151
|
Sales CRG, Wang Y, Evers JB, Kromdijk J. Improving C4 photosynthesis to increase productivity under optimal and suboptimal conditions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5942-5960. [PMID: 34268575 PMCID: PMC8411859 DOI: 10.1093/jxb/erab327] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/09/2021] [Indexed: 05/05/2023]
Abstract
Although improving photosynthetic efficiency is widely recognized as an underutilized strategy to increase crop yields, research in this area is strongly biased towards species with C3 photosynthesis relative to C4 species. Here, we outline potential strategies for improving C4 photosynthesis to increase yields in crops by reviewing the major bottlenecks limiting the C4 NADP-malic enzyme pathway under optimal and suboptimal conditions. Recent experimental results demonstrate that steady-state C4 photosynthesis under non-stressed conditions can be enhanced by increasing Rubisco content or electron transport capacity, both of which may also stimulate CO2 assimilation at supraoptimal temperatures. Several additional putative bottlenecks for photosynthetic performance under drought, heat, or chilling stress or during photosynthetic induction await further experimental verification. Based on source-sink interactions in maize, sugarcane, and sorghum, alleviating these photosynthetic bottlenecks during establishment and growth of the harvestable parts are likely to improve yield. The expected benefits are also shown to be augmented by the increasing trend in planting density, which increases the impact of photosynthetic source limitation on crop yields.
Collapse
Affiliation(s)
- Cristina R G Sales
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Yu Wang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jochem B Evers
- Centre for Crops Systems Analysis (WUR), Wageningen University, Wageningen, The Netherlands
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
152
|
Buzdin AV, Patrushev MV, Sverdlov ED. Will Plant Genome Editing Play a Decisive Role in "Quantum-Leap" Improvements in Crop Yield to Feed an Increasing Global Human Population? PLANTS (BASEL, SWITZERLAND) 2021; 10:1667. [PMID: 34451712 PMCID: PMC8398637 DOI: 10.3390/plants10081667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 02/08/2023]
Abstract
Growing scientific evidence demonstrates unprecedented planetary-scale human impacts on the Earth's system with a predicted threat to the existence of the terrestrial biosphere due to population increase, resource depletion, and pollution. Food systems account for 21-34% of global carbon dioxide (CO2) emissions. Over the past half-century, water and land-use changes have significantly impacted ecosystems, biogeochemical cycles, biodiversity, and climate. At the same time, food production is falling behind consumption, and global grain reserves are shrinking. Some predictions suggest that crop yields must approximately double by 2050 to adequately feed an increasing global population without a large expansion of crop area. To achieve this, "quantum-leap" improvements in crop cultivar productivity are needed within very narrow planetary boundaries of permissible environmental perturbations. Strategies for such a "quantum-leap" include mutation breeding and genetic engineering of known crop genome sequences. Synthetic biology makes it possible to synthesize DNA fragments of any desired sequence, and modern bioinformatics tools may hopefully provide an efficient way to identify targets for directed modification of selected genes responsible for known important agronomic traits. CRISPR/Cas9 is a new technology for incorporating seamless directed modifications into genomes; it is being widely investigated for its potential to enhance the efficiency of crop production. We consider the optimism associated with the new genetic technologies in terms of the complexity of most agronomic traits, especially crop yield potential (Yp) limits. We also discuss the possible directions of overcoming these limits and alternative ways of providing humanity with food without transgressing planetary boundaries. In conclusion, we support the long-debated idea that new technologies are unlikely to provide a rapidly growing population with significantly increased crop yield. Instead, we suggest that delicately balanced humane measures to limit its growth and the amount of food consumed per capita are highly desirable for the foreseeable future.
Collapse
Affiliation(s)
- Anton V Buzdin
- The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maxim V Patrushev
- Kurchatov Center for Genome Research, National Research Center Kurchatov Institute, 123182 Moscow, Russia
| | - Eugene D Sverdlov
- Kurchatov Center for Genome Research, National Research Center Kurchatov Institute, 123182 Moscow, Russia
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, 123182 Moscow, Russia
| |
Collapse
|
153
|
The impact of photorespiration on plant primary metabolism through metabolic and redox regulation. Biochem Soc Trans 2021; 48:2495-2504. [PMID: 33300978 DOI: 10.1042/bst20200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Photorespiration is an inevitable trait of all oxygenic phototrophs, being the only known metabolic route that converts the inhibitory side-product of Rubisco's oxygenase activity 2-phosphoglycolate (2PG) back into the Calvin-Benson (CB) cycle's intermediate 3-phosphoglycerate (3PGA). Through this function of metabolite repair, photorespiration is able to protect photosynthetic carbon assimilation from the metabolite intoxication that would occur in the present-day oxygen-rich atmosphere. In recent years, much plant research has provided compelling evidence that photorespiration safeguards photosynthesis and engages in cross-talk with a number of subcellular processes. Moreover, the potential of manipulating photorespiration to increase the photosynthetic yield potential has been demonstrated in several plant species. Considering this multifaceted role, it is tempting to presume photorespiration itself is subject to a suite of regulation mechanisms to eventually exert a regulatory impact on other processes, and vice versa. The identification of potential pathway interactions and underlying regulatory aspects has been facilitated via analysis of the photorespiratory mutant phenotype, accompanied by the emergence of advanced omics' techniques and biochemical approaches. In this mini-review, I focus on the identification of enzymatic steps which control the photorespiratory flux, as well as levels of transcriptional, posttranslational, and metabolic regulation. Most importantly, glycine decarboxylase (GDC) and 2PG are identified as being key photorespiratory determinants capable of controlling photorespiratory flux and communicating with other branches of plant primary metabolism.
Collapse
|
154
|
He J, Jawahir NKB, Qin L. Quantity of supplementary LED lightings regulates photosynthetic apparatus, improves photosynthetic capacity and enhances productivity of Cos lettuce grown in a tropical greenhouse. PHOTOSYNTHESIS RESEARCH 2021; 149:187-199. [PMID: 33475915 DOI: 10.1007/s11120-020-00816-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Although cooling their rootzone allows year-round (temperate) vegetable production in Singapore's warm climate, these crops have frequently experienced increasingly unpredictable cloudy and hazy weather. Supplementary lighting with light-emitting diodes (LEDs) could be used to reduce the impacts of low light intensity. This study investigated the responses of temperate Cos lettuce (Lactuca sativa L.) to different quantities (photosynthetic photon flux density, PPFD of 0, 150, 300 µmol m-2 s-1) of supplementary LED lightings in the tropical greenhouse. Increasing light intensity significantly increased total leaf area, shoot and root fresh weight (FW) and dry weight (DW), total chlorophyll (Chl) and carotenoids (Car) contents, light-saturated photosynthetic CO2 assimilation rate (Asat) and transpiration rate (Tr). There were no significant differences in Fv/Fm ratio, total reduced nitrogen, specific leaf area (SLA) and PSII concentration among the three light treatments. However, there was an increasing trend with increasing light intensity for Chl a/b ratio, net photosynthetic O2 evolution rate (PN), cytochrome b6f (Cyt b6f), leaf total soluble protein and Rubisco concentrations. This study provides the basic understanding of photosynthetic apparatus and capacity of temperate crops grown under different supplementary LED lightings in the tropical greenhouse.
Collapse
Affiliation(s)
- Jie He
- Natural Sciences & Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore.
| | - Nur Khairunnisa Bte Jawahir
- Natural Sciences & Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Lin Qin
- Natural Sciences & Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| |
Collapse
|
155
|
Burnett AC, Serbin SP, Rogers A. Source:sink imbalance detected with leaf- and canopy-level spectroscopy in a field-grown crop. PLANT, CELL & ENVIRONMENT 2021; 44:2466-2479. [PMID: 33764536 DOI: 10.1111/pce.14056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 05/21/2023]
Abstract
The finely tuned balance between sources and sinks determines plant resource partitioning and regulates growth and development. Understanding and measuring metabolic indicators of source or sink limitation forms a vital part of global efforts to increase crop yield for future food security. We measured metabolic profiles of Cucurbita pepo (zucchini) grown in the field under carbon sink limitation and control conditions. We demonstrate that these profiles can be measured non-destructively using hyperspectral reflectance at both leaf and canopy scales. Total non-structural carbohydrates (TNC) increased 82% in sink-limited plants; leaf mass per unit area (LMA) increased 38% and free amino acids increased 22%. Partial least-squares regression (PLSR) models link these measured functional traits with reflectance data, enabling high-throughput estimation of traits comprising the sink limitation response. Leaf- and canopy-scale models for TNC had R2 values of 0.93 and 0.64 and %RMSE of 13 and 38%, respectively. For LMA, R2 values were 0.91 and 0.60 and %RMSE 7 and 14%; for free amino acids, R2 was 0.53 and 0.21 with %RMSE 20 and 26%. Remote sensing can enable accurate, rapid detection of sink limitation in the field at the leaf and canopy scale, greatly expanding our ability to understand and measure metabolic responses to stress.
Collapse
Affiliation(s)
- Angela C Burnett
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Shawn P Serbin
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
156
|
Dutta A, Chattopadhyay H. A Brief on Biological Thermodynamics for Human Physiology. J Biomech Eng 2021; 143:070802. [PMID: 33704420 DOI: 10.1115/1.4050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/08/2022]
Abstract
Thermodynamics, the science of energy interactions, governs the direction of processes found in nature. While the subject finds wide applications in science and technology, its connection to biological sciences and in particular to bio-engineering is becoming increasingly important. In this work, after a brief introduction to the fundamental concepts in thermodynamics, we focus on its application in human physiology. A review of application of thermodynamics to the interaction between human body and environment is presented. Research works on biological systems such as the nervous system and the cardiovascular systems are summarized. The thermodynamics of metabolism is reviewed, and finally, the role of the subject in understanding and combating diseases is highlighted.
Collapse
Affiliation(s)
- Abhijit Dutta
- Department of Mechanical Engineering, MCKV Institute of Engineering, Howrah 711204, India; Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|
157
|
Metabolite Profiling in Arabidopsisthaliana with Moderately Impaired Photorespiration Reveals Novel Metabolic Links and Compensatory Mechanisms of Photorespiration. Metabolites 2021; 11:metabo11060391. [PMID: 34203750 PMCID: PMC8232240 DOI: 10.3390/metabo11060391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/19/2023] Open
Abstract
Photorespiration is an integral component of plant primary metabolism. Accordingly, it has been often observed that impairing the photorespiratory flux negatively impacts other cellular processes. In this study, the metabolic acclimation of the Arabidopsisthaliana wild type was compared with the hydroxypyruvate reductase 1 (HPR1; hpr1) mutant, displaying only a moderately reduced photorespiratory flux. Plants were analyzed during development and under varying photoperiods with a combination of non-targeted and targeted metabolome analysis, as well as 13C- and 14C-labeling approaches. The results showed that HPR1 deficiency is more critical for photorespiration during the vegetative compared to the regenerative growth phase. A shorter photoperiod seems to slowdown the photorespiratory metabolite conversion mostly at the glycerate kinase and glycine decarboxylase steps compared to long days. It is demonstrated that even a moderate impairment of photorespiration severely reduces the leaf-carbohydrate status and impacts on sulfur metabolism. Isotope labeling approaches revealed an increased CO2 release from hpr1 leaves, most likely occurring from enhanced non-enzymatic 3-hydroxypyruvate decarboxylation and a higher flux from serine towards ethanolamine through serine decarboxylase. Collectively, the study provides evidence that the moderate hpr1 mutant is an excellent tool to unravel the underlying mechanisms governing the regulation of metabolic linkages of photorespiration with plant primary metabolism.
Collapse
|
158
|
Milenković I, Borišev M, Zhou Y, Spasić SZ, Leblanc RM, Radotić K. Photosynthesis Enhancement in Maize via Nontoxic Orange Carbon Dots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5446-5451. [PMID: 33960776 DOI: 10.1021/acs.jafc.1c01094] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The sustained increase in leaf photosynthesis may increase crop yield. Due to many limitations, plants use much less photosynthetic capacity than is theoretically possible. Plant nanobionics investigates nanoparticle application in living plants, which improves certain plant functions. We synthesized and tested nontoxic orange carbon dots (o-CDs) for the photosynthetic efficiency increase in maize (Zea mays L.). We applied o-CDs foliarly or by adding to the growth solution. The photosynthetic parameters and content of photosynthetic pigments were recorded. The total phenolic content (TPC) and total antioxidant activity (TAA) were measured to monitor the plant antioxidant response to o-CDs. The photosynthetic parameters' values were higher for foliar than for solution application. The 1 mg/L o-CDs applied foliarly and 5 mg/L in solution increased photosynthetic parameters in leaves. The o-CDs raised photosynthetic pigments. The TAA and TPC results indicate reduced antioxidant activity in the plant organs more exposed to o-CDs, depending on the way of application.
Collapse
Affiliation(s)
- Ivana Milenković
- Institute for Multidisciplinary Research, University of Belgrade, 11000 Beograd, Serbia
| | - Milan Borišev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Sladjana Z Spasić
- Institute for Multidisciplinary Research, University of Belgrade, 11000 Beograd, Serbia
- Singidunum University, Danijelova 32, 11010 Belgrade, Serbia
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, 11000 Beograd, Serbia
| |
Collapse
|
159
|
Araus JL, Sanchez-Bragado R, Vicente R. Improving crop yield and resilience through optimization of photosynthesis: panacea or pipe dream? JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3936-3955. [PMID: 33640973 DOI: 10.1093/jxb/erab097] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/24/2021] [Indexed: 05/21/2023]
Abstract
Increasing the speed of breeding to enhance crop productivity and adaptation to abiotic stresses is urgently needed. The perception that a second Green Revolution should be implemented is widely established within the scientific community and among stakeholders. In recent decades, different alternatives have been proposed for increasing crop yield through manipulation of leaf photosynthetic efficiency. However, none of these has delivered practical or relevant outputs. Indeed, the actual increases in photosynthetic rates are not expected to translate into yield increases beyond 10-15%. Furthermore, instantaneous rates of leaf photosynthesis are not necessarily the reference target for research. Yield is the result of canopy photosynthesis, understood as the contribution of laminar and non-laminar organs over time, within which concepts such as canopy architecture, stay-green, or non-laminar photosynthesis need to be taken into account. Moreover, retrospective studies show that photosynthetic improvements have been more common at the canopy level. Nevertheless, it is crucial to place canopy photosynthesis in the context of whole-plant functioning, which includes sink-source balance and transport of photoassimilates, and the availability and uptake of nutrients, such as nitrogen in particular. Overcoming this challenge will only be feasible if a multiscale crop focus combined with a multidisciplinary scientific approach is adopted.
Collapse
Affiliation(s)
- José L Araus
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, and AGROTECNIO Center, Lleida, Spain
| | - Ruth Sanchez-Bragado
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, and AGROTECNIO Center, Lleida, Spain
| | - Rubén Vicente
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
160
|
Co-incorporation of manure and inorganic fertilizer improves leaf physiological traits, rice production and soil functionality in a paddy field. Sci Rep 2021; 11:10048. [PMID: 33976273 PMCID: PMC8113589 DOI: 10.1038/s41598-021-89246-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
The combined use of organic manure and chemical fertilizer (CF) is considered to be a good method for sustaining high crop yields and improving soil quality. We performed a field experiment in 2019 at the research station of Guanxi University, to investigate the effects of cattle manure (CM) and poultry manure (PM) combined with CF on soil physical and biochemical properties, rice dry matter (DM) and nitrogen (N) accumulation and grain yield. We also evaluated differences in pre-and post-anthesis DM and N accumulation and their contributions to grain yield. The experiment consisted of six treatments: no N fertilizer (T1), 100% CF (T2), 60% CM + 40% CF (T3), 30% CM + 70% CF (T4), 60% PM + 40% CF (T5), and 30% PM + 70% CF (T6). All CF and organic manure treatments provided a total N of 150 kg ha−1. Results showed that the treatment T6 increased leaf net photosynthetic rate (Pn) by 11% and 13%, chlorophyll content by 13% and 15%, total biomass by 9% and 11% and grain yield by 11% and 17% in the early and late season, respectively, compared with T2. Similarly, the integrated manure and CF treatments improved post-antheis DM accumulation and soil properties, such as bulk density, organic carbon, total N, microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) relative to the CF-only treatments. Interestingly, increases in post-anthesis DM and N accumulation were further supported by enhanced leaf Pn and activity of N-metabolizing enzyme during the grain-filling period. Improvement in Pn and N-metabolizing enzyme activity were due to mainly improved soil quality in the combined manure and synthetic fertilizer treatments. Redundancy analysis (RDA) showed a strong relationship between grain yield and soil properties, and a stronger relationship was noted with soil MBC and MBN. Conclusively, a combination of 30% N from PM or CM with 70% N from CF is a promising option for improving soil quality and rice yield.
Collapse
|
161
|
Tan TL, Zulkifli NA, Zaman ASK, Jusoh MB, Yaapar MN, Rashid SA. Impact of photoluminescent carbon quantum dots on photosynthesis efficiency of rice and corn crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:737-751. [PMID: 33799185 DOI: 10.1016/j.plaphy.2021.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Photosynthesis is one of the most fundamental biochemical processes on earth such that it is vital to the existence of most lives on this planet. In fact, unravelling the potentials in enhancing photosynthetic efficiency and electron transfer process, which are thought to improve plant growth is one of the emerging approaches in tackling modern agricultural shortcomings. In light of this, zero-dimensional carbon quantum dots (CQD) have emerged and garnered much interest in recent years which can enhance photosynthesis by modulating the associated electron transfer process. In this work, CQD was extracted from empty fruit bunch (EFB) biochar using a green acid-free microwave method. The resulting CQD was characterized using HRTEM, PL, UV-Vis and XPS. Typical rice (C3) and corn (C4) crops were selected in the present study in order to compare the significant effect of CQD on the two different photosynthetic pathways of crops. CQD was first introduced into crop via foliar spraying application instead of localised placement of CQD before seedling development. The influence of CQD on the photosynthetic efficiency of rice (C3) and corn (C4) leaves was determined by measuring both carbon dioxide conversion and the stomatal conductance of the leaf. As a result, the introduction of CQD greatly enhanced the photosynthesis in CQD-exposed crops. This is the first study focusing on phylogenetically constrained differences in photosynthetic responses between C3 and C4 crops upon CQD exposure, which gives a better insight into the understanding of photosynthesis process and shows considerable promise in nanomaterial research for sustainable agriculture practices.
Collapse
Affiliation(s)
- Tong Ling Tan
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400, Selangor, Malaysia.
| | - Noor Atiqah Zulkifli
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Selangor, Malaysia
| | | | - Mashitah Binti Jusoh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Selangor, Malaysia
| | - Muhammad Nazmin Yaapar
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Selangor, Malaysia
| | - Suraya Abdul Rashid
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400, Selangor, Malaysia.
| |
Collapse
|
162
|
Aluko OO, Li C, Wang Q, Liu H. Sucrose Utilization for Improved Crop Yields: A Review Article. Int J Mol Sci 2021; 22:4704. [PMID: 33946791 PMCID: PMC8124652 DOI: 10.3390/ijms22094704] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
Photosynthetic carbon converted to sucrose is vital for plant growth. Sucrose acts as a signaling molecule and a primary energy source that coordinates the source and sink development. Alteration in source-sink balance halts the physiological and developmental processes of plants, since plant growth is mostly triggered when the primary assimilates in the source leaf balance with the metabolic needs of the heterotrophic sinks. To measure up with the sink organ's metabolic needs, the improvement of photosynthetic carbon to synthesis sucrose, its remobilization, and utilization at the sink level becomes imperative. However, environmental cues that influence sucrose balance within these plant organs, limiting positive yield prospects, have also been a rising issue over the past few decades. Thus, this review discusses strategies to improve photosynthetic carbon assimilation, the pathways actively involved in the transport of sucrose from source to sink organs, and their utilization at the sink organ. We further emphasize the impact of various environmental cues on sucrose transport and utilization, and the strategic yield improvement approaches under such conditions.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanzong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| | - Haobao Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| |
Collapse
|
163
|
Honda S, Ohkubo S, San NS, Nakkasame A, Tomisawa K, Katsura K, Ookawa T, Nagano AJ, Adachi S. Maintaining higher leaf photosynthesis after heading stage could promote biomass accumulation in rice. Sci Rep 2021; 11:7579. [PMID: 33828128 PMCID: PMC8027620 DOI: 10.1038/s41598-021-86983-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Leaf photosynthetic rate changes across the growing season as crop plants age. Most studies of leaf photosynthesis focus on a specific growth stage, leaving the question of which pattern of photosynthetic dynamics maximizes crop productivity unanswered. Here we obtained high-frequency data of canopy leaf CO2 assimilation rate (A) of two elite rice (Oryza sativa) cultivars and 76 inbred lines across the whole growing season. The integrated A value after heading was positively associated with crop growth rate (CGR) from heading to harvest, but that before heading was not. A curve-smoothing analysis of A after heading showed that accumulated A at > 80% of its maximum (A80) was positively correlated with CGR in analyses of all lines mixed and of lines grouped by genetic background, while the maximum A and accumulated A at ≤ 80% were less strongly correlated with CGR. We also found a genomic region (~ 12.2 Mb) that may enhance both A80 and aboveground biomass at harvest. We propose that maintaining a high A after heading, rather than having high maximum A, is a potential target for enhancing rice biomass accumulation.
Collapse
Affiliation(s)
- Sotaro Honda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Satoshi Ohkubo
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Nan Su San
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Anothai Nakkasame
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Kazuki Tomisawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Keisuke Katsura
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Taiichiro Ookawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
| | - Shunsuke Adachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Inashiki, Ibaraki, 300-0393, Japan.
| |
Collapse
|
164
|
Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, Lawson T, Cavanagh AP. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2822-2844. [PMID: 33619527 PMCID: PMC8023210 DOI: 10.1093/jxb/erab090] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
As global land surface temperature continues to rise and heatwave events increase in frequency, duration, and/or intensity, our key food and fuel cropping systems will likely face increased heat-related stress. A large volume of literature exists on exploring measured and modelled impacts of rising temperature on crop photosynthesis, from enzymatic responses within the leaf up to larger ecosystem-scale responses that reflect seasonal and interannual crop responses to heat. This review discusses (i) how crop photosynthesis changes with temperature at the enzymatic scale within the leaf; (ii) how stomata and plant transport systems are affected by temperature; (iii) what features make a plant susceptible or tolerant to elevated temperature and heat stress; and (iv) how these temperature and heat effects compound at the ecosystem scale to affect crop yields. Throughout the review, we identify current advancements and future research trajectories that are needed to make our cropping systems more resilient to rising temperature and heat stress, which are both projected to occur due to current global fossil fuel emissions.
Collapse
Affiliation(s)
- Caitlin E Moore
- School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Katherine Meacham-Hensold
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | | | - Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Claire Benjamin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Carl J Bernacchi
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Amanda P Cavanagh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
165
|
Jia X, Mao K, Wang P, Wang Y, Jia X, Huo L, Sun X, Che R, Gong X, Ma F. Overexpression of MdATG8i improves water use efficiency in transgenic apple by modulating photosynthesis, osmotic balance, and autophagic activity under moderate water deficit. HORTICULTURE RESEARCH 2021; 8:81. [PMID: 33790273 PMCID: PMC8012348 DOI: 10.1038/s41438-021-00521-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 05/06/2023]
Abstract
Water deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.
Collapse
Affiliation(s)
- Xin Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xumei Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Liuqing Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xun Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Runmin Che
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
166
|
Optimal Nitrogen Supply Ameliorates the Performance of Wheat Seedlings under Osmotic Stress in Genotype-Specific Manner. PLANTS 2021; 10:plants10030493. [PMID: 33807753 PMCID: PMC7999466 DOI: 10.3390/plants10030493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
Strategies and coping mechanisms for stress tolerance under sub-optimal nutrition conditions could provide important guidelines for developing selection criteria in sustainable agriculture. Nitrogen (N) is one of the major nutrients limiting the growth and yield of crop plants, among which wheat is probably the most substantial to human diet worldwide. Physiological status and photosynthetic capacity of two contrasting wheat genotypes (old Slomer and modern semi-dwarf Enola) were evaluated at the seedling stage to assess how N supply affected osmotic stress tolerance and capacity of plants to survive drought periods. It was evident that higher N input in both varieties contributed to better performance under dehydration. The combination of lower N supply and water deprivation (osmotic stress induced by polyethylene glycol treatment) led to greater damage of the photosynthetic efficiency and a higher degree of oxidative stress than the individually applied stresses. The old wheat variety had better N assimilation efficiency, and it was also the one with better performance under N deficiency. However, when both N and water were deficient, the modern variety demonstrated better photosynthetic performance. It was concluded that different strategies for overcoming osmotic stress alone or in combination with low N could be attributed to differences in the genetic background. Better performance of the modern variety conceivably indicated that semi-dwarfing (Rht) alleles might have a beneficial effect in arid regions and N deficiency conditions.
Collapse
|
167
|
Abstract
Since 1893, when the word "photosynthesis" was first coined by Charles Reid Barnes and Conway MacMillan, our understanding of the elements and regulation of this complex process is far from being entirely understood. We aim to review the most relevant advances in photosynthesis research from the last few years and to provide a perspective on the forthcoming research in this field. Recent discoveries related to light sensing, harvesting, and dissipation; kinetics of CO2 fixation; components and regulators of CO2 diffusion through stomata and mesophyll; and genetic engineering for improving photosynthetic and production capacities of crops are addressed.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| | - Jaume Flexas
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| |
Collapse
|
168
|
|
169
|
Yiotis C, McElwain JC, Osborne BA. Enhancing the productivity of ryegrass at elevated CO2 is dependent on tillering and leaf area development rather than leaf-level photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1962-1977. [PMID: 33315099 PMCID: PMC7921301 DOI: 10.1093/jxb/eraa584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/10/2020] [Indexed: 05/29/2023]
Abstract
Whilst a range of strategies have been proposed for enhancing crop productivity, many recent studies have focused primarily on enhancing leaf photosynthesis under current atmospheric CO2 concentrations. Given that the atmospheric CO2 concentration is likely to increase significantly in the foreseeable future, an alternative/complementary strategy might be to exploit any variability in the enhancement of growth/yield and photosynthesis at higher CO2 concentrations. To explore this, we investigated the responses of a diverse range of wild and cultivated ryegrass genotypes, with contrasting geographical origins, to ambient and elevated CO2 concentrations and examined what genetically tractable plant trait(s) might be targeted by plant breeders for future yield enhancements. We found substantial ~7-fold intraspecific variations in biomass productivity among the different genotypes at both CO2 levels, which were related primarily to differences in tillering/leaf area, with only small differences due to leaf photosynthesis. Interestingly, the ranking of genotypes in terms of their response to both CO2 concentrations was similar. However, as expected, estimates of whole-plant photosynthesis were strongly correlated with plant productivity. Our results suggest that greater yield gains under elevated CO2 are likely through the exploitation of genetic differences in tillering and leaf area rather than focusing solely on improving leaf photosynthesis.
Collapse
Affiliation(s)
- Charilaos Yiotis
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
- Department of Botany, School of Natural Sciences, Trinity College Dublin, College Green, Dublin, Ireland
| | - Jennifer C McElwain
- Department of Botany, School of Natural Sciences, Trinity College Dublin, College Green, Dublin, Ireland
| | - Bruce A Osborne
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
170
|
Slattery RA, Ort DR. Perspectives on improving light distribution and light use efficiency in crop canopies. PLANT PHYSIOLOGY 2021; 185:34-48. [PMID: 33631812 PMCID: PMC8133579 DOI: 10.1093/plphys/kiaa006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/03/2020] [Indexed: 05/22/2023]
Abstract
Plant stands in nature differ markedly from most seen in modern agriculture. In a dense mixed stand, plants must vie for resources, including light, for greater survival and fitness. Competitive advantages over surrounding plants improve fitness of the individual, thus maintaining the competitive traits in the gene pool. In contrast, monoculture crop production strives to increase output at the stand level and thus benefits from cooperation to increase yield of the community. In choosing plants with higher yields to propagate and grow for food, humans may have inadvertently selected the best competitors rather than the best cooperators. Here, we discuss how this selection for competitiveness has led to overinvestment in characteristics that increase light interception and, consequently, sub-optimal light use efficiency in crop fields that constrains yield improvement. Decades of crop canopy modeling research have provided potential strategies for improving light distribution in crop canopies, and we review the current progress of these strategies, including balancing light distribution through reducing pigment concentration. Based on recent research revealing red-shifted photosynthetic pigments in algae and photosynthetic bacteria, we also discuss potential strategies for optimizing light interception and use through introducing alternative pigment types in crops. These strategies for improving light distribution and expanding the wavelengths of light beyond those traditionally defined for photosynthesis in plant canopies may have large implications for improving crop yield and closing the yield gap.
Collapse
Affiliation(s)
- Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Departments of Plant Biology & Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Author for communication:
| |
Collapse
|
171
|
Dutta A, Chattopadhyay H. Performance analysis of human respiratory system based on the second law of thermodynamics. J Therm Biol 2021; 96:102862. [PMID: 33627259 DOI: 10.1016/j.jtherbio.2021.102862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 11/18/2022]
Abstract
The purpose of this study is to develop a comprehensive thermodynamic model of the human respiratory system and quantify the effects of inspiratory air temperature, relative humidity (RH), lung capacity and O2 fluctuation in metabolic reaction on the human respiratory system under three different physiological conditions, i.e. rest, moderate level of physical activity and extreme level of physical activity. Therefore, a second law-based analysis has carried out for the human respiratory system. It is observed that exergetic efficiency decreases by 21% and 16.5% during moderate and extreme level of activity respectively as compared to the physical condition of rest. The respiratory efficiency also increases with the increase in inspiratory air temperature and RH. For a given inspiratory air temperature, an increase in lung volume leads to a reduction in the efficiency. Increase in TV with a high airflow rate gives a higher magnitude of efficiency, such a situation appearing when a person's lung compliance harmed due to diseases. The respiratory efficiency decreases up to 2% with the increase in O2 percentage. The efficiency of the respiratory system is in maximum during rest followed by an extreme and moderate level of activity. However, with the controlled supply of O2, the efficiency of the human respiratory performance increases with the decrease in O2 percentage. Due to partial oxidation of glucose at a reduced O2 level, exergy input from the metabolic reaction is less leading to increased exergetic efficiency.
Collapse
Affiliation(s)
- Abhijit Dutta
- Department of Mechanical Engineering, MCKV Institute of Engineering, Liluah, Howrah, 711204, West Bengal, India; Department of Mechanical Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Himadri Chattopadhyay
- Department of Mechanical Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
172
|
Mitigation of NaCl Stress in Wheat by Rhizosphere Engineering Using Salt Habitat Adapted PGPR Halotolerant Bacteria. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031034] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is a great interest in mitigating soil salinity that limits plant growth and productivity. In this study, eighty-nine strains were isolated from the rhizosphere and endosphere of two halophyte species (Suaeda mollis and Salsola tetrandra) collected from three chotts in Algeria. They were screened for diverse plant growth-promoting traits, antifungal activity and tolerance to different physico-chemical conditions (pH, PEG, and NaCl) to evaluate their efficiency in mitigating salt stress and enhancing the growth of Arabidopsis thaliana and durum wheat under NaCl–stress conditions. Three bacterial strains BR5, OR15, and RB13 were finally selected and identified as Bacillus atropheus. The Bacterial strains (separately and combined) were then used for inoculating Arabidopsis thaliana and durum wheat during the seed germination stage under NaCl stress conditions. Results indicated that inoculation of both plant spp. with the bacterial strains separately or combined considerably improved the growth parameters. Three soils with different salinity levels (S1 = 0.48, S2 = 3.81, and S3 = 2.80 mS/cm) were used to investigate the effects of selected strains (BR5, OR15, and RB13; separately and combined) on several growth parameters of wheat plants. The inoculation (notably the multi-strain consortium) proved a better approach to increase the chlorophyll and carotenoid contents as compared to control plants. However, proline content, lipid peroxidation, and activities of antioxidant enzymes decreased after inoculation with the plant growth-promoting rhizobacteria (PGPR) that can attenuate the adverse effects of salt stress by reducing the reactive oxygen species (ROS) production. These results indicated that under saline soil conditions, halotolerant PGPR strains are promising candidates as biofertilizers under salt stress conditions.
Collapse
|
173
|
Liu M, Wang Y, Liu X, Korpelainen H, Li C. Intra- and intersexual interactions shape microbial community dynamics in the rhizosphere of Populus cathayana females and males exposed to excess Zn. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123783. [PMID: 33254793 DOI: 10.1016/j.jhazmat.2020.123783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 06/12/2023]
Abstract
In this study, we intended to investigate the responses of rhizospheric bacterial communities of Populus cathayana to excess Zn under different planting patterns. The results suggested that intersexual and intrasexual interactions strongly affect plant growth and Zn extraction in both sexes, as well as rhizosphere-associated bacterial community structures. Females had a higher capacity of Zn accumulation and translocation than males under all planting patterns. Males had lower Zn accumulation and translocation under intersexual than under intrasexual interaction; the contrary was true for females. Females harbored abundant Streptomyces and Nocardioides in their rhizosphere, similarly to males under intersexual interaction, but differed from single-sex males under excess Zn. Conversely, intersexual interaction increased the abundance of key taxa Actinomycetales and Betaproteobacteria in both sexes exposed to excess Zn. Males improved the female rhizospheric microenvironment by increasing the abundance of some key tolerance taxa of Chloroflexi, Proteobacteria and Actinobacteria in both sexes under excess Zn in intersexual interaction. These results indicated that the sex of neighboring plants affected sexual differences in the choice of specific bacterial colonizations for phytoextraction and tolerance to Zn-contaminated soils, which might regulate the spatial segregation and phytoremediation potential of P. cathayana females and males under heavy metal contaminated soils.
Collapse
Affiliation(s)
- Miao Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuting Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiucheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, FI-00014 University of Helsinki, Finland
| | - Chunyang Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
174
|
Chea L, Meijide A, Meinen C, Pawelzik E, Naumann M. Cultivar-Dependent Responses in Plant Growth, Leaf Physiology, Phosphorus Use Efficiency, and Tuber Quality of Potatoes Under Limited Phosphorus Availability Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:723862. [PMID: 34527013 PMCID: PMC8435887 DOI: 10.3389/fpls.2021.723862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/22/2021] [Indexed: 05/10/2023]
Abstract
The limited availability of phosphorus (P) in soils causes a major constraint in the productivity of potatoes, which requires increased knowledge of plant adaptation responses in this condition. In this study, six potato cultivars, namely, Agria, Lady Claire, Milva, Lilly, Sieglinde, and Verdi, were assessed for their responses on plant growth, leaf physiology, P use efficiency (PUE), and tuber quality with three P levels (Plow, Pmed, and Phigh). The results reveal a significant variation in the cultivars in response to different P availabilities. P-efficient cultivars, Agria, Milva, and Lilly, possessed substantial plant biomass, tuber yield, and high P uptake efficiency (PUpE) under low P supply conditions. The P-inefficient cultivars, Lady Claire, Sieglinde, and Verdi, could not produce tubers under P deprivation conditions, as well as the ability to efficiently uptake P under low-level conditions, but they were efficient in P uptake under high soil P conditions. Improved PUpE is important for plant tolerance with limited P availability, which results in the efficient use of the applied P. At the leaf level, increased accumulations of nitrate, sulfate, sucrose, and proline are necessary for a plant to acclimate to P deficiency-induced stress and to mobilize leaf inorganic phosphate to increase internal PUE and photosynthesis. The reduction in plant biomass and tuber yield under P-deficient conditions could be caused by reduced CO2 assimilation. Furthermore, P deficiency significantly reduced tuber yield, dry matter, and starch concentration in Agria, Milva, and Lilly. However, contents of tuber protein, sugars, and minerals, as well as antioxidant capacity, were enhanced under these conditions in these cultivars. These results highlight the important traits contributing to potato plant tolerance under P-deficient conditions and indicate an opportunity to improve the P efficiency and tuber quality of potatoes under deficient conditions using more efficient cultivars. Future research to evaluate molecular mechanisms related to P and sucrose translocation, and minimize tuber yield reduction under limited P availability conditions is necessary.
Collapse
Affiliation(s)
- Leangsrun Chea
- Division of Quality of Plant Products, Department of Crop Sciences, University of Goettingen, Goettingen, Germany
| | - Ana Meijide
- Division of Agronomy, Department of Crop Sciences, University of Goettingen, Goettingen, Germany
| | - Catharina Meinen
- Division of Agronomy, Department of Crop Sciences, University of Goettingen, Goettingen, Germany
| | - Elke Pawelzik
- Division of Quality of Plant Products, Department of Crop Sciences, University of Goettingen, Goettingen, Germany
| | - Marcel Naumann
- Division of Quality of Plant Products, Department of Crop Sciences, University of Goettingen, Goettingen, Germany
- *Correspondence: Marcel Naumann
| |
Collapse
|
175
|
Sukhova EM, Vodeneev VA, Sukhov VS. Mathematical Modeling of Photosynthesis and Analysis of Plant Productivity. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2021. [DOI: 10.1134/s1990747821010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
176
|
Yin X, Tang M, Xia X, Yu J. BRASSINAZOLE RESISTANT 1 Mediates Brassinosteroid-Induced Calvin Cycle to Promote Photosynthesis in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:811948. [PMID: 35126434 PMCID: PMC8810641 DOI: 10.3389/fpls.2021.811948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
Calvin cycle is a sequence of enzymatic reactions that assimilate atmospheric CO2 in photosynthesis. Multiple components are known to participate in the induction or suppression of the Calvin cycle but the mechanism of its regulation by phytohormones is still unclear. Brassinosteroids (BRs) are steroid phytohormones that promote photosynthesis and crop yields. In this study, we study the role of BRs in regulating Calvin cycle genes to further understand the regulation of the Calvin cycle by phytohormones in tomatoes. BRs and their signal effector BRASSINAZOLE RESISTANT 1 (BZR1) can enhance the Calvin cycle activity and improve the photosynthetic ability. BRs increased the accumulation of dephosphorylated form of BZR1 by 94% and induced an 88-126% increase in the transcription of key genes in Calvin cycle FBA1, RCA1, FBP5, and PGK1. BZR1 activated the transcription of these Calvin cycle genes by directly binding to their promoters. Moreover, silencing these Calvin cycle genes impaired 24-epibrassinolide (EBR)-induced enhancement of photosynthetic rate, the quantum efficiency of PSII, and V c,max and J max . Taken together, these results strongly suggest that BRs regulate the Calvin cycle in a BZR1-dependent manner in tomatoes. BRs that mediate coordinated regulation of photosynthetic genes are potential targets for increasing crop yields.
Collapse
Affiliation(s)
- Xiaowei Yin
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Mingjia Tang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, China
- *Correspondence: Xiaojian Xia,
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development, and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
177
|
Salter WT, Li S, Dracatos PM, Barbour MM. Identification of quantitative trait loci for dynamic and steady-state photosynthetic traits in a barley mapping population. AOB PLANTS 2020; 12:plaa063. [PMID: 33408849 PMCID: PMC7759950 DOI: 10.1093/aobpla/plaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/18/2020] [Indexed: 05/29/2023]
Abstract
Enhancing the photosynthetic induction response to fluctuating light has been suggested as a key target for improvement in crop breeding programmes, with the potential to substantially increase whole-canopy carbon assimilation and contribute to crop yield potential. Rubisco activation may be the main physiological process that will allow us to achieve such a goal. In this study, we assessed the phenotype of Rubisco activation rate in a doubled haploid (DH) barley mapping population [131 lines from a Yerong/Franklin (Y/F) cross] after a switch from moderate to saturating light. Rates of Rubisco activation were found to be highly variable across the mapping population, with a median activation rate of 0.1 min-1 in the slowest genotype and 0.74 min-1 in the fastest genotype. A unique quantitative trait locus (QTL) for Rubisco activation rate was identified on chromosome 7H. This is the first report on the identification of a QTL for Rubisco activation rate in planta and the discovery opens the door to marker-assisted breeding to improve whole-canopy photosynthesis of barley. This also suggests that genetic factors other than the previously characterized Rubisco activase (RCA) isoforms on chromosome 4H control Rubisco activity. Further strength is given to this finding as this QTL co-localized with QTLs identified for steady-state photosynthesis and stomatal conductance. Several other distinct QTLs were identified for these steady-state traits, with a common overlapping QTL on chromosome 2H, and distinct QTLs for photosynthesis and stomatal conductance identified on chromosomes 4H and 5H, respectively. Future work should aim to validate these QTLs under field conditions so that they can be used to aid plant breeding efforts.
Collapse
Affiliation(s)
- William T Salter
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
| | - Si Li
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
| | - Peter M Dracatos
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, Australia
| | - Margaret M Barbour
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
- School of Science, University of Waikato, Hillcrest, Hamilton, New Zealand
| |
Collapse
|
178
|
Beuchat G, Xue X, Chen LQ. Review: The Next Steps in Crop Improvement: Adoption of Emerging Strategies to Identify Bottlenecks in Sugar Flux. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110675. [PMID: 33218639 DOI: 10.1016/j.plantsci.2020.110675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 05/24/2023]
Abstract
Sugar allocation in plants is the fundamental process that transports sugar from source to sink tissues and has a dramatic impact on crop yields. Controlling sugar allocation is required to increase crop yields, as well as biomass for biofuel production. Successful examples have demonstrated that genetic engineering of sugar partitioning offers a promising strategy to achieve this goal. However, improvement has thus far been limited by gaps in understanding of the underlying mechanisms controlling the allocation of sugars. The dynamics of sugar partitioning are minimally predictable under different conditions, between species, or in response to abiotic stresses. Here, we discuss four methodologies that have not been sufficiently exploited for the identification of bottlenecks in sugar flux. Furthermore, we suggest how these strategies can be used and combined to provide the insight needed to maximize crop yields or biomass, especially under conditions of environmental stress.
Collapse
Affiliation(s)
- Gabriel Beuchat
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xueyi Xue
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
179
|
Ren H, Li Z, Cheng Y, Zhang J, Liu P, Li R, Yang Q, Dong S, Zhang J, Zhao B. Narrowing Yield Gaps and Enhancing Nitrogen Utilization for Summer Maize ( Zea mays L) by Combining the Effects of Varying Nitrogen Fertilizer Input and Planting Density in DSSAT Simulations. FRONTIERS IN PLANT SCIENCE 2020; 11:560466. [PMID: 33312182 PMCID: PMC7707061 DOI: 10.3389/fpls.2020.560466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
In China, the most common grain crop is maize (Zea mays). The increasing pressure to meet the food demands of its growing population has pushed Chinese maize farmers toward an excessive use of chemical fertilizers, a practice which ultimately leads to a massive waste of resources and widespread environmental pollution. As a result, increasing the yield and improving the nitrogen (N) use efficiency of maize has become a critical issue for agriculture in China. This study, which analyzes the combined data from a simulation carried out using the Decision Support System for Agrotechnology Transfer (DSSAT), a field experiment, and a household survey, explored the effectiveness of several approaches aimed at narrowing the maize yield gap and improving the N utilization efficiency in the Huang-Huai-Hai Plain (HHHP), the most important area for the production of summer maize in China. The various approaches we studied deploy different methods for the integrated management of N fertilizer input and the planting density. The study produced the following results: (1) For the simulated and actual maize yields, the root mean square error (RMSE), the normalized root mean squared errors (NRMSE) and the index of agreement (d) were 1,171 (kg ha-1), 12% and 0.84, respectively. These results show that the model is viable for the experiment included in the study; (2) The potential yield was 15.58 t ha-1, and the yields achieved by the super-high-yield cultivation pattern (SH), the optimized nutrient and density management pattern (ONM), the simulated farmer's practice cultivation pattern (FP) and actual farmer's practice (AFP) were 11.43, 11.06, 10.33, and 7.95 t ha-1, respectively. The yield gaps associated with the different yield levels were large; (3) For summer maize, the high yield and a high N partial factor productivity (NPFP) was found when applying a planting density of 9 plants m-2 and an N application amount of 246 kg ha-1. These results suggest that the maximum yield that can actually be achieved by optimizing the N application and planting density is less than 73% of the potential yield. This implies in turn that in order to further narrow the observed yield gaps, other factors, such as irrigation, sowing dates and pest control need to be considered.
Collapse
Affiliation(s)
- Hao Ren
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Zhenhai Li
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yi Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | | | - Peng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Rongfa Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Qinglong Yang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Shuting Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Bin Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
180
|
Skiba E, Pietrzak M, Gapińska M, Wolf WM. Metal Homeostasis and Gas Exchange Dynamics in Pisum sativum L. Exposed to Cerium Oxide Nanoparticles. Int J Mol Sci 2020; 21:E8497. [PMID: 33187383 PMCID: PMC7696629 DOI: 10.3390/ijms21228497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Cerium dioxide nanoparticles are pollutants of emerging concern. They are rarely immobilized in the environment. This study extends our work on Pisum sativum L. as a model plant, cultivated worldwide, and is well suited for investigating additive interactions induced by nanoceria. Hydroponic cultivation, which prompts accurate plant growth control and three levels of CeO2 supplementation, were applied, namely, 100, 200, and 500 mg (Ce)/L. Phytotoxicity was estimated by fresh weights and photosynthesis parameters. Additionally, Ce, Cu, Zn, Mn, Fe, Ca, and Mg contents were analyzed by high-resolution continuum source atomic absorption and inductively coupled plasma optical emission techniques. Analysis of variance has proved that CeO2 nanoparticles affected metals uptake. In the roots, it decreased for Cu, Zn, Mn, Fe, and Mg, while a reversed process was observed for Ca. The latter is absorbed more intensively, but translocation to above-ground parts is hampered. At the same time, nanoparticulate CeO2 reduced Cu, Zn, Mn, Fe, and Ca accumulation in pea shoots. The lowest Ce concentration boosted the photosynthesis rate, while the remaining treatments did not induce significant changes. Plant growth stimulation was observed only for the 100 mg/L. To our knowledge, this is the first study that demonstrates the effect of nanoceria on photosynthesis-related parameters in peas.
Collapse
Affiliation(s)
- Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| | - Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| | - Magdalena Gapińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| |
Collapse
|
181
|
Digrado A, Mitchell NG, Montes CM, Dirvanskyte P, Ainsworth EA. Assessing diversity in canopy architecture, photosynthesis, and water-use efficiency in a cowpea magic population. Food Energy Secur 2020; 9:e236. [PMID: 33381299 PMCID: PMC7757253 DOI: 10.1002/fes3.236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/02/2023] Open
Abstract
Optimizing crops to improve light absorption and CO2 assimilation throughout the canopy is a proposed strategy to increase yield and meet the needs of a growing population by 2050. Globally, the greatest population increase is expected to occur in Sub-Saharan Africa where large yield gaps currently persist; therefore, it is crucial to develop high-yielding crops adapted to this region. In this study, we screened 50 cowpea (Vigna unguiculata (L.) Walp) genotypes from the multi-parent advanced generation inter-cross (MAGIC) population for canopy architectural traits, canopy photosynthesis, and water-use efficiency using a canopy gas exchange chamber in order to improve our understanding of the relationships among those traits. Canopy architecture contributed to 38.6% of the variance observed in canopy photosynthesis. The results suggest that the light environment within the canopy was a limiting factor for canopy CO2 assimilation. Traits favoring greater exposure of leaf area to light such as the width of the canopy relative to the total leaf area were associated with greater canopy photosynthesis, especially in canopies with high biomass. Canopy water-use efficiency was highly determined by canopy photosynthetic activity and therefore canopy architecture, which indicates that optimizing the canopy will also contribute to improving canopy water-use efficiency. We discuss different breeding strategies for future programs aimed at the improvement of cowpea yield for the Sub-Saharan African region. We show that breeding for high biomass will not optimize canopy CO2 assimilation and suggest that selection should include multiple canopy traits to improve light penetration.
Collapse
Affiliation(s)
- Anthony Digrado
- Global Change and Photosynthesis Research UnitUSDA ARSUrbanaILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Noah G. Mitchell
- Global Change and Photosynthesis Research UnitUSDA ARSUrbanaILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Christopher M. Montes
- Global Change and Photosynthesis Research UnitUSDA ARSUrbanaILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | | | - Elizabeth A. Ainsworth
- Global Change and Photosynthesis Research UnitUSDA ARSUrbanaILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
182
|
Ko SS, Jhong CM, Lin YJ, Wei CY, Lee JY, Shih MC. Blue Light Mediates Chloroplast Avoidance and Enhances Photoprotection of Vanilla Orchid. Int J Mol Sci 2020; 21:E8022. [PMID: 33126662 PMCID: PMC7663427 DOI: 10.3390/ijms21218022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Vanilla orchid, which is well-known for its flavor and fragrance, is cultivated in tropical and subtropical regions. This shade-loving plant is very sensitive to high irradiance. In this study, we show that vanilla chloroplasts started to have avoidance movement when blue light (BL) was higher than 20 μmol m-2s-1 and significant avoidance movement was observed under BL irradiation at 100 μmol m-2s-1 (BL100). The light response curve indicated that when vanilla was exposed to 1000 μmol m-2s-1, the electron transport rate (ETR) and photochemical quenching of fluorescence (qP) were significantly reduced to a negligible amount. We found that if a vanilla orchid was irradiated with BL100 for 12 days, it acquired BL-acclimation. Chloroplasts moved to the side of cells in order to reduce light-harvesting antenna size, and chloroplast photodamage was eliminated. Therefore, BL-acclimation enhanced vanilla orchid growth and tolerance to moderate (500 μmol m-2s-1) and high light (1000 μmol m-2s-1) stress conditions. It was found that under high irradiation, BL-acclimatized vanilla maintained higher ETR and qP capacity than the control without BL-acclimation. BL-acclimation induced antioxidant enzyme activities, reduced ROS accumulation, and accumulated more carbohydrates. Moreover, BL-acclimatized orchids upregulated photosystem-II-associated marker genes (D1 and PetC), Rubisco and PEPC transcripts and sustained expression levels thereof, and also maximized the photosynthesis rate. Consequently, BL-acclimatized orchids had higher biomass. In short, this study found that acclimating vanilla orchid with BL before transplantation to the field might eliminate photoinhibition and enhance vanilla growth and production.
Collapse
Affiliation(s)
- Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan; (C.-M.J.); (Y.-J.L.)
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chung-Min Jhong
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan; (C.-M.J.); (Y.-J.L.)
| | - Yi-Jyun Lin
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan; (C.-M.J.); (Y.-J.L.)
| | - Ching-Yu Wei
- National Chiayi University Department of Forestry and Natural Resources, Chiayi 600, Taiwan;
| | - Ju-Yin Lee
- National Taiwan University Department of Horticulture and Landscape Architecture, Taipei 10617, Taiwan;
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
183
|
Cai ML, Zhang QL, Zhang JJ, Ding WQ, Huang HY, Peng CL. Comparative physiological and transcriptomic analyses of photosynthesis in Sphagneticola calendulacea (L.) Pruski and Sphagneticola trilobata (L.) Pruski. Sci Rep 2020; 10:17810. [PMID: 33082378 PMCID: PMC7576218 DOI: 10.1038/s41598-020-74289-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/24/2020] [Indexed: 11/09/2022] Open
Abstract
Sphagneticola trilobata (L.) Pruski is one of the fast-growing malignant weeds in South China. It has severely influenced local biodiversity and native plant habitat. Photosynthesis is the material basis of plant growth and development. However, there are few reports on the photosynthetic transcriptome of S. trilobata. In this study, S. trilobata had a relatively large leaf area and biomass. The gas exchange parameters per unit area of leaves, including net photosynthetic capacity (Pn), intercellular CO2 (Ci), stomatal conductance (Gs), transpiration rate (Tr), water use efficiency (WUE), photosynthetic pigment and Rubisco protein content were higher than those of the native plant Sphagneticola calendulacea (L.) Pruski. On this basis, the differences in photosynthesis pathways between the two Sphagneticola species were analyzed by using the Illumina HiSeq platform. The sequencing results for S. trilobata and S. calendulacea revealed 159,366 and 177,069 unigenes, respectively. Functional annotation revealed 119,350 and 150,846 non-redundant protein database annotations (Nr), 96,637 and 115,711 Swiss-Prot annotations, 49,159 and 60,116 Kyoto Encyclopedia of Genes and Genomes annotations (KEGG), and 83,712 and 97,957 Gene Ontology annotations (GO) in S. trilobata and S. calendulacea, respectively. Additionally, our analysis showed that the expression of key protease genes involved in the photosynthesis pathway, particularly CP43, CP47, PsbA and PetC, had high expression levels in leaves of S. trilobata in comparison to native species. Physiological and transcriptomic analyses suggest the high expression of photosynthetic genes ensures the high photosynthetic capacity of leaves, which is one of the inherent advantages underlying the successful invasion by S. trilobata.
Collapse
Affiliation(s)
- Min-Ling Cai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Qi-Lei Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jun-Jie Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Wen-Qiao Ding
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Hong-Ying Huang
- College of Chemistry & Biology and Environmental Engineering, Xiangnan University, Chenzhou, 423043, Hunan, People's Republic of China.
| | - Chang-Lian Peng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
184
|
Gunn LH, Martin Avila E, Birch R, Whitney SM. The dependency of red Rubisco on its cognate activase for enhancing plant photosynthesis and growth. Proc Natl Acad Sci U S A 2020; 117:25890-25896. [PMID: 32989135 PMCID: PMC7568259 DOI: 10.1073/pnas.2011641117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Plant photosynthesis and growth are often limited by the activity of the CO2-fixing enzyme Rubisco. The broad kinetic diversity of Rubisco in nature is accompanied by differences in the composition and compatibility of the ancillary proteins needed for its folding, assembly, and metabolic regulation. Variations in the protein folding needs of catalytically efficient red algae Rubisco prevent their production in plants. Here, we show this impediment does not extend to Rubisco from Rhodobacter sphaeroides (RsRubisco)-a red-type Rubisco able to assemble in plant chloroplasts. In transplastomic tobRsLS lines expressing a codon optimized Rs-rbcLS operon, the messenger RNA (mRNA) abundance was ∼25% of rbcL transcript and RsRubisco ∼40% the Rubisco content in WT tobacco. To mitigate the low activation status of RsRubisco in tobRsLS (∼23% sites active under ambient CO2), the metabolic repair protein RsRca (Rs-activase) was introduced via nuclear transformation. RsRca production in the tobRsLS::X progeny matched endogenous tobacco Rca levels (∼1 µmol protomer·m2) and enhanced RsRubisco activation to 75% under elevated CO2 (1%, vol/vol) growth. Accordingly, the rate of photosynthesis and growth in the tobRsLS::X lines were improved >twofold relative to tobRsLS. Other tobacco lines producing RsRubisco containing alternate diatom and red algae S-subunits were nonviable as CO2-fixation rates (kcatc) were reduced >95% and CO2/O2 specificity impaired 30-50%. We show differences in hybrid and WT RsRubisco biogenesis in tobacco correlated with assembly in Escherichia coli advocating use of this bacterium to preevaluate the kinetic and chloroplast compatibility of engineered RsRubisco, an isoform amenable to directed evolution.
Collapse
Affiliation(s)
- Laura H Gunn
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Elena Martin Avila
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Rosemary Birch
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Spencer M Whitney
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
185
|
Leaf Transcriptome and Weight Gene Co-expression Network Analysis Uncovers Genes Associated with Photosynthetic Efficiency in Camellia oleifera. Biochem Genet 2020; 59:398-421. [PMID: 33040171 DOI: 10.1007/s10528-020-09995-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
Camellia oleifera Abel. (C. oleifera) as an important economic tree species in China has drawn growing attention because of its highly commercial, medic, cosmetic, and ornamental value. To deepen our understanding about the photosynthetic characters during the whole developmental stage as well as the molecular basis of photosynthesis, a comparative analysis of the leaf transcriptome of two C. oleifera cultivars, 'Guoyou No.13' (GY13) and 'Xianglin No.82' (XL82), with different photosynthetic characteristics from May to September has been conducted. In this study, a group of genes related to photosynthesis, hormone regulation, circadian clock and transcription factor, involved in the photosynthetic advantage. Photosynthetic parameters from May to September of these two cultivars provided evidence supporting photosynthetic advantage of GY13 compared to XL82. In addition, expression levels of 12 differentially expressed genes (DEGs) were validated using real-time PCR (RT-PCR). To screen gene clusters and hub genes that might directly regulated the photosynthetic differences between cultivars, a Weight Gene Co-expression Network Analysis (WGCNA) was conducted. Three co-expression network (module) and top ten connected genes (hub genes) were identified that might play crucial role in the regulatory network of photosynthesis. The results not only showed multiple functional genes that might involve in the differences of photosynthetic characteristics between cultivars, but also provide some evidences for the heat tolerance might be an important character which helps GY13 kept higher photosynthetic parameters than XL82 during the developmental stage. In summary, our transcriptomic approach together with RT-PCR tests allowed us to expand our understanding of the characters of C. oleifera cultivars with different photosynthetic efficiency during the developmental stage and to further exploring new candidate genes involve in high photosynthetic efficiency in molecular-assisted breeding program of C. oleifera.
Collapse
|
186
|
Khumsupan P, Kozlowska MA, Orr DJ, Andreou AI, Nakayama N, Patron N, Carmo-Silva E, McCormick AJ. Generating and characterizing single- and multigene mutants of the Rubisco small subunit family in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5963-5975. [PMID: 32734287 DOI: 10.1093/jxb/eraa316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The primary CO2-fixing enzyme Rubisco limits the productivity of plants. The small subunit of Rubisco (SSU) can influence overall Rubisco levels and catalytic efficiency, and is now receiving increasing attention as a potential engineering target to improve the performance of Rubisco. However, SSUs are encoded by a family of nuclear rbcS genes in plants, which makes them challenging to engineer and study. Here we have used CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9] and T-DNA insertion lines to generate a suite of single and multiple gene knockout mutants for the four members of the rbcS family in Arabidopsis, including two novel mutants 2b3b and 1a2b3b. 1a2b3b contained very low levels of Rubisco (~3% relative to the wild-type) and is the first example of a mutant with a homogenous Rubisco pool consisting of a single SSU isoform (1B). Growth under near-outdoor levels of light demonstrated Rubisco-limited growth phenotypes for several SSU mutants and the importance of the 1A and 3B isoforms. We also identified 1a1b as a likely lethal mutation, suggesting a key contributory role for the least expressed 1B isoform during early development. The successful use of CRISPR/Cas here suggests that this is a viable approach for exploring the functional roles of SSU isoforms in plants.
Collapse
Affiliation(s)
- Panupon Khumsupan
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Marta A Kozlowska
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Andreas I Andreou
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Naomi Nakayama
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Nicola Patron
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
187
|
Ahmad N, Zaidi SSEA, Mansoor S. Alternative Routes to Improving Photosynthesis in Field Crops. TRENDS IN PLANT SCIENCE 2020; 25:958-960. [PMID: 32712086 DOI: 10.1016/j.tplants.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 05/25/2023]
Abstract
Photosynthesis is an important biochemical reaction that forms the basis of all food chains. Its efficiency is considered a key determinant of crop productivity. Therefore, improving photosynthetic efficiency has been a focus of intensive research. Here, we highlight simple approaches, recently reported by Chen et al. and Degen et al., to increase photosynthetic efficiency in field crops.
Collapse
Affiliation(s)
- Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | | | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan.
| |
Collapse
|
188
|
Croce R, van Amerongen H. Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. Science 2020; 369:369/6506/eaay2058. [PMID: 32820091 DOI: 10.1126/science.aay2058] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxygenic photosynthesis is the main process that drives life on earth. It starts with the harvesting of solar photons that, after transformation into electronic excitations, lead to charge separation in the reaction centers of photosystems I and II (PSI and PSII). These photosystems are large, modular pigment-protein complexes that work in series to fuel the formation of carbohydrates, concomitantly producing molecular oxygen. Recent advances in cryo-electron microscopy have enabled the determination of PSI and PSII structures in complex with light-harvesting components called "supercomplexes" from different organisms at near-atomic resolution. Here, we review the structural and spectroscopic aspects of PSI and PSII from plants and algae that directly relate to their light-harvesting properties, with special attention paid to the pathways and efficiency of excitation energy transfer and the regulatory aspects.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| | | |
Collapse
|
189
|
Godlewska K, Pacyga P, Michalak I, Biesiada A, Szumny A, Pachura N, Piszcz U. Field-Scale Evaluation of Botanical Extracts Effect on the Yield, Chemical Composition and Antioxidant Activity of Celeriac ( Apium graveolens L. Var. rapaceum). Molecules 2020; 25:molecules25184212. [PMID: 32937923 PMCID: PMC7571039 DOI: 10.3390/molecules25184212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The use of higher plants for the production of plant growth biostimulants is receiving increased attention among scientists, farmers, investors, consumers and regulators. The aim of the present study was to examine the possibility of converting plants commonly occurring in Europe (St. John's wort, giant goldenrod, common dandelion, red clover, nettle, valerian) into valuable and easy to use bio-products. The biostimulating activity of botanical extracts and their effect on the chemical composition of celeriac were identified. Plant-based extracts, obtained by ultrasound-assisted extraction and mechanical homogenisation, were tested in field trials. It was found that the obtained formulations increased the total yield of leaves rosettes and roots, the dry weight of leaves rosettes and roots, the content of chlorophyll a + b and carotenoids, the greenness index of leaves, the content of vitamin C in leaves and roots. They mostly decreased the content of polyphenols and antioxidant activities in leaves but increased them in roots and conversely affected the nitrates content. Extracts showed a varied impact on the content of micro and macroelements, as well as the composition of volatile compounds and fatty acids in the celeriac biomass. Due to the modulatory properties of the tested products, they may be used successfully in sustainable horticulture.
Collapse
Affiliation(s)
- Katarzyna Godlewska
- Department of Horticulture, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland;
- Correspondence:
| | - Paweł Pacyga
- Department of Mechanics, Machines and Energy Processes, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, 50-372 Wrocław, Poland;
| | - Anita Biesiada
- Department of Horticulture, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland;
| | - Antoni Szumny
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.S.); (N.P.)
| | - Natalia Pachura
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.S.); (N.P.)
| | - Urszula Piszcz
- Department of Plant Nutrition, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, 50-357 Wrocław, Poland;
| |
Collapse
|
190
|
Stirbet A, Lazár D, Guo Y, Govindjee G. Photosynthesis: basics, history and modelling. ANNALS OF BOTANY 2020; 126:511-537. [PMID: 31641747 PMCID: PMC7489092 DOI: 10.1093/aob/mcz171] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/06/2019] [Accepted: 10/21/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND With limited agricultural land and increasing human population, it is essential to enhance overall photosynthesis and thus productivity. Oxygenic photosynthesis begins with light absorption, followed by excitation energy transfer to the reaction centres, primary photochemistry, electron and proton transport, NADPH and ATP synthesis, and then CO2 fixation (Calvin-Benson cycle, as well as Hatch-Slack cycle). Here we cover some of the discoveries related to this process, such as the existence of two light reactions and two photosystems connected by an electron transport 'chain' (the Z-scheme), chemiosmotic hypothesis for ATP synthesis, water oxidation clock for oxygen evolution, steps for carbon fixation, and finally the diverse mechanisms of regulatory processes, such as 'state transitions' and 'non-photochemical quenching' of the excited state of chlorophyll a. SCOPE In this review, we emphasize that mathematical modelling is a highly valuable tool in understanding and making predictions regarding photosynthesis. Different mathematical models have been used to examine current theories on diverse photosynthetic processes; these have been validated through simulation(s) of available experimental data, such as chlorophyll a fluorescence induction, measured with fluorometers using continuous (or modulated) exciting light, and absorbance changes at 820 nm (ΔA820) related to redox changes in P700, the reaction centre of photosystem I. CONCLUSIONS We highlight here the important role of modelling in deciphering and untangling complex photosynthesis processes taking place simultaneously, as well as in predicting possible ways to obtain higher biomass and productivity in plants, algae and cyanobacteria.
Collapse
Affiliation(s)
| | - Dušan Lazár
- Department of Biophysics, Center of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, China
- University of Missouri, Columbia, MO, USA
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
191
|
Hu W, Lu Z, Meng F, Li X, Cong R, Ren T, Sharkey TD, Lu J. The reduction in leaf area precedes that in photosynthesis under potassium deficiency: the importance of leaf anatomy. THE NEW PHYTOLOGIST 2020; 227:1749-1763. [PMID: 32367581 DOI: 10.1111/nph.16644] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Synergistic improvement in leaf photosynthetic area and rate is essential for enhancing crop yield. However, reduction in leaf area occurs earlier than that in the photosynthetic rate under potassium (K) deficiency stress. The photosynthetic capacity and anatomical characteristics of oilseed rape (Brassica napus) leaves in different growth stages under different K levels were observed to clarify the mechanism regulating this process. Increased mesophyll cell size and palisade tissue thickness, in K-deficient leaves triggered significant enlargement of mesophyll cell area per transverse section width (S/W), in turn inhibiting leaf expansion. However, there was only a minor difference in chloroplast morphology, likely because of K redistribution from vacuole to chloroplast. As K stress increased, decreased mesophyll surface exposed to intercellular space and chloroplast density induced longer distances between neighbouring chloroplasts (Dchl-chl ) and decreased the chloroplast surface area exposed to intercellular space (Sc /S); conversely this induced a greater limitation imposed by the cytosol on CO2 transport, further reducing the photosynthetic rate. Changes in S/W associated with mesophyll cell morphology occurred earlier than changes in Sc /S and Dchl-chl , inducing a decrease in leaf area before photosynthetic rate reduction. Adequate K nutrition simultaneously increases photosynthetic area and rate, thus enhancing crop yield.
Collapse
Affiliation(s)
- Wenshi Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Zhifeng Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Fanjin Meng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xiaokun Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Rihuan Cong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Tao Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianwei Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| |
Collapse
|
192
|
He J, Qin L. Growth and photosynthetic characteristics of sweet potato (Ipomoea batatas) leaves grown under natural sunlight with supplemental LED lighting in a tropical greenhouse. JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153239. [PMID: 32763651 PMCID: PMC7378012 DOI: 10.1016/j.jplph.2020.153239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 05/21/2023]
Abstract
Leaf growth and photosynthetic characteristics of sweet potato (Ipomoea batatas var. Biru Putih) grown under different light quantities were studied in a tropical greenhouse. The stem cuttings of I. batataswith adventitious roots were grown hydroponically under (1) only natural sunlight (SL); (2) SL with supplemental LED at a PPFD of 150 μmol m-2 s-1 (SL + L-LED); and (3) SL with supplemental LED at a PPFD of 300 μmol m-2 s-1 (SL + H-LED). One week after emergence, all leaves had similar area and water content. However, leaf fresh weight and dry weight were significantly higher in plants grown under SL+L-LED and SL + H-LED than under SL due to their thicker leaves reflected by the lower specific leaf area. Plants grown under SL had significantly lower concentrations of total chlorophyll (Chl) and total carotenoids (Car) but higher Chl a/b ratio than under SL + L-LED and SL + H-LED. However, all plants had similar Chl/Car ratios. Although midday Fv/Fm ratio was the lowest in leaves grown under SL+ H-LED followed by SL + L-LED and SL, predawn Fv/Fm ratios of all leaves were higher than 0.8. Increasing growth irradiance with supplemental LED resulted in higher electron transport rate and photochemical quenching but lower non-photochemical quenching compared to those of plants grown under SL. Measured under their respective growth irradiance in the greenhouse, attached leaves grown under SL + L-LED and SL+H-LED had significantly higher photosynthetic CO2 assimilation rate and stomatal conductance than under SL. However, measuring the detached leaves at 25 °C in the laboratory, there were no significant differences in PS II and Cyt b6f concentrations although light- and CO2-statured photosynthetic O2 evolution rates were slightly higher in leaves grown under SL+ H-LED than under SL. Impacts of supplemental LED on leaf growth and photosynthetic characteristics were discussed.
Collapse
Affiliation(s)
- Jie He
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637 616, Singapore.
| | - Lin Qin
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637 616, Singapore
| |
Collapse
|
193
|
He L, Li M, Qiu Z, Chen D, Zhang G, Wang X, Chen G, Hu J, Gao Z, Dong G, Ren D, Shen L, Zhang Q, Guo L, Qian Q, Zeng D, Zhu L. Primary leaf-type ferredoxin 1 participates in photosynthetic electron transport and carbon assimilation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:44-58. [PMID: 32603511 DOI: 10.1111/tpj.14904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Ferredoxins (Fds) play a crucial role in photosynthesis by regulating the distribution of electrons to downstream enzymes. Multiple Fd genes have been annotated in the Oryza sativa L. (rice) genome; however, their specific functions are not well understood. Here, we report the functional characterization of rice Fd1. Sequence alignment, phylogenetic analysis of seven rice Fd proteins and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that rice Fd1 is a primary leaf-type Fd. Electron transfer assays involving NADP+ and cytochrome c indicated that Fd1 can donate electrons from photosystem I (PSI) to ferredoxin-NADP+ reductase. Loss-of-function fd1 mutants showed chlorosis and seedling lethality at the three-leaf stage. The deficiency of Fd1 impaired photosynthetic electron transport, which affected carbon assimilation. Exogenous glucose treatment partially restored the mutant phenotype, suggesting that Fd1 plays an important role in photosynthetic electron transport in rice. In addition, the transcript levels of Fd-dependent genes were affected in fd1 mutants, and the trend was similar to that observed in fdc2 plants. Together, these results suggest that OsFd1 is the primary Fd in photosynthetic electron transport and carbon assimilation in rice.
Collapse
Affiliation(s)
- Lei He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Man Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhennan Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- College of Life Science, Dezhou University, Dezhou, 253023, China
| | - Dongdong Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaoqi Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
194
|
Martin-Avila E, Lim YL, Birch R, Dirk LMA, Buck S, Rhodes T, Sharwood RE, Kapralov MV, Whitney SM. Modifying Plant Photosynthesis and Growth via Simultaneous Chloroplast Transformation of Rubisco Large and Small Subunits. THE PLANT CELL 2020; 32:2898-2916. [PMID: 32647068 PMCID: PMC7474299 DOI: 10.1105/tpc.20.00288] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 05/20/2023]
Abstract
Engineering improved Rubisco for the enhancement of photosynthesis is challenged by the alternate locations of the chloroplast rbcL gene and nuclear RbcS genes. Here we develop an RNAi-RbcS tobacco (Nicotiana tabacum) master-line, tobRrΔS, for producing homogenous plant Rubisco by rbcL-rbcS operon chloroplast transformation. Four genotypes encoding alternative rbcS genes and adjoining 5'-intergenic sequences revealed that Rubisco production was highest (50% of the wild type) in the lines incorporating a rbcS gene whose codon use and 5' untranslated-region matched rbcL Additional tobacco genotypes produced here incorporated differing potato (Solanum tuberosum) rbcL-rbcS operons that either encoded one of three mesophyll small subunits (pS1, pS2, and pS3) or the potato trichome pST-subunit. The pS3-subunit caused impairment of potato Rubisco production by ∼15% relative to the lines producing pS1, pS2, or pST However, the βA-βB loop Asn-55-His and Lys-57-Ser substitutions in the pS3-subunit improved carboxylation rates by 13% and carboxylation efficiency (CE) by 17%, relative to potato Rubisco incorporating pS1 or pS2-subunits. Tobacco photosynthesis and growth were most impaired in lines producing potato Rubisco incorporating the pST-subunit, which reduced CE and CO2/O2 specificity 40% and 15%, respectively. Returning the rbcS gene to the plant plastome provides an effective bioengineering chassis for introduction and evaluation of novel homogeneous Rubisco complexes in a whole plant context.
Collapse
Affiliation(s)
- Elena Martin-Avila
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Yi-Leen Lim
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Rosemary Birch
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology Group, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Sally Buck
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Timothy Rhodes
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Robert E Sharwood
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Maxim V Kapralov
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Spencer M Whitney
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
195
|
Ohkubo S, Tanaka Y, Yamori W, Adachi S. Rice Cultivar Takanari Has Higher Photosynthetic Performance Under Fluctuating Light Than Koshihikari, Especially Under Limited Nitrogen Supply and Elevated CO 2. FRONTIERS IN PLANT SCIENCE 2020; 11:1308. [PMID: 32983198 PMCID: PMC7490297 DOI: 10.3389/fpls.2020.01308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/11/2020] [Indexed: 05/31/2023]
Abstract
Plants in the field experience dynamic changes of sunlight rather than steady-state irradiation. Therefore, increasing the photosynthetic rate of an individual leaf under fluctuating light is essential for improving crop productivity. The high-yielding indica rice (Oryza sativa L.) cultivar Takanari is considered a potential donor of photosynthesis genes because of its higher steady-state photosynthesis at both atmospheric and elevated CO2 concentrations than those of several Japanese commercial cultivars, including Koshihikari. Photosynthetic induction after a sudden increase in light intensity is faster in Takanari than in Koshihikari, but whether the daily carbon gain of Takanari outperforms that of Koshihikari under fluctuating light in the field is unclear. Here we report that Takanari has higher non-steady-state photosynthesis, especially under low nitrogen (N) supply, than Koshihikari. In a pot experiment, Takanari had greater leaf carbon gain during the initial 10 min after a sudden increase in irradiation and higher daily CO2 assimilation under simulated natural fluctuating light, at both atmospheric (400 ppm) and elevated (800 ppm) CO2 concentrations. The electron transport rate during a day under field conditions with low N supply was also higher in Takanari than in Koshihikari. Although the advantages of Takanari were diminished under high N supply, photosynthetic N use efficiency was consistently higher in Takanari than in Koshihikari, under both low and high N supply. This study demonstrates that Takanari is a promising donor parent to use in breeding programs aimed at increasing CO2 assimilation in a wide range of environments, including future higher CO2 concentrations.
Collapse
Affiliation(s)
- Satoshi Ohkubo
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Yu Tanaka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, Institute for Sustainable Agro-Ecosystem Services, The University of Tokyo, Nishitokyo, Japan
| | - Shunsuke Adachi
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
- College of Agriculture, Ibaraki University, Inashiki, Japan
| |
Collapse
|
196
|
Shokat S, Großkinsky DK, Roitsch T, Liu F. Activities of leaf and spike carbohydrate-metabolic and antioxidant enzymes are linked with yield performance in three spring wheat genotypes grown under well-watered and drought conditions. BMC PLANT BIOLOGY 2020; 20:400. [PMID: 32867688 PMCID: PMC7457523 DOI: 10.1186/s12870-020-02581-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/27/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND To improve our understanding about the physiological mechanism of grain yield reduction at anthesis, three spring wheat genotypes [L1 (advanced line), L2 (Vorobey) and L3 (Punjab-11)] having contrasting yield potential under drought in field were investigated under controlled greenhouse conditions, drought stress was imposed at anthesis stage by withholding irrigation until all plant available water was depleted, while well-watered control plants were kept at 95% pot water holding capacity. RESULTS Compared to genotype L1 and L2, pronounced decrease in grain number (NGS), grain yield (GY) and harvest index (HI) were found in genotype L3, mainly due to its greater kernel abortion (KA) under drought. A significant positive correlation of leaf monodehydroascorbate reductase (MDHAR) with both NGS and HI was observed. In contrast, significant negative correlations of glutathione S-transferase (GST) and vacuolar invertase (vacInv) both within source and sink were found with NGS and HI. Likewise, a significant negative correlation of leaf abscisic acid (ABA) with NGS was noticed. Moreover, leaf aldolase and cell wall peroxidase (cwPOX) activities were significantly and positively associated with thousand kernel weight (TKW). CONCLUSION Distinct physiological markers correlating with yield traits and higher activity of leaf aldolase and cwPOX may be chosen as predictive biomarkers for higher TKW. Also, higher activity of MDHAR within the leaf can be selected as a predictive biomarker for higher NGS in wheat under drought. Whereas, lower activity of vacInv and GST both within leaf and spike can be selected as biomarkers for higher NGS and HI. The results highlighted the role of antioxidant and carbohydrate-metabolic enzymes in the modulation of source-sink balance in wheat crops, which could be used as bio-signatures for breeding and selection of drought-resilient wheat genotypes for a future drier climate.
Collapse
Affiliation(s)
- Sajid Shokat
- Crop Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 13, 2630, Taastrup, Denmark.
- Wheat Breeding Group, Plant Breeding and Genetic Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan.
| | - Dominik K Großkinsky
- Transport Biology, Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Thomas Roitsch
- Crop Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 13, 2630, Taastrup, Denmark
| | - Fulai Liu
- Crop Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 13, 2630, Taastrup, Denmark
| |
Collapse
|
197
|
Ko SS, Jhong CM, Shih MC. Blue Light Acclimation Reduces the Photoinhibition of Phalaenopsis aphrodite (Moth Orchid). Int J Mol Sci 2020; 21:ijms21176167. [PMID: 32859101 PMCID: PMC7503704 DOI: 10.3390/ijms21176167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/15/2023] Open
Abstract
The moth orchid is an important ornamental crop. It is very sensitive to high light irradiation due to photoinhibition. In this study, young orchid tissue culture seedlings and 2.5” potted plants pretreated under blue light (BL, λmax = 450 nm) at 100 µmol m−2 s−1 for 12 days (BL acclimation) were found to have an increased tolerance to high light irradiation. After BL acclimation, orchids had an increased anthocyanin accumulation, enhanced chloroplast avoidance, and increased chlorophyll fluorescence capacity whenever they were exposed to high light of 1000 μmol m−2 s−1 for two weeks (HL). They had higher Fv/Fm, electron transport rate (ETR), chlorophyll content, catalase activity and sucrose content when compared to the control without BL acclimation. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that transcript levels of phototropins, D1, RbcS, PEPCK, Catalase and SUT2 were upregulated in the BL-acclimated orchids. Consequently, BL acclimation orchids had better growth when compared to the control under long-term high light stress. In summary, this study provides a solution, i.e., BL acclimation, to reduce moth orchid photoinhibition and enhance growth before transplantation of the young tissue culture seedlings and potted plants into greenhouses, where they usually suffer from a high light fluctuation problem.
Collapse
Affiliation(s)
- Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan;
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
- Correspondence: ; Tel.: +886-6-5056630 (ext. 206); Fax: +886-6-5056631 (ext. 206)
| | - Chung-Min Jhong
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan;
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
| |
Collapse
|
198
|
Fitzpatrick TB, Chapman LM. The importance of thiamine (vitamin B 1) in plant health: From crop yield to biofortification. J Biol Chem 2020; 295:12002-12013. [PMID: 32554808 PMCID: PMC7443482 DOI: 10.1074/jbc.rev120.010918] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Ensuring that people have access to sufficient and nutritious food is necessary for a healthy life and the core tenet of food security. With the global population set to reach 9.8 billion by 2050, and the compounding effects of climate change, the planet is facing challenges that necessitate significant and rapid changes in agricultural practices. In the effort to provide food in terms of calories, the essential contribution of micronutrients (vitamins and minerals) to nutrition is often overlooked. Here, we focus on the importance of thiamine (vitamin B1) in plant health and discuss its impact on human health. Vitamin B1 is an essential dietary component, and deficiencies in this micronutrient underlie several diseases, notably nervous system disorders. The predominant source of dietary vitamin B1 is plant-based foods. Moreover, vitamin B1 is also vital for plants themselves, and its benefits in plant health have received less attention than in the human health sphere. In general, vitamin B1 is well-characterized for its role as a coenzyme in metabolic pathways, particularly those involved in energy production and central metabolism, including carbon assimilation and respiration. Vitamin B1 is also emerging as an important component of plant stress responses, and several noncoenzyme roles of this vitamin are being characterized. We summarize the importance of vitamin B1 in plants from the perspective of food security, including its roles in plant disease resistance, stress tolerance, and crop yield, and review the potential benefits of biofortification of crops with increased vitamin B1 content to improve human health.
Collapse
Affiliation(s)
- Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.
| | - Lottie M Chapman
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
199
|
Sanchez-Bragado R, Vicente R, Molero G, Serret MD, Maydup ML, Araus JL. New avenues for increasing yield and stability in C3 cereals: exploring ear photosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:223-234. [PMID: 32088154 DOI: 10.1016/j.pbi.2020.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 05/22/2023]
Abstract
Small grain cereals such as wheat, rice and barley are among the most important crops worldwide. Any attempt to increase crop productivity and stability through breeding implies developing new strategies for plant phenotyping, including defining ideotype attributes for selection. Recently, the role of non-foliar photosynthetic organs, particularly the inflorescences, has received increasing attention. For example, ear photosynthesis has been reported to be a major contributor to grain filling in wheat and barley under stress and good agronomic conditions. This review provides an overview of the particular characteristics of the ear that makes this photosynthetic organ better adapted to grain filling than the flag leaf and revises potential metabolic and molecular traits that merit further research as targets for cereal improvement. Currently, the absence of high-throughput phenotyping methods limits the inclusion of ear photosynthesis in the breeding agenda. In this regard, a number of different approaches are presented.
Collapse
Affiliation(s)
- Rut Sanchez-Bragado
- Department of Crop and Forest Sciences, University of Lleida - AGROTECNIO Center, Av. R. Roure 191, 25198 Lleida, Spain; Secció de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, and AGROTECNIO Center, Lleida, Spain
| | - Rubén Vicente
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Gemma Molero
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Texcoco, Mexico
| | - Maria Dolors Serret
- Secció de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, and AGROTECNIO Center, Lleida, Spain
| | - María Luján Maydup
- National Council of Scientific and Technological Research, CONICET, La Plata University- Plant Physiology Institute INFIVE, Argentina
| | - José Luis Araus
- Secció de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, and AGROTECNIO Center, Lleida, Spain.
| |
Collapse
|
200
|
López-Calcagno PE, Brown KL, Simkin AJ, Fisk SJ, Vialet-Chabrand S, Lawson T, Raines CA. Stimulating photosynthetic processes increases productivity and water-use efficiency in the field. NATURE PLANTS 2020; 6:1054-1063. [PMID: 32782406 DOI: 10.1038/s41477-020-0740-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/08/2020] [Indexed: 05/20/2023]
Abstract
Previous studies have demonstrated that the independent stimulation of either electron transport or RuBP regeneration can increase the rate of photosynthetic carbon assimilation and plant biomass. In this paper, we present evidence that a multigene approach to simultaneously manipulate these two processes provides a further stimulation of photosynthesis. We report on the introduction of the cyanobacterial bifunctional enzyme fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase or the overexpression of the plant enzyme sedoheptulose-1,7-bisphosphatase, together with the expression of the red algal protein cytochrome c6, and show that a further increase in biomass accumulation under both glasshouse and field conditions can be achieved. Furthermore, we provide evidence that the stimulation of both electron transport and RuBP regeneration can lead to enhanced intrinsic water-use efficiency under field conditions.
Collapse
Affiliation(s)
| | - Kenny L Brown
- School of Life Sciences, University of Essex, Colchester, UK
| | - Andrew J Simkin
- School of Life Sciences, University of Essex, Colchester, UK
- Genetics, Genomics and Breeding, NIAB EMR, East Malling, UK
| | - Stuart J Fisk
- School of Life Sciences, University of Essex, Colchester, UK
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | | |
Collapse
|