151
|
Rawat D, Sharma U, Poria P, Finlan A, Parker B, Sharma RS, Mishra V. Iron-dependent mutualism between Chlorella sorokiniana and Ralstonia pickettii forms the basis for a sustainable bioremediation system. ISME COMMUNICATIONS 2022; 2:83. [PMID: 36407791 PMCID: PMC9476460 DOI: 10.1038/s43705-022-00161-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 01/11/2023]
Abstract
Phototrophic communities of autotrophic microalgae and heterotrophic bacteria perform complex tasks of nutrient acquisition and tackling environmental stress but remain underexplored as a basis for the bioremediation of emerging pollutants. In industrial monoculture designs, poor iron uptake by microalgae limits their productivity and biotechnological efficacy. Iron supplementation is expensive and ineffective because iron remains insoluble in an aqueous medium and is biologically unavailable. However, microalgae develop complex interkingdom associations with siderophore-producing bacteria that help solubilize iron and increase its bioavailability. Using dye degradation as a model, we combined environmental isolations and synthetic ecology as a workflow to design a simplified microbial community based on iron and carbon exchange. We established a mutualism between the previously non-associated alga Chlorella sorokiniana and siderophore-producing bacterium Ralstonia pickettii. Siderophore-mediated increase in iron bioavailability alleviated Fe stress for algae and increased the reductive iron uptake mechanism and bioremediation potential. In exchange, C. sorokiniana produced galactose, glucose, and mannose as major extracellular monosaccharides, supporting bacterial growth. We propose that extracellular iron reduction by ferrireductase is crucial for azoreductase-mediated dye degradation in microalgae. These results demonstrate that iron bioavailability, often overlooked in cultivation, governs microalgal growth, enzymatic processes, and bioremediation potential. Our results suggest that phototrophic communities with an active association for iron and carbon exchange have the potential to overcome challenges associated with micronutrient availability, while scaling up bioremediation designs.
Collapse
Affiliation(s)
- Deepak Rawat
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007 India
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, WC1E 6BT UK
- Department of Environmental Studies, Janki Devi Memorial College, University of Delhi, Delhi, 110060 India
| | - Udita Sharma
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007 India
| | - Pankaj Poria
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007 India
| | - Arran Finlan
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, WC1E 6BT UK
| | - Brenda Parker
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, WC1E 6BT UK
| | - Radhey Shyam Sharma
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007 India
- Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi, 110007 India
| | - Vandana Mishra
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007 India
- Centre for Interdisciplinary Studies on Mountain & Hill Environment, University of Delhi, Delhi, 110007 India
| |
Collapse
|
152
|
Stoudenmire JL, Greenawalt AN, Cornelissen CN. Stealthy microbes: How Neisseria gonorrhoeae hijacks bulwarked iron during infection. Front Cell Infect Microbiol 2022; 12:1017348. [PMID: 36189345 PMCID: PMC9519893 DOI: 10.3389/fcimb.2022.1017348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Transition metals are essential for metalloprotein function among all domains of life. Humans utilize nutritional immunity to limit bacterial infections, employing metalloproteins such as hemoglobin, transferrin, and lactoferrin across a variety of physiological niches to sequester iron from invading bacteria. Consequently, some bacteria have evolved mechanisms to pirate the sequestered metals and thrive in these metal-restricted environments. Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, causes devastating disease worldwide and is an example of a bacterium capable of circumventing human nutritional immunity. Via production of specific outer-membrane metallotransporters, N. gonorrhoeae is capable of extracting iron directly from human innate immunity metalloproteins. This review focuses on the function and expression of each metalloprotein at gonococcal infection sites, as well as what is known about how the gonococcus accesses bound iron.
Collapse
Affiliation(s)
| | | | - Cynthia Nau Cornelissen
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
153
|
Conrad RA, Evenhuis JP, Lipscomb RS, Birkett C, McBride MJ. Siderophores Produced by the Fish Pathogen Flavobacterium columnare Strain MS-FC-4 Are Not Essential for Its Virulence. Appl Environ Microbiol 2022; 88:e0094822. [PMID: 35969053 PMCID: PMC9469716 DOI: 10.1128/aem.00948-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 01/17/2023] Open
Abstract
Flavobacterium columnare causes columnaris disease in wild and aquaculture-reared freshwater fish. F. columnare virulence mechanisms are not well understood, and current methods to control columnaris disease are inadequate. Iron acquisition from the host is important for the pathogenicity and virulence of many bacterial pathogens. F. columnare iron acquisition has not been studied in detail. We identified genes predicted to function in siderophore production for ferric iron uptake. Genes predicted to encode the proteins needed for siderophore synthesis, export, uptake, and regulation were deleted from F. columnare strain MS-FC-4. The mutants were examined for defects in siderophore production, for growth defects in iron-limited conditions, and for virulence against zebrafish and rainbow trout. Mutants lacking all siderophore activity were obtained. These mutants displayed growth defects when cultured under iron-limited conditions, but they retained virulence against zebrafish and rainbow trout similar to that exhibited by the wild type, indicating that the F. columnare MS-FC-4 siderophores are not required for virulence under the conditions tested. IMPORTANCE Columnaris disease, which is caused by Flavobacterium columnare, is a major problem for freshwater aquaculture. Little is known regarding F. columnare virulence factors, and control measures are limited. Iron acquisition mechanisms such as siderophores are important for virulence of other pathogens. We identified F. columnare siderophore biosynthesis, export, and uptake genes. Deletion of these genes eliminated siderophore production and resulted in growth defects under iron-limited conditions but did not alter virulence in rainbow trout or zebrafish. The results indicate that the F. columnare strain MS-FC-4 siderophores are not critical virulence factors under the conditions tested but may be important for survival under iron-limited conditions in natural aquatic environments or aquaculture systems.
Collapse
Affiliation(s)
- Rachel A. Conrad
- Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, West Virginia, USA
| | - Ryan S. Lipscomb
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, West Virginia, USA
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, West Virginia, USA
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
154
|
Host–Pathogen Interactions of Marine Gram-Positive Bacteria. BIOLOGY 2022; 11:biology11091316. [PMID: 36138795 PMCID: PMC9495620 DOI: 10.3390/biology11091316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Complex interactions between marine Gram-positive pathogens and fish hosts in the marine environment can result in diseases of economically important finfish, which cause economic losses in the aquaculture industry. Understanding how these pathogens interact with the fish host and generate disease will contribute to efficient prophylactic measures and treatments. To our knowledge, there are no systematic reviews on marine Gram-positive pathogens. Therefore, here we reviewed the host–pathogen interactions of marine Gram-positive pathogens from the pathogen-centric and host-centric points of view. Abstract Marine Gram-positive bacterial pathogens, including Renibacterium salmoninarum, Mycobacterium marinum, Nocardia seriolae, Lactococcus garvieae, and Streptococcus spp. cause economic losses in marine fish aquaculture worldwide. Comprehensive information on these pathogens and their dynamic interactions with their respective fish–host systems are critical to developing effective prophylactic measures and treatments. While much is known about bacterial virulence and fish immune response, it is necessary to synthesize the knowledge in terms of host–pathogen interactions as a centerpiece to establish a crucial connection between the intricate details of marine Gram-positive pathogens and their fish hosts. Therefore, this review provides a holistic view and discusses the different stages of the host–pathogen interactions of marine Gram-positive pathogens. Gram-positive pathogens can invade fish tissues, evade the fish defenses, proliferate in the host system, and modulate the fish immune response. Marine Gram-positive pathogens have a unique set of virulence factors that facilitate adhesion (e.g., adhesins, hemagglutination activity, sortase, and capsules), invasion (e.g., toxins, hemolysins/cytolysins, the type VII secretion system, and immune-suppressive proteins), evasion (e.g., free radical quenching, actin-based motility, and the inhibition of phagolysosomal fusion), and proliferation and survival (e.g., heme utilization and siderophore-mediated iron acquisition systems) in the fish host. After infection, the fish host initiates specific innate and adaptive immune responses according to the extracellular or intracellular mechanism of infection. Although efforts have continued to be made in understanding the complex interplay at the host–pathogen interface, integrated omics-based investigations targeting host–pathogen–marine environment interactions hold promise for future research.
Collapse
|
155
|
Wu Z, Shao J, Zheng J, Liu B, Li Z, Shen N. A zero-sum game or an interactive frame? Iron competition between bacteria and humans in infection war. Chin Med J (Engl) 2022; 135:1917-1926. [PMID: 35830263 PMCID: PMC9746790 DOI: 10.1097/cm9.0000000000002233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Iron is an essential trace element for both humans and bacteria. It plays a vital role in life, such as in redox reactions and electron transport. Strict regulatory mechanisms are necessary to maintain iron homeostasis because both excess and insufficient iron are harmful to life. Competition for iron is a war between humans and bacteria. To grow, reproduce, colonize, and successfully cause infection, pathogens have evolved various mechanisms for iron uptake from humans, principally Fe 3+ -siderophore and Fe 2+ -heme transport systems. Humans have many innate immune mechanisms that regulate the distribution of iron and inhibit bacterial iron uptake to help resist bacterial invasion and colonization. Meanwhile, researchers have invented detection test strips and coupled antibiotics with siderophores to create tools that take advantage of this battle for iron, to help eliminate pathogens. In this review, we summarize bacterial and human iron metabolism, competition for iron between humans and bacteria, siderophore sensors, antibiotics coupled with siderophores, and related phenomena. We also discuss how competition for iron can be used for diagnosis and treatment of infection in the future.
Collapse
Affiliation(s)
- Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Beibei Liu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
156
|
Identification of Key Functions Required for Production and Utilization of the Siderophore Piscibactin Encoded by the High-Pathogenicity Island irp-HPI in Vibrionaceae. Int J Mol Sci 2022; 23:ijms23168865. [PMID: 36012135 PMCID: PMC9408133 DOI: 10.3390/ijms23168865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Piscibactin is a widespread siderophore system present in many different bacteria, especially within the Vibrionaceae family. Previous works showed that most functions required for biosynthesis and transport of this siderophore are encoded by the high-pathogenicity island irp-HPI. In the present work, using Vibrio anguillarum as a model, we could identify additional key functions encoded by irp-HPI that are necessary for piscibactin production and transport and that have remained unknown. Allelic exchange mutagenesis, combined with cross-feeding bioassays and LC-MS analysis, were used to demonstrate that Irp4 protein is an essential component for piscibactin synthesis since it is the thioesterase required for nascent piscibactin be released from the NRPS Irp1. We also show that Irp8 is a MFS-type protein essential for piscibactin secretion. In addition, after passage through the outer membrane transporter FrpA, the completion of ferri-piscibactin internalization through the inner membrane would be achieved by the ABC-type transporter FrpBC. The expression of this transporter is coordinated with the expression of FrpA and with the genes encoding biosynthetic functions. Since piscibactin is a major virulence factor of some pathogenic vibrios, the elements of biosynthesis and transport described here could be additional interesting targets for the design of novel antimicrobials against these bacterial pathogens.
Collapse
|
157
|
Jin T, Ren J, Li Y, Bai B, Liu R, Wang Y. Plant growth-promoting effect and genomic analysis of the P. putida LWPZF isolated from C. japonicum rhizosphere. AMB Express 2022; 12:101. [PMID: 35917000 PMCID: PMC9346032 DOI: 10.1186/s13568-022-01445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Plant growth-promoting rhizobacteria are a type of beneficial bacteria which inhabit in the rhizosphere and possess the abilities to promote plant growth. Pseudomonas putida LWPZF is a plant growth-promoting bacterium isolated from the rhizosphere soil of Cercidiphyllum japonicum. Inoculation treatment with LWPZF could significantly promote the growth of C. japonicum seedlings. P. putida LWPZF has a variety of plant growth-promoting properties, including the ability to solubilize phosphate, synthesize ACC deaminase and IAA. The P. putida LWPZF genome contained a circular chromosome (6,259,530 bp) and a circular plasmid (160,969 bp) with G+C contents of 61.75% and 58.25%, respectively. There were 5632 and 169 predicted protein-coding sequences (CDSs) on the chromosome and the plasmid respectively. Genome sequence analysis revealed lots of genes associated with biosynthesis of IAA, pyoverdine, ACC deaminase, trehalose, volatiles acetoin and 2,3-butanediol, 4-hydroxybenzoate, as well as gluconic acid contributing phosphate solubilization. Additionally, we identified many heavy metal resistance genes, including arsenate, copper, chromate, cobalt-zinc-cadmium, and mercury. These results suggest that P. putida LWPZF shows strong potential in the fields of biofertilizer, biocontrol and heavy metal contamination soil remediation. The data presented in this study will allow us to better understand the mechanisms of plant growth promotion, biocontrol, and anti-heavy metal of P. putida LWPZF.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China.
| | - Yunling Li
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Bianxia Bai
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Ruixiang Liu
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Ying Wang
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| |
Collapse
|
158
|
Rico‐Jiménez M, Roca A, Krell T, Matilla MA. A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones. Environ Microbiol 2022; 24:3580-3597. [PMID: 35088505 PMCID: PMC9543091 DOI: 10.1111/1462-2920.15920] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Indole-3-acetic acid (IAA) is the main naturally occurring auxin and is produced by organisms of all kingdoms of life. In addition to the regulation of plant growth and development, IAA plays an important role in the interaction between plants and growth-promoting and phytopathogenic bacteria by regulating bacterial gene expression and physiology. We show here that an IAA metabolizing plant-associated Pseudomonas putida isolate exhibits chemotaxis to IAA that is independent of auxin metabolism. We found that IAA chemotaxis is based on the activity of the PcpI chemoreceptor and heterologous expression of pcpI conferred IAA taxis to different environmental and human pathogenic isolates of the Pseudomonas genus. Using ligand screening, microcalorimetry and quantitative chemotaxis assays, we found that PcpI failed to bind IAA directly, but recognized and mediated chemoattractions to various aromatic compounds, including the phytohormone salicylic acid. The expression of pcpI and its role in the interactions with plants was also investigated. PcpI extends the range of central signal molecules recognized by chemoreceptors. To our knowledge, this is the first report on a bacterial receptor that responds to two different phytohormones. Our study reinforces the multifunctional role of IAA and salicylic acid as intra- and inter-kingdom signal molecules.
Collapse
Affiliation(s)
- Miriam Rico‐Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Amalia Roca
- Department of Microbiology, Facultad de FarmaciaCampus Universitario de Cartuja, Universidad de GranadaGranada18071Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Miguel A. Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
159
|
Brown JB, Lee MA, Smith AT. The structure of Vibrio cholerae FeoC reveals conservation of the helix-turn-helix motif but not the cluster-binding domain. J Biol Inorg Chem 2022; 27:485-495. [PMID: 35796835 PMCID: PMC9398973 DOI: 10.1007/s00775-022-01945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/04/2022] [Indexed: 11/26/2022]
Abstract
Most pathogenic bacteria require ferrous iron (Fe2+) in order to sustain infection within hosts. The ferrous iron transport (Feo) system is the most highly conserved prokaryotic transporter of Fe2+, but its mechanism remains to be fully characterized. Most Feo systems are composed of two proteins: FeoA, a soluble SH3-like accessory protein, and FeoB, a membrane protein that translocates Fe2+ across a lipid bilayer. Some bacterial feo operons encode FeoC, a third soluble, winged-helix protein that remains enigmatic in function. We previously demonstrated that selected FeoC proteins bind O2-sensitive [4Fe-4S] clusters via Cys residues, leading to the proposal that some FeoCs could sense O2 to regulate Fe2+ transport. However, not all FeoCs conserve these Cys residues, and FeoC from the causative agent of cholera (Vibrio cholerae) notably lacks any Cys residues, precluding cluster binding. In this work, we determined the NMR structure of VcFeoC, which is monomeric and conserves the helix-turn-helix domain seen in other FeoCs. In contrast, however, the structure of VcFeoC reveals a truncated winged β-sheet in which the cluster-binding domain is notably absent. Using homology modeling, we predicted the structure of VcNFeoB and used docking to identify an interaction site with VcFeoC, which is confirmed by NMR spectroscopy. These findings provide the first atomic-level structure of VcFeoC and contribute to a better understanding of its role vis-à-vis FeoB.
Collapse
Affiliation(s)
- Janae B Brown
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | - Mark A Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
160
|
Role of Iron and Iron Overload in the Pathogenesis of Invasive Fungal Infections in Patients with Hematological Malignancies. J Clin Med 2022; 11:jcm11154457. [PMID: 35956074 PMCID: PMC9369168 DOI: 10.3390/jcm11154457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Iron is an essential trace metal necessary for the reproduction and survival of fungal pathogens. The latter have developed various mechanisms to acquire iron from their mammalian hosts, with whom they participate in a continuous struggle for dominance over iron. Invasive fungal infections are an important problem in the treatment of patients with hematological malignancies, and they are associated with significant morbidity and mortality. The diagnosis of invasive clinical infections in these patients is complex, and the treatment, which must occur as early as possible, is difficult. There are several studies that have shown a possible link between iron overload and an increased susceptibility to infections. This link is also relevant for patients with hematological malignancies and for those treated with allogeneic hematopoietic stem cell transplantation. The role of iron and its metabolism in the virulence and pathogenesis of various invasive fungal infections is intriguing, and so far, there is some evidence linking invasive fungal infections to iron or iron overload. Clarifying the possible association of iron and iron overload with susceptibility to invasive fungal infections could be important for a better prevention and treatment of these infections in patients with hematological malignancies.
Collapse
|
161
|
Reitz ZL, Medema MH. Genome mining strategies for metallophore discovery. Curr Opin Biotechnol 2022; 77:102757. [PMID: 35914390 DOI: 10.1016/j.copbio.2022.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
Many bacteria use small-molecule chelators called metallophores to acquire trace metals from their environment. These molecules play a central role in interactions between bacteria, plants, and animals. Hence, knowing their full diversity is key to combatting infectious diseases as well as harnessing beneficial microbial communities. Metallophore discovery has been streamlined by advances in genome mining, where genomes are scanned for genes involved in metallophore biosynthesis. This review highlights recent trends and advances in predicting the presence and structure of metallophores based solely on genomic information. Recent work suggests new families of metallophores remain hidden from current homology-based approaches. Their discovery will require new genome mining approaches that move beyond biosynthesis to consider metallophore transporters, regulation, and evolution.
Collapse
Affiliation(s)
- Zachary L Reitz
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands.
| |
Collapse
|
162
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
163
|
Production and Potential Genetic Pathways of Three Different Siderophore Types in Streptomyces tricolor Strain HM10. FERMENTATION 2022. [DOI: 10.3390/fermentation8080346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Siderophores are iron-chelating low-molecular-weight compounds that bind iron (Fe3+) with a high affinity for transport into the cell. The newly isolated strain Streptomyces tricolor HM10 secretes a pattern of secondary metabolites. Siderophore molecules are the representatives of such secondary metabolites. S. tricolor HM10 produces catechol, hydroxamate, and carboxylate types of siderophores. Under 20 μM FeCl3 conditions, S. tricolor HM10 produced up to 6.00 µg/mL of catechol siderophore equivalent of 2,3-DHBA (2,3-dihydroxybenzoic acid) after 4 days from incubation. In silico analysis of the S. tricolor HM10 genome revealed three proposed pathways for siderophore biosynthesis. The first pathway, consisting of five genes, predicted the production of catechol-type siderophore similar to petrobactin from Bacillus anthracis str. Ames. The second proposed pathway, consisting of eight genes, is expected to produce a hydroxamate-type siderophore similar to desferrioxamine B/E from Streptomyces sp. ID38640, S. griseus NBRC 13350, and/or S. coelicolor A3(2). The third pathway exhibited a pattern identical to the carboxylate xanthoferrin siderophore from Xanthomonas oryzae. Thus, Streptomyces strain HM10 could produce three different types of siderophore, which could be an incentive to use it as a new source for siderophore production in plant growth-promoting, environmental bioremediation, and drug delivery strategy.
Collapse
|
164
|
Jaradat ZW, Al-Mousa WA, Elbetieha AM, Ababneh QO, Al-Nabulsi AA, Jang H, Gangiredla J, Patel IR, Gopinath GR, Tall BD. Virulence, antimicrobial susceptibility, and phylogenetic analysis of Cronobacter sakazakii isolates of food origins from Jordan. J Appl Microbiol 2022; 133:2528-2546. [PMID: 35858752 DOI: 10.1111/jam.15723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
AIMS to characterize a collection of Cronobacter sakazakii isolates collected from various origins in Jordan. METHODS AND RESULTS the isolates were characterized using 16S rRNA sequencing, DNA microarray, multi-locus sequence typing (MLST), O-serotyping, virulence gene identification, and antibiotic susceptibility testing. The identities and phylogenetic relatedness revealed that C. sakazakii sequence type 4 (ST4) and Csak O:1 serotype was the most prevalent STs and serovars among these C. sakazakii strains. PCR screening of putative virulence genes showed that the siderophore-interacting protein gene (sip) and iron acquisition gene clusters (eitCBAD and iucABCD/iutA) were the most detected genes with noticeable variability in the type 6 secretion system (T6SS) and filamentous hemagglutinin/adhesion (FHA) gene loci. The antibiotic resistance profiles revealed that the majority of the isolates were susceptible to all antibiotics used despite harboring a class C β-lactamase resistance gene. CONCLUSIONS the results described in this report provide additional insights about the considerable genotypic and phenotypic heterogeneity within C. sakazakii. SIGNIFICANCE AND IMPACT OF THE STUDY the information reported in this study might be of great value in understanding the origins of C. sakazakii isolates, in addition to their diversity and variability, which might be helpful in preventing future outbreaks of this pathogen.
Collapse
Affiliation(s)
- Ziad W Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Waseem A Al-Mousa
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Ahmed M Elbetieha
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Qutaiba O Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, P. O Box 3030, 22110, Irbid, Jordan
| | - Hyein Jang
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Jayanthi Gangiredla
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Isha R Patel
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Gopal R Gopinath
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Ben D Tall
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| |
Collapse
|
165
|
Brault A, Mbuya B, Labbé S. Sib1, Sib2, and Sib3 proteins are required for ferrichrome-mediated cross-feeding interaction between Schizosaccharomyces pombe and Saccharomyces cerevisiae. Front Microbiol 2022; 13:962853. [PMID: 35928155 PMCID: PMC9344042 DOI: 10.3389/fmicb.2022.962853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Although Saccharomyces cerevisiae is unable to produce siderophores, this fungal organism can assimilate iron bound to the hydroxamate-type siderophore ferrichrome (Fc) produced and secreted by other microbes. Fc can enter S. cerevisiae cells via Arn1. Unlike S. cerevisiae, Schizosaccharomyces pombe synthesizes and secretes Fc. The sib1+ and sib2+ genes encode, respectively, a Fc synthetase and an ornithine-N5-oxygenase, which are required for Fc production. When both genes were expressed in S. pombe, cross-feeding experiments revealed that S. cerevisiae fet3Δ arn1-4Δ cells expressing Arn1 could grow in the vicinity of S. pombe under low-iron conditions. In contrast, deletion of sib1+ and sib2+ produced a defect in the ability of S. pombe to keep S. cerevisiae cells alive when Fc is used as the sole source of iron. Further analysis identified a gene designated sib3+ that encodes an N5-transacetylase required for Fc production in S. pombe. The sib3Δ mutant strain exhibited a severe growth defect in iron-poor media, and it was unable to promote Fc-dependent growth of S. cerevisiae cells. Microscopic analyses of S. pombe cells expressing a functional Sib3-GFP protein revealed that Sib3 was localized throughout the cells, with a proportion of Sib3 being colocalized with Sib1 and Sib2 within the cytosol. Collectively, these results describe the first example of a one-way cross-feeding interaction, with S. pombe providing Fc that enables S. cerevisiae to grow when Fc is used as the sole source of iron.
Collapse
|
166
|
Lee SR, Seyedsayamdost MR. Induction of Diverse Cryptic Fungal Metabolites by Steroids and Channel Blockers. Angew Chem Int Ed Engl 2022; 61:e202204519. [PMID: 35509119 PMCID: PMC9276648 DOI: 10.1002/anie.202204519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 07/20/2023]
Abstract
Fungi offer a deep source of natural products but remain underutilized. Most biosynthetic gene clusters (BGCs) that can be detected are silent or "cryptic" in standard lab cultures and their products are thus not interrogated in routine screens. As genetic alterations are difficult and some strains can only be grown on agar, we have herein applied an agar-based high-throughput chemical genetic screen to identify inducers of fungal BGCs. Using R. solani and S. sclerotiorum as test cases, we report 13 cryptic metabolites in four compound groups, including sclerocyclane, a natural product with a novel scaffold. Steroids were the best elicitors and follow-up studies showed that plant-steroids trigger sclerocyclane synthesis, which shows antibiotic activity against B. plantarii, an ecological competitor of S. sclerotiorum. Our results open new paths to exploring the chemical ecology of fungal-plant interactions and provide a genetics-free approach for uncovering cryptic fungal metabolites.
Collapse
Affiliation(s)
- Seoung Rak Lee
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 (USA)
| |
Collapse
|
167
|
Saoin S, Arunyanak N, Muangchan P, Boonkrai C, Pisitkun T, Kloypan C, Nangola S. Bicistronic vector-based procedure to measure correlative expression and bacteriostatic activity of recombinant neutrophil gelatinase-associated lipocalin. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Somphot Saoin
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Naphatswan Arunyanak
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Pornuma Muangchan
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Chatikorn Boonkrai
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chiraphat Kloypan
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Sawitree Nangola
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
168
|
Boss BL, Wanees AE, Zaslow SJ, Normile TG, Izquierdo JA. Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. strain AEW4 isolated from the rhizosphere of the beachgrass Ammophila breviligulata. BMC Genomics 2022; 23:508. [PMID: 35831788 PMCID: PMC9281055 DOI: 10.1186/s12864-022-08738-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background The genus Sphingobium within the class Alpha-proteobacteria contains a small number of plant-growth promoting rhizobacteria (PGPR), although it is mostly comprised of organisms that play an important role in biodegradation and bioremediation in sediments and sandy soils. A Sphingobium sp. isolate was obtained from the rhizosphere of the beachgrass Ammophila breviligulata with a variety of plant growth-promoting properties and designated as Sphingobium sp. strain AEW4. Results Analysis of the 16S rRNA gene as well as full genome nucleotide and amino acid identities revealed that this isolate is most similar to Sphingobium xenophagum and Sphingobium hydrophobicum. Comparative genomics analyses indicate that the genome of strain AEW4 contains unique features that explain its relationship with a plant host as a PGPR, including pathways involved in monosaccharide utilization, fermentation pathways, iron sequestration, and resistance to osmotic stress. Many of these unique features are not broadly distributed across the genus. In addition, pathways involved in the metabolism of salicylate and catechol, phenyl acetate degradation, and DNA repair were also identified in this organism but not in most closely related organisms. Conclusion The genome of Sphingobium sp. strain AEW4 contains a number of distinctive features that are crucial to explain its role as a plant-growth promoting rhizobacterium, and comparative genomics analyses support its classification as a relevant Sphingobium strain involved in plant growth promotion of beachgrass and other plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08738-8.
Collapse
Affiliation(s)
- Brianna L Boss
- Department of Biology, Hofstra University, Hempstead, NY, 11549, USA
| | - Abanoub E Wanees
- Department of Biology, Hofstra University, Hempstead, NY, 11549, USA
| | - Shari J Zaslow
- Department of Biology, Hofstra University, Hempstead, NY, 11549, USA
| | - Tyler G Normile
- Department of Biology, Hofstra University, Hempstead, NY, 11549, USA
| | | |
Collapse
|
169
|
Hedayati SA, Sheikh Veisi R, Hosseini Shekarabi SP, Shahbazi Naserabad S, Bagheri D, Ghafarifarsani H. Effect of Dietary Lactobacillus casei on Physiometabolic Responses and Liver Histopathology in Common Carp (Cyprinus carpio) After Exposure to Iron Oxide Nanoparticles. Biol Trace Elem Res 2022; 200:3346-3354. [PMID: 34458957 DOI: 10.1007/s12011-021-02906-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
A 60-day feeding trial was performed to assess the dietary effect of Lactobacillus casei as a probiotic supplement on some serum biochemical parameters and liver histopathology in common carp fry after exposure to iron oxide nanoparticles (IoNPs). Six treatments were prepared as follows: control (no IoNP exposure and no dietary probiotic), P6: 106 CFU/g probiotic diet, P7: 107 CFU/g probiotic diet, NPs: 0.15 mg/l IoNPs, NPs + P6: 0.15 mg/l IoNPs with 106 CFU/g probiotic diet, and NPs + P7: 0.15 mg/l IoNPs with 107 CFU/gprobiotic diet. Based on the results, serum aspartate aminotransferase and alanine aminotransferase levels were significantly increased in 0.15 mg/l IoNPs, P7, and NPs + P6 treatments compared to the control group. In addition, the examination of antioxidant enzymes showed a significant increase in the levels of cortisol and glutathione S-transferase as well as malondialdehyde level. IoNPs also caused significant histopathological changes in the fish liver during the experiment such as hyperemia in sinusoidal spaces, hepatocytes vacuolation and necrosis, pyknosis, and disruption of hepatic lobules and atrophy. Results revealed the protective effects of dietary L. casei to mitigate the adverse impacts of IoNPs on the physiological processes of common carp.
Collapse
Affiliation(s)
- Seyed Aliakbar Hedayati
- Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | - Rouhollah Sheikh Veisi
- Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | | | | | - Dara Bagheri
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr, Iran
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| |
Collapse
|
170
|
Wu CJ, Chen Y, Li LH, Wu CM, Lin YT, Ma CH, Yang TC. Roles of SmeYZ, SbiAB, and SmeDEF Efflux Systems in Iron Homeostasis of Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0244821. [PMID: 35647692 PMCID: PMC9241820 DOI: 10.1128/spectrum.02448-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/30/2022] [Indexed: 11/28/2022] Open
Abstract
Stenotrophomonas maltophilia, a nonfermenting Gram-negative rod, is frequently isolated from the environment and is emerging as a multidrug-resistant global opportunistic pathogen. S. maltophilia harbors eight RND-type efflux pumps that contribute to multidrug resistance and physiological functions. Among the eight efflux pumps, SmeYZ pump is constitutively highly expressed. In our previous study, we demonstrated that loss-of-function of the SmeYZ pump results in pleiotropic phenotypes, including abolished swimming motility, decreased secreted protease activity, and compromised tolerance to oxidative stress and antibiotics. In this study, we attempted to elucidate the underlying mechanisms responsible for ΔsmeYZ-mediated pleiotropic phenotypes. RNA-seq transcriptome analysis and subsequent confirmation with qRT-PCR revealed that smeYZ mutant experienced an iron starvation response because the genes involved in the synthesis and uptake of stenobactin, the sole siderophore of S. maltophilia, were significantly upregulated. We further verified that smeYZ mutant had low intracellular iron levels via inductively coupled plasma mass spectrometry (ICP-MS). Also, KJΔYZ was more sensitive to 2,2'-dipyridyl (DIP), a ferrous iron chelator, in comparison with the wild type. The contribution of SmeYZ, SmeDEF, and SbiAB pumps to stenobactin secretion was suggested by qRT-PCR and further verified by Chrome Azurol S (CAS) activity, iron source utilization, and cell viability assays. We also demonstrated that loss-of-function of SmeYZ led to the compensatory upregulation of SbiAB and SmeDEF pumps for stenobactin secretion. The overexpression of the SbiAB pump resulted in a reduction in intracellular iron levels, which may be the key factor responsible for the ΔsmeYZ-mediated pleiotropic phenotypes, except for antibiotic extrusion. IMPORTANCE Efflux pumps display high efficiency of drug extrusion, which underlies their roles in multidrug resistance. In addition, efflux pumps have physiological functions, and their expression is tightly regulated by various environmental and physiological signals. Functional redundancy of efflux pumps is commonly observed, and mutual regulation occurs among these functionally redundant pumps in a bacterium. Stenotrophomonas maltophilia is an opportunistic pathogen that shows intrinsic multi-drug resistance. In this study, we demonstrated that SmeYZ, SbiAB, and SmeDEF efflux pumps of S. maltophilia display functional redundancy in siderophore secretion. Inactivation of smeYZ led to the upregulation of smeDEF and sbiAB. Unexpectedly, sbiAB overexpression resulted in the reduction of intracellular iron levels, which led to pleiotropic defects in smeYZ mutant. This study demonstrates a previously unidentified connection between efflux pumps, siderophore secretion, and intracellular iron levels in S. maltophilia.
Collapse
Affiliation(s)
- Chao-Jung Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu Chen
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Mu Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Hua Ma
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
171
|
Pu H, Jiang T, Peng D, Xia J, Gao J, Wang Y, Yan X, Huang X, Duan Y, Huang Y. Degradation of mirubactin to multiple siderophores with varying Fe(III) chelation properties. Org Biomol Chem 2022; 20:5066-5070. [PMID: 35703354 DOI: 10.1039/d2ob00942k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Three siderophores mirubactins B-D (4-6) were identified as the degradation products of previously isolated mirubactin (1). Their structures were revealed by HR-ESI-MS/MS, NMR analyses, and density functional calculations, among which 4 contains an unusual cyclic amidine functionality. Cyclic voltammetry showed that 5 and 6 have reduced iron complexing capacity. Mirubactin (1) and Fe(III) could also form a stable complex, which may be an ingenious approach to compete for iron acquisition by the producing organisms.
Collapse
Affiliation(s)
- Hong Pu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China. .,Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, 418000, P. R. China
| | - Ting Jiang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China. .,Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, 418000, P. R. China
| | - Dian Peng
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan, 410100, P. R. China
| | - Juanjuan Xia
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan, 410100, P. R. China
| | - Juan Gao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410017, P. R. China
| | - Yeji Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China.
| | - Xiaohui Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, 418000, P. R. China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China. .,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan, 410011, P. R. China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, P. R. China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China. .,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, P. R. China
| |
Collapse
|
172
|
Ye J, Wang Y, Li X, Wan Q, Zhang Y, Lu L. Synergistic Antifungal Effect of a Combination of Iron Deficiency and Calcium Supplementation. Microbiol Spectr 2022; 10:e0112122. [PMID: 35674440 PMCID: PMC9241635 DOI: 10.1128/spectrum.01121-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 01/10/2023] Open
Abstract
Fungal diseases have become a major public health issue worldwide. Increasing drug resistance and the limited number of available antifungals result in high morbidity and mortality. Metal-based drugs have been reported to be therapeutic agents against major protozoan diseases, but knowledge of their ability to function as antifungals is limited. In this study, we found that calcium supplementation combined with iron deficiency causes dramatic growth inhibition of the human fungal pathogens Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. Calcium induces the downregulation of iron uptake-related genes and, in particular, causes a decrease in the expression of the transcription factor HapX, which tends to transcriptionally activate siderophore-mediated iron acquisition under iron-deficient conditions. Iron deficiency causes calcium overload and the overproduction of intracellular reactive oxygen species (ROS), and perturbed ion homeostasis suppresses fungal growth. These phenomena are consistently identified in azole-resistant A. fumigatus isolates. The findings here imply that low iron availability lets cells mistakenly absorb calcium as a substitute, causing calcium abnormalities. Thus, there is a mutual effect between iron and calcium in fungal pathogens, and the combination of calcium with an iron chelator could serve to improve antifungal therapy. IMPORTANCE Millions of immunocompromised people are at a higher risk of developing different types of severe fungal diseases. The limited number of antifungals and the emergence of antimicrobial resistance highlight an urgent need for new strategies against invasive fungal infections. Here, we report that calcium can interfere with iron absorption of fungal pathogens, especially in iron-limited environments. Thus, a combination of calcium supplementation with an iron chelator inhibits the growth of human fungal pathogens, including Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. Moreover, we demonstrate that iron deficiency induces a nonspecific calcium uptake response, which results in toxic levels of metal. Findings in this study suggest that a microenvironment with excess calcium and limited iron is an efficient strategy to curb the growth of fungal pathogens, especially for drug-resistant isolates.
Collapse
Affiliation(s)
- Jing Ye
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yamei Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xinyu Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qinyi Wan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
173
|
Lee SR, Schalk F, Schwitalla JW, Guo H, Yu JS, Song M, Jung WH, de Beer ZW, Beemelmanns C, Kim KH. GNPS‐Guided Discovery of Madurastatin Siderophores from the Termite‐Associated
Actinomadura
sp. RB99**. Chemistry 2022; 28:e202200612. [PMID: 35404539 PMCID: PMC9325478 DOI: 10.1002/chem.202200612] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 12/14/2022]
Abstract
In this study, we analyzed if Actinomadura sp. RB99 produces siderophores that that could be responsible for the antimicrobial activity observed in co‐cultivation studies. Dereplication of high‐resolution tandem mass spectrometry (HRMS/MS) and global natural product social molecular networking platform (GNPS) analysis of fungus‐bacterium co‐cultures resulted in the identification of five madurastatin derivatives (A1, A2, E1, F, and G1), of which were four new derivatives. Chemical structures were unambiguously confirmed by HR‐ESI‐MS, 1D and 2D NMR experiments, as well as MS/MS data and their absolute structures were elucidated based on Marfey's analysis, DP4+ probability calculation and total synthesis. Structure analysis revealed that madurastatin E1 (2) contained a rare 4‐imidazolidinone cyclic moiety and madurastatin A1 (5) was characterized as a Ga3+‐complex. The function of madurastatins as siderophores was evaluated using the fungal pathogen Cryptococcus neoformans as model organism. Based on homology models, we identified the putative NRPS‐based gene cluster region of the siderophores in Actinomadura sp. RB99.
Collapse
Affiliation(s)
- Seoung Rak Lee
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
- Department of Chemistry Princeton University New Jersey 08544 USA
| | - Felix Schalk
- Chemical Biology of Microbe-Host Interactions Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
| | - Jan W. Schwitalla
- Chemical Biology of Microbe-Host Interactions Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
| | - Huijuan Guo
- Chemical Biology of Microbe-Host Interactions Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
| | - Jae Sik Yu
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Moonyong Song
- Department of Systems Biotechnology Chung-Ang University Anseong 17546 Republic of Korea
| | - Won Hee Jung
- Department of Systems Biotechnology Chung-Ang University Anseong 17546 Republic of Korea
| | - Z. Wilhelm de Beer
- Department of Biochemistry Genetics and Microbiology Forestry and Agricultural Biotechnology Institute (FABI) University of Pretoria Hatfield 0028 Pretoria South Africa
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
- Biochemistry of Microbial Metabolism Institute of Biochemistry Leipzig University Johannisallee 21–23 Leipzig 04103 Germany
| | - Ki Hyun Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| |
Collapse
|
174
|
Hisyam Bin Ismail CMK, Raihan Mohammad Shabani N, Chuah C, Hassan Z, Bakar Abdul Majeed A, Herng Leow C, Kaur Banga Singh K, Yee Leow C. Shigella iron-binding proteins: An insight into molecular physiology, pathogenesis, and potential target vaccine development. Vaccine 2022; 40:3991-3998. [PMID: 35660036 DOI: 10.1016/j.vaccine.2022.05.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/21/2021] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
Shigella is a well-known etiological agent responsible for intestinal infection among children, the elderly, and immunocompromised people ranging from mild to severe cases. Shigellosis remains endemic in Malaysia and yet there is no commercial vaccine available to eradicate the disease. Iron is an essential element for the survival of Shigella within the host. Hence, it is required for regulating metabolic mechanisms and virulence determinants. Alteration of iron status in the extracellular environment directly triggers the signal in enteropathogenic bacterial, providing information that they are in a hostile environment. To survive in an iron-limited environment, molecular regulation of iron-binding proteins plays a vital role in facilitating the transportation and utilization of sufficient iron sources. Given the importance of iron molecules for bacterial survival and pathogenicity, this review summarizes the physiological role of iron-binding proteins in bacterial survival and their potential use in vaccine and therapeutic developments.
Collapse
Affiliation(s)
| | - Nor Raihan Mohammad Shabani
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Faculty of Health Sciences, Universiti Teknologi MARA, Kampus Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Candy Chuah
- Department of Medical and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; Faculty of Health Sciences, Universiti Teknologi MARA, Kampus Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Abu Bakar Abdul Majeed
- Faculty of Pharmacy, Universiti Teknologi MARA, Kampus Puncak Alam, 42300 Kuala Selangor, Selangor, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Kirnpal Kaur Banga Singh
- Department of Medical and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
175
|
Lemare M, Puja H, David SR, Mathieu S, Ihiawakrim D, Geoffroy VA, Rigouin C. Engineering siderophore production in Pseudomonas to improve asbestos weathering. Microb Biotechnol 2022; 15:2351-2363. [PMID: 35748120 PMCID: PMC9437886 DOI: 10.1111/1751-7915.14099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/25/2022] [Indexed: 11/01/2022] Open
Abstract
Iron plays a key role in microbial metabolism and bacteria have developed multiple siderophore-driven mechanisms due to its poor bioavailability for organisms in the environment. Iron-bearing minerals generally serve as a nutrient source to sustain bacterial growth after bioweathering. Siderophores are high-affinity ferric iron chelators, of which the biosynthesis is tightly regulated by the presence of iron. Pyoverdine-producing Pseudomonas have shown their ability to extract iron and magnesium from asbestos waste as nutrients. However, such bioweathering is rapidly limited due to repression of the pyoverdine pathway and the low bacterial requirement for iron. We developed a metabolically engineered strain of Pseudomonas aeruginosa for which pyoverdine production was no longer repressed by iron as a proof of concept. We compared siderophore-promoted dissolution of flocking asbestos waste by this optimized strain to that by the wild-type strain. Interestingly, pyoverdine production by the optimized strain was seven times higher in the presence of asbestos waste and the dissolution of magnesium and iron from the chrysotile fibres contained in flocking asbestos waste was significantly enhanced. This innovative mineral weathering process contributes to remove toxic iron from the asbestos fibres and may contribute to the development of an eco-friendly method to manage asbestos waste.
Collapse
Affiliation(s)
- Marion Lemare
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Hélène Puja
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Sébastien R David
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Sébastien Mathieu
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Dris Ihiawakrim
- Université de Strasbourg, CNRS-UMR7504, IPCMS, 23 Rue du Loess, BP, 43, 67034, Strasbourg, France
| | - Valérie A Geoffroy
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Coraline Rigouin
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| |
Collapse
|
176
|
Barakat H, Qureshi KA, Alsohim AS, Rehan M. The Purified Siderophore from Streptomyces tricolor HM10 Accelerates Recovery from Iron-Deficiency-Induced Anemia in Rats. Molecules 2022; 27:molecules27134010. [PMID: 35807259 PMCID: PMC9268400 DOI: 10.3390/molecules27134010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 02/06/2023] Open
Abstract
Iron-deficiency-induced anemia is associated with poor neurological development, including decreased learning ability, altered motor functions, and numerous pathologies. Siderophores are iron chelators with low molecular weight secreted by microorganisms. The proposed catechol-type pathway was identified based on whole-genome sequences and bioinformatics tools. The intended pathway consists of five genes involved in the biosynthesis process. Therefore, the isolated catechol-type siderophore (Sid) from Streptomyces tricolor HM10 was evaluated through an anemia-induced rat model to study its potential to accelerate recovery from anemia. Rats were subjected to an iron-deficient diet (IDD) for 42 days. Anemic rats (ARs) were then divided into six groups, and normal rats (NRs) fed a standard diet (SD) were used as a positive control group. For the recovery experiment, ARs were treated as a group I; fed an IDD (AR), group II; fed an SD (AR + SD), group III, and IV, fed an SD with an intraperitoneal injection of 1 μg Sid Kg-1 (AR + SD + Sid1) and 5 μg Sid Kg-1 (AR + SD + Sid5) twice per week. Group V and VI were fed an iron-enriched diet (IED) with an intraperitoneal injection of 1 μg Sid Kg-1 (AR + IED + Sid1) and 5 μg Sid Kg-1 (AR + IED + Sid5) twice per week, respectively. Weight gain, food intake, food efficiency ratio, organ weight, liver iron concentration (LIC) and plasma (PIC), and hematological parameters were investigated. The results showed that ~50-60 mg Sid L-1 medium could be producible, providing ~25-30 mg L-1 purified Sid under optimal conditions. Remarkably, the AR group fed an SD with 5 μg Sid Kg-1 showed the highest weight gain. The highest feed efficiency was observed in the AR + SD + Sid5 group, which did not significantly differ from the SD group. Liver, kidneys, and spleen weight indicated that diet and Sid concentration were related to weight recovery in a dose-dependent manner. Liver iron concentration (LIC) in the AR + IED + Sid1 and AR + IED + Sid5 groups was considerably higher than in the AR + SD + Sid1 AR + SD + Sid5 groups or the AR + SD group compared to the AR group. All hematological parameters in the treated groups were significantly closely attenuated to SD groups after 28 days, confirming the efficiency of the anemia recovery treatments. Significant increases were obtained in the AR + SD + Sid5 and AR + IED + Sid5 groups on day 14 and day 28 compared to the values for the AR + SD + Sid1 and AR + IED + Sid1 groups. The transferrin saturation % (TSAT) and ferritin concentration (FC) were significantly increased with time progression in the treated groups associatively with PIC. In comparison, the highest significant increases were noticed in ARs fed IEDs with 5 μg Kg-1 Sid on days 14 and 28. In conclusion, this study indicated that Sid derived from S. tricolor HM10 could be a practical and feasible iron-nutritive fortifier when treating iron-deficiency-induced anemia (IDA). Further investigation focusing on its mechanism and kinetics is needed.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
- Correspondence: or ; Tel.: +966-547141277
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
- Faculty of Biosciences and Biotechnology, Invertis University, Bareilly 243123, Uttar Pradesh, India
| | - Abdullah S. Alsohim
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.A.); (M.R.)
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.A.); (M.R.)
- Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
177
|
Peukert C, Popat Gholap S, Green O, Pinkert L, van den Heuvel J, van Ham M, Shabat D, Brönstrup M. Enzyme-Activated, Chemiluminescent Siderophore-Dioxetane Probes Enable the Selective and Highly Sensitive Detection of Bacterial Pathogens. Angew Chem Int Ed Engl 2022; 61:e202201423. [PMID: 35358362 PMCID: PMC9322335 DOI: 10.1002/anie.202201423] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/18/2022]
Abstract
The sensitive detection of bacterial infections is a prerequisite for their successful treatment. The use of a chemiluminescent readout was so far hampered by an insufficient probe enrichment at the pathogens. We coupled siderophore moieties, that harness the unique iron transport system of bacteria, with enzyme-activatable dioxetanes and obtained seven trifunctional probes with high signal-to-background ratios (S/B=426-859). Conjugates with efficient iron transport capability into bacteria were identified through a growth recovery assay. All ESKAPE pathogens were labelled brightly by desferrioxamine conjugates, while catechols were weaker due to self-quenching. Bacteria could also be detected inside lung epithelial cells. The best probe 8 detected 9.1×103 CFU mL-1 of S. aureus and 5.0×104 CFU mL-1 of P. aeruginosa, while the analogous fluorescent probe 10 was 205-305fold less sensitive. This qualifies siderophore dioxetane probes for the selective and sensitive detection of bacteria.
Collapse
Affiliation(s)
- Carsten Peukert
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Sachin Popat Gholap
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Ori Green
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Lukas Pinkert
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Joop van den Heuvel
- Department of Structure and Function of ProteinsHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Marco van Ham
- Department of Structure and Function of ProteinsHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Doron Shabat
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Mark Brönstrup
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| |
Collapse
|
178
|
Insights into the mechanisms of Cronobacter sakazakii virulence. Microb Pathog 2022; 169:105643. [PMID: 35716925 DOI: 10.1016/j.micpath.2022.105643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
Cronobacter species have adapted to survive harsh conditions, particularly in the food manufacture environment, and can cause life-threatening infections in susceptible hosts. These opportunistic pathogens employ a multitude of mechanisms to aid their virulence throughout three key stages: environmental persistence, infection strategy, and systemic persistence in the human host. Environmental persistence is aided by the formation of biofilms, development of subpopulations, and high tolerance to environmental stressors. Successful infection in the human host involves several mechanisms such as protein secretion, motility, quorum sensing, colonisation, and translocation. Survival inside the host is achieved via competitive acquisition and utilization of minerals and metabolites respectively, coupled with host immune system evasion and antimicrobial resistance (AMR) mechanisms. Across the globe, Cronobacter sakazakii is associated with often fatal systemic infections in populations including neonates, infants, the elderly and the immunocompromised. By providing insight into the mechanisms of virulence utilised by this pathogen across these three stages, this review identifies current gaps in the literature. Further research into these virulence mechanisms is required to inform novel mitigation measures to improve global food safety with regards to this food-borne pathogen.
Collapse
|
179
|
Clinical and Molecular Analysis of ST11-K47 Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae: A Strain Causing Liver Abscess. Pathogens 2022; 11:pathogens11060657. [PMID: 35745510 PMCID: PMC9227846 DOI: 10.3390/pathogens11060657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 12/22/2022] Open
Abstract
Klebsiella pneumoniae has been the predominant pathogen of liver abscess, but ST11-K47 carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) has rarely been studied as the causative organism. We identified an ST11-K47 CR-hvKP (HvKp-su1) from the drainage fluid of a liver abscess in a Chinese man who was diagnosed with liver abscess combined with diabetes, pneumonia, pleural infection, abdominal abscess, and splenic abscess. HvKp-su1 was non-hypermucoviscous and lacked the magA and rmpA genes and pLVPK plasmid but exhibited high virulence, with a high mortality rate (90%) to wax moth larvae (G. mellonella), similar to the hypervirulent Klebsiella pneumoniae ATCC43816 (91.67%). Whole-genome sequencing and bioinformatics analysis indicated that HvKp-su1 possesses a plasmid similar to a type of pLVPK-like plasmid (JX-CR-hvKP-2-P2), which is an uncommon plasmid in CR-hvKP. HvKp-su1 carried multiple resistance genes, including blaKPC-2. blaTEM-1, blaSHV-55, and blaCTX-M-65; hypervirulence genes such as aerobactin (iutA), salmochelin (iroEN), and yersiniabactin (ybtAEPQSTUX); and the type 3 fimbriae-encoding system (mrkACDF). Moreover, v_5377 and v_5429 (cofT, CFA/III (CS8)) located on plasmid 1 were simultaneously predicted to be virulence genes. After the long-term combination use of antibiotics, the patient successfully recovered. In summary, our study clarified the clinical and molecular characteristics of a rare ST11-K47 CR-hvKP (HvKp-su1), raising great concerns about the emergence of ST11-K47 CR-hvKP with multidrug resistance and hypervirulence, and providing insights into the control and treatment of liver abscess caused by ST11-K47 CR-hvKP.
Collapse
|
180
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022. [PMID: 35672469 DOI: 10.1007/s00253-022-11995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
181
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022; 106:3985-4004. [PMID: 35672469 DOI: 10.1007/s00253-022-11995-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal. .,CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal. .,LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
182
|
Fuentes DE, Acuña LG, Calderón IL. Stress response and virulence factors in bacterial pathogens relevant for Chilean aquaculture: current status and outlook of our knowledge. Biol Res 2022; 55:21. [PMID: 35642071 PMCID: PMC9153119 DOI: 10.1186/s40659-022-00391-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
The study of the stress responses in bacteria has given us a wealth of information regarding the mechanisms employed by these bacteria in aggressive or even non-optimal living conditions. This information has been applied by several researchers to identify molecular targets related to pathogeny, virulence, and survival, among others, and to design new prophylactic or therapeutic strategies against them. In this study, our knowledge of these mechanisms has been summarized with emphasis on some aquatic pathogenic bacteria of relevance to the health and productive aspects of Chilean salmon farming (Piscirickettsia salmonis, Tenacibaculum spp., Renibacterium salmoninarum, and Yersinia ruckeri). This study will aid further investigations aimed at shedding more light on possible lines of action for these pathogens in the coming years.
Collapse
Affiliation(s)
- Derie E Fuentes
- Aquaculture and Marine Ecosystems, Center For Systems Biotechnology, Fraunhofer Chile Research, Santiago, Chile. .,Environmental Sustainability, Center for Systems Biotechnology (CSB-UNAB), Universidad Andres Bello, Facultad de Ciencias de la Vida, Santiago, Chile.
| | - Lillian G Acuña
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research, Universidad Andres Bello, Viña del Mar, Santiago, Chile
| | - Iván L Calderón
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
183
|
Lee SR, Seyedsayamdost MR. Induction of Diverse Cryptic Fungal Metabolites by Steroids and Channel Blockers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Seoung Rak Lee
- Department of Chemistry Princeton University Princeton NJ 08544 USA
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry Princeton University Princeton NJ 08544 USA
- Department of Molecular Biology Princeton University Princeton NJ 08544 USA
| |
Collapse
|
184
|
Zhang Q, Lin Y, Shen G, Zhang H, Lyu S. Siderophores of
Bacillus pumilus
promote 2‐keto‐L‐gulonic acid production in a vitamin C microbial fermentation system. J Basic Microbiol 2022; 62:833-842. [DOI: 10.1002/jobm.202200237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Qian Zhang
- College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang Liaoning China
| | - Ying Lin
- College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang Liaoning China
| | - Guozheng Shen
- College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang Liaoning China
| | - Haihong Zhang
- Northeast Pharmaceutical Group Company limited Shenyang Liaoning China
| | - Shuxia Lyu
- College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang Liaoning China
| |
Collapse
|
185
|
Adolf LA, Heilbronner S. Nutritional Interactions between Bacterial Species Colonising the Human Nasal Cavity: Current Knowledge and Future Prospects. Metabolites 2022; 12:489. [PMID: 35736422 PMCID: PMC9229137 DOI: 10.3390/metabo12060489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
The human nasal microbiome can be a reservoir for several pathogens, including Staphylococcus aureus. However, certain harmless nasal commensals can interfere with pathogen colonisation, an ability that could be exploited to prevent infection. Although attractive as a prophylactic strategy, manipulation of nasal microbiomes to prevent pathogen colonisation requires a better understanding of the molecular mechanisms of interaction that occur between nasal commensals as well as between commensals and pathogens. Our knowledge concerning the mechanisms of pathogen exclusion and how stable community structures are established is patchy and incomplete. Nutrients are scarce in nasal cavities, which makes competitive or mutualistic traits in nutrient acquisition very likely. In this review, we focus on nutritional interactions that have been shown to or might occur between nasal microbiome members. We summarise concepts of nutrient release from complex host molecules and host cells as well as of intracommunity exchange of energy-rich fermentation products and siderophores. Finally, we discuss the potential of genome-based metabolic models to predict complex nutritional interactions between members of the nasal microbiome.
Collapse
Affiliation(s)
- Lea A. Adolf
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany;
| | - Simon Heilbronner
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany;
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| |
Collapse
|
186
|
Zmyslowski AM, Baxa MC, Gagnon IA, Sosnick TR. HDX-MS performed on BtuB in E. coli outer membranes delineates the luminal domain's allostery and unfolding upon B12 and TonB binding. Proc Natl Acad Sci U S A 2022; 119:e2119436119. [PMID: 35549554 PMCID: PMC9171809 DOI: 10.1073/pnas.2119436119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/09/2022] [Indexed: 11/18/2022] Open
Abstract
To import large metabolites across the outer membrane of gram-negative bacteria, TonB-dependent transporters (TBDTs) undergo significant conformational change. After substrate binding in BtuB, the Escherichia coli vitamin B12 TBDT, TonB binds and couples BtuB to the inner-membrane proton motive force that powers transport [N. Noinaj, M. Guillier, T. J. Barnard, S. K. Buchanan, Annu. Rev. Microbiol. 64, 43–60 (2010)]. However, the role of TonB in rearranging the plug domain of BtuB to form a putative pore remains enigmatic. Some studies focus on force-mediated unfolding [S. J. Hickman, R. E. M. Cooper, L. Bellucci, E. Paci, D. J. Brockwell, Nat. Commun. 8, 14804 (2017)], while others propose force-independent pore formation by TonB binding [T. D. Nilaweera, D. A. Nyenhuis, D. S. Cafiso, eLife 10, e68548 (2021)], leading to breakage of a salt bridge termed the “Ionic Lock.” Our hydrogen–deuterium exchange/mass spectrometry (HDX-MS) measurements in E. coli outer membranes find that the region surrounding the Ionic Lock, far from the B12 site, is fully destabilized upon substrate binding. A comparison of the exchange between the B12-bound and the B12+TonB–bound complexes indicates that B12 binding is sufficient to unfold the Ionic Lock region, with the subsequent binding of a TonB fragment having much weaker effects. TonB binding accelerates exchange in the third substrate-binding loop, but pore formation does not obviously occur in this or any region. This study provides a detailed structural and energetic description of the early stages of B12 passage that provides support both for and against current models of the transport process.
Collapse
Affiliation(s)
- Adam M. Zmyslowski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Michael C. Baxa
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Isabelle A. Gagnon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Tobin R. Sosnick
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- Prizker School for Molecular Engineering, The University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
187
|
Shyam M, Shilkar D, Rakshit G, Jayaprakash V. Approaches for Targeting the Mycobactin Biosynthesis Pathway for Novel Anti-tubercular Drug Discovery: Where We Stand. Expert Opin Drug Discov 2022; 17:699-715. [PMID: 35575503 DOI: 10.1080/17460441.2022.2077328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Several decades of antitubercular drug discovery efforts have focused on novel antitubercular chemotherapies. However, recent efforts have greatly shifted towards countering extremely/multi/total drug-resistant species. Targeting the conditionally essential elements inside Mycobacterium is a relatively new approach against tuberculosis and has received lackluster attention. The siderophore, Mycobactin, is a conditionally essential molecule expressed by mycobacteria in iron-stress conditions. It helps capture the micronutrient iron, essential for the smooth functioning of cellular processes. AREAS COVERED The authors discuss opportunities to target the conditionally essential pathways to help develop newer drugs and prolong the shelf life of existing therapeutics, emphasizing the bottlenecks in fast-tracking antitubercular drug discovery. EXPERT OPINION While the lack of iron supply can cripple bacterial growth and multiplication, excess iron can cause oxidative overload. Constant up-regulation can strain the bacterial synthetic machinery, further slowing its growth. Mycobactin synthesis is tightly controlled by a genetically conserved mega enzyme family via up-regulation (HupB) or down-regulation (IdeR) based on iron availability in its microenvironment. Furthermore, the recycling of siderophores by the MmpL-MmpS4/5 orchestra provides endogenous drug targets to beat the bugs with iron-toxicity contrivance. These processes can be exploited as chinks in the armor of Mycobacterium and be used for new drug development.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
188
|
Tahmasebi H, Dehbashi S, Nasaj M, Arabestani MR. Molecular epidemiology and collaboration of siderophore-based iron acquisition with surface adhesion in hypervirulent Pseudomonas aeruginosa isolates from wound infections. Sci Rep 2022; 12:7791. [PMID: 35550578 PMCID: PMC9098452 DOI: 10.1038/s41598-022-11984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Iron/siderophore uptake may play an important role in the biofilm formation and secretion of extracellular proteins in Pseudomonas aeruginosa isolates. In the present study, the role of siderophores, heme, and iron regulatory genes in the virulence of Pseudomonas aeruginosa isolates collected from wound infection was investigated. Three hundred eighty-four (384) swab samples were collected from wound infection and identified by phenotypic methods. The quantitative real-time PCR (qRT-PCR) method was evaluated for the gene expressions study. Multi-locus sequence typing (MLST) was used to screen unique sequence types (ST) and clonal complexes (CC). Fifty-five (55) P. aeruginosa isolates were detected in all swab samples. Also, 38 (69.1%) isolates formed biofilm. The prevalence of virulence factor genes was as follows: plcN (67.2%), exoY (70.9%), exoA (60.0%), phzM (58.1%), plcH (50.9%), lasB (36.3%), aprA (69.1%), lasA (34.5%), nanI (74.5%), exoU (70.9%), exoS (60.0%), exoT (63.6%) and algD (65.4%). According to qRT-PCR, genes regulating iron uptake were highly expressed in the toxigenic isolate. The highest expressions levels were observed for hemO, hasR, and pvdA genes in the biofilm-forming isolates. The MLST data confirmed a high prevalence of ST1, ST111, and ST235, with six, five, and 12 clusters, respectively. ST235 and ST1 were the most present among the biofilm-forming and toxigenic strains. Also, the nuoD gene with 54 and guaA with 19 showed the highest and lowest number of unique alleles. We demonstrated that iron/siderophore uptake is sufficient for biofilm formation and an increase in the pathogenesis of P. aeruginosa. These results suggest that the iron/siderophore uptake system may alter the MLST types of P. aeruginosa and predispose to bacterial pathogenesis in wound infections.
Collapse
Affiliation(s)
- Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sanaz Dehbashi
- Department of Laboratory Sciences, Varastegan Institute of Medical Sciences, Mashhad, Iran
| | - Mona Nasaj
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Pajoohesh Junction, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Pajoohesh Junction, Hamadan, Iran. .,Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
189
|
Abstract
More than half of women will experience a urinary tract infection (UTI), with uropathogenic Escherichia coli (UPEC) causing ~80% of uncomplicated cases. Iron acquisition systems are essential for uropathogenesis, and UPEC strains encode highly diverse iron acquisition systems, underlining their importance. However, a recent UPEC clinical isolate, HM7, lacks this diversity and instead encodes the synthesis pathway for a sole siderophore, enterobactin. To determine if HM7 possesses unidentified iron acquisition systems, we performed RNA sequencing under iron-limiting conditions and demonstrated that the ferric citrate uptake system (fecABCDE and fecIR) was highly upregulated. Importantly, there are high levels of citrate within urine, some of which is bound to iron, and the fec system is enriched in UPEC isolates compared to fecal strains. Therefore, we hypothesized that HM7 and other similar strains use the fec system to acquire iron in the host. Deletion of both enterobactin biosynthesis and ferric citrate uptake (ΔfecA/ΔentB) abrogates use of ferric citrate as an iron source, and fecA provides an advantage in human urine in the absence of enterobactin. However, in a UTI mouse model, fecA is a fitness factor independent of enterobactin production, likely due to the action of host lipocalin-2 chelating ferrienterobactin. These findings indicate that ferric citrate uptake is used as an iron source when siderophore efficacy is limited, such as in the host during UTI. Defining these novel compensatory mechanisms and understanding the nutritional hierarchy of preferred iron sources within the urinary tract are important in the search for new approaches to combat UTI.
Collapse
|
190
|
Wang Y, Zhang G, Huang Y, Guo M, Song J, Zhang T, Long Y, Wang B, Liu H. A Potential Biofertilizer—Siderophilic Bacteria Isolated From the Rhizosphere of Paris polyphylla var. yunnanensis. Front Microbiol 2022; 13:870413. [PMID: 35615507 PMCID: PMC9125218 DOI: 10.3389/fmicb.2022.870413] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing demands for crop production have become a great challenge while people also realizing the significance of reductions in synthetic chemical fertilizer use. Plant growth-promoting rhizobacteria (PGPR) are proven biofertilizers for increasing crop yields by promoting plant growth via various direct or indirect mechanisms. Siderophilic bacteria, as an important type of PGPR, can secrete siderophores to chelate unusable Fe3+ in the soil for plant growth. Siderophilic bacteria have been shown to play vital roles in preventing diseases and enhancing the growth of plants. Paris polyphylla var. yunnanensis (PPVY) is an important traditional Chinese herb. However, reports about its siderophilic bacteria are still rare. This study firstly isolated siderophilic bacteria from the rhizosphere soil of PPVY, identified by morphological and physio-biochemical characteristics as well as 16S rRNA sequence analysis. The dominant genus in the rhizobacteria of PPVY was Bacillus. Among 22 isolates, 21 isolates produced siderophores. The relative amount of siderophores ranged from 4 to 41%. Most of the isolates produced hydroxamate siderophores and some produced catechol. Four isolates belonging to Enterobacter produced the catechol type, and none of them produced carboxylate siderophores. Intriguingly, 16 strains could produce substances that have inhibitory activity against Candida albicans only in an iron-limited medium (SA medium). The effects of different concentrations of Fe3+ and three types of synthetic chemical fertilizers on AS19 growth, siderophore production, and swimming motility were first evaluated from multiple aspects. The study also found that the cell-free supernatant (CFS) with high siderophore units (SUs) of AS19 strain could significantly promote the germination of pepper and maize seeds and the development of the shoots and leaves of Gynura divaricata (Linn.). The bacterial solution of AS19 strain could significantly promote the elongation of the roots of G. divaricata (Linn.). Due to its combined traits promoting plant growth and seed germination, the AS19 has the potential to become a bioinoculant. This study will broaden the application prospects of the siderophilic bacteria-AS19 as biofertilizers for future sustainable agriculture.
Collapse
Affiliation(s)
- Yihan Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Gongyou Zhang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Ya Huang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Min Guo
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Juhui Song
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Tingting Zhang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yaohang Long
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Bing Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Bing Wang,
| | - Hongmei Liu
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- School of Basic Medicine Science, Guizhou Medical University, Guiyang, China
- Hongmei Liu,
| |
Collapse
|
191
|
Were E, Schöne J, Viljoen A, Rasche F. De novo synthesis of ferrichrome by Fusarium oxysporum f. sp. cubense TR4 in response to iron starvation. Fungal Biol 2022; 126:521-527. [DOI: 10.1016/j.funbio.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
192
|
Roskova Z, Skarohlid R, McGachy L. Siderophores: an alternative bioremediation strategy? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153144. [PMID: 35038542 DOI: 10.1016/j.scitotenv.2022.153144] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/15/2023]
Abstract
Siderophores are small molecular weight iron scavengers that are mainly produced by bacteria, fungi, and plants. Recently, they have attracted increasing attention because of their potential role in environmental bioremediation. Although siderophores are generally considered to exhibit high specificity for iron, they have also been reported to bind to various metal and metalloid ions. This unique ability allows siderophores to solubilise and mobilise heavy metals and metalloids from soil, thereby facilitating their bioremediation. In addition, because of their redox nature, they can mediate the production of reactive oxygen species (ROS), and thus promote the biodegradation of organic contaminants. The aim of this review is to summarise the existing knowledge on the developed strategies of siderophore-assisted bioremediation of metals, metalloids, and organic contaminants. Additionally, this review also includes the biosynthesis and classification of microbial and plant siderophores.
Collapse
Affiliation(s)
- Zuzana Roskova
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Radek Skarohlid
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic.
| |
Collapse
|
193
|
Zhang L, Kent JE, Whitaker M, Young DC, Herrmann D, Aleshin AE, Ko YH, Cingolani G, Saad JS, Moody DB, Marassi FM, Ehrt S, Niederweis M. A periplasmic cinched protein is required for siderophore secretion and virulence of Mycobacterium tuberculosis. Nat Commun 2022; 13:2255. [PMID: 35474308 PMCID: PMC9042941 DOI: 10.1038/s41467-022-29873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is essential for growth of Mycobacterium tuberculosis, the causative agent of tuberculosis. To acquire iron from the host, M. tuberculosis uses the siderophores called mycobactins and carboxymycobactins. Here, we show that the rv0455c gene is essential for M. tuberculosis to grow in low-iron medium and that secretion of both mycobactins and carboxymycobactins is drastically reduced in the rv0455c deletion mutant. Both water-soluble and membrane-anchored Rv0455c are functional in siderophore secretion, supporting an intracellular role. Lack of Rv0455c results in siderophore toxicity, a phenotype observed for other siderophore secretion mutants, and severely impairs replication of M. tuberculosis in mice, demonstrating the importance of Rv0455c and siderophore secretion during disease. The crystal structure of a Rv0455c homolog reveals a novel protein fold consisting of a helical bundle with a 'cinch' formed by an essential intramolecular disulfide bond. These findings advance our understanding of the distinct M. tuberculosis siderophore secretion system.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James E Kent
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Meredith Whitaker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - David C Young
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Alexander E Aleshin
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Ying-Hui Ko
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Francesca M Marassi
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
194
|
Teta R, Esposito G, Kundu K, Stornaiuolo M, Scarpato S, Pollio A, Costantino V. A Glimpse at Siderophores Production by Anabaena flos-aquae UTEX 1444. Mar Drugs 2022; 20:md20040256. [PMID: 35447929 PMCID: PMC9025534 DOI: 10.3390/md20040256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, a strain of Anabaena flos-aquae UTEX 1444 was cultivated in six different concentrations of iron (III). Cultures were extracted with organic solvents and analyzed using our dereplication strategy, based on the combined use of high-resolution tandem mass spectrometry and molecular networking. The analysis showed the presence of the siderophores’ family, named synechobactins, only in the zero iron (III) treatment culture. Seven unknown synechobactin variants were present in the extract, and their structures have been determined by a careful HRMS/MS analysis. This study unveils the capability of Anabaena flos-aquae UTEX 1444 to produce a large array of siderophores and may be a suitable model organism for a sustainable scale-up exploitation of such bioactive molecules, for the bioremediation of contaminated ecosystems, as well as in drug discovery.
Collapse
Affiliation(s)
- Roberta Teta
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
| | - Germana Esposito
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
| | - Karishma Kundu
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Silvia Scarpato
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
| | - Antonino Pollio
- Department of Biology, Complesso Universitario Monte Sant’Angelo via Cinthia–Edificio 7, University of Naples Federico II, 80126 Napoli, Italy;
| | - Valeria Costantino
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
- Correspondence:
| |
Collapse
|
195
|
Drwiega EN, Griffith NC, Danziger LH. Pharmacokinetic evaluation of cefiderocol for the treatment of multidrug resistant Gram-negative infections. Expert Opin Drug Metab Toxicol 2022; 18:245-259. [PMID: 35594628 DOI: 10.1080/17425255.2022.2081148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cefiderocol is a siderophore cephalosporin antibiotic and first of its kind approved by the Food and Drug Administration for the treatment of complicated urinary tract infections (cUTI) and hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) in patients 18 years or older caused by susceptible organisms. Cefiderocol's unique mechanism of iron chelation improves Gram-negative membrane penetration as the bacteria's iron uptake mechanism recognizes the chelated iron antibiotic and iron for entry. This also allows for the evasion of cefiderocol from cell entry-related resistance mechanisms. AREAS COVERED This review covers the mechanism of action, resistance mechanisms, pharmacokinetics in various patient populations, and pharmacodynamics. Relevant literature evaluating efficacy and safety are discussed. EXPERT OPINION Limited treatment options are available for the treatment of carbapenem-resistantorganisms. Clinical trials have demonstrated that cefiderocol is no worse than alternative treatment options for cUTIs and HABP/VABP, but more data are currently available to support the use of beta-lactam beta-lactamase inhibitor agents, where susceptible. Mortality differences demonstrated in patients with pneumonia and bloodstream infections must further be explored and logistical and practical considerations regarding susceptibility testing and use as monotherapy vs. combination therapy must be considered prior to confidently recommending cefiderocol for regular use in systemic infections.
Collapse
Affiliation(s)
- Emily N Drwiega
- College of Pharmacy, University of Illinois at Chicago, Chicaco, IL, USA
| | - Nicole C Griffith
- College of Pharmacy, University of Illinois at Chicago, Chicaco, IL, USA
| | - Larry H Danziger
- College of Pharmacy, University of Illinois at Chicago, Chicaco, IL, USA
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
196
|
Peukert C, Gholap SP, Green O, Pinkert L, van den Heuvel J, van Ham M, Shabat D, Broenstrup M. Enzyme‐activated, Chemiluminescent Siderophore‐Dioxetane Probes Enable the Selective and Highly Sensitive Detection of Bacterial ESKAPE Pathogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carsten Peukert
- Helmholtz-Zentrum für Infektionsforschung GmbH: Helmholtz-Zentrum fur Infektionsforschung GmbH Chemical Biology GERMANY
| | - Sachin Popat Gholap
- Tel Aviv University Raymond and Beverly Sackler Faculty of Exact Sciences School of Chemistry ISRAEL
| | - Ori Green
- Tel Aviv University Raymond and Beverly Sackler Faculty of Exact Sciences School of Chemistry ISRAEL
| | - Lukas Pinkert
- Helmholtz-Zentrum für Infektionsforschung GmbH: Helmholtz-Zentrum fur Infektionsforschung GmbH Chemical Biology GERMANY
| | - Joop van den Heuvel
- Helmholtz-Zentrum für Infektionsforschung GmbH: Helmholtz-Zentrum fur Infektionsforschung GmbH SFPR GERMANY
| | - Marco van Ham
- Helmholtz-Zentrum für Infektionsforschung GmbH: Helmholtz-Zentrum fur Infektionsforschung GmbH SFPR GERMANY
| | - Doron Shabat
- Tel Aviv University Raymond and Beverly Sackler Faculty of Exact Sciences School of Chemistry ISRAEL
| | - Mark Broenstrup
- Helmholtz-Zentrum fur Infektionsforschung GmbH Chemical Biology Inhoffenstraße 7 38124 Braunschweig GERMANY
| |
Collapse
|
197
|
Miller B, Schmidt EW, Concepcion GP, Haygood MG. Halogenated Metal-Binding Compounds from Shipworm Symbionts. JOURNAL OF NATURAL PRODUCTS 2022; 85:479-484. [PMID: 35196451 PMCID: PMC8961882 DOI: 10.1021/acs.jnatprod.1c01049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 06/02/2023]
Abstract
Bacteria use small molecules to impose strict regulation over the acquisition, uptake, and sequestration of transition metal ions. Low-abundance nutrient metals, such as Fe(III), need to be scavenged from the environment by high-affinity chelating molecules called siderophores. Conversely, metal ions that become toxic at high concentrations need to be sequestered and detoxified. Often, bacteria produce a suite of compounds that bind various metal ions at different affinities in order to maintain homeostasis. Turnerbactin, a triscatecholate siderophore isolated from the intracellular shipworm symbiont Teredinibacter turnerae T7901, is responsible for iron regulation and uptake. Herein, another series of compounds are described that complex with iron, copper, and molybdenum in solution. Teredinibactins belong to a class of metal-binding molecules that utilize a phenolate-thiazoline moiety in the coordination of metal ions. In contrast to other compounds in this class, such as yersiniabactin, the phenyl ring is decorated with a 2,4-dihydroxy-3-halo substitution pattern. UV-vis absorption spectroscopy based titration experiments with CuCl2 show the formation of an intermediate complex at substoichiometric concentrations and conversion to a copper-bound complex at 1:1 molar equiv.
Collapse
Affiliation(s)
- Bailey
W. Miller
- Department
of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric W. Schmidt
- Department
of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gisela P. Concepcion
- The
Marine Science Institute, University of
the Philippines, Diliman, Quezon
City 1101, Philippines
| | - Margo G. Haygood
- Department
of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
198
|
Murgia I, Marzorati F, Vigani G, Morandini P. Plant iron nutrition: the long road from soil to seeds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1809-1824. [PMID: 34864996 DOI: 10.1093/jxb/erab531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Iron (Fe) is an essential plant micronutrient since many cellular processes including photosynthesis, respiration, and the scavenging of reactive oxygen species depend on adequate Fe levels; however, non-complexed Fe ions can be dangerous for cells, as they can act as pro-oxidants. Hence, plants possess a complex homeostatic control system for safely taking up Fe from the soil and transporting it to its various cellular destinations, and for its subcellular compartmentalization. At the end of the plant's life cycle, maturing seeds are loaded with the required amount of Fe needed for germination and early seedling establishment. In this review, we discuss recent findings on how the microbiota in the rhizosphere influence and interact with the strategies adopted by plants to take up iron from the soil. We also focus on the process of seed-loading with Fe, and for crop species we also consider its associated metabolism in wild relatives. These two aspects of plant Fe nutrition may provide promising avenues for a better comprehension of the long pathway of Fe from soil to seeds.
Collapse
Affiliation(s)
- Irene Murgia
- Department of Biosciences, University of Milano, Milano, Italy
| | - Francesca Marzorati
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| |
Collapse
|
199
|
Petkova M, Petrova S, Spasova-Apostolova V, Naydenov M. Tobacco Plant Growth-Promoting and Antifungal Activities of Three Endophytic Yeast Strains. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060751. [PMID: 35336632 PMCID: PMC8953121 DOI: 10.3390/plants11060751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 05/10/2023]
Abstract
In this research, the biosynthetic and biocontrol potential of endophytic yeast to improve the growth and development of tobacco has been elucidated. Three yeast strains were enriched and isolated from different plant tissues. Partial sequence analysis of ITS5-5.8-ITS4 region of the nuclear ribosomal DNA with universal primers identified YD5, YE1, and YSW1 as Saccharomyces cerevisiae (S. cerevisiae), Zygosaccharomyces bailii (Z. bailii), and Saccharomyces kudriavzevii (S. kudriavzevii), respectively. When cultivated in a medium supplemented with 0.1% L-tryptophan, isolated yeast strains produced indole-3-acetic acid (IAA). The capacities of those strains to improve the mobility of phosphorus and synthesize siderophores has been proven. Their antimicrobial activities against several Solanaceae plant pathogenic fungi (Alternaria solani pathovar. tobacco, Rhizoctonia solani, and Fusarium solani pathovar. phaseoli) were determined. S. cerevisiae YD5, Z. bailii YE1, and S. kudriavzevii YSW1 inhibited the growth of all tested pathogens. Yeast strains were tested for endophytic colonization of tobacco by two different inoculation methods: soil drench (SD) and leaf spraying (LS). To establish colonization in the various tissues of tested tobacco (Nicotiana tabaccum L.) plants, samples were taken on the seventh, fourteenth, and twenty-first days after treatment (DAT), and explants were inoculated on yeast malt agar (YMA). Both techniques of inoculation showed a high frequency of colonization from 83.33% to 100%. To determine the effectiveness of the microbial endophytes, their effect on some physiological processes in the plant were analyzed, such as photosynthesis, stomatal conductivity, and transpiration intensity. The effect of single and double treatment with yeast inoculum on the development and biochemical parameters of tobacco was reported. Plants have the ability of structural and functional adaptation to stress effects of different natures. All treated plants had a higher content of photosynthetic pigments compared to the control. Photosynthesis is probably more intense, and growth stimulation has been observed. The chlorophyll a/b ratio remained similar, and the total chlorophyll/carotenoid ratio slightly increased as a result of elevated chlorophyll levels. The most significant stimulating effect was recorded in tobacco plants treated by foliar spraying with Z. bailii YE1 and S. cerevisiae YD5. In contrast, S. kudriavzevii YSW1 had a better effect when applied as a soil drench. Thus, S. cerevisiae YD5, Z. bailii YE1, and S. kudriavzevii YSW1 have a high potential to be used as a biocontrol agents in organic agriculture.
Collapse
Affiliation(s)
- Mariana Petkova
- Department of Microbiology and Environmental Biotechnology, Agricultural University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.P.); (V.S.-A.); (M.N.)
- Correspondence:
| | - Slaveya Petrova
- Department of Microbiology and Environmental Biotechnology, Agricultural University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.P.); (V.S.-A.); (M.N.)
- Department of Ecology and Environmental Conservation, Plovdiv University Paisii Hilendarski, 4000 Plovdiv, Bulgaria
| | - Velichka Spasova-Apostolova
- Department of Microbiology and Environmental Biotechnology, Agricultural University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.P.); (V.S.-A.); (M.N.)
- Agricultural Academy, Tobacco and Tobacco Products Institute, 4108 Markovo, Bulgaria
| | - Mladen Naydenov
- Department of Microbiology and Environmental Biotechnology, Agricultural University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.P.); (V.S.-A.); (M.N.)
| |
Collapse
|
200
|
Li Y, Qiu Y, Gao Y, Chen W, Li C, Dai X, Zhang L. Genetic and virulence characteristics of a Raoultella planticola isolate resistant to carbapenem and tigecycline. Sci Rep 2022; 12:3858. [PMID: 35264602 PMCID: PMC8907287 DOI: 10.1038/s41598-022-07778-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/16/2022] [Indexed: 01/29/2023] Open
Abstract
Raoultella planticola is an emerging pathogen causing several infections in humans, and its roles in the propagation of antibiotic resistance genes (ARGs) remain uncharacterized. In this study, a carbapenem and tigecycline-resistant R. planticola isolate was recovered from hospital sewage. It carried nine plasmids, bearing 30 ARGs, including one blaKPC-2 and two blaNDM-1. It also contained a plasmid-borne efflux pump gene cluster, tmexCD1-toprJ, conferring resistance to tigecycline. Analysis of plasmid sequences revealed that both blaNDM-1-carrying plasmids were highly similar to those recovered from humans, reinforcing the close relatedness of environmental and clinical isolates. We also identified that plasmid bearing blaNDM-1 or tmexCD1-toprJ1 was transferable, and can be stabilized in the host bacteria, indicating that the R. planticola isolate has a considerable potential in the dissemination of ARGs. Besides, we found that this isolate could produce biofilm and was virulent in a Galleria mellonella infection model. In conclusion, our study shows the convergence of virulence and multidrug resistance in a R. planticola isolate. This potentially virulent superbug may disseminate into its receiving rivers, and finally to humans through cross-contamination during recreation activities or daily use of water, which poses a risk to public health.
Collapse
Affiliation(s)
- Ying Li
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yichuan Qiu
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yan Gao
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Wenbi Chen
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Chengwen Li
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xiaoyi Dai
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Luhua Zhang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|