of the Internalized Membrane-type Matrix Metalloproteinase, MT5-MMP, to the Plasma Membrane by Binding to Its Carboxyl End Motif EWV. J Biol Chem 2004; 279:20461-70. [PMID: 14990567 DOI: 10.1074/jbc.m400264200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane type matrix metalloproteinases (MT-MMPs) play a critical role in promoting cell growth and migration within the extracellular matrix by trafficking to specialized areas. Here we show that the carboxyl EWV motif of MT5-MMP serves as a retrieval signal for internalized MT5-MMP by interacting with Mint-3, a protein with two type III PDZ domains. Deletion of the EWV signal impairs the recycling of MT5-MMP without affecting its internalization, leading to decreased activity on the cell surface. A yeast two-hybrid screening identified Mint-3 as the EWV-binding protein. Mint-3 stimulates MT5-MMP activity when expressed at low levels in an EWV-dependent fashion, but inhibits its activity at higher levels independent of the EWV motif. siRNA-mediated knockdown of endogenous Mint-3 decreased MT5-MMP activity. Furthermore, Mint-3 significantly increased the level of MT5-MMP on the cell surface without affecting its synthesis and internalization. Therefore, Mints may be the adaptor proteins that regulate the trafficking of MT-MMPs.
Collapse
Affiliation(s)
- Ping Wang
- Department of Pharmacology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
175
|
Cao J, Kozarekar P, Pavlaki M, Chiarelli C, Bahou WF, Zucker S. Distinct Roles for the Catalytic and Hemopexin Domains of Membrane Type 1-Matrix Metalloproteinase in Substrate Degradation and Cell Migration. J Biol Chem 2004; 279:14129-39. [PMID: 14729674 DOI: 10.1074/jbc.m312120200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrate degradation and cell migration are key steps in cancer metastasis. Membrane-type 1-matrix metalloproteinase (MT1-MMP) has been linked with these processes. Using the fluorescein isothiocyanate (FITC)-labeled fibronectin degradation assay combined with the phagokinetic cell migration assay, structure-function relationships of MT1-MMP were studied. Our data indicate that MT1-MMP initiates substrate degradation and enhances cell migration; cell migration occurs as a concurrent but independent event. Using recombinant DNA approaches, we demonstrated that the hemopexin-like domain and a nonenzymatic component of the catalytic domain of MT1-MMP are essential for MT1-MMP-mediated cell migration. Because the cytoplasmic domain of MT1-MMP was not required for MT1-MMP-mediated fibronectin degradation and cell migration, it is proposed that cross-talk between the hemopexin domain of MT1-MMP and adjacent cell surface molecules is responsible for outside-in signaling. Employing cDNAs encoding dominant negative mutations, we demonstrated that Rac1 participates in the MT1-MMP signal transduction pathway. These data demonstrated that each domain of MT1-MMP plays a distinct role in substrate degradation and cell migration.
Collapse
Affiliation(s)
- Jian Cao
- Department of Medicine, School of Medicine, State University of New York, Stony Brook, New York 11794, USA
| | | | | | | | | | | |
Collapse
|
176
|
Osenkowski P, Toth M, Fridman R. Processing, shedding, and endocytosis of membrane type 1‐matrix metalloproteinase (MT1‐MMP). J Cell Physiol 2004; 200:2-10. [PMID: 15137052 DOI: 10.1002/jcp.20064] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Matrix metalloproteinases (MMPs) are multidomain zinc-dependent proteolytic enzymes that play pivotal roles in many normal and pathological processes. Some members of the MMP family are anchored to the plasma membrane via specialized domains and thus are perfectly suited for pericellular proteolysis. Membrane-anchoring also confers the membrane type-MMPs (MT-MMPs) a unique and complex array of regulatory processes that endow cells with the ability to control MT-MMP-dependent proteolytic activity independently of the levels of endogenous protease inhibitors. Emerging evidence indicates that mechanisms as diverse as autocatalytic processing, ectodomain shedding, homodimerization and internalization can all contribute to the modulation of MT-MMP activity on the cell surface. How these distinct processes interact to attain the optimal level of enzyme activity in a particular setting and the molecular signals that trigger them constitute a new paradigm in MMP regulation. This review will discuss the recent findings concerning these diverse regulatory mechanisms in the context of MT1-MMP (MMP-14).
Collapse
Affiliation(s)
- Pamela Osenkowski
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
177
|
Rozanov DV, Deryugina EI, Monosov EZ, Marchenko ND, Strongin AY. Aberrant, persistent inclusion into lipid rafts limits the tumorigenic function of membrane type-1 matrix metalloproteinase in malignant cells. Exp Cell Res 2004; 293:81-95. [PMID: 14729059 DOI: 10.1016/j.yexcr.2003.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a key enzyme in cell locomotion and tissue remodeling. Trafficking to the plasma membrane and internalization into the transient storage compartment both regulate the cell surface presentation of MT1-MMP. Our data indicate that mutant MT1-MMP lacking the cytoplasmic tail is recruited to the caveolae-enriched lipid raft membrane microdomains in breast carcinoma MCF7 cells. In contrast, the wild-type protease is not permanently associated with lipid rafts. Trafficking to lipid rafts correlated with poor internalization and the persistent presentation of MT1-MMP at the cell surface. The tail mutant efficiently functioned in inducing the activation of the latent proMMP-2 zymogen, matrix remodeling, and contraction of three-dimensional collagen lattices. Recruitment of the tail mutant to lipid raft antagonized, however, the cleavage of the plasma membrane-associated E-cadherin. These events limited the contribution of the tail mutant to cell locomotion and malignant growth. It is conceivable that the tail peptide sequence plays a crucial role in the translocations of MT1-MMP across the cell and contributes to coordinated cellular functions. It is tempting to hypothesize that the mechanisms involved in trafficking of MT1-MMP to caveolin-enriched lipid rafts may be targeted in a clinically advantageous manner.
Collapse
Affiliation(s)
- Dmitri V Rozanov
- Cancer Research Center, The Burnham Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
178
|
Wang X, Ma D, Keski-Oja J, Pei D. Co-recycling of MT1-MMP and MT3-MMP through the Trans-Golgi Network. J Biol Chem 2004; 279:9331-6. [PMID: 14665622 DOI: 10.1074/jbc.m312369200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the membrane-type matrix metalloproteinases (MT-MMPs) have been implicated in a wide range of physiological and pathological processes from normal development to tumor growth. Tethered on plasma membrane, these enzymes are potentially regulated by the trafficking machinery of the cells. Here we demonstrate that both MT1-MMP and MT3-MMP are internalized, transported to the trans-Golgi network through early endosomes, and recycled back to cell surface in 60 min in a manner distinct from the one employed by transferrin receptor. Interestingly, co-expressed MT1-MMP and MT3-MMP are localized and routed in the same vesicles throughout the trafficking process. We further demonstrated that the carboxyl-terminal sequence DKV(582) of MT1-MMP is required for its recycling, thus defining a novel recycling motif. These results suggest that MT-MMPs may coordinate their proteolytic activities through the cellular trafficking machinery.
Collapse
Affiliation(s)
- Xing Wang
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
179
|
Takino T, Miyamori H, Watanabe Y, Yoshioka K, Seiki M, Sato H. Membrane Type 1 Matrix Metalloproteinase Regulates Collagen-Dependent Mitogen-Activated Protein/Extracellular Signal-Related Kinase Activation and Cell Migration. Cancer Res 2004; 64:1044-9. [PMID: 14871836 DOI: 10.1158/0008-5472.can-03-1843] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitogen-activated protein kinase-extracellular signal-related kinase (ERK) kinase 1 (MEK1)/ERK signaling has been implicated in the regulation of tumor cell invasion and metastasis. Migration of HT1080 cells on type I collagen was suppressed by the matrix metalloproteinase (MMP) inhibitors BB94 and tissue inhibitor of metalloproteinase (TIMP)-2 but not by TIMP-1. TIMP-2-specific inhibition suggests that membrane type 1 MMP (MT1-MMP) is likely involved in this process. Activation of ERK was induced in HT1080 cells adhered on dishes coated with type I collagen, and this was inhibited by BB94. MMP-2 processing in HT1080 cells, which also was stimulated by cultivation on type I collagen, was inhibited by MEK inhibitor PD98059. Expression of a constitutively active form of MEK1 promoted MMP-2 processing concomitant with the increase of MT1-MMP levels, suggesting that MT1-MMP is regulated by MEK/ERK signaling. In addition, expression of the hemopexin-like domain of MT1-MMP in HT1080 cells interfered with MMP-2 processing, ERK activation, and cell migration, implying that the enzymatic activity of MT1-MMP is involved in collagen-induced ERK activation, which results in enhanced cell migration. Thus, adhesion of HT1080 cells to type I collagen induces MT1-MMP-dependent ERK activation, which in turn causes an increase in MT1-MMP levels and subsequent cell migration.
Collapse
Affiliation(s)
- Takahisa Takino
- Department of Molecular Virology and Oncology and Cell Cycle Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
180
|
Wu YI, Munshi HG, Sen R, Snipas SJ, Salvesen GS, Fridman R, Stack MS. Glycosylation Broadens the Substrate Profile of Membrane Type 1 Matrix Metalloproteinase. J Biol Chem 2004; 279:8278-89. [PMID: 14670950 DOI: 10.1074/jbc.m311870200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane type 1 matrix metalloproteinase (MT1-MMP) is a collagenolytic enzyme that has been implicated in normal development and in pathological processes such as cancer metastasis. The activity of MT1-MMP is regulated extensively at the post-translational level, and the current data support the hypothesis that MT1-MMP activity is modulated by glycosylation. Enzymatic deglycosylation, site-directed mutagenesis, and lectin precipitation assays were used to demonstrate that MT1-MMP contains O-linked complex carbohydrates on the Thr(291), Thr(299), Thr(300), and/or Ser(301) residues in the proline-rich linker region. MT1-MMP glycoforms were detected in human cancer cell lines, suggesting that MT1-MMP activity may be regulated by differential glycosylation in vivo. Although the autolytic processing and interstitial collagenase activity of MT1-MMP were not impaired in glycosylation-deficient mutants, cell surface MT1-MMP-catalyzed activation of pro-matrix metalloproteinase-2 (proMMP-2) required proper glycosylation of MT1-MMP. The inability of carbohydrate-free MT1-MMP to activate proMMP-2 was not a result of defective MT1-MMP zymogen activation, aberrant protein stability, or inability of the mature enzyme to oligomerize. Rather, our data support a mechanism whereby glycosylation affects the recruitment of tissue inhibitor of metalloproteinases-2 (TIMP-2) to the cell surface, resulting in defective formation of the MT1-MMP/TIMP-2/proMMP-2 trimeric activation complex. These data provide evidence for an additional mechanism for post-translational control of MT1-MMP activity and suggest that glycosylation of MT1-MMP may regulate its substrate targeting.
Collapse
Affiliation(s)
- Yi I Wu
- Department of Cell & Molecular Biology and Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
181
|
Zucker S, Hymowitz M, Conner C, DeClerck Y, Cao J. TIMP-2 is released as an intact molecule following binding to MT1-MMP on the cell surface. Exp Cell Res 2004; 293:164-74. [PMID: 14729066 DOI: 10.1016/j.yexcr.2003.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Binding of tissue inhibitor of metalloproteinase-2 (TIMP-2) to pro-MMP-2 and mature membrane type-1 MMP (MT1-MMP) on the cell surface is required for activation of MMP-2. It has been reported that following binding to cell surface receptors, TIMP-2 undergoes endocytosis and extensive degradation in lysosomes. The purpose of this study was to reexamine the fate of TIMP-2 following binding to transfected HT1080 cell surface MT1-MMP at 4 degrees C. Following 37 degrees C incubation, 125I-TIMP-2 release, endocytosis, and degradation were characterized under varying conditions. More than 85% of the total 125I-TIMP-2 bound to cells was released as intact functional molecules; <15% was degraded. Transfection of HT1080 cells with dominant negative mutant dynamin cDNA resulted in delayed endocytosis and release of 125I-TIMP-2 from cells. Pharmacologic agents that induce clustering of cell surface receptors (concanavalin A) and interfere with endosomal/lysosomal function (bafilomycin A(1)) resulted in enhanced binding of 125I-TIMP-2 to cell surface receptors. Abrogation of activation of proMT1-MMP with a furin inhibitor prevented binding and endocytosis of 125I-TIMP-2. Biotinylation of cell surface MT1-MMP followed by Western blotting confirmed the presence of mature MT1-MMP on the cell surface and degraded MT1-MMP in the intracellular compartment. In conclusion, these studies demonstrate that TIMP-2 is released from cells primarily as an intact functional molecule following binding to MT1-MMP on the cell surface.
Collapse
Affiliation(s)
- Stanley Zucker
- Department of Research, Veterans Affairs Medical Center, Northport, NY 11768, USA.
| | | | | | | | | |
Collapse
|
182
|
Mathisen B, Lindstad RI, Hansen J, El-Gewely SA, Maelandsmo GM, Hovig E, Fodstad O, Loennechen T, Winberg JO. S100A4 regulates membrane induced activation of matrix metalloproteinase-2 in osteosarcoma cells. Clin Exp Metastasis 2004. [PMID: 14713104 DOI: 10.1023/b: clin.0000006819.21361.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To study the role of the metastasis associated protein S100A4, an osteosarcoma cell line (OHS) with a high level of this protein was transfected with a vector containing a ribozyme that degrades S100A4 mRNA and, as controls, OHS cells were transfected with the vector alone. We have followed up our previous investigation (Bjørnland et al. 1999) by a detailed investigation of these cell lines' synthesis of MMP and TIMP proteins at different cell densities. It is shown that the cell lines with a low S100A4 level produced a reduced amount of immunoreactive MMP-2 at cellular subconfluence, while at confluence there was no difference compared to the control cells. The cell lines with a reduced S100A4 level produced less of the activated form of MMP-2 (62-kDa) and less TIMP-1 than the corresponding control cells, independent of cell density. Isolated cell membranes from cell lines with a reduced S100A4 level contained less MT1-MMP, MMP-2 and TIMP-2 compared to the control cells. Activation of exogenously added proMMP-2 was less effective with the former membrane preparations. It appeared that the mechanism behind the S100A4 dependent activation of proMMP-2 varied with cell density, as SN50, a peptide inhibitor of NF-kappaB nuclear translocation reduced the activation of MMP-2 at low cell density, but had no effect at high cell density. Thus, one of the mechanisms by which S100A4 may exert its effect on metastasis of some tumors is by regulating the MMP-2 activity.
Collapse
Affiliation(s)
- Berit Mathisen
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Sounni NE, Roghi C, Chabottaux V, Janssen M, Munaut C, Maquoi E, Galvez BG, Gilles C, Frankenne F, Murphy G, Foidart JM, Noel A. Up-regulation of vascular endothelial growth factor-A by active membrane-type 1 matrix metalloproteinase through activation of Src-tyrosine kinases. J Biol Chem 2004; 279:13564-74. [PMID: 14729679 DOI: 10.1074/jbc.m307688200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) and vascular endothelial growth factor (VEGF) are two key molecules involved in pericellular proteolysis and cell proliferation during tumor growth and angiogenesis. Our previous data showed that MT1-MMP overexpression in human breast carcinoma MCF7 cells induced an up-regulation of VEGF expression. This effect was associated in vivo with accelerated tumor growth and angiogenesis. We now provide evidence that MT1-MMP overexpression specifically affected VEGF-A production and failed to influence that of other VEGF family members (VEGF, B, C, D, or PlGF) or their receptors. The up-regulation of VEGF-A by MT1-MMP was related to an increased transcriptional activation rather than to a modification of mRNA stability. It was blocked by synthetic MMP inhibitors, TIMP2, but not TIMP-1 and abolished by a partial deletion of the catalytic domain or the cytoplasmic tail of MT1-MMP. Analysis of the signal transduction mechanisms demonstrated that MT1-MMP acts through a signaling pathway involving Src tyrosine kinases. Thus, our results provide new insight into the mechanisms of action of MT1-MMP during angiogenesis and suggest that the full enzymatic activity of MT1-MMP is required for a specific up-regulation of VEGF-A through an activation of Src tyrosine kinase pathways.
Collapse
Affiliation(s)
- Nor Eddine Sounni
- Laboratory of Tumor and Development Biology University of Liège, Sart Tilman, 4000 Sart-Tilman, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Uekita T, Gotoh I, Kinoshita T, Itoh Y, Sato H, Shiomi T, Okada Y, Seiki M. Membrane-type 1 matrix metalloproteinase cytoplasmic tail-binding protein-1 is a new member of the Cupin superfamily. A possible multifunctional protein acting as an invasion suppressor down-regulated in tumors. J Biol Chem 2004; 279:12734-43. [PMID: 14718544 DOI: 10.1074/jbc.m309957200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14) is an enzyme that promotes tumor cell invasion in tissues. Although the proteolytic activity of MT1-MMP is indispensable for invasion, it is also regulated by functions of the cytoplasmic tail. In this study we obtained a new human gene whose product binds to the tail sequence in yeast. The product, MTCBP-1, is a 19-kDa protein that belongs to the newly proposed Cupin superfamily composed of proteins with diverse functions. MTCBP-1 expressed in cells formed a complex with MT1-MMP and co-localized at the membrane. It was also detected in both the cytoplasm and nucleus, where MT1-MMP does not exist. In human tumor cell lines MTCBP-1 expression was significantly low compared with non-transformed fibroblasts, and enforced expression of MTCBP-1 inhibited the activity of MT1-MMP in promoting cell migration and invasion. MTCBP-1 showed significant homology to the bacterial aci-reductone dioxygenase, which is an enzyme in methionine metabolism. The C-terminal part of MTCBP-1 is identical to Sip-L, which is reported to be important for human hepatitis C virus replication. Thus, MTCBP-1 may have multiple functions other than the regulation of MT1-MMP, which presumably depends on the subcellular compartment.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Western
- COS Cells
- Carrier Proteins/chemistry
- Carrier Proteins/physiology
- Cell Line
- Cell Line, Tumor
- Cell Membrane/metabolism
- Cell Movement
- Cell Nucleus/metabolism
- Collagen/pharmacology
- Cytoplasm/enzymology
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Dioxygenases
- Down-Regulation
- Drug Combinations
- Fibroblasts/metabolism
- Fluorescent Antibody Technique, Indirect
- Gene Expression Regulation, Neoplastic
- Humans
- Laminin/pharmacology
- Matrix Metalloproteinases, Membrane-Associated
- Metalloendopeptidases/metabolism
- Metalloendopeptidases/physiology
- Microscopy, Fluorescence
- Molecular Sequence Data
- Multigene Family
- Neoplasm Invasiveness
- Open Reading Frames
- Peptides/chemistry
- Plasmids/metabolism
- Precipitin Tests
- Protein Structure, Tertiary
- Proteoglycans/pharmacology
- RNA, Messenger/metabolism
- Recombinant Proteins/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Subcellular Fractions
- Transfection
- Tumor Suppressor Proteins/chemistry
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Takamasa Uekita
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Zhang B, Yan L, Tsang PCW, Moses MA. Matrix metalloproteinase-2 (MMP-2) expression and regulation by tumor necrosis factor alpha (TNF?) in the bovine corpus luteum. Mol Reprod Dev 2004; 70:122-32. [PMID: 15570615 DOI: 10.1002/mrd.20196] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Angiogenesis and tissue remodeling events in the corpus luteum (CL) are mediated by matrix metalloproteinases (MMPs). We have recently reported the cloning of bovine membrane-type 1 metalloproteinase (MT1-MMP) and have shown that active MT1-MMP is correlated to MMP-2 activity in the CL during the estrous cycle. Given the important role that MMP-2 plays in neovascularization, we became interested in understanding the role of this enzyme in the CL, a system in which angiogenesis is exquisitely regulated in the course of its lifespan. The aims of the present study were to clone bovine MMP-2 cDNA, to investigate its temporal and spatial expression in three stages of CL during the estrous cycle and to study its regulation by TNFalpha, a key cytokine regulator of CL physiology. Bovine MMP-2 cDNA was isolated from a UNI-ZAP II bovine capillary endothelial cell cDNA library and sequenced. This gene encoded a protein of 662 amino acids. Luteal tissues were collected from non-lactating dairy cows on days 4, 10, and 16 of the estrous cycle. Northern and Western blotting revealed that the levels of MMP-2 mRNA (3.1 kb) and immunoreactive pro-MMP-2 protein (68 kDa) did not differ (P > 0.05) in any age of CL examined. In addition to large luteal cells, MMP2 was localized to endothelial cells in all ages of CL by immunohistochemistry. Studies using in vitro luteal cell cultures showed that MMP-2 mRNA, protein expression and activity was upregulated by TNFalpha in a dose- and time-dependent manner. The present study suggests that MMP-2 is predominantly produced by large luteal cells and endothelial cells, and that it plays an essential role in luteal remodeling and angiogenesis. These data also suggest that cytokines such as TNFalpha may modulate these processes by regulating MMP-2 expression.
Collapse
MESH Headings
- Animals
- Cattle
- Cells, Cultured
- Cloning, Molecular
- Corpus Luteum/chemistry
- Corpus Luteum/metabolism
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/metabolism
- Estrous Cycle/physiology
- Female
- Gene Expression/drug effects
- Gene Expression Regulation, Enzymologic
- Matrix Metalloproteinase 2/analysis
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Neovascularization, Physiologic/genetics
- Neovascularization, Physiologic/physiology
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Tumor Necrosis Factor-alpha/pharmacology
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Bo Zhang
- Vascular Biology Program, Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
186
|
Zhao H, Bernardo MM, Osenkowski P, Sohail A, Pei D, Nagase H, Kashiwagi M, Soloway PD, DeClerck YA, Fridman R. Differential inhibition of membrane type 3 (MT3)-matrix metalloproteinase (MMP) and MT1-MMP by tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-3 rgulates pro-MMP-2 activation. J Biol Chem 2003; 279:8592-601. [PMID: 14681236 DOI: 10.1074/jbc.m308708200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane type (MT)-matrix metalloproteinases (MMPs) constitute a subgroup of membrane-anchored MMPs that are major mediators of pericellular proteolysis and physiological activators of pro-MMP-2. The MT-MMPs also exhibit differential inhibition by members of the tissue inhibitor of metalloproteinase (TIMP) family. Here we investigated the processing, catalytic activity, and TIMP inhibition of MT3-MMP (MMP-16). Inhibitor profile and mutant enzyme studies indicated that MT3-MMP is regulated on the cell surface by autocatalytic processing and ectodomain shedding. Inhibition kinetic studies showed that TIMP-3 is a high affinity inhibitor of MT3-MMP when compared with MT1-MMP (K(i) = 0.008 nm for MT3-MMP versus K(i) = 0.16 nm for MT1-MMP). In contrast, TIMP-2 is a better inhibitor of MT1-MMP. MT3-MMP requires TIMP-2 to accomplish full pro-MMP-2 activation and this process is enhanced in marimastatpretreated cells, consistent with regulation of active enzyme turnover by synthetic MMP inhibitors. TIMP-3 also enhances the activation of pro-MMP-2 by MT3-MMP but not by MT1-MMP. TIMP-4, in contrast, cannot support pro-MMP-2 activation with either enzyme. Affinity chromatography experiments demonstrated that pro-MMP-2 can assemble trimolecular complexes with a catalytic domain of MT3-MMP and TIMP-2 or TIMP-3 suggesting that pro-MMP-2 activation by MT3-MMP involves ternary complex formation on the cell surface. These results demonstrate that TIMP-3 is a major regulator of MT3-MMP activity and further underscores the unique interactions of TIMPs with MT-MMPs in the control of pericellular proteolysis.
Collapse
Affiliation(s)
- Huiren Zhao
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Langlois S, Gingras D, Béliveau R. Membrane type 1-matrix metalloproteinase (MT1-MMP) cooperates with sphingosine 1-phosphate to induce endothelial cell migration and morphogenic differentiation. Blood 2003; 103:3020-8. [PMID: 15070679 DOI: 10.1182/blood-2003-08-2968] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) has been suggested to play an important role in angiogenesis, but the mechanisms involved remain incompletely understood. Using an in vitro model of angiogenesis in which cell migration of bovine aortic endothelial cells (BAECs) and their morphogenic differentiation into capillary-like structures on Matrigel are induced by overexpression of MT1-MMP, we show that the platelet-derived bioactive lipid sphingosine 1-phosphate (S1P) is the predominant serum factor essential for MT1-MMP-dependent migration and morphogenic differentiation activities. In the presence of S1P, MT1-MMP-dependent cell migration and morphogenic differentiation were inhibited by pertussis toxin, suggesting the involvement of Gi-protein-coupled receptor-mediated signaling. Accordingly, cotransfection of BAECs with MT1-MMP and a constitutively active Galphai2 (Q205L) mutant increased cell migration and morphogenic differentiation, whereas treatment of BAECs overexpressing MT1-MMP with antisense oligonucleotides directed against S1P1 and S1P3, the predominant S1P receptors, significantly inhibited both processes. These results demonstrate that MT1-MMP-induced migration and morphogenic differentiation involve the cooperation of the enzyme with platelet-derived bioactive lipids through S1P-mediated activation of Galphai-coupled S1P1 and S1P3 receptors. Given the important contribution of platelets to tumor angiogenesis, the stimulation of endothelial MT1-MMP function by S1P may thus constitute an important molecular event linking hemostasis to angiogenesis.
Collapse
MESH Headings
- Animals
- Cattle
- Cell Differentiation/drug effects
- Cell Movement/drug effects
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Humans
- Lysophospholipids/metabolism
- Lysophospholipids/pharmacology
- Matrix Metalloproteinases, Membrane-Associated
- Metalloendopeptidases/antagonists & inhibitors
- Metalloendopeptidases/genetics
- Metalloendopeptidases/metabolism
- Neovascularization, Physiologic
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Lysophospholipid
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
- Sphingosine/pharmacology
- Vascular Endothelial Growth Factor A/pharmacology
Collapse
Affiliation(s)
- Stéphanie Langlois
- Laboratoire de Médecine Moléculaire Ste-Justine-Université du Québec à Montréal, Centre de Cancérologie Charles-Bruneau, Hôpital Ste-Justine et Université du Québec à Montréal, Montréal, QC, Canada
| | | | | |
Collapse
|
188
|
Gálvez BG, Matías-Román S, Yáñez-Mó M, Vicente-Manzanares M, Sánchez-Madrid F, Arroyo AG. Caveolae are a novel pathway for membrane-type 1 matrix metalloproteinase traffic in human endothelial cells. Mol Biol Cell 2003; 15:678-87. [PMID: 14657245 PMCID: PMC329288 DOI: 10.1091/mbc.e03-07-0516] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) distinctly modulates membrane type 1-matrix metalloproteinase (MT1-MMP) in human endothelial cells (ECs). Herein, ECM-dependent RhoA activation is shown to regulate MT1-MMP localization and activity as well as clathrin-independent internalization in confluent ECs. In this regard, caveolae are revealed as the major MT1-MMP endocytic pathway in human ECs. Thus, MT1-MMP is present at caveolae with caveolin-1 and both proteins together with alpha v beta 3 integrin colocalize at endothelial motility-associated extensions. Remarkably, caveolae traffic is required for proper MT1-MMP localization, activity, and function in migratory ECs as demonstrated by both treatment with caveolae-disrupting agents or selective targeting caveolin-1 expression by interference RNA. Thus, caveolae-mediated traffic constitutes a novel mechanism for MT1-MMP regulation in ECs during angiogenesis.
Collapse
Affiliation(s)
- Beatriz G Gálvez
- Departamento de Inmunología, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
189
|
Guo C, Piacentini L. Type I collagen-induced MMP-2 activation coincides with up-regulation of membrane type 1-matrix metalloproteinase and TIMP-2 in cardiac fibroblasts. J Biol Chem 2003; 278:46699-708. [PMID: 12970340 DOI: 10.1074/jbc.m307238200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Migration of cardiac fibroblasts is implicated in infarct healing and ventricular remodeling. Activation of matrix metalloproteinases induced by three-dimensional type I collagen, the principal component of the myocardial interstitium, is hypothesized to be essential for this migration. By utilizing primary cultures of cardiac fibroblasts and collagen lattice models, we demonstrated that type I collagen induced MMP-2 activation, and cells undergoing a change from isometric tension to mechanical unloading were associated with increased levels of total and active MMP-2 species. The collagen-induced MMP-2 activation coincided with up-regulated cellular levels of both membrane type 1-matrix metalloproteinase (MT1-MMP) and TIMP-2. A fraction of cellular membrane prepared from cells embedded in the collagen lattice containing active MT1-MMP and TIMP-2 was capable of activating pro-MMP-2, and exogenous TIMP-2 had a biphasic effect on this membrane-mediated MMP-2 activation. Interestingly, the presence of 43-kDa MT1-MMP species in a fraction of intracellular soluble proteins prepared from monolayer cells but not cells embedded in the lattices indicates that MT1-MMP metabolizes differently under the two different culture conditions. Treatment of cells embedded in the lattice with furin inhibitor attenuated pro-MT1-MMP processing and MMP-2 activation and impeded cell migration and invasion. These results suggest that the migration and invasion of cardiac fibroblasts is furin-dependent and that the active species of MT1-MMP and MMP-2 may be involved in both events.
Collapse
Affiliation(s)
- Chun Guo
- School of Pharmacy and Pharmaceutical Sciences, De Montfort University, Leicester LE1 9BH, United Kingdom.
| | | |
Collapse
|
190
|
Glunde K, Guggino SE, Solaiyappan M, Pathak AP, Ichikawa Y, Bhujwalla ZM. Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia 2003; 5:533-45. [PMID: 14965446 PMCID: PMC1502575 DOI: 10.1016/s1476-5586(03)80037-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 10/06/2003] [Accepted: 10/08/2003] [Indexed: 11/24/2022]
Abstract
Cancer cells invade by secreting degradative enzymes, which are sequestered in lysosomal vesicles. In this study, the impact of an acidic extracellular environment on lysosome size, number, and distance from the nucleus in human mammary epithelial cells (HMECs) and breast cancer cells of different degrees of malignancy was characterized because the physiological microenvironment of tumors is frequently characterized by extracellular acidity. An acidic extracellular pH (pH(e)) resulted in a distinct shift of lysosomes from the perinuclear region to the cell periphery irrespective of the HMECs' degree of malignancy. With decreasing pH, larger lysosomal vesicles were observed more frequently in highly metastatic breast cancer cells, whereas smaller lysosomes were observed in poorly metastatic breast cancer cells and HMECs. The number of lysosomes decreased with acidic pH values. The displacement of lysosomes to the cell periphery driven by extracellular acidosis may facilitate exocytosis of these lysosomes and increase secretion of degradative enzymes. Filopodia formations, which were observed more frequently in highly metastatic breast cancer cells maintained at acidic pH(e), may also contribute to invasion.
Collapse
Affiliation(s)
- Kristine Glunde
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sandra E. Guggino
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meiyappan Solaiyappan
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Arvind P. Pathak
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yoshitaka Ichikawa
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zaver M. Bhujwalla
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
191
|
Jiang A, Pei D. Distinct roles of catalytic and pexin-like domains in membrane-type matrix metalloproteinase (MMP)-mediated pro-MMP-2 activation and collagenolysis. J Biol Chem 2003; 278:38765-71. [PMID: 12878590 DOI: 10.1074/jbc.m306618200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the membrane-type matrix metalloproteinase (MT-MMPs) family are dual regulators of extracellular matrix remodeling through direct degradation of extracellular matrix components and activation of other latent MMPs. However, the structural basis of this functional diversity remains poorly understood. In an attempt to dissect the structural determinants for MT-MMP function, we performed domain exchange experiments between MT1-MMP and its close relative MT3-MMP and analyzed the exchange chimeras for pro-MMP-2 activation and collagen degradation at the cellular level. Our results indicate that catalytic domains determine the pattern of pro-MMP-2 activation, whereas pexin-like domains modulate the level of activation. On the other hand, both the catalytic and pexin-like domains of MT1-MMP are required for strong collagenolysis because exchanging either domain with that of MT3-MMP yielded significantly lower activity, and the introduction of the MT1-MMP catalytic or pexin-like domain into MT3-MMP failed to generate any significant enhancement of collagenolytic activity compared with wild-type MT3-MMP. Interestingly, the cytoplasmic domain of MT1-MMP behaves as a negative regulator not only for MT1-MMP itself, but also for MT3-MMP in both pro-MMP-2 activation and collagenolysis, consistent with and extending our recent findings (Jiang, A., Lehti, K., Wang, X., Weiss, S. J., Keski-Oja, J., and Pei, D. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 13693-13698). Taken together, these results demonstrate that domains in MT-MMPs function differently toward a given substrate and thus should be targeted differentially for future therapeutic development.
Collapse
Affiliation(s)
- Aixiang Jiang
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
192
|
Remacle A, Murphy G, Roghi C. Membrane type I-matrix metalloproteinase (MT1-MMP) is internalised by two different pathways and is recycled to the cell surface. J Cell Sci 2003; 116:3905-16. [PMID: 12915589 DOI: 10.1242/jcs.00710] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) is an integral type I transmembrane multidomain zinc-dependent endopeptidase involved in extracellular matrix remodelling in physiological as well as pathological processes. MT1-MMP participates in the regulated turnover of various extracellular matrix components as well as the activation of secreted metalloproteinases and the cleavage of various cell membrane components. MT1-MMP expression has been reported to correlate with the malignancy of various tumour types and is thought to be an important mediator of cell migration and invasion. Recently, it has been proposed that internalisation of the enzyme from the cell surface is a major short-term level of MT1-MMP regulation controlling the net amount of active enzyme present at the plasma membrane. In this paper we show that, in HT1080 fibrosarcoma cells, MT1-MMP is internalised from the cell surface and colocalises with various markers of the endocytic compartment. Interestingly, we observed that in these cells, internalisation occurs by a combination of both clathrin-mediated and -independent pathways, most probably involving caveolae. In addition, internalised MT1-MMP is recycled to the cell surface, which could, in addition to downregulation of the enzymatic activity, represent a rapid response mechanism used by the cell for relocalising active MT1-MMP at the leading edge during migration.
Collapse
Affiliation(s)
- Albert Remacle
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | |
Collapse
|
193
|
Fu X, Kassim SY, Parks WC, Heinecke JW. Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem 2003; 278:28403-9. [PMID: 12759346 DOI: 10.1074/jbc.m304739200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dysregulation of matrix metalloproteinase (MMP) activity is implicated in tissue destruction under inflammatory conditions. An important mechanism controlling enzymatic activity might involve reactive oxygen species generated by phagocytes. Myeloperoxidase, a heme protein secreted by neutrophils, monocytes, and macrophages, uses hydrogen peroxide to generate hypochlorous acid (HOCl). We demonstrate that HOCl inhibits the activity of human matrilysin (MMP-7) in vitro, suggesting that it might limit proteolytic activity during inflammation. When MMP-7 was exposed to HOCl generated by myeloperoxidase, the proteinase lost activity. High performance liquid chromatographic analysis of the tryptic digest of the HOCl-treated proteinase demonstrated the absence of two peptides that were present in the untreated enzyme. Tandem mass spectrometric analysis revealed that both of the lost peptides contained methionine and tryptophan-glycine residues. The methionine residue of one of the peptides had been oxidized to methionine sulfoxide. In contrast, the major product from the other peptide was 4 atomic mass units smaller than its precursor (WG-4). This novel oxidation product was derived though modification of adjacent tryptophan and glycine residues in the catalytic domain of the enzyme. Loss of proteolytic activity was associated with conversion of the precursor peptide to WG-4 but not with methionine oxidation. In contrast, hydrogen peroxide failed to oxidize MMP-7 or to inactivate the enzyme. Thus, HOCl inactivates MMP-7, perhaps by site-specific conversion of tryptophan-glycine to WG-4. This inactivation mechanism is distinct from the well studied mechanisms involving tissue inhibitors of metalloproteinases. Our findings suggest that local pericellular production of HOCl by phagocytes is a physiological mechanism for governing MMP activity during inflammation.
Collapse
Affiliation(s)
- Xiaoyun Fu
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
194
|
Maquoi E, Peyrollier K, Noël A, Foidart JM, Frankenne F. Regulation of membrane-type 1 matrix metalloproteinase activity by vacuolar H+-ATPases. Biochem J 2003; 373:19-24. [PMID: 12667140 PMCID: PMC1223473 DOI: 10.1042/bj20030170] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Revised: 03/18/2003] [Accepted: 04/01/2003] [Indexed: 11/17/2022]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a key enzyme in normal development and malignant processes. The regulation of MT1-MMP activity on the cell surface is a complex process involving autocatalytic processing, tissue inhibitor of MMPs (TIMP) binding and constitutive internalization. However, the fate of internalized MT1-MMP is not known. Acidification of intracellular vacuolar compartments is essential for membrane trafficking, protein sorting and degradation. This acidification is controlled by vacuolar H(+)-ATPases, which can be selectively inhibited by bafilomycin-A(1). Here, we treated human tumour cell lines expressing MT1-MMP with bafilomycin-A(1), and analysed its effects on MT1-MMP activity, internalization and processing. We show that the activity of MT1-MMP on the cell surface is constitutively down-regulated through a vacuolar H(+)-ATPase-dependent degradation process. Blockade of this degradation caused the accumulation of TIMP-free active MT1-MMP molecules on the cell surface, although internalization was not affected. As a consequence of this impaired degradation, pro-MMP-2 activation was strongly enhanced. This study demonstrates that the catalytic activity of MT1-MMP on the cell surface is regulated through a vacuolar H(+)-ATPase-dependent degradation process.
Collapse
Affiliation(s)
- Erik Maquoi
- Laboratory of Tumor and Development Biology, University of Liège, Tour de Pathologie (B23), Sart Tilman, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
195
|
Gutekunst CA, Torre ER, Sheng Z, Yi H, Coleman SH, Riedel IB, Bujo H. Stigmoid bodies contain type I receptor proteins SorLA/LR11 and sortilin: new perspectives on their function. J Histochem Cytochem 2003; 51:841-52. [PMID: 12754295 DOI: 10.1177/002215540305100615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stigmoid bodies (SBs) are structures in the cytoplasm of neurons. SBs are mostly found in the hypothalamic region of the rat and contain a protein called huntingtin-associated protein 1 (HAP1). In a recent publication, large cytoplasmic structures were shown to be immunoreactive for a type I receptor called SorLA/LR11. By light microscopic analysis, these structures appeared similar to SBs in size and in brain regional and subcellular localization. To determine whether these large puncta correspond to HAP1-containing SBs, we used antibodies specific to various domains of the apolipoprotein receptor LR11 to perform immunocytochemistry in rat and mouse brain tissue. Transfection studies using HeLa cells were conducted to demonstrate the specificity of the antibodies. We found that, in both species, antibodies to the domain II (or VSP10 for vacuolar sorting protein 10 domain) of LR11 immunoreact with large cytoplasmic structures. Co-localization immunolabeling experiments in rat brain tissue sections and in neuron cultures showed that these LR11-immunoreactive structures correspond to HAP1-positive SBs. Electron microscopy was performed in rat hypothalamus and further demonstrated the presence of LR11 in SBs and its co-localization with HAP1. LR11-containing SBs were most abundant in the hypothalamus but were also found in many brainstem nuclei, thalamus, and hippocampus. Our data also show that sortilin, another transmembrane protein containing a VPS10 domain, localizes to large cytoplasmic puncta and is found in LR11-positive and Hap1-positive SBs in hypothalamic neuron cultures.
Collapse
Affiliation(s)
- Claire-Anne Gutekunst
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
196
|
Abstract
Although vesicular trafficking is essential for a large variety of cellular processes, the regulation of vesicular trafficking is still poorly understood. Members of the Rho family of small GTPases have recently emerged as important control elements of many stages of vesicular trafficking, providing new insight into the regulation of these events. We will discuss the diverse roles played by Rho proteins in membrane trafficking and focus on the biological implications of these functions.
Collapse
Affiliation(s)
- Marc Symons
- Center for Oncology and Cell Biology, North Shore-LIJ Research Institute, 350 Community Dr., Manhasset, New York 11030, USA.
| | | |
Collapse
|
197
|
Abstract
Matrix metalloproteinases (MMPs) are believed to play a pivotal role in malignant behavior of cancer cells such as rapid tumor growth, invasion, and metastasis by degrading extracellular matrix (ECM). Different types of synthetic inhibitors against MMPs (MMPIs) were developed as candidates for anti-cancer therapeutics and so far clinical trials had led to no significant success. However, this does not diminish the importance of MMPs in the malignancy of cells. Details about MMPs, specifically when and how they take part in the development of cancer are necessary for more advanced application of MMPIs. In this paper, we summarize recent knowledge about membrane-type 1 matrix metalloproteinase (MT1-MMP) which is expressed on cancer cell surface as an invasion-promoting proteinase. By localizing at the leading edge of invasive cancer cells, MT1-MMP degrades components of the tissue barriers. One of the major targets is type I collagen, the most abundant ECM component. Although MT1-MMP itself cannot degrade type IV collagen in the basement membrane, it binds to and activates proMMP-2, one of the type IV collagenases. However, degradation of the ECM is not the sole function of MT1-MMP. MT1-MMP also regulates cell-ECM interaction by processing cell adhesion molecules such as CD44 and integrin alphav chain, and eventually promotes cell migration as well. In addition to the transcriptional regulation, invasion-promoting activity of the MT1-MMP is also strictly monitored at the post-translational level. Precise knowledge about the regulation will give us insight to develop new methods for treating invasive cancer patients.
Collapse
Affiliation(s)
- Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
198
|
Takino T, Miyamori H, Kawaguchi N, Uekita T, Seiki M, Sato H. Tetraspanin CD63 promotes targeting and lysosomal proteolysis of membrane-type 1 matrix metalloproteinase. Biochem Biophys Res Commun 2003; 304:160-6. [PMID: 12705901 DOI: 10.1016/s0006-291x(03)00544-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is known to be internalized from cell surface, however, the fate of internalized MT1-MMP is still unknown. Here we demonstrate that at least a part of internalized MT1-MMP is targeted for lysosomal proteolysis. Treatment with an inhibitor of lysosomal proteinases chloroquine suppressed degradation of internalized MT1-MMP and induced accumulation of MT1-MMP in CD63-positive lysosomes. Ectopic expression of CD63 accelerated degradation of MT1-MMP, which was blocked by chloroquine. MT1-MMP, and CD63 were shown to form a complex through hemopexin-like domain of MT1-MMP and N-terminal region of CD63, and thus accelerated degradation of MT1-MMP was not observed with mutants lacking these domains. CD63 mutant lacking lysosomal targeting motif was unable to promote MT1-MMP degradation. These results suggest that CD63 regulates MT1-MMP by targeting to lysosomes.
Collapse
Affiliation(s)
- Takahisa Takino
- Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, 920-0934, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
199
|
Gabison EE, Hoang-Xuan T, Mauviel A, Menashi S. [Metalloproteinases and angiogenesis]. PATHOLOGIE-BIOLOGIE 2003; 51:161-6. [PMID: 12781798 DOI: 10.1016/s0369-8114(03)00018-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metalloproteinases (MMPs) are essential regulators during various phases of the angiogenic process. These include the degradation of the basement membrane and the extracellular matrix, the mobilisation and activation of growth factors and the production of fragments with pro- or anti-angiogenic activity. In addition to their role in migration and invasion, MMPs can influence endothelial cell proliferation and survival by modifying the balance between angiogenic and anti-angiogenic molecules.
Collapse
Affiliation(s)
- E E Gabison
- Unité 532 Inserm, Institut de recherche sur la peau, hôpital Saint-Louis, 1, avenue Claude-Vellefaux, 75010 Paris, France
| | | | | | | |
Collapse
|
200
|
Rozanov DV, Strongin AY. Membrane type-1 matrix metalloproteinase functions as a proprotein self-convertase. Expression of the latent zymogen in Pichia pastoris, autolytic activation, and the peptide sequence of the cleavage forms. J Biol Chem 2003; 278:8257-60. [PMID: 12514192 DOI: 10.1074/jbc.m213246200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An understanding of the regulatory mechanisms that control the activity of membrane type-1 matrix metalloproteinase (MT1-MMP), a key proteinase in tumor cell invasion, is essential for the design of potent and safe anti-cancer therapies. A unique proteolytic pathway regulates MT1-MMP at cancer cell surfaces. The abundance of proteolytic enzymes in cancer cells makes it difficult to identify the autocatalytic events in this pathway. To identify these events, a soluble form of MT1-MMP, lacking the C-terminal transmembrane and cytoplasmic domains, was expressed in Pichia pastoris. Following secretion, the latent zymogen and active enzyme were each purified from media by fast protein liquid chromatography. Trace amounts of active MT1-MMP induced activation of the zymogen and its self-proteolysis. This autocatalytic processing generated six main forms of MT1-MMP, each of which was subjected to the N-terminal microsequencing to identify the cleavage sites. Our data indicate that MT1-MMP functions as a self-convertase and is capable of cleaving its own prodomain at the furin cleavage motif RRKR downward arrow Y(112), thus autocatalytically generating the mature MT1-MMP enzyme with an N terminus starting at Tyr(112). The mature enzyme undergoes further autocatalysis to the two distinct intermediates (N terminus at Trp(119) and at Asn(130)) and, next, to the three inactive ectodomain forms (N terminus at Thr(222), at Gly(284), and at Thr(299)). These findings provide, for the first time, a structural basis for understanding the unconventional mechanisms of MT1-MMP activation and regulation. Finally, our data strongly imply that MT1-MMP is a likely substitute for the general proprotein convertase activity of furin-like proteinases, especially in furin-deficient cancer cells.
Collapse
Affiliation(s)
- Dmitri V Rozanov
- Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA
| | | |
Collapse
|