151
|
Ishiga Y, Watanabe M, Ishiga T, Tohge T, Matsuura T, Ikeda Y, Hoefgen R, Fernie AR, Mysore KS. The SAL-PAP Chloroplast Retrograde Pathway Contributes to Plant Immunity by Regulating Glucosinolate Pathway and Phytohormone Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:829-841. [PMID: 28703028 DOI: 10.1094/mpmi-03-17-0055-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chloroplasts have a crucial role in plant immunity against pathogens. Increasing evidence suggests that phytopathogens target chloroplast homeostasis as a pathogenicity mechanism. In order to regulate the performance of chloroplasts under stress conditions, chloroplasts produce retrograde signals to alter nuclear gene expression. Many signals for the chloroplast retrograde pathway have been identified, including chlorophyll intermediates, reactive oxygen species, and metabolic retrograde signals. Although there is a reasonably good understanding of chloroplast retrograde signaling in plant immunity, some signals are not well-understood. In order to understand the role of chloroplast retrograde signaling in plant immunity, we investigated Arabidopsis chloroplast retrograde signaling mutants in response to pathogen inoculation. sal1 mutants (fry1-2 and alx8) responsible for the SAL1-PAP retrograde signaling pathway showed enhanced disease symptoms not only to the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 but, also, to the necrotrophic pathogen Pectobacterium carotovorum subsp. carotovorum EC1. Glucosinolate profiles demonstrated the reduced accumulation of aliphatic glucosinolates in the fry1-2 and alx8 mutants compared with the wild-type Col-0 in response to DC3000 infection. In addition, quantification of multiple phytohormones and analyses of their gene expression profiles revealed that both the salicylic acid (SA)- and jasmonic acid (JA)-mediated signaling pathways were down-regulated in the fry1-2 and alx8 mutants. These results suggest that the SAL1-PAP chloroplast retrograde pathway is involved in plant immunity by regulating the SA- and JA-mediated signaling pathways.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- 1 Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Mutsumi Watanabe
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Takako Ishiga
- 1 Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takayuki Tohge
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Takakazu Matsuura
- 4 Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Yoko Ikeda
- 4 Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Rainer Hoefgen
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Alisdair R Fernie
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | | |
Collapse
|
152
|
The small GTPase, nucleolar GTP-binding protein 1 (NOG1), has a novel role in plant innate immunity. Sci Rep 2017; 7:9260. [PMID: 28835689 PMCID: PMC5569028 DOI: 10.1038/s41598-017-08932-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
Plant defense responses at stomata and apoplast are the most important early events during plant-bacteria interactions. The key components for the signaling of stomatal defense and nonhost resistance have not been fully characterized. Here we report the newly identified small GTPase, Nucleolar GTP-binding protein 1 (NOG1), functions for plant immunity against bacterial pathogens. Virus-induced gene silencing of NOG1 compromised nonhost resistance in N. benthamiana and tomato. Comparative genomic analysis showed that two NOG1 copies are present in all known plant species: NOG1-1 and NOG1-2. Gene downregulation and overexpression studies of NOG1-1 and NOG1-2 in Arabidopsis revealed the novel function of these genes in nonhost resistance and stomatal defense against bacterial pathogens, respectively. Specially, NOG1-2 regulates guard cell signaling in response to biotic and abiotic stimuli through jasmonic acid (JA)- and abscisic acid (ABA)-mediated pathways. The results here provide valuable information on the new functional role of small GTPase, NOG1, in guard cell signaling and early plant defense in response to bacterial pathogens.
Collapse
|
153
|
Nielsen ME, Jürgens G, Thordal-Christensen H. VPS9a Activates the Rab5 GTPase ARA7 to Confer Distinct Pre- and Postinvasive Plant Innate Immunity. THE PLANT CELL 2017; 29:1927-1937. [PMID: 28808134 PMCID: PMC5590494 DOI: 10.1105/tpc.16.00859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/18/2017] [Accepted: 08/10/2017] [Indexed: 05/03/2023]
Abstract
Plant innate immunity can effectively prevent the proliferation of filamentous pathogens. Papilla formation at the site of attack is essential for preinvasive immunity; in postinvasive immunity, the encasement of pathogen structures inside host cells can hamper disease. Whereas papillae are highly dependent on transcytosis of premade material, little is known about encasement formation. Here, we show that endosome-associated VPS9a, the conserved guanine-nucleotide exchange factor activating Rab5 GTPases, is required for both pre- and postinvasive immunity against a nonadapted powdery mildew fungus (Blumeria graminis f. sp hordei) in Arabidopsis thaliana Surprisingly, VPS9a acts in addition to two previously well-described innate immunity components and thus represents an additional step in the regulation of how plants resist pathogens. We found VPS9a to be important for delivering membrane material to the encasement and VPS9a also plays a predominant role in postinvasive immunity. GTP-bound Rab5 GTPases accumulate in the encasement, but not the papillae, suggesting that two independent pathways form these defense structures. VPS9a also mediates defense to an adapted powdery mildew fungus, thus regulating a durable type of defense that works in both host and nonhost resistance. We propose that VPS9a plays a conserved role in organizing cellular endomembrane trafficking, required for delivery of defense components in response to powdery mildew fungi.
Collapse
Affiliation(s)
- Mads E Nielsen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Gerd Jürgens
- Department of Developmental Genetics, The Center for Plant Molecular Biology (ZMBP), University of Tübingen, DE-72076 Tübingen, Germany
| | - Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
154
|
Remy E, Niño-González M, Godinho CP, Cabrito TR, Teixeira MC, Sá-Correia I, Duque P. Heterologous expression of the yeast Tpo1p or Pdr5p membrane transporters in Arabidopsis confers plant xenobiotic tolerance. Sci Rep 2017; 7:4529. [PMID: 28674455 PMCID: PMC5495770 DOI: 10.1038/s41598-017-04534-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Soil contamination is a major hindrance for plant growth and development. The lack of effective strategies to remove chemicals released into the environment has raised the need to increase plant resilience to soil pollutants. Here, we investigated the ability of two Saccharomyces cerevisiae plasma-membrane transporters, the Major Facilitator Superfamily (MFS) member Tpo1p and the ATP-Binding Cassette (ABC) protein Pdr5p, to confer Multiple Drug Resistance (MDR) in Arabidopsis thaliana. Transgenic plants expressing either of the yeast transporters were undistinguishable from the wild type under control conditions, but displayed tolerance when challenged with the herbicides 2,4-D and barban. Plants expressing ScTPO1 were also more resistant to the herbicides alachlor and metolachlor as well as to the fungicide mancozeb and the Co2+, Cu2+, Ni2+, Al3+ and Cd2+ cations, while ScPDR5-expressing plants exhibited tolerance to cycloheximide. Yeast mutants lacking Tpo1p or Pdr5p showed increased sensitivity to most of the agents tested in plants. Our results demonstrate that the S. cerevisiae Tpo1p and Pdr5p transporters are able to mediate resistance to a broad range of compounds of agricultural interest in yeast as well as in Arabidopsis, underscoring their potential in future biotechnological applications.
Collapse
Affiliation(s)
- Estelle Remy
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | | | - Cláudia P Godinho
- Institute for BioEngineering and Biosciences (iBB), Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Tânia R Cabrito
- Institute for BioEngineering and Biosciences (iBB), Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Miguel C Teixeira
- Institute for BioEngineering and Biosciences (iBB), Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for BioEngineering and Biosciences (iBB), Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
| |
Collapse
|
155
|
Arabidopsis ABCG34 contributes to defense against necrotrophic pathogens by mediating the secretion of camalexin. Proc Natl Acad Sci U S A 2017; 114:E5712-E5720. [PMID: 28652324 DOI: 10.1073/pnas.1702259114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant pathogens cause huge yield losses. Plant defense often depends on toxic secondary metabolites that inhibit pathogen growth. Because most secondary metabolites are also toxic to the plant, specific transporters are needed to deliver them to the pathogens. To identify the transporters that function in plant defense, we screened Arabidopsis thaliana mutants of full-size ABCG transporters for hypersensitivity to sclareol, an antifungal compound. We found that atabcg34 mutants were hypersensitive to sclareol and to the necrotrophic fungi Alternaria brassicicola and Botrytis cinereaAtABCG34 expression was induced by Abrassicicola inoculation as well as by methyl-jasmonate, a defense-related phytohormone, and AtABCG34 was polarly localized at the external face of the plasma membrane of epidermal cells of leaves and roots. atabcg34 mutants secreted less camalexin, a major phytoalexin in Athaliana, whereas plants overexpressing AtABCG34 secreted more camalexin to the leaf surface and were more resistant to the pathogen. When treated with exogenous camalexin, atabcg34 mutants exhibited hypersensitivity, whereas BY2 cells expressing AtABCG34 exhibited improved resistance. Analyses of natural Arabidopsis accessions revealed that AtABCG34 contributes to the disease resistance in naturally occurring genetic variants, albeit to a small extent. Together, our data suggest that AtABCG34 mediates camalexin secretion to the leaf surface and thereby prevents Abrassicicola infection.
Collapse
|
156
|
Natural variation in Arabidopsis thaliana Cd responses and the detection of quantitative trait loci affecting Cd tolerance. Sci Rep 2017. [PMID: 28623252 PMCID: PMC5473843 DOI: 10.1038/s41598-017-03540-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Metal tolerance is often a result of metal storage or distribution. Thus, with the goal of advancing the molecular understanding of such metal homeostatic mechanisms, natural variation of metal tolerance in Arabidopsis thaliana was investigated. Substantial variation exists in tolerance of excess copper (Cu), zinc (Zn) and cadmium (Cd). Two accessions, Col-0 and Bur-0, and a recombinant inbred line (RIL) population derived from these parents were chosen for further analysis of Cd and Zn tolerance variation, which is evident at different plant ages in various experimental systems and appears to be genetically linked. Three QTLs, explaining in total nearly 50% of the variation in Cd tolerance, were mapped. The one obvious candidate gene in the mapped intervals, HMA3, is unlikely to contribute to the variation. In order to identify additional candidate genes the Cd responses of Col-0 and Bur-0 were compared at the transcriptome level. The sustained common Cd response of the two accessions was dominated by processes implicated in plant pathogen defense. Accession-specific differences suggested a more efficient activation of acclimative responses as underlying the higher Cd tolerance of Bur-0. The second hypothesis derived from the physiological characterization of the accessions is a reduced Cd accumulation in Bur-0.
Collapse
|
157
|
Ziegler J, Schmidt S, Strehmel N, Scheel D, Abel S. Arabidopsis Transporter ABCG37/PDR9 contributes primarily highly oxygenated Coumarins to Root Exudation. Sci Rep 2017. [PMID: 28623273 PMCID: PMC5473935 DOI: 10.1038/s41598-017-03250-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The chemical composition of root exudates strongly impacts the interactions of plants with microorganisms in the rhizosphere and the efficiency of nutrient acquisition. Exudation of metabolites is in part mediated by ATP-binding cassette (ABC) transporters. In order to assess the contribution of individual ABC transporters to root exudation, we performed an LC-MS based non-targeted metabolite profiling of semi-polar metabolites accumulating in root exudates of Arabidopsis thaliana plants and mutants deficient in the expression of ABCG36 (PDR8/PEN3), ABCG37 (PDR9) or both transporters. Comparison of the metabolite profiles indicated distinct roles for each ABC transporter in root exudation. Thymidine exudation could be attributed to ABCG36 function, whereas coumarin exudation was strongly reduced only in ABCG37 deficient plants. However, coumarin exudation was compromised in abcg37 mutants only with respect to certain metabolites of this substance class. The specificity of ABCG37 for individual coumarins was further verified by a targeted LC-MS based coumarin profiling method. The response to iron deficiency, which is known to strongly induce coumarin exudation, was also investigated. In either treatment, the distribution of individual coumarins between roots and exudates in the investigated genotypes suggested the involvement of ABCG37 in the exudation specifically of highly oxygenated rather than monohydroxylated coumarins.
Collapse
Affiliation(s)
- Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany.
| | - Stephan Schmidt
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Nadine Strehmel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle Wittenberg, D-06120, Halle (Saale), Germany.,Department of Plant Sciences, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
158
|
Underwood W, Ryan A, Somerville SC. An Arabidopsis Lipid Flippase Is Required for Timely Recruitment of Defenses to the Host-Pathogen Interface at the Plant Cell Surface. MOLECULAR PLANT 2017; 10:805-820. [PMID: 28434950 DOI: 10.1016/j.molp.2017.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 05/22/2023]
Abstract
Deposition of cell wall-reinforcing papillae is an integral component of the plant immune response. The Arabidopsis PENETRATION 3 (PEN3) ATP binding cassette (ABC) transporter plays a role in defense against numerous pathogens and is recruited to sites of pathogen detection where it accumulates within papillae. However, the trafficking pathways and regulatory mechanisms contributing to recruitment of PEN3 and other defenses to the host-pathogen interface are poorly understood. Here, we report a confocal microscopy-based screen to identify mutants with altered localization of PEN3-GFP after inoculation with powdery mildew fungi. We identified a mutant, aberrant localization of PEN3 3 (alp3), displaying accumulation of the normally plasma membrane (PM)-localized PEN3-GFP in endomembrane compartments. The mutant was found to be disrupted in the P4-ATPase AMINOPHOSPHOLIPID ATPASE 3 (ALA3), a lipid flippase that plays a critical role in vesicle formation. We provide evidence that PEN3 undergoes continuous endocytic cycling from the PM to the trans-Golgi network (TGN). In alp3, PEN3 accumulates in the TGN, causing delays in recruitment to the host-pathogen interface. Our results indicate that PEN3 and other defense proteins continuously cycle through the TGN and that timely exit of these proteins from the TGN is critical for effective pre-invasive immune responses against powdery mildews.
Collapse
Affiliation(s)
- William Underwood
- Energy Biosciences Institute, University of California, Berkeley, CA 94720, USA.
| | - Andrew Ryan
- Energy Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Shauna C Somerville
- Energy Biosciences Institute, University of California, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
159
|
Biała W, Banasiak J, Jarzyniak K, Pawela A, Jasiński M. Medicago truncatula ABCG10 is a transporter of 4-coumarate and liquiritigenin in the medicarpin biosynthetic pathway. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3231-3241. [PMID: 28369642 PMCID: PMC5853973 DOI: 10.1093/jxb/erx059] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/06/2017] [Indexed: 05/18/2023]
Abstract
The ABCG10 protein of the model legume Medicago truncatula is required for efficient de novo production of the phenylpropanoid-derived phytoalexin medicarpin. Silencing the expression of MtABCG10 results, inter alia, in a lower accumulation of medicarpin and its precursors. In this study, we demonstrate that the impairment of medicarpin biosynthesis can be partially averted by the exogenous application of 4-coumarate, an early precursor of the core phenylpropanoid pathway, and the deoxyisoflavonoid formononetin. Experiments conducted using HPLC/MS in a heterologous system as well as in vitro transport assays with labelled substrate revealed that MtABCG10 is responsible for the membrane translocation of 4-coumarate and liquiritigenin, molecules representing key branching points in the phenylpropanoid pathway. The identification of transporters participating in the distribution of precursors is an important step in understanding phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Wanda Biała
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences,Poznan, Poland
| | - Joanna Banasiak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Karolina Jarzyniak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences,Poznan, Poland
| | - Aleksandra Pawela
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Michał Jasiński
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences,Poznan, Poland
- Correspondence:
| |
Collapse
|
160
|
An C, Wang C, Mou Z. The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121. THE NEW PHYTOLOGIST 2017; 214:1245-1259. [PMID: 28134437 DOI: 10.1111/nph.14442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/16/2016] [Indexed: 05/17/2023]
Abstract
Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood. We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3'-diaminobenzidine and aniline blue staining. The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation. Mutations in Elongator also attenuate the ROS-SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes. As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| |
Collapse
|
161
|
McNeece BT, Pant SR, Sharma K, Niruala P, Lawrence GW, Klink VP. A Glycine max homolog of NON-RACE SPECIFIC DISEASE RESISTANCE 1 (NDR1) alters defense gene expression while functioning during a resistance response to different root pathogens in different genetic backgrounds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:60-71. [PMID: 28273511 DOI: 10.1016/j.plaphy.2017.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/10/2017] [Accepted: 02/27/2017] [Indexed: 05/23/2023]
Abstract
A Glycine max homolog of the Arabidopsis thaliana NON-RACE SPECIFIC DISEASE RESISTANCE 1 (NDR1) coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene (Gm-NDR1-1) is expressed in root cells undergoing a defense response to the root pathogenic nematode, Heterodera glycines. Gm-NDR1-1 overexpression in the H. glycines-susceptible genotype G. max[Williams 82/PI 518671] impairs parasitism. In contrast, Gm-NDR1-1 RNA interference (RNAi) in the H. glycines-resistant genotype G. max[Peking/PI 548402] facilitates parasitism. The broad effectiveness of Gm-NDR1-1 in impairing parasitism has then been examined by engineering its heterologous expression in Gossypium hirsutum which is susceptible to the root pathogenic nematode Meloidogyne incognita. The heterologous expression of Gm-NDR1-1 in G. hirsutum effectively impairs M. incognita parasitism, reducing gall, egg mass, egg and juvenile numbers. In contrast to our prior experiments examining the effectiveness of the heterologous expression of a G. max homolog of the A. thaliana salicyclic acid signaling (SA) gene NONEXPRESSOR OF PR1 (Gm-NPR1-2), no cumulative negative effect on M. incognita parasitism has been observed in G. hirsutum expressing Gm-NDR1-1. The results indicate a common genetic basis exists for plant resistance to parasitic nematodes that involves Gm-NDR1. However, the Gm-NDR1-1 functions in ways that are measurably dissimilar to Gm-NPR1-2. Notably, Gm-NDR1-1 overexpression leads to increased relative transcript levels of its homologs of A. thaliana genes functioning in SA signaling, including NPR1-2, TGA2-1 and LESION SIMULATING DISEASE1 (LSD1-2) that is lost in Gm-NDR1-1 RNAi lines. Similar observations have been made regarding the expression of other defense genes.
Collapse
Affiliation(s)
- Brant T McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States
| | - Shankar R Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States; Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research & Extension, Texas A&M University, Weslaco, TX 78596, United States
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States
| | - Prakash Niruala
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
162
|
Zwart L, Berger DK, Moleleki LN, van der Merwe NA, Myburg AA, Naidoo S. Evidence for salicylic acid signalling and histological changes in the defence response of Eucalyptus grandis to Chrysoporthe austroafricana. Sci Rep 2017; 7:45402. [PMID: 28349984 PMCID: PMC5368643 DOI: 10.1038/srep45402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
Eucalyptus species are cultivated for forestry and are of economic importance. The fungal stem canker pathogen Chrysoporthe austroafricana causes disease of varying severity on E. grandis. The Eucalyptus grandis-Chrysoporthe austroafricana interaction has been established as a model system for studying Eucalyptus antifungal defence. Previous studies revealed that the phytohormone salicylic acid (SA) affects the levels of resistance in highly susceptible (ZG14) and moderately resistant (TAG5) clones. The aims of this study were to examine histochemical changes in response to wounding and inoculation as well as host responses at the protein level. The anatomy and histochemical changes induced by wounding and inoculation were similar between the clones, suggesting that anatomical differences do not underlie their different levels of resistance. Tyloses and gum-like substances were present after inoculation and wounding, but cell death occurred only after inoculation. Hyphae of C. austroafricana were observed inside dead and living cells, suggesting that the possibility of a hemibiotrophic interaction requires further investigation. Proteomics analysis revealed the possible involvement of proteins associated with cell death, SA signalling and systemic resistance. In combination with previous information, this study forms a basis for future functional characterisation of candidate genes involved in resistance of E. grandis to C. austroafricana.
Collapse
Affiliation(s)
- Lizahn Zwart
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Pretoria, South Africa
| | - Dave Kenneth Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Pretoria, South Africa
| | - Lucy Novungayo Moleleki
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Nicolaas A. van der Merwe
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Pretoria, South Africa
| | - Alexander A. Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
163
|
Siddaiah CN, Satyanarayana NR, Mudili V, Kumar Gupta V, Gurunathan S, Rangappa S, Huntrike SS, Srivastava RK. Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep 2017; 7:43991. [PMID: 28322224 PMCID: PMC5359564 DOI: 10.1038/srep43991] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/23/2017] [Indexed: 01/01/2023] Open
Abstract
Endophytic Trichoderma hamatum UoM 13 isolated from pearl millet roots was evaluated for its efficiency to suppress downy mildew disease. Under laboratory conditions, T. hamatum seed treatment significantly enhanced pearl millet seed germination and seedling vigor. T. hamatum seed treatment resulted in systemic and durable immunity against pearl millet downy mildew disease under greenhouse and field conditions. T. hamatum treated seedlings responded to downy mildew infection with high lignification and callose deposition. Analysis of defense enzymes showed that T. hamatum treatment significantly enhanced the activities of glucanase, peroxidase, phenylalanine ammonia-lyase, and polyphenol oxidase in comparison to untreated control. RT-PCR analysis revealed differentially expressed transcripts of the defense enzymes and PR-proteins in treated, untreated, and checks, wherein PR-1, PR-5, and cell wall defense HRGPs were significantly over expressed in treated seedlings as against their lower expression in controls. T. hamatum treatment significantly stimulated endogenous salicylic acid (SA) levels and significantly upregulated important SA biosynthesis gene isochorismate synthase. The results indicated that T. hamatum UoM13 treatment induces resistance corresponding to significant over expression of endogenous SA, important defense enzymes, PR-proteins, and HRGPs, suggesting that SA biosynthetic pathway is involved in pearl millet for mounting systemic immunity against downy mildew pathogen.
Collapse
Affiliation(s)
- Chandra Nayaka Siddaiah
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Niranjan Raj Satyanarayana
- Department of Studies in Microbiology, Karnataka State Open University, Mukthagangotri, Mysore, 570006, Karnataka, India
| | - Venkataramana Mudili
- Microbiology Division, DRDO-BU-Centre for Life sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | - Vijai Kumar Gupta
- Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Selvakumar Gurunathan
- Microbiology Division, DRDO-BU-Centre for Life sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | - Shobith Rangappa
- Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 060-0808, Japan
| | - Shekar Shetty Huntrike
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Rakesh Kumar Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, Telangana, India
| |
Collapse
|
164
|
Prince DC, Rallapalli G, Xu D, Schoonbeek HJ, Çevik V, Asai S, Kemen E, Cruz-Mireles N, Kemen A, Belhaj K, Schornack S, Kamoun S, Holub EB, Halkier BA, Jones JDG. Albugo-imposed changes to tryptophan-derived antimicrobial metabolite biosynthesis may contribute to suppression of non-host resistance to Phytophthora infestans in Arabidopsis thaliana. BMC Biol 2017; 15:20. [PMID: 28320402 PMCID: PMC5358052 DOI: 10.1186/s12915-017-0360-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/22/2017] [Indexed: 02/04/2023] Open
Abstract
Background Plants are exposed to diverse pathogens and pests, yet most plants are resistant to most plant pathogens. Non-host resistance describes the ability of all members of a plant species to successfully prevent colonization by any given member of a pathogen species. White blister rust caused by Albugo species can overcome non-host resistance and enable secondary infection and reproduction of usually non-virulent pathogens, including the potato late blight pathogen Phytophthora infestans on Arabidopsis thaliana. However, the molecular basis of host defense suppression in this complex plant–microbe interaction is unclear. Here, we investigate specific defense mechanisms in Arabidopsis that are suppressed by Albugo infection. Results Gene expression profiling revealed that two species of Albugo upregulate genes associated with tryptophan-derived antimicrobial metabolites in Arabidopsis. Albugo laibachii-infected tissue has altered levels of these metabolites, with lower indol-3-yl methylglucosinolate and higher camalexin accumulation than uninfected tissue. We investigated the contribution of these Albugo-imposed phenotypes to suppression of non-host resistance to P. infestans. Absence of tryptophan-derived antimicrobial compounds enables P. infestans colonization of Arabidopsis, although to a lesser extent than Albugo-infected tissue. A. laibachii also suppresses a subset of genes regulated by salicylic acid; however, salicylic acid plays only a minor role in non-host resistance to P. infestans. Conclusions Albugo sp. alter tryptophan-derived metabolites and suppress elements of the responses to salicylic acid in Arabidopsis. Albugo sp. imposed alterations in tryptophan-derived metabolites may play a role in Arabidopsis non-host resistance to P. infestans. Understanding the basis of non-host resistance to pathogens such as P. infestans could assist in development of strategies to elevate food security. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0360-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David C Prince
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ghanasyam Rallapalli
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Deyang Xu
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Denmark
| | - Henk-Jan Schoonbeek
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Volkan Çevik
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Shuta Asai
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,Plant Immunity Research Group, Center for Sustainable Resource Science, RIKEN Yokohama Institute, Yokohama, Japan
| | - Eric Kemen
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Neftaly Cruz-Mireles
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Ariane Kemen
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Khaoula Belhaj
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sebastian Schornack
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Eric B Holub
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, UK
| | - Barbara A Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Denmark
| | - Jonathan D G Jones
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
165
|
He Q, Kim K, Park Y. Population genomics identifies the origin and signatures of selection of Korean weedy rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:357-366. [PMID: 27589078 PMCID: PMC5316921 DOI: 10.1111/pbi.12630] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/25/2016] [Accepted: 08/21/2016] [Indexed: 05/25/2023]
Abstract
Weedy rice is the same biological species as cultivated rice (Oryza sativa); it is also a noxious weed infesting rice fields worldwide. Its formation and population-selective or -adaptive signatures are poorly understood. In this study, we investigated the phylogenetics, population structure and signatures of selection of Korean weedy rice by determining the whole genomes of 30 weedy rice, 30 landrace rice and ten wild rice samples. The phylogenetic tree and results of ancestry inference study clearly showed that the genetic distance of Korean weedy rice was far from the wild rice and near with cultivated rice. Furthermore, 537 genes showed evidence of recent positive or divergent selection, consistent with some adaptive traits. This study indicates that Korean weedy rice originated from hybridization of modern indica/indica or japonica/japonica rather than wild rice. Moreover, weedy rice is not only a notorious weed in rice fields, but also contains many untapped valuable traits or haplotypes that may be a useful genetic resource for improving cultivated rice.
Collapse
Affiliation(s)
- Qiang He
- Department of Plant ResourcesCollege of Industrial ScienceKongju National UniversityYesan32439Korea
| | - Kyu‐Won Kim
- Department of Plant ResourcesCollege of Industrial ScienceKongju National UniversityYesan32439Korea
| | - Yong‐Jin Park
- Department of Plant ResourcesCollege of Industrial ScienceKongju National UniversityYesan32439Korea
- Center for crop genetic resource and breeding (CCGRB)Kongju National UniversityCheonan31080Republic of Korea
| |
Collapse
|
166
|
Klink VP, Sharma K, Pant SR, McNeece B, Niraula P, Lawrence GW. Components of the SNARE-containing regulon are co-regulated in root cells undergoing defense. PLANT SIGNALING & BEHAVIOR 2017; 12:e1274481. [PMID: 28010187 PMCID: PMC5351740 DOI: 10.1080/15592324.2016.1274481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 05/23/2023]
Abstract
The term regulon has been coined in the genetic model plant Arabidopsis thaliana, denoting a structural and physiological defense apparatus defined genetically through the identification of the penetration (pen) mutants. The regulon is composed partially by the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) syntaxin PEN1. PEN1 has homology to a Saccharomyces cerevisae gene that regulates a Secretion (Sec) protein, Suppressor of Sec 1 (Sso1p). The regulon is also composed of the β-glucosidase (PEN2) and an ATP binding cassette (ABC) transporter (PEN3). While important in inhibiting pathogen infection, limited observations have been made regarding the transcriptional regulation of regulon genes until now. Experiments made using the model agricultural Glycine max (soybean) have identified co-regulated gene expression of regulon components. The results explain the observation of hundreds of genes expressed specifically in the root cells undergoing the natural process of defense. Data regarding additional G. max genes functioning within the context of the regulon are presented here, including Sec 14, Sec 4 and Sec 23. Other examined G. max homologs of membrane fusion genes include an endosomal bromo domain-containing protein1 (Bro1), syntaxin6 (SYP6), SYP131, SYP71, SYP8, Bet1, coatomer epsilon (ϵ-COP), a coatomer zeta (ζ-COP) paralog and an ER to Golgi component (ERGIC) protein. Furthermore, the effectiveness of biochemical pathways that would function within the context of the regulon ave been examined, including xyloglucan xylosyltransferase (XXT), reticuline oxidase (RO) and galactinol synthase (GS). The experiments have unveiled the importance of the regulon during defense in the root and show how the deposition of callose relates to the process.
Collapse
Affiliation(s)
- Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Shankar R. Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Brant McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
167
|
Curtin SJ, Tiffin P, Guhlin J, Trujillo DI, Burghart LT, Atkins P, Baltes NJ, Denny R, Voytas DF, Stupar RM, Young ND. Validating Genome-Wide Association Candidates Controlling Quantitative Variation in Nodulation. PLANT PHYSIOLOGY 2017; 173:921-931. [PMID: 28057894 PMCID: PMC5291020 DOI: 10.1104/pp.16.01923] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 05/22/2023]
Abstract
Genome-wide association (GWA) studies offer the opportunity to identify genes that contribute to naturally occurring variation in quantitative traits. However, GWA relies exclusively on statistical association, so functional validation is necessary to make strong claims about gene function. We used a combination of gene-disruption platforms (Tnt1 retrotransposons, hairpin RNA-interference constructs, and CRISPR/Cas9 nucleases) together with randomized, well-replicated experiments to evaluate the function of genes that an earlier GWA study in Medicago truncatula had identified as candidates contributing to variation in the symbiosis between legumes and rhizobia. We evaluated ten candidate genes found in six clusters of strongly associated single nucleotide polymorphisms, selected on the basis of their strength of statistical association, proximity to annotated gene models, and root or nodule expression. We found statistically significant effects on nodule production for three candidate genes, each validated in two independent mutants. Annotated functions of these three genes suggest their contributions to quantitative variation in nodule production occur through processes not previously connected to nodulation, including phosphorous supply and salicylic acid-related defense response. These results demonstrate the utility of GWA combined with reverse mutagenesis technologies to discover and validate genes contributing to naturally occurring variation in quantitative traits. The results highlight the potential for GWA to complement forward genetics in identifying the genetic basis of ecologically and economically important traits.
Collapse
Affiliation(s)
- Shaun J Curtin
- Department of Plant Pathology (S.J.C., R.D., N.D.Y.) and Department of Plant Biology (P.T., J.G., D.T., L.B., N.D.Y.), University of Minnesota, St. Paul, Minnesota 55108
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (P.A., N.J.B., D.F.V.); and
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (R.M.S.)
| | - Peter Tiffin
- Department of Plant Pathology (S.J.C., R.D., N.D.Y.) and Department of Plant Biology (P.T., J.G., D.T., L.B., N.D.Y.), University of Minnesota, St. Paul, Minnesota 55108
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (P.A., N.J.B., D.F.V.); and
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (R.M.S.)
| | - Joseph Guhlin
- Department of Plant Pathology (S.J.C., R.D., N.D.Y.) and Department of Plant Biology (P.T., J.G., D.T., L.B., N.D.Y.), University of Minnesota, St. Paul, Minnesota 55108
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (P.A., N.J.B., D.F.V.); and
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (R.M.S.)
| | - Diana I Trujillo
- Department of Plant Pathology (S.J.C., R.D., N.D.Y.) and Department of Plant Biology (P.T., J.G., D.T., L.B., N.D.Y.), University of Minnesota, St. Paul, Minnesota 55108
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (P.A., N.J.B., D.F.V.); and
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (R.M.S.)
| | - Liana T Burghart
- Department of Plant Pathology (S.J.C., R.D., N.D.Y.) and Department of Plant Biology (P.T., J.G., D.T., L.B., N.D.Y.), University of Minnesota, St. Paul, Minnesota 55108
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (P.A., N.J.B., D.F.V.); and
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (R.M.S.)
| | - Paul Atkins
- Department of Plant Pathology (S.J.C., R.D., N.D.Y.) and Department of Plant Biology (P.T., J.G., D.T., L.B., N.D.Y.), University of Minnesota, St. Paul, Minnesota 55108
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (P.A., N.J.B., D.F.V.); and
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (R.M.S.)
| | - Nicholas J Baltes
- Department of Plant Pathology (S.J.C., R.D., N.D.Y.) and Department of Plant Biology (P.T., J.G., D.T., L.B., N.D.Y.), University of Minnesota, St. Paul, Minnesota 55108
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (P.A., N.J.B., D.F.V.); and
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (R.M.S.)
| | - Roxanne Denny
- Department of Plant Pathology (S.J.C., R.D., N.D.Y.) and Department of Plant Biology (P.T., J.G., D.T., L.B., N.D.Y.), University of Minnesota, St. Paul, Minnesota 55108
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (P.A., N.J.B., D.F.V.); and
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (R.M.S.)
| | - Daniel F Voytas
- Department of Plant Pathology (S.J.C., R.D., N.D.Y.) and Department of Plant Biology (P.T., J.G., D.T., L.B., N.D.Y.), University of Minnesota, St. Paul, Minnesota 55108
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (P.A., N.J.B., D.F.V.); and
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (R.M.S.)
| | - Robert M Stupar
- Department of Plant Pathology (S.J.C., R.D., N.D.Y.) and Department of Plant Biology (P.T., J.G., D.T., L.B., N.D.Y.), University of Minnesota, St. Paul, Minnesota 55108
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (P.A., N.J.B., D.F.V.); and
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (R.M.S.)
| | - Nevin D Young
- Department of Plant Pathology (S.J.C., R.D., N.D.Y.) and Department of Plant Biology (P.T., J.G., D.T., L.B., N.D.Y.), University of Minnesota, St. Paul, Minnesota 55108;
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (P.A., N.J.B., D.F.V.); and
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (R.M.S.)
| |
Collapse
|
168
|
Kovalchuk A, Lee YH, Asiegbu FO. Diversity and evolution of ABC proteins in basidiomycetes. Mycologia 2017; 105:1456-70. [DOI: 10.3852/13-001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Andriy Kovalchuk
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014 University of Helsinki, Helsinki, Finland
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University Seoul 151-921, Korea
| | - Fred O. Asiegbu
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
169
|
Belhaj K, Cano LM, Prince DC, Kemen A, Yoshida K, Dagdas YF, Etherington GJ, Schoonbeek H, van Esse HP, Jones JD, Kamoun S, Schornack S. Arabidopsis late blight: infection of a nonhost plant by Albugo laibachii enables full colonization by Phytophthora infestans. Cell Microbiol 2017; 19:e12628. [PMID: 27302335 PMCID: PMC5215655 DOI: 10.1111/cmi.12628] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/15/2016] [Accepted: 05/30/2016] [Indexed: 01/20/2023]
Abstract
The oomycete pathogen Phytophthora infestans causes potato late blight, and as a potato and tomato specialist pathogen, is seemingly poorly adapted to infect plants outside the Solanaceae. Here, we report the unexpected finding that P. infestans can infect Arabidopsis thaliana when another oomycete pathogen, Albugo laibachii, has colonized the host plant. The behaviour and speed of P. infestans infection in Arabidopsis pre-infected with A. laibachii resemble P. infestans infection of susceptible potato plants. Transcriptional profiling of P. infestans genes during infection revealed a significant overlap in the sets of secreted-protein genes that are induced in P. infestans upon colonization of potato and susceptible Arabidopsis, suggesting major similarities in P. infestans gene expression dynamics on the two plant species. Furthermore, we found haustoria of A. laibachii and P. infestans within the same Arabidopsis cells. This Arabidopsis-A. laibachii-P. infestans tripartite interaction opens up various possibilities to dissect the molecular mechanisms of P. infestans infection and the processes occurring in co-infected Arabidopsis cells.
Collapse
Affiliation(s)
- Khaoula Belhaj
- The Sainsbury LaboratoryNorwich Research ParkNorwichUnited Kingdom
| | - Liliana M. Cano
- The Sainsbury LaboratoryNorwich Research ParkNorwichUnited Kingdom
- University of FloridaDepartment of Plant Pathology, Indian River Research and Education CenterFort PierceUSA
| | - David C. Prince
- The Sainsbury LaboratoryNorwich Research ParkNorwichUnited Kingdom
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Ariane Kemen
- The Sainsbury LaboratoryNorwich Research ParkNorwichUnited Kingdom
- Max Planck Institute for Plant Breeding ResearchCologneGermany
| | - Kentaro Yoshida
- The Sainsbury LaboratoryNorwich Research ParkNorwichUnited Kingdom
- Organization of Advanced Science and TechnologyKobe UniversityKobeHyogoJapan
| | - Yasin F. Dagdas
- The Sainsbury LaboratoryNorwich Research ParkNorwichUnited Kingdom
| | - Graham J. Etherington
- The Sainsbury LaboratoryNorwich Research ParkNorwichUnited Kingdom
- The Genome Analysis CentreNorwich Research ParkNorwichUnited Kingdom
| | - Henk‐jan Schoonbeek
- John Innes CentreDepartment of Crop Genetics, Norwich Research ParkNorwichUnited Kingdom
| | | | | | - Sophien Kamoun
- The Sainsbury LaboratoryNorwich Research ParkNorwichUnited Kingdom
| | - Sebastian Schornack
- The Sainsbury LaboratoryNorwich Research ParkNorwichUnited Kingdom
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
170
|
Rutter BD, Innes RW. Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins. PLANT PHYSIOLOGY 2017; 173:728-741. [PMID: 27837092 PMCID: PMC5210723 DOI: 10.1104/pp.16.01253] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 05/14/2023]
Abstract
Exosomes are extracellular vesicles (EVs) that play a central role in intercellular signaling in mammals by transporting proteins and small RNAs. Plants are also known to produce EVs, particularly in response to pathogen infection. The contents of plant EVs have not been analyzed, however, and their function is unknown. Here, we describe a method for purifying EVs from the apoplastic fluids of Arabidopsis (Arabidopsis thaliana) leaves. Proteomic analyses of these EVs revealed that they are highly enriched in proteins involved in biotic and abiotic stress responses. Consistent with this finding, EV secretion was enhanced in plants infected with Pseudomonas syringae and in response to treatment with salicylic acid. These findings suggest that EVs may represent an important component of plant immune responses.
Collapse
Affiliation(s)
- Brian D Rutter
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
171
|
Berkey R, Zhang Y, Ma X, King H, Zhang Q, Wang W, Xiao S. Homologues of the RPW8 Resistance Protein Are Localized to the Extrahaustorial Membrane that Is Likely Synthesized De Novo. PLANT PHYSIOLOGY 2017; 173:600-613. [PMID: 27856916 PMCID: PMC5210751 DOI: 10.1104/pp.16.01539] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/15/2016] [Indexed: 05/05/2023]
Abstract
Upon penetration of the host cell wall, the powdery mildew fungus develops a feeding structure named the haustorium in the invaded host cell. Concomitant with haustorial biogenesis, the extrahaustorial membrane (EHM) is formed to separate the haustorium from the host cell cytoplasm. The Arabidopsis resistance protein RPW8.2 is specifically targeted to the EHM where it activates haustorium-targeted resistance against powdery mildew. RPW8.2 belongs to a small family with six members in Arabidopsis (Arabidopsis thaliana). Whether Homologs of RPW8 (HR) 1 to HR4 are also localized to the EHM and contribute to resistance has not been determined. Here, we report that overexpression of HR1, HR2, or HR3 led to enhanced resistance to powdery mildew, while genetic depletion of HR2 or HR3 resulted in enhanced susceptibility, indicating that these RPW8 homologs contribute to basal resistance. Interestingly, we found that N-terminally YFP-tagged HR1 to HR3 are also EHM-localized. This suggests that EHM-targeting is an ancestral feature of the RPW8 family. Indeed, two RPW8 homologs from Brassica oleracea tested also exhibit EHM-localization. Domain swapping analysis between HR3 and RPW8.2 suggests that sequence diversification in the N-terminal 146 amino acids of RPW8.2 probably functionally distinguishes it from other family members. Moreover, we found that N-terminally YFP-tagged HR3 is also localized to the plasma membrane and the fungal penetration site (the papilla) in addition to the EHM. Using this unique feature of YFP-HR3, we obtained preliminary evidence to suggest that the EHM is unlikely derived from invagination of the plasma membrane, rather it may be mainly synthesized de novo.
Collapse
Affiliation(s)
- Robert Berkey
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland (R.B., Y.Z., X.M., H.K., Q.Z., S.X.)
- The Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China (W.W.); and
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, Maryland (S.X.)
| | - Yi Zhang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland (R.B., Y.Z., X.M., H.K., Q.Z., S.X.)
- The Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China (W.W.); and
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, Maryland (S.X.)
| | - Xianfeng Ma
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland (R.B., Y.Z., X.M., H.K., Q.Z., S.X.)
- The Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China (W.W.); and
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, Maryland (S.X.)
| | - Harlan King
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland (R.B., Y.Z., X.M., H.K., Q.Z., S.X.)
- The Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China (W.W.); and
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, Maryland (S.X.)
| | - Qiong Zhang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland (R.B., Y.Z., X.M., H.K., Q.Z., S.X.)
- The Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China (W.W.); and
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, Maryland (S.X.)
| | - Wenming Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland (R.B., Y.Z., X.M., H.K., Q.Z., S.X.)
- The Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China (W.W.); and
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, Maryland (S.X.)
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland (R.B., Y.Z., X.M., H.K., Q.Z., S.X.);
- The Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China (W.W.); and
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, Maryland (S.X.)
| |
Collapse
|
172
|
Kettles GJ, Bayon C, Canning G, Rudd JJ, Kanyuka K. Apoplastic recognition of multiple candidate effectors from the wheat pathogen Zymoseptoria tritici in the nonhost plant Nicotiana benthamiana. THE NEW PHYTOLOGIST 2017; 213:338-350. [PMID: 27696417 PMCID: PMC5132004 DOI: 10.1111/nph.14215] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/19/2016] [Indexed: 05/18/2023]
Abstract
The fungus Zymoseptoria tritici is a strictly apoplastic, host-specific pathogen of wheat leaves and causal agent of septoria tritici blotch (STB) disease. All other plants are considered nonhosts, but the mechanism of nonhost resistance (NHR) to Z. tritici has not been addressed previously. We sought to develop Nicotiana benthamiana as a system to study NHR against Z. tritici. Fluorescence microscopy and quantitative reverse transcription polymerase chain reactions were used to establish the interaction between Z. tritici and N. benthamiana. Agrobacterium-mediated transient expression was used to screen putative Z. tritici effector genes for recognition in N. benthamiana, and virus-induced gene silencing (VIGS) was employed to determine the role of two receptor-like kinases (RLKs), NbBAK1 and NbSOBIR1, in Z. tritici effector recognition. Numerous Z. tritici putative effectors (14 of 63 tested) induced cell death or chlorosis in N. benthamiana. For most, phenotypes were light-dependent and required effector secretion to the leaf apoplastic space. Moreover, effector-induced host cell death was dependent on NbBAK1 and NbSOBIR1. Our results indicate widespread recognition of apoplastic effectors from a wheat-infecting fungal pathogen in a taxonomically distant nonhost plant species presumably by cell surface immune receptors. This suggests that apoplastic recognition of multiple nonadapted pathogen effectors may contribute to NHR.
Collapse
Affiliation(s)
- Graeme J. Kettles
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Carlos Bayon
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Gail Canning
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Jason J. Rudd
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Kostya Kanyuka
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| |
Collapse
|
173
|
Kuhn H, Lorek J, Kwaaitaal M, Consonni C, Becker K, Micali C, Ver Loren van Themaat E, Bednarek P, Raaymakers TM, Appiano M, Bai Y, Meldau D, Baum S, Conrath U, Feussner I, Panstruga R. Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant. FRONTIERS IN PLANT SCIENCE 2017; 8:1006. [PMID: 28674541 PMCID: PMC5475338 DOI: 10.3389/fpls.2017.01006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/26/2017] [Indexed: 05/20/2023]
Abstract
Loss of function mutations of particular plant MILDEW RESISTANCE LOCUS O (MLO) genes confer durable and broad-spectrum penetration resistance against powdery mildew fungi. Here, we combined genetic, transcriptomic and metabolomic analyses to explore the defense mechanisms in the fully resistant Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant. We found that this genotype unexpectedly overcomes the requirement for indolic antimicrobials and defense-related secretion, which are critical for incomplete resistance of mlo2 single mutants. Comparative microarray-based transcriptome analysis of mlo2 mlo6 mlo12 mutants and wild type plants upon Golovinomyces orontii inoculation revealed an increased and accelerated accumulation of many defense-related transcripts. Despite the biotrophic nature of the interaction, this included the non-canonical activation of a jasmonic acid/ethylene-dependent transcriptional program. In contrast to a non-adapted powdery mildew pathogen, the adapted powdery mildew fungus is able to defeat the accumulation of defense-relevant indolic metabolites in a MLO protein-dependent manner. We suggest that a broad and fast activation of immune responses in mlo2 mlo6 mlo12 plants can compensate for the lack of single or few defense pathways. In addition, our results point to a role of Arabidopsis MLO2, MLO6, and MLO12 in enabling defense suppression during invasion by adapted powdery mildew fungi.
Collapse
Affiliation(s)
- Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen UniversityAachen, Germany
| | - Justine Lorek
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen UniversityAachen, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Mark Kwaaitaal
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen UniversityAachen, Germany
| | - Chiara Consonni
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Katia Becker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Cristina Micali
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | | | - Paweł Bednarek
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Tom M. Raaymakers
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Michela Appiano
- Plant Breeding, Wageningen University and ResearchWageningen, Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University and ResearchWageningen, Netherlands
| | - Dorothea Meldau
- Department of Plant Biochemistry, Albrecht von Haller Institute, Georg August University GöttingenGöttingen, Germany
| | - Stephani Baum
- Department of Plant Physiology, Institute for Biology III, RWTH Aachen UniversityAachen, Germany
| | - Uwe Conrath
- Department of Plant Physiology, Institute for Biology III, RWTH Aachen UniversityAachen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht von Haller Institute, Georg August University GöttingenGöttingen, Germany
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences, Georg August University GöttingenGöttingen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen UniversityAachen, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- *Correspondence: Ralph Panstruga
| |
Collapse
|
174
|
Fukunaga S, Sogame M, Hata M, Singkaravanit-Ogawa S, Piślewska-Bednarek M, Onozawa-Komori M, Nishiuchi T, Hiruma K, Saitoh H, Terauchi R, Kitakura S, Inoue Y, Bednarek P, Schulze-Lefert P, Takano Y. Dysfunction of Arabidopsis MACPF domain protein activates programmed cell death via tryptophan metabolism in MAMP-triggered immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:381-393. [PMID: 27711985 DOI: 10.1111/tpj.13391] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 05/20/2023]
Abstract
Plant immune responses triggered upon recognition of microbe-associated molecular patterns (MAMPs) typically restrict pathogen growth without a host cell death response. We isolated two Arabidopsis mutants, derived from accession Col-0, that activated cell death upon inoculation with nonadapted fungal pathogens. Notably, the mutants triggered cell death also when treated with bacterial MAMPs such as flg22. Positional cloning identified NSL1 (Necrotic Spotted Lesion 1) as a responsible gene for the phenotype of the two mutants, whereas nsl1 mutations of the accession No-0 resulted in necrotic lesion formation without pathogen inoculation. NSL1 encodes a protein of unknown function containing a putative membrane-attack complex/perforin (MACPF) domain. The application of flg22 increased salicylic acid (SA) accumulation in the nsl1 plants derived from Col-0, while depletion of isochorismate synthase 1 repressed flg22-inducible lesion formation, indicating that elevated SA is needed for the cell death response. nsl1 plants of Col-0 responded to flg22 treatment with an RBOHD-dependent oxidative burst, but this response was dispensable for the nsl1-dependent cell death. Surprisingly, loss-of-function mutations in PEN2, involved in the metabolism of tryptophan (Trp)-derived indole glucosinolates, suppressed the flg22-induced and nsl1-dependent cell death. Moreover, the increased accumulation of SA in the nsl1 plants was abrogated by blocking Trp-derived secondary metabolite biosynthesis, whereas the nsl1-dependent hyperaccumulation of PEN2-dependent compounds was unaffected when the SA biosynthesis pathway was blocked. Collectively, these findings suggest that MAMP-triggered immunity activates a genetically programmed cell death in the absence of the functional MACPF domain protein NSL1 via Trp-derived secondary metabolite-mediated activation of the SA pathway.
Collapse
Affiliation(s)
| | - Miho Sogame
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masaki Hata
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | - Takumi Nishiuchi
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Kei Hiruma
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | - Saeko Kitakura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiro Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | |
Collapse
|
175
|
Mao H, Nakamura M, Viotti C, Grebe M. A Framework for Lateral Membrane Trafficking and Polar Tethering of the PEN3 ATP-Binding Cassette Transporter. PLANT PHYSIOLOGY 2016; 172:2245-2260. [PMID: 27803190 PMCID: PMC5129716 DOI: 10.1104/pp.16.01252] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/31/2016] [Indexed: 05/18/2023]
Abstract
The outermost cell layer of plants, the epidermis, and its outer (lateral) membrane domain facing the environment are continuously challenged by biotic and abiotic stresses. Therefore, the epidermis and the outer membrane domain provide important selective and protective barriers. However, only a small number of specifically outer membrane-localized proteins are known. Similarly, molecular mechanisms underlying the trafficking and the polar placement of outer membrane domain proteins require further exploration. Here, we demonstrate that ACTIN7 (ACT7) mediates trafficking of the PENETRATION3 (PEN3) outer membrane protein from the trans-Golgi network (TGN) to the plasma membrane in the root epidermis of Arabidopsis (Arabidopsis thaliana) and that actin function contributes to PEN3 endocytic recycling. In contrast to such generic ACT7-dependent trafficking from the TGN, the EXOCYST84b (EXO84b) tethering factor mediates PEN3 outer-membrane polarity. Moreover, precise EXO84b placement at the outer membrane domain itself requires ACT7 function. Hence, our results uncover spatially and mechanistically distinct requirements for ACT7 function during outer lateral membrane cargo trafficking and polarity establishment. They further identify an exocyst tethering complex mediator of outer lateral membrane cargo polarity.
Collapse
Affiliation(s)
- Hailiang Mao
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden (H.M., M.G.); and
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, 14476 Potsdam-Golm, Germany (M.N., C.V., M.G.)
| | - Moritaka Nakamura
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden (H.M., M.G.); and
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, 14476 Potsdam-Golm, Germany (M.N., C.V., M.G.)
| | - Corrado Viotti
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden (H.M., M.G.); and
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, 14476 Potsdam-Golm, Germany (M.N., C.V., M.G.)
| | - Markus Grebe
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden (H.M., M.G.); and
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, 14476 Potsdam-Golm, Germany (M.N., C.V., M.G.)
| |
Collapse
|
176
|
Mason KE, Hilmer JK, Maaty WS, Reeves BD, Grieco PA, Bothner B, Fischer AM. Proteomic comparison of near-isogenic barley (Hordeum vulgare L.) germplasm differing in the allelic state of a major senescence QTL identifies numerous proteins involved in plant pathogen defense. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:114-127. [PMID: 27665045 DOI: 10.1016/j.plaphy.2016.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 05/24/2023]
Abstract
Senescence is the last developmental phase of plant tissues, organs and, in the case of monocarpic senescence, entire plants. In monocarpic crops such as barley, it leads to massive remobilization of nitrogen and other nutrients to developing seeds. To further investigate this process, a proteomic comparison of flag leaves of near-isogenic late- and early-senescing barley germplasm was performed. Protein samples at 14 and 21 days past anthesis were analyzed using both two-dimensional gel-based and label-free quantitative mass spectrometry-based ('shotgun') proteomic techniques. This approach identified >9000 barley proteins, and one-third of them were quantified. Analysis focused on proteins that were significantly (p < 0.05; difference ≥1.5-fold) upregulated in early-senescing line '10_11' as compared to late-senescing variety 'Karl', as these may be functionally important for senescence. Proteins in this group included family 1 pathogenesis-related proteins, intracellular and membrane receptors or co-receptors (NBS-LRRs, LRR-RLKs), enzymes involved in attacking pathogen cell walls (glucanases), enzymes with possible roles in cuticle modification, and enzymes involved in DNA repair. Additionally, proteases and elements of the ubiquitin-proteasome system were upregulated in line '10_11', suggesting involvement of nitrogen remobilization and regulatory processes. Overall, the proteomic data highlight a correlation between early senescence and upregulated defense functions. This correlation emerges more clearly from the current proteomic data than from a previously performed transcriptomic comparison of 'Karl' and '10_11'. Our findings stress the value of studying biological systems at both the transcript and protein levels, and point to the importance of pathogen defense functions during developmental leaf senescence.
Collapse
Affiliation(s)
- Katelyn E Mason
- Chemistry and Biochemistry Department, Montana State University, Bozeman, MT 59717, United States
| | - Jonathan K Hilmer
- Chemistry and Biochemistry Department, Montana State University, Bozeman, MT 59717, United States; Proteomics, Metabolomics and Mass Spectrometry Facility, Montana State University, Bozeman, MT 59717, United States
| | - Walid S Maaty
- Chemistry and Biochemistry Department, Montana State University, Bozeman, MT 59717, United States
| | - Benjamin D Reeves
- Chemistry and Biochemistry Department, Montana State University, Bozeman, MT 59717, United States
| | - Paul A Grieco
- Chemistry and Biochemistry Department, Montana State University, Bozeman, MT 59717, United States
| | - Brian Bothner
- Chemistry and Biochemistry Department, Montana State University, Bozeman, MT 59717, United States; Proteomics, Metabolomics and Mass Spectrometry Facility, Montana State University, Bozeman, MT 59717, United States
| | - Andreas M Fischer
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
177
|
Mei S, Hou S, Cui H, Feng F, Rong W. Characterization of the interaction between Oidium heveae and Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2016; 17:1331-1343. [PMID: 26724785 PMCID: PMC6638524 DOI: 10.1111/mpp.12363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 05/03/2023]
Abstract
Oidium heveae, an obligate biotrophic pathogen of rubber trees (Hevea brasiliensis), causes significant yield losses of rubber worldwide. However, the molecular mechanisms underlying the interplay between O. heveae and rubber trees remain largely unknown. In this study, we isolated an O. heveae strain, named HN1106, from cultivated H. brasiliensis in Hainan, China. We found that O. heveae HN1106 triggers the hypersensitive response in a manner that depends on the effector-triggered immunity proteins EDS1 (Enhanced Disease Susceptibility 1) and PAD4 (Phytoalexin Deficient 4) and on salicylic acid (SA) in the model plant Arabidopsis thaliana. However, SA-independent resistance also appears to limit O. heveae infection of Arabidopsis, because the pathogen does not produce conidiospores on npr1 (nonexpressor of pr1), sid2 (SA induction deficient 2) and NahG plants, which show disruptions in SA signalling. Furthermore, we found that the callose synthase PMR4 (Powdery Mildew Resistant 4) prevents O. heveae HN1106 penetration into leaves in the early stages of infection. To elucidate the potential mechanism of resistance of Arabidopsis to O. heveae HN1106, we inoculated 47 different Arabidopsis accessions with the pathogen, and analysed the plant disease symptoms and O. heveae HN1106 hyphal growth and conidiospore formation on the leaves. We found that the accession Lag2-2 showed significant susceptibility to O. heveae HN1106. Overall, this study provides a basis for future research aimed at combatting powdery mildew caused by O. heveae in rubber trees.
Collapse
Affiliation(s)
- Shuangshuang Mei
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourceHainan UniversityHaikouHainan570228China
- College of Environment and Plant ProtectionHainan UniversityHaikouHainan 570228China
| | - Shuguo Hou
- School of Municipal and Environmental EngineeringShandong Jianzhu University, Ligang Developmental ZoneJinanShandong 250100China
| | - Haitao Cui
- Department of Plant–Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 1050829KölnGermany
| | - Feng Feng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing100101China
| | - Wei Rong
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourceHainan UniversityHaikouHainan570228China
| |
Collapse
|
178
|
Zhao J, Yang Y, Yang D, Cheng Y, Jiao M, Zhan G, Zhang H, Wang J, Zhou K, Huang L, Kang Z. Characterization and Genetic Analysis of Rice Mutant crr1 Exhibiting Compromised Non-host Resistance to Puccinia striiformis f. sp. tritici ( Pst). FRONTIERS IN PLANT SCIENCE 2016; 7:1822. [PMID: 27965705 PMCID: PMC5127839 DOI: 10.3389/fpls.2016.01822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/18/2016] [Indexed: 05/12/2023]
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat in China. Rapid change to virulence following release of resistant cultivars necessitates ongoing discovery and exploitation of new resistance resources. Considerable effort has been directed at non-host resistance (NHR) which is believed to be durable. In the present study we identified rice mutant crr1 (compromised resistance to rust 1) that exhibited compromised NHR to Pst. Compared with wild type rice variety Nipponbare, crr1 mutant displayed a threefold increase in penetration rate by Pst, and enhanced hyphal growth. The pathogen also developed haustoria in crr1 mesophyll cells, but failed to sporulate. The response to the adapted rice pathogen Magnaporthe oryzae was unchanged in crr1 relative to the wild type. Several defense-related genes involved in the SA- and JA-mediated defense pathways response and in phytoalexin synthesis (such as OsPR1a, OsLOX1, and OsCPS4) were more rapidly and strongly induced in infected crr1 leaves than in the wild type, suggesting that other layers of defense are still in effect. Genetic analysis and mapping located the mutant loci at a region between markers ID14 and RM25792, which cover about 290 kb genome sequence on chromosome 10. Further fine mapping and cloning of the locus should provide further insights into NHR to rust fungi in rice, and may reveal new strategies for improving rust resistance in wheat.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Yuheng Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Donghe Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Min Jiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Hongchang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F UniversityYangling, China
| | - Junyi Wang
- Shaanxi Rice Research Institute, Hanzhong Agricultural Science InstituteHanzhong, China
| | - Kai Zhou
- Shaanxi Rice Research Institute, Hanzhong Agricultural Science InstituteHanzhong, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| |
Collapse
|
179
|
Learning from each other: ABC transporter regulation by protein phosphorylation in plant and mammalian systems. Biochem Soc Trans 2016; 43:966-74. [PMID: 26517911 DOI: 10.1042/bst20150128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ABC (ATP-binding cassette) transporter family in higher plants is highly expanded compared with those of mammalians. Moreover, some members of the plant ABC subfamily B (ABCB) display very high substrate specificity compared with their mammalian counterparts that are often associated with multi-drug resistance phenomena. In this review, we highlight prominent functions of plant and mammalian ABC transporters and summarize our knowledge on their post-transcriptional regulation with a focus on protein phosphorylation. A deeper comparison of regulatory events of human cystic fibrosis transmembrane conductance regulator (CFTR) and ABCB1 from the model plant Arabidopsis reveals a surprisingly high degree of similarity. Both physically interact with orthologues of the FK506-binding proteins that chaperon both transporters to the plasma membrane in an action that seems to involve heat shock protein (Hsp)90. Further, both transporters are phosphorylated at regulatory domains that connect both nt-binding folds. Taken together, it appears that ABC transporters exhibit an evolutionary conserved but complex regulation by protein phosphorylation, which apparently is, at least in some cases, tightly connected with protein-protein interactions (PPI).
Collapse
|
180
|
Contributions of host cellular trafficking and organization to the outcomes of plant-pathogen interactions. Semin Cell Dev Biol 2016; 56:163-173. [DOI: 10.1016/j.semcdb.2016.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/16/2016] [Accepted: 05/20/2016] [Indexed: 11/23/2022]
|
181
|
Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells. Cell Discov 2016; 2:16018. [PMID: 27462465 PMCID: PMC4950145 DOI: 10.1038/celldisc.2016.18] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/11/2016] [Indexed: 01/24/2023] Open
Abstract
The asymmetric localization of proteins in the plasma membrane domains of eukaryotic cells is a fundamental manifestation of cell polarity that is central to multicellular organization and developmental patterning. In plants, the mechanisms underlying the polar localization of cargo proteins are still largely unknown and appear to be fundamentally distinct from those operating in mammals. Here, we present a systematic, quantitative comparative analysis of the polar delivery and subcellular localization of proteins that characterize distinct polar plasma membrane domains in plant cells. The combination of microscopic analyses and computational modeling revealed a mechanistic framework common to diverse polar cargos and underlying the establishment and maintenance of apical, basal, and lateral polar domains in plant cells. This mechanism depends on the polar secretion, constitutive endocytic recycling, and restricted lateral diffusion of cargos within the plasma membrane. Moreover, our observations suggest that polar cargo distribution involves the individual protein potential to form clusters within the plasma membrane and interact with the extracellular matrix. Our observations provide insights into the shared cellular mechanisms of polar cargo delivery and polarity maintenance in plant cells.
Collapse
|
182
|
Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor. G3-GENES GENOMES GENETICS 2016; 6:1935-46. [PMID: 27194807 PMCID: PMC4938647 DOI: 10.1534/g3.116.030510] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Colletotrichum sublineola is an aggressive fungal pathogen that causes anthracnose in sorghum [Sorghum bicolor (L.) Moench]. The obvious symptoms of anthracnose are leaf blight and stem rot. Sorghum, the fifth most widely grown cereal crop in the world, can be highly susceptible to the disease, most notably in hot and humid environments. In the southeastern United States the acreage of sorghum has been increasing steadily in recent years, spurred by growing interest in producing biofuels, bio-based products, and animal feed. Resistance to anthracnose is, therefore, of paramount importance for successful sorghum production in this region. To identify anthracnose resistance loci present in the highly resistant cultivar ‘Bk7’, a biparental mapping population of F3:4 and F4:5 sorghum lines was generated by crossing ‘Bk7’ with the susceptible inbred ‘Early Hegari-Sart’. Lines were phenotyped in three environments and in two different years following natural infection. The population was genotyped by sequencing. Following a stringent custom filtering protocol, totals of 5186 and 2759 informative SNP markers were identified in the two populations. Segregation data and association analysis identified resistance loci on chromosomes 7 and 9, with the resistance alleles derived from ‘Bk7’. Both loci contain multiple classes of defense-related genes based on sequence similarity and gene ontologies. Genetic analysis following an independent selection experiment of lines derived from a cross between ‘Bk7’ and sweet sorghum ‘Mer81-4’ narrowed the resistance locus on chromosome 9 substantially, validating this QTL. As observed in other species, sorghum appears to have regions of clustered resistance genes. Further characterization of these regions will facilitate the development of novel germplasm with resistance to anthracnose and other diseases.
Collapse
|
183
|
Reimer-Michalski EM, Conrath U. Innate immune memory in plants. Semin Immunol 2016; 28:319-27. [PMID: 27264335 DOI: 10.1016/j.smim.2016.05.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
Abstract
The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates.
Collapse
Affiliation(s)
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen 52056, Germany.
| |
Collapse
|
184
|
Kim H, Kwon H, Kim S, Kim MK, Botella MA, Yun HS, Kwon C. Synaptotagmin 1 Negatively Controls the Two Distinct Immune Secretory Pathways to Powdery Mildew Fungi in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:1133-41. [PMID: 27016097 DOI: 10.1093/pcp/pcw061] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/18/2016] [Indexed: 05/23/2023]
Abstract
PEN1, one of the plasma membrane (PM) syntaxins, comprises an immune exocytic pathway by forming the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex with SNAP33 and VAMP721/722 in plants. Although this secretory pathway is also involved in plant growth and development, how plants control their exocytic activity is as yet poorly understood. Since constitutive PEN1 cycling between the PM and endocytosed vesicles is critical for its immune activity, we studied here the relationship of PEN1 to synaptotagmin 1 (SYT1) that is known to regulate endocytosis at the PM. Interestingly, syt1 plants showed enhanced disease resistance to the Arabidopsis-adapted Golovinomyces orontii fungus, and elevated protein but not transcript levels of PEN1 Calcium-dependent promotion of PEN1-SYT1 interaction suggests that SYT1 controls defense activities of the PEN1-associated secretory pathway by post-translationally modulating PEN1. Increased PEN1-SYT1 interaction and inhibited PEN1 SNARE complex induction by G. orontii additionally suggest that the adaption of phytopathogens to host plants might partly result from effective suppression of the PEN1-related secretory pathway. Further genetic analyses revealed that SYT1 also regulates the atypical peroxisomal myrosinase PEN2-associated secretory pathway.
Collapse
Affiliation(s)
- Hyeran Kim
- Max-Planck-Institut für Züchtungsforschung, Department of Plant Microbe Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany Center for Genome Engineering, Institute for Basic Science, Daejeon 305-811, Korea These authors contributed equally to this work.
| | - Hyeokjin Kwon
- Department of Molecular Biology, Dankook University, Yongin 448-701, Korea These authors contributed equally to this work
| | - Soohong Kim
- Department of Molecular Biology, Dankook University, Yongin 448-701, Korea
| | - Mi Kyung Kim
- Department of Molecular Biology, Dankook University, Yongin 448-701, Korea
| | - Miguel A Botella
- Departamento de Biologia Molecular y Bioquimica, Universidad de Malaga, 29071 Malaga, Spain
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Yongin 448-701, Korea
| |
Collapse
|
185
|
Camejo D, Guzmán-Cedeño Á, Moreno A. Reactive oxygen species, essential molecules, during plant-pathogen interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 103:10-23. [PMID: 26950921 DOI: 10.1016/j.plaphy.2016.02.035] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule.
Collapse
Affiliation(s)
- Daymi Camejo
- CEBAS-CSIC, Centro de Edafología y Biología Aplicada del Segura, Department of Stress Biology and Plant Pathology, E-30100, Murcia, Spain; ESPAM-MES, Escuela Superior Politécnica Agropecuaria de Manabí, Manuel Félix López, Agricultural School, Manabí, Ecuador.
| | - Ángel Guzmán-Cedeño
- ESPAM-MES, Escuela Superior Politécnica Agropecuaria de Manabí, Manuel Félix López, Agricultural School, Manabí, Ecuador; ULEAM-MES, "Eloy Alfaro" University, Agropecuary School, Manabí, Ecuador.
| | - Alexander Moreno
- UTMachala-MES, Universidad Técnica de Machala, Botany Laboratory, Machala, Ecuador.
| |
Collapse
|
186
|
Amaradasa BS, Amundsen K. Transcriptome Profiling of Buffalograss Challenged with the Leaf Spot Pathogen Curvularia inaequalis. FRONTIERS IN PLANT SCIENCE 2016; 7:715. [PMID: 27252728 PMCID: PMC4879344 DOI: 10.3389/fpls.2016.00715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/09/2016] [Indexed: 05/31/2023]
Abstract
Buffalograss (Bouteloua dactyloides) is a low maintenance U. S. native turfgrass species with exceptional drought, heat, and cold tolerance. Leaf spot caused by Curvularia inaequalis negatively impacts buffalograss visual quality. Two leaf spot susceptible and two resistant buffalograss lines were challenged with C. inaequalis. Samples were collected from treated and untreated leaves when susceptible lines showed symptoms. Transcriptome sequencing was done and differentially expressed genes were identified. Approximately 27 million raw sequencing reads were produced per sample. More than 86% of the sequencing reads mapped to an existing buffalograss reference transcriptome. De novo assembly of unmapped reads was merged with the existing reference to produce a more complete transcriptome. There were 461 differentially expressed transcripts between the resistant and susceptible lines when challenged with the pathogen and 1552 in its absence. Previously characterized defense-related genes were identified among the differentially expressed transcripts. Twenty one resistant line transcripts were similar to genes regulating pattern triggered immunity and 20 transcripts were similar to genes regulating effector triggered immunity. There were also nine up-regulated transcripts in resistance lines which showed potential to initiate systemic acquired resistance (SAR) and three transcripts encoding pathogenesis-related proteins which are downstream products of SAR. This is the first study characterizing changes in the buffalograss transcriptome when challenged with C. inaequalis.
Collapse
Affiliation(s)
- Bimal S. Amaradasa
- Department of Plant Pathology, University of Nebraska–Lincoln, LincolnNE, USA
| | - Keenan Amundsen
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, LincolnNE, USA
| |
Collapse
|
187
|
French E, Kim BS, Iyer-Pascuzzi AS. Mechanisms of quantitative disease resistance in plants. Semin Cell Dev Biol 2016; 56:201-208. [PMID: 27212254 DOI: 10.1016/j.semcdb.2016.05.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/14/2016] [Accepted: 05/18/2016] [Indexed: 11/29/2022]
Abstract
Quantitative disease resistance (QDR) causes the reduction, but not absence, of disease, and is a major type of disease resistance for many crop species. QDR results in a continuous distribution of disease scores across a segregating population, and is typically due to many genes with small effects. It may also be a source of durable resistance. The past decade has seen significant progress in cloning genes underlying QDR. In this review, we focus on these recently cloned genes and identify new themes of QDR emerging from these studies.
Collapse
Affiliation(s)
- Elizabeth French
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, United States
| | - Bong-Suk Kim
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, United States
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
188
|
Stahl E, Bellwon P, Huber S, Schlaeppi K, Bernsdorff F, Vallat-Michel A, Mauch F, Zeier J. Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance. MOLECULAR PLANT 2016; 9:662-681. [PMID: 26802249 DOI: 10.1016/j.molp.2016.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/08/2015] [Accepted: 01/01/2016] [Indexed: 05/27/2023]
Abstract
Tryptophan-derived, indolic metabolites possess diverse functions in Arabidopsis innate immunity to microbial pathogen infection. Here, we investigate the functional role and regulatory characteristics of indolic metabolism in Arabidopsis systemic acquired resistance (SAR) triggered by the bacterial pathogen Pseudomonas syringae. Indolic metabolism is broadly activated in both P. syringae-inoculated and distant, non-inoculated leaves. At inoculation sites, camalexin, indol-3-ylmethylamine (I3A), and indole-3-carboxylic acid (ICA) are the major accumulating compounds. Camalexin accumulation is positively affected by MYB122, and the cytochrome P450 genes CYP81F1 and CYP81F2. Local I3A production, by contrast, occurs via indole glucosinolate breakdown by PEN2- dependent and independent pathways. Moreover, exogenous application of the defense hormone salicylic acid stimulates I3A generation at the expense of its precursor indol-3-ylmethylglucosinolate (I3M), and the SAR regulator pipecolic acid primes plants for enhanced P. syringae-induced activation of distinct branches of indolic metabolism. In uninfected systemic tissue, the metabolic response is more specific and associated with enhanced levels of the indolics I3A, ICA, and indole-3-carbaldehyde (ICC). Systemic indole accumulation fully depends on functional CYP79B2/3, PEN2, and MYB34/51/122, and requires functional SAR signaling. Genetic analyses suggest that systemically elevated indoles are dispensable for SAR and associated systemic increases of salicylic acid. However, soil-grown but not hydroponically -cultivated cyp79b2/3 and pen2 plants, both defective in indolic secondary metabolism, exhibit pre-induced immunity, which abrogates their intrinsic ability to induce SAR.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Patricia Bellwon
- Plant Biology Section, University of Fribourg, Route Albert Gockel 3, 1700 Fribourg, Switzerland
| | - Stefan Huber
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Klaus Schlaeppi
- Plant Biology Section, University of Fribourg, Route Albert Gockel 3, 1700 Fribourg, Switzerland
| | - Friederike Bernsdorff
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Armelle Vallat-Michel
- Institut de Chimie, Université de Neuchâtel, Avenue Bellevaux 51, 2007 Neuchâtel, Switzerland
| | - Felix Mauch
- Plant Biology Section, University of Fribourg, Route Albert Gockel 3, 1700 Fribourg, Switzerland
| | - Jürgen Zeier
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
189
|
Frerigmann H, Piślewska-Bednarek M, Sánchez-Vallet A, Molina A, Glawischnig E, Gigolashvili T, Bednarek P. Regulation of Pathogen-Triggered Tryptophan Metabolism in Arabidopsis thaliana by MYB Transcription Factors and Indole Glucosinolate Conversion Products. MOLECULAR PLANT 2016; 9:682-695. [PMID: 26802248 DOI: 10.1016/j.molp.2016.01.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 05/20/2023]
Abstract
MYB34, MYB51, and MYB122 transcription factors are known as decisive regulators of indolic glucosinolate (IG) biosynthesis with a strong impact on expression of genes encoding CYP79B2 and CYP79B3 enzymes that redundantly convert tryptophan to indole-3-acetaldoxime (IAOx). This intermediate represents a branching point for IG biosynthesis, and pathways leading to camalexin and indole-carboxylic acids (ICA). Here we investigate how these MYBs affect the pathogen-triggered Trp metabolism. Our experiments indicated that these three MYBs affect not only IG production but also constitutive biosynthesis of other IAOx-derived metabolites. Strikingly, the PENETRATION 2 (PEN2)-dependent IG-metabolism products, which are absent in myb34/51/122 and pen2 mutants, were indispensable for full flg22-mediated induction of other IAOx-derived compounds. However, gene induction and accumulation of ICAs and camalexin upon pathogen infection was not compromised in myb34/51/122 plants, despite strongly reduced IG levels. Hence, in comparison with cyp79B2/B3, which lacks all IAOx-derived metabolites, we found myb34/51/122 an ideal tool to analyze IG contribution to resistance against the necrotrophic fungal pathogen Plectosphaerella cucumerina. The susceptibility of myb34/51/122 was similar to that of pen2, but much lower than susceptibility of cyp79B2/B3, indicating that MYB34/51/122 contribute to resistance toward P. cucumerina exclusively through IG biosynthesis, and that PEN2 is the main leaf myrosinase activating IGs in response to microbial pathogens.
Collapse
Affiliation(s)
- Henning Frerigmann
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zülpicher Straße 47b, 50674 Cologne, Germany
| | | | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Erich Glawischnig
- Lehrstuhl für Genetik, Technische Universität München, Emil-Ramann-Str. 8, 85354 Freising, Germany
| | - Tamara Gigolashvili
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego12/14, 61-704 Poznań, Poland.
| |
Collapse
|
190
|
Shibata Y, Ojika M, Sugiyama A, Yazaki K, Jones DA, Kawakita K, Takemoto D. The Full-Size ABCG Transporters Nb-ABCG1 and Nb-ABCG2 Function in Pre- and Postinvasion Defense against Phytophthora infestans in Nicotiana benthamiana. THE PLANT CELL 2016; 28:1163-81. [PMID: 27102667 PMCID: PMC4904666 DOI: 10.1105/tpc.15.00721] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 04/05/2016] [Accepted: 04/19/2016] [Indexed: 05/18/2023]
Abstract
The sesquiterpenoid capsidiol is the major phytoalexin produced by Nicotiana and Capsicum species. Capsidiol is produced in plant tissues attacked by pathogens and plays a major role in postinvasion defense by inhibiting pathogen growth. Using virus-induced gene silencing-based screening, we identified two Nicotiana benthamiana (wild tobacco) genes encoding functionally redundant full-size ABCG (PDR-type) transporters, Nb-ABCG1/PDR1 and Nb-ABCG2/PDR2, which are essential for resistance to the potato late blight pathogen Phytophthora infestans Silencing of Nb-ABCG1/2 compromised secretion of capsidiol, revealing Nb-ABCG1/2 as probable exporters of capsidiol. Accumulation of plasma membrane-localized Nb-ABCG1 and Nb-ABCG2 was observed at the site of pathogen penetration. Silencing of EAS (encoding 5-epi-aristolochene synthase), a gene for capsidiol biosynthesis, reduced resistance to P. infestans, but penetration by P. infestans was not affected. By contrast, Nb-ABCG1/2-silenced plants showed reduced penetration defense, indicating that Nb-ABCG1/2 are involved in preinvasion defense against P. infestans Plastidic GGPPS1 (geranylgeranyl diphosphate synthase) was also found to be required for preinvasion defense, thereby suggesting that plastid-produced diterpene(s) are the antimicrobial compounds active in preinvasion defense. These findings suggest that N. benthamiana ABCG1/2 are involved in the export of both antimicrobial diterpene(s) for preinvasion defense and capsidiol for postinvasion defense against P. infestans.
Collapse
Affiliation(s)
- Yusuke Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - David A Jones
- Research School of Biology, The Australian National University, Acton ACT 2601, Australia
| | - Kazuhito Kawakita
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
191
|
Correction: Learning from each other: ABC transporter regulation by protein phosphorylation in plant and mammalian systems. Biochem Soc Trans 2016; 44:663-73. [DOI: 10.1042/bst20150128_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 12/31/2022]
Abstract
The ABC (ATP-binding cassette) transporter family in higher plants is highly expanded compared with those of mammalians. Moreover, some members of the plant ABCB subfamily display very high substrate specificity compared with their mammalian counterparts that are often associated with multidrug resistance (MDR) phenomena. In this review we highlight prominent functions of plant and mammalian ABC transporters and summarize our knowledge on their post-transcriptional regulation with a focus on protein phosphorylation. A deeper comparison of regulatory events of human cystic fibrosis transmembrane conductance regulator (CFTR) and ABCB1 from the model plant Arabidopsis reveals a surprisingly high degree of similarity. Both physically interact with orthologues of the FK506-binding proteins (FKBPs) that chaperon both transporters to the plasma membrane in an action that seems to involve Hsp90. Further both transporters are phosphorylated at regulatory domains that connect both nucleotide-binding folds. Taken together it appears that ABC transporters exhibit an evolutionary conserved but complex regulation by protein phosphorylation, which apparently is, at least in some cases, tightly connected with protein–protein interactions (PPI).
Collapse
|
192
|
Li K, Hegarty J, Zhang C, Wan A, Wu J, Guedira GB, Chen X, Muñoz-Amatriaín M, Fu D, Dubcovsky J. Fine mapping of barley locus Rps6 conferring resistance to wheat stripe rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:845-859. [PMID: 26875072 PMCID: PMC4799263 DOI: 10.1007/s00122-015-2663-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/22/2015] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE Barley resistance to wheat stripe rust has remained effective for a long time and, therefore, the genes underlying this resistance can be a valuable tool to engineer durable resistance in wheat. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a major disease of wheat that is causing large economic losses in many wheat-growing regions of the world. Deployment of Pst resistance genes has been an effective strategy for controlling this pathogen, but many of these genes have been defeated by new Pst races. In contrast, genes providing resistance to this wheat pathogen in other grass species (nonhost resistance) have been more durable. Barley varieties (Hordeum vulgare ssp. vulgare) are predominately immune to wheat Pst, but we identified three accessions of wild barley (Hordeum vulgare ssp. spontaneum) that are susceptible to Pst. Using these accessions, we mapped a barley locus conferring resistance to Pst on the distal region of chromosome arm 7HL and designated it as Rps6. The detection of the same locus in the cultivated barley 'Tamalpais' and in the Chinese barley 'Y12' by an allelism test suggests that Rps6 may be a frequent component of barley intermediate host resistance to Pst. Using a high-density mapping population (>10,000 gametes) we precisely mapped Rps6 within a 0.14 cM region (~500 kb contig) that is colinear to regions in Brachypodium (<94 kb) and rice (<9 kb). Since no strong candidate gene was identified in these colinear regions, a dedicated positional cloning effort in barley will be required to identify Rps6. The identification of this and other barley genes conferring resistance to Pst can contribute to our understanding of the mechanisms for durable resistance against this devastating wheat pathogen.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Joshua Hegarty
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Chaozhong Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Anmin Wan
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Gina Brown Guedira
- USDA-ARS, Plant Science Research Unit, Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
- USDA-ARS, Wheat Genetics, Quality, Physiology, and Disease Research Unit, Pullman, WA, 99164, USA
| | - María Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Daolin Fu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
193
|
Takahashi T, Shibuya H, Ishikawa A. SOBIR1 contributes to non-host resistance to Magnaporthe oryzae in Arabidopsis. Biosci Biotechnol Biochem 2016; 80:1577-9. [PMID: 27023441 DOI: 10.1080/09168451.2016.1164586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rate of entry of Magnaporthe oryzae into Arabidopsis pen2 sobir1 plants was significantly higher than that into pen2 plants. The length of the infection hyphae in pen2 sobir1 plants was significantly longer than that in pen2 plants. These results suggest that SOBIR1 is involved in both penetration and post-penetration resistance to M. oryzae in Arabidopsis.
Collapse
Affiliation(s)
| | - Haruki Shibuya
- a Department of Bioscience , Fukui Prefectural University , Fukui , Japan
| | - Atsushi Ishikawa
- a Department of Bioscience , Fukui Prefectural University , Fukui , Japan
| |
Collapse
|
194
|
Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, Jang S, Yim S, Lee E, Khare D, Kim K, Palmgren M, Yoon HS, Martinoia E, Lee Y. Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant's Lifestyle. MOLECULAR PLANT 2016; 9:338-355. [PMID: 26902186 DOI: 10.1016/j.molp.2016.02.003] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/11/2016] [Accepted: 02/14/2016] [Indexed: 05/17/2023]
Abstract
Terrestrial plants have two to four times more ATP-binding cassette (ABC) transporter genes than other organisms, including their ancestral microalgae. Recent studies found that plants harboring mutations in these transporters exhibit dramatic phenotypes, many of which are related to developmental processes and functions necessary for life on dry land. These results suggest that ABC transporters multiplied during evolution and assumed novel functions that allowed plants to adapt to terrestrial environmental conditions. Examining the literature on plant ABC transporters from this viewpoint led us to propose that diverse ABC transporters enabled many unique and essential aspects of a terrestrial plant's lifestyle, by transporting various compounds across specific membranes of the plant.
Collapse
Affiliation(s)
- Jae-Ung Hwang
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Won-Yong Song
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea
| | - Daewoong Hong
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Donghwi Ko
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Yasuyo Yamaoka
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sunghoon Jang
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sojeong Yim
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Eunjung Lee
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Deepa Khare
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Kyungyoon Kim
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Michael Palmgren
- Center for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University Zurich, Zurich, 8008 Zurich, Switzerland
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea; Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.
| |
Collapse
|
195
|
Takahashi T, Shibuya H, Ishikawa A. ERECTA contributes to non-host resistance to Magnaporthe oryzae in Arabidopsis. Biosci Biotechnol Biochem 2016; 80:1390-2. [PMID: 26924213 DOI: 10.1080/09168451.2016.1151345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ERECTA controls both developmental processes and disease resistance in Arabidopsis. We investigated the function of ERECTA in non-host resistance to Magnaporthe oryzae in Arabidopsis. In the pen2 er mutant, penetration resistance and post-penetration resistance to M. oryzae were compromised. These results suggest that ERECTA is involved in both penetration and post-penetration resistance to M. oryzae in Arabidopsis.
Collapse
Affiliation(s)
| | - Haruki Shibuya
- a Department of Bioscience , Fukui Prefectural University , Fukui , Japan
| | - Atsushi Ishikawa
- a Department of Bioscience , Fukui Prefectural University , Fukui , Japan
| |
Collapse
|
196
|
Langenbach C, Schultheiss H, Rosendahl M, Tresch N, Conrath U, Goellner K. Interspecies gene transfer provides soybean resistance to a fungal pathogen. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:699-708. [PMID: 26096357 PMCID: PMC4745023 DOI: 10.1111/pbi.12418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 05/03/2023]
Abstract
Fungal pathogens pose a major challenge to global crop production. Crop varieties that resist disease present the best defence and offer an alternative to chemical fungicides. Exploiting durable nonhost resistance (NHR) for crop protection often requires identification and transfer of NHR-linked genes to the target crop. Here, we identify genes associated with NHR of Arabidopsis thaliana to Phakopsora pachyrhizi, the causative agent of the devastating fungal disease called Asian soybean rust. We transfer selected Arabidopsis NHR-linked genes to the soybean host and discover enhanced resistance to rust disease in some transgenic soybean lines in the greenhouse. Interspecies NHR gene transfer thus presents a promising strategy for genetically engineered control of crop diseases.
Collapse
Affiliation(s)
- Caspar Langenbach
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Holger Schultheiss
- BASF Plant Science Company GmbH, Agricultural Center, Limburgerhof, Germany
| | - Martin Rosendahl
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Nadine Tresch
- BASF Plant Science Company GmbH, Agricultural Center, Limburgerhof, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
197
|
Dobritzsch M, Lübken T, Eschen-Lippold L, Gorzolka K, Blum E, Matern A, Marillonnet S, Böttcher C, Dräger B, Rosahl S. MATE Transporter-Dependent Export of Hydroxycinnamic Acid Amides. THE PLANT CELL 2016; 28:583-96. [PMID: 26744218 PMCID: PMC4790871 DOI: 10.1105/tpc.15.00706] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/05/2016] [Indexed: 05/02/2023]
Abstract
The ability of Arabidopsis thaliana to successfully prevent colonization by Phytophthora infestans, the causal agent of late blight disease of potato (Solanum tuberosum), depends on multilayered defense responses. To address the role of surface-localized secondary metabolites for entry control, droplets of a P. infestans zoospore suspension, incubated on Arabidopsis leaves, were subjected to untargeted metabolite profiling. The hydroxycinnamic acid amide coumaroylagmatine was among the metabolites secreted into the inoculum. In vitro assays revealed an inhibitory activity of coumaroylagmatine on P. infestans spore germination. Mutant analyses suggested a requirement of the p-coumaroyl-CoA:agmatine N4-p-coumaroyl transferase ACT for the biosynthesis and of the MATE transporter DTX18 for the extracellular accumulation of coumaroylagmatine. The host plant potato is not able to efficiently secrete coumaroylagmatine. This inability is overcome in transgenic potato plants expressing the two Arabidopsis genes ACT and DTX18. These plants secrete agmatine and putrescine conjugates to high levels, indicating that DTX18 is a hydroxycinnamic acid amide transporter with a distinct specificity. The export of hydroxycinnamic acid amides correlates with a decreased ability of P. infestans spores to germinate, suggesting a contribution of secreted antimicrobial compounds to pathogen defense at the leaf surface.
Collapse
Affiliation(s)
- Melanie Dobritzsch
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany Interdisciplinary Centre for Crop Plant Research, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Tilo Lübken
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Karin Gorzolka
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Elke Blum
- Interdisciplinary Centre for Crop Plant Research, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany Institute of Pharmacy, Biogenic Drugs, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Andreas Matern
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Christoph Böttcher
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Birgit Dräger
- Interdisciplinary Centre for Crop Plant Research, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany Institute of Pharmacy, Biogenic Drugs, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Sabine Rosahl
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany Interdisciplinary Centre for Crop Plant Research, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
198
|
Fuchs R, Kopischke M, Klapprodt C, Hause G, Meyer AJ, Schwarzländer M, Fricker MD, Lipka V. Immobilized Subpopulations of Leaf Epidermal Mitochondria Mediate PENETRATION2-Dependent Pathogen Entry Control in Arabidopsis. THE PLANT CELL 2016; 28:130-45. [PMID: 26721862 PMCID: PMC4746686 DOI: 10.1105/tpc.15.00887] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/30/2015] [Indexed: 05/05/2023]
Abstract
The atypical myrosinase PENETRATION2 (PEN2) is required for broad-spectrum invasion resistance to filamentous plant pathogens. Previous localization studies suggested PEN2-GFP association with peroxisomes. Here, we show that PEN2 is a tail-anchored protein with dual-membrane targeting to peroxisomes and mitochondria and that PEN2 has the capacity to form homo-oligomer complexes. We demonstrate pathogen-induced recruitment and immobilization of mitochondrial subpopulations at sites of attempted fungal invasion and show that mitochondrial arrest is accompanied by peripheral accumulation of GFP-tagged PEN2. PEN2 substrate production by the cytochrome P450 monooxygenase CYP81F2 is localized to the surface of the endoplasmic reticulum, which focally reorganizes close to the immobilized mitochondria. Exclusive targeting of PEN2 to the outer membrane of mitochondria complements the pen2 mutant phenotype, corroborating the functional importance of the mitochondrial PEN2 protein subpool for controlled local production of PEN2 hydrolysis products at subcellular plant-microbe interaction domains. Moreover, live-cell imaging shows that mitochondria arrested at these domains exhibit a pathogen-induced redox imbalance, which may lead to the production of intracellular signals.
Collapse
Affiliation(s)
- Rene Fuchs
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, 37077 Göttingen, Germany The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Michaela Kopischke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, 37077 Göttingen, Germany The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Christine Klapprodt
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, 37077 Göttingen, Germany The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Gerd Hause
- Martin-Luther-Universität Halle-Wittenberg, Universitätsbiozentrum, 06120 Halle, Germany
| | - Andreas J Meyer
- University of Bonn, INRES-Chemical Signalling, 53113 Bonn, Germany
| | | | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, 37077 Göttingen, Germany The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
199
|
Zhang Y, Zhao J, Li Y, Yuan Z, He H, Yang H, Qu H, Ma C, Qu S. Transcriptome Analysis Highlights Defense and Signaling Pathways Mediated by Rice pi21 Gene with Partial Resistance to Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2016; 7:1834. [PMID: 28008334 PMCID: PMC5143348 DOI: 10.3389/fpls.2016.01834] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/21/2016] [Indexed: 05/05/2023]
Abstract
Rice blast disease is one of the most destructive rice diseases worldwide. The pi21 gene confers partial and durable resistance to Magnaporthe oryzae. However, little is known regarding the molecular mechanisms of resistance mediated by the loss-of-function of Pi21. In this study, comparative transcriptome profiling of the Pi21-RNAi transgenic rice line and Nipponbare with M. oryzae infection at different time points (0, 12, 24, 48, and 72 hpi) were investigated using RNA sequencing. The results generated 43,222 unique genes mapped to the rice genome. In total, 1109 differentially expressed genes (DEGs) were identified between the Pi21-RNAi line and Nipponbare with M. oryzae infection, with 103, 281, 209, 69, and 678 DEGs at 0, 12, 24, 48, and 72 hpi, respectively. Functional analysis showed that most of the DEGs were involved in metabolism, transport, signaling, and defense. Among the genes assigned to plant-pathogen interaction, we identified 43 receptor kinase genes associated with pathogen-associated molecular pattern recognition and calcium ion influx. The expression levels of brassinolide-insensitive 1, flagellin sensitive 2, and elongation factor Tu receptor, ethylene (ET) biosynthesis and signaling genes, were higher in the Pi21-RNAi line than Nipponbare. This suggested that there was a more robust PTI response in Pi21-RNAi plants and that ET signaling was important to rice blast resistance. We also identified 53 transcription factor genes, including WRKY, NAC, DOF, and ERF families that show differential expression between the two genotypes. This study highlights possible candidate genes that may serve a function in the partial rice blast resistance mediated by the loss-of-function of Pi21 and increase our understanding of the molecular mechanisms involved in partial resistance against M. oryzae.
Collapse
|
200
|
Campe R, Langenbach C, Leissing F, Popescu GV, Popescu SC, Goellner K, Beckers GJM, Conrath U. ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. THE NEW PHYTOLOGIST 2016; 209:294-306. [PMID: 26315018 DOI: 10.1111/nph.13582] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/30/2015] [Indexed: 05/20/2023]
Abstract
Nonhost resistance (NHR) is the most prevalent form of plant immunity. In Arabidopsis, NHR requires membrane-localized ATP-binding cassette (ABC) transporter PENETRATION (PEN) 3. Upon perception of pathogen-associated molecular patterns, PEN3 becomes phosphorylated, suggestive of PEN3 regulation by post-translational modification. Here, we investigated the PEN3 protein interaction network. We probed the Arabidopsis protein microarray AtPMA-5000 with the N-terminal cytoplasmic domain of PEN3. Several of the proteins identified to interact with PEN3 in vitro represent cellular Ca(2+) sensors, including calmodulin (CaM) 3, CaM7 and several CaM-like proteins, pointing to the importance of Ca(2+) sensing to PEN3-mediated NHR. We demonstrated co-localization of PEN3 and CaM7, and we confirmed PEN3-CaM interaction in vitro and in vivo by PEN3 pull-down with CaM Sepharose, CaM overlay assay and bimolecular fluorescence complementation. We also show that just like in pen3, NHR to the nonadapted fungal pathogens Phakopsora pachyrhizi and Blumeria graminis f.sp. hordei is compromised in the Arabidopsis cam7 and pen3 cam7 mutants. Our study discloses CaM7 as a PEN3-interacting protein crucial to Arabidopsis NHR and emphasizes the importance of Ca(2+) sensing to plant immunity.
Collapse
Affiliation(s)
- Ruth Campe
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Caspar Langenbach
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Franz Leissing
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - George V Popescu
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853-1801, USA
- National Institute for Laser, Plasma & Radiation Physics, Str. Atomistilor, Nr. 409, Magurele, 077125, Bucharest, Romania
| | - Sorina C Popescu
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853-1801, USA
| | - Katharina Goellner
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Gerold J M Beckers
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| |
Collapse
|