151
|
Bonde C, Noraberg J, Noer H, Zimmer J. Ionotropic glutamate receptors and glutamate transporters are involved in necrotic neuronal cell death induced by oxygen-glucose deprivation of hippocampal slice cultures. Neuroscience 2006; 136:779-94. [PMID: 16344151 DOI: 10.1016/j.neuroscience.2005.07.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 06/27/2005] [Accepted: 07/12/2005] [Indexed: 11/18/2022]
Abstract
Organotypic hippocampal slice cultures represent a feasible model for studies of cerebral ischemia and the role of ionotropic glutamate receptors in oxygen-glucose deprivation-induced neurodegeneration. New results and a review of existing data are presented in the first part of this paper. The role of glutamate transporters, with special reference to recent results on inhibition of glutamate transporters under normal and energy-failure (ischemia-like) conditions is reviewed in the last part of the paper. The experimental work is based on hippocampal slice cultures derived from 7 day old rats and grown for about 3 weeks. In such cultures we investigated the subfield neuronal susceptibility to oxygen-glucose deprivation, the type of induced cell death and the involvement of ionotropic glutamate receptors. Hippocampal slice cultures were also used in our studies on glutamate transporters reviewed in the last part of this paper. Neurodegeneration was monitored and/or shown by cellular uptake of propidium iodide, loss of immunocytochemical staining for microtubule-associated protein 2 and staining with Fluoro-Jade B. To distinguish between necrotic vs. apoptotic neuronal cell death we used immunocytochemical staining for active caspase-3 (apoptosis indicator) and Hoechst 33342 staining of nuclear chromatin. Our experimental studies on oxygen-glucose deprivation confirmed that CA1 pyramidal cells were the most susceptible to this ischemia-like condition. Judged by propidium iodide uptake, a selective CA1 lesion, with only minor affection on CA3, occurred in cultures exposed to oxygen-glucose deprivation for 30 min. Nuclear chromatin staining by Hoechst 33342 and staining for active caspase-3 showed that oxygen-glucose deprivation induced necrotic cell death only. Addition of 10 microM of the N-methyl-D-aspartate glutamate receptor antagonist MK-801, and 20 microM of the non-N-methyl-D-aspartate glutamate receptor antagonist 2,3-dihyroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline to the culture medium confirmed that both N-methyl-D-aspartate and non-N-methyl-D-aspartate ionotropic glutamate receptors were involved in the oxygen-glucose deprivation-induced cell death. Glutamate is normally quickly removed, from the extracellular space by sodium-dependent glutamate transporters. Effects of blocking the transporters by addition of the DL-threo-beta-benzyloxyaspartate are reviewed in the last part of the paper. Under normal conditions addition of DL-threo-beta-benzyloxyaspartate in concentrations of 25 microM or more to otherwise untreated hippocampal slice cultures induced neuronal cell death, which was prevented by addition of 2,3-dihyroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline and MK-801. In energy failure situations, like cerebral ischemia and oxygen-glucose deprivation, the transporters are believed to reverse and release glutamate to the extracellular space. Blockade of the transporters by a subtoxic (10 microM) dose of DL-threo-beta-benzyloxyaspartate during oxygen-glucose deprivation (but not during the next 48 h after oxygen-glucose deprivation) significantly reduced the oxygen-glucose deprivation-induced propidium iodide uptake, suggesting a neuroprotective inhibition of reverse transporter activity by DL-threo-beta-benzyloxyaspartate during oxygen-glucose deprivation under these conditions. Adding to this, other results from our laboratory have demonstrated that pre-treatment of the slice cultures with glial cell-line derived neurotrophic factor upregulates glutamate transporters. As a logical, but in some glial cell-line derived neurotrophic factor therapy-related conditions clearly unwanted consequence the susceptibility for oxygen-glucose deprivation-induced glutamate receptor-mediated cell death is increased after glial cell-line derived neurotrophic factor treatment. In summary, we conclude that both ionotropic glutamate receptors and glutamate transporters are involved in oxygen-glucose deprivation-induced necrotic cell death in hippocampal slice cultures, which have proven to be a feasible tool in experimental studies on this topic.
Collapse
Affiliation(s)
- C Bonde
- Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Winslowparken 21, DK-5000 Odense, Denmark
| | | | | | | |
Collapse
|
152
|
Hallin U, Kondo E, Ozaki Y, Hagberg H, Shibasaki F, Blomgren K. Bcl-2 phosphorylation in the BH4 domain precedes caspase-3 activation and cell death after neonatal cerebral hypoxic–ischemic injury. Neurobiol Dis 2006; 21:478-86. [PMID: 16213739 DOI: 10.1016/j.nbd.2005.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 08/09/2005] [Accepted: 08/24/2005] [Indexed: 11/22/2022] Open
Abstract
To date, there are very few in vivo studies addressing the role of Bcl-2 phosphorylation. In a model of neonatal hypoxic-ischemic (HI) brain injury, we characterized the spatial and temporal phosphorylation of Bcl-2 at serine-24 (PS24-Bcl-2), using a site-specific antibody. Very few cells positive for PS24-Bcl-2 were found in control animals, but the number increased during reperfusion in all investigated brain areas in the ipsilateral hemisphere after HI, particularly in the border region between intact and damaged tissue. The highest numbers were encountered 24 h post-HI. Phosphorylation of Bcl-2 at serine-24 coincided with cytochrome c release after hypoxia-ischemia and preceded caspase-3 activation. Injured neurons displayed a predominantly nuclear, but also mitochondrial, localization of PS24-Bcl-2 immunoreactivity. In conclusion, phosphorylation of Bcl-2 at serine 24 was induced by hypoxia-ischemia, presumably resulting in loss of its anti-apoptotic function.
Collapse
Affiliation(s)
- Ulrika Hallin
- Perinatal Center, Department of Physiology, Göteborg University, PO Box 432, SE 405 30 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
153
|
Dingman A, Lee SY, Derugin N, Wendland MF, Vexler ZS. Aminoguanidine inhibits caspase-3 and calpain activation without affecting microglial activation following neonatal transient cerebral ischemia. J Neurochem 2006; 96:1467-79. [PMID: 16464234 DOI: 10.1111/j.1471-4159.2006.03672.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Microglial cells, the resident macrophages of the CNS, can be both beneficial and detrimental to the brain. These cells play a central role as mediators of neuroinflammation associated with many neurodegenerative states, including cerebral ischemia. Because microglial cells are both a major source of inducible nitric oxide synthase (iNOS)/nitric oxide (NO) production locally in the injured brain and are activated by NO-mediated injury, we tested whether iNOS inhibition reduces microglial activation and ischemic injury in a neonatal focal ischemia-reperfusion model. Post-natal day 7 rats were subjected to a 2 h transient middle cerebral artery (MCA) occlusion. Pups with confirmed injury on diffusion-weighted magnetic resonance imaging (MRI) during occlusion were administered 300 mg/kg/dose aminoguanidine (AG) or vehicle at 0, 4 and 18 h after reperfusion, and animals were killed at 24 or 72 h post-reperfusion. The effect of AG on microglial activation as judged by the acquisition of ED1 immunoreactivity and proliferation of ED1-positive cells, on activation of cell death pathways and on injury volume, was determined. The study shows that while AG attenuates caspase 3 and calpain activation in the injured tissue, treatment does not affect the rapidly occurring activation and proliferation of microglia following transient MCA occlusion in the immature rat, or reduce injury size.
Collapse
Affiliation(s)
- Andra Dingman
- Department of Neurology, University of California San Francisco, California 94143-0663, USA
| | | | | | | | | |
Collapse
|
154
|
Blomgren K, Hagberg H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic Biol Med 2006; 40:388-97. [PMID: 16443153 DOI: 10.1016/j.freeradbiomed.2005.08.040] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 08/01/2005] [Accepted: 08/24/2005] [Indexed: 11/17/2022]
Abstract
The immature brain is particularly susceptible to free radical injury because of its poorly developed scavenging systems and high availability of iron for the catalytic formation of free radicals. Neurons are more vulnerable to free radical damage than glial cells, but oligodendrocyte progenitors and immature oligodendrocytes in very prematurely born infants are selectively vulnerable to depletion of antioxidants and free radical attack. Reactive oxygen and nitrogen species play important roles in the initiation of apoptotic mechanisms and in mitochondrial permeability transition, and therefore constitute important targets for therapeutic intervention. Oxidative stress is an early feature after cerebral ischemia and experimental studies targeting the formation of free radicals demonstrate various degrees of protection after perinatal insults. Oxidative stress-regulated release of proapoptotic factors from mitochondria appears to play a much more important role in the immature brain. This review will summarize and compare with the adult brain some of the current knowledge of free radical formation in the developing brain and its roles in the pathophysiology after cerebral hypoxia-ischemia.
Collapse
Affiliation(s)
- Klas Blomgren
- Arvid Carlsson Institute, Sahlgrenska Academy, Göteborg University, Sweden.
| | | |
Collapse
|
155
|
Meier C, Middelanis J, Wasielewski B, Neuhoff S, Roth-Haerer A, Gantert M, Dinse HR, Dermietzel R, Jensen A. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res 2006; 59:244-9. [PMID: 16439586 DOI: 10.1203/01.pdr.0000197309.08852.f5] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Brain damage around birth may cause lifelong neurodevelopmental deficits. We examined the therapeutic potential of human umbilical cord blood-derived mononuclear cells containing multipotent stem cells to facilitate motor recovery after cerebral hypoxic-ischemic damage in neonatal rats. Left carotid artery ligation followed by 8% O(2) inhalation for 80 min was performed on postnatal d 7, succeeded by intraperitoneal transplantation of human umbilical cord blood-derived mononuclear cells on postnatal d 8 in a sham-controlled design. Histologic and immunohistochemical analysis on postnatal d 21 revealed that neonates developed severe cerebral damage after the hypoxic-ischemic insult. These animals also suffered from contralateral spastic paresis, as evidenced by their locomotor behavior. After transplantation of human umbilical cord blood-derived mononuclear cells, spastic paresis was largely alleviated, resulting in a normal walking behavior. This "therapeutic" effect was accompanied by the fact that mononuclear cells had entered the brain and were incorporated around the lesion without obvious signs of transdifferentiation. This study demonstrates that intraperitoneal transplantation of human umbilical cord blood-derived mononuclear cells in a rat model of perinatal brain damage leads to both incorporation of these cells in the lesioned brain area and to an alleviation of the neurologic effects of cerebral palsy as assessed by footprint and walking pattern analysis.
Collapse
Affiliation(s)
- Carola Meier
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
This article reviews the important differences between children and adults suffering brain injury following cardiac arrest. The differences in etiology, pathophysiology, neuronal vulnerability, and repair in the context of the developing brain are reviewed. The available clinical data are reviewed, and selected treatment priori-ties are declared. The article includes a discussion of knowledge gaps and future directions.
Collapse
Affiliation(s)
- Robert W Hickey
- Division of Pediatric Emergency Medicine, Department of Pediatrics, University of Pittsburgh, Children's Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
157
|
Albrecht J, Hanganu IL, Heck N, Luhmann HJ. Oxygen and glucose deprivation induces major dysfunction in the somatosensory cortex of the newborn rat. Eur J Neurosci 2006; 22:2295-305. [PMID: 16262667 DOI: 10.1111/j.1460-9568.2005.04398.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanisms and functional consequences of ischemia-induced injury during perinatal development are poorly understood. Subplate neurons (SPn) play a central role in early cortical development and a pathophysiological impairment of these neurons may have long-term detrimental effects on cortical function. The acute and long-term consequences of combined oxygen and glucose deprivation (OGD) were investigated in SPn and compared with OGD-induced dysfunction of immature layer V pyramidal cortical neurons (PCn) in somatosensory cortical slices from postnatal day (P)0-4 rats. OGD for 50 min followed by a 10-24-h period of normal oxygenation and glucose supply in vitro or in culture led to pronounced caspase-3-dependent apoptotic cell death in all cortical layers. Whole-cell patch-clamp recordings revealed that the majority of SPn and PCn responded to OGD with an initial long-lasting ischemic hyperpolarization accompanied by a decrease in input resistance (R(in)), followed by an ischemic depolarization (ID). Upon reoxygenation and glucose supply, the recovery of the membrane potential and R(in) was followed by a Na+/K+-ATPase-dependent postischemic hyperpolarization, and in almost half of the investigated SPn and PCn by a postischemic depolarization. Whereas neither a moderate (2.5 mm) nor a high (4.8 mm) increase in extracellular magnesium concentration protected the SPn from OGD-induced dysfunction, blockade of NMDA receptors with MK-801 led to a significant delay and decrease of the ID. Our data demonstrate that OGD induces apoptosis and a profound dysfunction in SPn and PCn, and underline the critical role of NMDA receptors in early ischemia-induced neuronal damage.
Collapse
Affiliation(s)
- Juliane Albrecht
- Institute of Physiology & Pathophysiology, Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | | | | | | |
Collapse
|
158
|
Zhu C, Xu F, Wang X, Shibata M, Uchiyama Y, Blomgren K, Hagberg H. Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem 2006; 96:1016-27. [PMID: 16412092 DOI: 10.1111/j.1471-4159.2005.03639.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sex-related brain injury was evaluated after unilateral hypoxia-ischaemia (HI) in C57/BL6 mice on postnatal day (P) 5, 9, 21 or 60, corresponding developmentally to premature, term, juvenile and adult human brains. There was no sex difference in brain injury when the insult was severe, as evaluated by pathological scoring or tissue loss, but when the insult was moderate, adult (P60) females displayed less injury. In the immature (P9) male brains, neurones displayed a more pronounced translocation of apoptosis-inducing factor (AIF) (loss of AIF from the mitochondrial fraction and increase in nuclear AIF) after HI, whereas the female brain neurones displayed a stronger activation of caspase 3 (more pronounced loss of pro-caspase 3, increase in cleaved caspase 3 and increase in caspase 3 enzymatic activity). Two other mechanisms of injury, peroxynitrite-induced formation of nitrotyrosine and autophagy, were no different between males and females at P9. These data show that the CNS is more resistant to HI in adult females compared with males, whereas no sex differences were found in the extent of injury in neonatal mice. However, critical sex-dependent differences were demonstrated in vivo with regard to cellular, apoptosis-related mechanisms.
Collapse
Affiliation(s)
- Changlian Zhu
- Arvid Carlsson Institute of Neuroscience at the Institute of Clinical Neuroscience, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
159
|
Zhu C, Wang X, Xu F, Qiu L, Cheng X, Simbruner G, Blomgren K. Intraischemic mild hypothermia prevents neuronal cell death and tissue loss after neonatal cerebral hypoxia-ischemia. Eur J Neurosci 2006; 23:387-93. [PMID: 16420446 DOI: 10.1111/j.1460-9568.2005.04581.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effectiveness of hypothermia in preventing ischemic brain damage depends on when it is started. The purpose of this study was to investigate the effects of temperature reduction during a hypoxic-ischemic (HI) insult on brain injury and signalling pathways of neuronal cell death and survival. Seven-day-old mice were subjected to left common carotid artery ligation and hypoxia (10% oxygen) at different temperatures (37, 36 or 34 degrees C) for 50 min. Brain injury at 7 days post-HI was significantly reduced from 67.4% at 37 degrees C to 31.6% at 36 degrees C and 10% at 34 degrees C, with no observable injury in the cortex of the 34 degrees C group. Cytochrome c release, caspase-3 activation and apoptosis-inducing factor translocation from mitochondria to nuclei were all significantly inhibited after intraischemic temperature reduction. Concurrently, the cell survival signalling pathway involving Akt was significantly sustained (the phosphorylated form of Akt was maintained) when the hypoxia temperature was decreased. These results indicate that intraischemic hypothermia diminished apoptosis through inhibition of both caspase-dependent and caspase-independent neuronal cell death pathways and promoted cell survival by inhibition of phosphorylated Akt dephosphorylation in the neonatal brain, thereby preventing neuronal cell death.
Collapse
Affiliation(s)
- Changlian Zhu
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | | | | | | | | | | | | |
Collapse
|
160
|
Carloni S, Mazzoni E, Cimino M, De Simoni MG, Perego C, Scopa C, Balduini W. Simvastatin reduces caspase-3 activation and inflammatory markers induced by hypoxia–ischemia in the newborn rat. Neurobiol Dis 2006; 21:119-26. [PMID: 16054375 DOI: 10.1016/j.nbd.2005.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/31/2005] [Accepted: 06/15/2005] [Indexed: 12/14/2022] Open
Abstract
The present study was undertaken to evaluate whether in a neonatal model of stroke a prophylactic neuroprotective treatment with simvastatin modulates hypoxia-ischemia-induced inflammatory and apoptotic signaling. Procaspase-3 and cleaved caspase-3 expression showed a peak at 24 h and returned to control values after 5 days. Caspase-3 activity followed the same pattern of caspase-3 proteolytic cleavage. In simvastatin-treated ischemic animals, the expression of these proteins and caspase-3 activity were significantly lower when compared to that of ischemic animals. alpha-Spectrin and protein kinase C-alpha (PKCalpha) cleavages were not affected by the treatment. Poly (ADP-ribose) polymerase fragmentation, caspase-1 activation, and IL-1beta and ICAM-1 mRNA expression were increased by hypoxia-ischemia and significantly reduced in simvastatin-treated animals. The results indicate that simvastatin-induced attenuation of hypoxia-ischemia brain injury in the newborn rat occurs through reduction of the inflammatory response, caspase-3 activation, and apoptotic cell death.
Collapse
Affiliation(s)
- Silvia Carloni
- Istituto di Farmacologia e Farmacognosia, Università degli Studi di Urbino Carlo Bo, Via S. Chiara 27, 61029 Urbino, Italy
| | | | | | | | | | | | | |
Collapse
|
161
|
Oomman S, Strahlendorf H, Finckbone V, Strahlendorf J. Non-lethal active caspase-3 expression in Bergmann glia of postnatal rat cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 160:130-45. [PMID: 16226814 DOI: 10.1016/j.devbrainres.2005.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/27/2005] [Accepted: 07/29/2005] [Indexed: 11/27/2022]
Abstract
Caspase-3, an apoptotic executor, has been shown in recent years to mediate non-lethal events like cellular proliferation and differentiation, primarily in studies related to non-neural tissue. In central nervous system development, the role of active caspase-3 is still unclear. We provide the first evidence for a potential new role of active (cleaved) caspase-3 in promoting differentiation of Bergmann glia. This study was predicated on the hypothesis that active caspase-3 is important for the differentiation of glia. We addressed the hypothesis through the following specific aims: (1) to establish the expression of active caspase-3 in glia; (2) to determine the developmental phenotype of the active caspase-3-expressing glia; and (3) to confirm that active caspase-3 expression is not mediating an apoptotic event. Through a temporal investigation from postnatal day 8 to 21, we observed that Bergmann glia express active caspase-3 without compromising their survival. Potential apoptotic fate of active caspase-3-positive Bergmann glia were ruled out based on immunohistochemical exclusion of phosphatidylserine exposure (Annexin V), DNA fragmentation (TUNEL), and DNA compaction (TOPRO-3). More than 90% of the active caspase-3-positive cells lacked colabeling for one of the apoptotic markers. Correlative studies using a proliferation marker Ki67 and a differentiation marker brain lipid-binding protein suggest that the expression of active caspase-3 was mostly associated with differentiating rather than proliferating Bergmann glia at all ages. Thus, this study supports the hypothesis that active caspase-3 may be regulating both differentiation of Bergmann glia by allowing the cells to exit the cell cycle and their morphogenesis.
Collapse
Affiliation(s)
- Sowmini Oomman
- Department of Physiology, Texas Tech University Health Sciences Center, Room 5A163, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|
162
|
Derugin N, Dingman A, Wendland MF, Fox C, Bollen A, Vexler ZS. Magnetic resonance imaging as a surrogate measure for histological sub-chronic endpoint in a neonatal rat stroke model. Brain Res 2005; 1066:49-56. [PMID: 16336947 DOI: 10.1016/j.brainres.2005.10.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/07/2005] [Accepted: 10/11/2005] [Indexed: 11/22/2022]
Abstract
INTRODUCTION It is becoming increasingly recognized that CNS immaturity at birth affects ischemic injury and recovery, and that the consequences of neonatal stroke need to be studied using age-appropriate focal stroke models. The inclusion of magnetic resonance imaging (MRI) as a surrogate measure of stroke progression has provided useful information in adult models, but the benefit for neonatal stroke studies is yet to be established. METHODS Postnatal 7-day (P7) rats were subjected to a 3-h transient occlusion of the middle cerebral artery (MCA) which was produced either by inserting a filament via the external carotid artery or via the internal carotid artery. MRI was used to delineate the size and pattern of injury acutely, during MCA occlusion, and 7 days following reperfusion. RESULTS The size of the diffusion-weighted (DW) MRI-detectable injury during MCA occlusion was similar following both surgical procedures and resulted in histological lesions 7 days later in all animals. The extent of spontaneous recovery in individual animals varied substantially 7 days later within each group, as was depicted by a combination of DW- and T2W-MRI and confirmed by the corresponding histology. CONCLUSIONS The ability of MRI to provide accurate information on the size of histological outcome at 7 days after neonatal focal transient ischemia suggests that MRI is useful as an intermediate surrogate measure of injury progression in long-term neonatal stroke studies.
Collapse
Affiliation(s)
- Nikita Derugin
- Department of Neurosurgery, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
163
|
Holopainen IE. Organotypic Hippocampal Slice Cultures: A Model System to Study Basic Cellular and Molecular Mechanisms of Neuronal Cell Death, Neuroprotection, and Synaptic Plasticity. Neurochem Res 2005; 30:1521-8. [PMID: 16362771 DOI: 10.1007/s11064-005-8829-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
The hippocampus has become one of the most extensively studied areas of the mammalian brain, and its proper function is of utmost importance, particularly for learning and memory. The hippocampus is the most susceptible brain region for damage, and its impaired function has been documented in many human brain diseases, e.g. hypoxia, ischemia, and epilepsy regardless of the age of the affected patients. In addition to experimental in vivo models of these disorders, the investigation of basic anatomical, physiological, and molecular aspects requires an adequate experimental in vitro model, which should meet the requirements for well-preserved representation of various cell types, and functional information processing properties in the hippocampus. In this review, the characteristics of organotypic hippocampal slice cultures (OHCs) together with the main differences between the in vivo and in vitro preparations are first briefly outlined. Thereafter, the use of OHCs in studies focusing on neuron cell death and synaptic plasticity is discussed.
Collapse
Affiliation(s)
- Irma E Holopainen
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4, FI-20520, Turku, Finland.
| |
Collapse
|
164
|
Golden WC, Martin LJ. Low-dose ouabain protects against excitotoxic apoptosis and up-regulates nuclear Bcl-2 in vivo. Neuroscience 2005; 137:133-44. [PMID: 16297565 DOI: 10.1016/j.neuroscience.2005.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 09/15/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Sodium-potassium ATPase (Na+,K+-ATPase) regulates the electrochemical gradient in cells, thereby providing fluid and ionic homeostasis. Additionally, interaction of the Na+,K+ pump with cardiac glycosides can activate intracellular signaling cascades (resulting in cell growth) and up-regulate transcription factors that promote cell survival. We used an in vivo excitotoxicity model to assess if Na+,K+-ATPase plays a role in neuronal apoptosis. After unilateral, intrastriatal injection of the glutamate receptor agonist kainic acid into postnatal day 7 rats, Na+,K+ pump function was increased at 12 h after excitotoxic challenge, and levels of neuron-specific enzyme subunits were preserved (up to 24 h after injection) in membrane-enriched striatal fractions. In addition, co-injection of kainic acid with a low-dose (0.01 nmol) of the cardiac glycoside ouabain significantly (P<0.05) reduced striatal apoptosis (at 24 h post-injection) without diminishing Na+,K+-ATPase activity. To evaluate the possible mechanisms for this neuroprotection, we examined the levels of nuclear factor kappa B and Bcl-2 after cardiac glycoside exposure. Low-dose ouabain increased nuclear Bcl-2 (but not nuclear factor kappa B) protein levels at 6 h post injection. Our results suggest that Na+,K+-ATPase allows for progression of apoptosis in excitotoxically-injured neurons, and that sublethal concentrations of ouabain provide neuroprotection against excitotoxicity. The mechanism for this ouabain neuroprotection could be intracellular cascades linked to the Na+,K+-ATPase-ouabain interaction that modulate subcellular Bcl-2 levels. Targeted, therapeutic inhibition of apoptosis through cardiac glycosides may represent an effective strategy against excitotoxicity-mediated neuronal injury.
Collapse
Affiliation(s)
- W C Golden
- Department of Pediatrics, Eudowood Neonatal Pulmonary Division, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Nelson-Harvey 2-133, Baltimore, MD 21287, USA.
| | | |
Collapse
|
165
|
Brywe KG, Leverin AL, Gustavsson M, Mallard C, Granata R, Destefanis S, Volante M, Hagberg H, Ghigo E, Isgaard J. Growth hormone-releasing peptide hexarelin reduces neonatal brain injury and alters Akt/glycogen synthase kinase-3beta phosphorylation. Endocrinology 2005; 146:4665-72. [PMID: 16081643 DOI: 10.1210/en.2005-0389] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hexarelin (HEX) is a peptide GH secretagogue with a potent ability to stimulate GH secretion and recently reported cardioprotective actions. However, its effects in the brain are largely unknown, and the aim of the present study was to examine the potential protective effect of HEX on the central nervous system after injury, as well as on caspase-3, Akt, and extracellular signal-regulated protein kinase (ERK) signaling cascades in a rat model of neonatal hypoxia-ischemia. Hypoxic-ischemic insult was induced by unilateral carotid ligation and hypoxic exposure (7.7% oxygen), and HEX treatment was administered intracerebroventricularly, directly after the insult. Brain damage was quantified at four coronal levels and by regional neuropathological scoring. Brain damage was reduced by 39% in the treatment group, compared with vehicle group, and injury was significantly reduced in the cerebral cortex, hippocampus, and thalamus but not in the striatum. The cerebroprotective effect was accompanied by a significant reduction of caspase-3 activity and an increased phosphorylation of Akt and glycogen synthase kinase-3beta, whereas ERK was unaffected. In conclusion, we demonstrate for the first time that HEX is neuroprotective in the neonatal setting in vivo and that increased Akt signaling is associated with downstream attenuation of glycogen synthase kinase-3beta activity and caspase-dependent cell death.
Collapse
Affiliation(s)
- Katarina G Brywe
- Perinatal Center, Department of Obstetrics and Gynecology, Sahlgrenska Academy, Box 432, 405 30 Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
Excitotoxicity is an important mechanism involved in perinatal brain injuries. Glutamate is the major excitatory neurotransmitter, and most neurons as well as many oligodendrocytes and astrocytes possess receptors for glutamate. Perinatal insults such as hypoxia-ischemia, stroke, hypoglycemia, kernicterus, and trauma can disrupt synaptic function leading to accumulation of extracellular glutamate and excessive stimulation of these receptors. The activities of certain glutamate receptor/channel complexes are enhanced in the immature brain to promote activity-dependent plasticity. Excessive stimulation of glutamate receptor/ion channel complexes triggers calcium flooding and a cascade of intracellular events that results in apoptosis and/or necrosis. Recent research suggests that some of these intracellular pathways are sexually dimorphic. Age dependent expression of different glutamate receptor subtypes with varying abilities to flux calcium has been associated with special patterns of selective vulnerability at different gestational ages. For example, selective injury to the putamen, thalamus and cerebral cortex from near total asphyxia in term infants may be related to excessive activation of neuronal NMDA and AMPA type glutamate receptors, while brainstem injury may be related primarily to stimulation of neuronal AMPA/kainate receptors. In contrast, periventricular leukomalacia in premature infants has been linked to expression of AMPA/kainate receptors on immature oligodendrocytes. Insight into the molecular pathways that mediate perinatal brain injuries could lead to therapeutic interventions.
Collapse
Affiliation(s)
- Michael V Johnston
- Kennedy Krieger Institute and Department of Neurology, Johns Hopkins University School of Medicine, 707 North Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
167
|
Northington FJ, Graham EM, Martin LJ. Apoptosis in perinatal hypoxic-ischemic brain injury: how important is it and should it be inhibited? ACTA ACUST UNITED AC 2005; 50:244-57. [PMID: 16216332 DOI: 10.1016/j.brainresrev.2005.07.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 07/12/2005] [Accepted: 07/14/2005] [Indexed: 01/21/2023]
Abstract
The discovery of safe and effective therapies for perinatal hypoxia-ischemia (HI) and stroke remains an unmet goal of perinatal medicine. Hypothermia and antioxidants such as allopurinol are currently under investigation as treatments for neonatal HI. Drugs targeting apoptotic mechanisms are currently being studied in adult diseases such as cancer, stroke, and trauma and have been proposed as potential therapies for perinatal HI and stroke. Before developing antiapoptosis therapies for perinatal brain injury, we must determine whether this form of cell death plays an important role in these injuries and if the inhibition of these pathways promotes more benefit than harm. This review summarizes current evidence for apoptotic mechanisms in perinatal brain injury and addresses issues pertinent to the development of antiapoptosis therapies for perinatal HI and stroke.
Collapse
Affiliation(s)
- Frances J Northington
- Department of Pediatrics, Eudowood Neonatal Pulmonary Division, Dept. of Pediatrics, CMSC 6-104, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
168
|
Ohmura A, Nakajima W, Ishida A, Yasuoka N, Kawamura M, Miura S, Takada G. Prolonged hypothermia protects neonatal rat brain against hypoxic-ischemia by reducing both apoptosis and necrosis. Brain Dev 2005; 27:517-26. [PMID: 15899566 DOI: 10.1016/j.braindev.2005.01.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 12/27/2004] [Accepted: 01/13/2005] [Indexed: 11/16/2022]
Abstract
Although hypothermia is an effective treatment for perinatal cerebral hypoxic-ischemic (HI) injury, it remains unclear how long and how deep we need to maintain hypothermia to obtain maximum neuroprotection. We examined effects of prolonged hypothermia on HI immature rat brain and its protective mechanisms using the Rice-Vannucci model. Immediately after the end of hypoxic exposure, the pups divided into a hypothermia group (30 degrees C) and a normothermia one (37 degrees C). Rectal temperature was maintained until they were sacrificed at each time point before 72h post HI. Prolonged hypothermia significantly reduced macroscopic brain injury compared with normothermia group. Quantitative analysis of cell death using H&E-stained sections revealed the number of both apoptotic and necrotic cells was significantly reduced by hypothermia after 24h post HI. Hypothermia seemed to decrease the number of TUNEL-positive cells. Immunohistochemistry and Western blot showed that prolonged hypothermia suppressed cytochrome c release from mitochondria to cytosol and activation of both caspase-3 and calpain in cortex, hippocampus, thalamus and striatum throughout the experiment. These results showed that prolonged hypothermia significantly reduced neonatal brain injury even when it was started after HI insult. Our results suggest that prolonged hypothermia protects neonatal brain after HI by reducing both apoptosis and necrosis.
Collapse
Affiliation(s)
- Akiko Ohmura
- Department of Pediatrics, Akita University School of Medicine, 1-1-1 Honda, Akita, 010-8543, Japan
| | | | | | | | | | | | | |
Collapse
|
169
|
Hossain MA. Molecular mediators of hypoxic-ischemic injury and implications for epilepsy in the developing brain. Epilepsy Behav 2005; 7:204-13. [PMID: 16054439 DOI: 10.1016/j.yebeh.2005.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 05/24/2005] [Indexed: 02/05/2023]
Abstract
Perinatal hypoxia-ischemia (HI) is the most common cause of cerebral palsy, and an important consequence of perinatal HI is epilepsy. Epilepsy is a disorder in which the balance between cerebral excitability and inhibition is tipped toward uncontrolled excitability. Selected neuronal circuits as well as certain populations of glial cells die from the excitotoxicity triggered by HI. Excitotoxicity, a term referring to cell death caused by overstimulation of the excitatory glutamate neurotransmitter receptors, plays a critical role in brain injury caused by perinatal HI. Ample evidence suggests distinct differences between the immature and mature brain with respect to the pathology and consequences of hypoxic-ischemic brain injury. Thus, the intrinsic vulnerability of specific cell types and systems in the developing brain is particularly important in determining the final pattern of damage and functional disability caused by perinatal HI. These patterns of neuronal vulnerability are associated with clinical syndromes of neurologic disorders such as cerebral palsy, epilepsy, and seizures. Recent studies have uncovered important molecular and cellular aspects of hypoxic-ischemic brain injury. The cascade of biochemical and histopathological events initiated by HI can extend for days to weeks after the insult is triggered, which may provide a "therapeutic window" for intervening in the pathogenesis in the developing brain. Activation of apoptotic programs accounts for the majority of HI-induced pathophysiology in neonatal brain disorders. New experimental approaches to protecting brain tissue from the effects of neonatal HI include administration of neuronal growth factors and effective inhibition of the death effector pathways, such as caspase cascade, and their downstream targets, which execute apoptosis and/or induction of their regulatory cellular proteins. Our recent findings that a novel neuronal protein, neuronal pentraxin 1 (NP1), is induced following HI in neonatal brain and that NP1 gene silencing is neuroprotective suggest that NP1 could be a new molecular target in the central neurons for preventing HI injury in developing brain. Most importantly, the specific interactions between NP1 and the excitatory glutamate receptors and their colocalization further implicate a role for this novel neuronal protein in the excitotoxic cascade. Recent experimental work suggests that these approaches may be effective during a longer therapeutic window after the insult, as they are acting on events that are relatively delayed, creating the potential for therapeutic interventions for these lifelong neurological disabilities.
Collapse
Affiliation(s)
- Mir Ahamed Hossain
- Department of Neurology, The Johns Hopkins University School of Medicine and The Kennedy Krieger Research Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
170
|
Fukuda A, Fukuda H, Jönsson M, Swanpalmer J, Hertzman S, Lannering B, Björk-Eriksson T, Màrky I, Blomgren K. Progenitor cell injury after irradiation to the developing brain can be modulated by mild hypothermia or hyperthermia. J Neurochem 2005; 94:1604-19. [PMID: 16086699 DOI: 10.1111/j.1471-4159.2005.03313.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ionizing radiation induced acute cell death in the dentate gyrus subgranular zone (SGZ) and the subventricular zone (SVZ). Hypomyelination was also observed. The effects of mild hypothermia and hyperthermia for 4 h after irradiation (IR) were studied in postnatal day 9 rats. One hemisphere was irradiated with a single dose of 8 Gy and animals were randomized to normothermia (rectal temperature 36 degrees C for 4 h), hypothermia (32 degrees C for 4 h) or hyperthermia (39 degrees C for 4 h). Cellular injury, e.g. chromatin condensation and nitrotyrosine formation, appeared to proceed faster when the body temperature was higher. Caspase-3 activation was more pronounced in the hyperthermia group and nuclear translocation of p53 was less pronounced in the hypothermia group 6 h after IR. In the SVZ the loss of nestin-positive progenitors was more pronounced (48%) and the size was smaller (45%) in the hyperthermia group 7 days post-IR. Myelination was not different after hypo- or hyperthermia. This is the first report to demonstrate that hypothermia may be beneficial and that hyperthermia may aggravate the adverse side-effects after radiation therapy to the developing brain.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis/physiology
- Apoptosis/radiation effects
- Body Temperature/physiology
- Brain/growth & development
- Brain/physiopathology
- Brain/radiation effects
- Brain Damage, Chronic/physiopathology
- Brain Damage, Chronic/prevention & control
- Brain Damage, Chronic/therapy
- Caspase 3
- Caspases/metabolism
- Dentate Gyrus/growth & development
- Dentate Gyrus/physiopathology
- Dentate Gyrus/radiation effects
- Female
- Hyperthermia, Induced/adverse effects
- Hypothermia, Induced
- Intermediate Filament Proteins/metabolism
- Male
- Nerve Degeneration/physiopathology
- Nerve Degeneration/prevention & control
- Nerve Degeneration/therapy
- Nerve Tissue Proteins/metabolism
- Nestin
- Neurons/physiology
- Neurons/radiation effects
- Radiation Injuries, Experimental/physiopathology
- Radiation Injuries, Experimental/prevention & control
- Radiation Injuries, Experimental/therapy
- Radiation, Ionizing
- Rats
- Rats, Wistar
- Stem Cells/physiology
- Stem Cells/radiation effects
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Aya Fukuda
- The Arvid Carlsson Institute of Neuroscience at the Institute of Clinical Neuroscience, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GK. Biphasic cytochrome c release after transient global ischemia and its inhibition by hypothermia. J Cereb Blood Flow Metab 2005; 25:1119-29. [PMID: 15789032 DOI: 10.1038/sj.jcbfm.9600111] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypothermia is effective in preventing ischemic damage. A caspase-dependent apoptotic pathway is involved in ischemic damage, but how hypothermia inhibits this pathway after global cerebral ischemia has not been well explored. It was determined whether hypothermia protects the brain by altering cytochrome c release and caspase activity. Cerebral ischemia was produced by two-vessel occlusion plus hypotension for 10 mins. Body temperature in hypothermic animals was reduced to 33 degrees C before ischemia onset and maintained for 3 h after reperfusion. Western blots of subcellular fractions revealed biphasic cytosolic cytochrome c release, with an initial peak at about 5 h after ischemia, which decreased at 12 to 24 h, and a second, larger peak at 48 h. Caspase-3 and -9 activity increased at 12 and 24 h. A caspase inhibitor, Z-DEVD-FMK, administered 5 and 24 h after ischemia onset, protected hippocampal CA1 neurons from injury and blocked the second cytochrome c peak, suggesting that caspases mediate this second phase. Hypothermia (33 degrees C), which prevented CA1 injury, did not inhibit cytochrome c release at 5 h, but reduced cytochrome c release at 48 h. Caspase-3 and -9 activity was markedly attenuated by hypothermia at 12 and 24 h. Thus, biphasic cytochrome c release occurs after transient global ischemia and mild hypothermia protects against ischemic damage by blocking the second phase of cytochrome c release, possibly by blocking caspase activity.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, California 94305-5327, USA
| | | | | | | | | |
Collapse
|
172
|
Fox C, Dingman A, Derugin N, Wendland MF, Manabat C, Ji S, Ferriero DM, Vexler ZS. Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2005; 25:1138-49. [PMID: 15874975 PMCID: PMC2262097 DOI: 10.1038/sj.jcbfm.9600121] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The incidence of neonatal stroke is high and currently there are no strategies to protect the neonatal brain from stroke or reduce the sequelae. Agents capable of modifying inflammatory processes hold promise. We set out to determine whether delayed administration of one such agent, minocycline, protects the immature brain in a model of transient middle cerebral artery (MCA) occlusion in 7-day-old rat pups. Injury volume in minocycline (45 mg/kg/dose, beginning at 2 h after MCA occlusion) and vehicle-treated pups was determined 24 h and 7 days after onset of reperfusion. Accumulation of activated microglia/macrophages, phosphorylation of mitogen-activated protein kinase (MAPK) p38 in the brain, and concentrations of inflammatory mediators in plasma and brain were determined at 24 h. Minocycline significantly reduced the volume of injury at 24 h but not 7 days after transient MCA occlusion. The beneficial effect of minocycline acutely after reperfusion was not associated with changed ED1 phenotype, nor was the pattern of MAPK p38 phosphorylation altered. Minocycline reduced accumulation of IL-1beta and CINC-1 in the systemic circulation but failed to affect the increased levels of IL-1beta, IL-18, MCP-1 or CINC-1 in the injured brain tissue. Therefore, minocycline provides early but transient protection, which is largely independent of microglial activation or activation of the MAPK p38 pathway.
Collapse
Affiliation(s)
- Christine Fox
- Department of Neurology, University of California, San Francisco, California, USA
| | - Andra Dingman
- Department of Neurology, University of California, San Francisco, California, USA
| | - Nikita Derugin
- Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Michael F Wendland
- Department of Radiology, University of California, San Francisco, California, USA
| | - Catherine Manabat
- Department of Neurology, University of California, San Francisco, California, USA
| | - Shaoquan Ji
- Linco Research, Inc., St. Charles, Missouri, USA
| | - Donna M Ferriero
- Department of Neurology, University of California, San Francisco, California, USA
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Zinaida S Vexler
- Department of Neurology, University of California, San Francisco, California, USA
| |
Collapse
|
173
|
Yakovlev AG, Faden AI. Mechanisms of neural cell death: implications for development of neuroprotective treatment strategies. NeuroRx 2005; 1:5-16. [PMID: 15717003 PMCID: PMC534908 DOI: 10.1602/neurorx.1.1.5] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It has been increasingly recognized that cell death phenotypes and their molecular mechanisms are highly diverse. Necrosis is no longer considered a single entity, passively mediated by energy failure. Moreover, caspase-dependent apoptosis is not the only pathway involved in programmed cell death or even the only apoptotic mechanism. Recent experimental work emphasizes the diverse and interrelated nature of cell death mechanisms. Thus, there are both caspase-dependent and caspase-independent forms of apoptosis, which may differ morphologically as well as mechanistically. There are also necrotic-like phenotypes that require de novo protein synthesis and are, therefore, forms of programmed cell death. In addition, forms of cell death showing certain morphological features of both necrosis and apoptosis have been identified, leading to the term aponecrosis. Considerable experimental evidence also shows that modulation of one form of cell death may lead to another. Together, these observations underscore the need to substantially revise our conceptions about neuroprotection strategies. Use of multiple treatments that target different cell death cascades, or single agents that moderate multiple cell death pathways, is likely to lead to more effective neuroprotection for clinical disorders.
Collapse
Affiliation(s)
- Alexander G Yakovlev
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | | |
Collapse
|
174
|
Abstract
Astrocytes are essential for neuronal survival and function, neurogenesis, and neural repair. Although astrocytes are more resistant than neurons to most stress conditions in vitro, certain astrocyte subtypes, such as the glial fibrillary acidic protein (GFAP)-negative protoplasmic astrocytes that predominate in gray matter structures, may be equally or more sensitive than neurons to ischemia in vivo. Programmed cell death differs from passive, necrotic death in that cell constituents actively participate in cell demise. Like neurons, astrocytes undergo programmed cell death during normal development. Cell culture studies have shown that astrocytes can be induced to undergo apoptosis and other forms of programmed cell death by many factors relevant to ischemia, including acidosis, oxidative stress, substrate deprivation, and cytokines. Animal models of cerebral ischemia have confirmed nuclear condensation and upregulation of Bax and caspases in a subset of astrocytes exposed to ischemia, especially in immature brain. A causal role for these events in astrocyte death is supported by improved astrocyte survival after inhibition of caspase-dependent cell death pathways. Astrocyte survival is also improved by blocking the poly(ADP-ribose)-1 cell death pathway. Markers of programmed cell death are generally less evident and less widespread in astrocytes than in neighboring neurons. However, most studies to date have relied only on markers of classical apoptosis. In addition, these studies have relied almost exclusively on GFAP to identify astrocytes. Since most protoplasmic astrocytes are poorly immunoreactive for GFAP, the extent of ischemia-induced programmed cell death in this cell type remains uncertain.
Collapse
Affiliation(s)
- Rona G Giffard
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California
| | - Raymond A Swanson
- Department of Neurology, University of California and Veterans Affairs Medical Center, San Francisco, California
| |
Collapse
|
175
|
Chock VY, Giffard RG. Development of neonatal murine microglia in vitro: changes in response to lipopolysaccharide and ischemia-like injury. Pediatr Res 2005; 57:475-80. [PMID: 15718374 DOI: 10.1203/01.pdr.0000155758.79523.44] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hypoxic/ischemic brain injury in the neonate can activate an inflammatory cascade, which potentiates cellular injury. The role of microglia in this inflammatory response has not been studied extensively. We used an in vitro model of murine microglia to investigate changes in microglial cytokine release and injury during early development. Isolated microglia were subjected to lipopolysaccharide (LPS) activation or injury by glucose deprivation (GD), serum deprivation (SD), or combined oxygen-glucose deprivation (OGD) for varying durations. The extent and the type of cell death were determined by trypan blue, terminal deoxynucleotidyl end-nick labeling, and annexin staining. Early-culture microglia (2-3 d in purified culture) showed significantly more apoptotic cell death after SD, GD, and OGD compared with microglia maintained in culture for 14-17 d. Measurements of tumor necrosis factor-alpha (TNF-alpha) and IL-1beta in culture media demonstrated that OGD induced greater release of both TNF-alpha and IL-1beta than LPS activation, with early-culture microglia producing more TNF-alpha compared with late-culture microglia. Microglia that are cultured for a short time are more sensitive to ischemia-like injury in vitro than those that are cultured for longer durations and may contribute to worsening brain injury by increased release of inflammatory cytokines. Inhibition of microglial activation and decreasing proinflammatory cytokine release may be targets for reduction of neonatal hypoxic/ischemic brain injury.
Collapse
Affiliation(s)
- Valerie Y Chock
- Department of Neonatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
176
|
Spalding KL, Dharmarajan AM, Harvey AR. Caspase-independent retinal ganglion cell death after target ablation in the neonatal rat. Eur J Neurosci 2005; 21:33-45. [PMID: 15654841 DOI: 10.1111/j.1460-9568.2004.03826.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In neonatal rats, superior colliculus (SC) ablation results in a massive and rapid increase in retinal ganglion cell (RGC) death that peaks about 24 h post-lesion (PL). Naturally occurring cell death during normal development, and RGC death after axonal injury in neonatal and adult rats, has primarily been ascribed to apoptosis. Given that normal developmental cell death is reported to involve caspase 3 activation, and blocking caspase activity in adults reduces axotomy-induced death, we examined whether blocking caspases in vivo reduces RGC death after neonatal SC lesions. Neither general nor specific caspase inhibitors increased neonatal RGC survival 6 and 24 h PL. These inhibitors were, however, effective in blocking caspases in another well-defined in vitro apoptosis model, the corpus luteum. Caspase 3 protein and mRNA levels in retinas from normal and SC-lesioned neonatal rats were assessed 3, 6 and 24 h after SC removal using immunohistochemistry, western and northern blots and quantitative real-time polymerase chain reaction. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) was used to independently monitor retinal cell death. The polymerase chain reaction data showed a small but insignificant increase in caspase 3 mRNA in retinas 24 h PL. Western blot analysis did not reveal a significant shift to cleaved (activated) caspase 3 protein. There was a small increase in the number of cleaved caspase 3 immunolabelled cells in the ganglion cell layer 24 h PL but this represented only a fraction of the death revealed by TUNEL. Together, these data indicate that, unlike the situation in adults, most lesion-induced RGC death in neonatal rats occurs independently of caspase activation.
Collapse
Affiliation(s)
- Kirsty L Spalding
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA, Australia.
| | | | | |
Collapse
|
177
|
Chen Z, Kontonotas D, Friedmann D, Pitts-Kiefer A, Frederick JR, Siman R, Neumar RW. Developmental status of neurons selectively vulnerable to rapidly triggered post-ischemic caspase activation. Neurosci Lett 2005; 376:166-70. [PMID: 15721215 DOI: 10.1016/j.neulet.2004.11.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 11/15/2004] [Accepted: 11/16/2004] [Indexed: 10/26/2022]
Abstract
Caspase activation occurs within 1h of reperfusion in discrete cell populations of the adult rat brain following transient forebrain ischemia. Based on the proximity of these cells to regions of adult neurogenesis and the known susceptibility of developing neurons to apoptosis, we tested the hypothesis that rapidly triggered post-ischemic caspase activation occurs in immature neurons or neuroprogenitor cells. Adult male Long Evans rats were injected with BrdU to label mitotic cells 1, 7, or 28 days prior to being studied. Rats were then subjected to either sham surgery or 10-min transient forebrain ischemia. At 1h after reperfusion, rats underwent perfusion fixation and brains prepared for immunohistochemical analysis. Immunolabeling for caspase-substrate cleavage, using an antibody directed at the caspase derived fragment of alpha-spectrin, was observed in discrete cell populations of the rostral dentate gyrus, dorsal striatum, extreme paramedian CA1 hippocampus, indusium gresium, olfactory tubercle, and thalamus. No cells double-labeled for caspase-substrate cleavage and BrdU at any time point after BrdU injection. Furthermore, cells immunolabeled for caspase-substrate cleavage did not double-label for markers of immature neurons (doublecortin) or progenitor cells (nestin), but did double-label for the mature neuronal marker NeuN. These results indicate that the phenomenon of rapidly triggered caspase activation in the adult rat brain after transient forebrain ischemia is specific to mature neurons and does not occur in neuroprogenitor cells or immature neurons.
Collapse
Affiliation(s)
- Zhaoming Chen
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104-4283, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Jantzie LL, Cheung PY, Todd KG. Doxycycline reduces cleaved caspase-3 and microglial activation in an animal model of neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 2005; 25:314-24. [PMID: 15647741 DOI: 10.1038/sj.jcbfm.9600025] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is a major contributor to many perinatal neurologic disorders and, thus, the search for therapies and effective treatments for the associated brain damage has become increasingly important. The tetracycline derivative, doxycycline (DOXY), has been reported to be neuroprotective in adult animal models of cerebral ischemia. To investigate the putative neuroprotective effects of DOXY in an animal model of neonatal HI, a time-course study was run such that pups received either DOXY (10 mg/kg) or VEH immediately before hypoxia, 1, 2, or 3 hours after HI (n=6). At 7 days after injury, the pups were euthanized, and the brains were removed and processed for immunohistochemical and Western blot analyses using antibodies against specific markers for neurons, apoptotic markers, microglia, oligodendrocytes, and astrocytes. Results showed that in vulnerable brain regions including the hippocampal formation, thalamus, striatum, cerebral cortex and white matter tracts, DOXY significantly decreased caspase-3 immunoreactivity (a marker of apoptosis), promoted neuronal survival, inhibited microglial activation and reduced reactive astrocytosis compared with VEH-treated HI pups. These effects were found to occur in a time-dependent manner. Taken together, these results strongly suggest that doxycycline has potential as a pharmacological treatment for mild HI in neonates.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
179
|
Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, Hagberg H, Blomgren K. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 2005; 12:162-76. [PMID: 15592434 DOI: 10.1038/sj.cdd.4401545] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Unilateral hypoxia-ischemia (HI) was induced in C57/BL6 male mice on postnatal day (P) 5, 9, 21 and 60, corresponding developmentally to premature, term, juvenile and adult human brains, respectively. HI duration was adjusted to obtain a similar extent of brain injury at all ages. Apoptotic mechanisms (nuclear translocation of apoptosis-inducing factor, cytochrome c release and caspase-3 activation) were several-fold more pronounced in immature than in juvenile and adult brains. Necrosis-related calpain activation was similar at all ages. The CA1 subfield shifted from apoptosis-related neuronal death at P5 and P9 to necrosis-related calpain activation at P21 and P60. Oxidative stress (nitrotyrosine formation) was also similar at all ages. Autophagy, as judged by the autophagosome-related marker LC-3 II, was more pronounced in adult brains. To our knowledge, this is the first report demonstrating developmental regulation of AIF-mediated cell death as well as involvement of autophagy in a model of brain injury.
Collapse
Affiliation(s)
- C Zhu
- Department of Physiology, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Natale JE, Knight JB, Cheng Y, Rome JE, Gallo V. Metallothionein I and II mitigate age-dependent secondary brain injury. J Neurosci Res 2005; 78:303-14. [PMID: 15389833 DOI: 10.1002/jnr.20265] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Both the immediate insult and delayed apoptosis contribute to functional deficits after brain injury. Secondary, delayed apoptotic death is more rapid in immature than in adult CNS neurons, suggesting the presence of age-dependent protective factors. To understand the molecular pathobiology of secondary injury in the context of brain development, we identified changes in expression of oxidative stress response genes during postnatal development and target deprivation-induced neurodegeneration. The antioxidants metallothionein I and II (MT I/II) were increased markedly in the thalamus of adult C57BL/6 mice compared to mice <15 days old. Target deprivation generates reactive oxygen species that mediate neuronal apoptosis in the central nervous system; thus the more rapid apoptosis observed in the immature brain might be due to lower levels of MT I/II. We tested this hypothesis by documenting neuronal loss after target-deprivation injury. MT I/II-deficient adult mice experienced greater thalamic neuron loss at 96 hr after cortical injury compared to that in controls (80 +/- 2% vs. 57 +/- 4%, P < 0.01), but not greater overall neuronal loss (84 +/- 4% vs. 79 +/- 3%, MT I/II-deficient vs. controls). Ten-day-old MT I/II-deficient mice, however, experienced both faster onset of secondary neuronal death (30 vs. 48 hr) and greater overall neuronal loss (88 +/- 2% vs. 69 +/- 4%, P = 0.02). MT I/II are thus inhibitors of age-dependent secondary brain injury, and the low levels of MT I/II in immature brains explains, in part, the enhanced susceptibility of the young brain to neuronal loss after injury. These findings have implications for the development of age-specific therapeutic strategies to enhance recovery after brain injury.
Collapse
Affiliation(s)
- Joanne E Natale
- Research Center for Genetic Medicine, Children's National Medical Center, 111 Michigan Ave., NW, Washington, DC 20010, USA.
| | | | | | | | | |
Collapse
|
181
|
Madeddu F, Naska S, Bozzi Y. BDNF down-regulates the caspase 3 pathway in injured geniculo-cortical neurones. Neuroreport 2005; 15:2045-9. [PMID: 15486479 DOI: 10.1097/00001756-200409150-00010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Visual cortex ablation in newborn rats causes a rapid and almost complete degeneration of neurones in the dorsal lateral geniculate nucleus (dLGN), as a consequence of the axotomy of geniculo-cortical fibres. Death of dLGN neurones occurs by apoptosis and is partially prevented (approximately 50%) by intraocular delivery of brain-derived neurotrophic factor (BDNF). Here we investigated the molecular mechanisms of BDNF-mediated neuroprotection. We found that exogenous administration of BDNF partially decreases (approximately 50%) the up-regulation of apoptotic proteins (phosphorylated c-Jun, cytochrome C and cleaved caspase 3), that occurs in dLGN neurones following visual cortex ablation at postnatal day 7. These results demonstrate that the neuroprotective action of BDNF on axotomised dLGN neurones involves the partial blockade of well-characterised apoptotic pathways.
Collapse
Affiliation(s)
- Federico Madeddu
- Istituto di Neuroscienze del CNR, via Moruzzi 1, 56100 Pisa, Italy
| | | | | |
Collapse
|
182
|
Xu L, Chock VY, Yang EY, Giffard RG. Susceptibility to apoptosis varies with time in culture for murine neurons and astrocytes: changes in gene expression and activity. Neurol Res 2005; 26:632-43. [PMID: 15327753 DOI: 10.1179/016164104225017587] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Apoptotic pathways in the brain may differ depending on cell type and developmental stage. To understand these differences, we studied several apoptotic proteins in the murine cortex and primary cultures of neurons and astrocytes of various ages in culture. We then induced apoptosis in our cultures using serum deprivation (SD) and observed changes in these apoptotic proteins. When analyzed by nuclear morphology and TUNEL staining, early cultures showed greater apoptotic injury compared with late cultures, and neuronal cultures showed greater apoptosis than astrocyte cultures. The decrease in apoptosis with development correlated best with a down-regulation of procaspase-3 and bax and decreasing caspase activation. Early culture astrocytes had higher caspase-11 levels compared with neurons. Mitogen-activated protein (MAP) kinases were also differentially expressed with activation of extracellular signal-regulated kinase (ERK) and p38 higher in early culture astrocytes and stress-activated protein kinase/C-jun N-terminal kinase (SAPK/JNK) greater in early culture neurons. However, caspase inhibitors, but not MAP kinase inhibitors reduced cell death. Our findings demonstrate that apoptosis regulatory proteins display cell type and developmentally specific expression and activation.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Anesthesia, Stanford University School of Medicine, Stanford CA 94305-5123, USA
| | | | | | | |
Collapse
|
183
|
Abstract
The immature brain has long been considered to be resistant to the damaging effects of hypoxia and hypoxia-ischemia (H/I). However, it is now appreciated that there are specific periods of increased vulnerability, which relate to the developmental stage at the time of the insult. Although much of our knowledge of the pathophysiology of cerebral H/I is based on extensive experimental studies in adult animal models, it is important to appreciate the major differences in the immature brain that impact on its response to, and recovery from, H/I. Normal maturation of the mammalian brain is characterized by periods of limitations in glucose transport capacity and increased use of alternative cerebral metabolic fuels such as lactate and ketone bodies, all of which are important during H/I and influence the development of energy failure. Cell death following H/I is mediated by glutamate excitotoxicity and oxidative stress, as well as other events that lead to delayed apoptotic death. The immature brain differs from the adult in its sensitivity to all of these processes. Finally, the ultimate outcome of H/I in the immature brain is determined by the impact on the ensuing cerebral maturation. A hypoxic-ischemic insult of insufficient severity to result in rapid cell death and infarction can lead to prolonged evolution of tissue damage.
Collapse
Affiliation(s)
- Susan J Vannucci
- Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
184
|
Abstract
The pathogenesis of hypoxic-ischemic brain injury in the term infant is multifactorial and complex. Over the past decade the investigative emphasis has turned to cellular and molecular mechanisms of injury, and it has been increasingly recognized that the neonatal brain differs vastly from the adult brain in terms of response to hypoxia-ischemia. This review will discuss the initiation and evolution of brain injury in the term neonate, and the inherent biochemical and physiologic qualities of the neonatal brain that make its response to hypoxia-ischemia unique. Attention will be given to specific areas of investigation including excitotoxicity, oxidative stress, and inflammation. The coalescence of these entities to a final common pathway of hypoxic-ischemic brain injury will be emphasized.
Collapse
Affiliation(s)
- Claire McLean
- Division of Neonatology, Department of Pediatrics, University of California, Neonatal Brain Disorders Center, San Francisco, CA 94143-0663, USA
| | | |
Collapse
|
185
|
Abstract
Transient brain hypoxia-ischemia (HI) in neonates leads to delayed neuronal death and long-term neurological deficits. However, the underlying mechanisms are incompletely understood. Calcium-calmodulin-dependent protein kinase II (CaMKII) is one of the most abundant protein kinases in neurons and plays crucial roles in synaptic development and plasticity. This study used a neonatal brain HI model to investigate whether and how CaMKII was altered after HI and how the changes were affected by brain development. Expression of CaMKII was markedly up-regulated during brain development. After HI, CaMKII was totally and permanently depleted from the cytosol and concomitantly deposited into a Triton-insoluble fraction in neurons that were undergoing delayed neuronal death. Autophosphorylation of CaMKII-Thr286 transiently increased at 30 min of reperfusion and declined thereafter. All these changes were mild in P7 pups but more dramatic in P26 rats, consistent with the development-dependent CaMKII expression in neurons. The results suggest that long-term CaMKII depletion from the cytosolic fraction and deposition into the Triton-insoluble fraction may disable synaptic development, damage synaptic plasticity, and contribute to delayed neuronal death and long-term synaptic deficits after transient HI.
Collapse
Affiliation(s)
- Kaixiong Tang
- Department of Neurology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
186
|
Affiliation(s)
- Donna M Ferriero
- Department of Neurolog, University of California at San Francisco, San Francisco, CA 94143-0663, USA.
| |
Collapse
|
187
|
Liu CL, Siesjö BK, Hu BR. Pathogenesis of hippocampal neuronal death after hypoxia-ischemia changes during brain development. Neuroscience 2004; 127:113-23. [PMID: 15219674 PMCID: PMC3518049 DOI: 10.1016/j.neuroscience.2004.03.062] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2004] [Indexed: 11/20/2022]
Abstract
Transient hypoxia-ischemia (HI) leads to delayed neuronal death in both mature and immature neurons but the underlying mechanisms are not fully understood. To understand whether the pathogenesis of HI-induced neuronal death is different between mature and immature neurons, we used a rat HI model at postnatal days 7 (P7), 15 (P15), 26 (P26) and 60 (P60) in order to investigate ultrastructural changes and active caspase-3 distribution in HI-injured neurons as a function of developmental age. In P7 pups, despite more than 95% of HI-injured neurons highly expressing active caspase-3, most of these active caspase-3-positive neurons revealed mixed features of apoptosis and necrosis (a chimera type) under electron microscopy (EM). Classical apoptosis was observed only in small populations of HI-injured P7 neurons. Furthermore, in rats older than P7, most HI-injured neurons displayed features of necrotic cell death under EM and, concomitantly, active caspase-3-positive neurons after HI declined dramatically. Classical apoptosis after HI was rarely found in neurons older than P15. In P60 rats, virtually all HI-injured neurons showed the shrinkage necrotic morphology under EM and were negative for active caspase-3. These results strongly suggest that pathogenesis of HI-induced neuronal death is shifting from apoptosis to necrosis during brain development.
Collapse
Affiliation(s)
| | | | - B. R. Hu
- Corresponding author. Tel: +1-305-243-4854; fax: +1-305-243-7183.
| |
Collapse
|
188
|
Stiver SI, Tan X, Brown LF, Hedley-Whyte ET, Dvorak HF. VEGF-A angiogenesis induces a stable neovasculature in adult murine brain. J Neuropathol Exp Neurol 2004; 63:841-55. [PMID: 15330339 DOI: 10.1093/jnen/63.8.841] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is a critical component of stroke, head injury, cerebral vascular malformation development, and brain tumor growth. An understanding of the mechanisms of adult cerebral angiogenesis is fundamental to therapeutic vessel modulation for these diseases. To study angiogenesis in the central nervous system, we injected an adenoviral vector engineered to express vascular endothelial growth factor (VEGF-A164) into adult murine striatum. Vector-infected astrocytes expressed VEGF-A164 resulting in vascular permeability, hemorrhage, and the formation of greatly enlarged "mother" vessels. Subsequently, endothelial cells and pericytes lining mother vessels proliferated and assembled into glomeruloid bodies, complex cellular arrays interspersed by small vessel lumens. As VEGF-A164 expression declined, glomeruloid bodies involuted through apoptotic processes to engender numerous small daughter vessels. Characterized by modestly enlarged lumens with prominent pericyte coverage, daughter vessels were distributed with a density greater than normal cerebral vessels. Daughter vessels remained stable and patent to 16 months and represented the final stage of VEGF-A-induced cerebral angiogenesis. Together, these findings provide a mechanistic understanding of angiogenesis in cerebral disease processes. Furthermore, the long-term stability of daughter vessels in the absence of exogenous VEGF-A164 expression suggests that VEGF-A may enable therapeutic angiogenesis in brain.
Collapse
Affiliation(s)
- S I Stiver
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | |
Collapse
|
189
|
Roelfsema V, Bennet L, George S, Wu D, Guan J, Veerman M, Gunn AJ. Window of opportunity of cerebral hypothermia for postischemic white matter injury in the near-term fetal sheep. J Cereb Blood Flow Metab 2004; 24:877-86. [PMID: 15362718 DOI: 10.1097/01.wcb.0000123904.17746.92] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Postresuscitation cerebral hypothermia is consistently neuroprotective in experimental preparations; however, its effects on white matter injury are poorly understood. Using a model of reversible cerebral ischemia in unanesthetized near-term fetal sheep, we examined the effects of cerebral hypothermia (fetal extradural temperature reduced from 39.4 +/- 0.1 degrees C to between 30 and 33 degrees C), induced at different times after reperfusion and continued for 72 hours after ischemia, on injury in the parasagittal white matter 5 days after ischemia. Cooling started within 90 minutes of reperfusion was associated with a significant increase in bioactive oligodendrocytes in the intragyral white matter compared with sham cooling (41 +/- 20 vs 18 +/- 11 per field, P < 0.05), increased myelin basic protein density and reduced expression of activated caspase-3 (14 +/- 12 vs 91 +/- 51, P < 0.05). Reactive microglia were profoundly suppressed compared with sham cooling (4 +/- 6 vs 38 +/- 18 per field, P < 0.05) with no effect on numbers of astrocytes. When cooling was delayed until 5.5 hours after reperfusion there was no significant effect on loss of oligodendrocytes (24 +/- 12 per field). In conclusion, hypothermia can effectively protect white matter after ischemia, but only if initiated early after the insult. Protection was closely associated with reduced expression of both activated caspase-3 and of reactive microglia.
Collapse
Affiliation(s)
- Vincent Roelfsema
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
190
|
Robertson CL, Bucci CJ, Fiskum G. Mitochondrial response to calcium in the developing brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 151:141-8. [PMID: 15246700 DOI: 10.1016/j.devbrainres.2004.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/17/2004] [Indexed: 10/26/2022]
Abstract
Developmental differences in mitochondrial content and metabolic enzyme activities have been defined, but less is understood about the responses of brain mitochondria to stressful stimuli during development. Cerebral mitochondrial response to high Ca(2+) loads after brain injury is a critical determinant of neuronal outcome. Brain mitochondria isolated from 16-18-day-old rats had lower maximal, respiration-dependent Ca(2+) uptake capacity than brain mitochondria isolated from adult rats in the presence of ATP at both a pH of 7.0 and 6.5. However, in the absence of ATP, immature brain mitochondria exhibited greater Ca(2+) uptake capacity at pH 7.0 and 6.5, indicating a greater resistance of immature brain mitochondria to Ca(2+)-induced dysfunction under conditions relevant to those that exist during acute ischemic and traumatic brain injury. Acidosis reduced the maximal Ca(2+) uptake capacity in both immature and adult brain mitochondria. Cytochrome c was released from both immature and adult brain mitochondria in response to Ca(2+) exposure, but was not affected by cyclosporin A, an inhibitor of the mitochondrial membrane permeability transition. Developmental changes in mitochondrial response to Ca(2+) loads may have important implications in the pathobiology of brain injury to the developing brain.
Collapse
Affiliation(s)
- Courtney L Robertson
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
191
|
Gilmore JH, Fredrik Jarskog L, Vadlamudi S, Lauder JM. Prenatal infection and risk for schizophrenia: IL-1beta, IL-6, and TNFalpha inhibit cortical neuron dendrite development. Neuropsychopharmacology 2004; 29:1221-9. [PMID: 15085088 DOI: 10.1038/sj.npp.1300446] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prenatal exposure to infection increases risk for schizophrenia, and we have hypothesized that inflammatory cytokines, generated in response to maternal infection, alter neuron development and increase risk for schizophrenia. We sought to study the effect of cytokines generated in response to infection-interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNFalpha), and interleukin-6 (IL-6)-on the dendritic development of cortical neurons. Primary mixed neuronal cultures were obtained from E18 rats and exposed to 0, 100, or 1000 units (U)/ml of IL-1beta, TNFalpha, IL-6, or IL-1beta+TNFalpha for 44 h. MAP-2-positive neurons were randomly identified for each condition and the number of primary dendrites, nodes, and total dendrite length was determined. We found that 100 U of TNFalpha significantly reduced the number of nodes (27%, p=0.02) and total dendritic length (14%, p=0.04), but did not affect overall neuron survival. A measure of 100 U IL-1beta+TNFalpha significantly reduced the number of primary dendrites (17%, p=0.006), nodes (32%, p=0.001), and total dendritic length (30%, p<0.0001), although it did not affect overall neuron survival. At 1000 U, each cytokine significantly reduced the number of primary dendrites (14-24%), nodes (28-37%), as well as total dendritic length (25-30%); neuron survival was reduced by 14-21%. These results indicate that inflammatory cytokines can significantly reduce dendrite development and complexity of developing cortical neurons, consistent with the neuropathology of schizophrenia. These findings also support the hypothesis that cytokines play a key mechanistic role in the link between prenatal exposure to infection and risk for schizophrenia.
Collapse
Affiliation(s)
- John H Gilmore
- UNC Schizophrenia Research Center, Chapel Hill, NC, USA.
| | | | | | | |
Collapse
|
192
|
Romanko MJ, Rothstein RP, Levison SW. Neural stem cells in the subventricular zone are resilient to hypoxia/ischemia whereas progenitors are vulnerable. J Cereb Blood Flow Metab 2004; 24:814-25. [PMID: 15241190 DOI: 10.1097/01.wcb.0000123906.17746.00] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Perinatal hypoxic-ischemic (H/I) brain injury remains a major cause of neurologic disability. Because we have previously demonstrated that this insult depletes cells from the subventricular zone (SVZ), the goal of the present investigation was to compare the relative vulnerability to H/I of neural stem cells versus progenitors. The dorsolateral SVZs of P6 rats were examined at 2 to 48 hours of recovery from H/I using hematoxylin and eosin, in situ end labeling (ISEL), terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL), electron microscopy, and immunofluorescence. Pyknotic nuclei and ISEL cells were observed by 4 hours of recovery, peaked at 12 hours, and persisted for at least 48 hours. Many active-caspase-3 cells were observed at 12 hours and they comprised one third of the total TUNEL population. Electron microscopy revealed that hybrid cell deaths predominated at 12 hours of recovery. Importantly, few dying cells were observed in the medial SVZ, where putative stem cells reside, and no nestin medial SVZ cells showed caspase-3 activation. By contrast, active-caspase-3/PSA-NCAM progenitors were prominent in the lateral SVZ. These data demonstrate that early progenitors are vulnerable to H/I, whereas neural stem cells are resilient. The demise of these early progenitors may lead to the depletion of neuronal and late oligodendrocyte progenitors, contributing to cerebral dysgenesis after perinatal insults.
Collapse
Affiliation(s)
- Michael J Romanko
- Department of Neural and Behavioral Sciences, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
193
|
Wang X, Zhu C, Wang X, Hagberg H, Korhonen L, Sandberg M, Lindholm D, Blomgren K. X-linked inhibitor of apoptosis (XIAP) protein protects against caspase activation and tissue loss after neonatal hypoxia–ischemia. Neurobiol Dis 2004; 16:179-89. [PMID: 15207275 DOI: 10.1016/j.nbd.2004.01.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 01/19/2004] [Accepted: 01/26/2004] [Indexed: 11/20/2022] Open
Abstract
Nine-day-old transgenic XIAP overexpressing (TG-XIAP) and wild-type mice were subjected to left carotid artery ligation and 10% O(2) for 60 min, leading to widespread infarctions in the ipsilateral hemisphere during reperfusion. The activation of caspase-3 and -9 seen in wild-type animals was virtually abolished in TG-XIAP mice. Tissue loss was significantly reduced from 54.4 +/- 4.1 mm(3) (mean +/- SEM) in wild-type mice to 33.1 +/- 2.1 mm(3) in the TG-XIAP mice. Injured neurons displayed stronger XIAP staining during reperfusion, particularly in the nuclei. XIAP was colocalized with XAF-1, Smac, and HtrA2 in injured neurons after hypoxia-ischemia (HI). XIAP was cleaved after HI, and Smac immunoprecipitation co-precipitated a 25-kDa C-terminal fragment of XIAP, indicating that Smac preferentially bound to cleaved XIAP. These findings provide the first evidence that increased XIAP levels protect the neonatal brain against HI.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Department of Neuroscience, Neurobiology, Uppsala University, Uppsala, SE 751 23, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Fukuda H, Tomimatsu T, Kanagawa T, Mu J, Kohzuki M, Shimoya K, Hosono T, Kanzaki T, Murata Y. Postischemic hyperthermia induced caspase-3 activation in the newborn rat brain after hypoxia-ischemia and exacerbated the brain damage. Neonatology 2004; 84:164-71. [PMID: 12907852 DOI: 10.1159/000071952] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of postischemic hyperthermia were investigated in the newborn rat brain after hypoxia-ischemia (HI). Seven-day-old rats were subjected to left carotid artery ligation followed by 8% oxygen for 30 min, and divided into a hyperthermia group (rectal temperature at 39 degrees C for 6 h) and a normothermia group. Hyperthermia resulted in an approximately 5-fold increase in activated caspase-3 24 h after HI when compared with the normothermia group, and gross loss of brain tissue was observed only in the hyperthermia group at 7 and 30 days after HI. Our results show that postischemic hyperthermia exacerbates HI injury in immature brains, and that the mechanism is strongly associated with activation of an apoptotic pathway.
Collapse
Affiliation(s)
- Hirotsugu Fukuda
- Department of Obstetrics and Gynecology, Osaka University School of Medicine, 2-2 Yamada-oka Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
Accumulating evidence strongly suggests that apoptosis contributes to neuronal death in a variety of neurodegenerative contexts. Activation of the cysteine protease caspase 3 appears to be a key event in the execution of apoptosis in the central nervous system. As a result, mice null for caspase 3 display considerable neuronal expansion, usually resulting in death by the second week of life. Consistent with the proposal that apoptosis plays a central role in human neurodegenerative disease, caspase-3 activation has recently been observed in stroke, spinal cord trauma, head injury and Alzheimer's disease. Indeed, peptide-based caspase inhibitors prevent neuronal loss in animal models of head injury and stroke, suggesting that these compounds may be the forerunners of non-peptide small molecules that halt the apoptotic process implicated in these neurodegenerative disorders. The present review will summarise some of the recent data suggesting that apoptosis inhibitors may become a practical therapeutic approach for both acute and chronic neurodegenerative conditions.
Collapse
|
196
|
White MG, Emery M, Nonner D, Barrett JN. Caspase activation contributes to delayed death of heat-stressed striatal neurons. J Neurochem 2004; 87:958-68. [PMID: 14622126 DOI: 10.1046/j.1471-4159.2003.02077.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hyperthermia can contribute to brain damage both during development and post-natally. We used rat embryonic striatal neurons in culture to study mechanisms underlying hyperthermia-induced neuronal death. Heat stress at 43 degrees C for 2 h produced no obvious signs of damage during the first 12 h after the stress, but more than 50% of the neurons died during the next 3 days. More than 40% of the neurons had activated caspases 24 h following the heat stress. Caspase-3 activity increased with a delay of more than 10 h following cessation of the heat stress, reaching a peak at approximately 18 h. Neuronal death measured 1-3 days after the stress was reduced by the general caspase inhibitors qVD-OPH (10-20 microm) and zVAD-fmk (50-100 microm). These inhibitors were protective even when added 9 h after cessation of the heat stress, consistent with the delayed activation of caspases. In contrast, blockers of Na+ channels and ionotropic glutamate receptors did not reduce the heat-induced death, indicating that glutamate excitotoxicity was not required for this neuronal death. These results show that the neuronal death produced by heat stress has characteristics of apoptosis, and that caspase inhibitors can delay this death.
Collapse
Affiliation(s)
- Michael G White
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
197
|
Abstract
Current knowledge regarding the pathophysiology of cerebral ischemia and brain trauma indicates that similar mechanisms contribute to loss of cellular integrity and tissue destruction. Mechanisms of cell damage include excitotoxicity, oxidative stress, free radical production, apoptosis and inflammation. Genetic and gender factors have also been shown to be important mediators of pathomechanisms present in both injury settings. However, the fact that these injuries arise from different types of primary insults leads to diverse cellular vulnerability patterns as well as a spectrum of injury processes. Blunt head trauma produces shear forces that result in primary membrane damage to neuronal cell bodies, white matter structures and vascular beds as well as secondary injury mechanisms. Severe cerebral ischemic insults lead to metabolic stress, ionic perturbations, and a complex cascade of biochemical and molecular events ultimately causing neuronal death. Similarities in the pathogenesis of these cerebral injuries may indicate that therapeutic strategies protective following ischemia may also be beneficial after trauma. This review summarizes and contrasts injury mechanisms after ischemia and trauma and discusses neuroprotective strategies that target both types of injuries.
Collapse
Affiliation(s)
- Helen M Bramlett
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Medical School, FL 33101, USA
| | | |
Collapse
|
198
|
Li F, Omori N, Hayashi T, Jin G, Sato K, Nagano I, Shoji M, Abe K. Protection against ischemic brain damage in rats by immunophilin ligand GPI-1046. J Neurosci Res 2004; 76:383-9. [PMID: 15079867 DOI: 10.1002/jnr.20067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To determine the effect of immunophilin ligand GPI-1046 on ischemic brain injury, 90 min of transient middle cerebral artery occlusion (MCAO) was carried out in rat brains. In contrast to cases treated with vehicle, the infarct volume was reduced greatly and rotamase activity was inhibited significantly at 24 hr of reperfusion by treatment with GPI-1046. Immunoreactivity and the number of cells stained positively for FKBP12, FKBP52, caspase-8, cytochrome c, and caspase-3 were also reduced markedly in the brain after GPI-1046 treatment. The present results suggest that GPI-1046 significantly decreased infarct volume and provided neuroprotective effect on rats after transient focal cerebral ischemia by inhibiting the increase of rotamase activity and of the number of FKBP12-, FKBP52-, caspase-8-, cytochrome c-, and caspase-3-positive cells in the ischemic area.
Collapse
Affiliation(s)
- Feng Li
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Oomman S, Finckbone V, Dertien J, Attridge J, Henne W, Medina M, Mansouri B, Singh H, Strahlendorf H, Strahlendorf J. Active caspase-3 expression during postnatal development of rat cerebellum is not systematically or consistently associated with apoptosis. J Comp Neurol 2004; 476:154-73. [PMID: 15248196 DOI: 10.1002/cne.20223] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Development is a dynamic process that includes an intricate balance between an increase in cell mass and an elimination of excess or defective cells. Although caspases have been intimately linked to apoptotic events, there are a few reports suggesting that these cysteine proteases can influence the differentiation and proliferation of cells. Specifically, the active form of caspase-3, which has been classified as an executor of apoptosis, recently has been implicated in a nonapoptotic role in the regulation of the cell cycle, cell proliferation, and cell differentiation. This study investigated the nonapoptotic function and phenotypic expression of active caspase-3-positive cells in the external granule cell layer (EGL) of the postnatal rat cerebellum by using biochemical and immunohistochemical analyses, respectively. Evidence that negates an apoptotic function for the caspase-3-positive EGL cells includes a failure to exhibit chromatin condensation (assessed with TOPRO), phosphatidyl serine externalization (Annexin V labeling), or DNA fragmentation (TUNEL labeling). Proliferative (Ki67-positive) and differentiated (TUJ1-positive) cells within the EGL exhibited a cytosolic expression of caspase-3, whereas terminally differentiated granule cells (NeuN-positive) in the internal granular layer and the migrating granule cells did not express active caspase-3. Thus, this study supports a nonapoptotic role for active caspase-3 in cells residing in the EGL and suggests a possible involvement in EGL proliferation and differentiation.
Collapse
Affiliation(s)
- Sowmini Oomman
- Department of Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Yakovlev AG, Faden AI. Mechanisms of neural cell death: Implications for development of neuroprotective treatment strategies. Neurotherapeutics 2004. [DOI: 10.1007/bf03206563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|