151
|
Calabrese L, Ney F, Aoki R, Moltrasio C, Marzano AV, Kerl K, Stadler PC, Satoh TK, French LE. Characterisation of IL-1 family members in Sweet syndrome highlights the overexpression of IL-1β and IL-1R3 as possible therapeutic targets. Exp Dermatol 2023; 32:1915-1923. [PMID: 37724787 DOI: 10.1111/exd.14916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023]
Abstract
Sweet syndrome (SS) as a prototypic neutrophilic dermatosis (NDs) shares certain clinical and histologic features with monogenic auto-inflammatory disorders in which interleukin (IL)-1 cytokine family members play an important role. This has led to the proposal that NDs are polygenic auto-inflammatory diseases and has fuelled research to further understand the role of IL-1 family members in the pathogenesis of NDs. The aim of this study was to characterise the expression of the IL-1 family members IL-1β, IL-36γ, IL-33 and IL-1R3 (IL-1RaP) in SS. The expression profile of IL-1β, IL-33, IL-36γ and their common co-receptor IL-1R3 was analysed by immunohistochemistry, in situ hybridisation and double immunofluorescence (IF) in healthy control skin (HC) and lesional skin samples of SS. Marked overexpression of IL-1β in the dermis of SS (p < 0.001), and a non-significant increase in dermal (p = 0.087) and epidermal (p = 0.345) IL-36γ expression compared to HC was observed. Significantly increased IL-1R3 expression within the dermal infiltrate of SS skin samples (p = 0.02) was also observed, whereas no difference in IL-33 expression was found between SS and HC (p = 0.7139). In situ hybridisation revealed a good correlation between gene expression levels and the above protein expression levels. Double IF identifies neutrophils and macrophages as the predominant sources of IL-1β. This study shows that IL-1β produced by macrophages and neutrophils and IL-1R3 are significantly overexpressed in SS, thereby indicating a potential pathogenic role for this cytokine and receptor in SS.
Collapse
Affiliation(s)
- Laura Calabrese
- Department of Dermatology and Allergy, University Hospital LMU, Munich, Germany
- Institute of Dermatology, Catholic University of the Sacred Heart, Rome, Italy
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Francesca Ney
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rui Aoki
- Department of Dermatology and Allergy, University Hospital LMU, Munich, Germany
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angelo V Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Katrin Kerl
- Department of Dermatology and Allergy, University Hospital LMU, Munich, Germany
| | | | - Takashi K Satoh
- Department of Dermatology and Allergy, University Hospital LMU, Munich, Germany
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital LMU, Munich, Germany
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
152
|
Cavalcante-Silva J, Koh TJ. Targeting the NOD-Like Receptor Pyrin Domain Containing 3 Inflammasome to Improve Healing of Diabetic Wounds. Adv Wound Care (New Rochelle) 2023; 12:644-656. [PMID: 34841901 PMCID: PMC10701516 DOI: 10.1089/wound.2021.0148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
Significance: Chronic skin wounds are a significant health problem around the world, often leading to amputation and even death. Although persistent inflammation is a hallmark of these poorly healing wounds, few available therapies have been designed to target inflammation. In this review, we summarize available evidence of the role of the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome in impaired wound healing and describe strategies to inhibit the inflammasome to improve wound healing. Recent Advances: The NLRP3 inflammasome plays an important physiological role in skin wound healing, during which transient inflammasome activity contributes to both epidermal and dermal healing. In contrast, sustained activity of the NLRP3 inflammasome leads to impaired epidermal and dermal healing associated with diabetes. Of importance, preclinical studies have demonstrated that inhibiting the NLRP3 inflammasome-induced resolution of inflammation, increased granulation tissue formation and collagen deposition, and accelerated reepithelialization and wound closure. Critical Issues: NLRP3 inflammasome inhibitors have appealing potential for translation into therapies for chronic wounds. Although preclinical studies have shown promising results, there is a need for human/clinical studies to evaluate dosing formulations, potential therapeutic effects, dose-response relationships, and possible side effects. Future Directions: Among strategies to inhibit the NLRP3 inflammasome, glyburide, metformin, peroxisome proliferator-activated receptor agonists, and the dipeptidyl peptidase 4 inhibitor saxagliptin appear to be closest to clinical translation, as these drugs are already Food and Drug Administration approved for other indications. Future clinical studies are needed to develop topical formulations of these drugs, and to assess the safety and efficacy of these inhibitors, to improve healing of chronic wounds.
Collapse
Affiliation(s)
- Jacqueline Cavalcante-Silva
- Center for Wound Healing and Tissue Regeneration; University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Kinesiology and Nutrition; University of Illinois at Chicago, Chicago, Illinois, USA
| | - Timothy J. Koh
- Center for Wound Healing and Tissue Regeneration; University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Kinesiology and Nutrition; University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
153
|
Fan Y, Guan B, Xu J, Zhang H, Yi L, Yang Z. Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother 2023; 167:115493. [PMID: 37734261 DOI: 10.1016/j.biopha.2023.115493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Sepsis, a life-threatening dysregulated status of the host response to infection, can cause multiorgan dysfunction and mortality. Sepsis places a heavy burden on the cardiovascular system due to the pathological imbalance of hyperinflammation and immune suppression. Myocardial injury and cardiac dysfunction caused by the aberrant host responses to pathogens can lead to cardiomyopathy, one of the most critical complications of sepsis. However, many questions about the specific mechanisms and characteristics of this complication remain to be answered. The causes of sepsis-induced cardiac dysfunction include abnormal cardiac perfusion, myocardial inhibitory substances, autonomic dysfunction, mitochondrial dysfunction, and calcium homeostasis dysregulation. The fight between the host and pathogens acts as the trigger for sepsis-induced cardiomyopathy. Pyroptosis, a form of programmed cell death, plays a critical role in the progress of sepsis. Toll-like receptors (TLRs) act as pattern recognition receptors and participate in innate immune pathways that recognize damage-associated molecular patterns as well as pathogen-associated molecular patterns to mediate pyroptosis. Notably, pyroptosis is tightly associated with cardiac dysfunction in sepsis and septic shock. In line with these observations, induction of TLR-mediated pyroptosis may be a promising therapeutic approach to treat sepsis-induced cardiomyopathy. This review focuses on the potential roles of TLR-mediated pyroptosis in sepsis-induced cardiomyopathy, to shed light on this promising therapeutic approach, thus helping to prevent and control septic shock caused by cardiovascular disorders and improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Yixuan Fan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Jianxing Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Liang Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhixu Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
154
|
Zhao Y, Zhang J, Qiao D, Gao F, Jiang X, Zhao X, Hou L, Li H, Li L, Kong X. Functional roles of CcGSDMEa-like in common carp (Cyprinus carpio) after Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109103. [PMID: 37741476 DOI: 10.1016/j.fsi.2023.109103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
GSDMs could punch holes in cell membrane and participate in the immune response to bacterial infections. In current study, the molecular and structural characteristics of CcGSDMEa-like were analyzed, and the role of CcGSDMEa-like in the inflammatory response against Aeromonas hydrophila was studied. The results showed that the CcGSDMEa-like shared the conserved structural characteristics with GSDMEs of other teleosts. The CcGSDMEa-like mRNA and protein expression levels were significantly affected by A. hydrophila challenge. When the CcGSDMEa-like was overexpressed, the expression of CcIL-1β were significantly increased in fish and EPC cells, and bacterial contents were significantly decreased in fish tissues. While, when the CcGSDMEa-like was knocked down, the expression and secretion of CcIL-1β were significantly decreased in vivo and in vitro, and the bacterial contents were increased in vivo after A. hydrophila infection 12 h and 24 h. In brief, CcGSDMEa-like could regulate the content of bacteria in fish through mediating the expression and secretion of CcIL-1β. Bactericidal assay and cytotoxicity assay showed that CcGSDMEa-like had no bactericidal activity to Escherichia coli, and did not disrupt cytomembrane integrity of HEK293T cells. This study suggested that CcGSDMEa-like could play roles in the antibacterial and inflammatory processes in fish.
Collapse
Affiliation(s)
- Yanjing Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, PR China
| | - Dan Qiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, PR China
| | - Feng Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, PR China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, PR China
| | - Hao Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, PR China.
| |
Collapse
|
155
|
Dwivedi AK, Gornalusse GG, Siegel DA, Barbehenn A, Thanh C, Hoh R, Hobbs KS, Pan T, Gibson EA, Martin J, Hecht F, Pilcher C, Milush J, Busch MP, Stone M, Huang ML, Reppetti J, Vo PM, Levy CN, Roychoudhury P, Jerome KR, Hladik F, Henrich TJ, Deeks SG, Lee SA. A cohort-based study of host gene expression: tumor suppressor and innate immune/inflammatory pathways associated with the HIV reservoir size. PLoS Pathog 2023; 19:e1011114. [PMID: 38019897 PMCID: PMC10712869 DOI: 10.1371/journal.ppat.1011114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/11/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
The major barrier to an HIV cure is the HIV reservoir: latently-infected cells that persist despite effective antiretroviral therapy (ART). There have been few cohort-based studies evaluating host genomic or transcriptomic predictors of the HIV reservoir. We performed host RNA sequencing and HIV reservoir quantification (total DNA [tDNA], unspliced RNA [usRNA], intact DNA) from peripheral CD4+ T cells from 191 ART-suppressed people with HIV (PWH). After adjusting for nadir CD4+ count, timing of ART initiation, and genetic ancestry, we identified two host genes for which higher expression was significantly associated with smaller total DNA viral reservoir size, P3H3 and NBL1, both known tumor suppressor genes. We then identified 17 host genes for which lower expression was associated with higher residual transcription (HIV usRNA). These included novel associations with membrane channel (KCNJ2, GJB2), inflammasome (IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9, CXCL3, CXCL10), and innate immunity (TLR7) genes (FDR-adjusted q<0.05). Gene set enrichment analyses further identified significant associations of HIV usRNA with TLR4/microbial translocation (q = 0.006), IL-1/NRLP3 inflammasome (q = 0.008), and IL-10 (q = 0.037) signaling. Protein validation assays using ELISA and multiplex cytokine assays supported these observed inverse host gene correlations, with P3H3, IL-10, and TNF-α protein associations achieving statistical significance (p<0.05). Plasma IL-10 was also significantly inversely associated with HIV DNA (p = 0.016). HIV intact DNA was not associated with differential host gene expression, although this may have been due to a large number of undetectable values in our study. To our knowledge, this is the largest host transcriptomic study of the HIV reservoir. Our findings suggest that host gene expression may vary in response to the transcriptionally active reservoir and that changes in cellular proliferation genes may influence the size of the HIV reservoir. These findings add important data to the limited host genetic HIV reservoir studies to date.
Collapse
Affiliation(s)
- Ashok K. Dwivedi
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Germán G. Gornalusse
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - David A. Siegel
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Alton Barbehenn
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Cassandra Thanh
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Rebecca Hoh
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Kristen S. Hobbs
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Tony Pan
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Erica A. Gibson
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Jeffrey Martin
- Department of Biostatistics & Epidemiology, University of California San Francisco, California, United States of America
| | - Frederick Hecht
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Christopher Pilcher
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Jeffrey Milush
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Michael P. Busch
- Vitalant Blood Bank, San Francisco, California, United States of America
| | - Mars Stone
- Vitalant Blood Bank, San Francisco, California, United States of America
| | - Meei-Li Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Julieta Reppetti
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO- Houssay), Buenos Aires, Argentina
| | - Phuong M. Vo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Claire N. Levy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Florian Hladik
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Timothy J. Henrich
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Steven G. Deeks
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Sulggi A. Lee
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| |
Collapse
|
156
|
Della Corte V, Todaro F, Cataldi M, Tuttolomondo A. Atherosclerosis and Its Related Laboratory Biomarkers. Int J Mol Sci 2023; 24:15546. [PMID: 37958528 PMCID: PMC10649778 DOI: 10.3390/ijms242115546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Atherosclerosis constitutes a persistent inflammatory ailment, serving as the predominant underlying condition for coronary artery disease (CAD), peripheral artery disease (PAD), and cerebrovascular disease. The progressive buildup of plaques within the walls of medium- and large-caliber arteries characterizes the atherosclerotic process. This accumulation results in significant narrowing that impedes blood flow, leading to critical tissue oxygen deficiency. Spontaneous blockage of thrombotic vessels can precipitate stroke and myocardial infarction, which are complications representing the primary global causes of mortality. Present-day models for predicting cardiovascular risk incorporate conventional risk factors to gauge the likelihood of cardiovascular events over a ten-year span. In recent times, researchers have identified serum biomarkers associated with an elevated risk of atherosclerotic events. Many of these biomarkers, whether used individually or in combination, have been integrated into risk prediction models to assess whether their inclusion enhances predictive accuracy. In this review, we have conducted a comprehensive analysis of the most recently published literature concerning serum biomarkers associated with atherosclerosis. We have explored the potential utility of incorporating these markers in guiding clinical decisions.
Collapse
|
157
|
Burzynski LC, Morales-Maldonado A, Rodgers A, Kitt LA, Humphry M, Figg N, Bennett MR, Clarke MCH. Thrombin-activated interleukin-1α drives atherogenesis, but also promotes vascular smooth muscle cell proliferation and collagen production. Cardiovasc Res 2023; 119:2179-2189. [PMID: 37309666 PMCID: PMC10578913 DOI: 10.1093/cvr/cvad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS Atherosclerosis is driven by multiple processes across multiple body systems. For example, the innate immune system drives both atherogenesis and plaque rupture via inflammation, while coronary artery-occluding thrombi formed by the coagulation system cause myocardial infarction and death. However, the interplay between these systems during atherogenesis is understudied. We recently showed that coagulation and immunity are fundamentally linked by the activation of interleukin-1α (IL-1α) by thrombin, and generated a novel knock-in mouse in which thrombin cannot activate endogenous IL-1α [IL-1α thrombin mutant (IL-1αTM)]. METHODS AND RESULTS Here, we show significantly reduced atherosclerotic plaque formation in IL-1αTM/Apoe-/- mice compared with Apoe-/- and reduced T-cell infiltration. However, IL-1αTM/Apoe-/- plaques have reduced vascular smooth muscle cells, collagen, and fibrous caps, indicative of a more unstable phenotype. Interestingly, the reduced atherogenesis seen with thrombin inhibition was absent in IL-1αTM/Apoe-/- mice, suggesting that thrombin inhibitors can affect atherosclerosis via reduced IL-1α activation. Finally, bone marrow chimeras show that thrombin-activated IL-1α is derived from both vessel wall and myeloid cells. CONCLUSIONS Together, we reveal that the atherogenic effect of ongoing coagulation is, in part, mediated via thrombin cleavage of IL-1α. This not only highlights the importance of interplay between systems during disease and the potential for therapeutically targeting IL-1α and/or thrombin, but also forewarns that IL-1 may have a role in plaque stabilization.
Collapse
Affiliation(s)
- Laura C Burzynski
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Alejandra Morales-Maldonado
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Amanda Rodgers
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Lauren A Kitt
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Melanie Humphry
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Nichola Figg
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Martin R Bennett
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Murray C H Clarke
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| |
Collapse
|
158
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
159
|
Woo S, Gandhi S, Ghincea A, Saber T, Lee CJ, Ryu C. Targeting the NLRP3 inflammasome and associated cytokines in scleroderma associated interstitial lung disease. Front Cell Dev Biol 2023; 11:1254904. [PMID: 37849737 PMCID: PMC10577231 DOI: 10.3389/fcell.2023.1254904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
SSc-ILD (scleroderma associated interstitial lung disease) is a complex rheumatic disease characterized in part by immune dysregulation leading to the progressive fibrotic replacement of normal lung architecture. Because improved treatment options are sorely needed, additional study of the fibroproliferative mechanisms mediating this disease has the potential to accelerate development of novel therapies. The contribution of innate immunity is an emerging area of investigation in SSc-ILD as recent work has demonstrated the mechanistic and clinical significance of the NLRP3 inflammasome and its associated cytokines of TNFα (tumor necrosis factor alpha), IL-1β (interleukin-1 beta), and IL-18 in this disease. In this review, we will highlight novel pathophysiologic insights afforded by these studies and the potential of leveraging this complex biology for clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | - Changwan Ryu
- Department of Internal Medicine, Yale School of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, New Haven, CT, United States
| |
Collapse
|
160
|
Gao F, Shi X, Zhao Y, Qiao D, Pei C, Li C, Zhao X, Kong X. The role of CcPTGS2a in immune response against Aeromonas hydrophila infection in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109058. [PMID: 37673389 DOI: 10.1016/j.fsi.2023.109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/27/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Prostaglandin-endoperoxide synthase 2 (PTGS2), a crucial enzyme in prostaglandin synthesis, catalyzes the conversion of arachidonic acid to prostaglandins and plays a significant role in the inflammatory response. This investigation aimed to determine the regulatory role of PTGS2a in the innate immune response to bacterial infection in fish. To achieve this objective, the CcPTGS2a gene was identified and characterized in common carp (Cyprinus carpio), and its function in immune defense was investigated. According to the sequence and structural analysis results, CcPTGS2a had an open reading frame of 1806 bp that encoded 602 amino acids. It was estimated that the protein's theoretical molecular weight was 69.0 kDa, and its isoelectric point was 8.10. The structure of CcPTGS2a was observed to be conserved, with an epidermal growth factor domain and a peroxidase domain present. Moreover, the amino acid sequence of CcPTGS2a exhibited significant homology with the amino acid sequences of several fish species. CcPTGS2a mRNA was detected in the healthy tissues of common carp, with higher expression in the head kidney, spleen, gills, and liver. Following the challenges with Aeromonas hydrophila and lipopolysaccharide, CcPTGS2a mRNA showed unique geographic and temporal expression patterns, with significant increases detected in the head kidney, gills, spleen, and liver. Additionally, the recombinant CcPTGS2a protein exhibited detectable bacterial binding to various bacteria. As determined by subcellular localization analysis, CcPTGS2a was predominantly localized in the nucleus and cytoplasm. Furthermore, it was discovered that the overexpression of CcPTGS2a stimulated the up-regulation of ferroptosis-related genes and inflammatory cytokine mRNA expression in fish and EPC (Epithelioma papulosum cyprinid) cells while concurrently reducing the bacterial load of A. hydrophila. In contrast, the interference of CcPTGS2a decreased the mRNA expression of ferroptosis-related genes and inflammatory cytokines in fish and EPC cells and increased the bacterial load of A. hydrophila. Notably, A. hydrophila stimulation resulted in the up-regulation of CcPTGS2a protein expression in EPC cells. These results suggested that CcPTGS2a was involved in the immune response to bacterial infections in common carp.
Collapse
Affiliation(s)
- Feng Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xiaowei Shi
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China; Sanquan Medical College, Henan Province, PR China
| | - Yanjing Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Dan Qiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
161
|
Zhou Y, Yu S, Zhang W. NOD-like Receptor Signaling Pathway in Gastrointestinal Inflammatory Diseases and Cancers. Int J Mol Sci 2023; 24:14511. [PMID: 37833958 PMCID: PMC10572711 DOI: 10.3390/ijms241914511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are intracellular proteins with a central role in innate and adaptive immunity. As a member of pattern recognition receptors (PRRs), NLRs sense specific pathogen-associated molecular patterns, trigger numerous signaling pathways and lead to the secretion of various cytokines. In recent years, cumulative studies have revealed the significant impacts of NLRs in gastrointestinal (GI) inflammatory diseases and cancers. Deciphering the role and molecular mechanism of the NLR signaling pathways may provide new opportunities for the development of therapeutic strategies related to GI inflammatory diseases and GI cancers. This review presents the structures and signaling pathways of NLRs, summarizes the recent advances regarding NLR signaling in GI inflammatory diseases and GI cancers and describes comprehensive therapeutic strategies based on this signaling pathway.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
162
|
Yu Z, Fidler TP, Ruan Y, Vlasschaert C, Nakao T, Uddin MM, Mack T, Niroula A, Heimlich JB, Zekavat SM, Gibson CJ, Griffin GK, Wang Y, Peloso GM, Heard-Costa N, Levy D, Vasan RS, Aguet F, Ardlie KG, Taylor KD, Rich SS, Rotter JI, Libby P, Jaiswal S, Ebert BL, Bick AG, Tall AR, Natarajan P. Genetic modification of inflammation- and clonal hematopoiesis-associated cardiovascular risk. J Clin Invest 2023; 133:e168597. [PMID: 37498674 PMCID: PMC10503804 DOI: 10.1172/jci168597] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is associated with an increased risk of cardiovascular diseases (CVDs), putatively via inflammasome activation. We pursued an inflammatory gene modifier scan for CHIP-associated CVD risk among 424,651 UK Biobank participants. We identified CHIP using whole-exome sequencing data of blood DNA and modeled as a composite, considering all driver genes together, as well as separately for common drivers (DNMT3A, TET2, ASXL1, and JAK2). We developed predicted gene expression scores for 26 inflammasome-related genes and assessed how they modify CHIP-associated CVD risk. We identified IL1RAP as a potential key molecule for CHIP-associated CVD risk across genes and increased AIM2 gene expression leading to heightened JAK2- and ASXL1-associated CVD risk. We show that CRISPR-induced Asxl1-mutated murine macrophages had a particularly heightened inflammatory response to AIM2 agonism, associated with an increased DNA damage response, as well as increased IL-10 secretion, mirroring a CVD-protective effect of IL10 expression in ASXL1 CHIP. Our study supports the role of inflammasomes in CHIP-associated CVD and provides evidence to support gene-specific strategies to address CHIP-associated CVD risk.
Collapse
Affiliation(s)
- Zhi Yu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Trevor P. Fidler
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Yunfeng Ruan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Tetsushi Nakao
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Md Mesbah Uddin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Taralynn Mack
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - J. Brett Heimlich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seyedeh M. Zekavat
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Institute, Boston, Massachusetts, USA
| | - Christopher J. Gibson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gabriel K. Griffin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Yuxuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Nancy Heard-Costa
- Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, Massachusetts, USA
- Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Ramachandran S. Vasan
- Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - François Aguet
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Siddhartha Jaiswal
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin L. Ebert
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alexander G. Bick
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Pradeep Natarajan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
163
|
Kim KY, Shin KY, Chang KA. Potential Inflammatory Biomarkers for Major Depressive Disorder Related to Suicidal Behaviors: A Systematic Review. Int J Mol Sci 2023; 24:13907. [PMID: 37762207 PMCID: PMC10531013 DOI: 10.3390/ijms241813907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric condition affecting an estimated 280 million individuals globally. Despite the occurrence of suicidal behaviors across various psychiatric conditions, MDD is distinctly associated with the highest risk of suicide attempts and death within this population. In this study, we focused on MDD to identify potential inflammatory biomarkers associated with suicidal risk, given the relationship between depressive states and suicidal ideation. Articles published before June 2023 were searched in PubMed, Embase, Web of Science, and the Cochrane Library to identify all relevant studies reporting blood inflammatory biomarkers in patients with MDD with suicide-related behaviors. Of 571 articles, 24 were included in this study. Overall, 43 significant biomarkers associated with MDD and suicide-related behaviors were identified. Our study provided compelling evidence of significant alterations in peripheral inflammatory factors in MDD patients with suicide-related behaviors, demonstrating the potential roles of interleukin (IL)-1β, IL-6, C-reactive protein, C-C motif chemokine ligand 2, and tumor necrosis factor-α as biomarkers. These findings underscore the intricate relationship between the inflammatory processes of these biomarkers and their interactions in MDD with suicidal risk.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Republic of Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
164
|
Yuan X, Jiang H, Fu D, Rech JC, Robida A, Rajanayake K, Yuan H, He M, Wen B, Sun D, Liu C, Chinnaswamy K, Stuckey JA, Paczesny S, Yang CY. Prophylactic Mitigation of Acute Graft versus Host Disease by Novel 2-(Pyrrolidin-1-ylmethyl)pyrrole-Based Stimulation-2 (ST2) Inhibitors. ACS Pharmacol Transl Sci 2023; 6:1275-1287. [PMID: 37705593 PMCID: PMC10496145 DOI: 10.1021/acsptsci.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 09/15/2023]
Abstract
Hematopoietic cell transplantation (HCT) is a proven and potentially curable therapy for hematological malignancies and inherited hematological disease. The main risk of HCT is the development of graft versus host disease (GVHD) acquired in up to 50% of patients. Upregulation of soluble ST2 (sST2) is a key clinical biomarker for GVHD prognosis and was shown to be a potential therapeutic target for GVHD. Agents targeting sST2 to reduce the sST2 level after HCT have the potential to mitigate GVHD progression. Here, we report 32 (or XY52) as the lead ST2 inhibitor from our optimization campaign. XY52 had improved inhibitory activity and metabolic stability in vitro and in vivo. XY52 suppressed proinflammatory T-cell proliferation while increasing regulatory T cells in vitro. In a clinically relevant GVHD model, a 21-day prophylactic regimen of XY52 reduced plasma sST2 and IFN-γ levels and GVHD score and extended survival in mice. XY52 represented a significant improvement over our previous compound, iST2-1, and further optimization of XY52 is warranted. The small-molecule ST2 inhibitors can potentially be used as a biomarker-guided therapy for mitigating GVHD in future clinical applications.
Collapse
Affiliation(s)
- Xinrui Yuan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Hua Jiang
- Department
of Microbiology & Immunology, Medical
University of South Carolina, Charleston, South Carolina 29425-2503, United States
| | - Denggang Fu
- Department
of Microbiology & Immunology, Medical
University of South Carolina, Charleston, South Carolina 29425-2503, United States
| | - Jason C. Rech
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aaron Robida
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Krishani Rajanayake
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hebao Yuan
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Miao He
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chen Liu
- Department
of Pathology, Yale University, New Haven, Connecticut 06520, United States
| | - Krishnapriya Chinnaswamy
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne A. Stuckey
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sophie Paczesny
- Department
of Microbiology & Immunology, Medical
University of South Carolina, Charleston, South Carolina 29425-2503, United States
| | - Chao-Yie Yang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
165
|
Hassan GS, Flores Molina M, Shoukry NH. The multifaceted role of macrophages during acute liver injury. Front Immunol 2023; 14:1237042. [PMID: 37736102 PMCID: PMC10510203 DOI: 10.3389/fimmu.2023.1237042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
The liver is situated at the interface of the gut and circulation where it acts as a filter for blood-borne and gut-derived microbes and biological molecules, promoting tolerance of non-invasive antigens while driving immune responses against pathogenic ones. Liver resident immune cells such as Kupffer cells (KCs), a subset of macrophages, maintain homeostasis under physiological conditions. However, upon liver injury, these cells and others recruited from circulation participate in the response to injury and the repair of tissue damage. Such response is thus spatially and temporally regulated and implicates interconnected cells of immune and non-immune nature. This review will describe the hepatic immune environment during acute liver injury and the subsequent wound healing process. In its early stages, the wound healing immune response involves a necroinflammatory process characterized by partial depletion of resident KCs and lymphocytes and a significant infiltration of myeloid cells including monocyte-derived macrophages (MoMFs) complemented by a wave of pro-inflammatory mediators. The subsequent repair stage includes restoring KCs, initiating angiogenesis, renewing extracellular matrix and enhancing proliferation/activation of resident parenchymal and mesenchymal cells. This review will focus on the multifaceted role of hepatic macrophages, including KCs and MoMFs, and their spatial distribution and roles during acute liver injury.
Collapse
Affiliation(s)
- Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
166
|
Pozzi G, Carubbi C, Cerreto GM, Scacchi C, Cortellazzi S, Vitale M, Masselli E. Functionally Relevant Cytokine/Receptor Axes in Myelofibrosis. Biomedicines 2023; 11:2462. [PMID: 37760903 PMCID: PMC10525259 DOI: 10.3390/biomedicines11092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated inflammatory signaling is a key feature of myeloproliferative neoplasms (MPNs), most notably of myelofibrosis (MF). Indeed, MF is considered the prototype of onco-inflammatory hematologic cancers. While increased levels of circulatory and bone marrow cytokines are a well-established feature of all MPNs, a very recent body of literature is intriguingly pinpointing the selective overexpression of cytokine receptors by MF hematopoietic stem and progenitor cells (HSPCs), which, by contrast, are nearly absent or scarcely expressed in essential thrombocythemia (ET) or polycythemia vera (PV) cells. This new evidence suggests that MF CD34+ cells are uniquely capable of sensing inflammation, and that activation of specific cytokine signaling axes may contribute to the peculiar aggressive phenotype and biological behavior of this disorder. In this review, we will cover the main cytokine systems peculiarly activated in MF and how cytokine receptor targeting is shaping a novel therapeutic avenue in this disease.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Giacomo Maria Cerreto
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Chiara Scacchi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Samuele Cortellazzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Marco Vitale
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| | - Elena Masselli
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| |
Collapse
|
167
|
Govindula A, Ranadive N, Nampoothiri M, Rao CM, Arora D, Mudgal J. Emphasizing the Crosstalk Between Inflammatory and Neural Signaling in Post-traumatic Stress Disorder (PTSD). J Neuroimmune Pharmacol 2023; 18:248-266. [PMID: 37097603 PMCID: PMC10577110 DOI: 10.1007/s11481-023-10064-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a chronic incapacitating condition with recurrent experience of trauma-related memories, negative mood, altered cognition, and hypervigilance. Agglomeration of preclinical and clinical evidence in recent years specified that alterations in neural networks favor certain characteristics of PTSD. Besides the disruption of hypothalamus-pituitary-axis (HPA) axis, intensified immune status with elevated pro-inflammatory cytokines and arachidonic metabolites of COX-2 such as PGE2 creates a putative scenario in worsening the neurobehavioral facet of PTSD. This review aims to link the Diagnostic and Statistical Manual of mental disorders (DSM-V) symptomology to major neural mechanisms that are supposed to underpin the transition from acute stress reactions to the development of PTSD. Also, to demonstrate how these intertwined processes can be applied to probable early intervention strategies followed by a description of the evidence supporting the proposed mechanisms. Hence in this review, several neural network mechanisms were postulated concerning the HPA axis, COX-2, PGE2, NLRP3, and sirtuins to unravel possible complex neuroinflammatory mechanisms that are obscured in PTSD condition.
Collapse
Affiliation(s)
- Anusha Govindula
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, 4222, Australia.
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
168
|
Gao Y, Fang C, Wang J, Ye Y, Li Y, Xu Q, Kang X, Gu L. Neuroinflammatory Biomarkers in the Brain, Cerebrospinal Fluid, and Blood After Ischemic Stroke. Mol Neurobiol 2023; 60:5117-5136. [PMID: 37258724 DOI: 10.1007/s12035-023-03399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
The most frequent type of stroke, known as ischemic stroke (IS), is a significant global public health issue. The pathological process of IS and post-IS episodes has not yet been fully explored, but neuroinflammation has been identified as one of the key processes. Biomarkers are objective indicators used to assess normal or pathological processes, evaluate responses to treatment, and predict outcomes, and some biomarkers can also be used as therapeutic targets. After IS, various molecules are produced by different cell types, such as microglia, astrocytes, infiltrating leukocytes, endothelial cells, and damaged neurons, that participate in the neuroinflammatory response within the ischemic brain region. These molecules may either promote or inhibit neuroinflammation and may be released into extracellular spaces, including cerebrospinal fluid (CSF) and blood, due to reasons such as BBB damage. These neuroinflammatory molecules should be valued as biomarkers to monitor whether their expression levels in the blood, CSF, and brain correlate with the diagnosis and prognosis of IS patients or whether they have potential as therapeutic targets. In addition, although some molecules do not directly participate in the process of neuroinflammation, they have been reported to have potential diagnostic or therapeutic value against post-IS neuroinflammation, and these molecules will also be listed. In this review, we summarize the neuroinflammatory biomarkers in the brain, CSF, and blood after an IS episode and the potential value of these biomarkers for the diagnosis, treatment, and prognosis of IS patients.
Collapse
Affiliation(s)
- Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Congcong Fang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xianhui Kang
- Department of Anesthesia, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310006, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
169
|
Michaelidou M, Redhu D, Kumari V, Babina M, Worm M. IL-1α/β and IL-18 profiles and their impact on claudin-1, loricrin and filaggrin expression in patients with atopic dermatitis. J Eur Acad Dermatol Venereol 2023; 37:e1141-e1143. [PMID: 37114373 DOI: 10.1111/jdv.19153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Affiliation(s)
- M Michaelidou
- Division of Allergy and Immunology, Department of Dermatology and Allergy, Charité Universitätmedizin Berlin, Berlin, Germany
| | - D Redhu
- Division of Allergy and Immunology, Department of Dermatology and Allergy, Charité Universitätmedizin Berlin, Berlin, Germany
| | - V Kumari
- Division of Allergy and Immunology, Department of Dermatology and Allergy, Charité Universitätmedizin Berlin, Berlin, Germany
| | - M Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Berlin, Germany
| | - M Worm
- Division of Allergy and Immunology, Department of Dermatology and Allergy, Charité Universitätmedizin Berlin, Berlin, Germany
| |
Collapse
|
170
|
Dharra R, Kumar Sharma A, Datta S. Emerging aspects of cytokine storm in COVID-19: The role of proinflammatory cytokines and therapeutic prospects. Cytokine 2023; 169:156287. [PMID: 37402337 PMCID: PMC10291296 DOI: 10.1016/j.cyto.2023.156287] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
COVID-19 has claimed millions of lives during the last 3 years since initial cases were reported in Wuhan, China, in 2019. Patients with COVID-19 suffer from severe pneumonia, high fever, acute respiratory distress syndrome (ARDS), and multiple-organ dysfunction, which may also result in fatality in extreme cases. Cytokine storm (CS) is hyperactivation of the immune system, wherein the dysregulated production of proinflammatory cytokines could result in excessive immune cell infiltrations in the pulmonary tissues, resulting in tissue damage. The immune cell infiltration could also occur in other tissues and organs and result in multiple organs' dysfunction. The key cytokines implicated in the onset of disease severity include TNF-α, IFN-γ, IL-6, IL-1β, GM-CSF, and G-CSF. Controlling the CS is critical in treating COVID-19 disease. Therefore, different strategies are employed to mitigate the effects of CS. These include using monoclonal antibodies directed against soluble cytokines or the cytokine receptors, combination therapies, mesenchymal stem cell therapy, therapeutic plasma exchange, and some non-conventional treatment methods to improve patient immunity. The current review describes the role/s of critical cytokines in COVID-19-mediated CS and the respective treatment modalities.
Collapse
Affiliation(s)
- Renu Dharra
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | - Anil Kumar Sharma
- Department of Bio-Science and Technology, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Sonal Datta
- Department of Bio-Science and Technology, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India.
| |
Collapse
|
171
|
Balić A, Marinović B, Bukvić Mokos Z. The genetic aspects of hidradenitis suppurativa. Clin Dermatol 2023; 41:551-563. [PMID: 37652193 DOI: 10.1016/j.clindermatol.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Genetic aspects have a substantial role in hidradenitis suppurativa (HS) pathogenesis. A positive family history of HS occurs in about one-third of HS cases and is significantly higher in patients with early onset of the disease. Recent twin studies have shown a high heritability in HS, fortifying the importance of genetic factors in disease pathogenesis. Based on existing knowledge on the genomics of HS, the disease can be categorized as familial HS, sporadic, syndromic HS, and "HS plus" associated with other syndromes. In familial HS, autosomal dominant transmission is proposed, and monogenic inheritance is rare. This monogenic trait is related to mutations of γ-secretase component genes and Notch signaling or defects in inflammasome function. With newly discovered gene mutations, such as those related to innate and adaptive immunity, skin microbiome, inflammasome, epidermal homeostasis, and keratinization pathway, we can define HS as a polygenic, multifactorial, autoinflammatory disease. To fully elucidate the genetic aspects of HS, we need extensive, long-term global collaborations.
Collapse
Affiliation(s)
- Anamaria Balić
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, European Reference Network (ERN) - Skin Reference Centre, Zagreb, Croatia
| | - Branka Marinović
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, European Reference Network (ERN) - Skin Reference Centre, Zagreb, Croatia; School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zrinka Bukvić Mokos
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, European Reference Network (ERN) - Skin Reference Centre, Zagreb, Croatia; School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
172
|
Kumar C, Chandan G, Kushwaha M, Kumar A, Kaur S, Kumar A, Yadav G, Gairola S, Vishwakarma RA, Satti NK, Verma MK. Discovery of Anti-NRLP3 Inflammasome, Immunomodulatory Phytochemicals from the Extract of Habenaria intermediaD. Don: An Unexplored Plant Species. ACS OMEGA 2023; 8:31112-31122. [PMID: 37663462 PMCID: PMC10468832 DOI: 10.1021/acsomega.3c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023]
Abstract
The present study describes the isolation, identification, and quantification of biomarker compounds in plant extracts of Habenaria intermedia D. Don (Orchidaceae). The isolation of the compounds was carried out from H. intermedia D. Don by repeated column chromatography of petroleum ether and ethanol fractions of extract of tubers. These compounds were characterized by 1H and 13C NMR and mass spectral data. A new quantitative method was established by using high-performance liquid chromatography (HPLC)-PDA. As a result, seven compounds were isolated and characterized. This is the first report of isolation of these compounds from this plant species H. intermedia D.Don. Out of seven isolated compounds, five were used for the quantitative study. A reliable and suitable HPLC method was developed for the well-resolved chromatogram of compounds. The proposed method was applied successfully to the detection and quantification of compounds. This study also represents the immunomodulatory and anti-inflammasome biological studies of isolated natural products. Loroglossol (HBR-4) has been reported to possess immunomodulatory activity. The immunostimulating assay indicated that HBR-4 could significantly promote the cell proliferation, especially via IL-2, TNF-α, and IFN-γ secretion from spleen cells. These results suggested the potential utilization of HBR-4 as an attractive functional health supplement candidate for hypoimmunity population. Additionally, cyclophosphamide-induced immunosuppression was counteracted by treatment with HBR-4, revealing significant increase in hemagglutinating antibody responses and hemolytic antibody responses. The current work revealed the potential anti-inflammasome and immunomodulatory activities of H. intermedia D. Don compounds and validates the usage of this prominent Rasayna plant.
Collapse
Affiliation(s)
- Chetan Kumar
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Gourav Chandan
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management
Sciences, Solan 173 229, Himachal Pradesh, India
| | - Manoj Kushwaha
- Fermentation
and Microbial Biotechnology Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Amit Kumar
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Sukhleen Kaur
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Ajay Kumar
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Govind Yadav
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Sumeet Gairola
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
- Plant Sciences
and Agrotechnology Division (PSA) CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Ram A. Vishwakarma
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Naresh Kumar Satti
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Mahendra Kumar Verma
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| |
Collapse
|
173
|
Tang B, Hu S, Zhang X, Ouyang Q, Qing E, Wang W, Hu J, Li L, Wang J. Effects and Mechanisms of Cage versus Floor Rearing System on Goose Growth Performance and Immune Status. Animals (Basel) 2023; 13:2682. [PMID: 37627473 PMCID: PMC10451896 DOI: 10.3390/ani13162682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Currently, FRS and CRS are the two predominant dryland rearing systems in the goose industry. However, the effects of these two systems on goose growth performance and health, as well as the underlying mechanisms, have not been fully clarified. Thus, this study aimed to compare growth performance and immune status, as well as investigate the genome-wide transcriptomic profiles of spleen in geese, between CRS and FRS at 270 d of age. Phenotypically, the body weight and body size traits were higher in geese under FRS, while the weight and organ index of spleen were higher in geese under CRS (p < 0.05). Noticeably, the bursa of Fabricius of geese under FRS was degenerated, while that under CRS was retained. At the serum level, the immune globulin-G (IgG) and interleukin-6 (IL-6) levels were higher in geese under CRS (p < 0.05). At the transcriptomic level, we identified 251 differentially expressed genes (DEGs) in the spleen between CRS and FRS, which were mainly enriched in scavenger receptor activity, inflammatory response, immune response, neuroactive ligand-receptor interaction, phenylalanine metabolism, ECM receptor interaction, calcium signaling pathway, phenylalanine, tyrosine, and tryptophan biosynthesis, regulation of actin cytoskeleton, and MAPK signaling pathways. Furthermore, through protein-protein interaction (PPI) network analysis, ten candidate genes were identified, namely, VEGFA, FGF2, NGF, GPC1, NKX2-5, FGFR1, FGF1, MEIS1, CD36, and PAH. Further analysis demonstrated that geese in CRS could improve their immune ability through the "phenylalanine metabolism" pathway. Our results revealed that the FRS improved growth performance, whereas the CRS improved goose immune function by increasing levels of IL-6 and IgG in serum. Moreover, the phenylalanine metabolism pathway could exert positive effects on immune function of geese under CRS. These results can provide reliable references for understanding how floor and cage rearing systems affect goose growth performance and immune capacity.
Collapse
Affiliation(s)
- Bincheng Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (B.T.); (S.H.); (X.Z.); (Q.O.); (E.Q.); (J.H.); (L.L.)
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (B.T.); (S.H.); (X.Z.); (Q.O.); (E.Q.); (J.H.); (L.L.)
| | - Xin Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (B.T.); (S.H.); (X.Z.); (Q.O.); (E.Q.); (J.H.); (L.L.)
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (B.T.); (S.H.); (X.Z.); (Q.O.); (E.Q.); (J.H.); (L.L.)
| | - Enhua Qing
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (B.T.); (S.H.); (X.Z.); (Q.O.); (E.Q.); (J.H.); (L.L.)
| | - Wanxia Wang
- General Station of Animal Husbandry of Sichuan Province, Chengdu 610066, China;
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (B.T.); (S.H.); (X.Z.); (Q.O.); (E.Q.); (J.H.); (L.L.)
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (B.T.); (S.H.); (X.Z.); (Q.O.); (E.Q.); (J.H.); (L.L.)
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (B.T.); (S.H.); (X.Z.); (Q.O.); (E.Q.); (J.H.); (L.L.)
| |
Collapse
|
174
|
Azhar NA, Paul BT, Jesse FFA, Mohd-Lila MA, Chung ELT, Kamarulrizal MI. Pro-inflammatory cytokines and reproductive hormone responses in bucks post-challenge with Mannheimia haemolytica A2 and its outer membrane protein. Trop Anim Health Prod 2023; 55:291. [PMID: 37589856 DOI: 10.1007/s11250-023-03706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
The lipopolysaccharide (LPS) endotoxin and outer membrane protein (OMP) are among the virulence factors of Gram-negative bacteria responsible for inducing pathogenicity in the infected host. OMP and LPS occur on the outer membrane of M. haemolytica A2, the primary aetiological agent of pneumonic mannheimiosis in small ruminants. While the LPS is known to mediate Gram-negative bacterial infection by activating downstream inflammatory pathways, the potential role of OMP during inflammatory responses remained unclear. Hence, this study determined the effect of the OMP of M. haemolytica A2 on the serum concentration of pro-inflammatory cytokines and the male reproductive hormones (testosterone and Luteinizing Hormone). We randomly assigned twelve bucks to three groups (n = 4 bucks each): Group 1 was challenged with 2 mL PBS buffer (pH 7.0) intranasally; Group 2 received 2 mL of 1.2 X 109 CFU/mL whole M. haemolytica A2 intranasally; and Group 3 received 2 mL of OMP extract obtained from 1.2 X 109 CFU/mL M. haemolytica A2 intramuscularly. Serum samples collected at pre-determined intervals were used for the quantitative determination of the pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) and reproductive hormones (testosterone and LH) using commercial sandwich enzyme-linked immunosorbent assay (ELISA). The serum concentration of IL1β was initially increased within the first-hour post-challenge in Groups 2 and 3, followed by a significant decrease in concentration at 21d and 35d (p < 0.05) in Group 3. Only mild fluctuations in IL-6 occurred in group 2, as opposed to the 1.7-fold rapid increase in TNFα within 2 h post-challenge before decreasing at 6 h. An increase in pro-inflammatory cytokines was accompanied by an acute febrile response of 39.5 ± 0.38 °C (p < 0.05) at 2 h and 40.1 ± 0.29 °C (p < 0.05) at 4 h in Group 2 and Group 3, respectively. Serum testosterone decreased significantly (p < 0.05) in both treatment groups but remained significantly (p > 0.05) lower than in Group 1 throughout the study. There was a moderate negative association between testosterone and IL1β (r = -0.473; p > 0.05) or TNFα (r = -0.527; p < 0.05) in Group 2. Serum LH also showed moderate negative associations with TNFα in Group 2 (r = -0.63; p < 0.05) and Group 3 (r = -0.54; p > 0.05). The results of this study demonstrated that M. haemolytica A2 and its OMP produced marked alterations in serum levels of pro-inflammatory cytokines and male reproductive hormones. The negative correlations between serum testosterone and inflammatory cytokines would suggest the potential role of OMP in causing male infertility by mediating innate inflammatory responses to suppress testosterone production in bucks.
Collapse
Affiliation(s)
- Nur Amira Azhar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Bura Thlama Paul
- Department of Animal Science and Fisheries, Faculty of Agriculture and Forestry Science, Universiti Putra Malaysia Campus Bintulu Sarawak, 97003, Bintulu, Malaysia
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Maiduguri, 600230, Maiduguri, Borno State, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Mohd-Azmi Mohd-Lila
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, 43400 UPM, Serdang, Selangor, Malaysia
| | - Eric Lim Teik Chung
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mat Isa Kamarulrizal
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
175
|
Aghamohamadi N, Shahba F, Zarezadeh Mehrabadi A, Khorramdelazad H, Karimi M, Falak R, Emameh RZ. Age-dependent immune responses in COVID-19-mediated liver injury: focus on cytokines. Front Endocrinol (Lausanne) 2023; 14:1139692. [PMID: 37654571 PMCID: PMC10465349 DOI: 10.3389/fendo.2023.1139692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is potentially pathogenic and causes severe symptoms; in addition to respiratory syndromes, patients might experience other severe conditions such as digestive complications and liver complications injury. The abnormality in the liver is manifested by hepatobiliary dysfunction and enzymatic elevation, which is associated with morbidity and mortality. The direct cytopathic effect, immune dysfunction, cytokine storm, and adverse effects of therapeutic regimens have a crucial role in the severity of liver injury. According to aging and immune system alterations, cytokine patterns may also change in the elderly. Moreover, hyperproduction of cytokines in the inflammatory response to SARS-CoV-2 can lead to multi-organ dysfunction. The mortality rate in elderly patients, particularly those with other comorbidities, is also higher than in adults. Although the pathogenic effect of SARS-CoV-2 on the liver has been widely studied, the impact of age and immune-mediated responses at different ages remain unclear. This review discusses the association between immune system responses in coronavirus disease 2019 (COVID-19) patients of different ages and liver injury, focusing on cytokine alterations.
Collapse
Affiliation(s)
- Nazanin Aghamohamadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Shahba
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarezadeh Mehrabadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Milad Karimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
176
|
Zhao Y, Qiao D, Zhang J, Gao F, Pei C, Li C, Kong X. Activation Mechanism of CcGSDMEb-1/2 and Regulation for Bacterial Clearance in Common Carp (Cyprinus carpio). JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:658-672. [PMID: 37417761 DOI: 10.4049/jimmunol.2200690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
Gasdermin E (GSDME), to date, is considered the only direct executor of the pyroptosis process in teleost and plays an important role in innate immunity. In common carp (Cyprinus carpio), there contains two pairs of GSDME (GSDMEa/a-like and GSDMEb-1/2), and the pyroptotic function and regulation mechanism of GSDME still remain unclear. In this study, we identified two GSDMEb genes of common carp (CcGSDMEb-1/2), which contain a conserved N-terminal pore-forming domain, C-terminal autoinhibitory domain, and a flexible and pliable hinge region. We investigated the function and mechanism of CcGSDMEb-1/2 in association with inflammatory and apoptotic caspases in Epithelioma papulosum cyprinid cells and discovered that only CcCaspase-1b could cleave CcGSDMEb-1/2 through recognizing the sites 244FEVD247 and 244FEAD247 in the linker region, respectively. CcGSDMEb-1/2 exerted toxicity to human embryonic kidney 293T cells and bactericidal activity through its N-terminal domain. Interestingly, after i.p. infection by Aeromonas hydrophila, we found that CcGSDMEb-1/2 were upregulated in immune organs (head kidney and spleen) at the early stage of infection, but downregulated in mucosal immune tissues (gill and skin). After CcGSDMEb-1/2 were knocked down and overexpressed in vivo and in vitro, respectively, we found that CcGSDMEb-1/2 could govern the secretion of CcIL-1β and regulate the bacterial clearance after A. hydrophila challenge. Taken together, in this study, it was demonstrated that the cleavage mode of CcGSDMEb-1/2 in common carp was obviously different from that in other species and played an important role in CcIL-1β secretion and bacterial clearance.
Collapse
Affiliation(s)
- Yanjing Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang Henan, China
| | - Dan Qiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang Henan, China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang Henan, China
| | - Feng Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang Henan, China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang Henan, China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang Henan, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang Henan, China
| |
Collapse
|
177
|
Nazari M, Shabani R, Hassanzadeh-Rad A, Esfandiari MA, Dalili S. Effect of concurrent resistance-aerobic training on inflammatory factors and growth hormones in children with type 1 diabetes: a randomized controlled clinical trial. Trials 2023; 24:519. [PMID: 37568220 PMCID: PMC10422817 DOI: 10.1186/s13063-023-07553-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Exercise training is a major factor in controlling type 1 diabetes mellitus (T1DM) in children. The present study aimed to assess the effect of concurrent resistance-aerobic training on selected inflammatory factors and hormones related to blood glucose homeostasis in children with T1DM. METHODS In this randomized controlled clinical trial, 40 children (with the mean age of 11.11 ± 2.29 years) were randomly assigned to an experimental (N = 20) or control group (N = 20). They underwent a 16-week training program, composed of concurrent resistance-aerobic training performed intermittently for 60 min three times a week. Before and after training, blood samples were analyzed for glucose homeostasis, selected inflammatory factors, and growth factors. Data were analyzed by paired t-test and analysis of covariance (ANCOVA) in IBM SPSS version 22. RESULTS The exercise training intervention reduced fasting blood sugar index (P = 0.002) and glycosylated hemoglobin significantly (P = 0.003). The growth hormone levels were increased significantly only in the experimental group (P = 0.037), whereas no significant difference was noted in the insulin-like growth factor-1 (P = 0.712). It was also found that interleukin-1β and high-sensitivity C-reactive protein did not change in the experimental or control group as compared to the pretest (P > 0.05). CONCLUSION As it was shown, it seems that concurrent resistance-aerobic training may improve blood glucose homeostasis and growth hormone. Therefore, these findings may suggest the benefit from exercise training of moderate intensity in children with T1DM. Besides, we recommend undertaking further clinical trials to determine if the exercise training was effective. TRIAL REGISTRATION This study was registered in the Iranian Registry of Clinical Trials under the code IRCT20150531022498N30: https://en.irct.ir/trial/41031 . Registered on July 26, 2019. All experiments on the participants were following the Declaration of Helsinki.
Collapse
Affiliation(s)
- Marzieh Nazari
- Faculty of Humanities, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ramin Shabani
- Department of Exercise Physiology, Faculty of Humanities, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Afagh Hassanzadeh-Rad
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Ali Esfandiari
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Setila Dalili
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
178
|
Gander-Bui HTT, Schläfli J, Baumgartner J, Walthert S, Genitsch V, van Geest G, Galván JA, Cardozo C, Graham Martinez C, Grans M, Muth S, Bruggmann R, Probst HC, Gabay C, Freigang S. Targeted removal of macrophage-secreted interleukin-1 receptor antagonist protects against lethal Candida albicans sepsis. Immunity 2023; 56:1743-1760.e9. [PMID: 37478856 DOI: 10.1016/j.immuni.2023.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/02/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Invasive fungal infections are associated with high mortality rates, and the lack of efficient treatment options emphasizes an urgency to identify underlying disease mechanisms. We report that disseminated Candida albicans infection is facilitated by interleukin-1 receptor antagonist (IL-1Ra) secreted from macrophages in two temporally and spatially distinct waves. Splenic CD169+ macrophages release IL-1Ra into the bloodstream, impeding early neutrophil recruitment. IL-1Ra secreted by monocyte-derived tissue macrophages further impairs pathogen containment. Therapeutic IL-1Ra neutralization restored the functional competence of neutrophils, corrected maladapted hyper-inflammation, and eradicated the otherwise lethal infection. Conversely, augmentation of macrophage-secreted IL-1Ra by type I interferon severely aggravated disease mortality. Our study uncovers how a fundamental immunoregulatory mechanism mediates the high disease susceptibility to invasive candidiasis. Furthermore, interferon-stimulated IL-1Ra secretion may exacerbate fungal dissemination in human patients with secondary candidemia. Macrophage-secreted IL-1Ra should be considered as an additional biomarker and potential therapeutic target in severe systemic candidiasis.
Collapse
Affiliation(s)
- Hang Thi Thuy Gander-Bui
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Joëlle Schläfli
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | - Johanna Baumgartner
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Sabrina Walthert
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | - Vera Genitsch
- Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - José A Galván
- Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | - Carmen Cardozo
- Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | | | - Mona Grans
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Sabine Muth
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | | | - Cem Gabay
- Division of Rheumatology, Department of Medicine, University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Stefan Freigang
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
179
|
Abstract
BACKGROUND The function of the thymus in human adults is unclear, and routine removal of the thymus is performed in a variety of surgical procedures. We hypothesized that the adult thymus is needed to sustain immune competence and overall health. METHODS We evaluated the risk of death, cancer, and autoimmune disease among adult patients who had undergone thymectomy as compared with demographically matched controls who had undergone similar cardiothoracic surgery without thymectomy. T-cell production and plasma cytokine levels were also compared in a subgroup of patients. RESULTS After exclusions, 1420 patients who had undergone thymectomy and 6021 controls were included in the study; 1146 of the patients who had undergone thymectomy had a matched control and were included in the primary cohort. At 5 years after surgery, all-cause mortality was higher in the thymectomy group than in the control group (8.1% vs. 2.8%; relative risk, 2.9; 95% confidence interval [CI], 1.7 to 4.8), as was the risk of cancer (7.4% vs. 3.7%; relative risk, 2.0; 95% CI, 1.3 to 3.2). Although the risk of autoimmune disease did not differ substantially between the groups in the overall primary cohort (relative risk, 1.1; 95% CI, 0.8 to 1.4), a difference was found when patients with preoperative infection, cancer, or autoimmune disease were excluded from the analysis (12.3% vs. 7.9%; relative risk, 1.5; 95% CI, 1.02 to 2.2). In an analysis involving all patients with more than 5 years of follow-up (with or without a matched control), all-cause mortality was higher in the thymectomy group than in the general U.S. population (9.0% vs. 5.2%), as was mortality due to cancer (2.3% vs. 1.5%). In the subgroup of patients in whom T-cell production and plasma cytokine levels were measured (22 in the thymectomy group and 19 in the control group; mean follow-up, 14.2 postoperative years), those who had undergone thymectomy had less new production of CD4+ and CD8+ lymphocytes than controls (mean CD4+ signal joint T-cell receptor excision circle [sjTREC] count, 1451 vs. 526 per microgram of DNA [P = 0.009]; mean CD8+ sjTREC count, 1466 vs. 447 per microgram of DNA [P<0.001]) and higher levels of proinflammatory cytokines in the blood. CONCLUSIONS In this study, all-cause mortality and the risk of cancer were higher among patients who had undergone thymectomy than among controls. Thymectomy also appeared be associated with an increased risk of autoimmune disease when patients with preoperative infection, cancer, or autoimmune disease were excluded from the analysis. (Funded by the Tracey and Craig A. Huff Harvard Stem Cell Institute Research Support Fund and others.).
Collapse
Affiliation(s)
- Kameron A Kooshesh
- From the Centers for Regenerative Medicine (K.A.K., D.B.S., K.G., D.T.S.) and Systems Biology (B.H.F.), Massachusetts General Hospital, the Harvard Stem Cell Institute (K.A.K., K.G., D.T.S.), the Department of Stem Cell and Regenerative Biology, Harvard University (K.A.K., K.G., D.T.S.), and Harvard Medical School (K.A.K., B.H.F., D.B.S., K.G., D.T.S.) - all in Boston
| | - Brody H Foy
- From the Centers for Regenerative Medicine (K.A.K., D.B.S., K.G., D.T.S.) and Systems Biology (B.H.F.), Massachusetts General Hospital, the Harvard Stem Cell Institute (K.A.K., K.G., D.T.S.), the Department of Stem Cell and Regenerative Biology, Harvard University (K.A.K., K.G., D.T.S.), and Harvard Medical School (K.A.K., B.H.F., D.B.S., K.G., D.T.S.) - all in Boston
| | - David B Sykes
- From the Centers for Regenerative Medicine (K.A.K., D.B.S., K.G., D.T.S.) and Systems Biology (B.H.F.), Massachusetts General Hospital, the Harvard Stem Cell Institute (K.A.K., K.G., D.T.S.), the Department of Stem Cell and Regenerative Biology, Harvard University (K.A.K., K.G., D.T.S.), and Harvard Medical School (K.A.K., B.H.F., D.B.S., K.G., D.T.S.) - all in Boston
| | - Karin Gustafsson
- From the Centers for Regenerative Medicine (K.A.K., D.B.S., K.G., D.T.S.) and Systems Biology (B.H.F.), Massachusetts General Hospital, the Harvard Stem Cell Institute (K.A.K., K.G., D.T.S.), the Department of Stem Cell and Regenerative Biology, Harvard University (K.A.K., K.G., D.T.S.), and Harvard Medical School (K.A.K., B.H.F., D.B.S., K.G., D.T.S.) - all in Boston
| | - David T Scadden
- From the Centers for Regenerative Medicine (K.A.K., D.B.S., K.G., D.T.S.) and Systems Biology (B.H.F.), Massachusetts General Hospital, the Harvard Stem Cell Institute (K.A.K., K.G., D.T.S.), the Department of Stem Cell and Regenerative Biology, Harvard University (K.A.K., K.G., D.T.S.), and Harvard Medical School (K.A.K., B.H.F., D.B.S., K.G., D.T.S.) - all in Boston
| |
Collapse
|
180
|
Patsouris V, Blecharz-Lang KG, Nieminen-Kelhä M, Schneider UC, Vajkoczy P. Resolution of Cerebral Inflammation Following Subarachnoid Hemorrhage. Neurocrit Care 2023; 39:218-228. [PMID: 37349601 PMCID: PMC10499726 DOI: 10.1007/s12028-023-01770-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Aneurismal subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke that, despite improvement through therapeutic interventions, remains a devastating cerebrovascular disorder that has a high mortality rate and causes long-term disability. Cerebral inflammation after SAH is promoted through microglial accumulation and phagocytosis. Furthermore, proinflammatory cytokine release and neuronal cell death play key roles in the development of brain injury. The termination of these inflammation processes and restoration of tissue homeostasis are of utmost importance regarding the possible chronicity of cerebral inflammation and the improvement of the clinical outcome for affected patients post SAH. Thus, we evaluated the inflammatory resolution phase post SAH and considered indications for potential tertiary brain damage in cases of incomplete resolution. METHODS Subarachnoid hemorrhage was induced through endovascular filament perforation in mice. Animals were killed 1, 7 and 14 days and 1, 2 and 3 months after SAH. Brain cryosections were immunolabeled for ionized calcium-binding adaptor molecule-1 to detect microglia/macrophages. Neuronal nuclei and terminal deoxyuridine triphosphate-nick end labeling staining was used to visualize secondary cell death of neurons. The gene expression of various proinflammatory mediators in brain samples was analyzed by quantitative polymerase chain reaction. RESULTS We observed restored tissue homeostasis due to decreased microglial/macrophage accumulation and neuronal cell death 1 month after insult. However, the messenger RNA expression levels of interleukin 6 and tumor necrosis factor α were still elevated at 1 and 2 months post SAH, respectively. The gene expression of interleukin 1β reached its maximum on day 1, whereas at later time points, no significant differences between the groups were detected. CONCLUSIONS By the herein presented molecular and histological data we provide an important indication for an incomplete resolution of inflammation within the brain parenchyma after SAH. Inflammatory resolution and the return to tissue homeostasis represent an important contribution to the disease's pathology influencing the impact on brain damage and outcome after SAH. Therefore, we consider a novel complementary or even superior therapeutic approach that should be carefully rethought in the management of cerebral inflammation after SAH. An acceleration of the resolution phase at the cellular and molecular levels could be a potential aim in this context.
Collapse
Affiliation(s)
- Victor Patsouris
- Institute of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Kinga G Blecharz-Lang
- Institute of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Institute of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Cantonal Hospital of Lucerne, Lucerne, Switzerland
| | - Peter Vajkoczy
- Institute of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
181
|
Guan YT, Zhang C, Zhang HY, Wei WL, Yue W, Zhao W, Zhang DH. Primary cilia: Structure, dynamics, and roles in cancer cells and tumor microenvironment. J Cell Physiol 2023; 238:1788-1807. [PMID: 37565630 DOI: 10.1002/jcp.31092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/24/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
Despite the initiation of tumor arises from tumorigenic transformation signaling in cancer cells, cancer cell survival, invasion, and metastasis also require a dynamic and reciprocal association with extracellular signaling from tumor microenvironment (TME). Primary cilia are the antenna-like structure that mediate signaling sensation and transduction in different tissues and cells. Recent studies have started to uncover that the heterogeneous ciliation in cancer cells and cells from the TME in tumor growth impels asymmetric paracellular signaling in the TME, indicating the essential functions of primary cilia in homeostasis maintenance of both cancer cells and the TME. In this review, we discussed recent advances in the structure and assembly of primary cilia, and the role of primary cilia in tumor and TME formation, as well as the therapeutic potentials that target ciliary dynamics and signaling from the cells in different tumors and the TME.
Collapse
Affiliation(s)
- Yi-Ting Guan
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Chong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Hong-Yong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Wen-Lu Wei
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P. R. China
- Department of Posthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Dong-Hui Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| |
Collapse
|
182
|
AlAfaleq NO, Hussein TM, Al-Shouli ST, Altwaijry N, Shahnawaz Khan M, Albutti A, Hamed ME. Proinflammatory cytokine profiles in prediabetic Saudi patients. Saudi J Biol Sci 2023; 30:103714. [PMID: 37457235 PMCID: PMC10344800 DOI: 10.1016/j.sjbs.2023.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Prediabetes is an increase-risk state for diabetes that is associated with an increase in blood glucose levels to more than normal, but not increased enough to be termed as type 2 diabetes mellitus (T2DM). A timely intervention and management of prediabetes can stop its further progression to the diabetic state. Many cytokines are involved in diseases including diabetes, however, their role in prediabetes is unknown. In this study, we attempted to analyze numerous proinflammatory cytokines in prediabetic patients. A total of 60 adult Saudi prediabetes patients and healthy control individuals were included in this study. To better understand the role of the proinflammatory cytokines in prediabetes patients and its potential link to the disease outcome, the variations in the levels of these cytokines were investigated using Multi-Analyte ELISA technique. The T helper cells (Th1 and Th2) immune response expression profiling of 84 genes was done using Real Time-quantitative PCR (RT-qPCR) technique. The present finding showed that serum Interleukin IL-2, IL-1β, and IL-1α levels of all prediabetes patients were increased when compared with healthy control cases (P < 0.05). Inductions of proinflammatory cytokines and upregulation of Th1 and Th2 immune genes might play a potential role during prediabetes status and may be linked to the disease outcome. Further studies are needed to investigate the underlying mechanism of these proinflammatory cytokines in diabetes development. A strong positive correlation was found between IL and 1α with glucose levels than with IL-1β and IL-2. In conclusion, cytokines, especially IL-1, may play a critical role in the development of diabetes.
Collapse
Affiliation(s)
- Nouf O. AlAfaleq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tasneem M. Hussein
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samia T. Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | | |
Collapse
|
183
|
Han Y, Zhang Y, Yuan K, Wu Y, Jin X, Huang X. Hyperosmolarity promotes macrophage pyroptosis by driving the glycolytic reprogramming of corneal epithelial cells in dry eye disease. Front Med 2023; 17:781-795. [PMID: 37266854 DOI: 10.1007/s11684-023-0986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 01/28/2023] [Indexed: 06/03/2023]
Abstract
Tear film hyperosmolarity plays a core role in the development of dry eye disease (DED) by mediating the disruption of ocular surface homeostasis and triggering inflammation in ocular surface epithelium. In this study, the mechanisms involving the hyperosmolar microenvironment, glycolysis mediating metabolic reprogramming, and pyroptosis were explored clinically, in vitro, and in vivo. Data from DED clinical samples indicated that the expression of glycolysis and pyroptosis-related genes, including PKM2 and GSDMD, was significantly upregulated and that the secretion of IL-1β significantly increased. In vitro, the indirect coculture of macrophages derived from THP-1 and human corneal epithelial cells (HCECs) was used to discuss the interaction among cells. The hyperosmolar environment was found to greatly induce HCECs' metabolic reprogramming, which may be the primary cause of the subsequent inflammation in macrophages upon the activation of the related gene and protein expression. 2-Deoxy-d-glucose (2-DG) could inhibit the glycolysis of HCECs and subsequently suppress the pyroptosis of macrophages. In vivo, 2-DG showed potential efficacy in relieving DED activity and could significantly reduce the overexpression of genes and proteins related to glycolysis and pyroptosis. In summary, our findings suggested that hyperosmolar-induced glycolytic reprogramming played an active role in promoting DED inflammation by mediating pyroptosis.
Collapse
Affiliation(s)
- Yu Han
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Yu Zhang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Kelan Yuan
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Yaying Wu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China.
| |
Collapse
|
184
|
Wang HY, Lin X, Huang GG, Zhou R, Lei SY, Ren J, Zhang KR, Feng CL, Wu YW, Tang W. Atranorin inhibits NLRP3 inflammasome activation by targeting ASC and protects NLRP3 inflammasome-driven diseases. Acta Pharmacol Sin 2023; 44:1687-1700. [PMID: 36964308 PMCID: PMC10374890 DOI: 10.1038/s41401-023-01054-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/09/2023] [Indexed: 03/26/2023] Open
Abstract
Aberrant NLRP3 activation has been implicated in the pathogenesis of numerous inflammation-associated diseases. However, no small molecular inhibitor that directly targets NLRP3 inflammasome has been approved so far. In this study, we show that Atranorin (C19H18O8), the secondary metabolites of lichen family, effectively prevents NLRP3 inflammasome activation in macrophages and dendritic cells. Mechanistically, Atranorin inhibits NLRP3 activation induced cytokine secretion and cell pyroptosis through binding to ASC protein directly and therefore restraining ASC oligomerization. The pharmacological effect of Atranorin is evaluated in NLRP3 inflammasome-driven disease models. Atranorin lowers serum IL-1β and IL-18 levels in LPS induced mice acute inflammation model. Also, Atranorin protects against MSU crystal induced mice gouty arthritis model and lowers ankle IL-1β level. Moreover, Atranorin ameliorates intestinal inflammation and epithelial barrier dysfunction in DSS induced mice ulcerative colitis and inhibits NLRP3 inflammasome activation in colon. Altogether, our study identifies Atranorin as a novel NLRP3 inhibitor that targets ASC protein and highlights the potential therapeutic effects of Atranorin in NLRP3 inflammasome-driven diseases including acute inflammation, gouty arthritis and ulcerative colitis.
Collapse
Affiliation(s)
- Hao-Yu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xi Lin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guan-Gen Huang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rong Zhou
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shu-Yue Lei
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Ren
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kai-Rong Zhang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, China
| | - Chun-Lan Feng
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan-Wei Wu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
185
|
Barcena ML, Tonini G, Haritonow N, Breiter P, Milting H, Baczko I, Müller‐Werdan U, Ladilov Y, Regitz‐Zagrosek V. Sex and age differences in AMPK phosphorylation, mitochondrial homeostasis, and inflammation in hearts from inflammatory cardiomyopathy patients. Aging Cell 2023; 22:e13894. [PMID: 37365150 PMCID: PMC10410062 DOI: 10.1111/acel.13894] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Linked to exacerbated inflammation, myocarditis is a cardiovascular disease, which may lead to dilated cardiomyopathy. Although sex and age differences in the development of chronic myocarditis have been postulated, underlying cellular mechanisms remain poorly understood. In the current study, we aimed to investigate sex and age differences in mitochondrial homeostasis, inflammation, and cellular senescence. Cardiac tissue samples from younger and older patients with inflammatory dilated cardiomyopathy (DCMI) were used. The expression of Sirt1, phosphorylated AMPK, PGC-1α, Sirt3, acetylated SOD2, catalase, and several mitochondrial genes was analyzed to assess mitochondrial homeostasis. The expression of NF-κB, TLR4, and interleukins was used to examine the inflammatory state in the heart. Finally, several senescence markers and telomere length were investigated. Cardiac AMPK expression and phosphorylation were significantly elevated in male DCMI patients, whereas Sirt1 expression remained unchanged in all groups investigated. AMPK upregulation was accompanied by a preserved expression of all mitochondrial proteins/genes investigated in older male DCMI patients, whereas the expression of TOM40, TIM23, and the mitochondrial oxidative phosphorylation genes was significantly reduced in older female patients. Mitochondrial homeostasis in older male patients was further supported by the reduced acetylation of mitochondrial proteins as indicated by acetylated SOD2. The inflammatory markers NF-κB and TLR4 were downregulated in older male DCMI patients, whereas the expression of IL-18 was increased in older female patients. This was accompanied by progressed senescence in older DCMI hearts. In conclusion, older women experience more dramatic immunometabolic disorders on the cellular level than older men.
Collapse
Affiliation(s)
- Maria Luisa Barcena
- Department of Geriatrics and Medical GerontologyCharité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
- DZHK (German Centre for Cardiovascular Research)BerlinGermany
| | - Greta Tonini
- Department of Geriatrics and Medical GerontologyCharité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Natalie Haritonow
- Department of Geriatrics and Medical GerontologyCharité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Pavelas Breiter
- Department of Geriatrics and Medical GerontologyCharité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
- DZHK (German Centre for Cardiovascular Research)BerlinGermany
| | - Hendrik Milting
- Erich and Hanna Klessmann InstituteHeart and Diabetes Centre NRW, University Hospital of the Ruhr‐University BochumBad OeynhausenGermany
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, Albert Szent‐Györgyi Medical SchoolUniversity of SzegedSzegedHungary
| | - Ursula Müller‐Werdan
- Department of Geriatrics and Medical GerontologyCharité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Yury Ladilov
- Department of Geriatrics and Medical GerontologyCharité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
- Department of Cardiovascular Surgery, Heart Center BrandenburgBrandenburg Medical SchoolBernau bei BerlinGermany
| | - Vera Regitz‐Zagrosek
- DZHK (German Centre for Cardiovascular Research)BerlinGermany
- Institute for Gender in Medicine, Center for Cardiovascular Research, Charité University HospitalBerlinGermany
- Department of CardiologyUniversity Hospital Zürich, University of ZürichZürichSwitzerland
| |
Collapse
|
186
|
Song Y, Chung J. Zingerone-Induced Autophagy Suppresses IL-1β Production by Increasing the Intracellular Killing of Aggregatibacter actinomycetemcomitans in THP-1 Macrophages. Biomedicines 2023; 11:2130. [PMID: 37626627 PMCID: PMC10452316 DOI: 10.3390/biomedicines11082130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontitis is caused by the inflammation of tooth-supporting tissue by pathogens such as Aggregatibacter actinomycetemcomitans. Interleukin-1β (IL-1β), a pro-inflammatory cytokine, triggers a series of inflammatory reactions and promotes bone resorption. The aim of this study was to examine the molecular mechanism and anti-inflammatory function of zingerone, a dietary phenolic found in Zingiber officinale, on periodontal inflammation induced by A. actinomycetemcomitans. Zingerone attenuated A. actinomycetemcomitans-induced nitric oxide (NO) production by inhibiting the expression of inducible nitric oxide synthase (iNOS) in THP-1 macrophages. Zingerone also inhibited the expression of tumor necrosis factor (TNF)-α, IL-1β, and their signal pathway molecules including the toll-like receptor (TLR)/mitogen-activated protein kinase (MAPKase). In particular, zingerone suppressed the expression of absent in melanoma 2 (AIM2) inflammasome components on IL-1β production. Moreover, zingerone enhanced autophagosome formation and the expressions of autophagy-associated molecules. Interestingly, zingerone reduced the intracellular survival of A. actinomycetemcomitans. This was blocked by an autophagy inhibitor, which reversed the decrease in IL-1β production by zingerone. Finally, zingerone alleviated alveolar bone absorption in an A. actnomycetemcomitans-induced periodontitis mice model. Our data suggested that zingerone has potential use as a treatment for periodontal inflammation induced by A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Yuri Song
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea;
- Oral Genomics Research Center, Pusan National University, Yangsan-si 50612, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea;
- Oral Genomics Research Center, Pusan National University, Yangsan-si 50612, Republic of Korea
| |
Collapse
|
187
|
Chen H, Deng J, Gao H, Song Y, Zhang Y, Sun J, Zhai J. Involvement of the SIRT1-NLRP3 pathway in the inflammatory response. Cell Commun Signal 2023; 21:185. [PMID: 37507744 PMCID: PMC10375653 DOI: 10.1186/s12964-023-01177-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 07/30/2023] Open
Abstract
The silent information regulator 2 homolog 1-NACHT, LRR and PYD domains-containing protein 3 (SIRT1-NLRP3) pathway has a crucial role in regulation of the inflammatory response, and is closely related to the occurrence and development of several inflammation-related diseases. NLRP3 is activated to produce the NLRP3 inflammasome, which leads to activation of caspase-1 and cleavage of pro-interleukin (IL)-1β and pro-IL-18 to their active forms: IL-1β and IL-18, respectively. They are proinflammatory cytokines which then cause an inflammatory response.SIRT1 can inhibit this inflammatory response through nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B pathways. This review article focuses mainly on how the SIRT1-NLRP3 pathway influences the inflammatory response and its relationship with melatonin, traumatic brain injury, neuroinflammation, depression, atherosclerosis, and liver damage. Video Abstract.
Collapse
Affiliation(s)
- Huiyue Chen
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
| | - Jiayu Deng
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Huan Gao
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Yanqing Song
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yueming Zhang
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Jingmeng Sun
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China.
| |
Collapse
|
188
|
Ortega MA, De Leon-Oliva D, García-Montero C, Fraile-Martinez O, Boaru DL, de Castro AV, Saez MA, Lopez-Gonzalez L, Bujan J, Alvarez-Mon MA, García-Honduvilla N, Diaz-Pedrero R, Alvarez-Mon M. Reframing the link between metabolism and NLRP3 inflammasome: therapeutic opportunities. Front Immunol 2023; 14:1232629. [PMID: 37545507 PMCID: PMC10402745 DOI: 10.3389/fimmu.2023.1232629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Inflammasomes are multiprotein signaling platforms in the cytosol that senses exogenous and endogenous danger signals and respond with the maturation and secretion of IL-1β and IL-18 and pyroptosis to induce inflammation and protect the host. The inflammasome best studied is the Nucleotide-binding oligomerization domain, leucine-rich repeat-containing family pyrin domain containing 3 (NLRP3) inflammasome. It is activated in a two-step process: the priming and the activation, leading to sensor NLRP3 oligomerization and recruitment of both adaptor ASC and executioner pro-caspase 1, which is activated by cleavage. Moreover, NLRP3 inflammasome activation is regulated by posttranslational modifications, including ubiquitination/deubiquitination, phosphorylation/dephosphorylation, acetylation/deacetylation, SUMOylation and nitrosylation, and interaction with NLPR3 protein binding partners. Moreover, the connection between it and metabolism is receiving increasing attention in this field. In this review, we present the structure, functions, activation, and regulation of NLRP3, with special emphasis on regulation by mitochondrial dysfunction-mtROS production and metabolic signals, i.e., metabolites as well as enzymes. By understanding the regulation of NLRP3 inflammasome activation, specific inhibitors can be rationally designed for the treatment and prevention of various immune- or metabolic-based diseases. Lastly, we review current NLRP3 inflammasome inhibitors and their mechanism of action.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Amador Velazquez de Castro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-University of Alcalá (UAH) Madrid, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Department of General and Digestive Surgery, University Hospital Príncipe de Asturias, Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, Alcalá de Henares, Spain
| |
Collapse
|
189
|
Nikolaev B, Yakovleva L, Fedorov V, Li H, Gao H, Shevtsov M. Nano- and Microemulsions in Biomedicine: From Theory to Practice. Pharmaceutics 2023; 15:1989. [PMID: 37514175 PMCID: PMC10383468 DOI: 10.3390/pharmaceutics15071989] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Nano- and microemulsions are colloidal systems that are widely used in various fields of biomedicine, including wound and burn healing, cosmetology, the development of antibacterial and antiviral drugs, oncology, etc. The stability of these systems is governed by the balance of molecular interactions between nanodomains. Microemulsions as a colloidal form play a special important role in stability. The microemulsion is the thermodynamically stable phase from oil, water, surfactant and co-surfactant which forms the surface of drops with very small surface energy. The last phenomena determines the shortage time of all fluid dispersions including nanoemulsions and emulgels. This review examines the theory and main methods of obtaining nano- and microemulsions, particularly focusing on the structure of microemulsions and methods for emulsion analysis. Additionally, we have analyzed the main preclinical and clinical studies in the field of wound healing and the use of emulsions in cancer therapy, emphasizing the prospects for further developments in this area.
Collapse
Affiliation(s)
- Boris Nikolaev
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
| | - Ludmila Yakovleva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
- Department of Inorganic Chemistry and Biophysics, Saint-Petersburg State University of Veterinary Medicine, Chernigovskaya Str. 5, 196084 Saint Petersburg, Russia
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, 690091 Vladivostok, Russia
| |
Collapse
|
190
|
Kidder E, Pea M, Cheng S, Koppada SP, Visvanathan S, Henderson Q, Thuzar M, Yu X, Alfaidi M. The interleukin-1 receptor type-1 in disturbed flow-induced endothelial mesenchymal activation. Front Cardiovasc Med 2023; 10:1190460. [PMID: 37539090 PMCID: PMC10394702 DOI: 10.3389/fcvm.2023.1190460] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Atherosclerosis is a progressive disease that develops in areas of disturbed flow (d-flow). Progressive atherosclerosis is characterized by bulky plaques rich in mesenchymal cells and high-grade inflammation that can rupture leading to sudden cardiac death or acute myocardial infarction. In response to d-flow, endothelial cells acquire a mesenchymal phenotype through endothelial-to-mesenchymal transition (EndMT). However, the signaling intermediaries that link d-flow to EndMT are incompletely understood. Methods and Results In this study we found that in human atherosclerosis, cells expressing SNAI1 (Snail 1, EndMT transcription factor) were highly expressed within the endothelial cell (EC) layer and in the pre-necrotic areas in unstable lesions, whereas stable lesions did not show any SNAI1 positive cells, suggesting a role for EndMT in lesion instability. The interleukin-1 (IL-1), which signals through the type-I IL-1 receptor (IL-1R1), has been implicated in plaque instability and linked to EndMT formation in vitro. Interestingly, we observed an association between SNAI1 and IL-1R1 within ECs in the unstable lesions. To establish the causal relationship between EndMT and IL-1R1 expression, we next examined IL-1R1 levels in our Cre-lox endothelial-specific lineage tracing mice. IL-1R1 and Snail1 were highly expressed in ECs under atheroprone compared to athero-protective areas, and oscillatory shear stress (OSS) increased IL-1R1 protein and mRNA levels in vitro. Exposure of ECs to OSS resulted in loss of their EC markers and higher induction of EndMT markers. By contrast, genetic silencing of IL-1R1 significantly reduced the expression of EndMT markers and Snail1 nuclear translocation, suggesting a direct role for IL-1R1 in d-flow-induced EndMT. In vivo, re-analysis of scRNA-seq datasets in carotid artery exposed to d-flow confirmed the IL-1R1 upregulation among EndMT population, and in our partial carotid ligation model of d-flow, endothelial cell specific IL-1R1 KO significantly reduced SNAI1 expression. Discussion Global inhibition of IL-1 signaling in atherosclerosis as a therapeutic target has recently been tested in the completed CANTOS trial, with promising results. However, the data on IL-1R1 signaling in different vascular cell-types are inconsistent. Herein, we show endothelial IL-1R1 as a novel mechanosensitive receptor that couples d-flow to IL-1 signaling in EndMT.
Collapse
Affiliation(s)
- Evan Kidder
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Meleah Pea
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Siyuan Cheng
- Department of Urology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Satya-Priya Koppada
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Suren Visvanathan
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Quartina Henderson
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Moe Thuzar
- Department of Pathology and Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Xiuping Yu
- Department of Urology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Mabruka Alfaidi
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Center for Cardiovascular Diseases and Science (CCDS), Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| |
Collapse
|
191
|
James A, Wang K, Wang Y. Therapeutic Activity of Green Tea Epigallocatechin-3-Gallate on Metabolic Diseases and Non-Alcoholic Fatty Liver Diseases: The Current Updates. Nutrients 2023; 15:3022. [PMID: 37447347 DOI: 10.3390/nu15133022] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Green tea polyphenols have numerous functions including antioxidation and modulation of various cellular proteins and are thus beneficial against metabolic diseases including obesity, type 2 diabetes, cardiovascular and non-alcoholic fatty liver diseases, and their comorbidities. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea and is attributed to antioxidant and free radical scavenging activities, and the likelihood of targeting multiple metabolic pathways. It has been shown to exhibit anti-obesity, anti-inflammatory, anti-diabetic, anti-arteriosclerotic, and weight-reducing effects in humans. Worldwide, the incidences of metabolic diseases have been escalating across all age groups in modern society. Therefore, EGCG is being increasingly investigated to address the problems. This review presents the current updates on the effects of EGCG on metabolic diseases, and highlights evidence related to its safety. Collectively, this review brings more evidence for therapeutic application and further studies on EGCG and its derivatives to alleviate metabolic diseases and non-alcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Armachius James
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Tanzania Agricultural Research Institute (TARI), Makutupora Center, Dodoma P.O. Box 1676, Tanzania
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Yousheng Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
192
|
Farina N, Campochiaro C, Lescoat A, Benanti G, De Luca G, Khanna D, Dagna L, Matucci-Cerinic M. Drug development and novel therapeutics to ensure a personalized approach in the treatment of systemic sclerosis. Expert Rev Clin Immunol 2023; 19:1131-1142. [PMID: 37366065 DOI: 10.1080/1744666x.2023.2230370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a systemic disease encompassing autoimmunity, vasculopathy, and fibrosis. SSc is still burdened by high mortality and morbidity rates. Recent advances in understanding the pathogenesis of SSc have identified novel potential therapeutic targets. Several clinical trials have been subsequently designed to evaluate the efficacy of a number of new drugs. The aim of this review is to provide clinicians with useful information about these novel molecules. AREA COVERED In this narrative review, we summarize the available evidence regarding the most promising targeted therapies currently under investigation for the treatment of SSc. These medications include kinase inhibitors, B-cell depleting agents, and interleukin inhibitors. EXPERT OPINION Over the next five years, several new, targeted drugs will be introduced in clinical practice for the treatment of SSc. Such pharmacological agents will expand the existing pharmacopoeia and enable a more personalized and effective approach to patients with SSc. Thus, it will not only possible to target a specific disease domain, but also different stages of the disease.
Collapse
Affiliation(s)
- N Farina
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - C Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - A Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | - G Benanti
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - G De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - D Khanna
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - L Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - M Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
193
|
Jhawar SR, Wang SJ, Thandoni A, Bommareddy PK, Newman JH, Marzo AL, Kuzel TM, Gupta V, Reiser J, Daniels P, Schiff D, Mitchell D, LeBoeuf NR, Simmons C, Goyal S, Lasfar A, Guevara-Patino JA, Haffty BG, Kaufman HL, Silk AW, Zloza A, Giurini EF. Combination oncolytic virus, radiation therapy, and immune checkpoint inhibitor treatment in anti-PD-1-refractory cancer. J Immunother Cancer 2023; 11:e006780. [PMID: 37433716 PMCID: PMC10347455 DOI: 10.1136/jitc-2023-006780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Immunotherapies are becoming front-line treatments for many advanced cancers, and combinations of two or more therapies are beginning to be investigated. Based on their individual antitumor capabilities, we sought to determine whether combination oncolytic virus (OV) and radiation therapy (RT) may improve cancer outcomes. METHODS To investigate the activity of this combination therapy, we used in vitro mouse and human cancer cell lines as well as a mouse model of skin cancer. After initial results, we further included immune checkpoint blockade, whose addition constituted a triple combination immunotherapy. RESULTS Our findings demonstrate that OV and RT reduce tumor growth via conversion of immunologically 'cold' tumors to 'hot', via a CD8+ T cell-dependent and IL-1α-dependent mechanism that is associated with increased PD-1/PD-L1 expression, and the triple combination of OV, RT, and PD-1 checkpoint inhibition impedes tumor growth and prolongs survival. Further, we describe the response of a PD-1-refractory patient with cutaneous squamous cell carcinoma who received the triple combination of OV, RT, and immune checkpoint inhibitor (ICI), and went on to experience unexpected, prolonged control and survival. He remains off-treatment and is without evidence of progression for >44 months since study entry. CONCLUSIONS Effective systemic antitumor immune response is rarely elicited by a single therapy. In a skin cancer mouse model, we demonstrate improved outcomes with combination OV, RT, and ICI treatment, which is associated with mechanisms involving augmented CD8+ T cell infiltration and IL-1α expression. We report tumor reduction and prolonged survival of a patient with skin cancer treated with combination OV, RT, and ICI. Overall, our data provide strong rationale for combining OV, RT, and ICI for treatment of patients with ICI-refractory skin and potentially other cancers.
Collapse
Affiliation(s)
- Sachin R Jhawar
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Shang-Jui Wang
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Aditya Thandoni
- Department of Orthopedic Surgery, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Praveen K Bommareddy
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jenna H Newman
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Amanda L Marzo
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Timothy M Kuzel
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Vineet Gupta
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Preston Daniels
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Devora Schiff
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Darrion Mitchell
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nicole R LeBoeuf
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Christopher Simmons
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sharad Goyal
- Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Ahmed Lasfar
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Pharmacology and Toxicology, Ernest School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | | | - Bruce G Haffty
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Howard L Kaufman
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ann W Silk
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Andrew Zloza
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Eileena F Giurini
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
194
|
Park JH, Nath K, Devlin SM, Sauter CS, Palomba ML, Shah G, Dahi P, Lin RJ, Scordo M, Perales MA, Shouval R, Tomas AA, Cathcart E, Mead E, Santomasso B, Holodny A, Brentjens RJ, Riviere I, Sadelain M. CD19 CAR T-cell therapy and prophylactic anakinra in relapsed or refractory lymphoma: phase 2 trial interim results. Nat Med 2023; 29:1710-1717. [PMID: 37400640 PMCID: PMC11462637 DOI: 10.1038/s41591-023-02404-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/17/2023] [Indexed: 07/05/2023]
Abstract
In preclinical models, anakinra, an IL-1 receptor antagonist (IL-1Ra), reduced immune effector cell-associated neurotoxicity syndrome (ICANS) without compromising anti-CD19 chimeric antigen receptor (CAR) T-cell efficacy. We initiated a phase 2 clinical trial of anakinra in patients with relapsed/refractory large B-cell lymphoma and mantle cell lymphoma treated with commercial anti-CD19 CAR T-cell therapy. Here we report a non-prespecified interim analysis reporting the final results from cohort 1 in which patients received subcutaneous anakinra from day 2 until at least day 10 post-CAR T-cell infusion. The primary endpoint was the rate of severe (grade ≥3) ICANS. Key secondary endpoints included the rates of all-grade cytokine release syndrome (CRS) and ICANS and overall disease response. Among 31 treated patients, 74% received axicabtagene ciloleucel, 13% received brexucabtagene ciloleucel and 4% received tisagenlecleucel. All-grade ICANS occurred in 19%, and severe ICANS occurred in 9.7% of patients. There were no grade 4 or 5 ICANS events. All-grade CRS occurred in 74%, and severe CRS occurred in 6.4% of patients. The overall disease response rate was 77% with 65% complete response rate. These initial results show that prophylactic anakinra resulted in a low incidence of ICANS in patients with lymphoma receiving anti-CD19 CAR T-cell therapy and support further study of anakinra in immune-related neurotoxicity syndromes.
Collapse
Affiliation(s)
- Jae H Park
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA.
| | - Karthik Nath
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Sean M Devlin
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Craig S Sauter
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Center for Cell Engineering, Sloan Kettering Institute, New York City, NY, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - M Lia Palomba
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Gunjan Shah
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Parastoo Dahi
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Richard J Lin
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michael Scordo
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Miguel-Angel Perales
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Roni Shouval
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Ana Alarcon Tomas
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Division of Hematology and Hemotherapy, Hospital General Universitario Gregorio Maranon, Madrid, Spain
| | - Elizabeth Cathcart
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Elena Mead
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Bianca Santomasso
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andrei Holodny
- Radiology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Renier J Brentjens
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Center for Cell Engineering, Sloan Kettering Institute, New York City, NY, USA
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Isabelle Riviere
- Center for Cell Engineering, Sloan Kettering Institute, New York City, NY, USA
- Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Sloan Kettering Institute, New York City, NY, USA
| |
Collapse
|
195
|
Vaher H, Kingo K, Kolberg P, Pook M, Raam L, Laanesoo A, Remm A, Tenson T, Alasoo K, Mrowietz U, Weidinger S, Kingo K, Rebane A. Skin Colonization with S. aureus Can Lead to Increased NLRP1 Inflammasome Activation in Patients with Atopic Dermatitis. J Invest Dermatol 2023; 143:1268-1278.e8. [PMID: 36736455 DOI: 10.1016/j.jid.2023.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
The role of NLRP1 inflammasome activation and subsequent production of IL-1 family cytokines in the development of atopic dermatitis (AD) is not clearly understood. Staphylococcus aureus is known to be associated with increased mRNA levels of IL1 family cytokines in the skin and more severe AD. In this study, the altered expression of IL-1 family cytokines and inflammasome-related genes was confirmed, and a positive relationship between mRNA levels of inflammasome sensor NLRP1 and IL1B or IL18 was determined. Enhanced expression of the NLRP1 and PYCARD proteins and increased caspase-1 activity were detected in the skin of patients with AD. The genetic association of IL18R1 and IL18RAP with AD was confirmed, and the involvement of various immune cell types was predicted using published GWAS and expression quantitative trait loci datasets. In keratinocytes, the inoculation with S. aureus led to the increased secretion of IL-1β and IL-18, whereas small interfering RNA silencing of NLRP1 inhibited the production of these cytokines. Our results suggest that skin colonization with S. aureus may cause the activation of the NLRP1 inflammasome in keratinocytes, which leads to the secretion of IL-1β and IL-18 and thereby may contribute to the pathogenesis of AD, particularly in the presence of genetic variations in the IL-18 pathway.
Collapse
Affiliation(s)
- Helen Vaher
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kristiina Kingo
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Peep Kolberg
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Martin Pook
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liisi Raam
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia; Department of Dermatology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Anet Laanesoo
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anu Remm
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Ulrich Mrowietz
- Department of Dermatology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Külli Kingo
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia; Department of Dermatology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
196
|
Chai CZ, Ho UC, Kuo LT. Systemic Inflammation after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:10943. [PMID: 37446118 DOI: 10.3390/ijms241310943] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is one of the most severe neurological disorders, with a high mortality rate and severe disabling functional sequelae. Systemic inflammation following hemorrhagic stroke may play an important role in mediating intracranial and extracranial tissue damage. Previous studies showed that various systemic inflammatory biomarkers might be useful in predicting clinical outcomes. Anti-inflammatory treatment might be a promising therapeutic approach for improving the prognosis of patients with aSAH. This review summarizes the complicated interactions between the nervous system and the immune system.
Collapse
Affiliation(s)
- Chang-Zhang Chai
- Department of Medical Education, National Taiwan University, School of Medicine, Taipei 100, Taiwan
| | - Ue-Cheung Ho
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
197
|
Dri E, Lampas E, Lazaros G, Lazarou E, Theofilis P, Tsioufis C, Tousoulis D. Inflammatory Mediators of Endothelial Dysfunction. Life (Basel) 2023; 13:1420. [PMID: 37374202 DOI: 10.3390/life13061420] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Endothelial dysfunction (ED) is characterized by imbalanced vasodilation and vasoconstriction, elevated reactive oxygen species (ROS), and inflammatory factors, as well as deficiency of nitric oxide (NO) bioavailability. It has been reported that the maintenance of endothelial cell integrity serves a significant role in human health and disease due to the involvement of the endothelium in several processes, such as regulation of vascular tone, regulation of hemostasis and thrombosis, cell adhesion, smooth muscle cell proliferation, and vascular inflammation. Inflammatory modulators/biomarkers, such as IL-1α, IL-1β, IL-6, IL-12, IL-15, IL-18, and tumor necrosis factor α, or alternative anti-inflammatory cytokine IL-10, and adhesion molecules (ICAM-1, VCAM-1), involved in atherosclerosis progression have been shown to predict cardiovascular diseases. Furthermore, several signaling pathways, such as NLRP3 inflammasome, that are associated with the inflammatory response and the disrupted H2S bioavailability are postulated to be new indicators for endothelial cell inflammation and its associated endothelial dysfunction. In this review, we summarize the knowledge of a plethora of reviews, research articles, and clinical trials concerning the key inflammatory modulators and signaling pathways in atherosclerosis due to endothelial dysfunction.
Collapse
Affiliation(s)
- Eirini Dri
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Evangelos Lampas
- Department of Cardiology, Konstantopouleio General Hospital, 14233 Athens, Greece
| | - George Lazaros
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Emilia Lazarou
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Costas Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| |
Collapse
|
198
|
Khalil BA, Sharif-Askari NS, Halwani R. Role of inflammasome in severe, steroid-resistant asthma. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100061. [PMID: 37304814 PMCID: PMC10250931 DOI: 10.1016/j.crimmu.2023.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose of review Asthma is a common heterogeneous group of chronic inflammatory diseases with different pathological phenotypes classified based on the various clinical, physiological and immunobiological profiles of patients. Despite similar clinical symptoms, asthmatic patients may respond differently to treatment. Hence, asthma research is becoming more focused on deciphering the molecular and cellular pathways driving the different asthma endotypes. This review focuses on the role of inflammasome activation as one important mechanism reported in the pathogenesis of severe steroid resistant asthma (SSRA), a Th2-low asthma endotype. Although SSRA represents around 5-10% of asthmatic patients, it is responsible for the majority of asthma morbidity and more than 50% of asthma associated healthcare costs with clear unmet need. Therefore, deciphering the role of the inflammasome in SSRA pathogenesis, particularly in relation to neutrophil chemotaxis to the lungs, provides a novel target for therapy. Recent findings The literature highlighted several activators of inflammasomes that are elevated during SSRA and result in the release of proinflammatory mediators, mainly IL-1β and IL-18, through different signaling pathways. Consequently, the expression of NLRP3 and IL-1β is shown to be positively correlated with neutrophil recruitment and negatively correlated with airflow obstruction. Furthermore, exaggerated NLRP3 inflammasome/IL-1β activation is reported to be associated with glucocorticoid resistance. Summary In this review, we summarized the reported literature on the activators of the inflammasome during SSRA, the role of IL-1β and IL-18 in SSRA pathogenesis, and the pathways by which inflammasome activation contributes to steroid resistance. Finally, our review shed light on the different levels to target inflammasome involvement in an attempt to ameliorate the serious outcomes of SSRA.
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
199
|
Li Puma DD, Colussi C, Bandiera B, Puliatti G, Rinaudo M, Cocco S, Paciello F, Re A, Ripoli C, De Chiara G, Bertozzi A, Palamara AT, Piacentini R, Grassi C. Interleukin 1β triggers synaptic and memory deficits in Herpes simplex virus type-1-infected mice by downregulating the expression of synaptic plasticity-related genes via the epigenetic MeCP2/HDAC4 complex. Cell Mol Life Sci 2023; 80:172. [PMID: 37261502 DOI: 10.1007/s00018-023-04817-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Extensive research provides evidence that neuroinflammation underlies numerous brain disorders. However, the molecular mechanisms by which inflammatory mediators determine synaptic and cognitive dysfunction occurring in neurodegenerative diseases (e.g., Alzheimer's disease) are far from being fully understood. Here we investigated the role of interleukin 1β (IL-1β), and the molecular cascade downstream the activation of its receptor, to the synaptic dysfunction occurring in the mouse model of multiple Herpes simplex virus type-1 (HSV-1) reactivations within the brain. These mice are characterized by neuroinflammation and memory deficits associated with a progressive accumulation of neurodegenerative hallmarks (e.g., amyloid-β protein and tau hyperphosphorylation). Here we show that mice undergone two HSV-1 reactivations in the brain exhibited increased levels of IL-1β along with significant alterations of: (1) cognitive performances; (2) hippocampal long-term potentiation; (3) expression synaptic-related genes and pre- and post-synaptic proteins; (4) dendritic spine density and morphology. These effects correlated with activation of the epigenetic repressor MeCP2 that, in association with HDAC4, affected the expression of synaptic plasticity-related genes. Specifically, in response to HSV-1 infection, HDAC4 accumulated in the nucleus and promoted MeCP2 SUMOylation that is a post-translational modification critically affecting the repressive activity of MeCP2. The blockade of IL-1 receptors by the specific antagonist Anakinra prevented the MeCP2 increase and the consequent downregulation of gene expression along with rescuing structural and functional indices of neurodegeneration. Collectively, our findings provide novel mechanistic evidence on the role played by HSV-1-activated IL-1β signaling pathways in synaptic deficits leading to cognitive impairment.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Claudia Colussi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Engineering, Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, 00185, Rome, Italy
| | - Bruno Bandiera
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Giulia Puliatti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Agnese Re
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council (CNR), 00133, Rome, Italy
| | - Alessia Bertozzi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Department of Engineering, Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, 00185, Rome, Italy
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore Di Sanità, 00161, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Cenci Bolognetti Foundation, 00185, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
200
|
Moon S, Hong J, Go S, Kim BS. Immunomodulation for Tissue Repair and Regeneration. Tissue Eng Regen Med 2023; 20:389-409. [PMID: 36920675 PMCID: PMC10219918 DOI: 10.1007/s13770-023-00525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
Various immune cells participate in repair and regeneration following tissue injury or damage, orchestrating tissue inflammation and regeneration processes. A deeper understanding of the immune system's involvement in tissue repair and regeneration is critical for the development of successful reparatory and regenerative strategies. Here we review recent technologies that facilitate cell-based and biomaterial-based modulation of the immune systems for tissue repair and regeneration. First, we summarize the roles of various types of immune cells in tissue repair. Second, we review the principle, examples, and limitations of regulatory T (Treg) cell-based therapy, a representative cell-based immunotherapy. Finally, we discuss biomaterial-based immunotherapy strategies that aim to modulate immune cells using various biomaterials for tissue repair and regeneration.
Collapse
Affiliation(s)
- Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|