151
|
vanLieshout TL, Bonafiglia JT, Gurd BJ, Ljubicic V. Protein arginine methyltransferase biology in humans during acute and chronic skeletal muscle plasticity. J Appl Physiol (1985) 2019; 127:867-880. [PMID: 31369333 DOI: 10.1152/japplphysiol.00142.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins. While dysregulation of PRMTs has been documented in a number of the most prevalent diseases, our understanding of PRMT biology in human skeletal muscle is limited. This study served to address this knowledge gap by exploring PRMT expression and function in human skeletal muscle in vivo and characterizing PRMT biology in response to acute and chronic stimuli for muscle plasticity. Fourteen untrained, healthy men performed one session of sprint interval exercise (SIE) before completing four bouts of SIE per week for 6 wk as part of a sprint interval training (SIT) program. Throughout this time course, multiple muscle biopsies were collected. We found that at basal, resting conditions PRMT1, PRMT4, PRMT5, and PRMT7 were the most abundantly expressed PRMT mRNAs in human quadriceps muscle. Additionally, the broad subcellular distribution pattern of PRMTs suggests methyltransferase activity throughout human myofibers. A spectrum of PRMT-specific inductions, and decrements, in expression and activity were observed in response to acute and chronic cues for muscle plasticity. In conclusion, our findings demonstrate that PRMTs are present and active in human skeletal muscle in vivo and that there are distinct, enzyme-specific responses and adaptations in PRMT biology to acute and chronic stimuli for muscle plasticity. This work advances our understanding of this critical family of enzymes in humans.NEW & NOTEWORTHY This is the first report of protein arginine methyltransferase (PRMT) biology in human skeletal muscle in vivo. We observed that PRMT1, -4, -5, and -7 were the most abundant PRMT mRNAs in human muscle and that PRMT proteins exhibited a broad subcellular localization that included myonuclear, cytosolic, and sarcolemmal compartments. Acute exercise and chronic training evoked PRMT-specific alterations in expression and activity. This study reveals a hitherto unknown complexity to PRMT biology in human muscle.
Collapse
Affiliation(s)
| | - Jacob T Bonafiglia
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.,Birchmount Park Collegiate Institute, Scarborough, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Birchmount Park Collegiate Institute, Scarborough, Ontario, Canada
| |
Collapse
|
152
|
Ito S. High-intensity interval training for health benefits and care of cardiac diseases - The key to an efficient exercise protocol. World J Cardiol 2019; 11:171-188. [PMID: 31565193 PMCID: PMC6763680 DOI: 10.4330/wjc.v11.i7.171] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/28/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Aerobic capacity, which is expressed as peak oxygen consumption (VO2peak), is well-known to be an independent predictor of all-cause mortality and cardiovascular prognosis. This is true even for people with various coronary risk factors and cardiovascular diseases. Although exercise training is the best method to improve VO2peak, the guidelines of most academic societies recommend 150 or 75 min of moderate- or vigorous- intensity physical activities, respectively, every week to gain health benefits. For general health and primary and secondary cardiovascular prevention, high-intensity interval training (HIIT) has been recognized as an efficient exercise protocol with short exercise sessions. Given the availability of the numerous HIIT protocols, which can be classified into aerobic HIIT and anaerobic HIIT [usually called sprint interval training (SIT)], professionals in health-related fields, including primary physicians and cardiologists, may find it confusing when trying to select an appropriate protocol for their patients. This review describes the classifications of aerobic HIIT and SIT, and their differences in terms of effects, target subjects, adaptability, working mechanisms, and safety. Understanding the HIIT protocols and adopting the correct type for each subject would lead to better improvements in VO2peak with higher adherence and less risk.
Collapse
Affiliation(s)
- Shigenori Ito
- Division of Cardiology, Sankuro Hospital, Aichi-ken, Toyota 4710035, Japan
| |
Collapse
|
153
|
Robison LS, Popescu DL, Anderson ME, Francis N, Hatfield J, Sullivan JK, Beigelman SI, Xu F, Anderson BJ, Van Nostrand WE, Robinson JK. Long-term voluntary wheel running does not alter vascular amyloid burden but reduces neuroinflammation in the Tg-SwDI mouse model of cerebral amyloid angiopathy. J Neuroinflammation 2019; 16:144. [PMID: 31296239 PMCID: PMC6621983 DOI: 10.1186/s12974-019-1534-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cardiovascular exercise (CVE) has been shown to be protective against cognitive decline in aging and the risk for dementias, including Alzheimer's Disease (AD). CVE has also been shown to have several beneficial effects on brain pathology and behavioral impairments in mouse models of AD; however, no studies have specifically examined the effects of CVE on cerebral amyloid angiopathy (CAA), which is the accumulation of amyloid-beta (Aβ) in the cerebral vasculature. CAA may be uniquely susceptible to beneficial effects of CVE interventions due to the location and nature of the pathology. Alternatively, CVE may exacerbate CAA pathology, due to added stress on already compromised cerebral vasculature. METHODS In the current study, we examined the effects of CVE over many months in mice, thereby modeling a lifelong commitment to CVE in humans. We assessed this voluntary CVE in Tg-SwDI mice, a transgenic mouse model of CAA that exhibits behavioral deficits, fibrillar vascular Aβ pathology, and significant perivascular neuroinflammation. Various "doses" of exercise intervention (0 h ("Sedentary"), 1 h, 3 h, 12 h access to running wheel) were assessed from ~ 4 to 12 months of age for effects on physiology, behavior/cognitive performance, and pathology. RESULTS The 12 h group performed the greatest volume of exercise, whereas the 1 h and 3 h groups showed high levels of exercise intensity, as defined by more frequent and longer duration running bouts. Tg-SwDI mice exhibited significant cerebral vascular Aβ pathology and increased expression of pro-inflammatory cytokines as compared to WT controls. Tg-SwDI mice did not show motor dysfunction or altered levels of anxiety or sociability compared to WT controls, though Tg-SwDI animals did appear to exhibit a reduced tendency to explore novel environments. At all running levels, CAA pathology in Tg-SwDI mice was not significantly altered, but 12-h high-volume exercise showed increased insoluble Aβ burden. However, CVE attenuated the expression of pro-inflammatory cytokines TNF-α and IL-6 and was generally effective at enhancing motor function and reducing anxiety-like behavior in Tg-SwDI mice, though alterations in learning and memory tasks were varied. CONCLUSIONS Taken together, these results suggest that CAA can still develop regardless of a lifespan of substantial CVE, although downstream effects on neuroinflammation may be reduced and functional outcomes improved.
Collapse
Affiliation(s)
- Lisa S Robison
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA.,Present Address: Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Dominique L Popescu
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA.,Present Address: George and Anne Ryan Institute for Neuroscience and Department of Psychology, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, USA
| | - Maria E Anderson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA.,Present Address: Department of Psychology, Farmingdale State University, 2350 Broadhollow Rd, Farmingdale, NY, 11735, USA
| | - Nikita Francis
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA.,Present Address: George and Anne Ryan Institute for Neuroscience and Department of Psychology, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, USA
| | - Joshua Hatfield
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, USA
| | - Joseph K Sullivan
- Present Address: New York Medical College, School of Medicine, 40 Sunshine Cottage Rd, Valhalla, NY, 10595, USA
| | - Steven I Beigelman
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Feng Xu
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, USA
| | - Brenda J Anderson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - William E Van Nostrand
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, USA
| | - John K Robinson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA. .,Present Address: George and Anne Ryan Institute for Neuroscience and Department of Psychology, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, USA.
| |
Collapse
|
154
|
Jung WS, Hwang H, Kim J, Park HY, Lim K. Comparison of excess post-exercise oxygen consumption of different exercises in normal weight obesity women. J Exerc Nutrition Biochem 2019; 23:22-27. [PMID: 31337202 PMCID: PMC6651661 DOI: 10.20463/jenb.2019.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022] Open
Abstract
[Purpose] The purpose of this study was to compare the excess post-exercise oxygen consumption (EPOC) between different types of exercises in women with normal weight obesity (NWO). [Methods] Nine university students with NWO having body mass index <25 kg/m2 and body fat percentage >30% participated in the study. First, continuous exercise (CEx) on an ergometer for 30 minutes at 60% of maximal oxygen consumption (VO2max) and interval exercise (IEx) at 80% VO2max for 2 minutes were performed. This was followed by exercise performed at 40% VO2max for 1 minute and at 80% VO2max for 3 minutes, performed 6 times repeatedly for a total of 26 minutes. The accumulation of short duration exercise (AEx) was performed for 3-bouts of 10 minutes each at 60% VO2max. [Results] The major findings were as follows: energy consumption during the exercises showed no significant difference between CEx, IEx, and AEx; EPOC was higher in IEx and AEx as compared to CEx for all dependent variables (e.g. total oxygen consumption, total calorie, summation of heart rate, and EPOC duration); and the lipid profile showed no significant difference. [Conclusion] Our study confirmed that when homogenizing the energy expenditure for various exercises in NWO individuals, EPOC was higher in IEx and AEx than in CEx. Therefore, IEx and AEx can be considered as effective exercise methods for increasing energy expenditure in NWO females.
Collapse
|
155
|
Stay Fit, Stay Young: Mitochondria in Movement: The Role of Exercise in the New Mitochondrial Paradigm. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7058350. [PMID: 31320983 PMCID: PMC6607712 DOI: 10.1155/2019/7058350] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022]
Abstract
Skeletal muscles require the proper production and distribution of energy to sustain their work. To ensure this requirement is met, mitochondria form large networks within skeletal muscle cells, and during exercise, they can enhance their functions. In the present review, we discuss recent findings on exercise-induced mitochondrial adaptations. We emphasize the importance of mitochondrial biogenesis, morphological changes, and increases in respiratory supercomplex formation as mechanisms triggered by exercise that may increase the function of skeletal muscles. Finally, we highlight the possible effects of nutraceutical compounds on mitochondrial performance during exercise and outline the use of exercise as a therapeutic tool in noncommunicable disease prevention. The resulting picture shows that the modulation of mitochondrial activity by exercise is not only fundamental for physical performance but also a key point for whole-organism well-being.
Collapse
|
156
|
Venckunas T, Krusnauskas R, Snieckus A, Eimantas N, Baranauskiene N, Skurvydas A, Brazaitis M, Kamandulis S. Acute effects of very low-volume high-intensity interval training on muscular fatigue and serum testosterone level vary according to age and training status. Eur J Appl Physiol 2019; 119:1725-1733. [PMID: 31165241 DOI: 10.1007/s00421-019-04162-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/11/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE To compare the acute physiological responses of three different very low-volume cycling sessions (6 × 5 s, 3 × 30 s, and 3 × 60 s) and their dependence on age and training status. METHODS Subjects were untrained young men (mean ± SD; age 22.3 ± 4.6 years, VO2peak 42.4 ± 5.5 ml/kg/min, n = 10), older untrained men (69.9 ± 6.3 years, 26.5 ± 7.6 ml/kg/min, n = 11), and endurance-trained cyclists (26.4 ± 9.4 years, 55.4 ± 6.6 ml/kg/min, n = 10). Maximal voluntary contraction (MVC) and electrically stimulated knee extension torque, and low-frequency fatigue, as ratio of stimulation torques at 20-100 Hz (P20/100), were measured only 24 h after exercise. Serum testosterone (Te) and blood lactate concentrations were measured only 1 h after exercise. RESULTS All protocols increased the blood lactate concentration and decreased MVC and P20/100 in young men, but especially young untrained men. In old untrained men, 6 × 5 s decreased P20/100 but not MVC. Te increased after 3 × 30 s and 3 × 60 s in young untrained men and after 3 × 60 s in older untrained men. The increase in Te correlated with responses of blood lactate concentration, MVC, and P20/100 only in old untrained men. CONCLUSIONS As little as 6 × 5 s all-out cycling induced fatigue in young and old untrained and endurance-trained cyclists. Slightly higher-volume sessions with longer intervals, however, suppressed contractile function more markedly and also transiently increased serum testosterone concentration in untrained men.
Collapse
Affiliation(s)
- T Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - R Krusnauskas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
| | - A Snieckus
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - N Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - N Baranauskiene
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - A Skurvydas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - M Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - S Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
157
|
Exercise and Sirtuins: A Way to Mitochondrial Health in Skeletal Muscle. Int J Mol Sci 2019; 20:ijms20112717. [PMID: 31163574 PMCID: PMC6600260 DOI: 10.3390/ijms20112717] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
The sirtuins form a family of evolutionarily conserved nicotinamide adenine dinucleotide (NAD)-dependent deacetylases. Seven sirtuins (SIRT1–SIRT7) have been described in mammals, with specific intracellular localization and biological functions associated with mitochondrial energy homeostasis, antioxidant activity, proliferation and DNA repair. Physical exercise affects the expression of sirtuin in skeletal muscle, regulating changes in mitochondrial biogenesis, oxidative metabolism and the cellular antioxidant system. In this context, sirtuin 1 and sirtuin 3 have been the most studied. This review focuses on the effects of different types of exercise on these sirtuins, the molecular pathways involved and the biological effect that is caused mainly in healthy subjects. The reported findings suggest that an acute load of exercise activates SIRT1, which in turn activates biogenesis and mitochondrial oxidative capacity. Additionally, several sessions of exercise (training) activates SIRT1 and also SIRT3 that, together with the biogenesis and mitochondrial oxidative function, jointly activate ATP production and the mitochondrial antioxidant function.
Collapse
|
158
|
Dela F, Ingersen A, Andersen NB, Nielsen MB, Petersen HHH, Hansen CN, Larsen S, Wojtaszewski J, Helge JW. Effects of one-legged high-intensity interval training on insulin-mediated skeletal muscle glucose homeostasis in patients with type 2 diabetes. Acta Physiol (Oxf) 2019; 226:e13245. [PMID: 30585698 DOI: 10.1111/apha.13245] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
AIM To examine the effect of high-intensity interval training (HIIT) on glucose clearance rates in skeletal muscle and explore the mechanism within the muscle. METHODS Ten males with type 2 diabetes mellitus (T2DM) and ten matched healthy subjects performed 2 weeks of one-legged HIIT (total of eight sessions, each comprised of 10 × 1 minute ergometer bicycle exercise at >80% of maximal heart rate, interspersed with one min of rest). Insulin sensitivity was assessed by an isoglycaemic, hyperinsulinaemic clamp combined with arteriovenous leg balance technique of the trained (T) and the untrained (UT) leg and muscle biopsies of both legs. RESULTS Insulin-stimulated glucose clearance in T legs was ~30% higher compared with UT legs in both groups due to increased blood flow in T vs UT legs and maintained glucose extraction. With each training session, muscle glycogen content decreased only in the training leg, and after the training, glycogen synthase and citrate synthase activities were higher in T vs UT legs. No major changes occurred in the expression of proteins in the insulin signalling cascade. Mitochondrial respiratory capacity was similar in T2DM and healthy subjects, and unchanged by HIIT. CONCLUSION HIIT improves skeletal muscle insulin sensitivity. With HIIT, the skeletal muscle of patients with T2DM becomes just as insulin sensitive as untrained muscle in healthy subjects. The mechanism includes oscillations in muscle glycogen stores and a maintained ability to extract glucose from the blood in the face of increased blood flow in the trained leg.
Collapse
Affiliation(s)
- Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Department of Geriatrics Bispebjerg University Hospital Copenhagen Denmark
| | - Arthur Ingersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Nynne B. Andersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Maria B. Nielsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Helga H. H. Petersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Christina N. Hansen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Clinical Research Centre Medical University of Bialystok Bialystok Poland
| | - Jørgen Wojtaszewski
- Department of Nutrition, Exercise and Sports, Faculty of Science University of Copenhagen Copenhagen Denmark
| | - Jørn Wulff Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
159
|
Boereboom CL, Blackwell JEM, Williams JP, Phillips BE, Lund JN. Short-term pre-operative high-intensity interval training does not improve fitness of colorectal cancer patients. Scand J Med Sci Sports 2019; 29:1383-1391. [PMID: 31116453 PMCID: PMC6771883 DOI: 10.1111/sms.13460] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022]
Abstract
Background Pre‐operative cardiorespiratory fitness (CRF) in colorectal cancer (CRC) patients has been shown to affect post‐operative outcomes. The aim of this study was to test the feasibility of high‐intensity interval training (HIIT) for improving fitness in pre‐operative CRC patients within the 31‐day cancer waiting‐time targets imposed in the UK. Methods Eighteen CRC patients (13 males, mean age: 67 years (range: 52‐77 years) participated in supervised HIIT on cycle ergometers 3 or 4 times each week prior to surgery. Exercise intensity during 5 × 1‐minute HIIT intervals (interspersed with 90‐second recovery) was 100%‐120% maximum wattage achieved at a baseline cardiopulmonary exercise test (CPET). CPET before and after HIIT was used to assess CRF. Results Patients completed a mean of eight HIIT sessions (range 6‐14) over 19 days (SD 7). There was no significant increase in VO2 peak (23.9 ± 7.0 vs 24.2 ± 7.8 mL/kg/min (mean ± SD), P = 0.58) or anaerobic threshold (AT: 14.0 ± 3.4 vs 14.5 ± 4.5 mL/kg/min, P = 0.50) after HIIT. There was a significant reduction in resting systolic blood pressure (152 ± 19 vs 142 ± 19 mm Hg, P = 0.0005) and heart rate at submaximal exercise intensities after HIIT. Conclusions Our pragmatic HIIT exercise protocol did not improve the pre‐operative fitness of CRC patients within the 31‐day window available in the UK to meet cancer surgical waiting‐time targets.
Collapse
Affiliation(s)
- Catherine L Boereboom
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK.,National Institute for Health Research Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK.,Surgical Department, Royal Derby Hospital, Derby, UK
| | - James E M Blackwell
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK.,National Institute for Health Research Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK.,Surgical Department, Royal Derby Hospital, Derby, UK
| | - John P Williams
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK.,Anaesthetic Department, Royal Derby Hospital, Derby, UK
| | - Bethan E Phillips
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK.,National Institute for Health Research Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK
| | - Jonathan N Lund
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK.,Surgical Department, Royal Derby Hospital, Derby, UK
| |
Collapse
|
160
|
Hurst C, Scott JPR, Weston KL, Weston M. High-Intensity Interval Training: A Potential Exercise Countermeasure During Human Spaceflight. Front Physiol 2019; 10:581. [PMID: 31191330 PMCID: PMC6541112 DOI: 10.3389/fphys.2019.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022] Open
Abstract
High-intensity interval training (HIT) is an effective approach for improving a range of physiological markers associated with physical fitness. A considerable body of work has demonstrated substantial improvements in cardiorespiratory fitness following short-term training programmes, while emerging evidence suggests that HIT can positively impact aspects of neuromuscular fitness. Given the detrimental consequences of prolonged exposure to microgravity on both of these physiological systems, and the potential for HIT to impact multiple components of fitness simultaneously, HIT is an appealing exercise countermeasure during human spaceflight. As such, the primary aim of this mini review is to synthesize current terrestrial knowledge relating to the effectiveness of HIT for inducing improvements in cardiorespiratory and neuromuscular fitness. As exercise-induced fitness changes are typically influenced by the specific exercise protocol employed, we will consider the effect of manipulating programming variables, including exercise volume and intensity, when prescribing HIT. In addition, as the maintenance of HIT-induced fitness gains and the choice of exercise mode are important considerations for effective training prescription, these issues are also discussed. We conclude by evaluating the potential integration of HIT into future human spaceflight operations as a strategy to counteract the effects of microgravity.
Collapse
Affiliation(s)
- Christopher Hurst
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jonathan P R Scott
- KBRwyle GmbH, Cologne, Germany.,Space Medicine Office, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
| | - Kathryn L Weston
- School of Health and Social Care, Teesside University, Middlesbrough, United Kingdom
| | - Matthew Weston
- School of Health and Social Care, Teesside University, Middlesbrough, United Kingdom
| |
Collapse
|
161
|
Graham K, Yarar-Fisher C, Li J, McCully KM, Rimmer JH, Powell D, Bickel CS, Fisher G. Effects of High-Intensity Interval Training Versus Moderate-Intensity Training on Cardiometabolic Health Markers in Individuals With Spinal Cord Injury: A Pilot Study. Top Spinal Cord Inj Rehabil 2019; 25:248-259. [PMID: 31548792 PMCID: PMC6743747 DOI: 10.1310/sci19-00042] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: Recent studies in nondisabled individuals have demonstrated that low-volume high-intensity interval training (HIIT) can improve cardiometabolic health similar to moderate-intensity training (MIT) despite requiring 20% of the overall time commitment. To date, there have been no studies assessing the effects of HIIT for improving cardiometabolic health in individuals with SCI. Objectives: The primary purpose of this pilot study was to compare the effects of 6 weeks of low-volume HIIT vs MIT using arm crank ergometer exercise to improve body composition, cardiovascular fitness, glucose tolerance, blood lipids, and blood pressure in a cohort of individuals with longstanding SCI. Methods: Participants were randomized to 6 weeks of HIIT or MIT arm crank exercise training. Aerobic capacity, muscular strength, blood lipids, glucose tolerance, blood pressure, and body composition were assessed at baseline and 6 weeks post training. Results: Seven individuals (6 male, 1 female; n = 3 in MIT and n = 4 in HIIT; mean age 51.3 ± 10.5 years) with longstanding SCI completed the study. The preliminary findings from this pilot study demonstrated that individuals with SCI randomized to either 6 weeks of HIIT or MIT displayed improvements in (a) insulin sensitivity, (b) cardiovascular fitness, and (c) muscular strength (p < .05). However, MIT led to greater improvements in arm fat percent and chest press strength compared to HIIT (p < .05). Conclusion: No differences between MIT and HIIT were observed. Both conditions led to improvements in insulin sensitivity, aerobic capacity, muscle strength, and blood lipids in individuals with SCI. Future larger cohort studies are needed to determine if the shorter amount of time required from HIIT is preferable to current MIT exercise recommendations.
Collapse
Affiliation(s)
- Kyle Graham
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jia Li
- Department of Physical Medicine and Rehabilitation Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin M McCully
- Department of Kinesiology, University of Georgia, Athens, Georgia
| | - James H Rimmer
- UAB/Lakeshore Foundation Research Collaborative, Birmingham, Alabama
| | - Danille Powell
- Department of Physical Medicine and Rehabilitation Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - C Scott Bickel
- Department of Physical Therapy, Samford University, Birmingham, Alabama
| | - Gordon Fisher
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
162
|
Gagnon DD, Perrier L, Dorman SC, Oddson B, Larivière C, Serresse O. Ambient temperature influences metabolic substrate oxidation curves during running and cycling in healthy men. Eur J Sport Sci 2019; 20:90-99. [PMID: 31079551 DOI: 10.1080/17461391.2019.1612949] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fat oxidation in cold environments and carbohydrate (CHO) use in hot environments are increased during exercise at steady-state submaximal workloads. However, the influence of cold and heat on fat and CHO oxidation curves remain unknown. We therefore examined the influence of a cold and warm ambient temperature on fat and CHO oxidation across a wide range of exercise intensities during treadmill and cycle ergometer exercise. Nine, young, healthy, male subjects completed four trials, during which they performed an incremental peak oxygen consumption (⩒O2peak) test on a cycle ergometer or treadmill in a 4.6°C or 34.1°C environment. Substrate oxidation, maximal fat oxidation rate (MFO), and exercise intensity where MFO occurs (Fatmax) were assessed via indirect calorimetry. MFO was significantly greater in the cold vs. warm during the treadmill exercise (0.66 ± 0.31 vs. 0.43 ± 0.23 g min-1; p = 0.02) but not during cycling (0.45 ± 0.24 vs. 0.29 ± 0.11 g min-1; p = 0.076). MFO was also greater during treadmill vs. cycling exercise, irrespective of ambient temperature (0.57 g min-1 vs. 0.37 g min-1; p = 0.04). Fatmax was greater in the cold vs. warm for both treadmill (57 ± 20 vs. 37 ± 17%⩒O2peak; p = 0.025) and cycling (62 ± 28 vs. 36 ± 13%⩒O2peak; p = 0.003). Multiple, linear, mixed-effects regressions revealed a strong influence of ambient temperature on substrate oxidation. We demonstrated that exercising in a cold environment increases MFO and Fatmax, predominantly during treadmill exercise. These results validate the implication of ambient temperature on energy metabolism over a wide range of exercise intensities.
Collapse
Affiliation(s)
- Dominique D Gagnon
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, Sudbury, Canada.,Center of Research in Occupational Health and Safety, Laurentian University, Sudbury, Canada
| | - Lina Perrier
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, Sudbury, Canada
| | - Sandra C Dorman
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, Sudbury, Canada.,Center of Research in Occupational Health and Safety, Laurentian University, Sudbury, Canada.,Northern Ontario School of Medicine, Sudbury, Canada
| | - Bruce Oddson
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, Sudbury, Canada
| | - Céline Larivière
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, Sudbury, Canada.,Center of Research in Occupational Health and Safety, Laurentian University, Sudbury, Canada.,Northern Ontario School of Medicine, Sudbury, Canada
| | - Olivier Serresse
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, Sudbury, Canada
| |
Collapse
|
163
|
Motiani KK, Savolainen AM, Toivanen J, Eskelinen JJ, Yli-Karjanmaa M, Virtanen KA, Saunavaara V, Heiskanen MA, Parkkola R, Haaparanta-Solin M, Solin O, Savisto N, Löyttyniemi E, Knuuti J, Nuutila P, Kalliokoski KK, Hannukainen JC. Effects of short-term sprint interval and moderate-intensity continuous training on liver fat content, lipoprotein profile, and substrate uptake: a randomized trial. J Appl Physiol (1985) 2019; 126:1756-1768. [PMID: 30998125 DOI: 10.1152/japplphysiol.00900.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Type 2 diabetes (T2D) and increased liver fat content (LFC) alter lipoprotein profile and composition and impair liver substrate uptake. Exercise training mitigates T2D and reduces LFC, but the benefits of different training intensities in terms of lipoprotein classes and liver substrate uptake are unclear. The aim of this study was to evaluate the effects of moderate-intensity continuous training (MICT) or sprint interval training (SIT) on LFC, liver substrate uptake, and lipoprotein profile in subjects with normoglycemia or prediabetes/T2D. We randomized 54 subjects (normoglycemic group, n = 28; group with prediabetes/T2D, n = 26; age = 40-55 yr) to perform either MICT or SIT for 2 wk and measured LFC with magnetic resonance spectroscopy, lipoprotein composition with NMR, and liver glucose uptake (GU) and fatty acid uptake (FAU) using PET. At baseline, the group with prediabetes/T2D had higher LFC, impaired lipoprotein profile, and lower whole body insulin sensitivity and aerobic capacity compared with the normoglycemic group. Both training modes improved aerobic capacity (P < 0.001) and lipoprotein profile (reduced LDL and increased large HDL subclasses; all P < 0.05) with no training regimen (SIT vs. MICT) or group effect (normoglycemia vs. prediabetes/T2D). LFC tended to be reduced in the group with prediabetes/T2D compared with the normoglycemic group posttraining (P = 0.051). When subjects were divided according to LFC (high LFC, >5.6%; low LFC, <5.6%), training reduced LFC in subjects with high LFC (P = 0.009), and only MICT increased insulin-stimulated liver GU (P = 0.03). Short-term SIT and MICT are effective in reducing LFC in subjects with fatty liver and in improving lipoprotein profile regardless of baseline glucose tolerance. Short-term MICT is more efficient in improving liver insulin sensitivity compared with SIT. NEW & NOTEWORTHY In the short term, both sprint interval training and moderate-intensity continuous training (MICT) reduce liver fat content and improve lipoprotein profile; however, MICT seems to be preferable in improving liver insulin sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Virva Saunavaara
- Turku PET Centre, University of Turku , Turku , Finland.,Department of Medical Physics, Turku University Hospital , Turku , Finland
| | | | - Riitta Parkkola
- Department of Radiology, Turku University Hospital , Turku , Finland
| | - Merja Haaparanta-Solin
- Turku PET Centre, University of Turku , Turku , Finland.,MediCity Research Laboratory Turku, University of Turku , Turku , Finland
| | - Olof Solin
- Turku PET Centre, University of Turku , Turku , Finland.,Department of Chemistry, University of Turku , Turku , Finland.,Turku PET Centre, Åbo Akademi University , Turku , Finland
| | - Nina Savisto
- Turku PET Centre, University of Turku , Turku , Finland
| | | | - Juhani Knuuti
- Turku PET Centre, University of Turku , Turku , Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku , Turku , Finland.,Department of Endocrinology, Turku University Hospital , Turku , Finland
| | | | | |
Collapse
|
164
|
Clark A, De La Rosa AB, DeRevere JL, Astorino TA. Effects of various interval training regimes on changes in maximal oxygen uptake, body composition, and muscular strength in sedentary women with obesity. Eur J Appl Physiol 2019; 119:879-888. [PMID: 30643959 DOI: 10.1007/s00421-019-04077-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE We determined the effects of two high-intensity interval training (HIIT) regimens [the traditional (TRAD) and periodized (PER)] on changes in maximal oxygen uptake (VO2max), body composition, and muscular strength in sedentary, obese women. METHODS Seventeen women (age and BMI = 37.5 ± 10.5 year and 39.1 ± 4.3 kg/m2) were randomized into a 6 week regime of TRAD or PER which consisted of three sessions per week, two in the laboratory, and one on their own. Pre- and post-training, VO2max, body composition, and muscular strength of the knee extensors (KE) and flexors (KF) were assessed via ramp cycling to exhaustion, air displacement plethysmography, and isokinetic dynamometry, respectively. RESULTS VO2max was increased by 4-5% in response to training (p = 0.045) with no group-by-time interaction (p = 0.79). Body mass, fat mass, and waist-to-hip ratio were unaltered (p > 0.05) in response to training, yet there was a significant change in percent body fat (p = 0.03), percent fat-free mass (p = 0.03), and absolute fat-free mass (p = 0.03) in TRAD but not PER. No change occurred in KE (p = 0.36) or KF torque (p = 0.75) in response to training and there was no group-by-time interaction (p > 0.05). CONCLUSIONS Low-volume HIIT improved VO2max and body composition but did not modify muscular strength, which suggests that obese women desiring to increase strength should initiate more intense HIIT or partake in formal resistance training.
Collapse
Affiliation(s)
- Amy Clark
- Department of Kinesiology, California State University, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, 92096-0001, USA
| | - Annie B De La Rosa
- Department of Kinesiology, California State University, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, 92096-0001, USA
| | - Jamie L DeRevere
- Department of Kinesiology, California State University, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, 92096-0001, USA
| | - Todd A Astorino
- Department of Kinesiology, California State University, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, 92096-0001, USA.
| |
Collapse
|
165
|
Magalhães JP, Júdice PB, Ribeiro R, Andrade R, Raposo J, Dores H, Bicho M, Sardinha LB. Effectiveness of high-intensity interval training combined with resistance training versus continuous moderate-intensity training combined with resistance training in patients with type 2 diabetes: A one-year randomized controlled trial. Diabetes Obes Metab 2019; 21:550-559. [PMID: 30284352 DOI: 10.1111/dom.13551] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/17/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
Abstract
AIMS To evaluate the impact of one-year high intensity interval training (HIIT) combined with resistance training (RT) vs continuous moderate intensity training (MCT) combined with RT on glycaemic control, body composition and cardiorespiratory fitness (CRF) in patients with type 2 diabetes. MATERIALS AND METHODS A randomized controlled trial included 96 participants with type 2 diabetes for a one-year supervised exercise intervention with three groups: Control, HIIT with RT and MCT with RT). The control group received standard counseling regarding general PA guidelines, with no structured exercise sessions. The main outcome variable was HbA1c (%). Secondary outcomes were other glycaemic variables, body composition, anthropometry measurements, CRF and enjoyment of exercise. Generalized estimating equations (GEE) were used to model outcomes. RESULTS Among the 96 participants enrolled in the intervention, 80 were randomized, with a mean (SD) age of 58.5 years (7.7) and a mean HbA1c of 7.2% (1.6). After adjusting the model for sex and total moderate-to-vigorous physical activity (MVPA), we found that both the MCT with RT (β, 0.003; P, 0.921) and the HIIT with RT (β, 0.025; P, 0.385) groups had no effect on HbA1c. A favourable effect was observed in the MCT with RT group, with a reduction in whole body fat index (β, -0.062; P, 0.022), android fat index (β, -0.010; P, 0.010) and gynoid fat index (β, -0.013; P, 0.014). Additionally, CRF increased during the intervention, but only in the MCT with RT group (β, 0.185; P, 0.019). CONCLUSIONS The results from this study suggest that there was no effect of either MCT with RT or HIIT with RT on glycaemic control in individuals with type 2 diabetes. However, the combination of MCT and RT improved body composition and CRF following a one-year intervention.
Collapse
Affiliation(s)
- João P Magalhães
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro B Júdice
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Educação Física e Desporto, Universidade Lusófona, Lisbon, Portugal
| | - Rogério Ribeiro
- Education and Research Centre, APDP - Diabetes Portugal (APDP-ERC), Lisbon, Portugal
| | - Rita Andrade
- Education and Research Centre, APDP - Diabetes Portugal (APDP-ERC), Lisbon, Portugal
| | - João Raposo
- Education and Research Centre, APDP - Diabetes Portugal (APDP-ERC), Lisbon, Portugal
| | - Hélder Dores
- Military Forces Hospital, Lisbon, Portugal
- Light Hospital, Lisbon, Portugal
- NOVA Medical School, Lisbon, Portugal
| | - Manuel Bicho
- Genetics Laboratory Environmental Health Institute (ISAMB), Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Institute of Scientific Research Bento da Rocha Cabral, Lisbon, Portugal
| | - Luís B Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
166
|
Farias-Junior LF, Macêdo GAD, Browne RAV, Freire YA, Oliveira-Dantas FF, Schwade D, Mortatti AL, Santos TM, Costa EC. Physiological and Psychological Responses during Low-Volume High-Intensity Interval Training Sessions with Different Work-Recovery Durations. J Sports Sci Med 2019; 18:181-190. [PMID: 30787666 PMCID: PMC6370955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
We compared physiological and psychological responses between low-volume high-intensity interval training (LV-HIIT) sessions with different work-recovery durations. Ten adult males performed two LV-HIIT sessions in a randomized, counter-balanced order. Specifically, 60/60 s LV-HIIT and 30/30 s LV-HIIT. Oxygen uptake (VO2), carbon dioxide output (VCO2), ventilation (VE), respiratory exchange ratio (RER), perceived exertion (RPE), and affect were assessed. During intervals, the VO2 (3.25 ± 0.57 vs. 2.83 ± 0.50 L/min), VCO2 (3.15 ± 0.61 vs. 2.93 ± 0.58 L/min), VE (108.59 ± 27.39 vs. 94.28 ± 24.98 L/min), and RPE (15.9 ± 1.5 vs. 13.9 ± 1.5) were higher (ps ≤ 0.01), while RER (0.98 ± 0.05 vs. 1.03 ± 0.03) and affect (-0.8 ± 1.4 vs. 1.1 ± 2.0) were lower (ps ≤ 0.007) in the 60/60 s LV-HIIT. During recovery periods, VO2 (1.85 ± 0.27 vs. 2.38 ± 0.46 L/min), VCO2 (2.15 ± 0.35 vs. 2.44 ± 0.45 L/min), and affect (0.6 ± 1.7 vs. 1.7 ± 1.8) were lower (ps ≤ 0.02), while RER (1.20 ± 0.05 vs. 1.03 ± 0.05; p < 0.001) was higher in the 60/60 s LV-HIIT. Shorter LV-HIIT (30 s) elicits lower physiological response and attenuated negative affect than longer LV-HIIT (60 s).
Collapse
Affiliation(s)
- Luiz Fernando Farias-Junior
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Rodrigo Alberto Vieira Browne
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Yuri Alberto Freire
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Filipe Fernandes Oliveira-Dantas
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Daniel Schwade
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Arnaldo Luis Mortatti
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Tony Meireles Santos
- Graduate Program in Physical Education, Federal University of Pernambuco, Recife, PE, Brazil
| | - Eduardo Caldas Costa
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
167
|
de Freitas MC, Billaut F, Panissa VLG, Rossi FE, Figueiredo C, Caperuto EC, Lira FS. Capsaicin supplementation increases time to exhaustion in high-intensity intermittent exercise without modifying metabolic responses in physically active men. Eur J Appl Physiol 2019; 119:971-979. [DOI: 10.1007/s00421-019-04086-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/29/2019] [Indexed: 01/22/2023]
|
168
|
Kelly DT, Tobin C, Egan B, McCarren A, OʼConnor PL, McCaffrey N, Moyna NM. Comparison of Sprint Interval and Endurance Training in Team Sport Athletes. J Strength Cond Res 2019; 32:3051-3058. [PMID: 29373432 DOI: 10.1519/jsc.0000000000002374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kelly, DT, Tobin, C, Egan, B, Carren, AM, O'Connor, PL, McCaffrey, N, and Moyna, NM. Comparison of sprint interval and endurance training in team sport athletes. J Strength Cond Res 32(11): 3051-3058, 2018-High-volume endurance training (ET) has traditionally been used to improve aerobic capacity but is extremely time-consuming in contrast to low-volume short-duration sprint interval training (SIT) that improves maximal oxygen uptake (V[Combining Dot Above]O2max) to a similar extent. Few studies have compared the effects of SIT vs. ET using running-based protocols, or in team sport athletes. Club level male Gaelic football players were randomly assigned to SIT (n = 7; 21.6 ± 2.1 years) or ET (n = 8; 21.9 ± 3.5 years) for 6 sessions over 2 weeks. V[Combining Dot Above]O2max, muscle mitochondrial enzyme activity, running economy (RE), and high-intensity endurance capacity (HEC) were measured before and after training. An increase in V[Combining Dot Above]O2max (p ≤ 0.05) after 2 weeks of both SIT and ET was observed. Performance in HEC increased by 31.0 and 17.2% after SIT and ET, respectively (p ≤ 0.05). Running economy assessed at 8, 9, 10, and 11 km·h, lactate threshold and vV[Combining Dot Above]O2max were unchanged after both SIT and ET. Maximal activity of 3-β-hydroxylacyl coenzyme A dehydrogenase (β-HAD) was increased in response to both SIT and ET (p ≤ 0.05), whereas the maximal activity of citrate synthase remained unchanged after training (p = 0.07). A running-based protocol of SIT is a time-efficient training method for improving aerobic capacity and HEC, and maintaining indices of RE and lactate threshold in team sport athletes.
Collapse
Affiliation(s)
- David T Kelly
- Department of Sport and Health Sciences, Athlone Institute of Technology, Athlone, Ireland
| | - Críonna Tobin
- Center for Preventive Medicine, School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Brendan Egan
- Center for Preventive Medicine, School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | | | - Paul L OʼConnor
- Department of Health Sciences, Central Michigan University, Mount Pleasant, Michigan
| | - Noel McCaffrey
- Center for Preventive Medicine, School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Niall M Moyna
- Center for Preventive Medicine, School of Health and Human Performance, Dublin City University, Dublin, Ireland
| |
Collapse
|
169
|
Hedges CP, Woodhead JST, Wang HW, Mitchell CJ, Cameron-Smith D, Hickey AJR, Merry TL. Peripheral blood mononuclear cells do not reflect skeletal muscle mitochondrial function or adaptation to high-intensity interval training in healthy young men. J Appl Physiol (1985) 2019; 126:454-461. [DOI: 10.1152/japplphysiol.00777.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Measurement of skeletal muscle mitochondrial respiration requires invasive biopsy to obtain a muscle sample. Peripheral blood mononuclear cell (PBMC) mitochondrial protein content appears to reflect training status in young men; however, no studies have investigated whether there are training-induced changes in PBMC mitochondrial respiration. Therefore, we determined whether PBMC mitochondrial respiration could be used as a marker of skeletal muscle mitochondrial respiration in young healthy men and whether PBMC mitochondrial respiration responds to short-term training. Skeletal muscle and PBMC samples from 10 healthy young (18–35 yr) male participants were taken before and after a 2-wk high-intensity interval training protocol. High-resolution respirometry was used to determine mitochondrial respiration from muscle and PBMCs, and Western blotting and quantitative PCR were used to assess mitochondrial biogenesis in PBMCs. PBMC mitochondrial respiration was not correlated with muscle mitochondrial respiration at baseline ( R2 = 0.012–0.364, P > 0.05). While muscle mitochondrial respiration increased in response to training (32.1–61.5%, P < 0.05), PBMC respiration was not affected by training. Consequently, PBMCs did not predict training effect on muscle mitochondrial respiration ( R2 = 0.024–0.283, P > 0.05). Similarly, gene and protein markers of mitochondrial biogenesis did not increase in PBMCs following training. This suggests PBMC mitochondrial function does not reflect that of skeletal muscle and does not increase following short-term high-intensity training. PBMCs are therefore not a suitable biomarker for muscle mitochondrial function in young healthy men. It may be useful to study PBMC mitochondrial function as a biomarker of muscle mitochondrial function in pathological populations with different respiration capacities. NEW & NOTEWORTHY Research in primates has suggested that peripheral blood mononuclear cells (PBMCs) may provide a less-invasive alternative to a muscle biopsy for measuring muscle mitochondrial function. Furthermore, trained individuals appear to have greater mitochondrial content in PBMCs. Here we show that in healthy young men, PBMCs do not reflect skeletal muscle mitochondrial function and do not adapt in response to a training intervention that increases muscle mitochondrial function, suggesting PBMCs are a poor marker of muscle mitochondrial function in humans.
Collapse
Affiliation(s)
- C. P. Hedges
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - J. S. T. Woodhead
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - H. W. Wang
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - C. J. Mitchell
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - D. Cameron-Smith
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - A. J. R. Hickey
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - T. L. Merry
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
170
|
Gunnarsson TP, Brandt N, Fiorenza M, Hostrup M, Pilegaard H, Bangsbo J. Inclusion of sprints in moderate intensity continuous training leads to muscle oxidative adaptations in trained individuals. Physiol Rep 2019; 7:e13976. [PMID: 30793541 PMCID: PMC6384299 DOI: 10.14814/phy2.13976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
This study examined adaptations in muscle oxidative capacity and exercise performance induced by two work- and duration-matched exercise protocols eliciting different muscle metabolic perturbations in trained individuals. Thirteen male subjects ( V ˙ O2 -max 53.5 ± 7.0 mL·kg-1 ·min-1 ) (means ± SD) performed 8 weeks (three sessions/week) of training consisting of 60 min of moderate intensity continuous cycling (157 ± 20 W) either without (C) or with (C+S) inclusion of 30-s sprints (473 ± 79 W) every 10 min. Total work performed during training was matched between groups. Muscle biopsies and arm venous blood were collected before as well as immediately and 2 h after exercise during the first and last training session. Plasma epinephrine and lactate concentrations after the first and last training session were 2-3-fold higher in C+S than in C. After the first and last training session, muscle phosphocreatine and pH were lower (12-25 mmol·kg d.w.-1 and 0.2-0.4 units, respectively) and muscle lactate higher (48-64 mmol·kg d.w.-1 ) in C+S than in C, whereas exercise-induced changes in muscle PGC-1α mRNA levels were similar within- and between-groups. Muscle content of cytochrome c oxidase IV and citrate synthase (CS) increased more in C+S than in C, and content of CS in type II muscle fibers increased in C+S only (9-17%), with no difference between groups. Performance during a 45-min time-trial improved by 4 ± 3 and 9 ± 3% in C+S and C, respectively, whereas peak power output at exhaustion during an incremental test increased by 3 ± 3% in C+S only, with no difference between groups. In conclusion, addition of sprints in moderate intensity continuous exercise causes muscle oxidative adaptations in trained male individuals which appear to be independent of the exercise-induced PGC-1α mRNA response. Interestingly, time-trial performance improved similarly between groups, suggesting that changes in content of mitochondrial proteins are of less importance for endurance performance in trained males.
Collapse
Affiliation(s)
- Thomas P. Gunnarsson
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Nina Brandt
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Matteo Fiorenza
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Morten Hostrup
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | | | - Jens Bangsbo
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
171
|
Raleigh JP, Giles MD, Islam H, Nelms M, Bentley RF, Jones JH, Neder JA, Boonstra K, Quadrilatero J, Simpson CA, Tschakovsky ME, Gurd BJ. Contribution of central and peripheral adaptations to changes in maximal oxygen uptake following 4 weeks of sprint interval training. Appl Physiol Nutr Metab 2019; 43:1059-1068. [PMID: 29733694 DOI: 10.1139/apnm-2017-0864] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The current study examined the contribution of central and peripheral adaptations to changes in maximal oxygen uptake (V̇O2max) following sprint interval training (SIT). Twenty-three males completed 4 weekly SIT sessions (8 × 20-s cycling bouts at ∼170% of work rate at V̇O2max, 10-s recovery) for 4 weeks. Following completion of training, the relationship between changes in V̇O2max and changes in central (cardiac output) and peripheral (arterial-mixed venous oxygen difference (a-vO2diff), muscle capillary density, oxidative capacity, fibre-type distribution) adaptations was determined in all participants using correlation analysis. Participants were then divided into tertiles on the basis of the magnitude of their individual V̇O2max responses, and differences in central and peripheral adaptations were examined in the top (HI; ∼10 mL·kg-1·min-1 increase in V̇O2max, p < 0.05) and bottom (LO; no change in V̇O2max, p > 0.05) tertiles (n = 8 each). Training had no impact on maximal cardiac output, and no differences were observed between the LO group and the HI group (p > 0.05). The a-vO2diff increased in the HI group only (p < 0.05) and correlated significantly (r = 0.71, p < 0.01) with changes in V̇O2max across all participants. Muscle capillary density (p < 0.02) and β-hydroxyacyl-CoA dehydrogenase maximal activity (p < 0.05) increased in both groups, with no between-group differences (p > 0.05). Citrate synthase maximal activity (p < 0.01) and type IIA fibre composition (p < 0.05) increased in the LO group only. Collectively, although the heterogeneity in the observed V̇O2max response following 4 weeks of SIT appears to be attributable to individual differences in systemic vascular and/or muscular adaptations, the markers examined in the current study were unable to explain the divergent V̇O2max responses in the LO and HI groups.
Collapse
Affiliation(s)
- James P Raleigh
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Matthew D Giles
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Hashim Islam
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Matthew Nelms
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Robert F Bentley
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Joshua H Jones
- b Department of Medicine, Division of Respirology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - J Alberto Neder
- b Department of Medicine, Division of Respirology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kristen Boonstra
- c Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Joe Quadrilatero
- c Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Craig A Simpson
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Michael E Tschakovsky
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Brendon J Gurd
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
172
|
La Monica MB, Fukuda DH, Starling-Smith TM, Clark NW, Morales J, Hoffman JR, Stout JR. Examining work-to-rest ratios to optimize upper body sprint interval training. Respir Physiol Neurobiol 2019; 262:12-19. [PMID: 30660860 DOI: 10.1016/j.resp.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/26/2023]
Abstract
The objective was to compare the metabolic influence of varying work-to-rest ratios during upper body sprint interval training (SIT). Forty-two recreationally-trained men were randomized into a training group [10 s work - 2 min of rest (10:2) or 4 min of rest (10:4), or 30 s work - 4 min of rest (30:4)] or a control group (CON). Participants underwent six training sessions over two weeks. Assessments consisted of a graded exercise test [maximal oxygen consumption (VO2peak) and peak power output (PPO)], four constant-work rate trials [critical power, anaerobic working capacity, and electromyographic fatigue threshold], and an upper body Wingate test (mean/peak power and total work). Post-training absolute and relative VO2peak was greater than pre-training for 30:4 (p = .005 and p = .009, respectively), but lower for CON (p = .001 and p = .006, respectively). Post-training PPO was greater in 30:4 (p < .001). No differences were observed during the constant-work rate trials or Wingate test. Traditional SIT appears to have enhanced VO2peak in the upper body over a short-term two-week intervention.
Collapse
Affiliation(s)
- Michael B La Monica
- Department of Kinesiology, Missouri State University, 901 S National Ave, Springfield, MO 65897, USA.
| | - David H Fukuda
- School of Kinesiology and Physical Therapy, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Tristan M Starling-Smith
- School of Kinesiology and Physical Therapy, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Nicolas W Clark
- School of Kinesiology and Physical Therapy, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Jose Morales
- Facultat de Ciències de l'Esport Blanquerna, Universitat Ramon Llull, C/ Císter, 34 08022 Barcelona, Spain
| | - Jay R Hoffman
- School of Kinesiology and Physical Therapy, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Jeffrey R Stout
- School of Kinesiology and Physical Therapy, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| |
Collapse
|
173
|
Deemer SE, Castleberry TJ, Irvine C, Newmire DE, Oldham M, King GA, Ben-Ezra V, Irving BA, Biggerstaff KD. Pilot study: an acute bout of high intensity interval exercise increases 12.5 h GH secretion. Physiol Rep 2019; 6. [PMID: 29380957 PMCID: PMC5789720 DOI: 10.14814/phy2.13563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to test the hypothesis that high‐intensity interval exercise (HIE) significantly increases growth hormone (GH) secretion to a greater extent than moderate‐intensity continuous exercise (MOD) in young women. Five young, sedentary women (mean ± SD; age: 22.6±1.3 years; BMI: 27.4±3.1 kg/m2) were tested during the early follicular phase of their menstrual cycle on three occasions. For each visit, participants reported to the laboratory at 1700 h, exercised from 1730–1800 h, and remained in the laboratory until 0700 h the following morning. The exercise component consisted of either 30‐min of moderate‐intensity continuous cycling at 50% of measured peak power (MOD), four 30‐s “all‐out” sprints with 4.5 min of active recovery (HIE), or a time‐matched sedentary control using a randomized, cross‐over design. The overnight GH secretory profile of each trial was determined from 10‐min sampling of venous blood from 1730–0600 h, using deconvolution analysis. Deconvolution GH parameters were log transformed prior to statistical analyses. Calculated GH AUC (0–120 min) was significantly greater in HIE than CON (P = 0.04), but HIE was not different from MOD. Total GH secretory rate (ng/mL/12.5 h) was significantly greater in the HIE than the CON (P = 0.05), but MOD was not different from CON or HIE. Nocturnal GH secretion (ng/mL/7.5 h) was not different between the three trials. For these women, in this pilot study, a single bout of HIE was sufficient to increase 12.5 h pulsatile GH secretion. It remains to be determined if regular HIE may contribute to increased daily GH secretion.
Collapse
Affiliation(s)
- Sarah E Deemer
- Department of Kinesiology, Texas Woman's University, Denton, Texas
| | | | - Chris Irvine
- Department of Kinesiology, Texas Woman's University, Denton, Texas
| | - Daniel E Newmire
- Department of Kinesiology, Texas Woman's University, Denton, Texas
| | - Michael Oldham
- Department of Kinesiology, Texas Woman's University, Denton, Texas
| | - George A King
- Department of Kinesiology, University of Texas at El Paso, El Paso, Texas
| | - Vic Ben-Ezra
- Department of Kinesiology, Texas Woman's University, Denton, Texas
| | - Brian A Irving
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana
| | | |
Collapse
|
174
|
Principles of Exercise Prescription, and How They Influence Exercise-Induced Changes of Transcription Factors and Other Regulators of Mitochondrial Biogenesis. Sports Med 2019; 48:1541-1559. [PMID: 29675670 DOI: 10.1007/s40279-018-0894-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Physical inactivity represents the fourth leading risk factor for mortality, and it has been linked with a series of chronic disorders, the treatment of which absorbs ~ 85% of healthcare costs in developed countries. Conversely, physical activity promotes many health benefits; endurance exercise in particular represents a powerful stimulus to induce mitochondrial biogenesis, and it is routinely used to prevent and treat chronic metabolic disorders linked with sub-optimal mitochondrial characteristics. Given the importance of maintaining a healthy mitochondrial pool, it is vital to better characterize how manipulating the endurance exercise dose affects cellular mechanisms of exercise-induced mitochondrial biogenesis. Herein, we propose a definition of mitochondrial biogenesis and the techniques available to assess it, and we emphasize the importance of standardizing biopsy timing and the determination of relative exercise intensity when comparing different studies. We report an intensity-dependent regulation of exercise-induced increases in nuclear peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein content, nuclear phosphorylation of p53 (serine 15), and PGC-1α messenger RNA (mRNA), as well as training-induced increases in PGC-1α and p53 protein content. Despite evidence that PGC-1α protein content plateaus within a few exercise sessions, we demonstrate that greater training volumes induce further increases in PGC-1α (and p53) protein content, and that short-term reductions in training volume decrease the content of both proteins, suggesting training volume is still a factor affecting training-induced mitochondrial biogenesis. Finally, training-induced changes in mitochondrial transcription factor A (TFAM) protein content are regulated in a training volume-dependent manner and have been linked with training-induced changes in mitochondrial content.
Collapse
|
175
|
Turi-Lynch BC, Monteiro HL, Fernandes RA, Sui X, Lemes ÍR, Codogno JS. Impact of sports participation on mortality rates among Brazilian adults. J Sports Sci 2019; 37:1443-1448. [DOI: 10.1080/02640414.2019.1565109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bruna C. Turi-Lynch
- Faculty of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente, Brazil
| | | | - Rômulo Araújo Fernandes
- Faculty of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente, Brazil
| | - Xuemei Sui
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Ítalo Ribeiro Lemes
- Faculty of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente, Brazil
| | - Jamile Sanches Codogno
- Faculty of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente, Brazil
| |
Collapse
|
176
|
DiMenna FJ, Arad AD. Exercise as 'precision medicine' for insulin resistance and its progression to type 2 diabetes: a research review. BMC Sports Sci Med Rehabil 2018; 10:21. [PMID: 30479775 PMCID: PMC6251139 DOI: 10.1186/s13102-018-0110-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/13/2018] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes and obesity epidemics are in effect in the United States and the two pathologies are linked. In accordance with the growing appreciation that ‘exercise is medicine,’ it is intuitive to suggest that exercise can play an important role in the prevention and/or treatment of these conditions. However, if exercise is to truly be considered as a viable alternative to conventional healthcare prevention/treatment strategies involving pharmaceuticals, it must be prescribed with similar scrutiny. Indeed, it seems reasonable to posit that the recent initiative calling for ‘precision medicine’ in the US standard healthcare system should also be applied in the exercise setting. In this narrative review, we consider a number of explanations that have been forwarded regarding the pathological progression to type 2 diabetes both with and without the concurrent influence of overweight/obesity. Our goal is to provide insight regarding exercise strategies that might be useful as ‘precision medicine’ to prevent/treat this disease. Although the etiology of type 2 diabetes is complex and cause/consequence characteristics of associated dysfunctions have been debated, it is well established that impaired insulin action plays a critical early role. Consequently, an exercise strategy to prevent/treat this disease should be geared toward improving insulin sensitivity both from an acute and chronic standpoint. However, research suggests that a chronic improvement in insulin sensitivity only manifests when weight loss accompanies an exercise intervention. This has resonance because ectopic fat accumulation appears to represent a central component of disease progression regardless of whether obesity is also part of the equation. The cause/consequence characteristics of the relationship between insulin resistance, pathological fat deposition and/or mobilsation, elevated and/or poorly-distributed lipid within myocytes and an impaired capacity to use lipid as fuel remains to be clarified as does the role of muscle mitochondria in the metabolic decline. Until these issues are resolved, a multidimensional exercise strategy (e.g., aerobic exercise at a range of intensities and resistance training for muscular hypertrophy) could provide the best alternative for prevention/treatment.
Collapse
Affiliation(s)
- Fred J DiMenna
- 1Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, 1111 Amsterdam Avenue, Babcock 10th Floor, Suite 1020, New York, 10025 New York USA.,2Department of Biobehavioral Sciences, Columbia University Teachers College, 525 W. 120th Street, New York, 10027 New York USA
| | - Avigdor D Arad
- 1Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, 1111 Amsterdam Avenue, Babcock 10th Floor, Suite 1020, New York, 10025 New York USA
| |
Collapse
|
177
|
da Silva Machado DG, Costa EC, Ray H, Beale L, Chatzisarantis NLD, de Farias-Junior LF, Hardcastle SJ. Short-Term Psychological and Physiological Effects of Varying the Volume of High-Intensity Interval Training in Healthy Men. Percept Mot Skills 2018; 126:119-142. [DOI: 10.1177/0031512518809734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We assessed the short-term effects of varying the volume of high-intensity interval training (HIIT) on psychological and physiological responses of 23 healthy adult males ( M = 21 years; M peak oxygen uptake [VO2peak] = 47.2 ml·kg−1·min−1). Participants were randomly assigned to low- and very-low-volume HIIT groups and engaged in nine supervised exercise sessions over three weeks. The low-volume HIIT group performed 8-12 60-second work bouts on a cycle ergometer at the peak power output achieved during the incremental test, interspersed by 75 seconds of low-intensity active recovery. The very-low-volume HIIT performed 4-6 work bouts with the same intensity, duration, and rest intervals. During training, participants’ ratings of perceived exertion (Borg Category Ratio-10 scale) and their affective responses (Feeling Scale −5/+5) during the last 15 seconds of each work bout were recorded. Physiological data were VO2peak, endurance, and anaerobic performance before and after the intervention. Throughout training, participants in the very-low-volume group (relative to the low-volume group) reported lower ratings of perceived exertion in Week 1 ( M = 4.1 vs. M = 6.3; p < .01) and Week 3 ( M = 4.0 vs. M = 6.2; p < .01), and higher affective response in these same two weeks (Week 1: M = 1.9 vs. M = 0.3; p = .04; Week 3: M = 2.1 vs. M = 0.9; p = .06). Regarding physical fitness, Wingate peak power increased significantly after training in the very-low-volume HIIT group ( M = 1,049 W vs. M = 1,222 W; p < .05), but not in the low-volume HIIT group ( M = 1,050 W vs. M = 1,076 W). No significant change was found after training in physiological variables of peak power output, VO2peak, and endurance performance. In summary, in this short-term training period, the very-low-volume HIIT enhanced anaerobic capacity and was perceived as less strenuous and more pleasurable than low-volume HIIT.
Collapse
Affiliation(s)
| | - Eduardo C. Costa
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Hannah Ray
- Centre for Sport and Exercise Science and Medicine, University of Brighton, Eastbourne, UK
| | - Louisa Beale
- Centre for Sport and Exercise Science and Medicine, University of Brighton, Eastbourne, UK
| | - Nikos L. D. Chatzisarantis
- Health Psychology and Behavioural Medicine Research Group, School of Psychology and Speech Pathology, Curtin University, Perth, Australia
| | - Luiz F de Farias-Junior
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Sarah J. Hardcastle
- Health Psychology and Behavioural Medicine Research Group, School of Psychology and Speech Pathology, Curtin University, Perth, Australia
| |
Collapse
|
178
|
Vollaard NBJ, Metcalfe RS. Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints. Sports Med 2018; 47:2443-2451. [PMID: 28391489 PMCID: PMC5684281 DOI: 10.1007/s40279-017-0727-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, it has been convincingly shown that regularly performing repeated brief supramaximal cycle sprints (sprint interval training [SIT]) is associated with aerobic adaptations and health benefits similar to or greater than with moderate-intensity continuous training (MICT). SIT is often promoted as a time-efficient exercise strategy, but the most commonly studied SIT protocol (4–6 repeated 30-s Wingate sprints with 4 min recovery, here referred to as ‘classic’ SIT) takes up to approximately 30 min per session. Combined with high associated perceived exertion, this makes classic SIT unsuitable as an alternative/adjunct to current exercise recommendations involving MICT. However, there are no indications that the design of the classic SIT protocol has been based on considerations regarding the lowest number or shortest duration of sprints to optimise time efficiency while retaining the associated health benefits. In recent years, studies have shown that novel SIT protocols with both fewer and shorter sprints are efficacious at improving important risk factors of noncommunicable diseases in sedentary individuals, and provide health benefits that are no worse than those associated with classic SIT. These shorter/easier protocols have the potential to remove many of the common barriers to exercise in the general population. Thus, based on the evidence summarised in this current opinion paper, we propose that there is a need for a fundamental change in focus in SIT research in order to move away from further characterising the classic SIT protocol and towards establishing acceptable and effective protocols that involve minimal sprint durations and repetitions.
Collapse
Affiliation(s)
- Niels B J Vollaard
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, FK9 4LA, UK.
| | | |
Collapse
|
179
|
de Matos MA, Vieira DV, Pinhal KC, Lopes JF, Dias-Peixoto MF, Pauli JR, de Castro Magalhães F, Little JP, Rocha-Vieira E, Amorim FT. High-Intensity Interval Training Improves Markers of Oxidative Metabolism in Skeletal Muscle of Individuals With Obesity and Insulin Resistance. Front Physiol 2018; 9:1451. [PMID: 30429793 PMCID: PMC6220130 DOI: 10.3389/fphys.2018.01451] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/24/2018] [Indexed: 01/10/2023] Open
Abstract
Background: The excess body fat characteristic of obesity is related to various metabolic alterations, which includes insulin resistance (IR). Among the non-pharmacological measures used to improve insulin sensitivity are aerobic physical training, such as high-intensity interval training (HIIT). This study investigated the effects of 8 weeks of HIIT on blood and skeletal muscle markers related to IR and oxidative metabolism in physically inactive individuals with obesity and compared the changes between insulin resistant and non-insulin resistant phenotypes. Methods: Initially to investigate the effect of obesity and IR in the analyzed parameters, insulin-sensitive eutrophic volunteers (CON; n = 9) and obese non-insulin (OB; n = 9) and insulin-resistant (OBR; n = 8) were enrolled. Volunteers with obesity completed 8 weeks of HIIT in a cycle ergometer. Venous blood and vastus lateralis muscle samples were obtained before and after the HIIT. Body composition and peak oxygen consumption (VO2peak) were estimated before and after HIIT. Results: HIIT reduced IR assessed by the homeostatic model assessment of insulin resistance (HOMA-IR) in OBR (4.4 ± 1.4 versus 4.1 ± 2.2 μU L−2), but not in OB (HOMA-IR 1.8 ± 0.5 versus 2.3 ± 1.0 μU L−2) volunteers. HIIT increased VO2peak with no change in body fat in both groups. In skeletal muscle, HIIT increased the phosphorylation of IRS (Tyr612), Akt (Ser473), and increased protein content of β-HAD and COX-IV in both groups. There was a reduction in ERK1/2 phosphorylation in OBR after HIIT. Conclusion: Eight weeks of HIIT increased the content of proteins related to oxidative metabolism in skeletal muscle of individuals with obesity, independent of changes total body fat.
Collapse
Affiliation(s)
- Mariana Aguiar de Matos
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Dênia Vargas Vieira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Kaio Cesar Pinhal
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Jennifer Freitas Lopes
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Marco Fabrício Dias-Peixoto
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - José Rodrigo Pauli
- Laboratório de Biologia Molecular do Exercício, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, Brazil
| | - Flávio de Castro Magalhães
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Jonathan P Little
- School of Health and Exercise Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Etel Rocha-Vieira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Fabiano Trigueiro Amorim
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil.,Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
180
|
Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med 2018; 48:1809-1828. [PMID: 29934848 DOI: 10.1007/s40279-018-0936-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle has been linked to a number of metabolic disorders that have been associated with sub-optimal mitochondrial characteristics and an increased risk of premature death. Endurance training can induce an increase in mitochondrial content and/or mitochondrial functional qualities, which are associated with improved health and well-being and longer life expectancy. It is therefore important to better define how manipulating key parameters of an endurance training intervention can influence the content and functionality of the mitochondrial pool. This review focuses on mitochondrial changes taking place following a series of exercise sessions (training-induced mitochondrial adaptations), providing an in-depth analysis of the effects of exercise intensity and training volume on changes in mitochondrial protein synthesis, mitochondrial content and mitochondrial respiratory function. We provide evidence that manipulation of different exercise training variables promotes specific and diverse mitochondrial adaptations. Specifically, we report that training volume may be a critical factor affecting changes in mitochondrial content, whereas relative exercise intensity is an important determinant of changes in mitochondrial respiratory function. As a consequence, a dissociation between training-induced changes in mitochondrial content and mitochondrial respiratory function is often observed. We also provide evidence that exercise-induced changes are not necessarily predictive of training-induced adaptations, we propose possible explanations for the above discrepancies and suggestions for future research.
Collapse
|
181
|
Sheykhlouvand M, Gharaat M, Khalili E, Agha-Alinejad H, Rahmaninia F, Arazi H. Low-Volume High-Intensity Interval Versus Continuous Endurance Training: Effects on Hematological and Cardiorespiratory System Adaptations in Professional Canoe Polo Athletes. J Strength Cond Res 2018; 32:1852-1860. [PMID: 28700514 DOI: 10.1519/jsc.0000000000002112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sheykhlouvand, M, Gharaat, M, Khalili, E, Agha-Alinejad, H, Rahmaninia, F, and Arazi, H. Low-volume high-intensity interval versus continuous endurance training: effects on hematological and cardiorespiratory system adaptations in professional canoe polo athletes. J Strength Cond Res 32(7): 1852-1860, 2018-The aim of this study was to compare the effect of 2 paddling-based high-intensity interval training (HIIT) and continuous endurance training (CET) on hematological, immunological, and cardiorespiratory adaptations in professional canoe polo athletes. A total of 21 male canoe polo athletes were randomly divided into 1 of 3 groups (N = 7): (a) HIIT with variable intensity (VIHIIT) (6 × 60 seconds at 100, 110, 120, 130, 130, 130, 120, 110, 100% vV[Combining Dot Above]O2peak from first to ninth session, respectively, 1:3 work to recovery ratio); (b) HIIT with variable volume (VVHIIT) (6, 7, 8, 9, 9, 9, 8, 7, 6 repetitions/session from first to ninth session, respectively) × 60 seconds at lowest velocity that elicited V[Combining Dot Above]O2peak (vV[Combining Dot Above]O2peak), 1:3 work to recovery ratio); and (c) the CET group performed 3 times × 60 minutes paddling sessions (75% vV[Combining Dot Above]O2peak) per week for 3 weeks. Significant increases in V[Combining Dot Above]O2peak (ml·kg·min) (VIHIIT = 7.6%, VVHIIT = 6.7%), ventilation (V[Combining Dot Above]E) at V[Combining Dot Above]O2peak (VIHIIT = 11.5%, VVHIIT = 15.2%), respiratory frequency (Rf) at V[Combining Dot Above]O2peak (VVHIIT = 21.1%), V[Combining Dot Above]O2 at ventilatory threshold (VT) (VIHIIT = 10.5%, VVHIIT = 25.1%), V[Combining Dot Above]E at VT (VIHIIT = 12.4%, VVHIIT = 34.0%), tidal volume at VT (VIHIIT = 11.7%, VVHIIT = 33.3%), Rf at VT (VIHIIT = 9.7%), V[Combining Dot Above]E/V[Combining Dot Above]O2 at VT (VVHIIT = 13.1%), V[Combining Dot Above]O2/heart rate (HR) at VT (VIHIIT = 12.9%, VVHIIT = 21.4%), and V[Combining Dot Above]E/HR at VT (VIHIIT = 7.8%, VVHIIT = 27.2%) were seen compared with pretraining. Training interventions resulted in significant increases in mean platelet volume (VIHIIT = 2.7%, VVHIIT = 1.9%), mean corpuscular hemoglobin concentration (CET = 3.3%), and significant decrease in red blood cell distribution width (VVHIIT = -4.3), and cell numbers of lymphocyte (CET = -27.1) compared with pretraining. This study demonstrated that paddling-based HIIT enhances aerobic capacity and respiratory makers, without negatively affecting the immune system over 3 weeks.
Collapse
Affiliation(s)
- Mohsen Sheykhlouvand
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.,Department of Exercise Physiology, Islamic Azad University, Ardabil Branch, Ardabil, Iran
| | - Mohammadali Gharaat
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Erfan Khalili
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Hamid Agha-Alinejad
- Department of Physical Education and Sports Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farhad Rahmaninia
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
| | - Hamid Arazi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
182
|
Aerobic exercise training prevents kidney lipid deposition in mice fed a cafeteria diet. Life Sci 2018; 211:140-146. [DOI: 10.1016/j.lfs.2018.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/29/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
|
183
|
van Biljon A, McKune AJ, DuBose KD, Kolanisi U, Semple SJ. Short-Term High-Intensity Interval Training Is Superior to Moderate-Intensity Continuous Training in Improving Cardiac Autonomic Function in Children. Cardiology 2018; 141:1-8. [PMID: 30227396 DOI: 10.1159/000492457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/18/2018] [Indexed: 01/18/2023]
Abstract
OBJECTIVES This study aimed to investigate the impact of 3 isocaloric exercise programs on cardiac autonomic nervous system (ANS) functioning in children. METHODS One hundred nine children (39% boys and 61% girls) aged 10-13 years (mean 11.07 ± 0.81) were conveniently assigned to 1 of 4 groups as follows: Moderate-intensity continuous training (MICT; n = 29) at 65-70% of the predicted maximum heart rate (MHR), High-intensity interval training (HIIT; n = 29) at > 80% of the predicted MHR, HIIT and MICT combined on alternate weeks (ALT; n = 27), and a control group (n = 24). Morning ANS activity was assessed via analysis of heart rate variability (HRV), with the patient in supine position for 10 min, before and after the exercise intervention. DATA ANALYSIS A 2-way analysis of variance was used to evaluate the effects of training on all HRV parameters (p < 0.05/4 = 0.0125). RESULTS After 5 weeks of training, significant improvements were observed for ln of the standard deviation of normal-to-normal intervals (p < 0.0001), ln of the root mean square of successive difference (p < 0.0001), and ln of standard deviation 1 (p < 0.0001), with superior results reported in the HIIT group (effect size [ES] = 2.22, 2.69, and 2.69) compared with the MICT (ES = 1.67, 1.75, and 1.75) and ALT (ES = 0.87, 1.06, and 1.06) groups, respectively. CONCLUSION Short-term HIIT seems to induce superior alterations in cardiac ANS activity compared to MICT and ALT in children through enhanced vagal activity.
Collapse
Affiliation(s)
- Anneke van Biljon
- Department of Biokinetics and Sports Science, University of Zululand, KwaDlangezwa, South
| | - Andrew J McKune
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Discipline of Sport and Exercise Science, University of Canberra Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Canberra, New South Wales, Australia
| | - Katrina D DuBose
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Unathi Kolanisi
- Department of Consumer Science, University of Zululand, KwaDlangezwa, South Africa
| | - Stuart J Semple
- Discipline of Sport and Exercise Science, University of Canberra Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Canberra, New South Wales, Australia
| |
Collapse
|
184
|
Liu J, Lee I, Feng HZ, Galen SS, Hüttemann PP, Perkins GA, Jin JP, Hüttemann M, Malek MH. Aerobic Exercise Preconception and During Pregnancy Enhances Oxidative Capacity in the Hindlimb Muscles of Mice Offspring. J Strength Cond Res 2018; 32:1391-1403. [PMID: 29309390 DOI: 10.1519/jsc.0000000000002416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Liu, J, Lee, I, Feng, H-Z, Galen, SS, Hüttemann, PP, Perkins, GA, Jin, J-P, Hüttemann, M, and Malek, MH. Aerobic exercise preconception and during pregnancy enhances oxidative capacity in the hindlimb muscles of mice offspring. J Strength Cond Res 32(5): 1391-1403, 2018-Little is known about the effect of maternal exercise on offspring skeletal muscle health. The purpose of this study, therefore, was to determine whether maternal exercise (preconception and during pregnancy) alters offspring skeletal muscle capillarity and mitochondrial biogenesis. We hypothesized that offspring from exercised dams would have higher capillarity and mitochondrial density in the hindlimb muscles compared with offspring from sedentary dams. Female mice in the exercise condition had access to a running wheel in their individual cage 30 days before mating and throughout pregnancy, whereas the sedentary group did not have access to the running wheel before mating and during pregnancy. Male offspring from both groups were killed when they were 2 months old, and their tissues were analyzed. The results indicated no significant (p > 0.05) mean differences for capillarity density, capillarity-to-fiber ratio, or regulators of angiogenesis such as VEGF-A and TSP-1. Compared with offspring from sedentary dams, however, offspring from exercised dams had an increase in protein expression of myosin heavy chain type I (MHC I) (∼134%; p = 0.009), but no change in MHC II. For mitochondrial morphology, we found significant (all p-values ≤ 0.0124) increases in mitochondrial volume density (∼55%) and length (∼18%) as well as mitochondria per unit area (∼19%). For mitochondrial enzymes, there were also significant (all p-values ≤ 0.0058) increases in basal citrate synthase (∼79%) and cytochrome c oxidase activity (∼67%) in the nonoxidative muscle fibers as well as increases in basal (ATP) (∼52%). Last, there were also significant mean differences in protein expression for regulators (FIS1, Lon protease, and TFAM) of mitochondrial biogenesis. These findings suggest that maternal exercise before and during pregnancy enhances offspring skeletal muscle mitochondria functionality, but not capillarity.
Collapse
Affiliation(s)
- Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Han-Zhong Feng
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Sujay S Galen
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Philipp P Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California
| | - J-P Jin
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan.,Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Moh H Malek
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan.,Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan.,Integrative Physiology of Exercise Laboratory, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
185
|
Jamurtas AZ, Fatouros IG, Deli CK, Georgakouli K, Poulios A, Draganidis D, Papanikolaou K, Tsimeas P, Chatzinikolaou A, Avloniti A, Tsiokanos A, Koutedakis Y. The Effects of Acute Low-Volume HIIT and Aerobic Exercise on Leukocyte Count and Redox Status. J Sports Sci Med 2018; 17:501-508. [PMID: 30116124 PMCID: PMC6090390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
A single bout of exercise can result in inflammatory responses, increased oxidative stress and upregulation of enzymatic antioxidant mechanisms. Although low-volume high-intensity interval training (HIIT) has become popular, its acute responses on the above mechanisms have not been adequately studied. The present study evaluated the effects of HIIT on hematological profile and redox status compared with those following traditional continuous aerobic exercise (CET). Twelve healthy young men participated in a randomized crossover design under HIIT and CET. In HIIT session, participants performed four 30-sec sprints on a cycle-ergometer with 4 min of recovery against a resistance of 0.375 kg/kg of body mass. CET consisted of 30-min cycling on a cycle-ergometer at 70% of their VO2max. Blood was drawn at baseline, immediately post, 24h, 48h and 72h post-exercise and was analyzed for complete blood count and redox status (thiobarbituric acid reactive substances, [TBARS]; protein carbonyls, [PC]; total antioxidant capacity, [TAC]; catalase and uric acid). White blood cells (WBC) increased after both exercise protocols immediately post-exercise (HIIT: 50% and CET: 31%, respectively). HIIT increased (+22%) PC post-exercise compared to baseline and CET (p < 0.05). HIIT increased TAC immediately post-exercise (16%) and at 24h post-exercise (11%, p < 0.05), while CET increased TAC only post-exercise (12%, p < 0.05) compared to baseline, and TAC was higher following HIIT compared to CET (p < 0.05). Both HIIT and CET increased uric acid immediately post- (21% and 5%, respectively, p < 0.05) and 24h (27% and 5%, respectively, p < 0.05) post-exercise and the rise was greater following HIIT (p < 0.05). There were no significant changes (p > 0.05) for TBARS and catalase following either exercise protocol. Low-volume HIIT is associated with a greater acute phase leukocyte count and redox response than low-volume CET, and this should be considered when an exercise training program is developed and complete blood count is performed for health purposes.
Collapse
Affiliation(s)
- Athanasios Z Jamurtas
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
- Institute of Human Performance and Rehabilitation, Centre for Research and Technology Thessaly, Greece
| | - Ioannis G Fatouros
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
| | - Chariklia K Deli
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
| | - Kalliopi Georgakouli
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
| | - Athanasios Poulios
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
| | - Dimitrios Draganidis
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
| | | | - Panagiotis Tsimeas
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
| | | | - Alexandra Avloniti
- Department of Physical Education & Sport Science, University of Thrace, Komotini, Greece
| | - Athanasios Tsiokanos
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
| | - Yiannis Koutedakis
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
- Institute of Human Performance and Rehabilitation, Centre for Research and Technology Thessaly, Greece
- School of Sports, Performing Arts and Leisure, University of Wolverhampton, United Kingdom
| |
Collapse
|
186
|
Hakansson S, Jones M, Ristov M, Marcos L, Clark T, Ram A, Morey R, Franklin A, McCarthy C, Carli L, Ward R, Keech A. Intensity-dependent effects of aerobic training on pressure pain threshold in overweight men: A randomized trial. Eur J Pain 2018; 22:1813-1823. [DOI: 10.1002/ejp.1277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Affiliation(s)
- S. Hakansson
- School of Medical Sciences; University of New South Wales; Sydney Australia
- Department of Biomedicine; Karolinska Institutet; Stockholm Sweden
| | - M.D. Jones
- School of Medical Sciences; University of New South Wales; Sydney Australia
- Kirby Institute; University of New South Wales; Sydney Australia
- Neuroscience Research Australia; Sydney Australia
| | - M. Ristov
- School of Medical Sciences; University of New South Wales; Sydney Australia
| | - L. Marcos
- School of Medical Sciences; University of New South Wales; Sydney Australia
| | - T. Clark
- School of Medical Sciences; University of New South Wales; Sydney Australia
| | - A. Ram
- School of Medical Sciences; University of New South Wales; Sydney Australia
| | - R. Morey
- School of Medical Sciences; University of New South Wales; Sydney Australia
| | - A. Franklin
- School of Medical Sciences; University of New South Wales; Sydney Australia
| | - C. McCarthy
- School of Medical Sciences; University of New South Wales; Sydney Australia
| | - L.D. Carli
- School of Medical Sciences; University of New South Wales; Sydney Australia
| | - R. Ward
- School of Medical Sciences; University of New South Wales; Sydney Australia
| | - A. Keech
- School of Medical Sciences; University of New South Wales; Sydney Australia
| |
Collapse
|
187
|
Panissa VLG, Fukuda DH, Caldeira RS, Gerosa-Neto J, Lira FS, Zagatto AM, Franchini E. Is Oxygen Uptake Measurement Enough to Estimate Energy Expenditure During High-Intensity Intermittent Exercise? Quantification of Anaerobic Contribution by Different Methods. Front Physiol 2018; 9:868. [PMID: 30038583 PMCID: PMC6046462 DOI: 10.3389/fphys.2018.00868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022] Open
Abstract
Purpose: The aim of the present study was to compare the contributions of the anaerobic pathway as determined by two different methods and energy expenditure during a typical high-intensity intermittent exercise (HIIE) protocol. Methods: A descriptive research design was utilized in which thirteen physically active men performed six experimental sessions consisting of an incremental test (session 1), submaximal tests at 40, 50, 60, 70, 75, 80, 85, 90% of velocity associated with maximum oxygen uptake (vV˙O2max) with two intensities per session (sessions 2–5), and the HIIE protocol (session 6; 10 efforts of 1 min at vV˙O2max interspersed by 1 min of passive recovery). The estimation of anaerobic energy system contribution was calculated by: (a) the excess post-exercise oxygen consumption plus delta lactate method and (b) the accumulated oxygen deficit method using the difference between predicted oxygen demand from the submaximal tests of varying intensities and accumulated oxygen uptake during HIIE. Estimation of aerobic energy system contribution was calculated through the measurement of oxygen consumption during activity. Total EE during the entire HIIE protocol (efforts + recovery) and for the efforts only were calculated from each method. Results: For efforts + recovery and efforts only, anaerobic contribution was similar for both methods, and consequently total EE was also equivalent (p = 0.230 for both comparisons). During efforts + recovery, aerobic:anaerobic energy system contribution was (68 ± 4%: 32 ± 4%), while efforts only was (54 ± 5%: 46 ± 5%) with both situations demonstrating greater aerobic than anaerobic contribution (p < 0.001 for both). Conclusion: Anaerobic contribution seems to be relevant during HIIE and must to be taken into account during total EE estimation; however, the type of method employed did not change the anaerobic contribution or total EE estimates.
Collapse
Affiliation(s)
- Valéria L G Panissa
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.,School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, United States
| | - David H Fukuda
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, United States
| | - Renan S Caldeira
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University, São Paulo, Brazil
| | - Jose Gerosa-Neto
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University, São Paulo, Brazil
| | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University, São Paulo, Brazil
| | | | - Emerson Franchini
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.,Australian Institute of Sport, Canberra, ACT, Australia
| |
Collapse
|
188
|
Fiorenza M, Gunnarsson TP, Hostrup M, Iaia FM, Schena F, Pilegaard H, Bangsbo J. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. J Physiol 2018; 596:2823-2840. [PMID: 29727016 DOI: 10.1113/jp275972] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Low-volume high-intensity exercise training promotes muscle mitochondrial adaptations that resemble those associated with high-volume moderate-intensity exercise training. These training-induced mitochondrial adaptations stem from the cumulative effects of transient transcriptional responses to each acute exercise bout. However, whether metabolic stress is a key mediator of the acute molecular responses to high-intensity exercise is still incompletely understood. Here we show that, by comparing different work-matched low-volume high-intensity exercise protocols, more marked metabolic perturbations were associated with enhanced mitochondrial biogenesis-related muscle mRNA responses. Furthermore, when compared with high-volume moderate-intensity exercise, only the low-volume high-intensity exercise eliciting severe metabolic stress compensated for reduced exercise volume in the induction of mitochondrial biogenic mRNA responses. The present results, besides improving our understanding of the mechanisms mediating exercise-induced mitochondrial biogenesis, may have implications for applied and clinical research that adopts exercise as a means to increase muscle mitochondrial content and function in healthy or diseased individuals. ABSTRACT The aim of the present study was to examine the impact of exercise-induced metabolic stress on regulation of the molecular responses promoting skeletal muscle mitochondrial biogenesis. Twelve endurance-trained men performed three cycling exercise protocols characterized by different metabolic profiles in a randomized, counter-balanced order. Specifically, two work-matched low-volume supramaximal-intensity intermittent regimes, consisting of repeated-sprint (RS) and speed endurance (SE) exercise, were employed and compared with a high-volume continuous moderate-intensity exercise (CM) protocol. Vastus lateralis muscle samples were obtained before, immediately after, and 3 h after exercise. SE produced the most marked metabolic perturbations as evidenced by the greatest changes in muscle lactate and pH, concomitantly with higher post-exercise plasma adrenaline levels in comparison with RS and CM. Exercise-induced phosphorylation of CaMKII and p38 MAPK was greater in SE than in RS and CM. The exercise-induced PGC-1α mRNA response was higher in SE and CM than in RS, with no difference between SE and CM. Muscle NRF-2, TFAM, MFN2, DRP1 and SOD2 mRNA content was elevated to the same extent by SE and CM, while RS had no effect on these mRNAs. The exercise-induced HSP72 mRNA response was larger in SE than in RS and CM. Thus, the present results suggest that, for a given exercise volume, the initial events associated with mitochondrial biogenesis are modulated by metabolic stress. In addition, high-intensity exercise seems to compensate for reduced exercise volume in the induction of mitochondrial biogenic molecular responses only when the intense exercise elicits marked metabolic perturbations.
Collapse
Affiliation(s)
- M Fiorenza
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - T P Gunnarsson
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - M Hostrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - F M Iaia
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - F Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - H Pilegaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - J Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
189
|
Astorino TA, deRevere J, Anderson T, Kellogg E, Holstrom P, Ring S, Ghaseb N. Change in VO 2max and time trial performance in response to high-intensity interval training prescribed using ventilatory threshold. Eur J Appl Physiol 2018; 118:1811-1820. [PMID: 29923111 DOI: 10.1007/s00421-018-3910-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022]
Abstract
Completion of high-intensity interval training (HIIT) leads to significant increases in maximal oxygen uptake (VO2max) and oxidative capacity. However, individual responses to HIIT have been identified as approximately 20-40% of individuals show no change in VO2max, which may be due to the relatively homogeneous approach to implementing HIIT. PURPOSE This study tested the effects of HIIT prescribed using ventilatory threshold (VT) on changes in VO2max and cycling performance. METHODS Fourteen active men and women (age and VO2max = 27 ± 8 year and 38 ± 4 mL/kg/min) underwent nine sessions of HIIT, and 14 additional men and women (age and VO2max = 22 ± 3 year and 40 ± 5 mL/kg/min) served as controls. Training was performed on a cycle ergometer at a work rate equal to 130%VT and consisted of eight to ten 1 min bouts interspersed with 75 s of recovery. At baseline and post-testing, they completed progressive cycling to exhaustion to determine VO2max, and on a separate day, a 5 mile cycling time trial. RESULTS Compared to the control group, HIIT led to significant increases in VO2max (6%, p = 0.007), cycling performance (2.5%, p = 0.003), and absolute VT (9 W, p = 0.005). However, only 57% of participants revealed meaningful increases in VO2max and cycling performance in response to training, and two showed no change in either outcome. CONCLUSIONS A greater volume of HIIT may be needed to maximize the training response for all individuals.
Collapse
Affiliation(s)
- Todd A Astorino
- Department of Kinesiology, California State University, San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, 92096-0001, USA.
| | - Jamie deRevere
- Department of Kinesiology, California State University, San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, 92096-0001, USA
- Department of Physical Education and Human Performance, Central Connecticut State University, New Britain, CT, USA
| | - Theodore Anderson
- Department of Kinesiology, California State University, San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, 92096-0001, USA
- Department of Kinesiology, California State University-Sacramento, Sacramento, USA
| | - Erin Kellogg
- Department of Kinesiology, California State University, San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, 92096-0001, USA
| | - Patrick Holstrom
- Department of Kinesiology, California State University, San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, 92096-0001, USA
| | - Sebastian Ring
- Department of Kinesiology, California State University, San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, 92096-0001, USA
| | - Nicholas Ghaseb
- Department of Kinesiology, California State University, San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, 92096-0001, USA
| |
Collapse
|
190
|
Robison LS, Popescu DL, Anderson ME, Beigelman SI, Fitzgerald SM, Kuzmina AE, Lituma DA, Subzwari S, Michaelos M, Anderson BJ, Van Nostrand WE, Robinson JK. The effects of volume versus intensity of long-term voluntary exercise on physiology and behavior in C57/Bl6 mice. Physiol Behav 2018; 194:218-232. [PMID: 29879399 DOI: 10.1016/j.physbeh.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
Abstract
Cardiovascular exercise (CVE) is associated with healthy aging and reduced risk of disease in humans, with similar benefits seen in animals. Most rodent studies, however, have used shorter intervention periods of a few weeks to a few months, begging questions as to the effects of longer-term, or even life-long, exercise. Additionally, most animal studies have utilized a single exercise treatment group - usually unlimited running wheel access - resulting in large volumes of exercise that are not clinically relevant. It is therefore incumbent to determine the physiological and cognitive/behavioral effects of a range of exercise intensities and volumes over a long-term period that model a lifelong commitment to CVE. In the current study, C57/Bl6 mice remained sedentary or were allowed either 1, 3, or 12 h of access to a running wheel per day, 5 days/weeks, beginning at 3.5-4 months of age. Following an eight-month intervention period, animals underwent a battery of behavioral testing, then euthanized and blood and tissue were collected. Longer access to a running wheel resulted in greater volume and higher running speed, but more breaks in running. All exercise groups showed similarly reduced body weight, increased muscle mass, improved motor function on the rotarod, and reduced anxiety in the open field. While all exercise groups showed increased food intake, this was greatest in the 12 h group but did not differ between 1 h and 3 h mice. While exercise dose-dependently increased working memory performance in the y-maze, the 1 h and 12 h groups showed the largest changes in the mass of many organs, as well as alterations in several behaviors including social interaction, novel object recognition, and Barnes maze performance. These findings suggest that long-term exercise has widespread effects on physiology, behavior, and cognition, which vary by "dose" and measure, and that even relatively small amounts of daily exercise can provide benefits.
Collapse
Affiliation(s)
- Lisa S Robison
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States.
| | - Dominique L Popescu
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Maria E Anderson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Steven I Beigelman
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Shannon M Fitzgerald
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Antonina E Kuzmina
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - David A Lituma
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Sarima Subzwari
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Michalis Michaelos
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Brenda J Anderson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - William E Van Nostrand
- Department of Neurosurgery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - John K Robinson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| |
Collapse
|
191
|
Alavizadeh NS, Rashidlamir A, Hejazi SM. Effect of Eight Weeks Aerobic and Combined Training on Serum Levels of Sirtuin 1 and PGC-1α in Coronary Artery Bypass Graft Patients. MEDICAL LABORATORY JOURNAL 2018. [DOI: 10.29252/mlj.12.5.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
192
|
Hughes DC, Ellefsen S, Baar K. Adaptations to Endurance and Strength Training. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029769. [PMID: 28490537 DOI: 10.1101/cshperspect.a029769] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The capacity for human exercise performance can be enhanced with prolonged exercise training, whether it is endurance- or strength-based. The ability to adapt through exercise training allows individuals to perform at the height of their sporting event and/or maintain peak physical condition throughout the life span. Our continued drive to understand how to prescribe exercise to maximize health and/or performance outcomes means that our knowledge of the adaptations that occur as a result of exercise continues to evolve. This review will focus on current and new insights into endurance and strength-training adaptations and will highlight important questions that remain as far as how we adapt to training.
Collapse
Affiliation(s)
- David C Hughes
- Department of Neurobiology, Physiology and Behavior, Functional Molecular Biology Laboratory, University of California Davis, Davis, California 95616
| | - Stian Ellefsen
- Section of Sports Sciences, Lillehammer University College, 2604 Lillehammer, Norway.,Innlandet Hospital Trust, 2380 Brumunddal, Norway
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, Functional Molecular Biology Laboratory, University of California Davis, Davis, California 95616
| |
Collapse
|
193
|
Watson EL, Gould DW, Wilkinson TJ, Xenophontos S, Clarke AL, Vogt BP, Viana JL, Smith AC. Twelve-week combined resistance and aerobic training confers greater benefits than aerobic training alone in nondialysis CKD. Am J Physiol Renal Physiol 2018; 314:F1188-F1196. [DOI: 10.1152/ajprenal.00012.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There is a growing consensus that patients with chronic kidney disease (CKD) should engage in regular exercise, but there is a lack of formal guidelines. In this report, we determined whether combined aerobic and resistance exercise would elicit superior physiological gains, in particular muscular strength, compared with aerobic training alone in nondialysis CKD. Nondialysis patients with CKD stages 3b–5 were randomly allocated to aerobic exercise {AE, n = 21; 9 men; median age 63 [interquartile range (IQR) 58–71] yr; median estimated glomerular filtration rate (eGFR) 24 (IQR 20–30) ml·min−1·1.73 m−2} or combined exercise [CE, n = 20, 9 men, median age 63 (IQR 51–69) yr, median eGFR 27 (IQR 22–32) ml·min−1·1.73 m−2], preceded by a 6-wk run-in control period. Patients then underwent 12 wk of supervised AE (treadmill, rowing, or cycling exercise) or CE training (as AE plus leg extension and leg press exercise) performed three times per week. Outcome assessments of knee extensor muscle strength, quadriceps muscle volume, exercise capacity, and central hemodynamics were performed at baseline, following the 6-wk control period, and at the end of the intervention. AE and CE resulted in significant increases in knee extensor strength of 16 ± 19% (mean ± SD; P = 0.001) and 48 ± 37% ( P < 0.001), respectively, which were greater after CE ( P = 0.02). AE and CE resulted in 5 ± 7% ( P = 0.04) and 9 ± 7% ( P < 0.001) increases in quadriceps volume, respectively ( P < 0.001), which were greater after CE ( P = 0.01). Both AE and CE increased distance walked in the incremental shuttle walk test [28 ± 44 m ( P = 0.01) and 32 ± 45 m ( P = 0.01), respectively]. In nondialysis CKD, the addition of resistance exercise to aerobic exercise confers greater increases in muscle mass and strength than aerobic exercise alone.
Collapse
Affiliation(s)
- Emma L. Watson
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Douglas W. Gould
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Thomas J. Wilkinson
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Soteris Xenophontos
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Amy L. Clarke
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Barbara Perez Vogt
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- Department of Clinical Medicine, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, Brazil
| | - João L. Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, University Institute of Maia, Maia, Portugal
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Alice C. Smith
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester Trust, Leicester, United Kingdom
| |
Collapse
|
194
|
Thompson C, Vanhatalo A, Kadach S, Wylie LJ, Fulford J, Ferguson SK, Blackwell JR, Bailey SJ, Jones AM. Discrete physiological effects of beetroot juice and potassium nitrate supplementation following 4-wk sprint interval training. J Appl Physiol (1985) 2018; 124:1519-1528. [DOI: 10.1152/japplphysiol.00047.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The physiological and exercise performance adaptations to sprint interval training (SIT) may be modified by dietary nitrate ([Formula: see text]) supplementation. However, it is possible that different types of [Formula: see text] supplementation evoke divergent physiological and performance adaptations to SIT. The purpose of this study was to compare the effects of 4-wk SIT with and without concurrent dietary [Formula: see text] supplementation administered as either [Formula: see text]-rich beetroot juice (BR) or potassium [Formula: see text] (KNO3). Thirty recreationally active subjects completed a battery of exercise tests before and after a 4-wk intervention in which they were allocated to one of three groups: 1) SIT undertaken without dietary [Formula: see text] supplementation (SIT); 2) SIT accompanied by concurrent BR supplementation (SIT + BR); or 3) SIT accompanied by concurrent KNO3 supplementation (SIT + KNO3). During severe-intensity exercise, V̇o2peak and time to task failure were improved to a greater extent with SIT + BR than SIT and SIT + KNO3 ( P < 0.05). There was also a greater reduction in the accumulation of muscle lactate at 3 min of severe-intensity exercise in SIT + BR compared with SIT + KNO3 ( P < 0.05). Plasma [Formula: see text] concentration fell to a greater extent during severe-intensity exercise in SIT + BR compared with SIT and SIT + KNO3 ( P < 0.05). There were no differences between groups in the reduction in the muscle phosphocreatine recovery time constant from pre- to postintervention ( P > 0.05). These findings indicate that 4-wk SIT with concurrent BR supplementation results in greater exercise capacity adaptations compared with SIT alone and SIT with concurrent KNO3 supplementation. This may be the result of greater NO-mediated signaling in SIT + BR compared with SIT + KNO3. NEW & NOTEWORTHY We compared the influence of different forms of dietary nitrate supplementation on the physiological and performance adaptations to sprint interval training (SIT). Compared with SIT alone, supplementation with nitrate-rich beetroot juice, but not potassium [Formula: see text], enhanced some physiological adaptations to training.
Collapse
Affiliation(s)
| | - Anni Vanhatalo
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Stefan Kadach
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Lee J. Wylie
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Jonathan Fulford
- University of Exeter Medical School and National Institute for Health Research, Exeter Clinical Research Facility, Exeter, United Kingdom
| | - Scott K. Ferguson
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | | | - Stephen J. Bailey
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Andrew M. Jones
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
195
|
Li FH, Li T, Ai JY, Sun L, Min Z, Duan R, Zhu L, Liu YY, Liu TCY. Beneficial Autophagic Activities, Mitochondrial Function, and Metabolic Phenotype Adaptations Promoted by High-Intensity Interval Training in a Rat Model. Front Physiol 2018; 9:571. [PMID: 29875683 PMCID: PMC5974531 DOI: 10.3389/fphys.2018.00571] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
The effects of high-intensity interval (HIIT) and moderate-intensity continuous training (MICT) on basal autophagy and mitochondrial function in cardiac and skeletal muscle and plasma metabolic phenotypes have not been clearly characterized. Here, we investigated how 10-weeks HIIT and MICT differentially modify basal autophagy and mitochondrial markers in cardiac and skeletal muscle and conducted an untargeted metabolomics study with proton nuclear magnetic resonance (1H NMR) spectroscopy and multivariate statistical analysis of plasma metabolic phenotypes. Male Sprague–Dawley rats were separated into three groups: sedentary control (SED), MICT, and HIIT. Rats underwent evaluation of exercise performance, including exercise tolerance and grip strength, and blood lactate levels were measured immediately after an incremental exercise test. Plasma samples were analyzed by 1H NMR. The expression of autophagy and mitochondrial markers and autophagic flux (LC3II/LC3-I ratio) in cardiac, rectus femoris, and soleus muscle were analyzed by western blotting. Time to exhaustion and grip strength increased significantly following HIIT compared with that in both SED and MICT groups. Compared with those in the SED group, blood lactate level, and the expression of SDH, COX-IV, and SIRT3 significantly increased in rectus femoris and soleus muscle of both HIIT and MICT groups. Meanwhile, SDH and COX-IV content of cardiac muscle and COX-IV and SIRT3 content of rectus femoris and soleus muscle increased significantly following HIIT compared with that following MICT. The expression of LC3-II, ATG-3, and Beclin-1 and LC3II/LC3-I ratio were significantly increased only in soleus and cardiac muscle following HIIT. These data indicate that HIIT was more effective for improving physical performance and facilitating cardiac and skeletal muscle adaptations that increase mitochondrial function and basal autophagic activities. Moreover, 1H NMR spectroscopy and multivariate statistical analysis identified 11 metabolites in plasma, among which fine significantly and similarly changed after both HIIT and MICT, while BCAAs isoleucine, leucine, and valine and glutamine were changed only after HIIT. Together, these data indicate distinct differences in specific metabolites and autophagy and mitochondrial markers following HIIT vs. MICT and highlight the value of metabolomic analysis in providing more detailed insight into the metabolic adaptations to exercise training.
Collapse
Affiliation(s)
- Fang-Hui Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, China.,School of Physical Education and Health, Zhaoqing University, Zhaoqing, China
| | - Tao Li
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China
| | - Jing-Yi Ai
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Lei Sun
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Zhu Min
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Rui Duan
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China
| | - Ling Zhu
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China
| | - Yan-Ying Liu
- School of Physical Education and Health, Zhaoqing University, Zhaoqing, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China
| |
Collapse
|
196
|
The Effect of a Single Bout of High Intensity Intermittent Exercise on Glucose Tolerance in Non-diabetic Older Adults. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2018; 11:95-105. [PMID: 29795727 PMCID: PMC5955290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
Our aim was to investigate the acute effects of a single bout of high intensity intermittent training (HIIT) on glucose tolerance and other physiological and metabolic markers in non-diabetic older adults. Fourteen healthy older adults (age, 64 ± 2 y; BMI, 25.7 ± 2.8 kg·m-2) performed two acute exercise trials: continuous moderate intensity exercise (MOD) and HIIT, with the response to an oral glucose tolerance test (OGTT) determined <24 hours after. Inflammatory, haematological, and lipid parameters were also assessed the day after each trial. There was an effect of the trials on the insulin response to an OGTT (P=0.047), but not the glucose response. Following an acute bout of HIIT, insulin concentration during an OGTT was elevated at 60 min compared to the control trial (P=0.045), indicating more insulin was secreted, but glucose concentration was unchanged in all trials. The study findings demonstrate that a single bout of HIIT affects the insulin response but not the glycaemic response to a glucose load, proffering a potential benefit for metabolic health in older adults.
Collapse
|
197
|
Kujach S, Byun K, Hyodo K, Suwabe K, Fukuie T, Laskowski R, Dan I, Soya H. A transferable high-intensity intermittent exercise improves executive performance in association with dorsolateral prefrontal activation in young adults. Neuroimage 2018; 169:117-125. [DOI: 10.1016/j.neuroimage.2017.12.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
|
198
|
Effects of low-volume high-intensity interval training in a community setting: a pilot study. Eur J Appl Physiol 2018; 118:1153-1167. [PMID: 29556771 DOI: 10.1007/s00421-018-3845-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE High-intensity interval training (HIIT) is emerging as an effective and time-efficient exercise strategy for health promotion. However, most HIIT studies are conducted in laboratory settings and evidence regarding the efficacy of time-efficient "low-volume" HIIT is based mainly on demanding "all-out" protocols. Thus, the aim of this pilot study was to assess the feasibility and efficacy of two low-volume (≤ 30 min time-effort/week), non-all-out HIIT protocols, performed 2 ×/week over 8 weeks in a community-based fitness centre. METHODS Thirty-four sedentary men and women were randomised to either 2 × 4-min HIIT (2 × 4-HIIT) or 5 × 1-min HIIT (5 × 1-HIIT) at 85-95% maximal heart rate (HRmax), or an active control group performing moderate-intensity continuous training (MICT, 76 min/week) at 65-75% HRmax. RESULTS The exercise protocols were well tolerated and no adverse events occurred. 2 × 4-HIIT and 5 × 1-HIIT exhibited lower dropout rates (17 and 8 vs. 30%) than MICT. All training modes improved VO2max (2 × 4-HIIT: + 20%, P < 0.01; 5 × 1-HIIT: + 27%, P < 0.001; MICT: + 16%, P < 0.05), but the HIIT protocols required 60% less time commitment. Both HIIT protocols and MICT had positive impact on cholesterol profiles. Only 5 × 1-HIIT significantly improved waist circumference (P < 0.05) and subjective work ability (P < 0.05). CONCLUSIONS The present study indicates that low-volume HIIT can be feasibly implemented in a community-based setting. Moreover, our data suggest that practical (non-all-out) HIIT that requires as little as 30 min/week, either performed as 2 × 4-HIIT or 5 × 1-HIIT, may induce significant improvements in VO2max and cardiometabolic risk markers.
Collapse
|
199
|
Chen CCW, Erlich AT, Hood DA. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle. Skelet Muscle 2018; 8:10. [PMID: 29549884 PMCID: PMC5857114 DOI: 10.1186/s13395-018-0157-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/08/2018] [Indexed: 12/18/2022] Open
Abstract
Background Parkin is a ubiquitin ligase that is involved in the selective removal of dysfunctional mitochondria. This process is termed mitophagy and can assist in mitochondrial quality control. Endurance training can produce adaptations in skeletal muscle toward a more oxidative phenotype, an outcome of enhanced mitochondrial biogenesis. It remains unknown whether Parkin-mediated mitophagy is involved in training-induced increases in mitochondrial content and function. Our purpose was to determine a role for Parkin in maintaining mitochondrial turnover in muscle, and its requirement in mediating mitochondrial biogenesis following endurance exercise training. Methods Wild-type and Parkin knockout (KO) mice were trained for 6 weeks and then treated with colchicine or vehicle to evaluate the role of Parkin in mediating changes in mitochondrial content, function and acute exercise-induced mitophagy flux. Results Our results indicate that Parkin is required for the basal maintenance of mitochondrial function. The absence of Parkin did not significantly alter mitophagy basally; however, acute exercise produced an elevation in mitophagy flux, a response that was Parkin-dependent. Mitochondrial content was increased following training in both genotypes, but this occurred without an induction of PGC-1α signaling in KO animals. Interestingly, the increased muscle mitochondrial content in response to training did not influence basal mitophagy flux, despite an enhanced expression and localization of Parkin to mitochondria in WT animals. Furthermore, exercise-induced mitophagy flux was attenuated with training in WT animals, suggesting a lower rate of mitochondrial degradation resulting from improved organelle quality with training. In contrast, training led to a higher mitochondrial content, but with persistent dysfunction, in KO animals. Thus, the lack of a rescue of mitochondrial dysfunction with training in the absence of Parkin is the likely reason for the impaired training-induced attenuation of mitophagy flux compared to WT animals. Conclusions Our study demonstrates that Parkin is required for exercise-induced mitophagy flux. Exercise-induced mitophagy is reduced with training in muscle, likely due to attenuated signaling consequent to increased mitochondrial content and quality. Our data suggest that Parkin is essential for the maintenance of basal mitochondrial function, as well as for the accumulation of normally functioning mitochondria as a result of training adaptations in muscle.
Collapse
Affiliation(s)
- Chris Chin Wah Chen
- School of Kinesiology and Health Science, York University, Toronto, Ontario, M3J 1P3, Canada.,Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Avigail T Erlich
- School of Kinesiology and Health Science, York University, Toronto, Ontario, M3J 1P3, Canada.,Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada
| | - David A Hood
- School of Kinesiology and Health Science, York University, Toronto, Ontario, M3J 1P3, Canada. .,Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
200
|
Shute RJ, Heesch MW, Zak RB, Kreiling JL, Slivka DR. Effects of exercise in a cold environment on transcriptional control of PGC-1α. Am J Physiol Regul Integr Comp Physiol 2018. [PMID: 29537859 DOI: 10.1152/ajpregu.00425.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peroxisome proliferator-activated receptor-α coactivator-1α (PGC-1α) mRNA is increased with both exercise and exposure to cold temperature. However, transcriptional control has yet to be examined during exercise in the cold. Additionally, the need for environmental cold exposure after exercise may not be a practical recovery modality. The purpose of this study was to determine mitochondrial-related gene expression and transcriptional control of PGC-1α following exercise in a cold compared with room temperature environment. Eleven recreationally trained males completed two 1-h cycling bouts in a cold (7°C) or room temperature (20°C) environment, followed by 3 h of supine recovery in standard room conditions. Muscle biopsies were taken from the vastus lateralis preexercise, postexercise, and after a 3-h recovery. Gene expression and transcription factor binding to the PGC-1α promoter were analyzed. PGC-1α mRNA increased from preexercise to 3 h of recovery, but there was no difference between trials. Estrogen-related receptor-α (ERRα), myocyte enhancer factor-2 (MEF2A), and nuclear respiratory factor-1 (NRF-1) mRNA were lower in cold than at room temperature. Forkhead box class-O (FOXO1) and cAMP response element-binding protein (CREB) binding to the PGC-1α promoter were increased postexercise and at 3 h of recovery. MEF2A binding increased postexercise, and activating transcription factor 2 (ATF2) binding increased at 3 h of recovery. These data indicate no difference in PGC-1α mRNA or transcriptional control after exercise in cold versus room temperature and 3 h of recovery. However, the observed reductions in the mRNA of select transcription factors downstream of PGC-1α indicate a potential influence of exercise in the cold on the transcriptional response related to mitochondrial biogenesis.
Collapse
Affiliation(s)
- Robert J Shute
- Department of Health and Kinesiology, University of Nebraska at Omaha , Omaha, Nebraska
| | - Matthew W Heesch
- Department of Health and Kinesiology, University of Nebraska at Omaha , Omaha, Nebraska
| | - Roksana B Zak
- Department of Health and Kinesiology, University of Nebraska at Omaha , Omaha, Nebraska
| | - Jodi L Kreiling
- Department of Chemistry, University of Nebraska at Omaha , Omaha, Nebraska
| | - Dustin R Slivka
- Department of Health and Kinesiology, University of Nebraska at Omaha , Omaha, Nebraska
| |
Collapse
|