151
|
Kumari M, Kozyrskyj AL. Gut microbial metabolism defines host metabolism: an emerging perspective in obesity and allergic inflammation. Obes Rev 2017; 18:18-31. [PMID: 27862824 DOI: 10.1111/obr.12484] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 12/14/2022]
Abstract
The presence of >100 trillion microorganisms (collectively called gut microbiota) in our large intestine is essential for the maintenance of health. The gut microbiota starts to develop before birth and matures within first three years of life. The Western diet and lifestyle have been implicated in causing an imbalance of gut microbial communities and their metabolites that consequence in disease states, such as obesity and asthma. With more than 13% of the world population currently living with obesity and one out of 10 children diagnosed with asthma, we explore here the recent developments in the biosynthesis and mode of action of the key metabolites in relation to these two chronic inflammatory conditions.
Collapse
Affiliation(s)
- M Kumari
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - A L Kozyrskyj
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
152
|
Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res 2017; 179:223-244. [PMID: 27832936 DOI: 10.1016/j.trsl.2016.10.002] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 02/07/2023]
Abstract
The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health.
Collapse
Affiliation(s)
- Kiran V Sandhu
- APC Microbiome institute, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome institute, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy, Co, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
153
|
Goffredo M, Mass K, Parks EJ, Wagner DA, McClure EA, Graf J, Savoye M, Pierpont B, Cline G, Santoro N. Role of Gut Microbiota and Short Chain Fatty Acids in Modulating Energy Harvest and Fat Partitioning in Youth. J Clin Endocrinol Metab 2016; 101:4367-4376. [PMID: 27648960 PMCID: PMC5095239 DOI: 10.1210/jc.2016-1797] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE We aimed at determining the relationship of the gut microbiota and short chain fatty acids with obesity and fat partitioning and at testing potential differences in the ability of gut microbiota to ferment equal amounts of carbohydrates (CHO) between lean and obese youth. RESEARCH DESIGN AND METHODS We analyzed the gut microbiota of 84 youth in whom body fat distribution was measured by fast-magnetic resonance imaging, de novo lipogenesis (DNL) quantitated using deuterated water, and the capability of gut flora to ferment CHO was assessed by 13C-fructose treatment in vitro. RESULTS A significant association was found between the Firmicutes to Bacteroidetes ratio, and the abundance of Bacteroidetes and Actinobacteria with body mass index, visceral and SC fat (all P < .05). Plasma acetate, propionate, and butyrate were associated with body mass index and visceral and SC fat (all P < .05) and with hepatic DNL (P = .01, P = .09, P = .04, respectively). Moreover, the rate of CHO fermentation from the gut flora was higher in obese than in lean subjects (P = .018). CONCLUSIONS These data demonstrate that obese youth show a different gut flora composition than lean and that short chain fatty acids are associated with body fat partitioning and DNL. Also, the gut microbiota of obese youth have a higher capability than the gut flora of lean to oxidize CHO.
Collapse
Affiliation(s)
- Martina Goffredo
- Department of Pediatrics (M.G., M.S., B.P., N.S.), Yale University, New Haven, Connecticut; Universita' Milano Bicocca (M.G.), Milano, Italy; Department of Molecular & Cell Biology (K.M., E.A.M., J.G.), University of Connecticut, Storrs, Connecticut; Department of Medicine (E.J.P.), University of Missouri, Columbia, Missouri; Metabolic Solutions Inc. (D.A.W.), Nashua, New Hampshire; Department of Internal Medicine (G.C.), Yale University, New Haven, Connecticut
| | - Kendra Mass
- Department of Pediatrics (M.G., M.S., B.P., N.S.), Yale University, New Haven, Connecticut; Universita' Milano Bicocca (M.G.), Milano, Italy; Department of Molecular & Cell Biology (K.M., E.A.M., J.G.), University of Connecticut, Storrs, Connecticut; Department of Medicine (E.J.P.), University of Missouri, Columbia, Missouri; Metabolic Solutions Inc. (D.A.W.), Nashua, New Hampshire; Department of Internal Medicine (G.C.), Yale University, New Haven, Connecticut
| | - Elizabeth J Parks
- Department of Pediatrics (M.G., M.S., B.P., N.S.), Yale University, New Haven, Connecticut; Universita' Milano Bicocca (M.G.), Milano, Italy; Department of Molecular & Cell Biology (K.M., E.A.M., J.G.), University of Connecticut, Storrs, Connecticut; Department of Medicine (E.J.P.), University of Missouri, Columbia, Missouri; Metabolic Solutions Inc. (D.A.W.), Nashua, New Hampshire; Department of Internal Medicine (G.C.), Yale University, New Haven, Connecticut
| | - David A Wagner
- Department of Pediatrics (M.G., M.S., B.P., N.S.), Yale University, New Haven, Connecticut; Universita' Milano Bicocca (M.G.), Milano, Italy; Department of Molecular & Cell Biology (K.M., E.A.M., J.G.), University of Connecticut, Storrs, Connecticut; Department of Medicine (E.J.P.), University of Missouri, Columbia, Missouri; Metabolic Solutions Inc. (D.A.W.), Nashua, New Hampshire; Department of Internal Medicine (G.C.), Yale University, New Haven, Connecticut
| | - Emily Ann McClure
- Department of Pediatrics (M.G., M.S., B.P., N.S.), Yale University, New Haven, Connecticut; Universita' Milano Bicocca (M.G.), Milano, Italy; Department of Molecular & Cell Biology (K.M., E.A.M., J.G.), University of Connecticut, Storrs, Connecticut; Department of Medicine (E.J.P.), University of Missouri, Columbia, Missouri; Metabolic Solutions Inc. (D.A.W.), Nashua, New Hampshire; Department of Internal Medicine (G.C.), Yale University, New Haven, Connecticut
| | - Joerg Graf
- Department of Pediatrics (M.G., M.S., B.P., N.S.), Yale University, New Haven, Connecticut; Universita' Milano Bicocca (M.G.), Milano, Italy; Department of Molecular & Cell Biology (K.M., E.A.M., J.G.), University of Connecticut, Storrs, Connecticut; Department of Medicine (E.J.P.), University of Missouri, Columbia, Missouri; Metabolic Solutions Inc. (D.A.W.), Nashua, New Hampshire; Department of Internal Medicine (G.C.), Yale University, New Haven, Connecticut
| | - Mary Savoye
- Department of Pediatrics (M.G., M.S., B.P., N.S.), Yale University, New Haven, Connecticut; Universita' Milano Bicocca (M.G.), Milano, Italy; Department of Molecular & Cell Biology (K.M., E.A.M., J.G.), University of Connecticut, Storrs, Connecticut; Department of Medicine (E.J.P.), University of Missouri, Columbia, Missouri; Metabolic Solutions Inc. (D.A.W.), Nashua, New Hampshire; Department of Internal Medicine (G.C.), Yale University, New Haven, Connecticut
| | - Bridget Pierpont
- Department of Pediatrics (M.G., M.S., B.P., N.S.), Yale University, New Haven, Connecticut; Universita' Milano Bicocca (M.G.), Milano, Italy; Department of Molecular & Cell Biology (K.M., E.A.M., J.G.), University of Connecticut, Storrs, Connecticut; Department of Medicine (E.J.P.), University of Missouri, Columbia, Missouri; Metabolic Solutions Inc. (D.A.W.), Nashua, New Hampshire; Department of Internal Medicine (G.C.), Yale University, New Haven, Connecticut
| | - Gary Cline
- Department of Pediatrics (M.G., M.S., B.P., N.S.), Yale University, New Haven, Connecticut; Universita' Milano Bicocca (M.G.), Milano, Italy; Department of Molecular & Cell Biology (K.M., E.A.M., J.G.), University of Connecticut, Storrs, Connecticut; Department of Medicine (E.J.P.), University of Missouri, Columbia, Missouri; Metabolic Solutions Inc. (D.A.W.), Nashua, New Hampshire; Department of Internal Medicine (G.C.), Yale University, New Haven, Connecticut
| | - Nicola Santoro
- Department of Pediatrics (M.G., M.S., B.P., N.S.), Yale University, New Haven, Connecticut; Universita' Milano Bicocca (M.G.), Milano, Italy; Department of Molecular & Cell Biology (K.M., E.A.M., J.G.), University of Connecticut, Storrs, Connecticut; Department of Medicine (E.J.P.), University of Missouri, Columbia, Missouri; Metabolic Solutions Inc. (D.A.W.), Nashua, New Hampshire; Department of Internal Medicine (G.C.), Yale University, New Haven, Connecticut
| |
Collapse
|
154
|
Stenblom EL, Weström B, Linninge C, Bonn P, Farrell M, Rehfeld JF, Montelius C. Dietary green-plant thylakoids decrease gastric emptying and gut transit, promote changes in the gut microbial flora, but does not cause steatorrhea. Nutr Metab (Lond) 2016; 13:67. [PMID: 27777602 PMCID: PMC5059972 DOI: 10.1186/s12986-016-0128-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/03/2016] [Indexed: 02/08/2023] Open
Abstract
Green-plant thylakoids increase satiety by affecting appetite hormones such as ghrelin, cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1). The objective of this study was to investigate if thylakoids also affect gastrointestinal (GI) passage and microbial composition. To analyse the effects on GI passage, 16 rats were gavage-fed a control or thylakoid-supplemented high-fat diet (HFD) 30 min before receiving Evans blue. Another 16 rats were fed a control HFD or thylakoid HFD for two weeks prior to the intragastric challenge with Evans blue. The amount of Evans blue in the stomach and the distance of migration in the intestines after 30 min were used as a measurement of gastric emptying and intestinal transit. These were reduced by thylakoid supplementation in the acute study, and however not significantly also after the two-week diet study. The second aim of the study was to investigate if thylakoid-supplementation affects the gut microbiota and amount of faecal fat in healthy human volunteers (n = 34) receiving thylakoid or placebo treatments for three months. Microbiota was analysed using 16S rRNA gene sequencing and qPCR, and faecal fat was extracted by dichloromethane. The total bacteria, and specifically the Bacteriodes fragilis group, were increased by thylakoid treatment versus placebo, while thylakoids did not cause steatorrhea. Dietary supplementation with thylakoids thus affects satiety both via appetite hormones and GI fullness, and affects the microbial composition without causing GI adverse effects such as steatorrhea. This suggests thylakoids as a novel agent in prevention and treatment of obesity.
Collapse
Affiliation(s)
- Eva-Lena Stenblom
- Department of Experimental Medical Science, Appetite Regulation Unit, BMC B11, Lund University, Sölvegatan 19, SE-221 84 Lund, Sweden
| | - Björn Weström
- Department of Biology, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| | - Caroline Linninge
- Department of Food Technology, Engineering and Nutrition, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Peter Bonn
- Medicinal Chemistry CVMD, AstraZeneca R&D, Mölndal, Sweden
| | - Mary Farrell
- Department of Experimental Medical Science, Appetite Regulation Unit, BMC B11, Lund University, Sölvegatan 19, SE-221 84 Lund, Sweden
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University, DK-2100 Copenhagen, Denmark
| | - Caroline Montelius
- Department of Experimental Medical Science, Appetite Regulation Unit, BMC B11, Lund University, Sölvegatan 19, SE-221 84 Lund, Sweden
| |
Collapse
|
155
|
Chen H, Chen T, Giudici P, Chen F. Vinegar Functions on Health: Constituents, Sources, and Formation Mechanisms. Compr Rev Food Sci Food Saf 2016; 15:1124-1138. [PMID: 33401833 DOI: 10.1111/1541-4337.12228] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/30/2022]
Abstract
Vinegars are one of only a few acidic condiments throughout the world. Vinegars can mainly be considered grain vinegars and fruit vinegars, according to the raw materials used. Both grain vinegars and fruit vinegars, which are fermented by traditional methods, possess a variety of physiological functions, such as antibacteria, anti-infection, antioxidation, blood glucose control, lipid metabolism regulation, weight loss, and anticancer activities. The antibacteria and anti-infection abilities of vinegars are mainly due to the presence of organic acids, polyphenols, and melanoidins. The polyphenols and melanoidins also provide the antioxidant abilities of vinegars, which are produced from the raw materials and fermentation processes, respectively. The blood glucose control, lipid metabolism regulation, and weight loss capabilities from vinegars are mainly due to acetic acid. Besides caffeoylsophorose (inhibits disaccharidase) and ligustrazine (improves blood circulation), other functional ingredients present in vinegars provide certain health benefits as well. Regarding anticancer activities, several grain vinegars strongly inhibit the growth of some cancer cells in vivo or in vitro, but related functional ingredients remain largely unknown, except tryptophol in Japanese black soybean vinegar. Considering the discovering of various functional ingredients and clarifying their mechanisms, some vinegars could be functional foods or even medicines, depending on a number of proofs that demonstrate these constituents can cure chronic diseases such as diabetes or cardiovascular problems.
Collapse
Affiliation(s)
- Hengye Chen
- Key Laboratory of Environment Correlative Dietology and College of Food Science and Technology, Huazhong Agricultural Uni, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Tao Chen
- Key Laboratory of Environment Correlative Dietology and College of Food Science and Technology, Huazhong Agricultural Uni, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Paolo Giudici
- Dept. of Life Sciences, Uni. of Modena and Reggio Emilia, Via Amendola, 2, 42122, Reggio Emilia, Italy
| | - Fusheng Chen
- Key Laboratory of Environment Correlative Dietology and College of Food Science and Technology, Huazhong Agricultural Uni, Wuhan, 430070, Hubei Province, People's Republic of China
| |
Collapse
|
156
|
Hanatani S, Motoshima H, Takaki Y, Kawasaki S, Igata M, Matsumura T, Kondo T, Senokuchi T, Ishii N, Kawashima J, Kukidome D, Shimoda S, Nishikawa T, Araki E. Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-Ay mice. J Clin Biochem Nutr 2016; 59:207-214. [PMID: 27895388 PMCID: PMC5110936 DOI: 10.3164/jcbn.16-23] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022] Open
Abstract
The induction of beige adipogenesis within white adipose tissue, known as "browning", has received attention as a novel potential anti-obesity strategy. The expression of some characteristic genes including PR domain containing 16 is induced during the browning process. Although acetate has been reported to suppress weight gain in both rodents and humans, its potential effects on beige adipogenesis in white adipose tissue have not been fully characterized. We examined the effects of acetate treatment on 3T3-L1 cells and in obese diabetic KK-Ay mice. The mRNA expression levels of genes involved in beige adipocyte differentiation and genes selectively expressed in beige adipocytes were significantly elevated in both 3T3-L1 cells incubated with 1.0 mM acetate and the visceral white adipose tissue from mice treated with 0.6% acetate for 16 weeks. In KK-Ay mice, acetate reduced the food efficiency ratio and increased the whole-body oxygen consumption rate. Additionally, reduction of adipocyte size and uncoupling protein 1-positive adipocytes and interstitial areas with multilocular adipocytes appeared in the visceral white adipose tissue of acetate-treated mice, suggesting that acetate induced initial changes of "browning". In conclusion, acetate alters the expression of genes involved in beige adipogenesis and might represent a potential therapeutic agent to combat obesity.
Collapse
Affiliation(s)
- Satoko Hanatani
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yuki Takaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Shuji Kawasaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Motoyuki Igata
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takafumi Senokuchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Norio Ishii
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Daisuke Kukidome
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Seiya Shimoda
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takeshi Nishikawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
157
|
Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced Changes in Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:765-76. [PMID: 27012191 DOI: 10.1016/j.ajpath.2015.11.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/21/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) ranks among major causes of morbidity and mortality. Diet and crosstalk between the gut and liver are important determinants of ALD. We evaluated the effects of different types of dietary fat and ethanol on the gut microbiota composition and metabolic activity and the effect of these changes on liver injury in ALD. Compared with ethanol and a saturated fat diet (medium chain triglycerides enriched), an unsaturated fat diet (corn oil enriched) exacerbated ethanol-induced endotoxemia, liver steatosis, and injury. Major alterations in gut microbiota, including a reduction in Bacteroidetes and an increase in Proteobacteria and Actinobacteria, were seen in animals fed an unsaturated fat diet and ethanol but not a saturated fat diet and ethanol. Compared with a saturated fat diet and ethanol, an unsaturated fat diet and ethanol caused major fecal metabolomic changes. Moreover, a decrease in certain fecal amino acids was noted in both alcohol-fed groups. These data support an important role of dietary lipids in ALD pathogenesis and provide insight into mechanisms of ALD development. A diet enriched in unsaturated fats enhanced alcohol-induced liver injury and caused major fecal metagenomic and metabolomic changes that may play an etiologic role in observed liver injury. Dietary lipids can potentially serve as inexpensive interventions for the prevention and treatment of ALD.
Collapse
|
158
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol 2016. [PMID: 27507964 DOI: 10.3389/fmicb.2016.01144]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Federica Del Chierico
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy; Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| |
Collapse
|
159
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol 2016. [PMID: 27507964 DOI: 10.3389/fmicb.2016.01144] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Federica Del Chierico
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy; Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| |
Collapse
|
160
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol 2016; 7:1144. [PMID: 27507964 PMCID: PMC4960240 DOI: 10.3389/fmicb.2016.01144] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| | - Federica Del Chierico
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| |
Collapse
|
161
|
Hald S, Schioldan AG, Moore ME, Dige A, Lærke HN, Agnholt J, Bach Knudsen KE, Hermansen K, Marco ML, Gregersen S, Dahlerup JF. Effects of Arabinoxylan and Resistant Starch on Intestinal Microbiota and Short-Chain Fatty Acids in Subjects with Metabolic Syndrome: A Randomised Crossover Study. PLoS One 2016; 11:e0159223. [PMID: 27434092 PMCID: PMC4951149 DOI: 10.1371/journal.pone.0159223] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 05/25/2016] [Indexed: 12/20/2022] Open
Abstract
Recently, the intestinal microbiota has been emphasised as an important contributor to the development of metabolic syndrome. Dietary fibre may exert beneficial effects through modulation of the intestinal microbiota and metabolic end products. We investigated the effects of a diet enriched with two different dietary fibres, arabinoxylan and resistant starch type 2, on the gut microbiome and faecal short-chain fatty acids. Nineteen adults with metabolic syndrome completed this randomised crossover study with two 4-week interventions of a diet enriched with arabinoxylan and resistant starch and a low-fibre Western-style diet. Faecal samples were collected before and at the end of the interventions for fermentative end-product analysis and 16S ribosomal RNA bacterial gene amplification for identification of bacterial taxa. Faecal carbohydrate residues were used to verify compliance. The diet enriched with arabinoxylan and resistant starch resulted in significant reductions in the total species diversity of the faecal-associated intestinal microbiota but also increased the heterogeneity of bacterial communities both between and within subjects. The proportion of Bifidobacterium was increased by arabinoxylan and resistant starch consumption (P<0.001), whereas the proportions of certain bacterial genera associated with dysbiotic intestinal communities were reduced. Furthermore, the total short-chain fatty acids (P<0.01), acetate (P<0.01) and butyrate concentrations (P<0.01) were higher by the end of the diet enriched with arabinoxylan and resistant starch compared with those resulting from the Western-style diet. The concentrations of isobutyrate (P = 0.05) and isovalerate (P = 0.03) decreased in response to the arabinoxylan and resistant starch enriched diet, indicating reduced protein fermentation. In conclusion, arabinoxylan and resistant starch intake changes the microbiome and short-chain fatty acid compositions, with potential beneficial effects on colonic health and metabolic syndrome. TRIAL REGISTRATION ClinicalTrials.gov NCT01618526.
Collapse
Affiliation(s)
- Stine Hald
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Grethe Schioldan
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mary E. Moore
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
| | - Anders Dige
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Agnholt
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Maria L. Marco
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
| | - Søren Gregersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jens F. Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
162
|
Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells. PLoS One 2016; 11:e0158055. [PMID: 27348124 PMCID: PMC4922563 DOI: 10.1371/journal.pone.0158055] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/09/2016] [Indexed: 11/19/2022] Open
Abstract
Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.
Collapse
|
163
|
Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M. The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. Mol Neurobiol 2016; 54:4432-4451. [PMID: 27349436 DOI: 10.1007/s12035-016-0004-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
There is a growing awareness that gut commensal metabolites play a major role in host physiology and indeed the pathophysiology of several illnesses. The composition of the microbiota largely determines the levels of tryptophan in the systemic circulation and hence, indirectly, the levels of serotonin in the brain. Some microbiota synthesize neurotransmitters directly, e.g., gamma-amino butyric acid, while modulating the synthesis of neurotransmitters, such as dopamine and norepinephrine, and brain-derived neurotropic factor (BDNF). The composition of the microbiota determines the levels and nature of tryptophan catabolites (TRYCATs) which in turn has profound effects on aryl hydrocarbon receptors, thereby influencing epithelial barrier integrity and the presence of an inflammatory or tolerogenic environment in the intestine and beyond. The composition of the microbiota also determines the levels and ratios of short chain fatty acids (SCFAs) such as butyrate and propionate. Butyrate is a key energy source for colonocytes. Dysbiosis leading to reduced levels of SCFAs, notably butyrate, therefore may have adverse effects on epithelial barrier integrity, energy homeostasis, and the T helper 17/regulatory/T cell balance. Moreover, dysbiosis leading to reduced butyrate levels may increase bacterial translocation into the systemic circulation. As examples, we describe the role of microbial metabolites in the pathophysiology of diabetes type 2 and autism.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, VIC, 3220, Australia.,Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - Andre Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
| | - Javier R Caso
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (Imas12), Avda. Complutense s/n, 28040, Madrid, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, VIC, 3220, Australia. .,Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Parana, Brazil.
| |
Collapse
|
164
|
Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M. The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis 2016; 15:108. [PMID: 27317359 PMCID: PMC4912704 DOI: 10.1186/s12944-016-0278-4] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023] Open
Abstract
Obesity and its associated complications like type 2 diabetes (T2D) are reaching epidemic stages. Increased food intake and lack of exercise are two main contributing factors. Recent work has been highlighting an increasingly more important role of gut microbiota in metabolic disorders. It’s well known that gut microbiota plays a major role in the development of food absorption and low grade inflammation, two key processes in obesity and diabetes. This review summarizes key discoveries during the past decade that established the role of gut microbiota in the development of obesity and diabetes. It will look at the role of key metabolites mainly the short chain fatty acids (SCFA) that are produced by gut microbiota and how they impact key metabolic pathways such as insulin signalling, incretin production as well as inflammation. It will further look at the possible ways to harness the beneficial aspects of the gut microbiota to combat these metabolic disorders and reduce their impact.
Collapse
Affiliation(s)
- Othman A Baothman
- Department of Biochemistry, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Ibrahim Taher
- Faculty of Medicine, Aljouf University, Aljouf, Saudi Arabia
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Dasman, P.O. Box 1180, 15462, Kuwait City, Kuwait.
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Dasman, P.O. Box 1180, 15462, Kuwait City, Kuwait.
| |
Collapse
|
165
|
Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016; 165:1332-1345. [DOI: 10.1016/j.cell.2016.05.041] [Citation(s) in RCA: 2177] [Impact Index Per Article: 241.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 12/12/2022]
|
166
|
Bouderbala H, Kaddouri H, Kheroua O, Saidi D. [Anti-obesogenic effect of apple cider vinegar in rats subjected to a high fat diet]. Ann Cardiol Angeiol (Paris) 2016; 65:208-13. [PMID: 27209492 DOI: 10.1016/j.ancard.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 11/19/2022]
Abstract
AIM OF THE STUDY The search of new anti-obesogenic treatments based on medicinal plants without or with minimal side effects is a challenge. In this context, the present study was conducted to evaluate the anti-obesogenic effect of apple cider vinegar (ACV) in Wistar rats subjected to a high fat diet. MATERIALS AND METHODS Eighteen male Wistar rats (140±5g) were divided into 3 three equal groups. A witness group submitted to standard laboratory diet and two groups subjected to a high fat diet (cafeteria diet); one receives a daily gavage of apple cider vinegar (7mL/kg/d) for 30 days. Throughout the experiment monitoring the nutritional assessment, anthropometric and biochemical parameters is achieved. RESULTS In the RCV vs RC group, we observed a highly significant decrease (P<0.001) in body weight and food intake. On the other hand, the VCP decreases very significantly different anthropometric parameters: BMI (P<0.01), chest circumference and abdominal circumference (P<0.001), decreases serum glucose levels (26.83%) and improves the serum lipid profile by reducing plasma levels of total cholesterol (34.29%), TG (51.06%), LDL-c (59.15%), VLDL (50%) and the total lipid (45.15%), and increasing HDL-c (39.39%), thus offering protection against oatherogenic risk (61.62%). CONCLUSION This preliminary study indicates that the metabolic disorders caused by high fat diet (cafeteria) are thwarted by taking apple cider vinegar which proves to have a satiating effect, antihyperlipidemic and hypoglycemic effects, and seems prevent the atherogenic risk.
Collapse
Affiliation(s)
- H Bouderbala
- Laboratoire de physiologie de la nutrition et de sécurité alimentaire, département de biologie, faculté des sciences de la nature et de la vie, université d'Oran 1 Ahmed Ben Bella, Oran, Algérie.
| | - H Kaddouri
- Laboratoire de physiologie de la nutrition et de sécurité alimentaire, département de biologie, faculté des sciences de la nature et de la vie, université d'Oran 1 Ahmed Ben Bella, Oran, Algérie
| | - O Kheroua
- Laboratoire de physiologie de la nutrition et de sécurité alimentaire, département de biologie, faculté des sciences de la nature et de la vie, université d'Oran 1 Ahmed Ben Bella, Oran, Algérie
| | - D Saidi
- Laboratoire de physiologie de la nutrition et de sécurité alimentaire, département de biologie, faculté des sciences de la nature et de la vie, université d'Oran 1 Ahmed Ben Bella, Oran, Algérie
| |
Collapse
|
167
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
168
|
Effects of Prebiotic and Synbiotic Supplementation on Inflammatory Markers and Anthropometric Indices After Roux-en-Y Gastric Bypass: A Randomized, Triple-blind, Placebo-controlled Pilot Study. J Clin Gastroenterol 2016; 50:208-17. [PMID: 25909598 DOI: 10.1097/mcg.0000000000000328] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Studies have shown that prebiotics and synbiotics modulate the intestinal microbiota and may have beneficial effects on the immune response and anthropometric indices; however, the impact of the use of these supplements after bariatric surgery is not yet known. GOALS This study investigated the effects of prebiotic and synbiotic supplementation on inflammatory markers and anthropometric indices in individuals undergoing open Roux-en-Y gastric bypass (RYGB). STUDY In this randomized, controlled, and triple-blind trial conducted as a pilot study, individuals undergoing RYGB (n=9) and healthy individuals (n=9) were supplemented with 6 g/d of placebo (maltodextrin), prebiotic (fructo-oligosaccharide, FOS), or synbiotic (FOS+Lactobacillus and Bifidobacteria strains) for 15 days. RESULTS Interleukin-1β, interleukin-6, tumor necrosis factor-α, C-reactive protein, albumin, and the C-reactive protein/albumin ratio showed no significant changes on comparison between groups after supplementation. The reduction in the body weight of patients undergoing RYGB was 53.8% higher in the prebiotic group compared with the placebo group (-0.7 kg, P=0.001), whereas the reduction in the BMI and the increase in the percentage of excess weight loss were higher in the placebo and the prebiotic groups compared with the synbiotic group (P<0.05). CONCLUSIONS Supplementation of FOS increased weight loss, whereas both prebiotics and synbiotics were not able to promote significant changes in inflammatory markers, although in most analyses, there was a reduction in their absolute values. The use of FOS may represent a potential adjunct in the treatment of obesity.
Collapse
|
169
|
Cerdá B, Pérez M, Pérez-Santiago JD, Tornero-Aguilera JF, González-Soltero R, Larrosa M. Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health? Front Physiol 2016; 7:51. [PMID: 26924990 PMCID: PMC4757670 DOI: 10.3389/fphys.2016.00051] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022] Open
Abstract
Regular physical exercise provides many health benefits, protecting against the development of chronic diseases, and improving quality of life. Some of the mechanisms by which exercise provides these effects are the promotion of an anti-inflammatory state, reinforcement of the neuromuscular function, and activation of the hypothalamic-pituitary-adrenal (HPA) axis. Recently, it has been proposed that physical exercise is able to modify gut microbiota, and thus this could be another factor by which exercise promotes well-being, since gut microbiota appears to be closely related to health and disease. The purpose of this paper is to review the recent findings on gut microbiota modification by exercise, proposing several mechanisms by which physical exercise might cause changes in gut microbiota.
Collapse
Affiliation(s)
- Begoña Cerdá
- Research Group on Nutrition, Physical Activity and Health, School of Doctoral Studies and Research, Universidad Europea de Madrid Madrid, Spain
| | - Margarita Pérez
- Research Group on Nutrition, Physical Activity and Health, School of Doctoral Studies and Research, Universidad Europea de Madrid Madrid, Spain
| | - Jennifer D Pérez-Santiago
- Research Group on Nutrition, Physical Activity and Health, School of Doctoral Studies and Research, Universidad Europea de Madrid Madrid, Spain
| | - Jose F Tornero-Aguilera
- Research Group on Nutrition, Physical Activity and Health, School of Doctoral Studies and Research, Universidad Europea de Madrid Madrid, Spain
| | - Rocío González-Soltero
- Research Group on Nutrition, Physical Activity and Health, School of Doctoral Studies and Research, Universidad Europea de Madrid Madrid, Spain
| | - Mar Larrosa
- Research Group on Nutrition, Physical Activity and Health, School of Doctoral Studies and Research, Universidad Europea de Madrid Madrid, Spain
| |
Collapse
|
170
|
Reprogramming of hepatic fat accumulation and 'browning' of adipose tissue by the short-chain fatty acid acetate. Int J Obes (Lond) 2016; 40:955-63. [PMID: 26975441 DOI: 10.1038/ijo.2016.23] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/30/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES Short-chain fatty acids, produced by microbiome fermentation of carbohydrates, have been linked to a reduction in appetite, body weight and adiposity. However, determining the contribution of central and peripheral mechanisms to these effects has not been possible. SUBJECTS/METHODS C57BL/6 mice fed with either normal or high-fat diet were treated with nanoparticle-delivered acetate, and the effects on metabolism were investigated. RESULTS In the liver, acetate decreased lipid accumulation and improved hepatic function, as well as increasing mitochondrial efficiency. In white adipose tissue, it inhibited lipolysis and induced 'browning', increasing thermogenic capacity that led to a reduction in body adiposity. CONCLUSIONS This study provides novel insights into the peripheral mechanism of action of acetate, independent of central action, including 'browning' and enhancement of hepatic mitochondrial function.
Collapse
|
171
|
Shen F, Feng J, Wang X, Qi Z, Shi X, An Y, Zhang Q, Wang C, Liu M, Liu B, Yu L. Vinegar Treatment Prevents the Development of Murine Experimental Colitis via Inhibition of Inflammation and Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1111-1121. [PMID: 26795553 DOI: 10.1021/acs.jafc.5b05415] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study investigated the preventive effects of vinegar and acetic acid (the active component of vinegar) on ulcerative colitis (UC) in mice. Vinegar (5% v/v) or acetic acid (0.3% w/v) treatment significantly reduced the disease activity index and histopathological scores, attenuated body weight loss, and shortened the colon length in a murine experimental colitis model induced by dextran sulfate sodium (DSS). Further mechanistic analysis showed that vinegar inhibited inflammation through suppressing Th1 and Th17 responses, the NLRP3 inflammasome, and MAPK signaling activation. Vinegar also inhibited endoplasmic reticulum (ER) stress-mediated apoptosis in the colitis mouse model. Surprisingly, pretreatment with vinegar for 28 days before DSS induction increased levels of the commensal lactic acid-producing or acetic acid-producing bacteria, including Lactobacillus, Bifidobacteria, and Enterococcus faecalis, whereas decreased Escherichia coli levels were found in the feces of mice. These results suggest that vinegar supplementation might provide a new dietary strategy for the prevention of UC.
Collapse
Affiliation(s)
- Fengge Shen
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Jiaxuan Feng
- College of Medicine, Yanbian University , Yanji 133000, China
| | - Xinhui Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Zhimin Qi
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Xiaochen Shi
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Yanan An
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Qiaoli Zhang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Chao Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Mingyuan Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou 225009, China
| | - Bo Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Lu Yu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| |
Collapse
|
172
|
Miyazaki Y, Kurata Y, Koga H, Yamaguchi S, Tachibana H, Yamada K. Involvement of Polyphenol Compounds in Histamine Release Suppression by Pomegranate Vinegar. J JPN SOC FOOD SCI 2016. [DOI: 10.3136/nskkk.63.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | | | - Koji Yamada
- Faculty of Agriculture, Kyushu University
- Faculty of Biotechnology and Life Science, Sojo University
| |
Collapse
|
173
|
Singh V, Yeoh BS, Ntambi JM, Vijay-Kumar M. Influence of Gut Microbiota on Hepatic Lipogenesis and Disease Pathogenesis. HEPATIC DE NOVO LIPOGENESIS AND REGULATION OF METABOLISM 2016:189-209. [DOI: 10.1007/978-3-319-25065-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
174
|
Abstract
The connection between the gut microbiota and the aetiology of obesity and cardiometabolic disorders is increasingly being recognized by clinicians. Our gut microbiota might affect the cardiometabolic phenotype by fermenting indigestible dietary components and thereby producing short-chain fatty acids (SCFA). These SCFA are not only of importance in gut health and as signalling molecules, but might also enter the systemic circulation and directly affect metabolism or the function of peripheral tissues. In this Review, we discuss the effects of three SCFA (acetate, propionate and butyrate) on energy homeostasis and metabolism, as well as how these SCFA can beneficially modulate adipose tissue, skeletal muscle and liver tissue function. As a result, these SCFA contribute to improved glucose homeostasis and insulin sensitivity. Furthermore, we also summarize the increasing evidence for a potential role of SCFA as metabolic targets to prevent and counteract obesity and its associated disorders in glucose metabolism and insulin resistance. However, most data are derived from animal and in vitro studies, and consequently the importance of SCFA and differential SCFA availability in human energy and substrate metabolism remains to be fully established. Well-controlled human intervention studies investigating the role of SCFA on cardiometabolic health are, therefore, eagerly awaited.
Collapse
Affiliation(s)
- Emanuel E Canfora
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER, Maastricht, PO Box 616, 6200 MD, Maastricht, Netherlands
| | - Johan W Jocken
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER, Maastricht, PO Box 616, 6200 MD, Maastricht, Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER, Maastricht, PO Box 616, 6200 MD, Maastricht, Netherlands
| |
Collapse
|
175
|
Yamashita H. Biological Function of Acetic Acid–Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats. Crit Rev Food Sci Nutr 2015; 56 Suppl 1:S171-5. [DOI: 10.1080/10408398.2015.1045966] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
176
|
Priyadarshini M, Villa SR, Fuller M, Wicksteed B, Mackay CR, Alquier T, Poitout V, Mancebo H, Mirmira RG, Gilchrist A, Layden BT. An Acetate-Specific GPCR, FFAR2, Regulates Insulin Secretion. Mol Endocrinol 2015; 29:1055-66. [PMID: 26075576 DOI: 10.1210/me.2015-1007] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors have been well described to contribute to the regulation of glucose-stimulated insulin secretion (GSIS). The short-chain fatty acid-sensing G protein-coupled receptor, free fatty acid receptor 2 (FFAR2), is expressed in pancreatic β-cells, and in rodents, its expression is altered during insulin resistance. Thus, we explored the role of FFAR2 in regulating GSIS. First, assessing the phenotype of wild-type and Ffar2(-/-) mice in vivo, we observed no differences with regard to glucose homeostasis on normal or high-fat diet, with a marginally significant defect in insulin secretion in Ffar2(-/-) mice during hyperglycemic clamps. In ex vivo insulin secretion studies, we observed diminished GSIS from Ffar2(-/-) islets relative to wild-type islets under high-glucose conditions. Further, in the presence of acetate, the primary endogenous ligand for FFAR2, we observed FFAR2-dependent potentiation of GSIS, whereas FFAR2-specific agonists resulted in either potentiation or inhibition of GSIS, which we found to result from selective signaling through either Gαq/11 or Gαi/o, respectively. Lastly, in ex vivo insulin secretion studies of human islets, we observed that acetate and FFAR2 agonists elicited different signaling properties at human FFAR2 than at mouse FFAR2. Taken together, our studies reveal that FFAR2 signaling occurs by divergent G protein pathways that can selectively potentiate or inhibit GSIS in mouse islets. Further, we have identified important differences in the response of mouse and human FFAR2 to selective agonists, and we suggest that these differences warrant consideration in the continued investigation of FFAR2 as a novel type 2 diabetes target.
Collapse
Affiliation(s)
- Medha Priyadarshini
- Division of Endocrinology, Metabolism, and Molecular Medicine (M.P., S.R.V., M.F., B.T.L.), Northwestern University, Chicago, Illinois 60611; Kovler Diabetes Center (B.W.), The University of Chicago, Chicago, Illinois 60637; Monash University (C.R.M.), Clayton, Victoria 3800, Australia; Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, and Department of Medicine (T.A., V.P.), University of Montreal, Quebec, H2X 0A9 Canada; Multispan (H.M.), Hayward, California 94545; Department of Pediatrics and the Herman B Wells Center for Pediatric Research (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 4602; Department of Biochemistry and Molecular Biology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Medicine (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmaceutical Sciences (A.G.), Midwestern University, Downers Grove, Illinois 60515; and Jesse Brown Veterans Affairs Medical Center (B.T.L.), Chicago, Illinois 60612
| | - Stephanie R Villa
- Division of Endocrinology, Metabolism, and Molecular Medicine (M.P., S.R.V., M.F., B.T.L.), Northwestern University, Chicago, Illinois 60611; Kovler Diabetes Center (B.W.), The University of Chicago, Chicago, Illinois 60637; Monash University (C.R.M.), Clayton, Victoria 3800, Australia; Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, and Department of Medicine (T.A., V.P.), University of Montreal, Quebec, H2X 0A9 Canada; Multispan (H.M.), Hayward, California 94545; Department of Pediatrics and the Herman B Wells Center for Pediatric Research (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 4602; Department of Biochemistry and Molecular Biology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Medicine (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmaceutical Sciences (A.G.), Midwestern University, Downers Grove, Illinois 60515; and Jesse Brown Veterans Affairs Medical Center (B.T.L.), Chicago, Illinois 60612
| | - Miles Fuller
- Division of Endocrinology, Metabolism, and Molecular Medicine (M.P., S.R.V., M.F., B.T.L.), Northwestern University, Chicago, Illinois 60611; Kovler Diabetes Center (B.W.), The University of Chicago, Chicago, Illinois 60637; Monash University (C.R.M.), Clayton, Victoria 3800, Australia; Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, and Department of Medicine (T.A., V.P.), University of Montreal, Quebec, H2X 0A9 Canada; Multispan (H.M.), Hayward, California 94545; Department of Pediatrics and the Herman B Wells Center for Pediatric Research (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 4602; Department of Biochemistry and Molecular Biology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Medicine (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmaceutical Sciences (A.G.), Midwestern University, Downers Grove, Illinois 60515; and Jesse Brown Veterans Affairs Medical Center (B.T.L.), Chicago, Illinois 60612
| | - Barton Wicksteed
- Division of Endocrinology, Metabolism, and Molecular Medicine (M.P., S.R.V., M.F., B.T.L.), Northwestern University, Chicago, Illinois 60611; Kovler Diabetes Center (B.W.), The University of Chicago, Chicago, Illinois 60637; Monash University (C.R.M.), Clayton, Victoria 3800, Australia; Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, and Department of Medicine (T.A., V.P.), University of Montreal, Quebec, H2X 0A9 Canada; Multispan (H.M.), Hayward, California 94545; Department of Pediatrics and the Herman B Wells Center for Pediatric Research (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 4602; Department of Biochemistry and Molecular Biology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Medicine (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmaceutical Sciences (A.G.), Midwestern University, Downers Grove, Illinois 60515; and Jesse Brown Veterans Affairs Medical Center (B.T.L.), Chicago, Illinois 60612
| | - Charles R Mackay
- Division of Endocrinology, Metabolism, and Molecular Medicine (M.P., S.R.V., M.F., B.T.L.), Northwestern University, Chicago, Illinois 60611; Kovler Diabetes Center (B.W.), The University of Chicago, Chicago, Illinois 60637; Monash University (C.R.M.), Clayton, Victoria 3800, Australia; Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, and Department of Medicine (T.A., V.P.), University of Montreal, Quebec, H2X 0A9 Canada; Multispan (H.M.), Hayward, California 94545; Department of Pediatrics and the Herman B Wells Center for Pediatric Research (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 4602; Department of Biochemistry and Molecular Biology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Medicine (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmaceutical Sciences (A.G.), Midwestern University, Downers Grove, Illinois 60515; and Jesse Brown Veterans Affairs Medical Center (B.T.L.), Chicago, Illinois 60612
| | - Thierry Alquier
- Division of Endocrinology, Metabolism, and Molecular Medicine (M.P., S.R.V., M.F., B.T.L.), Northwestern University, Chicago, Illinois 60611; Kovler Diabetes Center (B.W.), The University of Chicago, Chicago, Illinois 60637; Monash University (C.R.M.), Clayton, Victoria 3800, Australia; Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, and Department of Medicine (T.A., V.P.), University of Montreal, Quebec, H2X 0A9 Canada; Multispan (H.M.), Hayward, California 94545; Department of Pediatrics and the Herman B Wells Center for Pediatric Research (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 4602; Department of Biochemistry and Molecular Biology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Medicine (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmaceutical Sciences (A.G.), Midwestern University, Downers Grove, Illinois 60515; and Jesse Brown Veterans Affairs Medical Center (B.T.L.), Chicago, Illinois 60612
| | - Vincent Poitout
- Division of Endocrinology, Metabolism, and Molecular Medicine (M.P., S.R.V., M.F., B.T.L.), Northwestern University, Chicago, Illinois 60611; Kovler Diabetes Center (B.W.), The University of Chicago, Chicago, Illinois 60637; Monash University (C.R.M.), Clayton, Victoria 3800, Australia; Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, and Department of Medicine (T.A., V.P.), University of Montreal, Quebec, H2X 0A9 Canada; Multispan (H.M.), Hayward, California 94545; Department of Pediatrics and the Herman B Wells Center for Pediatric Research (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 4602; Department of Biochemistry and Molecular Biology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Medicine (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmaceutical Sciences (A.G.), Midwestern University, Downers Grove, Illinois 60515; and Jesse Brown Veterans Affairs Medical Center (B.T.L.), Chicago, Illinois 60612
| | - Helena Mancebo
- Division of Endocrinology, Metabolism, and Molecular Medicine (M.P., S.R.V., M.F., B.T.L.), Northwestern University, Chicago, Illinois 60611; Kovler Diabetes Center (B.W.), The University of Chicago, Chicago, Illinois 60637; Monash University (C.R.M.), Clayton, Victoria 3800, Australia; Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, and Department of Medicine (T.A., V.P.), University of Montreal, Quebec, H2X 0A9 Canada; Multispan (H.M.), Hayward, California 94545; Department of Pediatrics and the Herman B Wells Center for Pediatric Research (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 4602; Department of Biochemistry and Molecular Biology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Medicine (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmaceutical Sciences (A.G.), Midwestern University, Downers Grove, Illinois 60515; and Jesse Brown Veterans Affairs Medical Center (B.T.L.), Chicago, Illinois 60612
| | - Raghavendra G Mirmira
- Division of Endocrinology, Metabolism, and Molecular Medicine (M.P., S.R.V., M.F., B.T.L.), Northwestern University, Chicago, Illinois 60611; Kovler Diabetes Center (B.W.), The University of Chicago, Chicago, Illinois 60637; Monash University (C.R.M.), Clayton, Victoria 3800, Australia; Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, and Department of Medicine (T.A., V.P.), University of Montreal, Quebec, H2X 0A9 Canada; Multispan (H.M.), Hayward, California 94545; Department of Pediatrics and the Herman B Wells Center for Pediatric Research (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 4602; Department of Biochemistry and Molecular Biology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Medicine (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmaceutical Sciences (A.G.), Midwestern University, Downers Grove, Illinois 60515; and Jesse Brown Veterans Affairs Medical Center (B.T.L.), Chicago, Illinois 60612
| | - Annette Gilchrist
- Division of Endocrinology, Metabolism, and Molecular Medicine (M.P., S.R.V., M.F., B.T.L.), Northwestern University, Chicago, Illinois 60611; Kovler Diabetes Center (B.W.), The University of Chicago, Chicago, Illinois 60637; Monash University (C.R.M.), Clayton, Victoria 3800, Australia; Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, and Department of Medicine (T.A., V.P.), University of Montreal, Quebec, H2X 0A9 Canada; Multispan (H.M.), Hayward, California 94545; Department of Pediatrics and the Herman B Wells Center for Pediatric Research (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 4602; Department of Biochemistry and Molecular Biology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Medicine (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmaceutical Sciences (A.G.), Midwestern University, Downers Grove, Illinois 60515; and Jesse Brown Veterans Affairs Medical Center (B.T.L.), Chicago, Illinois 60612
| | - Brian T Layden
- Division of Endocrinology, Metabolism, and Molecular Medicine (M.P., S.R.V., M.F., B.T.L.), Northwestern University, Chicago, Illinois 60611; Kovler Diabetes Center (B.W.), The University of Chicago, Chicago, Illinois 60637; Monash University (C.R.M.), Clayton, Victoria 3800, Australia; Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, and Department of Medicine (T.A., V.P.), University of Montreal, Quebec, H2X 0A9 Canada; Multispan (H.M.), Hayward, California 94545; Department of Pediatrics and the Herman B Wells Center for Pediatric Research (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 4602; Department of Biochemistry and Molecular Biology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Medicine (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmaceutical Sciences (A.G.), Midwestern University, Downers Grove, Illinois 60515; and Jesse Brown Veterans Affairs Medical Center (B.T.L.), Chicago, Illinois 60612
| |
Collapse
|
177
|
Abstract
There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible.
Collapse
Affiliation(s)
- Michael E Symonds
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , ,
| | | | | |
Collapse
|
178
|
Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 2015; 7:2839-49. [PMID: 25875123 PMCID: PMC4425176 DOI: 10.3390/nu7042839] [Citation(s) in RCA: 588] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/29/2015] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
During feeding, the gut microbiota contributes to the host energy acquisition and metabolic regulation thereby influencing the development of metabolic disorders such as obesity and diabetes. Short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, which are produced by gut microbial fermentation of dietary fiber, are recognized as essential host energy sources and act as signal transduction molecules via G-protein coupled receptors (FFAR2, FFAR3, OLFR78, GPR109A) and as epigenetic regulators of gene expression by the inhibition of histone deacetylase (HDAC). Recent evidence suggests that dietary fiber and the gut microbial-derived SCFAs exert multiple beneficial effects on the host energy metabolism not only by improving the intestinal environment, but also by directly affecting various host peripheral tissues. In this review, we summarize the roles of gut microbial SCFAs in the host energy regulation and present an overview of the current understanding of its physiological functions.
Collapse
|
179
|
Parim B, Harishankar N, Balaji M, Pothana S, Sajjalaguddam RR. Effects of Piper nigrum extracts: Restorative perspectives of high-fat diet-induced changes on lipid profile, body composition, and hormones in Sprague-Dawley rats. PHARMACEUTICAL BIOLOGY 2015; 53:1318-1328. [PMID: 25856709 DOI: 10.3109/13880209.2014.980585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Piper nigrum Linn (Piperaceae) (PnL) is used in traditional medicine to treat gastric ailments, dyslipidemia, diabetes, and hypertension. OBJECTIVE The present study explores the possible protective effects of P. nigrum extracts on high-fat diet-induced obesity in rats. MATERIALS AND METHODS High-fat diet-induced obese rats were treated orally with 200 mg/kg bw of different extracts (hexane, ethylacetate, ethanol, and aqueous extracts) of PnL for 42 d. The effects of PnL extracts on body composition, insulin resistance, biochemical parameters, leptin, adiponectin, lipid profile, liver marker enzymes, and antioxidants were studied. RESULTS AND DISCUSSION The HFD control group rats showed a substantial raise in body weight (472.8 ± 9.3 g), fat% (20.8 ± 0.6%), and fat-free mass (165.9 ± 2.4 g) when compared with normal control rats whose body weight, fat%, and fat-free mass were 314.3 ± 4.4 g, 6.4 ± 1.4%, and 133.8 ± 2.2 g, respectively. Oral administration of ethyl acetate or aqueous extracts of PnL markedly reduced the body weight, fat%, and fat-free mass of HFD-fed rats. In contrast to the normal control group, a profound increase in plasma glucose, insulin resistance, lipid profile, leptin, thiobarbituric acid reactive substance (TBARS), and the activities of lipase and liver marker enzymes, and a decrease in adiponectin and antioxidant enzymes were noted in HFD control rats. Administration of PnL extracts to HFD-induced obese rats significantly (p < 0.05) restored the above profiles. CONCLUSION PnL extracts significantly reduced the body weight, fat%, and ameliorated HFD-induced hyperlipidemia and its constituents.
Collapse
Affiliation(s)
- BrahmaNaidu Parim
- Department of Biochemistry, Sri Venkateswara University , Tirupati, Andhra Pradesh , India
| | | | | | | | | |
Collapse
|
180
|
Bouazza A, Bitam A, Amiali M, Bounihi A, Yargui L, Koceir EA. Effect of fruit vinegars on liver damage and oxidative stress in high-fat-fed rats. PHARMACEUTICAL BIOLOGY 2015; 54:260-265. [PMID: 25853952 DOI: 10.3109/13880209.2015.1031910] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Vinegar has long been used as a condiment and a traditional medicine worldwide. OBJECTIVE The current study investigates the antioxidant effect of three types of fruit vinegars (FV) namely pomegranate [Punica granatum L. (Punicaceae)], prickly pear [Opuntia ficus-indica (L.) Mill. (Cactaceae)], and apple [Malus domestica Borkh. (Rosaceae)] vinegars in high-fat diet (HFD)-induced hyperlipidemic Wistar rats. MATERIALS AND METHODS Fifty male Wistar rats were divided into five groups; HFD (80 cal/d) fed rats were orally dosed with fruit vinegars (7 ml/kg) once daily for 28 weeks. At the end of the experiment, lipid profile, lipid peroxidation products, antioxidant enzymes, and trace elements were assessed in serum. In addition, a liver histopathological study was performed. RESULTS HFD showed a significant increase (p ≤ 0.05) in lipid profile and TBARS levels when compared with normal control. Daily oral administration of FV normalized various biochemical, metabolic, and histopathological changes. However, pomegranate vinegar exhibited a very significant (p ≤ 0.001) reduction in lipid profile levels (total cholesterol: 165%, triglycerides: 68%, LDL-c: 76%, and atherogenic index: 80%), whereas an increase in antioxidant status (SOD: 7-fold, GPx: 4.81-fold, GRx: 1.66-fold, and TAS: 3.45-fold) when compared with hyperlipidemic control. Histopathological examinations also confirmed the protective effects of pomegranate vinegar against lipid accumulation and the improvement of hepatic lesions. DISCUSSION AND CONCLUSION The fruit vinegars regulate lipid metabolism and decrease liver damage in high-fat fed rats as shown in this study.
Collapse
Affiliation(s)
- Asma Bouazza
- a Bioenergetics and Intermediary Metabolism Laboratory, Department of Biological Sciences and Physiology, FSB, University of Sciences and Technology Houari Boumediene (USTHB) , Algiers , Algeria
| | - Arezki Bitam
- a Bioenergetics and Intermediary Metabolism Laboratory, Department of Biological Sciences and Physiology, FSB, University of Sciences and Technology Houari Boumediene (USTHB) , Algiers , Algeria
- b Department of Food Technology and Human Nutrition , Ecole Nationale Supérieure Agronomique , ElHarrach , Algiers , Algeria , and
| | - Malek Amiali
- b Department of Food Technology and Human Nutrition , Ecole Nationale Supérieure Agronomique , ElHarrach , Algiers , Algeria , and
| | - Abdenour Bounihi
- a Bioenergetics and Intermediary Metabolism Laboratory, Department of Biological Sciences and Physiology, FSB, University of Sciences and Technology Houari Boumediene (USTHB) , Algiers , Algeria
| | - Lyece Yargui
- c Department of Medicine, Faculty of Health Sciences , Central Biochemistry Laboratory, Mustapha Bacha Hospital , Algiers , Algeria
| | - Elhadj Ahmed Koceir
- a Bioenergetics and Intermediary Metabolism Laboratory, Department of Biological Sciences and Physiology, FSB, University of Sciences and Technology Houari Boumediene (USTHB) , Algiers , Algeria
| |
Collapse
|
181
|
Heimann E, Nyman M, Degerman E. Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes. Adipocyte 2015; 4:81-8. [PMID: 26167409 PMCID: PMC4496978 DOI: 10.4161/21623945.2014.960694] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/10/2014] [Accepted: 08/28/2014] [Indexed: 01/21/2023] Open
Abstract
Fermentation of dietary fibers by colonic microbiota generates short-chain fatty acids (SCFAs), e.g., propionic acid and butyric acid, which have been described to have “anti-obesity properties” by ameliorating fasting glycaemia, body weight and insulin tolerance in animal models. In the present study, we therefore investigate if propionic acid and butyric acid have effects on lipolysis, de novo lipogenesis and glucose uptake in primary rat adipocytes. We show that both propionic acid and butyric acid inhibit isoproterenol- and adenosine deaminase-stimulated lipolysis as well as isoproterenol-stimulated lipolysis in the presence of a phosphodiesterase (PDE3) inhibitor. In addition, we show that propionic acid and butyric acid inhibit basal and insulin-stimulated de novo lipogenesis, which is associated with increased phosphorylation and thus inhibition of acetyl CoA carboxylase, a rate-limiting enzyme in fatty acid synthesis. Furthermore, we show that propionic acid and butyric acid increase insulin-stimulated glucose uptake. To conclude, our study shows that SCFAs have effects on fat storage and mobilization as well as glucose uptake in rat primary adipocytes. Thus, the SCFAs might contribute to healthier adipocytes and subsequently also to improved energy metabolism with for example less circulating free fatty acids, which is beneficial in the context of obesity and type 2 diabetes.
Collapse
Key Words
- ACC, acetyl-CoA carboxylase
- ADA, adenosine deaminase
- AMPK, AMP-activated protein kinase
- BA, butyric acid
- BSA, bovine serum albumin
- FFAR, free fatty acid receptor
- GLUT, glucose transporter
- GPCR, G-protein-coupled receptor
- HSL, hormone-sensitive lipase
- ISO, isoproterenol
- KRBH, Krebs-Ringer bicarbonate-HEPES
- KRH, Krebs Ringer-HEPES
- PA, propionic acid
- PDE, cyclic nucleotide phosphodiesterase
- SCFAs, short-chain fatty acids
- T2D, type 2 diabetes
- adipocyte
- metabolism
- obesity
- short-chain fatty acid
- type 2 diabetes
Collapse
|
182
|
Mopuri R, Ganjayi M, Banavathy KS, Parim BN, Meriga B. Evaluation of anti-obesity activities of ethanolic extract of Terminalia paniculata bark on high fat diet-induced obese rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:76. [PMID: 25887331 PMCID: PMC4396074 DOI: 10.1186/s12906-015-0598-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/28/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND The prevalence and severity of obesity and associated co-morbidities are rapidly increasing across the world. Natural products-based drug intervention has been proposed as one of the crucial strategies for management of obesity ailments. This study was designed to investigate the anti-obesity activities of ethanolic extract of Terminalia paniculata bark (TPEE) on high fat diet-induced obese rats. METHODS LC-MS/MS analysis was done for ethanolic extract of T. paniculata bark. Male Sprague-Dawley (SD) rats were randomly divided into six groups of six each, normal diet fed (NC), high fat diet-fed (HFD), HFD+ orlistat (standard drug control) administered, and remaining three groups were fed with HFD + TPEE in different doses (100,150 and 200 mg/kg b. wt). For induction of obesity rats were initially fed with HFD for 9 weeks, then, (TPEE) was supplemented along with HFD for 42 days. Changes in body weight, body composition, blood glucose, insulin, tissue and serum lipid profiles, atherogenic index, liver markers, and expression of adipogenesis-related genes such as leptin, adiponectin, FAS, PPARgamma, AMPK-1alpha and SREBP-1c, were studied in experimental rats. Also, histopathological examination of adipose tissue was carried out. RESULTS Supplementation of TPEE reduced significantly (P < 0.05) body weight, total fat, fat percentage, atherogenic index, blood glucose, insulin, lipid profiles and liver markers in HFD-fed groups, in a dose-dependent manner. The expression of adipogenesis-related genes such as Leptin, FAS, PPARgamma, and SREBP-1c were down regulated while Adiponectin and AMPK-1alpha were up regulated in TPEE + HFD-fed rats. Furthermore, histopathological examination of adipose tissue revealed the alleviating effect of TPEE which is evident by reduced size of adipocytes. CONCLUSIONS Together, the biochemical, histological and molecular studies unambiguously demonstrate the potential anti adipogenic and anti obesity activities of TPEE promoting it as a formidable candidate to develop anti obesity drug.
Collapse
Affiliation(s)
- Ramgopal Mopuri
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India.
| | - Muniswamy Ganjayi
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India.
| | - Kruthika S Banavathy
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bangalore, India.
| | - Brahma Naidu Parim
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India.
| | - Balaji Meriga
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India.
| |
Collapse
|
183
|
Potential anti-obesogenic properties of non-digestible carbohydrates: specific focus on resistant dextrin. Proc Nutr Soc 2015; 74:258-67. [PMID: 25721052 DOI: 10.1017/s0029665115000087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alterations in the composition and metabolic activity of the gut microbiota appear to contribute to the development of obesity and associated metabolic diseases. However, the extent of this relationship remains unknown. Modulating the gut microbiota with non-digestible carbohydrates (NDC) may exert anti-obesogenic effects through various metabolic pathways including changes to appetite regulation, glucose and lipid metabolism and inflammation. The NDC vary in physicochemical structure and this may govern their physical properties and fermentation by specific gut bacterial populations. Much research in this area has focused on established prebiotics, especially fructans (i.e. inulin and fructo-oligosaccharides); however, there is increasing interest in the metabolic effects of other NDC, such as resistant dextrin. Data presented in this review provide evidence from mechanistic and intervention studies that certain fermentable NDC, including resistant dextrin, are able to modulate the gut microbiota and may alter metabolic process associated with obesity, including appetite regulation, energy and lipid metabolism and inflammation. To confirm these effects and elucidate the responsible mechanisms, further well-controlled human intervention studies are required to investigate the impact of NDC on the composition and function of the gut microbiota and at the same time determine concomitant effects on host metabolism and physiology.
Collapse
|
184
|
Inoue C, Kozaki T, Morita Y, Shirouchi B, Fukami K, Shimizu K, Sato M, Katakura Y. Kibizu concentrated liquid suppresses the accumulation of lipid droplets in 3T3-L1 cells. Cytotechnology 2015; 67:721-5. [PMID: 25672941 DOI: 10.1007/s10616-015-9849-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022] Open
Abstract
Adipocyte size is closely related to the occurrence of diabetes, metabolic syndrome, and insulin resistance. Thus, researchers are searching for active substances that function to reduce adipocyte size. In the present study, we focused on sugar cane vinegar, Kibizu, and evaluated the function of Kibizu to reduce adipocyte size by using an in vitro model system, because people in Amami Oshima famous for longevity regularly consume Kibizu. Results showed that Kibizu treatment significantly reduced the size and number of lipid droplets in 3T3-L1 cells, relative to treatment with Kurozu, another traditional vinegar. Results of an extraction experiment suggest that the active components in Kibizu are lipophilic and hydrophobic. In addition, an in vivo experiment on rats treated with Kibizu showed that the active components were contained in large vein blood. Results of an additional in vivo experiment suggest that metabolites generated by Kibizu-treated rats are primarily contained or modified specifically in the large vein blood.
Collapse
Affiliation(s)
- Chisato Inoue
- Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | | | | | | | | | | | |
Collapse
|
185
|
The role of acetic acid on glucose uptake and blood flow rates in the skeletal muscle in humans with impaired glucose tolerance. Eur J Clin Nutr 2015; 69:734-9. [PMID: 25626409 DOI: 10.1038/ejcn.2014.289] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 12/01/2014] [Accepted: 12/17/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND/OBJECTIVES Previous studies support the glucose-lowering effect of vinegar. However, the effect of vinegar on muscle glucose metabolism and endothelial function has not been studied in humans. This open, randomized, crossover, placebo-controlled study aims to investigate the effects of vinegar on muscle glucose metabolism, endothelial function and circulating lipid levels in subjects with impaired glucose tolerance (IGT) using the arteriovenous difference technique. SUBJECTS/METHODS Eight subjects with IGT (4 males, age 46±10 years, body mass index 30±5) were randomised to consume 0.50 mmol vinegar (6% acetic acid) or placebo before a mixed meal. Plasma samples were taken for 300 min from the radial artery and the forearm vein for measurements of glucose, insulin, triglycerides, non-esterified fatty acids (NEFAs) and glycerol. Muscle blood flow was measured with strain gauge plethysmography. Glucose flux was calculated as the arteriovenous difference of glucose multiplied by the blood flow rates. RESULTS Vinegar compared with placebo: (1) decreased arterial plasma insulin (Poverall<0.001; P75 min=0.014, β=-42), (2) increased forearm blood flow (Poverall<0.001; P240 min=0.011, β=1.53; P300 min=0.023, β=1.37), (3) increased muscle glucose uptake (Poverall<0.001; P60 min=0.029, β=2.78) and (4) decreased arterial plasma triglycerides (Poverall=0.005; P240 min<0.001, β=-344; P300 min<0.001, β=-373), without changing NEFA and glycerol. CONCLUSIONS In individuals with IGT, vinegar ingestion before a mixed meal results in an enhancement of muscle blood flow, an improvement of glucose uptake by the forearm muscle and a reduction of postprandial hyperinsulinaemia and hypertriglyceridaemia. From this point of view, vinegar may be considered beneficial for improving insulin resistance and metabolic abnormalities in the atherogenic prediabetic state.
Collapse
|
186
|
Mitrou P, Petsiou E, Papakonstantinou E, Maratou E, Lambadiari V, Dimitriadis P, Spanoudi F, Raptis SA, Dimitriadis G. Vinegar Consumption Increases Insulin-Stimulated Glucose Uptake by the Forearm Muscle in Humans with Type 2 Diabetes. J Diabetes Res 2015; 2015:175204. [PMID: 26064976 PMCID: PMC4438142 DOI: 10.1155/2015/175204] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/07/2015] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND AIMS Vinegar has been shown to have a glucose-lowering effect in patients with glucose abnormalities. However, the mechanisms of this effect are still obscure. The aim of this randomised, crossover study was to investigate the effect of vinegar on glucose metabolism in muscle which is the most important tissue for insulin-stimulated glucose disposal. MATERIALS AND METHODS Eleven subjects with DM2 consumed vinegar or placebo (at random order on two separate days, a week apart), before a mixed meal. Plasma glucose, insulin, triglycerides, nonesterified fatty acids (NEFA), and glycerol were measured preprandially and at 30-60 min for 300 min postprandially from the radial artery and from a forearm vein. Muscle blood flow was measured with strain-gauge plethysmography. Glucose uptake was calculated as the arteriovenous difference of glucose multiplied by blood flow. RESULTS Vinegar compared to placebo (1) increased forearm glucose uptake (p = 0.0357), (2) decreased plasma glucose (p = 0.0279), insulin (p = 0.0457), and triglycerides (p = 0.0439), and (3) did not change NEFA and glycerol. CONCLUSIONS In DM2 vinegar reduces postprandial hyperglycaemia, hyperinsulinaemia, and hypertriglyceridaemia without affecting lipolysis. Vinegar's effect on carbohydrate metabolism may be partly accounted for by an increase in glucose uptake, demonstrating an improvement in insulin action in skeletal muscle. This trial is registered with Clinicaltrials.gov NCT02309424.
Collapse
Affiliation(s)
- Panayota Mitrou
- Hellenic National Center for Research, Prevention and Treatment of Diabetes Mellitus and Its Complications (HNDC), 3 Ploutarchou Street, 10675 Athens, Greece
- *Panayota Mitrou:
| | - Eleni Petsiou
- 2nd Department of Internal Medicine and Research Institute, Athens University Medical School, Attikon University Hospital, 1 Rimini Street, 12462 Haidari, Greece
| | - Emilia Papakonstantinou
- 2nd Department of Internal Medicine and Research Institute, Athens University Medical School, Attikon University Hospital, 1 Rimini Street, 12462 Haidari, Greece
| | - Eirini Maratou
- Hellenic National Center for Research, Prevention and Treatment of Diabetes Mellitus and Its Complications (HNDC), 3 Ploutarchou Street, 10675 Athens, Greece
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine and Research Institute, Athens University Medical School, Attikon University Hospital, 1 Rimini Street, 12462 Haidari, Greece
| | - Panayiotis Dimitriadis
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, NTUA, Heroon Polytechniou 5-9, 15780 Athens, Greece
| | - Filio Spanoudi
- 2nd Department of Internal Medicine and Research Institute, Athens University Medical School, Attikon University Hospital, 1 Rimini Street, 12462 Haidari, Greece
| | - Sotirios A. Raptis
- Hellenic National Center for Research, Prevention and Treatment of Diabetes Mellitus and Its Complications (HNDC), 3 Ploutarchou Street, 10675 Athens, Greece
- 2nd Department of Internal Medicine and Research Institute, Athens University Medical School, Attikon University Hospital, 1 Rimini Street, 12462 Haidari, Greece
| | - George Dimitriadis
- 2nd Department of Internal Medicine and Research Institute, Athens University Medical School, Attikon University Hospital, 1 Rimini Street, 12462 Haidari, Greece
| |
Collapse
|
187
|
den Besten G, Havinga R, Bleeker A, Rao S, Gerding A, van Eunen K, Groen AK, Reijngoud DJ, Bakker BM. The short-chain fatty acid uptake fluxes by mice on a guar gum supplemented diet associate with amelioration of major biomarkers of the metabolic syndrome. PLoS One 2014; 9:e107392. [PMID: 25203112 PMCID: PMC4159349 DOI: 10.1371/journal.pone.0107392] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 08/15/2014] [Indexed: 01/13/2023] Open
Abstract
Studies with dietary supplementation of various types of fibers have shown beneficial effects on symptoms of the metabolic syndrome. Short-chain fatty acids (SCFAs), the main products of intestinal bacterial fermentation of dietary fiber, have been suggested to play a key role. Whether the concentration of SCFAs or their metabolism drives these beneficial effects is not yet clear. In this study we investigated the SCFA concentrations and in vivo host uptake fluxes in the absence or presence of the dietary fiber guar gum. C57Bl/6J mice were fed a high-fat diet supplemented with 0%, 5%, 7.5% or 10% of the fiber guar gum. To determine the effect on SCFA metabolism, 13C-labeled acetate, propionate or butyrate were infused into the cecum of mice for 6 h and the isotopic enrichment of cecal SCFAs was measured. The in vivo production, uptake and bacterial interconversion of acetate, propionate and butyrate were calculated by combining the data from the three infusion experiments in a single steady-state isotope model. Guar gum treatment decreased markers of the metabolic syndrome (body weight, adipose weight, triglycerides, glucose and insulin levels and HOMA-IR) in a dose-dependent manner. In addition, hepatic mRNA expression of genes involved in gluconeogenesis and fatty acid synthesis decreased dose-dependently by guar gum treatment. Cecal SCFA concentrations were increased compared to the control group, but no differences were observed between the different guar gum doses. Thus, no significant correlation was found between cecal SCFA concentrations and metabolic markers. In contrast, in vivo SCFA uptake fluxes by the host correlated linearly with metabolic markers. We argue that in vivo SCFA fluxes, and not concentrations, govern the protection from the metabolic syndrome by dietary fibers.
Collapse
Affiliation(s)
- Gijs den Besten
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
| | - Rick Havinga
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Aycha Bleeker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Shodhan Rao
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert Gerding
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karen van Eunen
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Albert K. Groen
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
| | - Dirk-Jan Reijngoud
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
| | - Barbara M. Bakker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
188
|
Petsiou EI, Mitrou PI, Raptis SA, Dimitriadis GD. Effect and mechanisms of action of vinegar on glucose metabolism, lipid profile, and body weight. Nutr Rev 2014; 72:651-61. [PMID: 25168916 DOI: 10.1111/nure.12125] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The aim of this review is to summarize the effects of vinegar on glucose and lipid metabolism. Several studies have demonstrated that vinegar can help reduce hyperglycemia, hyperinsulinemia, hyperlipidemia, and obesity. Other studies, however, have shown no beneficial effect on metabolism. Several mechanisms have been proposed to explain these metabolic effects, including delayed gastric emptying and enteral absorption, suppression of hepatic glucose production, increased glucose utilization, upregulation of flow-mediated vasodilation, facilitation of insulin secretion, reduction in lipogenesis, increase in lipolysis, stimulation of fecal bile acid excretion, increased satiety, and enhanced energy expenditure. Although some evidence supports the use of vinegar as a complementary treatment in patients with glucose and lipid abnormalities, further large-scale long-term trials with impeccable methodology are warranted before definitive health claims can be made.
Collapse
Affiliation(s)
- Eleni I Petsiou
- 2ndDepartment of Internal Medicine, Research Institute and Diabetes Center, Athens University Medical School, Attikon University Hospital, Haidari, Greece
| | | | | | | |
Collapse
|
189
|
Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME JOURNAL 2014; 9:1-15. [PMID: 24936764 PMCID: PMC4274436 DOI: 10.1038/ismej.2014.99] [Citation(s) in RCA: 530] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 03/15/2014] [Accepted: 05/13/2014] [Indexed: 12/17/2022]
Abstract
Structural disruption of gut microbiota and associated inflammation are considered important etiological factors in high fat diet (HFD)-induced metabolic syndrome (MS). Three candidate probiotic strains, Lactobacillus paracasei CNCM I-4270 (LC), L. rhamnosus I-3690 (LR) and Bifidobacterium animalis subsp. lactis I-2494 (BA), were individually administered to HFD-fed mice (108 cells day−1) for 12 weeks. Each strain attenuated weight gain and macrophage infiltration into epididymal adipose tissue and markedly improved glucose–insulin homeostasis and hepatic steatosis. Weighted UniFrac principal coordinate analysis based on 454 pyrosequencing of fecal bacterial 16S rRNA genes showed that the probiotic strains shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean mice fed a normal (chow) diet. Redundancy analysis revealed that abundances of 83 operational taxonomic units (OTUs) were altered by probiotics. Forty-nine altered OTUs were significantly correlated with one or more host MS parameters and were designated ‘functionally relevant phylotypes'. Thirteen of the 15 functionally relevant OTUs that were negatively correlated with MS phenotypes were promoted, and 26 of the 34 functionally relevant OTUs that were positively correlated with MS were reduced by at least one of the probiotics, but each strain changed a distinct set of functionally relevant OTUs. LC and LR increased cecal acetate but did not affect circulating lipopolysaccharide-binding protein; in contrast, BA did not increase acetate but significantly decreased adipose and hepatic tumor necrosis factor-α gene expression. These results suggest that Lactobacillus and Bifidobacterium differentially attenuate obesity comorbidities in part through strain-specific impacts on MS-associated phylotypes of gut microbiota in mice.
Collapse
|
190
|
Park YH, Choi JH, Whang K, Lee SO, Yang SA, Yu MH. Inhibitory Effects of Lyophilized Dropwort Vinegar Powder on Adipocyte Differentiation and Inflammation. ACTA ACUST UNITED AC 2014. [DOI: 10.5352/jls.2014.24.5.476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
191
|
Budak NH, Aykin E, Seydim AC, Greene AK, Guzel-Seydim ZB. Functional Properties of Vinegar. J Food Sci 2014; 79:R757-64. [DOI: 10.1111/1750-3841.12434] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 02/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Nilgün H. Budak
- Dept. of Food Technology; Egirdir Vocational School; Süleyman Demirel Univ.; Isparta Turkey
| | - Elif Aykin
- Dept. of Food Engineering; Engineering Faculty; Akdeniz Univ.; Antalya Turkey
| | - Atif C. Seydim
- Dept. of Food Engineering; Engineering Faculty; Süleyman Demirel Univ.; Isparta Turkey
| | - Annel K. Greene
- Dept. of Animal and Veterinary Science; Clemson Univ.; Clemson SC U.S.A
| | | |
Collapse
|
192
|
Drissi F, Merhej V, Angelakis E, El Kaoutari A, Carrière F, Henrissat B, Raoult D. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection. Nutr Diabetes 2014; 4:e109. [PMID: 24567124 PMCID: PMC3940830 DOI: 10.1038/nutd.2014.6] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/18/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND: Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. METHODS: We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. RESULTS: We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. CONCLUSIONS: The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects.
Collapse
Affiliation(s)
- F Drissi
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - V Merhej
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - E Angelakis
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - A El Kaoutari
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - F Carrière
- CNRS, Aix-Marseille Université, Enzymologie Interfaciale et Physiologie de la Lipolyse, UMR 7282, 31 chemin Joseph Aiguier, Marseille, France
| | - B Henrissat
- 1] Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France [2] Centre National de la Recherche Scientifique, CNRS UMR 7257, Marseille, France
| | - D Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| |
Collapse
|
193
|
Seo KI, Lee J, Choi RY, Lee HI, Lee JH, Jeong YK, Kim MJ, Lee MK. Anti-obesity and anti-insulin resistance effects of tomato vinegar beverage in diet-induced obese mice. Food Funct 2014; 5:1579-86. [DOI: 10.1039/c4fo00135d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
194
|
Effects of breads of varying carbohydrate quality on postprandial glycaemic, incretin and lipidaemic response after first and second meals in adults with diet-controlled type 2 diabetes. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
195
|
Park KM, Lee SH. Anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar in mice fed a high-fat diet. Nutr Res Pract 2013; 7:453-9. [PMID: 24353830 PMCID: PMC3865267 DOI: 10.4162/nrp.2013.7.6.453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 11/13/2022] Open
Abstract
The abnormal content of blood lipids often results in metabolic diseases, such as hyperlipidemia and obesity. Many agents, including natural sources from traditional food, have been developed to regulate the blood lipid contents. In this study, we examined the anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar (RNSpBRV), a Korean traditional pickled soybean food. Since RNSpBRV is made of R. nulubilis seeds (RNS) soaked in brown rice vinegar (BRV), we compared the anti-adipogenic activity between RNS, BRV and solid fraction of RNSpBRV (SF-RNSpBRV), liquid fraction of RNSpBRV (LF-RNSpBRV). For this, the inhibitory effect of lipid accumulation in 3T3-L1 adipocyte was checked by adding methanol extracts of mixed RNS and BRV, LF-RNSpBRV, and SF-RNSpBRV. The addition of each methanol extract up to 1 mg/ml showed no cytotoxicity on 3T3-L1 adipocyte, and approximately 20% of the lipid droplet formation was suppressed with the methanol extract of BRL or SF-RNSpBRV. The highest suppression (42.1%) was achieved with LF-RNSpBRV. In addition, mice fed a high fat diet (HFD) supplemented with 5% RNSpBRV powder led to increased high density lipoprotein (HDL) cholesterol and lower blood glucose, triglyceride, and total cholesterol compared to mice fed with a HFD diet only. Interestingly, the size of the epididymis cells gradually decreased in HFD + 1% RNSpBRV- and HFD + 5% RNSpBRV-fed mice if compared those of HFD-fed mice. Taken together, these results provide evidence that RNSpBRV has a regulatory role in lipid metabolism that is related to hyperlipidemia.
Collapse
Affiliation(s)
- Ki-Moon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Korea
| | - Seung Ho Lee
- Major of Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 406-772, Korea
| |
Collapse
|
196
|
Ok E, Do GM, Lim Y, Park JE, Park YJ, Kwon O. Pomegranate vinegar attenuates adiposity in obese rats through coordinated control of AMPK signaling in the liver and adipose tissue. Lipids Health Dis 2013; 12:163. [PMID: 24180378 PMCID: PMC4228409 DOI: 10.1186/1476-511x-12-163] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/29/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The effect of pomegranate vinegar (PV) on adiposity was investigated in high-fat diet (HF)-induced obese rats. METHODS The rats were divided into 5 groups and treated with HF with PV or acetic acid (0, 6.5 or 13% w/w) for 16 weeks. Statistical analyses were performed by the Statistical Analysis Systems package, version 9.2. RESULTS Compared to control, PV supplementation increased phosphorylation of AMP-activated protein kinase (AMPK), leading to changes in mRNA expressions: increases for hormone sensitive lipase and mitochondrial uncoupling protein 2 and decreases for sterol regulatory element binding protein-1c (SREBP-1c) and peroxisome proliferator-activated receptorγ (PPARγ) in adipose tissue; increases for PPARα and carnitinepalmitoyltransferase-1a (CPT-1a) and decrease for SREBP-1c in the liver. Concomitantly, PV reduced increases of body weight (p = 0.048), fat mass (p = 0.033), hepatic triglycerides (p = 0.005), and plasma triglycerides (p = 0.001). CONCLUSIONS These results suggest that PV attenuates adiposity through the coordinated control of AMPK, which leads to promotion of lipolysis in adipose tissue and stimulation of fatty acid oxidation in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea.
| |
Collapse
|
197
|
Li X, Chen H, Guan Y, Li X, Lei L, Liu J, Yin L, Liu G, Wang Z. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes. PLoS One 2013; 8:e67880. [PMID: 23861826 PMCID: PMC3701595 DOI: 10.1371/journal.pone.0067880] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/23/2013] [Indexed: 11/24/2022] Open
Abstract
The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK) signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid) and BML-275 (an AMPKα inhibitor). Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.
Collapse
Affiliation(s)
- Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Hui Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yuan Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Liancheng Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Liheng Yin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- * E-mail: (GL); (ZW)
| | - Zhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- * E-mail: (GL); (ZW)
| |
Collapse
|
198
|
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013; 54:2325-40. [PMID: 23821742 DOI: 10.1194/jlr.r036012] [Citation(s) in RCA: 3146] [Impact Index Per Article: 262.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass the complex interplay between diet, gut microbiota, and host energy metabolism. This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism. There are interesting leads on the underlying molecular mechanisms, but there are also many apparently contradictory results. A coherent understanding of the multilevel network in which SCFAs exert their effects is hampered by the lack of quantitative data on actual fluxes of SCFAs and metabolic processes regulated by SCFAs. In this review we address questions that, when answered, will bring us a great step forward in elucidating the role of SCFAs in mammalian energy metabolism.
Collapse
Affiliation(s)
- Gijs den Besten
- Center for Liver, Digestive, and Metabolic Diseases, Department of Pediatrics and University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
199
|
Layden BT, Angueira AR, Brodsky M, Durai V, Lowe WL. Short chain fatty acids and their receptors: new metabolic targets. Transl Res 2013; 161:131-40. [PMID: 23146568 DOI: 10.1016/j.trsl.2012.10.007] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/12/2012] [Accepted: 10/19/2012] [Indexed: 12/12/2022]
Abstract
Fatty acids are carboxylic acids with aliphatic tails of different lengths, where short chain fatty acids (SCFAs) typically refer to carboxylic acids with aliphatic tails less than 6 carbons. In humans, SCFAs are derived in large part from fermentation of carbohydrates and proteins in the colon. By this process, the host is able to salvage energy from foods that cannot be processed normally in the upper parts of the gastrointestinal tract. In humans, SCFAs are a minor nutrient source, especially for people on Western diets. Intriguingly, recent studies, as highlighted here, have described multiple beneficial roles of SCFAs in the regulation of metabolism. Further interest in SCFAs has emerged due to the association of gut flora composition with obesity and other metabolic states. The recent identification of receptors specifically activated by SCFAs has further increased interest in this area. These receptors, free fatty acid receptor-2 and -3 (FFAR2 and FFAR3), are expressed not only in the gut epithelium where SCFAs are produced, but also at multiple other sites considered to be metabolically important, such as adipose tissue and pancreatic islets. Because of these relatively recent findings, studies examining the role of these receptors, FFAR2 and FFAR3, and their ligands, SCFAs, in metabolism are emerging. This review provides a critical analysis of SCFAs, their recently identified receptors, and their connection to metabolism.
Collapse
Affiliation(s)
- Brian T Layden
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611-3008, USA.
| | | | | | | | | |
Collapse
|
200
|
|