151
|
Riadh O, Naoufel O, Ben Rejeb MR, Le Gall D. Impaired social perception from eyes and face visual cues: evidence from prefrontal cortex damage. Soc Neurosci 2021; 16:607-626. [PMID: 34544320 DOI: 10.1080/17470919.2021.1983458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite the key role that decoding of social-perceptual cues from faces plays in interpersonal communication, it is only recently that the potential of prefrontal cortex damage to disrupt this ability has been recognized. In fact, few studies to date had assessed whether the ability to identify the state of mind of others from the whole or part of the face is disrupted after prefrontal cortex damage and whether these two abilities are associated and share overlapped neural systems. In the present study, 30 patients with focal prefrontal lesions and 30 matched control subjects were assessed on their ability to recognize six basic emotions from facial expressions of the whole face and to identify states of mind of others from photographs of only the eyes using the "Reading the Mind in the Eyes Task". Results showed that frontal patients were significantly impaired compared with control subjects on both tasks. Moreover, regression analyses showed that these two abilities are associated and reciprocally predictive of one another. Finally, using voxel-based lesion analysis; we identified a partially common bilaterally distributed prefrontal network in the decoding of both emotional cues from both the whole face and eyes centered within the dorsomedial and ventral regions with extension to the lateral frontal pole.
Collapse
Affiliation(s)
- Ouerchefani Riadh
- University of Tunis El Manar, High Institute of Human Sciences, Department of Psychology, 26 Boulevard Darghouth Pacha, Tunis, Tunisia.,Univ Angers, Université De Nantes, LPPL, SFR CONFLUENCES, F-49000 Angers, France
| | | | - Mohamed Riadh Ben Rejeb
- , University Tunis I, Faculty of Human and Social Science of Tunisia, Department of Psychology, Tunis, Tunisia
| | - Didier Le Gall
- Univ Angers, Université De Nantes, LPPL, SFR CONFLUENCES, F-49000 Angers, France
| |
Collapse
|
152
|
Malherbe C, Cheng B, Königsberg A, Cho TH, Ebinger M, Endres M, Fiebach JB, Fiehler J, Galinovic I, Puig J, Thijs V, Lemmens R, Muir KW, Nighoghossian N, Pedraza S, Simonsen CZ, Wouters A, Gerloff C, Hilgetag CC, Thomalla G. Game-theoretical mapping of fundamental brain functions based on lesion deficits in acute stroke. Brain Commun 2021; 3:fcab204. [PMID: 34585140 PMCID: PMC8473841 DOI: 10.1093/braincomms/fcab204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/21/2021] [Accepted: 07/01/2021] [Indexed: 11/12/2022] Open
Abstract
Lesion analysis is a fundamental and classical approach for inferring the causal contributions of brain regions to brain function. However, many studies have been limited by the shortcomings of methodology or clinical data. Aiming to overcome these limitations, we here use an objective multivariate approach based on game theory, Multi-perturbation Shapley value Analysis, in conjunction with data from a large cohort of 394 acute stroke patients, to derive causal contributions of brain regions to four principal functional components of the widely used National Institutes of Health Stroke Score measure. The analysis was based on a high-resolution parcellation of the brain into 294 grey and white matter regions. Through initial lesion symptom mapping for identifying all potential candidate regions and repeated iterations of the game-theoretical approach to remove non-significant contributions, the analysis derived the smallest sets of regions contributing to each of the four principal functional components as well as functional interactions among the regions. Specifically, the factor 'language and consciousness' was related to contributions of cortical regions in the left hemisphere, including the prefrontal gyrus, the middle frontal gyrus, the ventromedial putamen and the inferior frontal gyrus. Right and left motor functions were associated with contributions of the left and right dorsolateral putamen and the posterior limb of the internal capsule, correspondingly. Moreover, the superior corona radiata and the paracentral lobe of the right hemisphere as well as the right caudal area 23 of the cingulate gyrus were mainly related to left motor function, while the prefrontal gyrus, the external capsule and the sagittal stratum fasciculi of the left hemisphere contributed to right motor function. Our approach demonstrates a practically feasible strategy for applying an objective lesion inference method to a high-resolution map of the human brain and distilling a small, characteristic set of grey and white matter structures contributing to fundamental brain functions. In addition, we present novel findings of synergistic interactions between brain regions that provide insight into the functional organization of brain networks.
Collapse
Affiliation(s)
- Caroline Malherbe
- University Medical Center Hamburg-Eppendorf, Institute of Computational Neuroscience, Hamburg, Germany.,Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alina Königsberg
- Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tae-Hee Cho
- Neurology, Université Claude Bernard Lyon 1, Lyon, France
| | - Martin Ebinger
- Centrum für Schlaganfallforschung Berlin (CSB), Charité, Universitätsmedizin Berlin, Berlin, Germany.,Medical Park Berlin Humboldtmühle, 13507 Berlin, Germany
| | - Matthias Endres
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen B Fiebach
- Centrum für Schlaganfallforschung Berlin (CSB), Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ivana Galinovic
- Centrum für Schlaganfallforschung Berlin (CSB), Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Josep Puig
- Department of Radiology, Institut de Diagnostic per la Image (IDI), Hospital Dr Josep Trueta, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Vincent Thijs
- Stroke, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Robin Lemmens
- Neurology, UZ Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Keith W Muir
- Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, UK
| | | | - Salvador Pedraza
- Department of Radiology, Institut de Diagnostic per la Image (IDI), Hospital Dr Josep Trueta, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Claus Z Simonsen
- Department of Neurology, Aarhus University Hospital, Aarhus N, Denmark
| | - Anke Wouters
- Neurology, UZ Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Christian Gerloff
- Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claus C Hilgetag
- University Medical Center Hamburg-Eppendorf, Institute of Computational Neuroscience, Hamburg, Germany.,Department of Health Sciences, Boston University, Boston, MA, USA
| | - Götz Thomalla
- Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
153
|
Aracil-Bolaños I, Sampedro F, Marín-Lahoz J, Horta-Barba A, Martínez-Horta S, Gónzalez-de-Echávarri JM, Pérez-Pérez J, Bejr-Kasem H, Pascual-Sedano B, Botí M, Campolongo A, Izquierdo C, Gironell A, Gómez-Ansón B, Kulisevsky J, Pagonabarraga J. Tipping the scales: how clinical assessment shapes the neural correlates of Parkinson's disease mild cognitive impairment. Brain Imaging Behav 2021; 16:761-772. [PMID: 34553331 DOI: 10.1007/s11682-021-00543-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 11/30/2022]
Abstract
Mild cognitive impairment in Parkinson's disease (PD-MCI) is associated with consistent structural and functional brain changes. Whether different approaches for diagnosing PD-MCI are equivalent in their neural correlates is presently unknown. We aimed to profile the neuroimaging changes associated with the two endorsed methods of diagnosing PD-MCI. We recruited 53 consecutive non-demented PD patients and classified them as PD-MCI according to comprehensive neuropsychological examination as operationalized by the Movement Disorders Task Force. Voxel-based morphometry, cortical thickness, functional connectivity and graph theoretical measures were obtained on a 3-Tesla MRI scanner. 18 patients (32%) were classified as PD-MCI with Level-II criteria, 19 (33%) with the Parkinson's disease Cognitive Rating Scale (PD-CRS) and 32 (60%) with the Montreal Cognitive Assessment (MoCA) scale. Though regions of atrophy differed across classifications, reduced gray matter in the precuneus was found using both Level-II and PD-CRS classifications in PD-MCI patients. Patients diagnosed with the PD-CRS also showed extensive changes in cortical thickness, concurring with the MoCA in regions of the cingulate cortex, and again with Level-II regarding cortical thinning in the precuneus. Functional connectivity analysis found higher coherence within salience network regions of interest, and decreased anticorrelations between salience/central executive and default-mode networks in the PD-CRS classification for PD-MCI patients. Graph theoretical metrics showed a widespread decrease in node degree for the three classifications in PD-MCI, whereas betweenness centrality was increased in select nodes of the default mode network (DMN). Clinical and neuroimaging commonalities between the endorsed methods of cognitive assessment suggest a corresponding set of neural correlates in PD-MCI: loss of structural integrity in DMN structures, mainly the precuneus, and a loss of weighted connections in the salience network that might be counterbalanced by increased centrality in the DMN. Furthermore, the similarity of the results between exhaustive Level-II and screening Level-I tools might have practical implications in the search for neuroimaging biomarkers of cognitive impairment in Parkinson's disease.
Collapse
Affiliation(s)
- Ignacio Aracil-Bolaños
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Frederic Sampedro
- Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Marín-Lahoz
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Saül Martínez-Horta
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Jesús Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Helena Bejr-Kasem
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Berta Pascual-Sedano
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mariángeles Botí
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Izquierdo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alexandre Gironell
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Beatriz Gómez-Ansón
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Neuroradiology Unit, Sant Pau Hospital, Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain. .,Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain. .,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain. .,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain. .,Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain. .,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain. .,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
154
|
Brain Abnormalities in Individuals with a Desire for a Healthy Limb Amputation: Somatosensory, Motoric or Both? A Task-Based fMRI Verdict. Brain Sci 2021; 11:brainsci11091248. [PMID: 34573269 PMCID: PMC8468102 DOI: 10.3390/brainsci11091248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022] Open
Abstract
Body integrity dysphoria (BID), a long-lasting desire for the amputation of physically healthy limbs, is associated with reduced fMRI resting-state functional connectivity of somatosensory cortices. Here, we used fMRI to evaluate whether these findings could be replicated and expanded using a task-based paradigm. We measured brain activations during somatosensory stimulation and motor tasks for each of the four limbs in ten individuals with a life-long desire for the amputation of the left leg and fourteen controls. For the left leg, BID individuals had reduced brain activation in the right superior parietal lobule for somatosensory stimulation and in the right paracentral lobule for the motor task, areas where we previously found reduced resting-state functional connectivity. In addition, for somatosensory stimulation only, we found a robust reduction in activation of somatosensory areas SII bilaterally, mostly regardless of the stimulated body part. Areas SII were regions of convergent activations for signals from all four limbs in controls to a significantly greater extent than in subjects with BID. We conclude that BID is associated with altered integration of somatosensory and, to a lesser extent, motor signals, involving limb-specific cortical maps and brain regions where the first integration of body-related signals is achieved through convergence.
Collapse
|
155
|
Stockert A, Schwartze M, Poeppel D, Anwander A, Kotz SA. Temporo-cerebellar connectivity underlies timing constraints in audition. eLife 2021; 10:67303. [PMID: 34542407 PMCID: PMC8480974 DOI: 10.7554/elife.67303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
The flexible and efficient adaptation to dynamic, rapid changes in the auditory environment likely involves generating and updating of internal models. Such models arguably exploit connections between the neocortex and the cerebellum, supporting proactive adaptation. Here, we tested whether temporo-cerebellar disconnection is associated with the processing of sound at short timescales. First, we identify lesion-specific deficits for the encoding of short timescale spectro-temporal non-speech and speech properties in patients with left posterior temporal cortex stroke. Second, using lesion-guided probabilistic tractography in healthy participants, we revealed bidirectional temporo-cerebellar connectivity with cerebellar dentate nuclei and crura I/II. These findings support the view that the encoding and modeling of rapidly modulated auditory spectro-temporal properties can rely on a temporo-cerebellar interface. We discuss these findings in view of the conjecture that proactive adaptation to a dynamic environment via internal models is a generalizable principle.
Collapse
Affiliation(s)
- Anika Stockert
- Language and Aphasia Laboratory, Department of Neurology, Leipzig University Hospital, Leipzig, Germany.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Schwartze
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - David Poeppel
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany.,Department of Psychology, New York University, New York, United States
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sonja A Kotz
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
156
|
Kanno S, Ogawa KI, Kikuchi H, Toyoshima M, Abe N, Sato K, Miyazawa K, Oshima R, Ohtomo S, Arai H, Shibuya S, Suzuki K. Reduced default mode network connectivity relative to white matter integrity is associated with poor cognitive outcomes in patients with idiopathic normal pressure hydrocephalus. BMC Neurol 2021; 21:353. [PMID: 34517828 PMCID: PMC8436532 DOI: 10.1186/s12883-021-02389-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate whether default mode network (DMN) connectivity and brain white matter integrity at baseline were associated with severe cognitive impairments at baseline and poor cognitive outcomes after shunt placement in patients with idiopathic normal pressure hydrocephalus (iNPH). METHODS Twenty consecutive patients with iNPH whose symptoms were followed for 6 months after shunt placement and 10 healthy controls (HCs) were enrolled. DMN connectivity and brain white matter integrity at baseline in the patients with iNPH and HCs were detected by using resting-state functional magnetic resonance imaging (MRI) with independent component analysis and diffusion tensor imaging, respectively, and these MRI indexes were compared between the patients with iNPH and HCs. Performance on neuropsychological tests for memory and executive function and on the gait test was assessed in the patients with iNPH at baseline and 6 months after shunt placement. We divided the patients with iNPH into the relatively preserved and reduced DMN connectivity groups using the MRI indexes for DMN connectivity and brain white matter integrity, and the clinical measures were compared between the relatively preserved and reduced DMN connectivity groups. RESULTS Mean DMN connectivity in the iNPH group was significantly lower than that in the HC group and was significantly positively correlated with Rey auditory verbal learning test (RAVLT) immediate recall scores and frontal assessment battery (FAB) scores. Mean fractional anisotropy of the whole-brain white matter skeleton in the iNPH group was significantly lower than that in the HC group. The reduced DMN connectivity group showed significantly worse performance on the RAVLT at baseline and significantly worse improvement in the RAVLT immediate recall and recognition scores and the FAB scores than the preserved DMN connectivity group. Moreover, the RAVLT recognition score highly discriminated patients with relatively preserved DMN connectivity from those with relatively reduced DMN connectivity. CONCLUSIONS Our findings indicated that iNPH patients with reduced DMN connectivity relative to the severity of brain white matter disruption have severe memory deficits at baseline and poorer cognitive outcomes after shunt placement. However, further larger-scale studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Shigenori Kanno
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Miyagi, 980-8575, Sendai, Japan. .,Department of Neurology, South Miyagi Medical Center, Shibata, Japan.
| | - Kun-Ichi Ogawa
- Department of Radiology, South Miyagi Medical Center, Shibata, Japan
| | - Hiroaki Kikuchi
- Healthcare Center, South Miyagi Medical Center, Shibata, Japan
| | - Masako Toyoshima
- Department of Rehabilitation, South Miyagi Medical Center, Shibata, Japan
| | - Nobuhito Abe
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Kazushi Sato
- Department of Radiology, South Miyagi Medical Center, Shibata, Japan
| | - Koichi Miyazawa
- Department of Neurology, South Miyagi Medical Center, Shibata, Japan.,Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ryuji Oshima
- Department of Neurology, South Miyagi Medical Center, Shibata, Japan
| | - Satoru Ohtomo
- Department of Neurosurgery, South Miyagi Medical Center, Shibata, Japan
| | - Hiroaki Arai
- Department of Neurosurgery, South Miyagi Medical Center, Shibata, Japan
| | - Satoshi Shibuya
- Department of Neurology, South Miyagi Medical Center, Shibata, Japan.,Department of Neurology, Moriyama Memorial Hospital, Edogawa, Japan
| | - Kyoko Suzuki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Miyagi, 980-8575, Sendai, Japan
| |
Collapse
|
157
|
van den Berg NS, de Haan EHF, Huitema RB, Spikman JM. The neural underpinnings of facial emotion recognition in ischemic stroke patients. J Neuropsychol 2021; 15:516-532. [PMID: 33554463 PMCID: PMC8518120 DOI: 10.1111/jnp.12240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/16/2020] [Indexed: 01/19/2023]
Abstract
Deficits in facial emotion recognition occur frequently after stroke, with adverse social and behavioural consequences. The aim of this study was to investigate the neural underpinnings of the recognition of emotional expressions, in particular of the distinct basic emotions (anger, disgust, fear, happiness, sadness and surprise). A group of 110 ischaemic stroke patients with lesions in (sub)cortical areas of the cerebrum was included. Emotion recognition was assessed with the Ekman 60 Faces Test of the FEEST. Patient data were compared to data of 162 matched healthy controls (HC's). For the patients, whole brain voxel-based lesion-symptom mapping (VLSM) on 3-Tesla MRI images was performed. Results showed that patients performed significantly worse than HC's on both overall recognition of emotions, and specifically of disgust, fear, sadness and surprise. VLSM showed significant lesion-symptom associations for FEEST total in the right fronto-temporal region. Additionally, VLSM for the distinct emotions showed, apart from overlapping brain regions (insula, putamen and Rolandic operculum), also regions related to specific emotions. These were: middle and superior temporal gyrus (anger); caudate nucleus (disgust); superior corona radiate white matter tract, superior longitudinal fasciculus and middle frontal gyrus (happiness) and inferior frontal gyrus (sadness). Our findings help in understanding how lesions in specific brain regions can selectively affect the recognition of the basic emotions.
Collapse
Affiliation(s)
- Nils S. van den Berg
- Department of PsychologyUniversity of AmsterdamThe Netherlands
- Department of NeurologyUniversity Medical Center GroningenUniversity of GroningenThe Netherlands
| | | | - Rients B. Huitema
- Department of NeurologyUniversity Medical Center GroningenUniversity of GroningenThe Netherlands
| | - Jacoba M. Spikman
- Department of NeurologyUniversity Medical Center GroningenUniversity of GroningenThe Netherlands
| |
Collapse
|
158
|
Pravatà E, Riccitelli GC, Sestieri C, Sacco R, Cianfoni A, Gobbi C, Zecca C. Migraine in Multiple Sclerosis Patients Affects Functional Connectivity of the Brain Circuitry Involved in Pain Processing. Front Neurol 2021; 12:690300. [PMID: 34456850 PMCID: PMC8397382 DOI: 10.3389/fneur.2021.690300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023] Open
Abstract
Migraine is particularly common in patients with multiple sclerosis (MS) and has been linked to the dysfunction of the brain circuitry modulating the peripheral nociceptive stimuli. Using MRI, we explored whether changes in the resting state-functional connectivity (RS-FC) may characterize the occurrence of migraine in patients with MS. The RS-FC characteristics in concerned brain regions were explored in 20 MS patients with migraine (MS+M) during the interictal phase, and compared with 19 MS patients without migraine (MS-M), which served as a control group. Functional differences were correlated to the frequency and severity of previous migraine attacks, and with the resulting impact on daily activities. In MS+M, the loss of periaqueductal gray matter (PAG) positive connectivity with the default mode network and the left posterior cranial pons was associated with an increase of migraine attacks frequency. In contrast, the loss of PAG negative connectivity with sensorimotor and visual network was linked to migraine symptom severity and related daily activities impact. Finally, a PAG negative connection was established with the prefrontal executive control network. Migraine in MS+M patients and its impact on daily activities, underlies RS-FC rearrangements between brain regions involved in pain perception and modulation.
Collapse
Affiliation(s)
- Emanuele Pravatà
- Neuroradiology, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano Civico e Italiano, Lugano, Switzerland
| | - Gianna C Riccitelli
- Headache Center, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano Civico e Italiano, Lugano, Switzerland.,Department of Neurology, Neuropsychology and Behavioural Neurology Research Unit, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano Civico e Italiano, Lugano, Switzerland
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele D'Annunzio University of Chieti and Pescara, Chieti, Italy
| | - Rosaria Sacco
- Headache Center, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano Civico e Italiano, Lugano, Switzerland
| | - Alessandro Cianfoni
- Neuroradiology, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano Civico e Italiano, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Claudio Gobbi
- Headache Center, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano Civico e Italiano, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Chiara Zecca
- Headache Center, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano Civico e Italiano, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
159
|
Biesbroek JM, Lim JS, Weaver NA, Arikan G, Kang Y, Kim BJ, Kuijf HJ, Postma A, Lee BC, Lee KJ, Yu KH, Bae HJ, Biessels GJ. Anatomy of phonemic and semantic fluency: A lesion and disconnectome study in 1231 stroke patients. Cortex 2021; 143:148-163. [PMID: 34450565 DOI: 10.1016/j.cortex.2021.06.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/16/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023]
Abstract
Disturbances of semantic and phonemic fluency are common after brain damage, as a manifestation of language, executive, or memory dysfunction. Lesion-symptom mapping (LSM) studies can provide fundamental insights in shared and distinct anatomical correlates of these cognitive functions and help to understand which patients suffer from these deficits. We performed a multivariate support vector regression-based lesion-symptom mapping and structural disconnection study on semantic and phonemic fluency in 1231 patients with acute ischemic stroke. With the largest-ever LSM study on verbal fluency we achieved almost complete brain lesion coverage. Lower performance on both fluency types was related to left hemispheric frontotemporal and parietal cortical regions, and subcortical regions centering on the left thalamus. Distinct correlates for phonemic fluency were the anterior divisions of middle and inferior frontal gyri. Distinct correlates for semantic fluency were the posterior regions of the middle and inferior temporal gyri, parahippocampal and fusiform gyri and triangular part of the inferior frontal gyrus. The disconnectome-based analyses additionally revealed phonemic fluency was associated with a more extensive frontoparietal white matter network, whereas semantic fluency was associated with disconnection of the fornix, mesiotemporal white matter, splenium of the corpus callosum. These results provide the most detailed outline of the anatomical correlates of phonemic and semantic fluency to date, stress the crucial role of subcortical regions and reveal a novel dissociation in the left temporal lobe.
Collapse
Affiliation(s)
- J Matthijs Biesbroek
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands.
| | - Jae-Sung Lim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Nick A Weaver
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Gozdem Arikan
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Yeonwook Kang
- Department of Psychology, Hallym University, Chuncheon, Republic of Korea
| | - Beom Joon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Albert Postma
- Experimental Psychology, Helmholtz Institute, Utrecht University, the Netherlands
| | - Byung-Chul Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Keon-Joo Lee
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Kyung-Ho Yu
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| |
Collapse
|
160
|
Rorden C, Griswold MC, Moses N, Berry CR, Keller GG, Rivas R, Flores-Smith H, Shaffer LG, Malik R. Radiographical Survey of Osteochondrodysplasia in Scottish Fold Cats caused by the TRPV4 gene variant. Hum Genet 2021; 140:1525-1534. [PMID: 34406467 DOI: 10.1007/s00439-021-02337-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/07/2021] [Indexed: 11/26/2022]
Abstract
The unique appearance of Scottish Fold cats is caused by a single gene variant in TRPV4, which impacts the development of cartilage. This results in the ears folding forward and variable effects on articular cartilage and bone. While some find this appearance desirable, early work demonstrated that homozygous cats with two copies of this variant develop severe radiographic consequences. Subsequent breeding programs have mated heterozygous cats with straight-eared cats to ensure an equal mix of heterozygous (fold) and wild-type (nonfolded) offspring, in the hope of raising healthy cats. More recent radiological surveys suggest that these heterozygous cats may also have medical problems consisting of deformed distal extremities in the worst cases and accelerated onset of osteoarthritis. However, these previous studies were undermined by selection biases, lack of controls, unblinded assessment and lack of known genotypes. Our aim was to determine if heterozygous cats exhibit radiological abnormalities when controlling for these limitations. Specifically, DNA and radiographs were acquired for 22 Scottish Fold cats. Four reviewers, blinded to the ear phenotype, assessed the lateral radiographs. Genotyping showed that all 10 folded-ear cats were heterozygous, and none of the straight-ear cats (n = 12) had the abnormal TRPV4 variant. Although each reviewer, on average, gave a numerically worse 'severity score' to folded-ear cats relative to straight-ear cats, the images in heterozygous cats showed much milder radiological signs than previously published. This study provides additional information to be considered in the complicated debate as to whether cats with the TRPV4 variant should be bred for folded ears given the potential comorbidities.
Collapse
Affiliation(s)
- Chris Rorden
- McCausland Center for Brain Imaging and Department of Psychology, University of South Carolina, Columbia, SC, 29208, USA.
| | - Marilee C Griswold
- The Cat Fanciers' Association, Inc., Alliance, OH, 44601, USA
- Eau Claire Cooperative Health Center, Columbia, SC, 29203, USA
| | - Nan Moses
- 4 Seasons Cat Hospital, Charlotte, NC, 28226, USA
| | - Clifford R Berry
- Diagnostic Imaging, Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | | | - Rudy Rivas
- Columbia Veterinary Emergency Trauma and Specialty, Columbia, SC, 29223, USA
| | - Helen Flores-Smith
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., Spokane, WA, 99207, USA
| | - Lisa G Shaffer
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., Spokane, WA, 99207, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, The University of Sydney, Sydney, Australia
| |
Collapse
|
161
|
Iravani B, Peter MG, Arshamian A, Olsson MJ, Hummel T, Kitzler HH, Lundström JN. Acquired olfactory loss alters functional connectivity and morphology. Sci Rep 2021; 11:16422. [PMID: 34385571 PMCID: PMC8361122 DOI: 10.1038/s41598-021-95968-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
Removing function from a developed and functional sensory system is known to alter both cerebral morphology and functional connections. To date, a majority of studies assessing sensory-dependent plasticity have focused on effects from either early onset or long-term sensory loss and little is known how the recent sensory loss affects the human brain. With the aim of determining how recent sensory loss affects cerebral morphology and functional connectivity, we assessed differences between individuals with acquired olfactory loss (duration 7-36 months) and matched healthy controls in their grey matter volume, using multivariate pattern analyses, and functional connectivity, using dynamic connectivity analyses, within and from the olfactory cortex. Our results demonstrate that acquired olfactory loss is associated with altered grey matter volume in, among others, posterior piriform cortex, a core olfactory processing area, as well as the inferior frontal gyrus and angular gyrus. In addition, compared to controls, individuals with acquired anosmia displayed significantly stronger dynamic functional connectivity from the posterior piriform cortex to, among others, the angular gyrus, a known multisensory integration area. When assessing differences in dynamic functional connectivity from the angular gyrus, individuals with acquired anosmia had stronger connectivity from the angular gyrus to areas primary responsible for basic visual processing. These results demonstrate that recently acquired sensory loss is associated with both changed cerebral morphology within core olfactory areas and increase dynamic functional connectivity from olfactory cortex to cerebral areas processing multisensory integration.
Collapse
Affiliation(s)
- Behzad Iravani
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 77, Stockholm, Sweden
| | - Moa G Peter
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 77, Stockholm, Sweden
| | - Artin Arshamian
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 77, Stockholm, Sweden
| | - Mats J Olsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 77, Stockholm, Sweden
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, TU Dresden, Dresden, Germany
| | - Hagen H Kitzler
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, Dresden, Germany
| | - Johan N Lundström
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 77, Stockholm, Sweden. .,Monell Chemical Senses Center, Philadelphia, PA, USA. .,Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA. .,Stockholm University Brain Imaging Centre, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
162
|
Taga M, Charalambous CC, Raju S, Lin J, Zhang Y, Stern E, Schambra HM. Corticoreticulospinal tract neurophysiology in an arm and hand muscle in healthy and stroke subjects. J Physiol 2021; 599:3955-3971. [PMID: 34229359 DOI: 10.1113/jp281681] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The corticoreticulospinal tract (CReST) is a descending motor pathway that reorganizes after corticospinal tract (CST) injury in animals. In humans, the pattern of CReST innervation to upper limb muscles has not been carefully examined in healthy individuals or individuals with CST injury. In the present study, we assessed CReST projections to an arm and hand muscle on the same side of the body in healthy and chronic stoke subjects using transcranial magnetic stimulation. We show that CReST connection strength to the muscles differs between healthy and stroke subjects, with stronger connections to the hand than arm in healthy subjects, and stronger connections to the arm than hand in stroke subjects. These results help us better understand CReST innervation patterns in the upper limb, and may point to its role in normal motor function and motor recovery in humans. ABSTRACT The corticoreticulospinal tract (CReST) is a major descending motor pathway in many animals, but little is known about its innervation patterns in proximal and distal upper extremity muscles in humans. The contralesional CReST furthermore reorganizes after corticospinal tract (CST) injury in animals, but it is less clear whether CReST innervation changes after stroke in humans. We thus examined CReST functional connectivity, connection strength, and modulation in an arm and hand muscle of healthy (n = 15) and chronic stroke (n = 16) subjects. We delivered transcranial magnetic stimulation to the contralesional hemisphere (assigned in healthy subjects) to elicit ipsilateral motor evoked potentials (iMEPs) from the paretic biceps (BIC) and first dorsal interosseous (FDI) muscle. We operationalized CReST functional connectivity as iMEP presence/absence, CReST projection strength as iMEP size and CReST modulation as change in iMEP size by head rotation. We found comparable CReST functional connectivity to the BICs and FDIs in both subject groups. However, the pattern of CReST connection strength to the muscles diverged between groups, with stronger connections to FDIs than BICs in healthy subjects and stronger connections to BICs than FDIs in stroke subjects. Head rotation modulated only FDI iMEPs of healthy subjects. Our findings indicate that the healthy CReST does not have a proximal innervation bias, and its strong FDI connections may have functional relevance to finger individuation. The reversed CReST innervation pattern in stroke subjects confirms its reorganization after CST injury, and its strong BIC connections may indicate upregulation for particular upper extremity muscles or their functional actions.
Collapse
Affiliation(s)
- Myriam Taga
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| | - Charalambos C Charalambous
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA.,Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus.,Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, Nicosia, Cyprus
| | - Sharmila Raju
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| | - Jing Lin
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| | - Yian Zhang
- Division of Biostatistics, Department of Population Health, School of Medicine, New York University, New York, NY, USA
| | - Elisa Stern
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| | - Heidi M Schambra
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| |
Collapse
|
163
|
Liebrand M, Solbakk AK, Funderud I, Buades-Rotger M, Knight RT, Krämer UM. Intact Proactive Motor Inhibition after Unilateral Prefrontal Cortex or Basal Ganglia Lesions. J Cogn Neurosci 2021; 33:1862-1879. [PMID: 34375417 DOI: 10.1162/jocn_a_01691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Previous research provided evidence for the critical importance of the PFC and BG for reactive motor inhibition, that is, when actions are cancelled in response to external signals. Less is known about the role of the PFC and BG in proactive motor inhibition, referring to preparation for an upcoming stop signal. In this study, patients with unilateral lesions to the BG or lateral PFC performed in a cued go/no-go task, whereas their EEG was recorded. The paradigm called for cue-based preparation for upcoming, lateralized no-go signals. Based on previous findings, we focused on EEG indices of cognitive control (prefrontal beta), motor preparation (sensorimotor mu/beta, contingent negative variation [CNV]), and preparatory attention (occipital alpha, CNV). On a behavioral level, no differences between patients and controls were found, suggesting an intact ability to proactively prepare for motor inhibition. Patients showed an altered preparatory CNV effect, but no other differences in electrophysiological activity related to proactive and reactive motor inhibition. Our results suggest a context-dependent role of BG and PFC structures in motor inhibition, being critical in reactive, unpredictable contexts, but less so in situations where one can prepare for stopping on a short timescale.
Collapse
Affiliation(s)
| | - Anne-Kristin Solbakk
- University of Oslo, Norway.,Oslo University Hospital, Norway.,Helgeland Hospital, Mosjøen, Norway
| | - Ingrid Funderud
- University of Oslo, Norway.,Helgeland Hospital, Mosjøen, Norway
| | - Macià Buades-Rotger
- University of Lübeck, Germany.,Radboud University, Nijmegen, The Netherlands
| | | | | |
Collapse
|
164
|
Yeung MK, Tsuchida A, Fellows LK. Causal Prefrontal Contributions to Stop-Signal Task Performance in Humans. J Cogn Neurosci 2021; 33:1784-1797. [PMID: 33226316 DOI: 10.1162/jocn_a_01652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The frontal lobes have long been implicated in inhibitory control, but a full understanding of the underlying mechanisms remains elusive. The stop-signal task has been widely used to probe instructed response inhibition in cognitive neuroscience. The processes involved have been modeled and related to putative brain substrates. However, there has been surprisingly little human lesion research using this task, with the few existing studies implicating different prefrontal regions. Here, we tested the effects of focal prefrontal damage on stop-signal task performance in a large sample of people with chronic focal damage affecting the frontal lobes (n = 42) and demographically matched healthy individuals (n = 60). Patients with damage to the left lateral, right lateral, dorsomedial, or ventromedial frontal lobe had slower stop-signal RT compared to healthy controls. There were systematic differences in the patterns of impairment across frontal subgroups: Those with damage to the left or right lateral and dorsomedial frontal lobes, but not those with ventromedial frontal damage, were slower than controls to "go" as well as to stop. These findings suggest that multiple prefrontal regions make necessary but distinct contributions to stop-signal task performance. As a consequence, stop-signal RT slowing is not strongly localizing within the frontal lobes.
Collapse
Affiliation(s)
- Michael K Yeung
- McGill University, Montreal, Quebec, Canada.,The Hong Kong Polytechnic University
| | | | | |
Collapse
|
165
|
Ptak R, Pedrazzini E. Insular Cortex Mediates Attentional Capture by Behaviorally Relevant Stimuli after Damage to the Right Temporoparietal Junction. Cereb Cortex 2021; 31:4245-4258. [PMID: 33822912 DOI: 10.1093/cercor/bhab082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The right temporoparietal junction (rTPJ) and insula both play a key role for the processing of relevant stimuli. However, while both have been conceived as neural "switches" that detect salient events and redirect the focus of attention, it remains unclear how these brain regions interact to achieve this behavioral goal. Here, we tested human participants with focal left-hemispheric or right-hemispheric lesions in a spatial cuing task that requires participants to react to lateralized stimuli preceded by a distracter that shares or does not share a relevant feature with the target. Using machine learning to identify significant lesion-behavior relationships, we found that rTPJ damage produces distinctive, pathologically increased attentional capture, but only by relevant distracters. Functional connectivity analyses revealed that the degree of capture is positively associated with a functional connection between insula and rTPJ, together with functional isolation of the rTPJ from right dorsal prefrontal cortex (dPFC). These findings suggest a mechanistic model where the insula-rTPJ connection constitutes a crucial functional unit that breaks attentional focus upon detection of behaviorally relevant events, while the dPFC appears to attune this activity.
Collapse
Affiliation(s)
- Radek Ptak
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland.,Division of Neurorehabilitation, University Hospitals of Geneva, Geneva 1206, Switzerland
| | - Elena Pedrazzini
- Division of Neurology, University Hospitals of Geneva, Geneva 1206, Switzerland
| |
Collapse
|
166
|
Back in control of intentional action: Improvement of ideomotor apraxia by mirror box treatment. Neuropsychologia 2021; 160:107964. [PMID: 34302848 DOI: 10.1016/j.neuropsychologia.2021.107964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES A novel method of rehabilitation for ideomotor apraxia (IMA), using a modified version of the mirror box (MB), is proposed. The rationale is based on the theory that disrupted body representation occurs in IMA and that MB training may improve body representation. In the present MB training, patients observed and reproduced movements made by the experimenter in a mirror. The visual perspective gave the illusory sensation of seeing one's own affected hand in the mirror. METHODS Thirteen patients were included in the study; apraxia was measured four times: i) at baseline; ii) after a week of unspecific poststroke rehabilitation (rest); iii) after a week of imitation training for apraxia, used as a control; and iv) after a week of MB training. Imitation and mirror box training were presented in counterbalanced order between participants. The effect of the mirror box on a measure of body representation was also assessed. RESULTS The results show that MB training improved apraxia when compared to the outcomes in both the imitation and rest conditions. The improvement correlates with the impact of the mirror box on the body representation (i.e., the degree of embodiment). CONCLUSIONS MB training shows promising effects in promoting recovery from apraxia. The hypothesis is that the mirror box triggers a quickly generated sense of embodiment of the reflected moving arm into the observer's body representation. This embodiment of the visuomotor features of the observed movements would positively affect motor programming, promoting motor improvement. Crucially, this effect seems to extend to actions performed outside the mirror box setup, enhancing patients' performance on an apraxia test.
Collapse
|
167
|
Bland AR, Zahn R, Elliott R, Taylor JR, Hill J. Patrolling the boundaries of social domains: Neural activations to violations of expectations for romantic and work relationships. Soc Neurosci 2021; 16:513-521. [PMID: 34228605 DOI: 10.1080/17470919.2021.1953134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
According to the social domains hypothesis, we reduce the information-processing demands of complex social cues by classifying them into a limited number of domains, each with distinct sets of expectations. This requires rapid identification of violations of the boundaries between social domains. We hypothesized that these violations are likely to be associated with neural activation of the salience system. Using fMRI we compared responses of 20 adults to expected and unexpected everyday social scenarios in personal and work interactions. The vignettes exemplified different kinds of scenarios presented in the work setting, i.e., task-focused scenarios which are expected at work and scenarios with a personal focus, which are unexpected at work. The key contrast between task and personal focussed scenarios presented in the work setting was associated with fronto-insular activation. Perceived inappropriateness of the unexpected scenarios, and shorter response time to judgment of inappropriateness were also associated with fronto-insular activation, after controlling for unpleasantness. This study indicates specific neural responses to violations of expectations in different social situations. Our findings suggest that the fronto-insular region is implicated in rapid detection of behaviors that cross the boundaries of social domains, which are hypothesized to be necessary for efficient social information processing.
Collapse
Affiliation(s)
- A R Bland
- Department of Psychology, Manchester Metropolitan University, Manchester, UK
| | - R Zahn
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, UK
| | - R Elliott
- Neuroscience and Psychiatry Unit, University of Manchester, UK.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK
| | - J R Taylor
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK
| | - J Hill
- School of Psychology and Clinical Language Sciences, University of Reading, UK
| |
Collapse
|
168
|
The anesthetic approach for endovascular recanalization therapy depends on the lesion site in acute ischemic stroke. Neuroradiology 2021; 63:2121-2129. [PMID: 34244817 PMCID: PMC8589787 DOI: 10.1007/s00234-021-02762-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Purpose Endovascular therapy (EVT) of large-vessel occlusion in acute ischemic stroke (AIS) may be performed in general anesthesia (GA) or conscious sedation (CS). We intended to determine the contribution of ischemic cerebral lesion sites on the physician’s decision between GA and CS using voxel-based lesion symptom mapping (VLSM). Methods In a prospective local database, we sought patients with documented AIS and EVT. Age, stroke severity, lesion volume, vigilance, and aphasia scores were compared between EVT patients with GA and CS. The ischemic lesions were analyzed on CT or MRI scans and transformed into stereotaxic space. We determined the lesion overlap and assessed whether GA or CS is associated with specific cerebral lesion sites using the voxel-wise Liebermeister test. Results One hundred seventy-nine patients with AIS and EVT were included in the analysis. The VLSM analysis yielded associations between GA and ischemic lesions in the left hemispheric middle cerebral artery territory and posterior circulation areas. Stroke severity and lesion volume were significantly higher in the GA group. The prevalence of aphasia and aphasia severity was significantly higher and parameters of vigilance lower in the GA group. Conclusions The VLSM analysis showed associations between GA and ischemic lesions in the left hemispheric middle cerebral artery territory and posterior circulation areas including the thalamus that are known to cause neurologic deficits, such as aphasia or compromised vigilance, in AIS-patients with EVT. Our data suggest that higher disability, clinical impairment due to neurological deficits like aphasia, or reduced alertness of affected patients may influence the physician’s decision on using GA in EVT.
Collapse
|
169
|
Park EJ, Kim YW, Nam HS, Choi HS, Kim DY. Neural Substrates of Aphasia in Acute Left Hemispheric Stroke Using Voxel-Based Lesion-symptom Brain Mapping. BRAIN & NEUROREHABILITATION 2021; 14:e14. [PMID: 36743431 PMCID: PMC9879494 DOI: 10.12786/bn.2021.14.e14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 11/08/2022] Open
Abstract
It is unclear how these brain lesions fit into the language processing in acute stroke. In this study, we aimed to investigate the neuroanatomical lesion related to language processing in acute stage of stroke patients using voxel-based lesion-symptom mapping (VLSM). 73 acute first-ever post-stroke patients were enrolled in this retrospective study, who had undertaken brain magnetic resonance imaging (MRI) and Korean version of the Western Aphasia Test within 1 month from onset. Each voxel was compared with aphasia quotient and subtest scores as dependent variables using VLSM. The aphasia group showed significantly much more involvement of extra-nuclear area, insula, inferior frontal gyrus and superior temporal gyrus compared to non-aphasia group. The deficit of spontaneous speech domain was associated with the inferior parietal lobule, inferior and middle frontal gyrus and insula. The insular cortex, inferior parietal lobule, inferior frontal gyrus, middle frontal gyrus and superior temporal gyrus were related to deficit of comprehension. The inferior parietal lobule, insula, precentral gyrus, inferior frontal gyrus were related to the deficit of repetition. The deficit of naming was related to inferior parietal lobule, insula and inferior frontal gyrus. In conclusion, VLSM from early MRI imaging study after stroke may be useful to understand the language process network and establish early rehabilitation strategies after stroke.
Collapse
Affiliation(s)
- Eun Ji Park
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.,Department of Rehabilitation Medicine, National Police Hospital, Seoul, Korea
| | - Yong Wook Kim
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.,Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Suk Nam
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Seon Choi
- Department of Rehabilitation Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| | - Deog Young Kim
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.,Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
170
|
Hartung SL, Mandonnet E, de Witt Hamer P, Klein M, Wager M, Rech F, Pallud J, Pessanha Viegas C, Ille S, Krieg SM, Robe PA, van Zandvoort MJE. Impaired Set-Shifting from Dorsal Stream Disconnection: Insights from a European Series of Right Parietal Lower-Grade Glioma Resection. Cancers (Basel) 2021; 13:cancers13133337. [PMID: 34283043 PMCID: PMC8267741 DOI: 10.3390/cancers13133337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Awake surgery with cognitive monitoring has increasingly been implemented to preserve brain networks and functionality. More recently, not only surgery in the left but also in the right hemisphere, i.c., the parietal lobe, was associated with potential risk for deficits in cognitive functions, such as cognitive flexibility. We describe an explorative pilot study in an international consortium within clinical care as usual. Careful interpretation of our findings indicates that disconnection of the lateral part of the dorsal stream correlated with impaired set-shifting. More importantly, it illustrates the need for international collaboration on neuropsychological tests and methodologies to improve our understanding of white matter networks at risk during awake surgery. Abstract Awake surgery with cognitive monitoring has increasingly been implemented to preserve brain networks and functionality. More recently, not only surgery in the left but also in the right hemisphere, i.c., the parietal lobe, was associated with potential risk for deficits in cognitive functions, such as cognitive flexibility. In this explorative pilot study, we compare cognitive performance more than three months after surgery with baseline measurements and explore the association between cognitive decline and subcortical tracts that may have been severed during surgery in the right hemisphere. Twenty-two patients who underwent surgery for a right parietal low-grade glioma were assessed pre- and postoperatively using the Trail Making Test and the Stroop task to administer set-shifting abilities and inhibition. Volume measurements and lesion–symptom mapping analyses were performed on postoperative MRI scans. Careful interpretation of the results shows a change in TMT performance and not on the Stroop Task when the lateral part of the arcuate fasciculus is damaged, indicating that disconnection of the lateral part of the dorsal stream might be correlated specifically with impaired set-shifting and not with inhibition. More importantly, this study underlines the need for international concertation to allow larger studies to increase power and perform more detailed analyses.
Collapse
Affiliation(s)
- Suzanne L. Hartung
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (P.A.R.); (M.J.E.v.Z.)
- Correspondence:
| | | | - Philip de Witt Hamer
- Department of Neurosurgery, Location VUmc, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands;
| | - Martin Klein
- Department of Medical Psychology and Brain Tumor Center Amsterdam at Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Michel Wager
- Department of Neurological Surgery, Poitiers University Hospital, 86021 Poitiers, France;
| | - Fabien Rech
- CHRU-Nancy, Service de Neurochirurgie, Université de Lorraine, F-54000 Nancy, France;
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
| | - Johan Pallud
- Department of Neursurgery, Saint-Anne Hospital, 75014 Paris, France;
| | | | - Sebastian Ille
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University Munich, 80333 Munich, Germany; (S.I.); (S.M.K.)
| | - Sandro M. Krieg
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University Munich, 80333 Munich, Germany; (S.I.); (S.M.K.)
| | - Pierre A. Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (P.A.R.); (M.J.E.v.Z.)
| | - Martine J. E. van Zandvoort
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (P.A.R.); (M.J.E.v.Z.)
- Department of Experimental Psychology, Utrecht University, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
171
|
Dressing A, Kaller CP, Martin M, Nitschke K, Kuemmerer D, Beume LA, Schmidt CSM, Musso M, Urbach H, Rijntjes M, Weiller C. Anatomical correlates of recovery in apraxia: A longitudinal lesion-mapping study in stroke patients. Cortex 2021; 142:104-121. [PMID: 34265734 DOI: 10.1016/j.cortex.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This study investigates the clinical course of recovery of apraxia after left-hemisphere stroke and the underlying neuroanatomical correlates for persisting or recovering deficits in relation to the major processing streams in the network for motor cognition. METHODS 90 patients were examined during the acute (4.74 ± 2.73 days) and chronic (14.3 ± 15.39 months) stage after left-hemisphere stroke for deficits in meaningless imitation, as well as production and conceptual errors in tool use pantomime. Lesion correlates for persisting or recovering deficits were analyzed with an extension of the non-parametric Brunner-Munzel rank-order test for multi-factorial designs (two-way repeated-measures ANOVA) using acute images. RESULTS Meaningless imitation and tool use production deficits persisted into the chronic stage. Conceptual errors in tool use pantomime showed an almost complete recovery. Imitation errors persisted after occipitotemporal and superior temporal lesions in the dorso-dorsal stream. Chronic pantomime production errors were related to the supramarginal gyrus, the key structure of the ventro-dorsal stream. More anterior lesions in the ventro-dorsal stream (ventral premotor cortex) were additionally associated with poor recovery of production errors in pantomime. Conceptual errors in pantomime after temporal and supramarginal gyrus lesions persisted into the chronic stage. However, they resolved completely when related to angular gyrus or insular lesions. CONCLUSION The diverging courses of recovery in different apraxia tasks can be related to different mechanisms. Critical lesions to key structures of the network or entrance areas of the processing streams lead to persisting deficits in the corresponding tasks. Contrary, lesions located outside the core network but inducing a temporary network dysfunction allow good recovery e.g., of conceptual errors in pantomime. The identification of lesion correlates for different long-term recovery patterns in apraxia might also allow early clinical prediction of the course of recovery.
Collapse
Affiliation(s)
- Andrea Dressing
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany.
| | - Christoph P Kaller
- Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany; Dept. of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Martin
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Kai Nitschke
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dorothee Kuemmerer
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena-A Beume
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte S M Schmidt
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mariacristina Musso
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Dept. of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| |
Collapse
|
172
|
Avecillas-Chasin JM, Hurwitz TA, Bogod NM, Honey CR. Tractography-Guided Anterior Capsulotomy for Major Depression and Obsessive-Compulsive Disorder: Targeting the Emotion Network. Oper Neurosurg (Hagerstown) 2021; 20:406-412. [PMID: 33475697 DOI: 10.1093/ons/opaa420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/07/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Bilateral anterior capsulotomy (BAC) is an effective surgical option for patients with treatment-resistant major depression (TRMD) and treatment-resistant obsessive-compulsive disorder (TROCD). The size of the lesion and its precise dorsal-ventral location within the anterior limb of the internal capsule (ALIC) remain undefined. OBJECTIVE To present a method to identify the trajectories of the associative and limbic white matter pathways within the ALIC for targeting in BAC surgery. METHODS Using high-definition tractography, we prospectively tested the feasibility of this method in 2 patients with TRMD and TROCD to tailor the capsulotomy lesion to their limbic pathway. RESULTS The trajectories of the associative and limbic pathways were identified in the ALIC of both patients and we targeted the limbic pathways by defining the dorsal limit of the lesion in a way to minimize the damage to the associative pathways. The final lesions were smaller than those that have been previously published. This individualized procedure was associated with long-term benefit in both patients. CONCLUSION Tractography-guided capsulotomy is feasible and was associated with long-term benefit in patients with TRMD and TROCD.
Collapse
Affiliation(s)
| | - Trevor A Hurwitz
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas M Bogod
- Neurosciences Program, Vancouver General Hospital, Division of Neurology, UBC Department of Medicine, Vancouver, British Columbia, Canada
| | - Christopher R Honey
- Department of Surgery, Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
173
|
Patients with lesions to the intraparietal cortex show greater proprioceptive realignment after prism adaptation: Evidence from open-loop pointing and manual straight ahead. Neuropsychologia 2021; 158:107913. [PMID: 34139246 DOI: 10.1016/j.neuropsychologia.2021.107913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/27/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022]
Abstract
Reaching toward a target viewed through laterally refracting prisms results in adaptation of both visual and (limb) proprioceptive spatial representations. Common ways to measure adaptation after-effect are to ask a person to point straight ahead with their eyes closed ("manual straight ahead", MSA), or to a seen target using their unseen hand ("open-loop pointing", OLP). MSA measures changes in proprioception only, whereas OLP measures the combined visual and proprioceptive shift. The behavioural and neurological mechanisms of prism adaptation have come under scrutiny following reports of reduced hemispatial neglect in patients following this procedure. We present evidence suggesting that shifts in proprioceptive spatial representations induced by prism adaptation are larger following lesions to the intraparietal cortex - a brain region that integrates retinotopic visual signals with signals of eye position in the orbit and that is activated during prism adaptation. Six healthy participants and six patients with unilateral intraparietal cortex lesions underwent prism adaptation. After-effects were measured with OLP and MSA. After-effects of control participants were larger when measured with OLP than with MSA, consistent with previous research and with the additional contribution of visual shift to OLP after-effects. However, patients' OLP shifts were not significantly different to their MSA shifts. We conclude that, for the patients, correction of pointing errors during prism adaptation involved proportionally more changes to arm proprioception than for controls. Since lesions to intraparietal cortex led to enhanced realignment of arm proprioceptive representations, our results indirectly suggest that the intraparietal cortex could be key for visual realignment.
Collapse
|
174
|
Koba C, Notaro G, Tamm S, Nilsonne G, Hasson U. Spontaneous eye movements during eyes-open rest reduce resting-state-network modularity by increasing visual-sensorimotor connectivity. Netw Neurosci 2021; 5:451-476. [PMID: 34189373 PMCID: PMC8233114 DOI: 10.1162/netn_a_00186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
During wakeful rest, individuals make small eye movements during fixation. We examined how these endogenously driven oculomotor patterns impact topography and topology of functional brain networks. We used a dataset consisting of eyes-open resting-state (RS) fMRI data with simultaneous eye tracking. The eye-tracking data indicated minor movements during rest, which correlated modestly with RS BOLD data. However, eye-tracking data correlated well with echo-planar imaging time series sampled from the area of the eye-orbit (EO-EPI), which is a signal previously used to identify eye movements during exogenous saccades and movie viewing. Further analyses showed that EO-EPI data were correlated with activity in an extensive motor and sensorimotor network, including components of the dorsal attention network and the frontal eye fields. Partialling out variance related to EO-EPI from RS data reduced connectivity, primarily between sensorimotor and visual areas. It also produced networks with higher modularity, lower mean connectivity strength, and lower mean clustering coefficient. Our results highlight new aspects of endogenous eye movement control during wakeful rest. They show that oculomotor-related contributions form an important component of RS network topology, and that those should be considered in interpreting differences in network structure between populations or as a function of different experimental conditions. We studied how subtle eye movements made during fixation, in absence of any other task, are related to resting-state connectivity measured using fMRI. We used a dataset for which eye tracking and BOLD resting-state were acquired simultaneously. We correlated brain activity with both eye-tracking metrics as well as time series sampled from the area of the eye orbits (EO-EPI). Eye-tracking data correlated well with the EO-EPI data. Furthermore, EO-EPI correlated with BOLD signal in sensorimotor and visual brain systems. Removing variance related to EO-EPI reduced connectivity between sensorimotor and visual areas and resulted in more modular resting-state networks. Our findings show that oculomotor-related contributions are an important component of resting-state network topology, and that they can be studied using EPI data from the eye orbits.
Collapse
Affiliation(s)
- Cemal Koba
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giuseppe Notaro
- Center for Mind/Brain Sciences (CIMeC), The University of Trento, Trento, Italy
| | - Sandra Tamm
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Gustav Nilsonne
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Uri Hasson
- Center for Mind/Brain Sciences (CIMeC), The University of Trento, Trento, Italy
| |
Collapse
|
175
|
Conner LB, Horta M, Ebner NC, Lighthall NR. Value network engagement and effects of memory-related processing during encoding and retrieval of value. Brain Cogn 2021; 152:105754. [PMID: 34052683 DOI: 10.1016/j.bandc.2021.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/01/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Decision makers rely on episodic memory to calculate choice values in everyday life, yet it is unclear how neural mechanisms of valuation differ when value-related information is encoded versus retrieved from episodic memory. The current fMRI study compared neural correlates of value while information was encoded versus retrieved from memory. Scanned tasks were followed by a behavioral episodic memory test for item-attribute associations. Our analyses sought to (i) identify neural correlates of value that were distinct and common across encoding and retrieval, and (ii) determine whether neural mechanisms of valuation and episodic memory interact. The study yielded three primary findings. First, value-related activation in the fronto-striatal reward circuit and posterior parietal cortex was comparable across valuation phases. Second, value-related activation in select fronto-parietal and salience regions was significantly greater at value retrieval than encoding. Third, there was no interaction between neural correlates of valuation and episodic memory. Taken with prior research, the present study indicates that fronto-parietal and salience regions play a key role in retrieval-dependent valuation and context-specific effects likely determine whether neural correlates of value interact with episodic memory.
Collapse
Affiliation(s)
- Lindsay B Conner
- Department of Psychology, University of Central Florida, Orlando, FL, United States
| | - Marilyn Horta
- Department of Psychology, University of Florida, Gainesville, FL, United States
| | - Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL, United States; Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, United States; Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| | - Nichole R Lighthall
- Department of Psychology, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
176
|
Durfee AZ, Sheppard SM, Meier EL, Bunker L, Cui E, Crainiceanu C, Hillis AE. Explicit Training to Improve Affective Prosody Recognition in Adults with Acute Right Hemisphere Stroke. Brain Sci 2021; 11:brainsci11050667. [PMID: 34065453 PMCID: PMC8161405 DOI: 10.3390/brainsci11050667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Difficulty recognizing affective prosody (receptive aprosodia) can occur following right hemisphere damage (RHD). Not all individuals spontaneously recover their ability to recognize affective prosody, warranting behavioral intervention. However, there is a dearth of evidence-based receptive aprosodia treatment research in this clinical population. The purpose of the current study was to investigate an explicit training protocol targeting affective prosody recognition in adults with RHD and receptive aprosodia. Eighteen adults with receptive aprosodia due to acute RHD completed affective prosody recognition before and after a short training session that targeted proposed underlying perceptual and conceptual processes. Behavioral impairment and lesion characteristics were investigated as possible influences on training effectiveness. Affective prosody recognition improved following training, and recognition accuracy was higher for pseudo- vs. real-word sentences. Perceptual deficits were associated with the most posterior infarcts, conceptual deficits were associated with frontal infarcts, and a combination of perceptual-conceptual deficits were related to temporoparietal and subcortical infarcts. Several right hemisphere ventral stream regions and pathways along with frontal and parietal hypoperfusion predicted training effectiveness. Explicit acoustic-prosodic-emotion training improves affective prosody recognition, but it may not be appropriate for everyone. Factors such as linguistic context and lesion location should be considered when planning prosody training.
Collapse
Affiliation(s)
- Alexandra Zezinka Durfee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.Z.D.); (E.L.M.); (L.B.)
| | - Shannon M. Sheppard
- Department of Communication Sciences and Disorders, Chapman University, Irvine, CA 92618, USA;
| | - Erin L. Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.Z.D.); (E.L.M.); (L.B.)
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MD 02115, USA
| | - Lisa Bunker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.Z.D.); (E.L.M.); (L.B.)
| | - Erjia Cui
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA; (E.C.); (C.C.)
| | - Ciprian Crainiceanu
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA; (E.C.); (C.C.)
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.Z.D.); (E.L.M.); (L.B.)
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Correspondence:
| |
Collapse
|
177
|
Takamura Y, Fujii S, Ohmatsu S, Ikuno K, Tanaka K, Manji A, Abe H, Morioka S, Kawashima N. Interaction between spatial neglect and attention deficit in patients with right hemisphere damage. Cortex 2021; 141:331-346. [PMID: 34126288 DOI: 10.1016/j.cortex.2021.03.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022]
Abstract
Unilateral spatial neglect (USN) was originally regarded as a parietal syndrome, but it has become evident that USN is a disturbance in the widespread attention network. Here, we focused on an interaction between spatial neglect and non-spatial aspect of attention deficit, and aimed to establish a novel evaluation approach based on the characteristics of the spatial distribution of reaction times. We tested 174 patients with right hemisphere damage and divided them based on their prescreening scores on the Behavioral Inattention Test (BIT): (1) USN++ (n = 79: BIT<131), (2) USN+ (n = 47: BIT≥131 with history of USN), and (3) RHD (n = 48: without neglect symptom). The patients were asked to conduct a touch panel-based pointing task toward 2D-arranged (seven columns × five rows) circular targets on a PC monitor, and the reaction time to each object was recorded. To evaluate aspects of attention deficit and neglect symptoms, we calculated the total average of the reaction time for all objects (RTmean) and the ratios of the right and left space (L/Rratio), respectively. The results revealed that RTmean and L/Rratio can be regarded as independent evaluation parameters for attention deficit and neglect symptoms, respectively. Voxel-based lesion-symptom mapping based on RTmean and L/Rratio values revealed relevant lesions with attention-related brain areas (middle temporal gyrus, angular gyrus, and inferior frontal gyrus), and neglect-related brain areas (superior temporal gyrus and superior longitudinal fascicules). A cluster analysis with Gaussian mixture model detected six different states of USN with an interaction between neglect symptoms and attention deficit. Interestingly, the recovery process after USN can be properly explained by the transition pattern from one cluster to another. Our results suggest that a novel evaluation approach to distinguish between neglect symptoms and attention deficit, namely the characterization of the interaction between RTmean and L/Rratio, provides useful information for understanding pathological features of USN.
Collapse
Affiliation(s)
- Yusaku Takamura
- Department of Rehabilitation for the Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan; Graduate School of Health Sciences, Kio University, Nara, Japan
| | - Shintaro Fujii
- Graduate School of Health Sciences, Kio University, Nara, Japan; Nishiyamato Rehabilitation Hospital, Nara, Japan
| | - Satoko Ohmatsu
- Department of Rehabilitation for the Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan; Regenerative Rehabilitation Section of Department of Rehabilitation, Hospital of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Koki Ikuno
- Nishiyamato Rehabilitation Hospital, Nara, Japan
| | - Kohei Tanaka
- Shizuoka Rehabilitation Hospital, Shizuoka, Japan
| | - Atsushi Manji
- Saitama Misato Rehabilitation Hospital, Saitama, Japan
| | | | - Shu Morioka
- Graduate School of Health Sciences, Kio University, Nara, Japan; Neurorehabilitation Research Center, Kio University, Nara, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for the Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan; Regenerative Rehabilitation Section of Department of Rehabilitation, Hospital of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan.
| |
Collapse
|
178
|
Abstract
OBJECTIVE After attempting to move a plegic limb, patients with anosognosia for hemiplegia (AHP) may claim that limb movement occurred, even though the limb remained motionless. The authors investigated the characteristics, natural history, and anatomical basis of AHP phenomenology. METHODS Twenty-nine right-hemisphere stroke patients with acute anosognosia for hemiplegia (AHP) were prospectively assessed for the presence and characteristics of movement claims and observable behavior during movement attempts. RESULTS AHP was transient, with the condition resolving in 68% of patients by 1 week. Patients made movement claims during 31% of unilateral movement attempts and 50% of bilateral movement attempts. Movement claims were idiosyncratic, lacked internal consistency within individual patients, and even dissociated from explicit denial, as several patients made movement claims after they began to explicitly acknowledge hemiplegia. Observable behavior during movement attempts revealed allochiria (moving the right arm instead of the left) in 31% of patients, signs of implicit knowledge of weakness in 24%, and intact intention in 34%. Lesion analysis revealed that allochiria was associated with inferior right parietal lobe damage. CONCLUSIONS These results highlight that heterogeneity, phenomenological complexity, and transience are hallmarks of AHP. This advances clinical AHP assessment by showing that assessment of performance, rather than just verbal response, uncovers multiple dimensions of AHP. Allochiria emerges as an anatomically distinct subcomponent of the disorder. These findings also have theoretical implications, because they do not lend support to unitary pathogenic models proposing that illusions of movement or impaired intention form the basis of AHP. Most patients rapidly improve, which should invigorate the search for typical compensatory mechanisms underlying spontaneous recovery.
Collapse
Affiliation(s)
- Daniel Antoniello
- Montefiore Hospital/Albert Einstein College of Medicine, Bronx, N.Y. (Antoniello, Gottesman)
| | - Reena Gottesman
- Montefiore Hospital/Albert Einstein College of Medicine, Bronx, N.Y. (Antoniello, Gottesman)
| |
Collapse
|
179
|
Jackson JB, Feredoes E, Rich AN, Lindner M, Woolgar A. Concurrent neuroimaging and neurostimulation reveals a causal role for dlPFC in coding of task-relevant information. Commun Biol 2021; 4:588. [PMID: 34002006 PMCID: PMC8128861 DOI: 10.1038/s42003-021-02109-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
Dorsolateral prefrontal cortex (dlPFC) is proposed to drive brain-wide focus by biasing processing in favour of task-relevant information. A longstanding debate concerns whether this is achieved through enhancing processing of relevant information and/or by inhibiting irrelevant information. To address this, we applied transcranial magnetic stimulation (TMS) during fMRI, and tested for causal changes in information coding. Participants attended to one feature, whilst ignoring another feature, of a visual object. If dlPFC is necessary for facilitation, disruptive TMS should decrease coding of attended features. Conversely, if dlPFC is crucial for inhibition, TMS should increase coding of ignored features. Here, we show that TMS decreases coding of relevant information across frontoparietal cortex, and the impact is significantly stronger than any effect on irrelevant information, which is not statistically detectable. This provides causal evidence for a specific role of dlPFC in enhancing task-relevant representations and demonstrates the cognitive-neural insights possible with concurrent TMS-fMRI-MVPA.
Collapse
Affiliation(s)
- Jade B Jackson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
- Perception in Action Research Centre, Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia.
| | - Eva Feredoes
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Anina N Rich
- Perception in Action Research Centre, Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Michael Lindner
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Alexandra Woolgar
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Perception in Action Research Centre, Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
180
|
Kessner SS, Schlemm E, Gerloff C, Thomalla G, Cheng B. Grey and white matter network disruption is associated with sensory deficits after stroke. NEUROIMAGE-CLINICAL 2021; 31:102698. [PMID: 34023668 PMCID: PMC8163991 DOI: 10.1016/j.nicl.2021.102698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/04/2022]
Abstract
Somatosensory deficits occur in about 60% of patients after ischaemic stroke. Clinical and imaging data of 101 ischaemic stroke patients were analysed. Stroke lesions may disrupt grey (GM) and/or white matter (WM) network. Lesion volume explains 23% of sensory deficit variance; GM / WM disruption adds 14% Subnetwork of postcentral, supramarginal, transverse temporal gyri involved.
Somatosensory deficits after ischaemic stroke are common and can occur in patients with lesions in the anterior parietal cortex and subcortical nuclei. It is less clear to what extent damage to white matter tracts within the somatosensory system may contribute to somatosensory deficits after stroke. We compared the roles of cortical damage and disruption of subcortical white matter tracts as correlates of somatosensory deficit after ischaemic stroke. Clinical and imaging data were assessed in incident stroke patients. Somatosensory deficits were measured using a standardized somatosensory test. Remote effects were quantified by projecting the MRI-based segmented stroke lesions onto a predefined atlas of white matter connectivity. Direct ischaemic damage to grey matter was computed by lesion overlap with grey matter areas. The association between lesion impact scores and sensory deficit was assessed statistically. In 101 patients, median sensory score was 188/193 (97.4%). Lesion volume was associated with somatosensory deficit, explaining 23.3% of variance. Beyond this, the stroke-induced grey and white matter disruption within a subnetwork of the postcentral, supramarginal, and transverse temporal gyri explained an additional 14% of the somatosensory outcome variability. On mutual comparison, white matter network disruption was a stronger predictor than grey matter damage. Ischaemic damage to both grey and white matter are structural correlates of acute somatosensory disturbance after ischaemic stroke. Our data suggest that white matter integrity of a somatosensory network of primary and secondary cortex is a prerequisite for normal processing of somatosensory inputs and might be considered as an additional parameter for stroke outcome prediction in the future.
Collapse
Affiliation(s)
- Simon S Kessner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Eckhard Schlemm
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
181
|
Allaire-Duquette G, Brault Foisy LM, Potvin P, Riopel M, Larose M, Masson S. An fMRI study of scientists with a Ph.D. in physics confronted with naive ideas in science. NPJ SCIENCE OF LEARNING 2021; 6:11. [PMID: 33976228 PMCID: PMC8113248 DOI: 10.1038/s41539-021-00091-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
A central challenge in developing conceptual understanding in science is overcoming naive ideas that contradict the content of science curricula. Neuroimaging studies reveal that high school and university students activate frontal brain areas associated with inhibitory control to overcome naive ideas in science, probably because they persist despite scientific training. However, no neuroimaging study has yet explored how persistent naive ideas in science are. Here, we report brain activations of 25 scientists with a Ph.D. in physics assessing the scientific value of naive ideas in science. Results show that scientists are slower and have lower accuracy when judging the scientific value of naive ideas compared to matched control ideas. fMRI data reveals that a network of frontal brain regions is more activated when judging naive ideas. Results suggest that naive ideas are likely to persist, even after completing a Ph.D. Advanced experts may still rely on high order executive functions like inhibitory control to overcome naive ideas when the context requires it.
Collapse
Affiliation(s)
| | | | | | - Martin Riopel
- Université du Québec à Montréal, Montréal, QC, Canada
| | | | - Steve Masson
- Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
182
|
LaCroix AN, Baxter LC, Rogalsky C. Auditory attention following a left hemisphere stroke: comparisons of alerting, orienting, and executive control performance using an auditory Attention Network Test. AUDITORY PERCEPTION & COGNITION 2021; 3:238-251. [PMID: 34671722 PMCID: PMC8525781 DOI: 10.1080/25742442.2021.1922988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Auditory attention is a critical foundation for successful language comprehension, yet is rarely studied in individuals with acquired language disorders. METHODS We used an auditory version of the well-studied Attention Network Test to study alerting, orienting, and executive control in 28 persons with chronic stroke (PWS). We further sought to characterize the neurobiology of each auditory attention measure in our sample using exploratory lesion-symptom mapping analyses. RESULTS PWS exhibited the expected executive control effect (i.e., decreased accuracy for incongruent compared to congruent trials), but their alerting and orienting attention were disrupted. PWS did not exhibit an alerting effect and they were actually distracted by the auditory spatial orienting cue compared to the control cue. Lesion-symptom mapping indicated that poorer alerting and orienting were associated with damage to the left retrolenticular part of the internal capsule (adjacent to the thalamus) and left posterior middle frontal gyrus (overlapping with the frontal eye fields), respectively. DISCUSSION The behavioral findings correspond to our previous work investigating alerting and spatial orienting attention in persons with aphasia in the visual modality and suggest that auditory alerting and spatial orienting attention may be impaired in PWS due to stroke lesions damaging multi-modal attention resources.
Collapse
Affiliation(s)
| | | | - Corianne Rogalsky
- College of Health Solutions, Arizona State University, Tempe, AZ USA
| |
Collapse
|
183
|
Rajashekar D, Hill MD, Demchuk AM, Goyal M, Fiehler J, Forkert ND. Prediction of Clinical Outcomes in Acute Ischaemic Stroke Patients: A Comparative Study. Front Neurol 2021; 12:663899. [PMID: 34025567 PMCID: PMC8134662 DOI: 10.3389/fneur.2021.663899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/09/2021] [Indexed: 12/01/2022] Open
Abstract
Background: Clinical stroke rehabilitation decision making relies on multi-modal data, including imaging and other clinical assessments. However, most previously described methods for predicting long-term stroke outcomes do not make use of the full multi-modal data available. The aim of this work was to develop and evaluate the benefit of nested regression models that utilise clinical assessments as well as image-based biomarkers to model 30-day NIHSS. Method: 221 subjects were pooled from two prospective trials with follow-up MRI or CT scans, and NIHSS assessed at baseline, as well as 48-hours and 30 days after symptom onset. Three prediction models for 30-day NIHSS were developed using a support vector regression model: one clinical model based on modifiable and non-modifiable risk factors (MCLINICAL) and two nested regression models that aggregate clinical and image-based features that differed with respect to the method used for selection of important brain regions for the modelling task. The first model used the widely accepted RreliefF (MRELIEF) machine learning method for this purpose, while the second model employed a lesion-symptom mapping technique (MLSM) often used in neuroscience to investigate structure-function relationships and identify eloquent regions in the brain. Results: The two nested models achieved a similar performance while considerably outperforming the clinical model. However, MRELIEF required fewer brain regions and achieved a lower mean absolute error than MLSM while being less computationally expensive. Conclusion: Aggregating clinical and imaging information leads to considerably better outcome prediction models. While lesion-symptom mapping is a useful tool to investigate structure-function relationships of the brain, it does not lead to better outcome predictions compared to a simple data-driven feature selection approach, which is less computationally expensive and easier to implement.
Collapse
Affiliation(s)
- Deepthi Rajashekar
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,Depertment of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Michael D Hill
- Depertment of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Andrew M Demchuk
- Depertment of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mayank Goyal
- Depertment of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils D Forkert
- Depertment of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
184
|
Zhou C, Ping L, Chen W, He M, Xu J, Shen Z, Lu Y, Shang B, Xu X, Cheng Y. Altered white matter structural networks in drug-naïve patients with obsessive-compulsive disorder. Brain Imaging Behav 2021; 15:700-710. [PMID: 32314200 DOI: 10.1007/s11682-020-00278-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
White matter (WM) alteration is considered to be a vital neurological mechanism of obsessive-compulsive disorder (OCD). However, little is known regarding the changes in topological organization of WM structural network in OCD. We acquired diffusion tensor imaging (DTI) datasets from 28 drug-naïve OCD patients and 28 well-matched healthy controls (HC). A deterministic fiber tracking approach was used to construct the whole-brain structural connectome. Group differences in global and nodal topological properties as well as rich-club organizations were compared by using graph theory analysis. The relationship between the altered network metrics and the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) was calculated. Compared with controls, OCD patients exhibited a significantly decreased small-worldness (σ), normalized clustering coefficient (γ) and shortest path length (Lp), as well as an increased global efficiency (Eglob). The nodal efficiency (Enodal) was found to be reduced in the left middle frontal gyrus, and increased in the right parahippocampal gyrus and bilateral putamen in OCD patients. Besides, OCD patients showed increased rich-club, feeder and local connection strength, and the connection strength of the rich-club was positively correlated with the total Y-BOCS score. Our findings emphasized a central role for the complicatedly changed topological architecture of brain structural networks in the pathological mechanism underlying OCD.
Collapse
Affiliation(s)
- Cong Zhou
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, 361000, China
| | - Wei Chen
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Mengxin He
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jian Xu
- Department of Internal Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Zonglin Shen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yi Lu
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Binli Shang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China. .,The NHC Key Laboratory of Drug Addiction Medicine, Kunming, 650032, China.
| |
Collapse
|
185
|
Gallina J, Pietrelli M, Zanon M, Bertini C. Hemispheric differences in altered reactivity of brain oscillations at rest after posterior lesions. Brain Struct Funct 2021; 227:709-723. [PMID: 33895865 PMCID: PMC8844183 DOI: 10.1007/s00429-021-02279-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/10/2021] [Indexed: 01/11/2023]
Abstract
A variety of evidence supports the dominance of the right hemisphere in perceptual and visuo-spatial processing. Although growing evidence shows a strong link between alpha oscillations and the functionality of the visual system, asymmetries in alpha oscillatory patterns still need to be investigated. Converging findings indicate that the typical alpha desynchronization occurring in the transition from the eyes-closed to the eyes-open resting state might represent an index of reactivity of the visual system. Thus, investigating hemispheric asymmetries in EEG reactivity at the opening of the eyes in brain-lesioned patients may shed light on the contribution of specific cortical sites and each hemisphere in regulating the oscillatory patterns reflecting the functionality of the visual system. To this aim, EEG signal was recorded during eyes-closed and eyes-open resting state in hemianopic patients with posterior left or right lesions, patients without hemianopia with anterior lesions and healthy controls. Hemianopics with both left and right posterior lesions showed a reduced alpha reactivity at the opening of the eyes, suggesting that posterior cortices have a pivotal role in the functionality of alpha oscillations. However, right-lesioned hemianopics showed a greater dysfunction, demonstrated by a reactivity reduction more distributed over the scalp, compared to left-lesioned hemianopics. Moreover, they also revealed impaired reactivity in the theta range. This favors the hypothesis of a specialized role of the right hemisphere in orchestrating oscillatory patterns, both coordinating widespread alpha oscillatory activity and organizing focal processing in the theta range, to support visual processing at the opening of the eyes.
Collapse
Affiliation(s)
- Jessica Gallina
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521, Cesena, Italy.,Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121, Bologna, Italy
| | - Mattia Pietrelli
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521, Cesena, Italy.,Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121, Bologna, Italy.,Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA
| | - Marco Zanon
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521, Cesena, Italy.,Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121, Bologna, Italy.,Neuroscience Area, International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| | - Caterina Bertini
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521, Cesena, Italy. .,Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121, Bologna, Italy.
| |
Collapse
|
186
|
Sheppard SM, Meier EL, Zezinka Durfee A, Walker A, Shea J, Hillis AE. Characterizing subtypes and neural correlates of receptive aprosodia in acute right hemisphere stroke. Cortex 2021; 141:36-54. [PMID: 34029857 DOI: 10.1016/j.cortex.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Speakers naturally produce prosodic variations depending on their emotional state. Receptive prosody has several processing stages. We aimed to conduct lesion-symptom mapping to determine whether damage (core infarct or hypoperfusion) to specific brain areas was associated with receptive aprosodia or with impairment at different processing stages in individuals with acute right hemisphere stroke. We also aimed to determine whether different subtypes of receptive aprosodia exist that are characterized by distinctive behavioral performance patterns. METHODS Twenty patients with receptive aprosodia following right hemisphere ischemic stroke were enrolled within five days of stroke; clinical imaging was acquired. Participants completed tests of receptive emotional prosody, and tests of each stage of prosodic processing (Stage 1: acoustic analysis; Stage 2: analyzing abstract representations of acoustic characteristics that convey emotion; Stage 3: semantic processing). Emotional facial recognition was also assessed. LASSO regression was used to identify predictors of performance on each behavioral task. Predictors entered into each model included 14 right hemisphere regions, hypoperfusion in four vascular territories as measured using FLAIR hyperintense vessel ratings, lesion volume, age, and education. A k-medoid cluster analysis was used to identify different subtypes of receptive aprosodia based on performance on the behavioral tasks. RESULTS Impaired receptive emotional prosody and impaired emotional facial expression recognition were both predicted by greater percent damage to the caudate. The k-medoid cluster analysis identified three different subtypes of aprosodia. One group was primarily impaired on Stage 1 processing and primarily had frontotemporal lesions. The second group had a domain-general emotion recognition impairment and maximal lesion overlap in subcortical areas. Finally, the third group was characterized by a Stage 2 processing deficit and had lesion overlap in posterior regions. CONCLUSIONS Subcortical structures, particularly the caudate, play an important role in emotional prosody comprehension. Receptive aprosodia can result from impairments at different processing stages.
Collapse
Affiliation(s)
- Shannon M Sheppard
- Department of Communication Sciences & Disorders, Chapman University, Irvine, CA, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Erin L Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Alex Walker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Shea
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
187
|
Keser Z, Meier EL, Stockbridge MD, Breining BL, Sebastian R, Hillis AE. Thalamic Nuclei and Thalamocortical Pathways After Left Hemispheric Stroke and Their Association with Picture Naming. Brain Connect 2021; 11:553-565. [PMID: 33797954 DOI: 10.1089/brain.2020.0831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Previous studies utilized lesion-centric approaches to study the role of the thalamus in language. In this study, we tested the hypotheses that non-lesioned dorsomedial and ventral anterior nuclei (DMVAC) and pulvinar lateral posterior nuclei complexes (PLC) of the thalamus and their projections to the left hemisphere show secondary effects of the strokes, and that their microstructural integrity is closely related to language-related functions. Methods: Subjects with language impairments after a left-hemispheric cortical and/or subcortical, early stroke (n = 31, ≤6 months) or late stroke (n = 30, ≥12 months) sparing thalamus underwent the Boston Naming Test (BNT) and diffusion tensor imaging (DTI). The tissue integrity of DMVAC, PLC, and their cortical projections was quantified with DTI. The right-left asymmetry profiles of these structures were evaluated in relation to the time since stroke. The association between microstructural integrity and BNT score was investigated in relation to stroke chronicity with partial correlation analyses adjusted for confounds. Results: In both early stroke and late stroke groups, left-sided tracts showed significantly higher mean diffusivities (MDs), which were likely due to Wallerian degeneration. Higher MD values of the cortical projections from the left PLC (r = -0.5, p = 0.005) and DMVAC (r = -0.53, p = 0.002) were correlated with lower BNT score in the late stroke but not early stroke group. Conclusion: Nonlesioned thalamic nuclei and thalamocortical pathways show rightward lateralization of the microstructural integrity after a left hemispheric stroke, and this pattern is associated with poorer naming.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erin L Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bonnie L Breining
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
188
|
Bartha‐Doering L, Gleiss A, Knaus S, Schmook MT, Seidl R. Influence of socioeconomic status on cognitive outcome after childhood arterial ischemic stroke. Dev Med Child Neurol 2021; 63:465-471. [PMID: 33336807 PMCID: PMC7986130 DOI: 10.1111/dmcn.14779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 11/28/2022]
Abstract
AIM To determine whether socioeconomic status (SES) is a stronger predictor for cognitive outcome after childhood arterial ischemic stroke compared to clinical factors. METHOD We investigated perceptual reasoning, executive functions, language, memory, and attention in 18 children and adolescents (12 males, six females, median age at testing 13y 4mo, range 7y-17y 5mo) after arterial ischemic stroke; collected sociodemographic information (education of parents, household income); and used clinical information (initial lesion volume, residual lesion volume, age at stroke, time since stroke). Linear regression models were used to investigate the potential influence of SES and clinical parameters on cognitive abilities. RESULTS SES had a moderate effect on all cognitive outcome parameters except attention by explaining 41.9%, 37.9%, 38.0%, and 22.5% of variability in perceptual reasoning, executive functions, language, and memory respectively. Initial lesion volume was the only clinical parameter that showed moderate importance on cognitive outcome (33.1% and 25.6% of the variability in perceptual reasoning and memory respectively). Overall, SES was a stronger predictor of cognitive outcome than clinical factors. INTERPRETATION Future paediatric studies aiming at clinical predictors of cognitive outcome should control their analyses for SES in their study participants. The findings of the present study further point to the need for more attention to the treatment of children with low SES. WHAT THIS PAPER ADDS Socioeconomic status (SES) explains up to 42% of variance in cognitive outcome after childhood arterial ischemic stroke. SES is a stronger predictor of outcome than clinical factors.
Collapse
Affiliation(s)
- Lisa Bartha‐Doering
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria,Comprehensive Centre for PediatricsMedical University of ViennaViennaAustria
| | - Andreas Gleiss
- Centre for Medical Statistics, Informatics, and Intelligent SystemsMedical University of ViennaViennaAustria
| | - Sarah Knaus
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria,Comprehensive Centre for PediatricsMedical University of ViennaViennaAustria
| | - Maria Theresa Schmook
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria,Comprehensive Centre for PediatricsMedical University of ViennaViennaAustria
| |
Collapse
|
189
|
Cohen AL, Mulder BPF, Prohl AK, Soussand L, Davis P, Kroeck MR, McManus P, Gholipour A, Scherrer B, Bebin EM, Wu JY, Northrup H, Krueger DA, Sahin M, Warfield SK, Fox MD, Peters JM. Tuber Locations Associated with Infantile Spasms Map to a Common Brain Network. Ann Neurol 2021; 89:726-739. [PMID: 33410532 PMCID: PMC7969435 DOI: 10.1002/ana.26015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Approximately 50% of patients with tuberous sclerosis complex develop infantile spasms, a sudden onset epilepsy syndrome associated with poor neurological outcomes. An increased burden of tubers confers an elevated risk of infantile spasms, but it remains unknown whether some tuber locations confer higher risk than others. Here, we test whether tuber location and connectivity are associated with infantile spasms. METHODS We segmented tubers from 123 children with (n = 74) and without (n = 49) infantile spasms from a prospective observational cohort. We used voxelwise lesion symptom mapping to test for an association between spasms and tuber location. We then used lesion network mapping to test for an association between spasms and connectivity with tuber locations. Finally, we tested the discriminability of identified associations with logistic regression and cross-validation as well as statistical mediation. RESULTS Tuber locations associated with infantile spasms were heterogenous, and no single location was significantly associated with spasms. However, >95% of tuber locations associated with spasms were functionally connected to the globi pallidi and cerebellar vermis. These connections were specific compared to tubers in patients without spasms. Logistic regression found that globus pallidus connectivity was a stronger predictor of spasms (odds ratio [OR] = 1.96, 95% confidence interval [CI] = 1.10-3.50, p = 0.02) than tuber burden (OR = 1.65, 95% CI = 0.90-3.04, p = 0.11), with a mean receiver operating characteristic area under the curve of 0.73 (±0.1) during repeated cross-validation. INTERPRETATION Connectivity between tuber locations and the bilateral globi pallidi is associated with infantile spasms. Our findings lend insight into spasm pathophysiology and may identify patients at risk. ANN NEUROL 2021;89:726-739.
Collapse
Affiliation(s)
- Alexander L Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Brechtje P F Mulder
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- VUmc School of Medical Sciences, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Anna K Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Louis Soussand
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Peter Davis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Mallory R Kroeck
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Peter McManus
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Benoit Scherrer
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Joyce Y Wu
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Hope Northrup
- Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Michael D Fox
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jurriaan M Peters
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
190
|
D'Imperio D, Romeo Z, Maistrello L, Durgoni E, Della Pietà C, De Filippo De Grazia M, Meneghello F, Turolla A, Zorzi M. Sensorimotor, Attentional, and Neuroanatomical Predictors of Upper Limb Motor Deficits and Rehabilitation Outcome after Stroke. Neural Plast 2021; 2021:8845685. [PMID: 33868400 PMCID: PMC8035034 DOI: 10.1155/2021/8845685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 11/23/2022] Open
Abstract
The rehabilitation of motor deficits following stroke relies on both sensorimotor and cognitive abilities, thereby involving large-scale brain networks. However, few studies have investigated the integration between motor and cognitive domains, as well as its neuroanatomical basis. In this retrospective study, upper limb motor responsiveness to technology-based rehabilitation was examined in a sample of 29 stroke patients (18 with right and 11 with left brain damage). Pretreatment sensorimotor and attentional abilities were found to influence motor recovery. Training responsiveness increased as a function of the severity of motor deficits, whereas spared attentional abilities, especially visuospatial attention, supported motor improvements. Neuroanatomical analysis of structural lesions and white matter disconnections showed that the poststroke motor performance was associated with putamen, insula, corticospinal tract, and frontoparietal connectivity. Motor rehabilitation outcome was mainly associated with the superior longitudinal fasciculus and partial involvement of the corpus callosum. The latter findings support the hypothesis that motor recovery engages large-scale brain networks that involve cognitive abilities and provides insight into stroke rehabilitation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marco Zorzi
- IRCCS San Camillo Hospital, Venice, Italy
- Department of General Psychology and Padova Neuroscience Center, University of Padova, Italy
| |
Collapse
|
191
|
Al Harrach M, Pretzel P, Groeschel S, Rousseau F, Dhollander T, Hertz-Pannier L, Lefevre J, Chabrier S, Dinomais M. A connectome-based approach to assess motor outcome after neonatal arterial ischemic stroke. Ann Clin Transl Neurol 2021; 8:1024-1037. [PMID: 33787079 PMCID: PMC8108427 DOI: 10.1002/acn3.51292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Objective Studies of motor outcome after Neonatal Arterial Ischemic Stroke (NAIS) often rely on lesion mapping using MRI. However, clinical measurements indicate that motor deficit can be different than what would solely be anticipated by the lesion extent and location. Because this may be explained by the cortical disconnections between motor areas due to necrosis following the stroke, the investigation of the motor network can help in the understanding of visual inspection and outcome discrepancy. In this study, we propose to examine the structural connectivity between motor areas in NAIS patients compared to healthy controls in order to define the cortical and subcortical connections that can reflect the motor outcome. Methods Thirty healthy controls and 32 NAIS patients with and without Cerebral Palsy (CP) underwent MRI acquisition and manual assessment. The connectome of all participants was obtained from T1‐weighted and diffusion‐weighted imaging. Results Significant disconnections in the lesioned and contra‐lesioned hemispheres of patients were found. Furthermore, significant correlations were detected between the structural connectivity metric of specific motor areas and manuality assessed by the Box and Block Test (BBT) scores in patients. Interpretation Using the connectivity measures of these links, the BBT score can be estimated using a multiple linear regression model. In addition, the presence or not of CP can also be predicted using the KNN classification algorithm. According to our results, the structural connectome can be an asset in the estimation of gross manual dexterity and can help uncover structural changes between brain regions related to NAIS.
Collapse
Affiliation(s)
- Mariam Al Harrach
- Université d'Angers, Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS) EA7315, Angers, 49000, France.,Université de Rennes 1, Laboratoire Traitement du Signal et de l'Image (LTSI), INSERM U1099, Rennes, F-35000, France
| | - Pablo Pretzel
- Experimental Paediatric Neuroimaging, Department of Child Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Samuel Groeschel
- Experimental Paediatric Neuroimaging, Department of Child Neurology, University Hospital Tübingen, Tübingen, Germany
| | | | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Lucie Hertz-Pannier
- UNIACT, Neurospin, Institut Joliot, CEA-Paris Saclay, Inserm U114, Université de Paris, Gif sur Yvette, F-91191, France
| | - Julien Lefevre
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille, 13385, France
| | - Stéphane Chabrier
- INSERM, UMR1059 Sainbiose, Univ Saint-Étienne, Univ Lyon, Saint-Étienne, F-42023, France.,Paediatric Physical and Rehabilitation Medicine Department, CHU Saint-Étienne, French Centre for Paediatric Stroke, INSERM, CIC 1408, Saint-Étienne, F-42055, France
| | - Mickael Dinomais
- Université d'Angers, Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS) EA7315, Angers, 49000, France.,Département de Médecine Physique et de Réadaptions and LUNAM, CHU Angers, Angers, France
| | | |
Collapse
|
192
|
Bugain M, Dimech Y, Torzhenskaya N, Thiebaut de Schotten M, Caspers S, Muscat R, Bajada CJ. Occipital Intralobar fasciculi: a description, through tractography, of three forgotten tracts. Commun Biol 2021; 4:433. [PMID: 33785859 PMCID: PMC8010026 DOI: 10.1038/s42003-021-01935-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
Diffusion MRI paired with tractography has facilitated a non-invasive exploration of many association, projection, and commissural fiber tracts. However, there is still a scarcity of research studies related to intralobar association fibers. The Dejerines' (two of the most notable neurologists of 19th century France) gave an in-depth description of the intralobar fibers of the occipital lobe. Unfortunately, their exquisite work has since been sparsely cited in the modern literature. This work gives a modern description of many of the occipital intralobar lobe fibers described by the Dejerines. We perform a virtual dissection and reconstruct the tracts using diffusion MRI tractography. The dissection is guided by the Dejerines' treatise, Anatomie des Centres Nerveux. As an accompaniment to this article, we provided a French-to-English translation of the treatise portion concerning five intra-occipital tracts, namely: the stratum calcarinum, the stratum proprium cunei, the vertical occipital fasciculus of Wernicke, the transverse fasciculus of the cuneus and the transverse fasciculus of the lingual lobule of Vialet. It was possible to reconstruct all but one of these tracts. For completeness, the recently described sledge runner fasciculus, although not one of the Dejerines' tracts, was identified and successfully reconstructed.
Collapse
Affiliation(s)
- Maeva Bugain
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, The University of Malta, Msida, Malta
| | - Yana Dimech
- Department of Cognitive Sciences, Faculty of Media and Knowledge Sciences, The University of Malta, Msida, Malta
| | - Natalia Torzhenskaya
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, The University of Malta, Msida, Malta
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives -UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
- Institute for Anatomy I, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Richard Muscat
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, The University of Malta, Msida, Malta
| | - Claude J Bajada
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, The University of Malta, Msida, Malta.
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.
| |
Collapse
|
193
|
Magnani B, Musetti A, Frassinetti F. Neglect in temporal domain: Amelioration following a prismatic adaptation treatment and implications in everyday life. A single case study. Brain Cogn 2021; 150:105712. [PMID: 33773399 DOI: 10.1016/j.bandc.2021.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/18/2022]
Abstract
As in line bisection, in time bisection, neglect patients fail to process the first/left part of time representation (Mental-Time-Line-MTL) resulting in a rightward shift of the interval midpoint. A leftward shift of spatial attention after one session of prismatic-adaptation (PA) reduces this deficit. The impact on daily life of time deficit is little investigated in neglect. Here we study the time deficit and its ecological impact in an outpatient with neglect (LL) and the effects of a PA-treatment (ten sessions) on the deficit and its impact. Before and after PA-treatment, LL completed a: time-bisection-task assessing the MTL in the milliseconds-seconds range; lifespan-task assessing the MTL in the lifespan range; qualitative interview assessing the impact on daily routines. Patient's performance on the tasks was compared with the performance of non-neurological controls. Before PA-treatment, LL showed a rightward shift in the time-bisection-task and a compression of life events distribution in the lifespan-task. The feeling "to be forward in time" emerged in the interview. The PA-treatment reduced the deficits in the tasks and the feeling "to be forward in time" in the interview. PA-treatment is suggested as a powerful instrument for the reduction of time deficit and its ecological impact in neglect patients.
Collapse
Affiliation(s)
- Barbara Magnani
- Centro INforma-MEnte, Via Brigata Reggio 32, 42124 Reggio Emilia, Italy.
| | - Alessandro Musetti
- Department of Humanities, Social Sciences and Cultural Industries, University of Parma, Via Borgo Carissimi 10, 43121 Parma, Italy.
| | - Francesca Frassinetti
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40127 Bologna, Italy; Maugeri Clinical Scientific Institutes - IRCCS of Castel Goffredo, Via Ospedale 36, 46042 Castel Goffredo, Mantova, Italy.
| |
Collapse
|
194
|
Jackson RL, Bajada CJ, Lambon Ralph MA, Cloutman LL. The Graded Change in Connectivity across the Ventromedial Prefrontal Cortex Reveals Distinct Subregions. Cereb Cortex 2021; 30:165-180. [PMID: 31329834 PMCID: PMC7029692 DOI: 10.1093/cercor/bhz079] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
The functional heterogeneity of the ventromedial prefrontal cortex (vmPFC) suggests it may include distinct functional subregions. To date these have not been well elucidated. Regions with differentiable connectivity (and as a result likely dissociable functions) may be identified using emergent data-driven approaches. However, prior parcellations of the vmPFC have only considered hard splits between distinct regions, although both hard and graded connectivity changes may exist. Here we determine the full pattern of change in structural and functional connectivity across the vmPFC for the first time and extract core distinct regions. Both structural and functional connectivity varied along a dorsomedial to ventrolateral axis from relatively dorsal medial wall regions to relatively lateral basal orbitofrontal cortex. The pattern of connectivity shifted from default mode network to sensorimotor and multimodal semantic connections. This finding extends the classical distinction between primate medial and orbital regions by demonstrating a similar gradient in humans for the first time. Additionally, core distinct regions in the medial wall and orbitofrontal cortex were identified that may show greater correspondence to functional differences than prior hard parcellations. The possible functional roles of the orbitofrontal cortex and medial wall are discussed.
Collapse
Affiliation(s)
- Rebecca L Jackson
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Claude J Bajada
- Faculty of Medicine and Surgery, University of Malta, Msida, MSD, Malta
| | - Matthew A Lambon Ralph
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Lauren L Cloutman
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience & Experimental Psychology (Zochonis Building), University of Manchester, Manchester, UK
| |
Collapse
|
195
|
Ulrichsen KM, Kolskår KK, Richard G, Alnæs D, Dørum ES, Sanders AM, Tornås S, Sánchez JM, Engvig A, Ihle-Hansen H, de Schotten MT, Nordvik JE, Westlye LT. Structural brain disconnectivity mapping of post-stroke fatigue. NEUROIMAGE-CLINICAL 2021; 30:102635. [PMID: 33799271 PMCID: PMC8044723 DOI: 10.1016/j.nicl.2021.102635] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/15/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023]
Abstract
We tested for associations between post stroke fatigue (PSF) and both lesion characteristics and brain structural disconnectome in 84 S patients. Results provided no evidence supporting a simple association between PSF severity and lesion characteristics or disconnectivity. PSF was strongly correlated with depression. Further studies including patients with more severe symptoms are needed to generalize the findings across a wider clinical spectrum.
Stroke patients commonly suffer from post stroke fatigue (PSF). Despite a general consensus that brain perturbations constitute a precipitating event in the multifactorial etiology of PSF, the specific predictive value of conventional lesion characteristics such as size and localization remains unclear. The current study represents a novel approach to assess the neural correlates of PSF in chronic stroke patients. While previous research has focused primarily on lesion location or size, with mixed or inconclusive results, we targeted the extended structural network implicated by the lesion, and evaluated the added explanatory value of a structural disconnectivity approach with regards to the brain correlates of PSF. To this end, we estimated individual structural brain disconnectome maps in 84 S survivors in the chronic phase (≥3 months post stroke) using information about lesion location and normative white matter pathways obtained from 170 healthy individuals. PSF was measured by the Fatigue Severity Scale (FSS). Voxel wise analyses using non-parametric permutation-based inference were conducted on disconnectome maps to estimate regional effects of disconnectivity. Associations between PSF and global disconnectivity and clinical lesion characteristics were tested by linear models, and we estimated Bayes factor to quantify the evidence for the null and alternative hypotheses, respectively. The results revealed no significant associations between PSF and disconnectome measures or lesion characteristics, with moderate evidence in favor of the null hypothesis. These results suggest that symptoms of post-stroke fatigue among chronic stroke patients are not simply explained by lesion characteristics or the extent and distribution of structural brain disconnectome, and are discussed in light of methodological considerations.
Collapse
Affiliation(s)
- Kristine M Ulrichsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway.
| | - Knut K Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Bjørknes College, Oslo, Norway
| | - Erlend S Dørum
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Anne-Marthe Sanders
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | | | - Jennifer Monereo Sánchez
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Netherlands
| | - Andreas Engvig
- Department of Nephrology, Oslo University Hospital, Ullevål, Norway
| | | | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives- UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | | | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway.
| |
Collapse
|
196
|
Craig BT, Morrill A, Anderson B, Danckert J, Striemer CL. Cerebellar lesions disrupt spatial and temporal visual attention. Cortex 2021; 139:27-42. [PMID: 33819679 DOI: 10.1016/j.cortex.2021.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Abstract
The current study represents the first comprehensive examination of spatial, temporal and sustained attention following cerebellar damage. Results indicated that, compared to controls, cerebellar damage resulted in a larger cueing effect at the longest SOA - possibly reflecting a slowed the onset of inhibition of return (IOR) during a reflexive covert attention task, and reduced the ability to detect successive targets during an attentional blink task. However, there was little evidence to support the notion that cerebellar damage disrupted voluntary covert attention or the sustained attention to response task (SART). Lesion overlay data and supplementary voxel-based lesion symptom mapping (VLSM) analyses indicated that impaired performance on the reflexive covert attention and attentional blink tasks were related to damage to Crus II of the left posterior cerebellum. In addition, subsequent analyses indicated our results are not due to either general motor impairments or to damage to the deep cerebellar nuclei. Collectively these data demonstrate, for the first time, that the same cerebellar regions may be involved in both spatial and temporal visual attention.
Collapse
Affiliation(s)
- Brandon T Craig
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Adam Morrill
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Britt Anderson
- Department of Psychology, University of Waterloo, Waterloo, ON, Canada
| | - James Danckert
- Department of Psychology, University of Waterloo, Waterloo, ON, Canada
| | - Christopher L Striemer
- Department of Psychology, MacEwan University, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
197
|
Blondiaux E, Heydrich L, Blanke O. Common and distinct brain networks of autoscopic phenomena. Neuroimage Clin 2021; 30:102612. [PMID: 33714069 PMCID: PMC7970131 DOI: 10.1016/j.nicl.2021.102612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Autoscopic phenomena (AP) are illusory own body reduplications characterized by the visual perception of a second own body in extrapersonal space, and include three main forms: autoscopic hallucination (AH), heautoscopy (HAS) and out-of-body-experience (OBE). Past research showed that lesions were heterogeneously distributed and affected many different brain regions within and across patients, while small case series suggested that AP lesions converge in temporo-parietal and parieto-occipital cortex. As only few studies investigated each form of AP separately, it remains unknown whether the three AP are characterized by common and distinct brain mechanisms. METHODS Here, we applied lesion network analysis in 26 neurological AP patients and determined their common and distinct functional connectivity patterns. RESULTS We report that all localize to a single common brain network at the bilateral temporo-parietal junction, further associated with specific patterns of functional connectivity, defining each type of AP. OBE resulted from a brain network connected to bilateral angular gyrus, right precuneus, and right inferior frontal gyrus, differing from AH with a brain network connected to bilateral precuneus, inferior temporal gyrus, and cerebellum. HAS resulted from a brain network connected to left inferior frontal gyrus, left insula and left parahippocampus. CONCLUSION The present data identify the temporo-parietal junction as the common core region for AP and show that each form of AP recruits additional specific networks, associated with different sensorimotor and self-related sub-networks.
Collapse
Affiliation(s)
- Eva Blondiaux
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal institute of Technology (EPFL), Switzerland
| | - Lukas Heydrich
- CORE Lab, Psychosomatic Competence Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal institute of Technology (EPFL), Switzerland; Department of Neurology, University of Geneva, Switzerland.
| |
Collapse
|
198
|
Interaction between cognitive reserve and age moderates effect of lesion load on stroke outcome. Sci Rep 2021; 11:4478. [PMID: 33627742 PMCID: PMC7904829 DOI: 10.1038/s41598-021-83927-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
The concepts of brain reserve and cognitive reserve were recently suggested as valuable predictors of stroke outcome. To test this hypothesis, we used age, years of education and lesion size as clinically feasible coarse proxies of brain reserve, cognitive reserve, and the extent of stroke pathology correspondingly. Linear and logistic regression models were used to predict cognitive outcome (Montreal Cognitive Assessment) and stroke-induced impairment and disability (NIH Stroke Scale; modified Rankin Score) in a sample of 104 chronic stroke patients carefully controlled for potential confounds. Results revealed 46% of explained variance for cognitive outcome (p < 0.001) and yielded a significant three-way interaction: Larger lesions did not lead to cognitive impairment in younger patients with higher education, but did so in younger patients with lower education. Conversely, even small lesions led to poor cognitive outcome in older patients with lower education, but didn’t in older patients with higher education. We observed comparable three-way interactions for clinical scores of stroke-induced impairment and disability both in the acute and chronic stroke phase. In line with the hypothesis, years of education conjointly with age moderated effects of lesion on stroke outcome. This non-additive effect of cognitive reserve suggests its post-stroke protective impact on stroke outcome.
Collapse
|
199
|
Zhang N, Yuan B, Yan J, Cheng J, Lu J, Wu J. Multivariate machine learning-based language mapping in glioma patients based on lesion topography. Brain Imaging Behav 2021; 15:2552-2562. [PMID: 33619646 DOI: 10.1007/s11682-021-00457-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/11/2020] [Accepted: 01/21/2021] [Indexed: 12/21/2022]
Abstract
Diffusive and progressive tumor infiltration within language-related areas of the brain induces functional reorganization. However, the macrostructural basis of subsequent language deficits is less clear. To address this issue, lesion topography data from 137 preoperative patients with left cerebral language-network gliomas (81 low-grade gliomas and 56 high-grade gliomas), were adopted for multivariate machine-learning-based lesion-language mapping analysis. We found that tumor location in the left posterior middle temporal gyrus-a bottleneck where both dorsal and ventral language pathways travel-predicted deficits of spontaneous speech (cluster size = 1356 mm3, false discovery rate corrected P < 0.05) and naming scores (cluster size = 1491 mm3, false discovery rate corrected P < 0.05) in the high-grade glioma group. In contrast, no significant lesion-language mapping results were observed in the low-grade glioma group, suggesting a large functional reorganization. These findings suggest that in patients with gliomas, the macrostructural plasticity mechanisms that modulate brain-behavior relationships depend on glioma grade.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, Hefei, China.,Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Fudan University, Shanghai, China
| | - Binke Yuan
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China.,Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Jing Yan
- Department of MRI , The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI , The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Junfeng Lu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Brain-Intelligence Technology , Zhangjiang Lab, Shanghai, China
| |
Collapse
|
200
|
Ouerchefani R, Ouerchefani N, Kammoun B, Ben Rejeb MR, Le Gall D. A Voxel-based lesion study on facial emotion recognition after circumscribed prefrontal cortex damage. J Neuropsychol 2021; 15:533-563. [PMID: 33595204 DOI: 10.1111/jnp.12241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 11/28/2020] [Indexed: 12/27/2022]
Abstract
Previous studies have shown inconsistent findings regarding the contribution of the different prefrontal regions in emotion recognition. Moreover, the hemispheric lateralization hypothesis posits that the right hemisphere is dominant for processing all emotions regardless of affective valence, whereas the valence specificity hypothesis posits that the left hemisphere is specialized for processing positive emotions while the right hemisphere is specialized for negative emotions. However, recent findings suggest that the evidence for such lateralization has been less consistent. In this study, we investigated emotion recognition of fear, surprise, happiness, sadness, disgust, and anger in 30 patients with focal prefrontal cortex lesions and 30 control subjects. We also examined the impact of lesion laterality on recognition of the six basic emotions. The results showed that compared to control subjects, the frontal subgroups were impaired in recognition of three negative basic emotions of fear, sadness, and anger - regardless of the lesion laterality. Therefore, our findings did not establish that each hemisphere is specialized for processing specific emotions. Moreover, the voxel-based lesion symptom mapping analysis showed that recognition of fear, sadness, and anger draws on a partially common bilaterally distributed prefrontal network.
Collapse
Affiliation(s)
- Riadh Ouerchefani
- High Institute of Human Sciences, University of Tunis El Manar, Tunisia.,Laboratory of Psychology of Pays de la Loire (EA 4638), University of Angers, France
| | | | - Brahim Kammoun
- Department of Neurosurgery, Habib Bourguiba Hospital, Sfax, Tunisia.,Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | | | - Didier Le Gall
- Laboratory of Psychology of Pays de la Loire (EA 4638), University of Angers, France
| |
Collapse
|