151
|
Bedu E, Wahli W, Desvergne B. Peroxisome proliferator-activated receptor beta/delta as a therapeutic target for metabolic diseases. Expert Opin Ther Targets 2007; 9:861-73. [PMID: 16083348 DOI: 10.1517/14728222.9.4.861] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The peroxisome proliferator-activated receptor (PPAR) family comprises three distinct isotypes: PPARalpha, PPARbeta/delta and PPARgamma. PPARs are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. Until recently, the characterisation of the important role of PPARalpha in fatty acid oxidation and of PPARgamma in lipid storage contrasted with the sparse information concerning PPARbeta/delta. However, evidence is now emerging for a role of PPARbeta/delta in tissue repair and energy homeostasis. Experiments with tissue-specific overexpression of PPARbeta/delta or treatment of mice with selective PPARbeta/delta agonists demonstrated that activation of PPARbeta/delta in vivo increases lipid catabolism in skeletal muscle, heart and adipose tissue and improves the serum lipid profile and insulin sensitivity in several animal models. PPARbeta/delta activation also prevents the development of obesity and improves cholesterol homeostasis in obesity-prone mouse models. These new insights into PPARbeta/delta functions suggest that targeting PPARbeta/delta may be helpful for treating disorders associated with the metabolic syndrome. Although these perspectives are promising, several independent and contradictory reports raise concerns about the safety of PPARbeta/delta ligands with respect to tumourigenic activity in the gut. Thus, it appears that further exploration of PPARbeta/delta functions is necessary to better define its potential as a therapeutic target.
Collapse
Affiliation(s)
- Elodie Bedu
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
152
|
Fürnsinn C, Willson TM, Brunmair B. Peroxisome proliferator-activated receptor-delta, a regulator of oxidative capacity, fuel switching and cholesterol transport. Diabetologia 2007; 50:8-17. [PMID: 17119917 DOI: 10.1007/s00125-006-0492-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 08/16/2006] [Indexed: 12/14/2022]
Abstract
Synthetic agonists of peroxisome proliferator-activated receptor (PPAR)-delta have shown a promising pharmacological profile in preclinical models of metabolic and cardiovascular disease. At present, the pharmaceutical development of these drugs exploits the potential to raise plasma HDL-cholesterol in animals and their insulin-sensitising and glucose-lowering properties. PPAR-delta agonists have also proven to be powerful research tools that have provided insights into the role of fatty acid metabolism in human physiology and disease. Activation of PPAR-delta induces the expression of genes important for cellular fatty acid combustion and an associated increase in whole-body lipid dissipation. The predominant target tissue in this regard is skeletal muscle, in which PPAR-delta activation regulates the oxidative capacity of the mitochondrial apparatus, switches fuel preference from glucose to fatty acids, and reduces triacylglycerol storage. These changes counter the characteristic derangements of insulin- resistant skeletal muscle but resemble the metabolic adaptation to regular physical exercise. Apart from effects on fuel turnover, there is evidence for direct antiatherogenic properties, because PPAR-delta activation increases cholesterol export and represses inflammatory gene expression in macrophages and atherosclerotic lesions. Whereas conclusions about the full potential of PPAR-delta as a drug target await the result of large scale clinical testing, ongoing investigation of this nuclear receptor has greatly improved our knowledge of the physiological regulation of whole-body fuel turnover and the interdependence of mitochondrial function and insulin sensitivity.
Collapse
Affiliation(s)
- C Fürnsinn
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
153
|
Pyridine-2-propanoic acids: Discovery of dual PPARα/γ agonists as antidiabetic agents. Bioorg Med Chem Lett 2006; 16:6116-9. [DOI: 10.1016/j.bmcl.2006.08.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 08/23/2006] [Accepted: 08/28/2006] [Indexed: 11/21/2022]
|
154
|
Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S, Palmer CNA, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahli W. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2006; 58:726-41. [PMID: 17132851 DOI: 10.1124/pr.58.4.5] [Citation(s) in RCA: 739] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The three peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear hormone receptor superfamily. They share a high degree of structural homology with all members of the superfamily, particularly in the DNA-binding domain and ligand- and cofactor-binding domain. Many cellular and systemic roles have been attributed to these receptors, reaching far beyond the stimulation of peroxisome proliferation in rodents after which they were initially named. PPARs exhibit broad, isotype-specific tissue expression patterns. PPARalpha is expressed at high levels in organs with significant catabolism of fatty acids. PPARbeta/delta has the broadest expression pattern, and the levels of expression in certain tissues depend on the extent of cell proliferation and differentiation. PPARgamma is expressed as two isoforms, of which PPARgamma2 is found at high levels in the adipose tissues, whereas PPARgamma1 has a broader expression pattern. Transcriptional regulation by PPARs requires heterodimerization with the retinoid X receptor (RXR). When activated by a ligand, the dimer modulates transcription via binding to a specific DNA sequence element called a peroxisome proliferator response element (PPRE) in the promoter region of target genes. A wide variety of natural or synthetic compounds was identified as PPAR ligands. Among the synthetic ligands, the lipid-lowering drugs, fibrates, and the insulin sensitizers, thiazolidinediones, are PPARalpha and PPARgamma agonists, respectively, which underscores the important role of PPARs as therapeutic targets. Transcriptional control by PPAR/RXR heterodimers also requires interaction with coregulator complexes. Thus, selective action of PPARs in vivo results from the interplay at a given time point between expression levels of each of the three PPAR and RXR isotypes, affinity for a specific promoter PPRE, and ligand and cofactor availabilities.
Collapse
Affiliation(s)
- Liliane Michalik
- Center for Integrative Genomics, National Research Centre "Frontiers in Genetics," University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Henry JR, Li Y, Warshawsky AM, Brozinick JT, Hawkins ED, Misener EA, Briere DA, Montrose-Rafizadeh C, Zink RW, Yumibe NP, Ajamie RT, Wilken B, Devanarayan V. Tetrahydroisoquinoline PPARγ agonists: Design of novel, highly selective non-TZD antihyperglycemic agents. Bioorg Med Chem Lett 2006; 16:6293-7. [PMID: 17005393 DOI: 10.1016/j.bmcl.2006.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/01/2006] [Accepted: 09/07/2006] [Indexed: 11/25/2022]
Abstract
Novel tetrahydroisoquinolines have been developed as potent PPAR ligands. Evaluation of these compounds in PPARgamma responsive models of type 2 diabetes is described.
Collapse
Affiliation(s)
- James R Henry
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Pyridine-3-propanoic acids: Discovery of dual PPARα/γ agonists as antidiabetic agents. Bioorg Med Chem Lett 2006; 16:6120-3. [DOI: 10.1016/j.bmcl.2006.08.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 08/23/2006] [Accepted: 08/28/2006] [Indexed: 11/24/2022]
|
157
|
Stefanski DA, Majkowska L. Existing and potential therapeutic approaches targeting peroxisome proliferator-activated receptors in the management of Type 2 diabetes. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.12.1713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
158
|
Huang JC, Wun WSA, Goldsby JS, Wun IC, Noorhasan D, Wu KK. Stimulation of embryo hatching and implantation by prostacyclin and peroxisome proliferator-activated receptor δ activation: implication in IVF. Hum Reprod 2006; 22:807-14. [PMID: 17114194 DOI: 10.1093/humrep/del429] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Successful IVF depends in part on quality embryos. Recent work suggests that prostaglandin I(2) (PGI(2) or prostacyclin) promotes the development of embryos in vitro and enhances their implantation potential. The mechanism underlying the effects of PGI(2) is unclear. It has been reported that peroxisome proliferator-activated receptor delta (PPARdelta) mediates the effects of PGI(2) at the implantation sites. METHODS The expression of PPARdelta in the preimplantation embryos was examined by RT-PCR, western blot analysis and immunohistochemistry. Synthetic PPARdelta ligand (L-165041) and PPARdelta targeted (PPARdelta(-/-)) embryos were used to reveal the roles of PPARdelta in PGI(2)-stimulated and spontaneous embryo development. RESULTS Preimplantation embryos express PPARdelta, which is essential for the enhancing effect of PGI(2) and the spontaneous progression of preimplantation embryos. Enhanced blastocyst hatching by PGI(2) (P < 0.05) was abrogated by PPARdelta deletion. Blastocyst formation and embryo hatching were impaired in PPARdelta(-/-) embryos. PPARdelta deletion significantly reduced embryo cell proliferation (P < 0.01); PPARdelta activation increased embryo cell proliferation (P < 0.05). PPARdelta activation enhanced the implantation of wild-type (WT) embryos (P < 0.05); PPARdelta deletion reduced embryo implantation (P < 0.05). CONCLUSIONS PPARdelta is essential for spontaneous and PGI(2)-stimulated embryo development and blastocyst hatching. The implantation of cultured embryos is enhanced by PPARdelta activation. PPARdelta represents a novel therapeutic target to improve IVF outcome.
Collapse
Affiliation(s)
- J-C Huang
- Department of Obstetrics, Gynecology and Reproductive Services, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
159
|
Peroxisome Proliferator-Activated Receptors at the Crossroads of Obesity, Diabetes, and Cardiovascular Disease. J Am Coll Cardiol 2006. [DOI: 10.1016/j.jacc.2006.04.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
160
|
Takacs ML, Abbott BD. Activation of Mouse and Human Peroxisome Proliferator–Activated Receptors (α, β/δ, γ) by Perfluorooctanoic Acid and Perfluorooctane Sulfonate. Toxicol Sci 2006; 95:108-17. [PMID: 17047030 DOI: 10.1093/toxsci/kfl135] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study evaluates the potential for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) to activate peroxisome proliferator-activated receptors (PPARs), using a transient transfection cell assay. Cos-1 cells were cultured in Dulbecco's Minimal Essential Medium (DMEM) with fetal bovine serum in 96-well plates and transfected with mouse or human PPARalpha, beta/delta, or gamma reporter plasmids. Transfected cells were exposed to PFOA (0.5-100 microM), PFOS (1-250 microM), positive controls (i.e., known agonists and antagonists), and negative controls (i.e., DMEM, 0.1% water, and 0.1% dimethyl sulfoxide). Following treatment for 24 h, activity was measured using the Luciferase reporter assay. In this assay, PFOA had more transactivity than PFOS with both the mouse and human PPAR isoforms. PFOA significantly increased mouse and human PPARalpha and mouse PPARbeta/delta activity relative to vehicle. PFOS significantly increased activation of mouse PPARalpha and PPARbeta/delta isoforms. No significant activation of mouse or human PPARgamma was observed with PFOA or PFOS. The PPARalpha antagonist, MK-886, significantly suppressed PFOA and PFOS activity of mouse and human PPARalpha. The PPARgamma antagonist, GW9662, significantly suppressed PFOA activity on the human isoform. In conclusion, this study characterized the dose response and differential activation of mouse and human PPARalpha, beta/delta, gamma by PFOA and PFOS. While this model allows opportunities to compare potential activation by perfluoroalkyl acids, it only evaluates the interaction and activation of the PPAR reporter constructs and is not necessarily predictive of a toxicological response in vivo.
Collapse
Affiliation(s)
- Margy L Takacs
- Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | |
Collapse
|
161
|
Ziouzenkova O, Orasanu G, Sukhova G, Lau E, Berger JP, Tang G, Krinsky NI, Dolnikowski GG, Plutzky J. Asymmetric cleavage of beta-carotene yields a transcriptional repressor of retinoid X receptor and peroxisome proliferator-activated receptor responses. Mol Endocrinol 2006; 21:77-88. [PMID: 17008383 DOI: 10.1210/me.2006-0225] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
beta-Carotene and its metabolites exert a broad range of effects, in part by regulating transcriptional responses through specific nuclear receptor activation. Symmetric cleavage of beta-carotene can yield 9-cis retinoic acid (9-cisRA), the natural ligand for the nuclear receptor RXR, the obligate heterodimeric partner for numerous nuclear receptor family members. A significant portion of beta-carotene can also undergo asymmetric cleavage to yield apocarotenals, a series of poorly understood naturally occurring molecules whose biologic role, including their transcriptional effects, remains essentially unknown. We show here that beta-apo-14'-carotenal (apo14), but not other structurally related apocarotenals, represses peroxisome proliferator-activated receptors (PPAR) and RXR activation and biologic responses induced by their respective agonists both in vitro and in vivo. During adipocyte differentiation, apo14 inhibited PPARgamma target gene expression and adipogenesis, even in the presence of the potent PPARgamma agonist BRL49653. Apo14 also suppressed known PPARalpha responses, including target gene expression and its known antiinflammatory effects, but not if PPARalpha agonist stimulation occurred before apo14 exposure and not in PPARalpha-deficient cells or mice. Other apocarotenals tested had none of these effects. These data extend current views of beta-carotene metabolism to include specific apocarotenals as possible biologically active mediators and identify apo14 as a possible template for designing PPAR and RXR modulators and better understanding modulation of nuclear receptor activation. These results also suggest a novel model of molecular endocrinology in which metabolism of a parent compound, beta-carotene, may alternatively activate (9-cisRA) or inhibit (apo14) specific nuclear receptor responses.
Collapse
Affiliation(s)
- Ouliana Ziouzenkova
- Cardiovascular Division, Brigham and Women's Hospital, Havard University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Mochizuki K, Suruga K, Fukami H, Kiso Y, Takase S, Goda T. Selectivity of fatty acid ligands for PPARalpha which correlates both with binding to cis-element and DNA binding-independent transactivity in Caco-2 cells. Life Sci 2006; 80:140-5. [PMID: 17007889 DOI: 10.1016/j.lfs.2006.08.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 08/09/2006] [Accepted: 08/28/2006] [Indexed: 11/18/2022]
Abstract
It is thought that peroxisome proliferator-activated receptor alpha (PPARalpha) is a major regulator for fatty acid metabolism. Long-chain fatty acids have been shown to induce expression of the genes related to fatty acid metabolism through PPARalpha. However, it is unclear whether the intensity of PPARalpha activation is different among various fatty acids. In this study, we compared various fatty acids in the capability of PPARalpha activation by differential protease sensitivity assay (DPSA), electrophoretic mobility shift assay and GAL4-PPAR chimera reporter assay in intestinal cell line, Caco-2. DPSA revealed that polyunsaturated fatty acids of 18 to 20 carbon groups with 3-5 double bonds strongly induced a PPARalpha conformational change. The ligand-induced changes in the sensitivity to protease corresponded to the enhancement of the binding of PPARalpha-RXRalpha heterodimer to the PPAR-response element (PPRE). The GAL4-PPAR chimera reporter assay revealed that the DNA binding-independent transactivity of PPARalpha was induced by various fatty acids with a wide spectrum of intensity which correlated with the conformational change of PPARalpha. These results suggest that PPARalpha has greater selectivity to certain types of polyunsaturated fatty acids, and that the ligand-induced conformational change of PPARalpha leads to parallel increases in both DNA binding to the PPAR-response element and the DNA binding-independent transactivity.
Collapse
Affiliation(s)
- Kazuki Mochizuki
- Graduate School of Nutritional and Environmental Sciences, COE Program in the 21st Century, The University of Shizuoka, Shizuoka 422-8526, Japan
| | | | | | | | | | | |
Collapse
|
163
|
Xu Y, Etgen GJ, Broderick CL, Canada E, Gonzalez I, Lamar J, Montrose-Rafizadeh C, Oldham BA, Osborne JJ, Xie C, Shi Q, Winneroski LL, York J, Yumibe N, Zink R, Mantlo N. Design and Synthesis of Dual Peroxisome Proliferator-Activated Receptors γ and δ Agonists as Novel Euglycemic Agents with a Reduced Weight Gain Profile. J Med Chem 2006; 49:5649-52. [PMID: 16970391 DOI: 10.1021/jm060617c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The design and synthesis of the dual peroxisome proliferator-activated receptor (PPAR) gamma/delta agonist (R)-3-{4-[3-(4-chloro-2-phenoxy-phenoxy)-butoxy]-2-ethyl-phenyl}-propionic acid (20) for the treatment of type 2 diabetes and associated dyslipidemia is described. The compound possesses a potent dual hPPAR gamma/delta agonist profile (IC(50) = 19 nM/4 nM; EC(50) = 102 nM/6 nM for hPPARgamma and hPPARdelta, respectively). In preclinical models, the compound improves insulin sensitivity and reverses diabetic hyperglycemia with less weight gain at a given level of glucose control relative to rosiglitazone.
Collapse
Affiliation(s)
- Yanping Xu
- Lilly Research Laboratories, A Division of Eli Lilly & Company, Lilly Corporate Center, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Debard C, Cozzone D, Ricard N, Vouillarmet J, Disse E, Husson B, Laville M, Vidal H. Short-term activation of peroxysome proliferator-activated receptor beta/delta increases fatty acid oxidation but does not restore insulin action in muscle cells from type 2 diabetic patients. J Mol Med (Berl) 2006; 84:747-52. [PMID: 16897074 DOI: 10.1007/s00109-006-0077-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/29/2006] [Indexed: 12/25/2022]
Abstract
Defective fatty acid oxidation in skeletal muscle is one of the possible causes of insulin resistance. Peroxisome proliferator-activated receptor beta activators are strong inducers of fatty acid oxidation. The aim of this study was to verify whether activation of fatty acid oxidation by PPARbeta agonists in human skeletal muscle cells prepared from type 2 diabetic patients could improve the reduced responses to insulin that characterized this cell model. GW0742 (10 nM) significantly increased fatty acid oxidation and oxidative gene expression in myotubes prepared from both healthy subjects and type 2 diabetic patients. In cells from control subjects, incubation with the agonist for 48 h affected neither insulin-induced rate of glycogen synthesis nor the phosphorylation state of protein kinase B (PKB serine 473). Myotubes from type 2 diabetic patients displayed marked reduction in the effects of insulin on glycogen synthesis and on PKB phosphorylation. However, treatment with PPARbeta agonists did not restore these defects. Therefore, these results indicate that induction of fatty acid oxidation with PPARbeta activators during short-term exposition is not sufficient to correct for insulin resistance in muscle cells from type 2 diabetic patients. This suggests that additional studies are needed to better characterize the link between fatty acid oxidation and insulin sensitivity in humans.
Collapse
Affiliation(s)
- Cyrille Debard
- INSERM U-449, INRA U-1235, R. Laennec Faculty of Medicine, Human Nutrition Research Center, Claude Bernard-Lyon 1 University, Rue G. Paradin, 69372, Lyon, Cedex 08, France
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Varnat F, Heggeler BBT, Grisel P, Boucard N, Corthésy-Theulaz I, Wahli W, Desvergne B. PPARbeta/delta regulates paneth cell differentiation via controlling the hedgehog signaling pathway. Gastroenterology 2006; 131:538-53. [PMID: 16890607 DOI: 10.1053/j.gastro.2006.05.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 04/27/2006] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS All 4 differentiated epithelial cell types found in the intestinal epithelium derive from the intestinal epithelial stem cells present in the crypt unit, in a process whose molecular clues are intensely scrutinized. Peroxisome proliferator-activated receptor beta (PPARbeta) is a nuclear hormone receptor activated by fatty acids and is highly expressed in the digestive tract. However, its function in intestinal epithelium homeostasis is understood poorly. METHODS To assess the role of PPARbeta in the small intestinal epithelium, we combined various cellular and molecular approaches in wild-type and PPARbeta-mutant mice. RESULTS We show that the expression of PPARbeta is particularly remarkable at the bottom of the crypt of the small intestine where Paneth cells reside. These cells, which have an important role in the innate immunity, are strikingly affected in PPARbeta-null mice. We then show that Indian hedgehog (Ihh) is a signal sent by mature Paneth cells to their precursors, negatively regulating their differentiation. Importantly, PPARbeta acts on Paneth cell homeostasis by down-regulating the expression of Ihh, an effect that can be mimicked by cyclopamine, a known inhibitor of the hedgehog signaling pathway. CONCLUSIONS We unraveled the Ihh-dependent regulatory loop that controls mature Paneth cell homeostasis and its modulation by PPARbeta. PPARbeta currently is being assessed as a drug target for metabolic diseases; these results reveal some important clues with respect to the signals controlling epithelial cell fate in the small intestine.
Collapse
Affiliation(s)
- Frédéric Varnat
- Center for Integrative Genomics, National Research Centre Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
166
|
Jakobsen MA, Petersen RK, Kristiansen K, Lange M, Lillevang ST. Peroxisome proliferator-activated receptor alpha, delta, gamma1 and gamma2 expressions are present in human monocyte-derived dendritic cells and modulate dendritic cell maturation by addition of subtype-specific ligands. Scand J Immunol 2006; 63:330-7. [PMID: 16640656 DOI: 10.1111/j.1365-3083.2006.01745.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It has recently been shown by Chang et al. (J Immunol 2000;165:3584-91) that the maturation of dendritic cells (DC) in the presence of long-chain fatty acids redirects DC into Th0/Th2-inducing cells suggesting the involvement of a receptor for long-chain fatty acids like members of the peroxisome proliferator-activated receptors (PPAR) superfamily. Here, we show that immature and mature monocyte-derived DC (Mo-DC) express PPARalpha, PPARdelta, PPARgamma1 and PPARgamma2 mRNA with the highest level of PPARgamma1 mRNA. We were only able to observe the expression of PPARgamma1 protein by Western blotting probably because the protein level of the other subtypes is below the detection limit. Synthetic ligands specific for PPARalpha, PPARdelta or PPARgamma added at day 0-6 have similar effect on the maturation of Mo-DC driving the maturation of Mo-DC with atypical phenotype, reduced expression of IL-10, IL-12 p35 and IL-12 p40 mRNA and with reduced stimulatory effects in mixed leucocyte reaction (MLR). Our data suggest that naturally occurring PPAR ligands like fatty acids and fatty acid derivates have anti-inflammatory effects by redirecting DC into a less stimulatory mode.
Collapse
Affiliation(s)
- M A Jakobsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.
| | | | | | | | | |
Collapse
|
167
|
Epple R, Azimioara M, Russo R, Bursulaya B, Tian SS, Gerken A, Iskandar M. 1,3,5-Trisubstituted aryls as highly selective PPARδ agonists. Bioorg Med Chem Lett 2006; 16:2969-73. [PMID: 16546385 DOI: 10.1016/j.bmcl.2006.02.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 02/22/2006] [Accepted: 02/24/2006] [Indexed: 12/18/2022]
Abstract
A series of highly potent and selective PPARdelta agonists is described using the known non-selective ligand GW2433 as a structural template. Compound 1 is bioavailable, potent (10 nM), and shows no cross-activity with other PPAR subtypes up to 10 microM, making it a useful tool in studying the biological effects of selective PPARdelta activation.
Collapse
Affiliation(s)
- Robert Epple
- Department of Medicinal Chemistry, The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
168
|
Lu IL, Huang CF, Peng YH, Lin YT, Hsieh HP, Chen CT, Lien TW, Lee HJ, Mahindroo N, Prakash E, Yueh A, Chen HY, Goparaju CMV, Chen X, Liao CC, Chao YS, Hsu JTA, Wu SY. Structure-Based Drug Design of a Novel Family of PPARγ Partial Agonists: Virtual Screening, X-ray Crystallography, and in Vitro/in Vivo Biological Activities. J Med Chem 2006; 49:2703-12. [PMID: 16640330 DOI: 10.1021/jm051129s] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is well-known as the receptor of thiazolidinedione antidiabetic drugs. In this paper, we present a successful example of employing structure-based virtual screening, a method that combines shape-based database search with a docking study and analogue search, to discover a novel family of PPARgamma agonists based upon pyrazol-5-ylbenzenesulfonamide. Two analogues in the family show high affinity for, and specificity to, PPARgamma and act as partial agonists. They also demonstrate glucose-lowering efficacy in vivo. A structural biology study reveals that they both adopt a distinct binding mode and have no H-bonding interactions with PPARgamma. The absence of H-bonding interaction with the protein provides an explanation why both function as partial agonists since most full agonists form conserved H-bonds with the activation function helix (AF-2 helix) which, in turn, enhances the recruitment of coactivators. Moreover, the structural biology and computer docking studies reveal the specificity of the compounds for PPARgamma could be due to the restricted access to the binding pocket of other PPAR subtypes, i.e., PPARalpha and PPARdelta, and steric hindrance upon the ligand binding.
Collapse
Affiliation(s)
- I-Lin Lu
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Campagnoni AT, Skoff RP. The pathobiology of myelin mutants reveal novel biological functions of the MBP and PLP genes. Brain Pathol 2006; 11:74-91. [PMID: 11145205 PMCID: PMC8098301 DOI: 10.1111/j.1750-3639.2001.tb00383.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Substantial biological data indicate that the myelin basic protein (MBP) and myelin proteolipid protein (PLP/DM20) genes produce products with functions beyond that of serving as myelin structural proteins. Much of this evidence comes from studies on naturally-occurring and man-made mutations of these genes in mice and other species. This review focuses upon recent evidence showing the existence of other products of these genes that may account for some of these other functions, and recent studies providing evidence for alternative biological functions of PLP/DM20. The MBP and PLP/DM20 genes each encode the classic MBP and PLP isoforms, as well as a second family of proteins that are not involved in myelin structure. The biological roles of these other products of the genes are becoming clarified. The non-classic MBP gene products appear to be components of transcriptional complexes in the nucleus, and they also may be involved in signaling pathways in T-cells and in neural cells. The non-classic PLP/DM20 gene products appear to be components of intracellular transport vesicles in oligodendrocytes. There is evidence for other functions of the classic PLP/DM20 proteins, including a role in neural cell death mechanisms, autocrine and paracrine regulation of oligodendrocytes and neurons, intracellular transport and oligodendrocyte migration.
Collapse
Affiliation(s)
- A T Campagnoni
- Neuropsychiatric Institute, UCLA School of Medicine, 90024, USA.
| | | |
Collapse
|
170
|
Zandbergen F, Mandard S, Escher P, Tan N, Patsouris D, Jatkoe T, Rojas-Caro S, Madore S, Wahli W, Tafuri S, Müller M, Kersten S. The G0/G1 switch gene 2 is a novel PPAR target gene. Biochem J 2006; 392:313-24. [PMID: 16086669 PMCID: PMC1316267 DOI: 10.1042/bj20050636] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma are a group of transcription factors that are involved in numerous processes, including lipid metabolism and adipogenesis. By comparing liver mRNAs of wild-type and PPARalpha-null mice using microarrays, a novel putative target gene of PPARalpha, G0S2 (G0/G1 switch gene 2), was identified. Hepatic expression of G0S2 was up-regulated by fasting and by the PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. Surprisingly, the G0S2 mRNA level was highest in brown and white adipose tissue and was greatly up-regulated during mouse 3T3-L1 and human SGBS (Simpson-Golabi-Behmel syndrome) adipogenesis. Transactivation, gel shift and chromatin immunoprecipitation assays indicated that G0S2 is a direct PPARgamma and probable PPARalpha target gene with a functional PPRE (PPAR-responsive element) in its promoter. Up-regulation of G0S2 mRNA seemed to be specific for adipogenesis, and was not observed during osteogenesis or myogenesis. In 3T3-L1 fibroblasts, expression of G0S2 was associated with growth arrest, which is required for 3T3-L1 adipogenesis. Together, these data indicate that G0S2 is a novel target gene of PPARs that may be involved in adipocyte differentiation.
Collapse
Affiliation(s)
- Fokko Zandbergen
- *Nutrition, Metabolism and Genomics Group, Wageningen University, 6700 EV, Wageningen, The Netherlands
| | - Stéphane Mandard
- *Nutrition, Metabolism and Genomics Group, Wageningen University, 6700 EV, Wageningen, The Netherlands
| | - Pascal Escher
- †Institute of Physiology, Pharmazentrum, University of Basel, Basel, CH-4056, Switzerland
- §Pfizer Global Research & Development, Ann Arbor Laboratories, Molecular Sciences, 2800 Plymouth Road, Ann Arbor, MI 48105, U.S.A
| | - Nguan Soon Tan
- ‡Center for Integrative Genomics, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - David Patsouris
- *Nutrition, Metabolism and Genomics Group, Wageningen University, 6700 EV, Wageningen, The Netherlands
| | - Tim Jatkoe
- §Pfizer Global Research & Development, Ann Arbor Laboratories, Molecular Sciences, 2800 Plymouth Road, Ann Arbor, MI 48105, U.S.A
| | - Sandra Rojas-Caro
- §Pfizer Global Research & Development, Ann Arbor Laboratories, Molecular Sciences, 2800 Plymouth Road, Ann Arbor, MI 48105, U.S.A
| | - Steve Madore
- §Pfizer Global Research & Development, Ann Arbor Laboratories, Molecular Sciences, 2800 Plymouth Road, Ann Arbor, MI 48105, U.S.A
| | - Walter Wahli
- ‡Center for Integrative Genomics, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Sherrie Tafuri
- §Pfizer Global Research & Development, Ann Arbor Laboratories, Molecular Sciences, 2800 Plymouth Road, Ann Arbor, MI 48105, U.S.A
| | - Michael Müller
- *Nutrition, Metabolism and Genomics Group, Wageningen University, 6700 EV, Wageningen, The Netherlands
| | - Sander Kersten
- *Nutrition, Metabolism and Genomics Group, Wageningen University, 6700 EV, Wageningen, The Netherlands
- To whom correspondence should be addressed (email )
| |
Collapse
|
171
|
Abstract
In an era marked by the increasing prevalence of obesity, diabetes, and cardiovascular disease, the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) has emerged as a transcriptional regulator of metabolism whose activity can be modulated by direct binding of small molecules. As the master regulator of fat-cell formation, PPARgamma is required for the accumulation of adipose tissue and hence contributes to obesity. Yet PPARgamma ligands are clinically effective antidiabetic drugs, although side effects limit their utility. Can PPARgamma be targeted with greater benefit and with less risk to patients? The answer depends upon the basic biology of PPARgamma, and the possibility of selectively modulating the activity of this nuclear receptor in a tissue- and target-gene-specific manner.
Collapse
Affiliation(s)
- Michael Lehrke
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
172
|
Johnson TE, Zhang X, Shi S, Umbenhauer DR. Statins and PPARalpha agonists induce myotoxicity in differentiated rat skeletal muscle cultures but do not exhibit synergy with co-treatment. Toxicol Appl Pharmacol 2005; 208:210-21. [PMID: 16239165 DOI: 10.1016/j.taap.2005.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 03/07/2005] [Accepted: 03/13/2005] [Indexed: 11/17/2022]
Abstract
Statins and fibrates (weak PPARalpha agonists) are prescribed for the treatment of lipid disorders. Both drugs cause myopathy, but with a low incidence, 0.1-0.5%. However, combined statin and fibrate therapy can enhance myopathy risk. We tested the myotoxic potential of PPAR subtype selective agonists alone and in combination with statins in a differentiated rat myotube model. A pharmacologically potent experimental PPARalpha agonist, Compound A, induced myotoxicity as assessed by TUNEL staining at a minimum concentration of 1 nM, while other weaker PPARalpha compounds, for example, WY-14643, Gemfibrozil and Bezafibrate increased the percentage of TUNEL-positive nuclei at micromolar concentrations. In contrast, the PPARgamma agonist Rosiglitazone caused little or no cell death at up to 10 muM and the PPARdelta ligand GW-501516 exhibited comparatively less myotoxicity than that seen with Compound A. An experimental statin (Compound B) and Atorvastatin also increased the percentage of TUNEL-positive nuclei and co-treatment with WY-14643, Gemfibrozil or Bezafibrate had less than a full additive effect on statin-induced cell killing. The mechanism of PPARalpha agonist-induced cell death was different from that of statins. Unlike statins, Compound A and WY-14643 did not activate caspase 3/7. In addition, mevalonate and geranylgeraniol reversed the toxicity caused by statins, but did not prevent the cell killing induced by WY-14643. Furthermore, unlike statins, Compound A did not inhibit the isoprenylation of rab4 or rap1a. Interestingly, Compound A and Compound B had differential effects on ATP levels. Taken together, these observations support the hypothesis that in rat myotube cultures, PPARalpha agonism mediates in part the toxicity response to PPARalpha compounds. Furthermore, PPARalpha agonists and statins cause myotoxicity through distinct and independent pathways.
Collapse
Affiliation(s)
- Timothy E Johnson
- Department of Safety Assessment, Merck Research Laboratories, WP45-319, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | |
Collapse
|
173
|
Desai RC, Metzger E, Santini C, Meinke PT, Heck JV, Berger JP, MacNaul KL, Cai TQ, Wright SD, Agrawal A, Moller DE, Sahoo SP. Design and synthesis of potent and subtype-selective PPARalpha agonists. Bioorg Med Chem Lett 2005; 16:1673-8. [PMID: 16384704 DOI: 10.1016/j.bmcl.2005.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 12/02/2005] [Accepted: 12/02/2005] [Indexed: 11/18/2022]
Abstract
Beginning with a moderately potent PPARgamma agonist 9, a series of potent and highly subtype-selective PPARalpha agonists was identified through a systematic SAR study. Based on the results of the efficacy studies in the hamster and dog models of dyslipidemia and the desired pharmacokinetic data, the optimized compound 39 was selected for further profiling.
Collapse
Affiliation(s)
- Ranjit C Desai
- Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Dropinski JF, Akiyama T, Einstein M, Habulihaz B, Doebber T, Berger JP, Meinke PT, Shi GQ. Synthesis and biological activities of novel aryl indole-2-carboxylic acid analogs as PPARgamma partial agonists. Bioorg Med Chem Lett 2005; 15:5035-8. [PMID: 16153845 DOI: 10.1016/j.bmcl.2005.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 07/29/2005] [Accepted: 08/01/2005] [Indexed: 12/12/2022]
Abstract
A series of novel aryl indole-2-carboxylic acids has been identified as potent selective PPARgamma modulators. Their chemical synthesis and in vitro activities are discussed. Compound 5 was selected for in vivo testing in the db/db mouse model of type 2 diabetes and resulted in reduction of hyperglycemia at comparable plasma exposure when compared to rosiglitazone.
Collapse
|
175
|
Koyama H, Boueres JK, Miller DJ, Berger JP, MacNaul KL, Wang PR, Ippolito MC, Wright SD, Agrawal AK, Moller DE, Sahoo SP. (2R)-2-methylchromane-2-carboxylic acids: discovery of selective PPARalpha agonists as hypolipidemic agents. Bioorg Med Chem Lett 2005; 15:3347-51. [PMID: 15950464 DOI: 10.1016/j.bmcl.2005.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 05/06/2005] [Accepted: 05/10/2005] [Indexed: 11/17/2022]
Abstract
A SAR study was conducted on chromane-2-carboxylic acid toward selective PPARalpha agonisim. As a result, highly potent, and selective PPARalpha agonists were discovered. The optimized compound 43 exhibited robust lowering of total cholesterol levels in hamster and dog animal models.
Collapse
Affiliation(s)
- Hiroo Koyama
- Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000 Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Seimandi M, Lemaire G, Pillon A, Perrin A, Carlavan I, Voegel JJ, Vignon F, Nicolas JC, Balaguer P. Differential responses of PPARalpha, PPARdelta, and PPARgamma reporter cell lines to selective PPAR synthetic ligands. Anal Biochem 2005; 344:8-15. [PMID: 16038868 DOI: 10.1016/j.ab.2005.06.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 05/24/2005] [Accepted: 06/03/2005] [Indexed: 11/23/2022]
Abstract
To characterize the specificity of synthetic compounds for peroxisome proliferator-activated receptors (PPARs), three stable cell lines expressing the ligand binding domain (LBD) of human PPARalpha, PPARdelta, or PPARgamma fused to the yeast GAL4 DNA binding domain (DBD) were developed. These reporter cell lines were generated by a two-step transfection procedure. First, a stable cell line, HG5LN, expressing the reporter gene was developed. These cells were then transfected with the different receptor genes. With the help of the three PPAR reporter cell lines, we assessed the selectivity and activity of PPAR agonists GW7647, WY-14-643, L-165041, GW501516, BRL49653, ciglitazone, and pioglitazone. GW7647, L-165041, and BRL49653 were the most potent and selective agonists for hPPARalpha, hPPARdelta, and hPPARgamma, respectively. Two PPAR antagonists, GW9662 and BADGE, were also tested. GW9662 was a selective PPARgamma antagonist, whereas BADGE was a low-affinity PPAR ligand. Furthermore, GW9662 was a full antagonist on PPARgamma and PPARdelta, whereas it showed partial agonism on PPARalpha. We conclude that our stable models allow specific and sensitive measurement of PPAR ligand activities and are a high-throughput, cell-based screening tool for identifying and characterizing PPAR ligands.
Collapse
Affiliation(s)
- Mathieu Seimandi
- INSERM unité 540, Endocrinologie Moléculaire et Cellulaire des Cancers, 60 rue de Navacelles, 34090 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Peraza MA, Burdick AD, Marin HE, Gonzalez FJ, Peters JM. The Toxicology of Ligands for Peroxisome Proliferator-Activated Receptors (PPAR). Toxicol Sci 2005; 90:269-95. [PMID: 16322072 DOI: 10.1093/toxsci/kfj062] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand activated transcription factors that modulate target gene expression in response to endogenous and exogenous ligands. Ligands for the PPARs have been widely developed for the treatment of various diseases including dyslipidemias and diabetes. While targeting selective receptor activation is an established therapeutic approach for the treatment of various diseases, a variety of toxicities are known to occur in response to ligand administration. Whether PPAR ligands produce toxicity via a receptor-dependent and/or off-target-mediated mechanism(s) is not always known. Extrapolation of data derived from animal models and/or in vitro models, to humans, is also questionable. The different toxicities and mechanisms associated with administration of ligands for the three PPARs will be discussed, and important data gaps that could increase our current understanding of how PPAR ligands lead to toxicity will be highlighted.
Collapse
Affiliation(s)
- Marjorie A Peraza
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
178
|
Panchapakesan U, Chen XM, Pollock CA. Drug Insight: thiazolidinediones and diabetic nephropathy—relevance to renoprotection. ACTA ACUST UNITED AC 2005; 1:33-43. [PMID: 16932362 DOI: 10.1038/ncpneph0029] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 09/09/2005] [Indexed: 11/08/2022]
Abstract
Up to a third of people with diabetes mellitus suffer end-stage renal failure due to diabetic nephropathy. Strategies to delay progression of diabetic nephropathy-including glycemic and blood pressure control, modification of the renin-angiotensin system and management of lipid levels with statins-have been effective, but development of new strategies is essential if the ever-increasing burden of this disease is to be minimized. Thiazolidinediones (TZDs) are a family of compounds used as oral hypoglycemic agents in patients with type 2 diabetes mellitus. The therapeutic effects of TZDs are largely a function of their activity as ligands of peroxisome proliferator-activated receptor gamma (PPARgamma), a transcription factor that has a central role in adipogenesis and insulin sensitization. In vitro animal and clinical studies have shown that TZDs ameliorate symptoms and pathogenic mechanisms of diabetic and nondiabetic nephropathy, including proteinuria, excessive deposition of glomerular matrix, cellular proliferation, inflammation and fibrosis. Many of these favorable effects occur under both normal and high-glucose conditions. The mechanisms responsible probably involve both PPARgamma-dependent and PPARgamma-independent pathways. So, TZDs and other agonists of PPARgamma offer promise for treatment of diabetic nephropathy; however, before their putative renoprotective effects can be translated into clinical practice, the complex mechanisms of PPARgamma activity and regulation will need to be investigated further.
Collapse
Affiliation(s)
- Usha Panchapakesan
- Kolling Institute of Medical Research, Royal North Shore Hospital, NSW 2065, Sydney, Australia
| | | | | |
Collapse
|
179
|
Miyachi H. Analysis of patent applications relating to peroxisome proliferator-activated receptor (PPAR) ligands in 2004. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.11.1521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
180
|
Carmona MC, Louche K, Nibbelink M, Prunet B, Bross A, Desbazeille M, Dacquet C, Renard P, Casteilla L, Pénicaud L. Fenofibrate prevents Rosiglitazone-induced body weight gain in ob/ob mice. Int J Obes (Lond) 2005; 29:864-71. [PMID: 15917863 DOI: 10.1038/sj.ijo.0802943] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS Fibrates and thiazolidinediones are commonly used for the treatment of dyslipidemia and type 2 diabetes, respectively. The aim of this study was to investigate the effects on body weight as well as on glucose and lipid homeostasis of ligands for PPARalpha and PPARgamma, Fenofibrate and Rosiglitazone, alone or in association. METHODS Ob/ob mice were divided into four groups: control, and mice daily injected (intraperitoneally), either with 10 mg/kg Rosiglitazone, 100 mg/kg Fenofibrate or both molecules. Body weight and food intake were monitored daily. After 13 days of treatment, mice were killed, and blood samples were collected for posterior metabolite quantification. The liver and adipose tissues were dissected and weighed. RESULTS Body weight was significantly reduced or increased by Fenofibrate and Rosiglitazone, respectively. The effect of Rosiglitazone was prevented by coadministration of Fenofibrate. This was accompanied by a normalization of the daily food efficiency. Compared to those treated with Rosiglitazone, animals treated with Fenofibrate alone or in combination presented a decreased white adipose tissue mass. Fenofibrate or Rosiglitazone alone significantly reduced the levels of plasma lipid parameters. Surprisingly, Fenofibrate also decreased blood glucose levels in ob/ob mice, despite having no effect on insulin levels. By contrast, both glucose and insulin levels were decreased by Rosiglitazone treatment. Coadministration of both drugs improved all parameters as with Rosiglitazone. Fenofibrate restored almost normal hepatocyte morphology and significantly reduced the triglyceride content of the liver. This was accompanied by an increase in fatty acid oxidation in the liver in all groups receiving Fenofibrate. CONCLUSION/INTERPRETATION These biological effects suggest that combined therapy with a PPARalpha and a PPARgamma ligand is more effective in ameliorating, specifically, lipid homeostasis than in activating any of this receptor separately. Furthermore, Fenofibrate prevents one of the most undesirable effects of Rosiglitazone, namely increased adiposity and body weight gain.
Collapse
Affiliation(s)
- M C Carmona
- UMR 5018 CNRS-UPS, IFR 31, CHU Rangueil, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Moraes LA, Piqueras L, Bishop-Bailey D. Peroxisome proliferator-activated receptors and inflammation. Pharmacol Ther 2005; 110:371-85. [PMID: 16168490 DOI: 10.1016/j.pharmthera.2005.08.007] [Citation(s) in RCA: 287] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 08/09/2005] [Indexed: 12/22/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptors family. PPARs are a family of 3 ligand-activated transcription factors: PPARalpha (NR1C1), PPARbeta/delta (NUC1; NR1C2), and PPARgamma (NR1C3). PPARalpha, -beta/delta, and -gamma are encoded by different genes but show substantial amino acid similarity, especially within the DNA and ligand binding domains. All PPARs act as heterodimers with the 9-cis-retinoic acid receptors (retinoid X receptor; RXRs) and play important roles in the regulation of metabolic pathways, including those of lipid of biosynthesis and glucose metabolism, as well as in a variety of cell differentiation, proliferation, and apoptosis pathways. Recently, there has been a great deal of interest in the involvement of PPARs in inflammatory processes. PPAR ligands, in particular those of PPARalpha and PPARgamma, inhibit the activation of inflammatory gene expression and can negatively interfere with pro-inflammatory transcription factor signaling pathways in vascular and inflammatory cells. Furthermore, PPAR levels are differentially regulated in a variety of inflammatory disorders in man, where ligands appear to be promising new therapies.
Collapse
Affiliation(s)
- Leonardo A Moraes
- Cardiac, Vascular and Inflammation Research, William Harvey Research Institute, Barts and the London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | |
Collapse
|
182
|
Oike Y, Akao M, Kubota Y, Suda T. Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy. Trends Mol Med 2005; 11:473-9. [PMID: 16154386 DOI: 10.1016/j.molmed.2005.08.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
Metabolic syndrome is an increasingly prevalent problem, so effective therapeutic approaches to combat it are currently of interest. Recently, orphan ligands with structural similarity to angiopoietins were identified in the systemic circulation, and have been designated angiopoietin-like proteins (Angptls). Angptl3 and Angptl4 have been shown to regulate fat, lipid or glucose metabolic homeostasis. More recently, AGF (also called Angptl6) has been shown to counteract obesity and related insulin resistance. Notably, these factors are secreted mainly from the liver and act as endocrine signals in the peripheral tissues, suggesting a new role for hepatocyte-derived factors in regulating metabolic homeostasis. As more is discovered about the functions of Angptls, so their potential as therapeutic targets for metabolic syndrome is explored.
Collapse
Affiliation(s)
- Yuichi Oike
- Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | |
Collapse
|
183
|
Pereira MP, Hurtado O, Cárdenas A, Alonso-Escolano D, Boscá L, Vivancos J, Nombela F, Leza JC, Lorenzo P, Lizasoain I, Moro MA. The nonthiazolidinedione PPARgamma agonist L-796,449 is neuroprotective in experimental stroke. J Neuropathol Exp Neurol 2005; 64:797-805. [PMID: 16141790 DOI: 10.1097/01.jnen.0000178852.83680.3c] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Some agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma) belonging to the thiazolidinedione (TZD) family, as well as the cyclopentenone prostaglandin 15-dPGJ2, have been shown to cause neuroprotection in animal models of stroke. We have tested whether the TZD-unrelated PPARgamma agonist L-796,449 is neuroprotective after permanent middle cerebral artery occlusion (MCAO) in the rat brain. Our results show that L-796,449 decreases MCAO-induced infarct size and improves neurologic scores. This protection is concomitant to inhibition of MCAO-induced brain expression of inducible NO synthase (iNOS) and the matrix metalloproteinase MMP-9 and to upregulation of the cytoprotective stress protein heme oxygenase-1 (HO-1). Analysis of the NF-kappaB p65 monomer and the NF-kappaB inhibitor IkappaBalpha protein levels as well as gel mobility shift assays indicate that L-796,449 inhibits NF-kappaB signaling, and that it may be recruiting both PPARgamma-dependent and independent pathways. In summary, our results provide new insights for stroke treatment.
Collapse
Affiliation(s)
- Marta P Pereira
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Shi GQ, Dropinski JF, Zhang Y, Santini C, Sahoo SP, Berger JP, Macnaul KL, Zhou G, Agrawal A, Alvaro R, Cai TQ, Hernandez M, Wright SD, Moller DE, Heck JV, Meinke PT. Novel 2,3-Dihydrobenzofuran-2-carboxylic Acids: Highly Potent and Subtype-Selective PPARα Agonists with Potent Hypolipidemic Activity. J Med Chem 2005; 48:5589-99. [PMID: 16107159 DOI: 10.1021/jm050373g] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The design and synthesis of a novel class of 2,3-dihydrobenzofuran-2-carboxylic acids as highly potent and subtype-selective PPARalpha agonists are reported. Systematic study of structure-activity relationships has identified several key structural elements within this class for maintaining the potency and subtype selectivity. Select compounds were evaluated in animal models of dyslipidemia using Syrian hamsters and male Beagle dogs, and all these compounds displayed excellent cholesterol- and triglyceride-lowering activity at dose levels that were much lower than the marketed weak PPARalpha agonist fenofibrate.
Collapse
Affiliation(s)
- Guo Q Shi
- Department of Medicinal Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065-0900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Liu BH, Kuo CF, Wang YC, Ding ST. Effect of docosahexaenoic acid and arachidonic acid on the expression of adipocyte determination and differentiation-dependent factor 1 in differentiating porcine adipocytes1. J Anim Sci 2005; 83:1516-25. [PMID: 15956459 DOI: 10.2527/2005.8371516x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adipocyte determination and differentiation-dependent factor 1 (ADD1) drives the expression of several lipogenic genes in mammals. Polyunsaturated fatty acids decrease ADD1 mRNA abundance in differentiating porcine adipocytes. The current study was designed to explore the mechanisms by which PUFA inhibit the expression of ADD1 in porcine adipocytes. Porcine preadipocytes were differentiated for 24 h with 0 or 100 microM of docosahexaenoic acid (DHA) and mixtures of different concentrations of antioxidants to investigate the effect of DHA and antioxidants on the ADD1 mRNA abundance. We found the relative mRNA abundance was decreased by the addition of 100 microM DHA to the medium for porcine differentiating adipocytes, and adding an antioxidant mixture to the medium prevented part of the decrease in ADD1 mRNA abundance. These data suggest that DHA decreased the steady-state transcription factor ADD1 mRNA through a mechanism related to fatty acid peroxidation. Indeed, adding 7.5 microM vitamin E (a natural antioxidant) also restored the concentrations of ADD1 and fatty acid synthase mRNA, which were decreased by DHA treatment; however, the DHA or the antioxidant treatment did not change the expression of antioxidation genes (superoxide dismutase 1 and glutathione peroxidase 1) in porcine stromal vascular cells. When supplemented with the eicosanoid synthesis pathway inhibitors, the inhibition of the expression of ADD1 by arachidonic acid was partially recovered. These results suggest that the mechanism by which PUFA decrease ADD1 mRNA is due to the metabolic product of eicosanoids and peroxidation of these PUFA.
Collapse
Affiliation(s)
- B H Liu
- Department of Animal Science, National Taiwan University, Taipei 106, Taiwan
| | | | | | | |
Collapse
|
186
|
Velliquette RA, Friedman JE, Shao J, Zhang BB, Ernsberger P. Therapeutic actions of an insulin receptor activator and a novel peroxisome proliferator-activated receptor gamma agonist in the spontaneously hypertensive obese rat model of metabolic syndrome X. J Pharmacol Exp Ther 2005; 314:422-30. [PMID: 15833894 DOI: 10.1124/jpet.104.080606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin resistance clusters with hyperlipidemia, impaired glucose tolerance, and hypertension as metabolic syndrome X. We tested a low molecular weight insulin receptor activator, demethylasterriquinone B-1 (DMAQ-B1), and a novel indole peroxisome proliferator-activated receptor gamma agonist, 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (PPEIA), in spontaneously hypertensive obese rats (SHROB), a genetic model of syndrome X. Agents were given orally for 19 days. SHROB showed fasting normoglycemia but impaired glucose tolerance after an oral load, as shown by increased glucose area under the curve (AUC) [20,700 mg x min/ml versus 8100 in lean spontaneously hypertensive rats (SHR)]. Insulin resistance was indicated by 20-fold excess fasting insulin and increased insulin AUC (6300 ng x min/ml versus 990 in SHR). DMAQ-B1 did not affect glucose tolerance (glucose AUC = 21,300) but reduced fasting insulin 2-fold and insulin AUC (insulin AUC = 4300). PPEIA normalized glucose tolerance (glucose AUC = 9100) and reduced insulin AUC (to 3180) without affecting fasting insulin. PPEIA also increased food intake, fat mass, and body weight gain (81 +/- 12 versus 45 +/- 8 g in untreated controls), whereas DMAQ-B1 had no effect on body weight but reduced subscapular fat mass. PPEIA but not DMAQ-B1 reduced blood pressure. In skeletal muscle, insulin-stimulated phosphorylation of the insulin receptor and insulin receptor substrate protein 1-associated phosphatidylinositol 3-kinase activity were decreased by 40 to 55% in SHROB relative to lean SHR. PPEIA, but not DMAQ-B1, enhanced both insulin actions. SHROB also showed severe hypertriglyceridemia (355 +/- 42 mg/dl versus 65 +/- 3 in SHR) attenuated by both agents (DMAQ-B1, 228 +/- 18; PPEIA, 79 +/- 3). Both these novel antidiabetic agents attenuate insulin resistance and hypertriglyceridemia associated with metabolic syndrome but via distinct mechanisms.
Collapse
Affiliation(s)
- Rodney A Velliquette
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4906, USA
| | | | | | | | | |
Collapse
|
187
|
Abstract
It is now over 10 years since the discovery of peroxisome proliferator activated receptor gamma (PPAR gamma) and its unique role in adipogenesis. The subsequent identification of PPAR gamma as the target of insulin sensitizing drugs certified this ligand-regulated transcription factor as an exciting link between adipocyte biology and peripheral insulin resistance. Here, I summarize the great progress that has been made over the past decade in elucidating the biology of PPAR gamma and its role in adipogenesis and glucose metabolism. Prospects for future research leading to new therapies for obesity and diabetes are also discussed.
Collapse
Affiliation(s)
- Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Penn Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6149, USA.
| |
Collapse
|
188
|
Letavernier E, Perez J, Joye E, Bellocq A, Fouqueray B, Haymann JP, Heudes D, Wahli W, Desvergne B, Baud L. Peroxisome Proliferator-Activated Receptor β/δ Exerts a Strong Protection from Ischemic Acute Renal Failure. J Am Soc Nephrol 2005; 16:2395-402. [PMID: 15944338 DOI: 10.1681/asn.2004090802] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ischemic acute renal failure is characterized by damages to the proximal straight tubule in the outer medulla. Lesions include loss of polarity, shedding into the tubule lumen, and eventually necrotic or apoptotic death of epithelial cells. It was recently shown that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) increases keratinocyte survival after an inflammatory reaction. Therefore, whether PPARbeta/delta could contribute also to the control of tubular epithelium death after renal ischemia/reperfusion was tested. It was found that PPARbeta/delta+/- and PPARbeta/delta-/- mutant mice exhibited much greater kidney dysfunction and injury than wild-type counterparts after a 30-min renal ischemia followed by a 36-h reperfusion. Conversely, wild-type mice that were given the specific PPARbeta/delta ligand L-165041 before renal ischemia were completely protected against renal dysfunction, as indicated by the lack of rise in serum creatinine and fractional excretion of Na+. This protective effect was accompanied by a significant reduction in medullary necrosis, apoptosis, and inflammation. On the basis of in vitro studies, PPARbeta/delta ligands seem to exert their role by activating the antiapoptotic Akt signaling pathway and, unexpectedly, by increasing the spreading of tubular epithelial cells, thus limiting potentially their shedding and anoikis. These results point to PPARbeta/delta as a remarkable new target for preconditioning strategies.
Collapse
|
189
|
Shi GQ, Dropinski JF, McKeever BM, Xu S, Becker JW, Berger JP, MacNaul KL, Elbrecht A, Zhou G, Doebber TW, Wang P, Chao YS, Forrest M, Heck JV, Moller DE, Jones AB. Design and Synthesis of α-Aryloxyphenylacetic Acid Derivatives: A Novel Class of PPARα/γ Dual Agonists with Potent Antihyperglycemic and Lipid Modulating Activity. J Med Chem 2005; 48:4457-68. [PMID: 15974597 DOI: 10.1021/jm0502135] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis and structure-activity relationships of novel series of alpha-aryloxyphenylacetic acids as PPARalpha/gamma dual agonists are reported. The initial search for surrogates of the ester group in the screen lead led first to the optimization of a subseries with a ketone moiety. Further efforts to modify the ketone subseries led to the design and synthesis of two new subseries containing fused heterocyclic ring systems. All these analogues were characterized by their "super" PPARalpha agonist activity and weak or partial agonist activity on PPARgamma in PPAR-GAL4 transactivation assays despite their similar binding affinities for both receptors. The cocrystal structures of compounds 7 and rosiglitazone with PPARgamma-LBD were compared, and significant differences were found in their interactions with the receptor. Select analogues in each subseries were further evaluated for in vivo efficacy. They all showed excellent anti-hyperglycemic efficacy in a db/db mouse model and hypolipidemic activity in hamster and dog models without provoking the typical PPARgamma-associated side effects in the rat tolerability assay.
Collapse
Affiliation(s)
- Guo Q Shi
- Departments of Medicinal Chemistry, Merck Research Laboratories, P.O Box 2000, Rahway, New Jersey 07065-0900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Dunlop TW, Väisänen S, Frank C, Molnár F, Sinkkonen L, Carlberg C. The Human Peroxisome Proliferator-activated Receptor δ Gene is a Primary Target of 1α,25-Dihydroxyvitamin D3 and its Nuclear Receptor. J Mol Biol 2005; 349:248-60. [PMID: 15890193 DOI: 10.1016/j.jmb.2005.03.060] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 03/15/2005] [Accepted: 03/21/2005] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR) delta is the most widely expressed member of the PPAR family of nuclear receptor fatty acid sensors. Real-time PCR analysis of breast and prostate cancer cell lines demonstrated that PPARdelta expression was increased 1.5 to 3.2-fold after three hours stimulation with the natural vitamin D receptor (VDR) agonist, 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). In silico analysis of the 20 kb of the human PPARdelta promoter revealed a DR3-type 1alpha,25(OH)2D3 response element approximately 350 bp upstream of the transcription start site, which was able to bind VDR-retinoid X receptor (RXR) heterodimers and mediate a 1alpha,25(OH)2D3-dependent upregulation of reporter gene activity. Chromatin immuno-precipitation assays demonstrated that a number of proteins representative for 1alpha,25(OH)2D3-mediated gene activation, such as VDR, RXR and RNA polymerase II, displayed a 1alpha,25(OH)2D3-dependent association with a region of the proximal PPARdelta promoter that contained the putative DR3-type VDRE. This was also true for other proteins that are involved in or are the subject of chromatin modification, such as the histone acetyltransferase CBP and histone 4, which displayed ligand-dependent association and acetylation, respectively. Finally, real-time PCR analysis demonstrated that 1alpha,25(OH)2D3 and the synthetic PPARdelta ligand L783483 show a cell and time-dependent interference in each other's effects on VDR mRNA expression, so that their combined application shows complex effects on the induction of VDR target genes, such as CYP24. Taken together, we conclude that PPARdelta is a primary 1alpha,25(OH)2D3-responding gene and that VDR and PPARdelta signaling pathways are interconnected at the level of cross-regulation of their respective transcription factor mRNA levels.
Collapse
Affiliation(s)
- Thomas W Dunlop
- Department of Biochemistry, University of Kuopio, FIN-70211 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
191
|
Khanna S, Sobhia ME, Bharatam PV. Additivity of molecular fields: CoMFA study on dual activators of PPARalpha and PPARgamma. J Med Chem 2005; 48:3015-25. [PMID: 15828840 DOI: 10.1021/jm049383s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent trends in drug discovery include methods to identify dual and triple activating drugs. This approach is being successfully employed in malaria, cancer, asthma, insulin resistance, etc. Molecular field analysis has been employed in correlating pharmacological data and field parameters. In this paper we introduce the concept of additivity of molecular fields to correlate molecular fields of dual activators and their pIC(50) values. PPARalpha and PPARgamma dual activators, which affect hypertriglyceridemia and hyperglycemia, have been chosen to validate the molecular field additivity concept. Three CoMFA models namely alpha-model, gamma-model and dual-model have been developed. The validity of this concept has been ascertained by (a) comparing contour maps, (b) by comparing CoMFA results with FlexX docking results and (c) by analyzing newly designed molecules.
Collapse
Affiliation(s)
- Smriti Khanna
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S. A. S. Nagar, 160 062, Punjab
| | | | | |
Collapse
|
192
|
Liu K, Black RM, Acton JJ, Mosley R, Debenham S, Abola R, Yang M, Tschirret-Guth R, Colwell L, Liu C, Wu M, Wang CF, MacNaul KL, McCann ME, Moller DE, Berger JP, Meinke PT, Jones AB, Wood HB. Selective PPARγ modulators with improved pharmacological profiles. Bioorg Med Chem Lett 2005; 15:2437-40. [PMID: 15863293 DOI: 10.1016/j.bmcl.2005.03.092] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 03/21/2005] [Accepted: 03/23/2005] [Indexed: 12/28/2022]
Abstract
A series of metabolically robust N-benzyl-indole selective PPARgamma modulators with either a 3-benzoyl or 3-benzisoxazoyl moiety have been identified. In vitro, these compounds are partial agonists and exhibit reduced adipogenesis in human adipocytes. In vivo, these SPPARgammaMs result in potent glucose lowering in db/db mice and attenuate increases in heart weight and brown adipose tissue that is typically observed in rats upon treatment with PPARgamma full agonists.
Collapse
Affiliation(s)
- Kun Liu
- Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Nogueiras R, Caminos JE, Gallego R, Raghay K, Bravo S, Tovar S, Pombo C, López M, Tena-Sempere M, García-Caballero T, Diéguez C. Regulation of peroxisome proliferator activated receptor-gamma in rat pituitary. J Neuroendocrinol 2005; 17:292-7. [PMID: 15869564 DOI: 10.1111/j.1365-2826.2005.01304.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peroxisome proliferator activated-receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily and, in addition to its relation with obesity and insulin sensitivity, it has recently been localized in human and mice pituitary, indicating a functional significance of PPARgamma in adenopituitary tumours. In the present study, we localized the PPARgamma mRNA and protein in different cell types of rat pituitary. Moreover, using the real-time polymerase chain reaction, we assessed the mRNA expression of PPARgamma in different physiological and pathological settings known to be associated with alterations in anterior pituitary cell proliferation and/or function. Our experiments have shown that PPARgamma mRNA levels were repressed by oestrogen through an oestrogen receptor-alpha effect. However, PPARgamma protein levels were only modified in males but not in females. On the other hand, PPARgamma mRNA expression was increased in dwarf rats in comparison with Lewis rats. Finally, nutritional, thyroid status or pregnancy did not change PPARgamma expression. Taken together, we provide new data regarding the regulation of pituitary PPARgamma mRNA by hormonal and metabolic status.
Collapse
Affiliation(s)
- R Nogueiras
- Department of Physiology, University of Santiago de Compostela, Faculty of Medicine, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Jové M, Laguna JC, Vázquez-Carrera M. Agonist-induced activation releases peroxisome proliferator-activated receptor β/δ from its inhibition by palmitate-induced nuclear factor-κB in skeletal muscle cells. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:52-61. [PMID: 15866483 DOI: 10.1016/j.bbalip.2005.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/09/2005] [Accepted: 02/09/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood, but there is a strong correlation between insulin resistance and intramyocellular lipid accumulation in skeletal muscle. In addition, accumulating evidence suggests a link between inflammation and type 2 diabetes. The aim of this work was to study whether the exposure of skeletal muscle cells to palmitate affected peroxisome proliferator-activated receptor (PPAR) beta/delta activity. Here, we report that exposure of C2C12 skeletal muscle cells to 0.75 mM palmitate reduced (74%, P<0.01) the mRNA levels of the PPARbeta/delta-target gene pyruvatedehydrogenase kinase 4 (PDK-4), which is involved in fatty acid utilization. This reduction was not observed in the presence of the PPARbeta/delta agonist L-165041. This drug prevented palmitate-induced nuclear factor (NF)-kappaB activation. Increased NF-kappaB activity after palmitate exposure was associated with enhanced protein-protein interaction between PPARbeta/delta and p65. Interestingly, treatment with the PPARbeta/delta agonist L-165041 completely abolished this interaction. These results indicate that palmitate may reduce fatty acid utilization in skeletal muscle cells by reducing PPARbeta/delta signaling through increased NF-kappaB activity.
Collapse
Affiliation(s)
- Mireia Jové
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Spain
| | | | | |
Collapse
|
195
|
Xu A, Lam MC, Chan KW, Wang Y, Zhang J, Hoo RLC, Xu JY, Chen B, Chow WS, Tso AWK, Lam KSL. Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci U S A 2005; 102:6086-91. [PMID: 15837923 PMCID: PMC1087912 DOI: 10.1073/pnas.0408452102] [Citation(s) in RCA: 247] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2004] [Indexed: 11/18/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is a circulating protein predominantly expressed in adipose tissue and liver. Several recent studies demonstrated that ANGPTL4 is the target gene of peroxisome proliferation activators, the agonists of which are widely used as the antidiabetic and lipid-lowering drugs. Here we provide evidence that ANGPTL4 is a blood-borne hormone directly involved in regulating glucose homeostasis, lipid metabolism, and insulin sensitivity. Adenovirus-mediated expression of ANGPTL4 potently decreased blood glucose and improved glucose tolerance, whereas it induced hyperlipidemia, fatty liver, and hepatomegaly in C57 mice. In db/db diabetic mice, ANGPTL4 treatment reduced hyperglycemia to a normal level, and markedly alleviated glucose intolerance and hyperinsulinemia. Ex vivo studies on primary rat hepatocytes revealed that ANGPTL4 significantly decreased hepatic glucose production and enhanced insulin-mediated inhibition of gluconeogenesis. Serum levels of ANGPTL4 in human subjects inversely correlated with plasma glucose concentrations and HOMA IR, the homeostasis model assessment of insulin resistance. In patients with type 2 diabetes, serum levels of ANGPTL4 were significantly lower than those in healthy subjects, suggesting that the decreased ANGPTL4 could be a causative factor of this disease. These results collectively indicate that ANGPTL4 exerts distinct effects on glucose and lipid metabolism, and that its beneficial effect on glucose homeostasis might be useful for the treatment of diabetes.
Collapse
Affiliation(s)
- Aimin Xu
- Department of Medicine, Research Center of Heart, Brain, Hormone, and Healthy Aging, and Genome Research Center, University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Madsen L, Petersen RK, Kristiansen K. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim Biophys Acta Mol Basis Dis 2005; 1740:266-86. [PMID: 15949694 DOI: 10.1016/j.bbadis.2005.03.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 02/23/2005] [Accepted: 03/02/2005] [Indexed: 12/11/2022]
Abstract
A diet enriched in PUFAs, in particular of the n-3 family, decreases adipose tissue mass and suppresses development of obesity in rodents. Although several nuclear hormone receptors are identified as PUFA targets, the precise molecular mechanisms underlying the effects of PUFAs still remain to be elucidated. Here we review research aimed at elucidating molecular mechanisms governing the effects of PUFAs on the differentiation and function of white fat cells. This review focuses on dietary PUFAs as signaling molecules, with special emphasis on agonistic and antagonistic effects on transcription factors currently implicated as key players in adipocyte differentiation and function, including peroxisome proliferator activated receptors (PPARs) (alpha, beta and gamma), sterol regulatory element binding proteins (SREBPs) and liver X receptors (LXRs). We review evidence that dietary n-3 PUFAs decrease adipose tissue mass and suppress the development of obesity in rodents by targeting a set of key regulatory transcription factors involved in both adipogensis and lipid homeostasis in mature adipocytes. The same set of factors are targeted by PUFAs of the n-6 family, but the cellular/physiological responses are dependent on the experimental setting as n-6 PUFAs may exert either an anti- or a proadipogenic effect. Feeding status and hormonal background may therefore be of particular importance in determining the physiological effects of PUFAs of the n-6 family.
Collapse
Affiliation(s)
- Lise Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | |
Collapse
|
197
|
|
198
|
Lenhard JM, Cobb JE. IBC’s 6th International Symposium on Obesity and 3rd International Symposium on Insulin Resistance: March 22-25, 1999, Washington, DC. Expert Opin Investig Drugs 2005; 8:911-6. [PMID: 15992140 DOI: 10.1517/13543784.8.6.911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- J M Lenhard
- Department of Metabolic Diseases, Glaxo Wellcome, Inc., 5 Moore Drive, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
199
|
Aasum E, Cooper M, Severson DL, Larsen TS. Effect of BM 17.0744, a PPARα ligand, on the metabolism of perfused hearts from control and diabetic mice. Can J Physiol Pharmacol 2005; 83:183-90. [PMID: 15791292 DOI: 10.1139/y04-139] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα) regulates the expression of fatty acid (FA) oxidation genes in liver and heart. Although PPARα ligands increased FA oxidation in cultured cardiomyocytes, the cardiac effects of chronic PPARα ligand administration in vivo have not been studied. Diabetic db/db mouse hearts exhibit characteristics of a diabetic cardiomyopathy, with altered metabolism and reduced contractile function. A testable hypothesis is that chronic administration of a PPARα agonist to db/db mice will normalize cardiac metabolism and improve contractile function. Therefore, a PPARα ligand (BM 17.0744) was administered orally to control and type 2 diabetic (db/db) mice (37.9 ± 2.5 mg/(kg·d) for 8 weeks), and effects on cardiac metabolism and contractile function were assessed. BM 17.0744 reduced plasma glucose in db/db mice, but no change was observed in control mice. FA oxidation was significantly reduced in BM 17.0744 treated db/db hearts with a corresponding increase in glycolysis and glucose oxidation; glucose and FA oxidation in control hearts was unchanged by BM 17.0744. PPARα treatment did not alter expression of PPARα target genes in either control or diabetic hearts. Therefore, metabolic alterations in hearts from PPARα-treated diabetic mice most likely reflect indirect mechanisms related to improvement in diabetic status in vivo. Despite normalization of cardiac metabolism, PPARα treatment did not improve cardiac function in diabetic hearts.Key words: PPAR, cardiac metabolism and function, diabetes.
Collapse
Affiliation(s)
- Ellen Aasum
- Department of Medical Physiology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, Norway.
| | | | | | | |
Collapse
|
200
|
Crosby MB, Svenson JL, Zhang J, Nicol CJ, Gonzalez FJ, Gilkeson GS. Peroxisome proliferation-activated receptor (PPAR)gamma is not necessary for synthetic PPARgamma agonist inhibition of inducible nitric-oxide synthase and nitric oxide. J Pharmacol Exp Ther 2005; 312:69-76. [PMID: 15356214 DOI: 10.1124/jpet.104.074005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Peroxisome proliferation-activated receptor (PPAR)gamma agonists inhibit inducible nitric-oxide synthase (iNOS), tumor necrosis factor-alpha, and interleukin-6. Because of these effects, synthetic PPARgamma agonists, including thiazolidinediones, are being studied for their impact on inflammatory disease. The anti-inflammatory concentrations of synthetic PPARgamma agonists range from 10 to 50 microM, whereas their binding affinity for PPARgamma is in the nanomolar range. The specificity of synthetic PPARgamma agonists for PPARgamma at the concentrations necessary for anti-inflammatory effects is thus in question. We report that PPARgamma is not necessary for the inhibition of iNOS by synthetic PPARgamma agonists. RAW 264.7 macrophages possess little PPARgamma, yet lipopolysaccharide (LPS)/interferon (IFN)gamma-induced iNOS was inhibited by synthetic PPARgamma agonists at 20 microM. Endogenous PPARgamma was inhibited by the transfection of a dominant-negative PPARgamma construct into murine mesangial cells. In the transfected cells, synthetic PPARgamma agonists inhibited iNOS production at 10 microM, similar to nontransfected cells. Using cells from PPARgamma Cre/lox conditional knockout mice, baseline and LPS/IFNgamma-induced nitric oxide levels were higher in macrophages lacking PPARgamma versus controls. However, synthetic PPARgamma agonists inhibited iNOS at 10 microM in the PPARgamma-deficient cells, similar to macrophages from wild-type mice. These results indicate that PPARgamma is not necessary for inhibition of iNOS expression by synthetic PPARgamma agonists at concentrations over 10 microM. Intrinsic PPARgamma function, in the absence of synthetic agonists, however, may play a role in inflammatory modulation.
Collapse
Affiliation(s)
- Michelle B Crosby
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|