151
|
Wang J, Rang Y, Liu C. Effects of Caloric Restriction and Intermittent Fasting and Their Combined Exercise on Cognitive Functioning: A Review. Curr Nutr Rep 2024; 13:691-700. [PMID: 39240488 DOI: 10.1007/s13668-024-00570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE OF REVIEW The impact of dietary habits on cognitive function is increasingly gaining attention. The review is to discuss how caloric restriction (CR) and intermittent fasting (IF) can enhance cognitive function in healthy states through multiple pathways that interact with one another. Secondly, to explore the effects of CR and IF on cognitive function in conditions of neurodegenerative diseases, obesity diabetes and aging, as well as potential synergistic effects in combination with exercise to prevent cognitively related neurodegenerative diseases. RECENT FINDINGS With age, the human brain ages and develops corresponding neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and epilepsy, which in turn trigger cognitive impairment. Recent research indicates that the impact of diet and exercise on cognitive function is increasingly gaining attention. The benefits of exercise for cognitive function and brain plasticity are numerous, and future research can examine the efficacy of particular dietary regimens during physical activity when combined with diet which can prevent cognitive decline.
Collapse
Affiliation(s)
- Junming Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|
152
|
Kurmi Y, Viswanathan M, Zu Z. Enhancing SNR in CEST imaging: A deep learning approach with a denoising convolutional autoencoder. Magn Reson Med 2024; 92:2404-2419. [PMID: 39030953 DOI: 10.1002/mrm.30228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE To develop a SNR enhancement method for CEST imaging using a denoising convolutional autoencoder (DCAE) and compare its performance with state-of-the-art denoising methods. METHOD The DCAE-CEST model encompasses an encoder and a decoder network. The encoder learns features from the input CEST Z-spectrum via a series of one-dimensional convolutions, nonlinearity applications, and pooling. Subsequently, the decoder reconstructs an output denoised Z-spectrum using a series of up-sampling and convolution layers. The DCAE-CEST model underwent multistage training in an environment constrained by Kullback-Leibler divergence, while ensuring data adaptability through context learning using Principal Component Analysis-processed Z-spectrum as a reference. The model was trained using simulated Z-spectra, and its performance was evaluated using both simulated data and in vivo data from an animal tumor model. Maps of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) effects were quantified using the multiple-pool Lorentzian fit, along with an apparent exchange-dependent relaxation metric. RESULTS In digital phantom experiments, the DCAE-CEST method exhibited superior performance, surpassing existing denoising techniques, as indicated by the peak SNR and Structural Similarity Index. Additionally, in vivo data further confirm the effectiveness of the DCAE-CEST in denoising the APT and NOE maps when compared with other methods. Although no significant difference was observed in APT between tumors and normal tissues, there was a significant difference in NOE, consistent with previous findings. CONCLUSION The DCAE-CEST can learn the most important features of the CEST Z-spectrum and provide the most effective denoising solution compared with other methods.
Collapse
Affiliation(s)
- Yashwant Kurmi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Malvika Viswanathan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
153
|
Chen H, Yuan Y, Zhang Y, Liu X, Chen Q, Liu C, Yao Q. Activation of the LKB1/AMPK/HIF-1α Pathway by Metformin to Promote Neovascularisation in Cerebral Ischaemia. Neurochem Res 2024; 49:3263-3276. [PMID: 39240424 DOI: 10.1007/s11064-024-04235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
As a difficult-to-treat neurological condition, cerebral ischemia is currently limited to treatments such as intravenous recombinant tissue plasminogen activator thrombolysis and thrombectomy. Metformin, a potent antidiabetic drug, has been reported to have an independent function in enhancing the prognosis of stroke patients, in addition to its glucose-lowering effects. However, the mechanism of action of metformin in this context remains unclear. In vivo, a rat model of permanent middle cerebral artery occlusion was established, and after administration of a low dose of 10.5 mg/mL metformin, infarct area was measured by TTC staining, and cortical blood flow was determined by laser Doppler imaging. In vitro, the study established human umbilical vein endothelial cells treated with cobalt chloride. Immunofluorescence, immunohistochemistry, and Western blot experiments were performed to observe the expression of angiogenic factors, tight junction proteins, and apoptotic factors. A TUNEL assay was utilized to appraise cell death by apoptosis. A tube formation assay and scratch assay were conducted to determine the endothelial neovascularization status. Animal experiments have revealed that the administration of the AMPK activator metformin significantly reduced the infarct area, promoted the expression of angiogenic factors, and maintained the stability of tight junction proteins in endothelial cells. Moreover, metformin reduces nerve cells apoptosis by affecting the expression of the apoptotic protein cleaved-caspase3 via the HIF-1α pathway. In vitro, the LKB1/AMPK signaling pathway is activated after hypoxic stimulation, attaining its peak within the early stages of hypoxia (1-12 h) and gradually weakening thereafter. The administration of AMPK pharmacological agonists (between 36 and 48 h) can enhance AMPK activity, which can lead to the expression of angiogenic factors, maintain the stability of tight-junction proteins in endothelial cells, and facilitate endothelial cell migration and vascular structure formation. Conversely, the AMPK inhibitors exert the opposite effects. The activation of the LKB1/AMPK/HIF-1α signaling pathway by metformin in cerebral ischemia contributes to angiogenesis, promotes tissue repair in the injured area, and enhances neurologically functional symptoms.
Collapse
Affiliation(s)
- Hongguang Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Yuting Yuan
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yue Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China.
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China.
| | - Qing Yao
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China.
| |
Collapse
|
154
|
McComish SF, O'Sullivan J, Copas AMM, Imiolek M, Boyle NT, Crompton LA, Lane JD, Caldwell MA. Reactive astrocytes generated from human iPSC are pro-inflammatory and display altered metabolism. Exp Neurol 2024; 382:114979. [PMID: 39357593 DOI: 10.1016/j.expneurol.2024.114979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Astrocytes are the most abundant type of glial cell in the central nervous system and they play pivotal roles in both normal health and disease. Their dysfunction is detrimental to many brain related pathologies. Under pathological conditions, such as Alzheimer's disease, astrocytes adopt an activated reactive phenotype which can contribute to disease progression. A prominent risk factor for many neurodegenerative diseases is neuroinflammation which is the purview of glial cells, such as astrocytes and microglia. Human in vitro models have the potential to reveal relevant disease specific mechanisms, through the study of individual cell types such as astrocytes or the addition of specific factors, such as those secreted by microglia. The aim of this study was to generate human cortical astrocytes, in order to assess their protein and gene expression, examine their reactivity profile in response to exposure to the microglial secreted factors IL-1α, TNFα and C1q and assess their functionality in terms of calcium signalling and metabolism. The successfully differentiated and stimulated reactive astrocytes display increased IL-6, RANTES and GM-CSF secretion, and increased expression of genes associated with reactivity including, IL-6, ICAM1, LCN2, C3 and SERPINA3. Functional assessment of these reactive astrocytes showed a delayed and sustained calcium response to ATP and a concomitant decrease in the expression of connexin-43. Furthermore, it was demonstrated these astrocytes had an increased glycolytic capacity with no effect on oxidative phosphorylation. These findings not only increase our understanding of astrocyte reactivity but also provides a functional platform for drug discovery.
Collapse
Affiliation(s)
- Sarah F McComish
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Julia O'Sullivan
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Adina Mac Mahon Copas
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Magdalena Imiolek
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Noreen T Boyle
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Lucy A Crompton
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK; Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Maeve A Caldwell
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
155
|
Racicot J, Smine S, Afzali K, Orban P. Functional brain connectivity changes associated with day-to-day fluctuations in affective states. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1141-1154. [PMID: 39322824 PMCID: PMC11525411 DOI: 10.3758/s13415-024-01216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
Affective neuroscience has traditionally relied on cross-sectional studies to uncover the brain correlates of affects, emotions, and moods. Such findings obfuscate intraindividual variability that may reveal meaningful changing affect states. The few functional magnetic resonance imaging longitudinal studies that have linked changes in brain function to the ebbs and flows of affective states over time have mostly investigated a single individual. In this study, we explored how the functional connectivity of brain areas associated with affective processes can explain within-person fluctuations in self-reported positive and negative affects across several subjects. To do so, we leveraged the Day2day dataset that includes 40 to 50 resting-state functional magnetic resonance imaging scans along self-reported positive and negative affectivity from a sample of six healthy participants. Sparse multivariate mixed-effect linear models could explain 15% and 11% of the within-person variation in positive and negative affective states, respectively. Evaluation of these models' generalizability to new data demonstrated the ability to predict approximately 5% and 2% of positive and negative affect variation. The functional connectivity of limbic areas, such as the amygdala, hippocampus, and insula, appeared most important to explain the temporal dynamics of affects over days, weeks, and months.
Collapse
Affiliation(s)
- Jeanne Racicot
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Département de Psychiatrie et d'addictologie, Université de Montréal, Montréal, Canada
| | - Salima Smine
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
| | - Kamran Afzali
- Consortium Santé Numérique, Université de Montréal, Montréal, Canada
| | - Pierre Orban
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada.
- Département de Psychiatrie et d'addictologie, Université de Montréal, Montréal, Canada.
| |
Collapse
|
156
|
Lee AR, Kim SH, Hong SY, Lee SH, Oh JS, Lee KY, Kim SJ, Ishikawa T, Shim SM, Lee HI, Seo SU. Characterization of genotype V Japanese encephalitis virus isolates from Republic of Korea. Emerg Microbes Infect 2024; 13:2362392. [PMID: 38808613 PMCID: PMC11168223 DOI: 10.1080/22221751.2024.2362392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Japanese encephalitis (JE), caused by the Japanese encephalitis virus (JEV) infection, continues to pose significant public health challenges worldwide despite efficient vaccines. The virus is classified into five genotypes, among which genotype V (GV) was not detected for a long period after its initial isolation in 1952, until reports emerged from China and the Republic of Korea (ROK) since 2009. The characteristics of the virus are crucial in estimating its potential epidemiological impact. However, characterization of GV JEVs has so far been limited to two strains: Muar, the original isolate, and XZ0934, isolated in China. Two additional ROK GV JEV isolates, NCCP 43279 and NCCP 43413, are currently available, but their characteristics have not been explored. Our phylogenetic analysis revealed that GV virus sequences from the ROK segregate into two clades. NCCP 43279 and NCCP 43413 belong to different clades and exhibit distinct in vitro phenotypes. NCCP 43279 forms larger plaques but demonstrates inefficient propagation in cell culture compared to NCCP 43413. In vivo, NCCP 43279 induces higher morbidity and mortality in mice than NCCP 43413. Notably, NCCP 43279 shows more severe blood-brain barrier damage, suggesting superior brain invasion capabilities. Consistent with its higher virulence, NCCP 43279 displays more pronounced histopathological and immunopathological outcomes. In conclusion, our study confirms that the two ROK isolates are not only classified into different clades but also exhibit distinct in vitro and in vivo characteristics.
Collapse
Affiliation(s)
- Ah-Ra Lee
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Hyun Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Su-Yeon Hong
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Ho Lee
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Sang Oh
- Department of Neurosurgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung Yong Lee
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Seong-Jun Kim
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Tomohiro Ishikawa
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Sang-Mu Shim
- Division of Acute Virus Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Hee Il Lee
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Sang-Uk Seo
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
157
|
Zhang G, Diamante G, Ahn IS, Palafox-Sanchez V, Cheng J, Cheng M, Ying Z, Wang SSM, Abuhanna KD, Phi N, Arneson D, Cely I, Arellano K, Wang N, Zhang S, Peng C, Gomez-Pinilla F, Yang X. Thyroid hormone T4 mitigates traumatic brain injury in mice by dynamically remodeling cell type specific genes, pathways, and networks in hippocampus and frontal cortex. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167344. [PMID: 39004380 DOI: 10.1016/j.bbadis.2024.167344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/30/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
The complex pathology of mild traumatic brain injury (mTBI) is a main contributor to the difficulties in achieving a successful therapeutic regimen. Thyroxine (T4) administration has been shown to prevent the cognitive impairments induced by mTBI in mice but the mechanism is poorly understood. To understand the underlying mechanism, we carried out a single cell transcriptomic study to investigate the spatiotemporal effects of T4 on individual cell types in the hippocampus and frontal cortex at three post-injury stages in a mouse model of mTBI. We found that T4 treatment altered the proportions and transcriptomes of numerous cell types across tissues and timepoints, particularly oligodendrocytes, astrocytes, and microglia, which are crucial for injury repair. T4 also reversed the expression of mTBI-affected genes such as Ttr, mt-Rnr2, Ggn12, Malat1, Gnaq, and Myo3a, as well as numerous pathways such as cell/energy/iron metabolism, immune response, nervous system, and cytoskeleton-related pathways. Cell-type specific network modeling revealed that T4 mitigated select mTBI-perturbed dynamic shifts in subnetworks related to cell cycle, stress response, and RNA processing in oligodendrocytes. Cross cell-type ligand-receptor networks revealed the roles of App, Hmgb1, Fn1, and Tnf in mTBI, with the latter two ligands having been previously identified as TBI network hubs. mTBI and/or T4 signature genes were enriched for human genome-wide association study (GWAS) candidate genes for cognitive, psychiatric and neurodegenerative disorders related to mTBI. Our systems-level single cell analysis elucidated the temporal and spatial dynamic reprogramming of cell-type specific genes, pathways, and networks, as well as cell-cell communications as the mechanisms through which T4 mitigates cognitive dysfunction induced by mTBI.
Collapse
Affiliation(s)
- Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Victoria Palafox-Sanchez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Susanna Sue-Ming Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin Daniel Abuhanna
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Nguyen Phi
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kayla Arellano
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ning Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shujing Zhang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chao Peng
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Mary S. Easton Center for Alzheimer's Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
158
|
Chen P, Dong B, Yao W. Numerical simulation study of nanoparticle diffusion in gray matter. Comput Struct Biotechnol J 2024; 25:95-104. [PMID: 38974013 PMCID: PMC11225016 DOI: 10.1016/j.csbj.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose Nanomedicine-based approaches have shown great potential in the treatment of central nervous system diseases. However, the fate of nanoparticles (NPs) within the brain parenchyma has not received much attention. The complexity of the microstructure of the brain and the invisibility of NPs make it difficult to study NP transport within the grey matter. Moreover, regulation of NP delivery is not fully understood. Methods 2D interstitial system (ISS) models reflecting actual extracellular space (ECS) were constructed. A particle tracing model was used to simulate the diffusion of the NPs. The effect of NP size on NP diffusion was studied using numerical simulations. The diffusion of charged NPs was explored by comparing experimental and numerical simulation data, and the effect of cell membrane potential on the diffusion of charged NPs was further studied. Results The model was verified using previously published experimental data. Small NPs could diffuse efficiently into the ISS. The diffusion of charged NPs was hindered in the ISS. Changes in cell membrane potential had little effect on NP diffusion. Conclusion This study constructed 2D brain ISS models that reflected the actual ECS and simulated the diffusion of NPs within it. The study found that uncharged small NPs could effectively diffuse within the ISS and that the cell membrane potential had a limited effect on the diffusion of charged NPs. The model and findings of this study can aid the design of nanomedicines and nanocarriers for the diagnosis and treatment of brain diseases.
Collapse
Affiliation(s)
- Peiqian Chen
- Tongren Hospital, No. 1111, Xianxia Rd., Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, No. 280, South Chongqing Rd., Shanghai, China
| | - Bing Dong
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai, China
| | - Weiwu Yao
- Tongren Hospital, No. 1111, Xianxia Rd., Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, No. 280, South Chongqing Rd., Shanghai, China
| |
Collapse
|
159
|
Sun J, Zeng Q, Wu Z, Huang L, Sun T, Ling C, Zhang B, Chen C, Wang H. Elevated triglyceride-glucose index predicts poor outcome in patients with intracranial atherosclerotic stenosis after extracranial and intracranial bypass. Ann Med 2024; 56:2410409. [PMID: 39382531 PMCID: PMC11465366 DOI: 10.1080/07853890.2024.2410409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND AND PURPOSE The triglyceride-glucose (TyG) index, a novel reliable biomarker for IR that incorporates blood glucose and triglyceride, is linked to intracranial atherosclerotic stenosis (ICAS). In this study, we aimed to further investigate the association between the TyG index and the outcomes of ICAS patients following extracranial-to-intracranial (EC-IC) bypass grafting. METHODS 489 ICAS patients who underwent EC-IC bypass between Jan 2009 and Jan 2022 at our hospital were retrospectively collected. The major adverse cardiac and cerebrovascular events (MACCEs), and anastomotic restenosis, both of which are critical factors leading to poor prognosis of ICAS patients after EC-IC bypass, were mainly recorded and analyzed. Kaplan-Meier survival curve and Log-rank tests were sequentially conducted. Cox regression model was used to investigate the association between the TyG index and MACCEs & anastomotic stenosis. C-statistics, continuous net reclassification improvement (NRI), and integrated discrimination improvement (IDI) evaluated the incremental predictive value of the TyG index. RESULTS A higher incidence of MACCEs and anastomotic stenosis was found in higher-tertile TyG index group. The TyG index was significantly associated with an increased risk of MACCEs and anastomotic stenosis, independent of confounding factors, with a value of HR (1.30, 95%CI 1.10-1.51, p < 0.001) and (1.27, 95%CI 1.16-1.40, p < 0.001) respectively. The area under the curve (AUC) in the model with the TyG index for predicting the occurrence of MACCEs and anastomotic stenosis were 0.708 (95%CI 0.665-0.748) and 0.731 (95%CI 0.689-0.770) respectively. The addition of the TyG index significantly improved the global performance of the baseline model according to the C-statistics, NRI, and IDI (All p < 0.05). CONCLUSIONS Higher TyG levels were associated with poorer outcomes in ICAS patients after EC-IC bypass. TyG could be a key factor in managing ICAS risk and standardizing the indications for EC-IC bypass.
Collapse
Affiliation(s)
- Jun Sun
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiuhua Zeng
- Department of Radiology, Guangdong Provincial Hospital of Tranditional Chinese Medicine, Guangzhou, China
| | - Zhimin Wu
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lixin Huang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Sun
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baoyu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
160
|
Fang H, Li M, Yang J, Ma S, Zhang L, Yang H, Tang Q, Cao J, Yang W. Repressing iron overload ameliorates central post-stroke pain via the Hdac2-Kv1.2 axis in a rat model of hemorrhagic stroke. Neural Regen Res 2024; 19:2708-2722. [PMID: 38595289 PMCID: PMC11168507 DOI: 10.4103/nrr.nrr-d-23-01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 02/04/2024] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00027/figure1/v/2024-04-08T165401Z/r/image-tiff Thalamic hemorrhage can lead to the development of central post-stroke pain. Changes in histone acetylation levels, which are regulated by histone deacetylases, affect the excitability of neurons surrounding the hemorrhagic area. However, the regulatory mechanism of histone deacetylases in central post-stroke pain remains unclear. Here, we show that iron overload leads to an increase in histone deacetylase 2 expression in damaged ventral posterolateral nucleus neurons. Inhibiting this increase restored histone H3 acetylation in the Kcna2 promoter region of the voltage-dependent potassium (Kv) channel subunit gene in a rat model of central post-stroke pain, thereby increasing Kcna2 expression and relieving central pain. However, in the absence of nerve injury, increasing histone deacetylase 2 expression decreased Kcna2 expression, decreased Kv current, increased the excitability of neurons in the ventral posterolateral nucleus area, and led to neuropathic pain symptoms. Moreover, treatment with the iron chelator deferiprone effectively reduced iron overload in the ventral posterolateral nucleus after intracerebral hemorrhage, reversed histone deacetylase 2 upregulation and Kv1.2 downregulation, and alleviated mechanical hypersensitivity in central post-stroke pain rats. These results suggest that histone deacetylase 2 upregulation and Kv1.2 downregulation, mediated by iron overload, are important factors in central post-stroke pain pathogenesis and could serve as new targets for central post-stroke pain treatment.
Collapse
Affiliation(s)
- He Fang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jingchen Yang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shunping Ma
- Department of Nutrition, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Li Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hongqi Yang
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, Henan Province, China
| | - Qiongyan Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan Province, China
| | - Weimin Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
161
|
Hu F, Lin C. TRPM2 knockdown attenuates myocardial apoptosis and promotes autophagy in HFD/STZ-induced diabetic mice via regulating the MEK/ERK and mTORC1 signaling pathway. Mol Cell Biochem 2024; 479:3307-3328. [PMID: 38308007 PMCID: PMC11511773 DOI: 10.1007/s11010-024-04926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a major complication of diabetes. Transient receptor potential melastatin 2 (TRPM2) activity increases in diabetic oxidative stress state, and it is involved in myocardial damage and repair. We explore the protective effect of TRPM2 knockdown on the progression of DCM. A type 2 diabetes animal model was established in C57BL/6N mice by long-term high-fat diet (HFD) feeding combined with a single injection of 100-mg/kg streptozotocin (STZ). Genetic knockdown of TRPM2 in heart was accomplished by the intravenous injection via the tail vein of adeno-associated virus type 9 carrying TRPM2 shRNA. Neonatal rat ventricular myocytes was exposed to 45 mM of high-glucose (HG) stimulation for 72 h in vitro to mimic the in vivo conditions. Western blot, real-time quantitative PCR (RT-qPCR), immunohistochemistry and fluorescence, electron, CCK-8, and flow cytometry were used to evaluate the phenotype of cardiac inflammation, fibrosis, apoptosis, and autophagy. Mice with HFD/STZ-induced diabetes exhibited systolic and diastolic dysfunction, as demonstrated by increased myocardial apoptosis and autophagy inhibition in the heart. Compared to control group, the protein expression of TRPM2, bax, cleaved caspase-3, and P62 was significantly elevated, and the protein expression of bcl-2 and LC3-II was significantly decreased in the myocardial tissues of the HFD/STZ-induced diabetes group. Knockdown of TRPM2 significantly reversed the HFD/STZ-induced myocardial apoptosis and autophagy inhibition. TRPM2 silencing attenuated HG-induced apoptosis and autophagy inhibition in primary cardiomyocytes via regulating the MEK/ERK mTORC1 signaling pathway. TRPM2 knockdown attenuates hyperglycemia-induced myocardial apoptosis and promotes autophagy in HFD/STZ-induced diabetic mice or HG-stimulated cardiomyocytes via regulating the MEK/ERK and mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Feng Hu
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| | - Chaoyang Lin
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| |
Collapse
|
162
|
Schreihofer DA, Dalwadi D, Kim S, Metzger D, Oppong-Gyebi A, Das-Earl P, Schetz JA. Treatment of Stroke at a Delayed Timepoint with a Repurposed Drug Targeting Sigma 1 Receptors. Transl Stroke Res 2024; 15:1035-1049. [PMID: 37704905 DOI: 10.1007/s12975-023-01193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 08/04/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Sigma 1 receptors are intracellular chaperone proteins that have been explored as a subacute treatment to enhance post-stroke recovery. We recently identified the antitussive oxeladin as a selective sigma 1 receptor agonist with the ability to stimulate the release of brain-derived neurotrophic factor from neurons in vitro. In this study, we hypothesized that oral oxeladin citrate would stimulate BDNF secretion and improve stroke outcomes when administered to male rats starting 48 h after transient middle cerebral artery occlusion. Oxeladin did not alter blood clotting and crossed the blood brain barrier within 30 min of oral administration. Rats underwent 90 min of transient middle cerebral artery occlusion. Forty-eight hours later rats began receiving daily oxeladin (135 mg/kg) for 11 days. Oxeladin significantly improved neurological function on days 3, 7, and 14 following MCAO. Infarct size was not altered by a single dose, but the final extent of infarct after 14 days was decreased. However, there was no significant reduction in astrogliosis or microgliosis compared to vehicle-treated control rats. In agreement with in vitro studies, oxeladin increased the amount of mature BDNF in the cerebral cortex 2, 6, and 24 h after single oral dose. However, the increase in BDNF did not result in increases in cellular proliferation in the subventricular zone or dentate gyrus when compared to vehicle-treated controls. These results suggest that oxeladin may reduce the extent of infarct expansion in the subacute phase of stroke, although this action does not appear to involve a reduction in inflammation or increased cell proliferation.
Collapse
Affiliation(s)
- Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Helath Science Center, Fort Worth, Texas, 76107, USA.
| | | | - Seongcheol Kim
- Department of Cellular and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Daniel Metzger
- Department of Pharmacology and Neuroscience, University of North Texas Helath Science Center, Fort Worth, Texas, 76107, USA
| | - Anthony Oppong-Gyebi
- Department of Pharmacology and Neuroscience, University of North Texas Helath Science Center, Fort Worth, Texas, 76107, USA
- Cognizant Technology Solutions, 300 Frank W. Burr Blvd, Teaneck, NJ, 07666, USA
| | - Paromita Das-Earl
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA
| | - John A Schetz
- Department of Pharmacology and Neuroscience, University of North Texas Helath Science Center, Fort Worth, Texas, 76107, USA
| |
Collapse
|
163
|
Richardson JC, Higgins GA, Upton N, Massey P, Cunningham M, Wilson S, Holenz J, Taylor C, Lavrov A, Lin H, Matsuoka Y, Brown AJ. The hydroxycarboxylic acid receptor HCA2 is required for the protective effect of ketogenic diet in epilepsy. Pharmacol Res Perspect 2024; 12:e70026. [PMID: 39439218 PMCID: PMC11496569 DOI: 10.1002/prp2.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
One third of epilepsy patients are resistant to treatment with current anti-seizure medications. The ketogenic diet is used to treat some forms of refractory epilepsy, but the mechanism of its action has not yet been elucidated. In this study, we aimed to investigate whether the hydroxycarboxylic acid receptor 2 (HCA2), a known immunomodulatory receptor, plays a role in mediating the protective effect of this diet. We demonstrate for the first time that selective agonists at this receptor can directly reduce seizures in animal models. Agonists also reduce network activity in rodent and human brain slices. Ketogenic diet is known to increase circulating levels of endogenous HCA2 agonists, and we show that the effect of ketogenic diet in reducing seizures in the 6 Hz seizure model is negated in HCA2-deficient mice. Our data support the potential of HCA2 as a target for the treatment of epilepsy and potentially for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Peter Massey
- Institute of NeuroscienceUniversity of NewcastleNewcastleUK
| | - Mark Cunningham
- Institute of NeuroscienceUniversity of NewcastleNewcastleUK
- Discipline of Physiology, School of MedicineTrinity College DublinDublin 2Ireland
| | - Steve Wilson
- In vitro and in vivo TranslationGlaxoSmithKline R&D LtdStevenageUK
| | - Joerg Holenz
- Neurosciences Therapeutic Area UnitGlaxoSmithKline R&D LtdUpper ProvidencePennsylvaniaUSA
| | | | - Arseniy Lavrov
- Neurosciences Therapeutic Area UnitGlaxoSmithKline R&D LtdStockley ParkUK
| | - Hong Lin
- Neurosciences Therapeutic Area UnitGlaxoSmithKline R&D LtdUpper ProvidencePennsylvaniaUSA
| | - Yasuji Matsuoka
- Neurosciences Therapeutic Area UnitGlaxoSmithKline R&D LtdUpper ProvidencePennsylvaniaUSA
| | | |
Collapse
|
164
|
Rykalo N, Riehl L, Kress M. The gut microbiome and the brain. Curr Opin Support Palliat Care 2024; 18:282-291. [PMID: 39250732 DOI: 10.1097/spc.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome for human health and well-being is generally accepted, and elucidating the signaling pathways between the gut microbiome and the host offers novel mechanistic insight into the (patho)physiology and multifaceted aspects of healthy aging and human brain functions. RECENT FINDINGS The gut microbiome is tightly linked with the nervous system, and gut microbiota are increasingly emerging as important regulators of emotional and cognitive performance. They send and receive signals for the bidirectional communication between gut and brain via immunological, neuroanatomical, and humoral pathways. The composition of the gut microbiota and the spectrum of metabolites and neurotransmitters that they release changes with increasing age, nutrition, hypoxia, and other pathological conditions. Changes in gut microbiota (dysbiosis) are associated with critical illnesses such as cancer, cardiovascular, and chronic kidney disease but also neurological, mental, and pain disorders, as well as chemotherapies and antibiotics affecting brain development and function. SUMMARY Dysbiosis and a concomitant imbalance of mediators are increasingly emerging both as causes and consequences of diseases affecting the brain. Understanding the microbiota's role in the pathogenesis of these disorders will have major clinical implications and offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Nadiia Rykalo
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
165
|
Bønnelycke EMS, Giacon TA, Bosco G, Kainerstorfer JM, Paganini M, Ruesch A, Wu J, McKnight JC. Cerebral hemodynamic and systemic physiological changes in trained freedivers completing sled-assisted dives to two different depths. Am J Physiol Regul Integr Comp Physiol 2024; 327:R553-R567. [PMID: 39241005 DOI: 10.1152/ajpregu.00085.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/08/2024]
Abstract
Although existing literature covers significant detail on the physiology of human freediving, the lack of standardized protocols has hindered comparisons due to confounding variables such as exercise and depth. By accounting for these variables, direct depth-dependent impacts on cardiovascular and blood oxygen regulation can be investigated. In this study, depth-dependent effects on 1) cerebral hemodynamic and oxygenation changes, 2) arterial oxygen saturation ([Formula: see text]), and 3) heart rate during breath-hold diving without confounding effects of exercise were investigated. Six freedivers (51.0 ± 12.6 yr; means ± SD), instrumented with continuous-wave near-infrared spectroscopy for monitoring cerebral hemodynamic and oxygenation measurements, heart rate, and [Formula: see text], performed sled-assisted breath-hold dives to 15 m and 42 m. Arterial blood gas tensions were validated through cross-sectional periodic blood sampling. Cerebral hemodynamic changes were characteristic of breath-hold diving, with changes during ascent from both depths likely driven by decreasing [Formula: see text] due to lung expansion. Although [Formula: see text] was significantly lower following 42-m dives [t(5) = -4.183, P < 0.05], mean cerebral arterial-venous blood oxygen saturation remained at 74% following dives to both depths. Cerebral oxygenation during ascent from 42 m may have been maintained through increased arterial delivery. Heart rate was variable with no significant difference in minimum heart rate between both depths [t(5) = -1.017, P > 0.05]. This study presents a standardized methodology, which could provide a basis for future research on human freediving physiology and uncover ways in which freedivers can reduce potential risks of the sport.NEW & NOTEWORTHY We present a standardized methodology in which trained breath-hold divers instrumented with wearable near-infrared spectroscopy (NIRS) technology and a cannula for arterial blood sampling completed sled-assisted dives to two different dive depths to account for the confounding factors of exercise and depth during breath-hold diving. In our investigation, we highlight the utility of wearable NIRS systems for continuous hemodynamic and oxygenation monitoring to investigate the impacts of hydrostatic pressure on cardiovascular and blood oxygen regulation.
Collapse
Affiliation(s)
- Eva-Maria S Bønnelycke
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| | - Tommaso A Giacon
- Laboratory of Environmental and Respiratory Physiology, Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Anesthesia and Intensive Care, Padova University Hospital, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Gerardo Bosco
- Laboratory of Environmental and Respiratory Physiology, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jana M Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Matteo Paganini
- Laboratory of Environmental and Respiratory Physiology, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alexander Ruesch
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Jingyi Wu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - J Chris McKnight
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| |
Collapse
|
166
|
De Ridder D, Adhia D, Vanneste S. The brain's duck test in phantom percepts: Multisensory congruence in neuropathic pain and tinnitus. Brain Res 2024; 1844:149137. [PMID: 39103069 DOI: 10.1016/j.brainres.2024.149137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Chronic neuropathic pain and chronic tinnitus have been likened to phantom percepts, in which a complete or partial sensory deafferentation results in a filling in of the missing information derived from memory. 150 participants, 50 with tinnitus, 50 with chronic pain and 50 healthy controls underwent a resting state EEG. Source localized current density is recorded from all the sensory cortices (olfactory, gustatory, somatosensory, auditory, vestibular, visual) as well as the parahippocampal area. Functional connectivity by means of lagged phase synchronization is also computed between these regions of interest. Pain and tinnitus are associated with gamma band activity, reflecting prediction errors, in all sensory cortices except the olfactory and gustatory cortex. Functional connectivity identifies theta frequency connectivity between each of the sensory cortices except the chemical senses to the parahippocampus, but not between the individual sensory cortices. When one sensory domain is deprived, the other senses may provide the parahippocampal 'contextual' area with the most likely sound or somatosensory sensation to fill in the gap, applying an abductive 'duck test' approach, i.e., based on stored multisensory congruence. This novel concept paves the way to develop novel treatments for pain and tinnitus, using multisensory (i.e. visual, vestibular, somatosensory, auditory) modulation with or without associated parahippocampal targeting.
Collapse
Affiliation(s)
- Dirk De Ridder
- Unit of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Divya Adhia
- Unit of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- School of Psychology, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland. https://www.lab-clint.org
| |
Collapse
|
167
|
Yu Y, Lettow I, Roedl K, Jarczak D, Pinnschmidt H, Reichenspurner H, Bernhardt AM, Söffker G, Schrage B, Haar M, Weber T, Frings D, Kluge S, Fischer M. Association of early changes in arterial carbon dioxide with acute brain injury in adult patients with extracorporeal membrane oxygenation: A ten-year retrospective study in a German tertiary care hospital. J Crit Care 2024; 84:154880. [PMID: 39024824 DOI: 10.1016/j.jcrc.2024.154880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE To assess the association between fluctuations of arterial carbon dioxide early after start of extracorporeal membrane oxygenation (ECMO) with intracranial hemorrhage (ICH) or ischemic stroke (IS). MATERIALS AND METHODS This single-center retrospective study included patients who required ECMO for circulatory or respiratory failure between January 2011 and April 2021 and for whom a cerebral computed tomography (cCT) scan was available. Multivariable logistic regression models were fitted to evaluate the association between the relative change of arterial carbon dioxide (RelΔPaCO2) and ICH, IS or a composite of ICH, IS, and mortality. RESULTS In 618 patients (venovenous ECMO: n = 295; venoarterial ECMO: n = 323) ICH occurred more frequently in patients with respiratory failure (19.0%) compared with patients with circulatory failure (6.8%). Conversely, the incidence of IS was higher in patients with circulatory failure (19.2%) compared with patients with respiratory failure (4.7%). While patients with ECMO for respiratory failure were more likely to have ICH (OR 3.683 [95% CI: 1.855;7.309], p < 0.001), they had a lower odds for IS (OR 0.360 [95%CI: 0.158;0.820], p = 0.015) compared with patients with circulatory failure. There was no significant association between RelΔPaCO2 and ICH or IS. CONCLUSIONS Irrespective of the indication for ECMO, we did not find a significant association between the relative change in PaCO2 early after ECMO initiation and acute brain injury. Aside from early PaCO2 decline at cannulation, future studies should address fluctuations of PaCO2 throughout the course of ECMO support and their effect on acute brain injury.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Iris Lettow
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kevin Roedl
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Jarczak
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Pinnschmidt
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander M Bernhardt
- Department of Cardiovascular Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerold Söffker
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt Schrage
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Markus Haar
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theresa Weber
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Frings
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Fischer
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
168
|
Iwata N, Tsubuki S, Sekiguchi M, Watanabe-Iwata K, Matsuba Y, Kamano N, Fujioka R, Takamura R, Watamura N, Kakiya N, Mihira N, Morito T, Shirotani K, Mann DM, Robinson AC, Hashimoto S, Sasaguri H, Saito T, Higuchi M, Saido TC. Metabolic resistance of Aβ3pE-42, a target epitope of the anti-Alzheimer therapeutic antibody, donanemab. Life Sci Alliance 2024; 7:e202402650. [PMID: 39348937 PMCID: PMC11443169 DOI: 10.26508/lsa.202402650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024] Open
Abstract
The amyloid β peptide (Aβ), starting with pyroglutamate (pE) at position 3 and ending at position 42 (Aβ3pE-42), predominantly accumulates in the brains of Alzheimer's disease. Consistently, donanemab, a therapeutic antibody raised against Aβ3pE-42, has been shown to be effective in recent clinical trials. Although the primary Aβ produced physiologically is Aβ1-40/42, an explanation for how and why this physiological Aβ is converted to the pathological form remains elusive. Here, we present experimental evidence that accounts for the aging-associated Aβ3pE-42 deposition: Aβ3pE-42 was metabolically more stable than other Aβx-42 variants; deficiency of neprilysin, the major Aβ-degrading enzyme, induced a relatively selective deposition of Aβ3pE-42 in both APP transgenic and App knock-in mouse brains; Aβ3pE-42 deposition always colocalized with Pittsburgh compound B-positive cored plaques in APP transgenic mouse brains; and under aberrant conditions, such as a significant reduction in neprilysin activity, aminopeptidases, dipeptidyl peptidases, and glutaminyl-peptide cyclotransferase-like were up-regulated in the progression of aging, and a proportion of Aβ1-42 may be processed to Aβ3pE-42. Our findings suggest that anti-Aβ therapies are more effective if given before Aβ3pE-42 deposition.
Collapse
Affiliation(s)
- Nobuhisa Iwata
- https://ror.org/058h74p94 Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- https://ror.org/04j1n1c04 Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Satoshi Tsubuki
- https://ror.org/04j1n1c04 Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Misaki Sekiguchi
- https://ror.org/04j1n1c04 Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Kaori Watanabe-Iwata
- https://ror.org/058h74p94 Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yukio Matsuba
- https://ror.org/04j1n1c04 Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naoko Kamano
- https://ror.org/04j1n1c04 Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Ryo Fujioka
- https://ror.org/04j1n1c04 Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Risa Takamura
- https://ror.org/04j1n1c04 Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naoto Watamura
- https://ror.org/04j1n1c04 Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naomasa Kakiya
- https://ror.org/04j1n1c04 Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naomi Mihira
- https://ror.org/04j1n1c04 Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Takahiro Morito
- https://ror.org/04j1n1c04 Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Keiro Shirotani
- https://ror.org/058h74p94 Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - David Ma Mann
- https://ror.org/027m9bs27 Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Andrew C Robinson
- https://ror.org/027m9bs27 Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Shoko Hashimoto
- https://ror.org/04j1n1c04 Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Hiroki Sasaguri
- https://ror.org/04j1n1c04 Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takaomi C Saido
- https://ror.org/04j1n1c04 Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
169
|
Mahmud SZ, Singh M, van Zijl P, Heo HY. Fast and motion-robust saturation transfer MRI with inherent B 0 correction using rosette trajectories and compressed sensing. Magn Reson Med 2024; 92:2535-2545. [PMID: 39129199 PMCID: PMC11436307 DOI: 10.1002/mrm.30249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE To implement rosette readout trajectories with compressed sensing reconstruction for fast and motion-robust CEST and magnetization transfer contrast imaging with inherent correction of B0 inhomogeneity. METHODS A pulse sequence was developed for fast saturation transfer imaging using a stack of rosette trajectories with a higher sampling density near the k-space center. Each rosette lobe was segmented into two halves to generate dual-echo images. B0 inhomogeneities were estimated using the phase difference between the images and corrected subsequently. The rosette-based imaging was evaluated in comparison to a fully sampled Cartesian trajectory and demonstrated on CEST phantoms (creatine solutions and egg white) and healthy volunteers at 3 T. RESULTS Compared with the conventional Cartesian acquisition, compressed sensing reconstructed rosette images provided image quality with overall higher contrast-to-noise ratio and significantly faster readout time. Accurate B0 map estimation was achieved from the rosette acquisition with a negligible bias of 0.01 Hz between the rosette and dual-echo Cartesian gradient echo B0 maps, using the latter as ground truth. The water-saturation spectra (Z-spectra) and amide proton transfer weighted signals obtained from the rosette-based sequence were well preserved compared with the fully sampled data, both in the phantom and human studies. CONCLUSIONS Fast, motion-robust, and inherent B0-corrected CEST and magnetization transfer contrast imaging using rosette trajectories could improve subject comfort and compliance, contrast-to-noise ratio, and provide inherent B0 homogeneity information. This work is expected to significantly accelerate the translation of CEST-MRI into a robust, clinically viable approach.
Collapse
Affiliation(s)
- Sultan Z. Mahmud
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Munendra Singh
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter van Zijl
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Hye-Young Heo
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
170
|
Zheng Y, Peng L, Jiang G, Zhou J, Yang S, Bai L, Li X, He M. Activation of chaperone-mediated autophagy exerting neuroprotection effect on intracerebral hemorrhage-induced neuronal injury by targeting Lamp2a. Exp Neurol 2024; 382:114986. [PMID: 39368534 DOI: 10.1016/j.expneurol.2024.114986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Intracerebral hemorrhage (ICH) is a common and devastating type of stroke, marked by significant morbidity and a grim prognosis. The inflammation cascade triggered by astrocytes plays a critical role in secondary brain injury (SBI) following ICH, leading to detrimental effects such as cell death. However, effective intervention strategies are currently lacking. This study aims to investigate the role of the astrocyte cascade reaction following ICH and identify potential intervention targets. Utilizing the GSE216607 and GSE206971 databases for analysis, we established a mouse autologous blood model. Firstly, our research revealed a significant activation of the autophagy pathway following intracerebral hemorrhage (ICH), with a notable upregulation of Lamp2a, a key factor in chaperone-mediated autophagy (CMA), primarily localized in astrocytes. Additionally, the downregulation of Lamp2a resulted in a significant augmentation of A1 reactive astrocytes, concomitant with a reduction in myelin coverage area, heightened neuronal injury, exacerbated motor and sensory deficits, and diminished neurological scores after ICH in mice. Conversely, CA77.1, an activator of CMA, could reverse ICH-induced augmentation of A1 reactive astrocytes, myelin damage, neuronal death, and neurobehavioral disorders. In conclusion, the activation of astrocyte CMA following ICH can exert neuroprotective effects. Lamp2a represents a promising therapeutic target for post-ICH treatment.
Collapse
Affiliation(s)
- Yun Zheng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Geriatrics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Lu Peng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Guannan Jiang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Jialei Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Siyuan Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Lei Bai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
171
|
Stickland CA, Sztranyovszky Z, Rickard JJS, Goldberg Oppenheimer P. Validation of optimised intracranial spectroscopic probe for instantaneous in-situ monitoring and classification of traumatic brain injury. Exp Neurol 2024; 382:114960. [PMID: 39299676 DOI: 10.1016/j.expneurol.2024.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The development of an optical interface to directly distinguish the brain tissue's biochemistry is the next step in understanding traumatic brain injury (TBI) pathophysiology and the best and most appropriate treatment in cases where in-hospital intracranial access is required. Despite TBI being a globally leading cause of morbidity and mortality in patients under 40, there is still a lack of objective diagnostical tools. Further, given its pathophysiological complexity the majority of treatments provided are purely symptomatic without standardized therapeutic targets. Our tailor-engineered prototype of the intracranial Raman spectroscopy probe (Intra-RSP) is designed to bridge the gap and provide real-time spectroscopic insights to monitor TBI and its evolution as well as identify patient-specific molecular targets for timely intervention. Raman spectroscopy being rapid, label-free and non-destructive, renders it an ideal portable diagnostics tool. In combination with our in-house developed software, using machine learning algorithms for multivariate analysis, the Intra-RSP is shown to accurately differentiate simulated TBI conditions in rat brains from the healthy controls, directly from the brain surface as well as through the rat's skull. Using clinically pre-established methods of cranial entry, the Intra-RSP can be inserted into a 2-piece optimised cranial bolt with integrated focussing and correctly identify a sample in real-life conditions with an accuracy >80 %. To further validate the Intra-RSP's efficiency as a TBI monitoring device, rat brains mildly damaged from inflicted spinal cord injury were found to be correctly classified with 94.5 % accuracy. Through optimization and rigorous in-vivo validation, the Intra-RSP prototype is envisioned to seamlessly integrate into existing standards of neurological care, serving as a minimally invasive, in-situ neuromonitoring tool. This transformative approach has the potential to revolutionize the landscape of neurological care by providing clinicians with unprecedented insights into the nature of brain injuries and fostering targeted, timely and effective therapeutic interventions.
Collapse
Affiliation(s)
- Clarissa A Stickland
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK
| | - Zoltan Sztranyovszky
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK
| | - Jonathan J S Rickard
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK; Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK; Institute of Healthcare Technologies, Mindelsohn Way, Birmingham B15 2TH, UK.
| |
Collapse
|
172
|
Nyúl-Tóth Á, Patai R, Csiszar A, Ungvari A, Gulej R, Mukli P, Yabluchanskiy A, Benyo Z, Sotonyi P, Prodan CI, Liotta EM, Toth P, Elahi F, Barsi P, Maurovich-Horvat P, Sorond FA, Tarantini S, Ungvari Z. Linking peripheral atherosclerosis to blood-brain barrier disruption: elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment. GeroScience 2024; 46:6511-6536. [PMID: 38831182 PMCID: PMC11494622 DOI: 10.1007/s11357-024-01194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Aging plays a pivotal role in the pathogenesis of cerebral small vessel disease (CSVD), contributing to the onset and progression of vascular cognitive impairment and dementia (VCID). In older adults, CSVD often leads to significant pathological outcomes, including blood-brain barrier (BBB) disruption, which in turn triggers neuroinflammation and white matter damage. This damage is frequently observed as white matter hyperintensities (WMHs) in neuroimaging studies. There is mounting evidence that older adults with atherosclerotic vascular diseases, such as peripheral artery disease, ischemic heart disease, and carotid artery stenosis, face a heightened risk of developing CSVD and VCID. This review explores the complex relationship between peripheral atherosclerosis, the pathogenesis of CSVD, and BBB disruption. It explores the continuum of vascular aging, emphasizing the shared pathomechanisms that underlie atherosclerosis in large arteries and BBB disruption in the cerebral microcirculation, exacerbating both CSVD and VCID. By reviewing current evidence, this paper discusses the impact of endothelial dysfunction, cellular senescence, inflammation, and oxidative stress on vascular and neurovascular health. This review aims to enhance understanding of these complex interactions and advocate for integrated approaches to manage vascular health, thereby mitigating the risk and progression of CSVD and VCID.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Fanny Elahi
- Departments of Neurology and Neuroscience Ronald M. Loeb Center for Alzheimer's Disease Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Péter Barsi
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| |
Collapse
|
173
|
Koyama Y, Hamada Y, Fukui Y, Hosogi N, Fujimoto R, Hishinuma S, Ogawa Y, Takahashi K, Izumi Y, Michinaga S. Endothelin-1 increases Na +-K +-2Cl - cotransporter-1 expression in cultured astrocytes and in traumatic brain injury model: An involvement of HIF1α activation. Glia 2024; 72:2231-2246. [PMID: 39166289 DOI: 10.1002/glia.24609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Na+-K+-2Cl- cotransporter-1 (NKCC1) is present in brain cells, including astrocytes. The expression of astrocytic NKCC1 increases in the acute phase of traumatic brain injury (TBI), which induces brain edema. Endothelin-1 (ET-1) is a factor that induces brain edema and regulates the expression of several pathology-related genes in astrocytes. In the present study, we investigated the effect of ET-1 on NKCC1 expression in astrocytes. ET-1 (100 nM)-treated cultured astrocytes showed increased NKCC1 mRNA and protein levels. The effect of ET-1 on NKCC1 expression in cultured astrocytes was reduced by BQ788 (1 μM), an ETB antagonist, but not by FR139317 (1 μM), an ETA antagonist. The involvement of ET-1 in NKCC1 expression in TBI was examined using a fluid percussion injury (FPI) mouse model that replicates the pathology of TBI with high reproducibility. Administration of BQ788 (15 nmol/day) decreased FPI-induced expressions of NKCC1 mRNA and protein, accompanied with a reduction of astrocytic activation. FPI-induced brain edema was attenuated by BQ788 and NKCC1 inhibitors (azosemide and bumetanide). ET-1-treated cultured astrocytes showed increased mRNA and protein expression of hypoxia-inducible factor-1α (HIF1α). Immunohistochemical observations of mouse cerebrum after FPI showed co-localization of HIF1α with GFAP-positive astrocytes. Increased HIF1α expression in the TBI model was reversed by BQ788. FM19G11 (an HIF inhibitor, 1 μM) and HIF1α siRNA suppressed ET-induced increase in NKCC1 expression in cultured astrocytes. These results indicate that ET-1 increases NKCC1 expression in astrocytes through the activation of HIF1α.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Yasuhiro Hamada
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Yura Fukui
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Nami Hosogi
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Rina Fujimoto
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yasuhiro Ogawa
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Kenta Takahashi
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yasuhiko Izumi
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
174
|
Álvarez-Merz I, Muñoz MD, Hernández-Guijo JM, Solís JM. Identification of Non-excitatory Amino Acids and Transporters Mediating the Irreversible Synaptic Silencing After Hypoxia. Transl Stroke Res 2024; 15:1070-1087. [PMID: 37755645 DOI: 10.1007/s12975-023-01192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
The contribution of excitatory amino acids (AA) to ischemic brain injury has been widely described. In addition, we reported that a mixture of non-excitatory AA at plasmatic concentrations turns irreversible the depression of synaptic transmission caused by hypoxia. Here, we describe that the presence of seven non-excitatory AA (L-alanine, L-glutamine, glycine, L-histidine, L-serine, taurine, and L-threonine) during hypoxia provokes an irreversible neuronal membrane depolarization, after an initial phase of hyperpolarization. The collapse of the membrane potential correlates with a great increase in fiber volley amplitude. Nevertheless, we show that the presence of all seven AA is not necessary to cause the irreversible loss of fEPSP after hypoxia and that the minimal combination of AA able to provoke a solid, replicable effect is the mixture of L-alanine, glycine, L-glutamine, and L-serine. Additionally, L-glutamine seems necessary but insufficient to induce these harmful effects. We also prove that the deleterious effects of the AA mixtures on field potentials during hypoxia depend on both the identity and concentration of the individual AA in the mixture. Furthermore, we find that the accumulation of AA in the whole slice does not determine the outcome caused by the AA mixtures on the synaptic transmission during hypoxia. Finally, results obtained using pharmacological inhibitors and specific substrates of AA transporters suggest that system N and the alanine-serine-cysteine transporter 2 (ASCT2) participate in the non-excitatory AA-mediated deleterious effects during hypoxia. Thus, these AA transporters might represent therapeutical targets for the treatment of brain ischemia.
Collapse
Affiliation(s)
- Iris Álvarez-Merz
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | - María-Dolores Muñoz
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Jesús M Hernández-Guijo
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain.
| | - José M Solís
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| |
Collapse
|
175
|
Sen A, Mukherjee A, Chakravarty A. Neurological and Systemic Pitfalls in the Diagnosis of Cluster Headaches: A Case-Based Review. Curr Neurol Neurosci Rep 2024; 24:581-592. [PMID: 39432226 DOI: 10.1007/s11910-024-01381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE OF REVIEW To describe different pitfalls in the diagnosis of primary cluster headaches (CHs) with the guidance of seven case vignettes. RECENT FINDINGS The question of whether primary CHs and migraines are totally different entities has been long debated. Autonomic features can be detected in as many as 60% of migraine patients. Although some genetic similarities have been found, CACNA1A mutations have not been detected among CH patients with hemimotor aura in contrast to hemiplegic migraine. Recently, functional MRI studies have shown that the left thalamic network was the most discriminative MRI feature in distinguishing migraine from CH patients. Compared to migraine, CH patients showed decreased functional interaction between the left thalamus and cortical areas mediating interception and sensory integration. However, clinically the most significant feature had been the restlessness and agitation seen during headache attacks patients with CHs. This feature is also important in distinguishing cluster patients from other patients having other trigeminal autonomic cephalalgias except for a subset of patients with hemicrania continua. CH is an important member of the group of headache disorders characterized by their association with one or more autonomic features in the trigeminal nerve distribution and termed Trigeminal Autonomic Cephalalgias (TACs). Although CH is a relatively rare condition, judged by the distress it generally causes to the affected individual, early diagnosis and institution of appropriate therapy seem mandatory. Correct diagnosis of CHs needs avoidance of pitfalls. Such pitfalls generally include differentiation from migraine, differentiation from other side locked headache disorders, from other trigeminal autonomic cephalalgias (TACs), and lastly, recognition of rare presentations of cluster-like manifestations with hemiplegic aura and simulating trigeminal and glossopharyngeal neuralgias. Differentiation between primary and symptomatic CHs related to sellar pathologies and systemic medical conditions is of equal importance. In the present review such issues are discussed with the assistance of seven case vignettes.
Collapse
Affiliation(s)
- Ansu Sen
- Department of Neurology, Vivekananda Institute of Medical Science, Kolkata, West Bengal, India
| | - Angshuman Mukherjee
- Department of Neurology, Vivekananda Institute of Medical Science, Kolkata, West Bengal, India
| | - Ambar Chakravarty
- Department of Neurology, Vivekananda Institute of Medical Science, Kolkata, West Bengal, India.
| |
Collapse
|
176
|
Wang W, Zhu C, Martelletti P. Understanding Headaches Attributed to Cranial and/or Cervical Vascular Disorders: Insights and Challenges for Neurologists. Pain Ther 2024; 13:1429-1445. [PMID: 39397219 DOI: 10.1007/s40122-024-00668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
In recent decades, cranial and cervical vascular disorders have become major global health concerns, significantly impacting patients, families, and societies. Headache is a prevalent symptom of these vascular diseases and can often be the initial, primary, or sole manifestation. The intricate relationship between headaches and cranial/cervical vascular disorders poses a diagnostic and therapeutic challenge, with the underlying mechanisms remaining largely elusive. Understanding this association is crucial for the early diagnosis, prevention, and intervention of such conditions. This review aims to provide a comprehensive overview of the clinical features and potential pathogenesis of headaches attributed to cranial and cervical vascular disorders and provide a reference for disease management and a basis for potential pathological mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Headache Center, Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Chenlu Zhu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | | |
Collapse
|
177
|
Sakhi IB, De Combiens E, Frachon N, Durussel F, Brideau G, Nemazanyy I, Frère P, Thévenod F, Lee WK, Zeng Q, Klein C, Lourdel S, Bignon Y. A novel transgenic mouse model highlights molecular disruptions involved in the pathogenesis of Dent disease 1. Gene 2024; 928:148766. [PMID: 39019097 DOI: 10.1016/j.gene.2024.148766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Dent disease (DD) is a hereditary renal disorder characterized by low molecular weight (LMW) proteinuria and progressive renal failure. Inactivating mutations of the CLCN5 gene encoding the 2Cl-/H+exchanger ClC-5 have been identified in patients with DD type 1. ClC-5 is essentially expressed in proximal tubules (PT) where it is thought to play a role in maintaining an efficient endocytosis of LMW proteins. However, the exact pathological roles of ClC-5 in progressive dysfunctions observed in DD type 1 are still unclear. To address this issue, we designed a mouse model carrying the most representative type of ClC-5 missense mutations found in DD patients. These mice showed a characteristic DD type 1 phenotype accompanied by altered endo-lysosomal system and autophagy functions. With ageing, KI mice showed increased renal fibrosis, apoptosis and major changes in cell metabolic functions as already suggested in previous DD models. Furthermore, we made the interesting new discovery that the Lipocalin-2-24p3R pathway might be involved in the progression of the disease. These results suggest a crosstalk between the proximal and distal nephron in the pathogenesis mechanisms involved in DD with an initial PT impairment followed by the Lipocalin-2 internalisation and 24p3R overexpression in more distal segments of the nephron. This first animal model of DD carrying a pathogenic mutation of Clcn5 and our findings pave the way aimed at exploring therapeutic strategies to limit the consequences of ClC-5 disruption in patients with DD type 1 developing chronic kidney disease.
Collapse
Affiliation(s)
- Imene Bouchra Sakhi
- University of Zurich - Institute of Anatomy, Zurich CH-8057, Switzerland; Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France.
| | - Elise De Combiens
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Fanny Durussel
- Department of Biomedical Sciences, University of Lausanne, Switzerland
| | - Gaelle Brideau
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Perrine Frère
- Sorbonne Université, INSERM, Unité mixte de Recherche 1155, Kidney Research Centre, AP-HP, Hôpital Tenon, Paris, France
| | - Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany; Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Qinghe Zeng
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; Laboratoire d'Informatique Paris Descartes (LIPADE), Université Paris Cité, Paris, France
| | - Christophe Klein
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France
| | - Stéphane Lourdel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Yohan Bignon
- Department of Biomedical Sciences, University of Lausanne, Switzerland.
| |
Collapse
|
178
|
Lu WM, Ji HN, Yang RH, Cheng KL, Yang XL, Zeng HL, Tao K, Yin DM, Wu DH. A rat model of cerebral small vascular disease induced by ultrasound and protoporphyrin. Biochem Biophys Res Commun 2024; 735:150451. [PMID: 39094233 DOI: 10.1016/j.bbrc.2024.150451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Cerebral small vascular disease (CSVD) has a high incidence worldwide, but its pathological mechanisms remain poorly understood due to the lack of proper animal models. The current animal models of CSVD have several limitations such as high mortality rates and large-sized lesions, and thus it is urgent to develop new animal models of CSVD. Ultrasound can activate protoporphyrin to produce reactive oxygen species in a liquid environment. Here we delivered protoporphyrin into cerebral small vessels of rat brain through polystyrene microspheres with a diameter of 15 μm, and then performed transcranial ultrasound stimulation (TUS) on the model rats. We found that TUS did not affect the large vessels or cause large infarctions in the brain of model rats. The mortality rates were also comparable between the sham and model rats. Strikingly, TUS induced several CSVD-like phenotypes such as cerebral microinfarction, white matter injuries and impaired integrity of endothelial cells in the model rats. Additionally, these effects could be alleviated by antioxidant treatment with N-acetylcysteine (NAC). As control experiments, TUS did not lead to cerebral microinfarction in the rat brain when injected with the polystyrene microspheres not conjugated with protoporphyrin. In sum, we generated a rat model of CSVD that may be useful for the mechanistic study and drug development for CSVD.
Collapse
Affiliation(s)
- Wen-Mei Lu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, China
| | - Hao-Nan Ji
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, China
| | - Rui-Hao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kai-Li Cheng
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiao-Li Yang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Hu-Lie Zeng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Dong-Min Yin
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, China.
| | - Dan-Hong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, China.
| |
Collapse
|
179
|
Pensato U, Bosshart S, Stebner A, Rohr A, Kleinig TJ, Gupta R, Thomalla G, Heo JH, Goyal M, Demchuk AM, Hill MD, Ospel JM. Effect of Hemoglobin and Blood Glucose Levels on CT Perfusion Ischemic Core Estimation: A Post Hoc Analysis of the ESCAPE-NA1 Trial. Neurology 2024; 103:e209939. [PMID: 39432874 DOI: 10.1212/wnl.0000000000209939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND AND OBJECTIVES CT perfusion (CTP) maps can estimate the ischemic core in acute ischemic stroke based on distinctive cerebral blood flow thresholds. However, metabolic factors beyond perfusion influence the tissue tolerance to ischemia and the infarct growth rate. Underestimating the ischemic core volume (ICV) might result in overestimating the salvageable cerebral tissue and, consequently, overestimating the potential clinical benefits of reperfusion therapies. We aim to evaluate whether baseline hemoglobin and blood glucose levels influence the accuracy of baseline CTP ICV estimations. METHODS Large vessel occlusion stroke patients investigated with baseline CTP undergoing thrombectomy with near-complete reperfusion and without parenchymal hemorrhage from the ESCAPE-NA1 trial were included. Patients were subdivided into anemic (hemoglobin <130 g/L for men and <120 g/L for women) and nonanemic groups, and hyperglycemic (blood glucose level >7 mmol/L) and normoglycemic groups. Ischemic core underestimated volume (ICuV) was calculated: final infarct volume minus CTP-based ICV. The primary outcome was the presence of "perfusion scotoma" defined as ICuV ≥10 mL. Presence of "perfusion scotoma" and median ICuV were compared between anemic vs nonanemic and hyperglycemic vs normoglycemic patients using nonparametric tests and multivariable binary logistic regression with adjustment for baseline variables. RESULTS One hundred sixty-two of 1,105 (15%) patients were included (median age 70.5 [interquartile range (IQR) 61-80.4], 50.6% women). The median ICuV was 7.26 mL (IQR 0-25.63). Seventy-eight (48%) patients demonstrated perfusion scotoma. Forty-two (25.7%) patients were anemic, and 65 (40.1%) were hyperglycemic. In univariable analysis, the hyperglycemic group had a higher prevalence of perfusion scotoma (65% [n = 40] vs 39% [n = 38], p = 0.006) and larger ICuV (17.79 mL [IQR 1.57-42.75] vs 6 mL [-0.31 to 12.51], p = 0.003) compared to normoglycemic patients. No significant ICuV differences between patients with and without anemia were seen. Multivariable regression analysis revealed an association between perfusion scotoma and hyperglycemia, adjusted odds ratio (OR) 2.48 (95% CI 1.25-4.92), and between perfusion scotoma and blood glucose levels, adjusted OR 1.19 (95% CI 1.03-1.39) per 1 mmol/L increase. DISCUSSION In our study, CTP-based ischemic core underestimation was common and associated with higher baseline blood glucose levels. Individual metabolic factors beyond perfusion that critically influence the infarct growth rate should be considered when interpreting baseline CTP estimations of ischemic core.
Collapse
Affiliation(s)
- Umberto Pensato
- From the IRCCS Humanitas Research Hospital (U.P.); Department of Biomedical Sciences (U.P.), Humanitas University, Milan, Italy; Calgary Stroke Program (U.P., S.B., A.S., A.M.D., M.D.H.), Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Institute of Radiology (A.S.), Cantonal Hospital Münsterlingen, Switzerland; University of British Columbia (A.R.), Vancouver, Canada; Royal Adelaide Hospital (T.J.K.), Adelaide, Australia; Wellstar Health Systems (R.G.), Kennestone Hospital, Marietta, GA; Department of Neurology (G.T.) and Department of Neuroradiology (G.T.), University Medical Center Hamburg-Eppendorf, Germany; University College of Medicine (J.H.H.), Seoul, South Korea; and Department of Radiology (M.G., M.D.H., J.M.O.), Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Salome Bosshart
- From the IRCCS Humanitas Research Hospital (U.P.); Department of Biomedical Sciences (U.P.), Humanitas University, Milan, Italy; Calgary Stroke Program (U.P., S.B., A.S., A.M.D., M.D.H.), Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Institute of Radiology (A.S.), Cantonal Hospital Münsterlingen, Switzerland; University of British Columbia (A.R.), Vancouver, Canada; Royal Adelaide Hospital (T.J.K.), Adelaide, Australia; Wellstar Health Systems (R.G.), Kennestone Hospital, Marietta, GA; Department of Neurology (G.T.) and Department of Neuroradiology (G.T.), University Medical Center Hamburg-Eppendorf, Germany; University College of Medicine (J.H.H.), Seoul, South Korea; and Department of Radiology (M.G., M.D.H., J.M.O.), Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Alexander Stebner
- From the IRCCS Humanitas Research Hospital (U.P.); Department of Biomedical Sciences (U.P.), Humanitas University, Milan, Italy; Calgary Stroke Program (U.P., S.B., A.S., A.M.D., M.D.H.), Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Institute of Radiology (A.S.), Cantonal Hospital Münsterlingen, Switzerland; University of British Columbia (A.R.), Vancouver, Canada; Royal Adelaide Hospital (T.J.K.), Adelaide, Australia; Wellstar Health Systems (R.G.), Kennestone Hospital, Marietta, GA; Department of Neurology (G.T.) and Department of Neuroradiology (G.T.), University Medical Center Hamburg-Eppendorf, Germany; University College of Medicine (J.H.H.), Seoul, South Korea; and Department of Radiology (M.G., M.D.H., J.M.O.), Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Axel Rohr
- From the IRCCS Humanitas Research Hospital (U.P.); Department of Biomedical Sciences (U.P.), Humanitas University, Milan, Italy; Calgary Stroke Program (U.P., S.B., A.S., A.M.D., M.D.H.), Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Institute of Radiology (A.S.), Cantonal Hospital Münsterlingen, Switzerland; University of British Columbia (A.R.), Vancouver, Canada; Royal Adelaide Hospital (T.J.K.), Adelaide, Australia; Wellstar Health Systems (R.G.), Kennestone Hospital, Marietta, GA; Department of Neurology (G.T.) and Department of Neuroradiology (G.T.), University Medical Center Hamburg-Eppendorf, Germany; University College of Medicine (J.H.H.), Seoul, South Korea; and Department of Radiology (M.G., M.D.H., J.M.O.), Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Timothy J Kleinig
- From the IRCCS Humanitas Research Hospital (U.P.); Department of Biomedical Sciences (U.P.), Humanitas University, Milan, Italy; Calgary Stroke Program (U.P., S.B., A.S., A.M.D., M.D.H.), Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Institute of Radiology (A.S.), Cantonal Hospital Münsterlingen, Switzerland; University of British Columbia (A.R.), Vancouver, Canada; Royal Adelaide Hospital (T.J.K.), Adelaide, Australia; Wellstar Health Systems (R.G.), Kennestone Hospital, Marietta, GA; Department of Neurology (G.T.) and Department of Neuroradiology (G.T.), University Medical Center Hamburg-Eppendorf, Germany; University College of Medicine (J.H.H.), Seoul, South Korea; and Department of Radiology (M.G., M.D.H., J.M.O.), Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Rishi Gupta
- From the IRCCS Humanitas Research Hospital (U.P.); Department of Biomedical Sciences (U.P.), Humanitas University, Milan, Italy; Calgary Stroke Program (U.P., S.B., A.S., A.M.D., M.D.H.), Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Institute of Radiology (A.S.), Cantonal Hospital Münsterlingen, Switzerland; University of British Columbia (A.R.), Vancouver, Canada; Royal Adelaide Hospital (T.J.K.), Adelaide, Australia; Wellstar Health Systems (R.G.), Kennestone Hospital, Marietta, GA; Department of Neurology (G.T.) and Department of Neuroradiology (G.T.), University Medical Center Hamburg-Eppendorf, Germany; University College of Medicine (J.H.H.), Seoul, South Korea; and Department of Radiology (M.G., M.D.H., J.M.O.), Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Götz Thomalla
- From the IRCCS Humanitas Research Hospital (U.P.); Department of Biomedical Sciences (U.P.), Humanitas University, Milan, Italy; Calgary Stroke Program (U.P., S.B., A.S., A.M.D., M.D.H.), Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Institute of Radiology (A.S.), Cantonal Hospital Münsterlingen, Switzerland; University of British Columbia (A.R.), Vancouver, Canada; Royal Adelaide Hospital (T.J.K.), Adelaide, Australia; Wellstar Health Systems (R.G.), Kennestone Hospital, Marietta, GA; Department of Neurology (G.T.) and Department of Neuroradiology (G.T.), University Medical Center Hamburg-Eppendorf, Germany; University College of Medicine (J.H.H.), Seoul, South Korea; and Department of Radiology (M.G., M.D.H., J.M.O.), Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Ji Hoe Heo
- From the IRCCS Humanitas Research Hospital (U.P.); Department of Biomedical Sciences (U.P.), Humanitas University, Milan, Italy; Calgary Stroke Program (U.P., S.B., A.S., A.M.D., M.D.H.), Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Institute of Radiology (A.S.), Cantonal Hospital Münsterlingen, Switzerland; University of British Columbia (A.R.), Vancouver, Canada; Royal Adelaide Hospital (T.J.K.), Adelaide, Australia; Wellstar Health Systems (R.G.), Kennestone Hospital, Marietta, GA; Department of Neurology (G.T.) and Department of Neuroradiology (G.T.), University Medical Center Hamburg-Eppendorf, Germany; University College of Medicine (J.H.H.), Seoul, South Korea; and Department of Radiology (M.G., M.D.H., J.M.O.), Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mayank Goyal
- From the IRCCS Humanitas Research Hospital (U.P.); Department of Biomedical Sciences (U.P.), Humanitas University, Milan, Italy; Calgary Stroke Program (U.P., S.B., A.S., A.M.D., M.D.H.), Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Institute of Radiology (A.S.), Cantonal Hospital Münsterlingen, Switzerland; University of British Columbia (A.R.), Vancouver, Canada; Royal Adelaide Hospital (T.J.K.), Adelaide, Australia; Wellstar Health Systems (R.G.), Kennestone Hospital, Marietta, GA; Department of Neurology (G.T.) and Department of Neuroradiology (G.T.), University Medical Center Hamburg-Eppendorf, Germany; University College of Medicine (J.H.H.), Seoul, South Korea; and Department of Radiology (M.G., M.D.H., J.M.O.), Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Andrew M Demchuk
- From the IRCCS Humanitas Research Hospital (U.P.); Department of Biomedical Sciences (U.P.), Humanitas University, Milan, Italy; Calgary Stroke Program (U.P., S.B., A.S., A.M.D., M.D.H.), Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Institute of Radiology (A.S.), Cantonal Hospital Münsterlingen, Switzerland; University of British Columbia (A.R.), Vancouver, Canada; Royal Adelaide Hospital (T.J.K.), Adelaide, Australia; Wellstar Health Systems (R.G.), Kennestone Hospital, Marietta, GA; Department of Neurology (G.T.) and Department of Neuroradiology (G.T.), University Medical Center Hamburg-Eppendorf, Germany; University College of Medicine (J.H.H.), Seoul, South Korea; and Department of Radiology (M.G., M.D.H., J.M.O.), Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Michael D Hill
- From the IRCCS Humanitas Research Hospital (U.P.); Department of Biomedical Sciences (U.P.), Humanitas University, Milan, Italy; Calgary Stroke Program (U.P., S.B., A.S., A.M.D., M.D.H.), Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Institute of Radiology (A.S.), Cantonal Hospital Münsterlingen, Switzerland; University of British Columbia (A.R.), Vancouver, Canada; Royal Adelaide Hospital (T.J.K.), Adelaide, Australia; Wellstar Health Systems (R.G.), Kennestone Hospital, Marietta, GA; Department of Neurology (G.T.) and Department of Neuroradiology (G.T.), University Medical Center Hamburg-Eppendorf, Germany; University College of Medicine (J.H.H.), Seoul, South Korea; and Department of Radiology (M.G., M.D.H., J.M.O.), Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Johanna M Ospel
- From the IRCCS Humanitas Research Hospital (U.P.); Department of Biomedical Sciences (U.P.), Humanitas University, Milan, Italy; Calgary Stroke Program (U.P., S.B., A.S., A.M.D., M.D.H.), Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Institute of Radiology (A.S.), Cantonal Hospital Münsterlingen, Switzerland; University of British Columbia (A.R.), Vancouver, Canada; Royal Adelaide Hospital (T.J.K.), Adelaide, Australia; Wellstar Health Systems (R.G.), Kennestone Hospital, Marietta, GA; Department of Neurology (G.T.) and Department of Neuroradiology (G.T.), University Medical Center Hamburg-Eppendorf, Germany; University College of Medicine (J.H.H.), Seoul, South Korea; and Department of Radiology (M.G., M.D.H., J.M.O.), Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
180
|
Xu YY, Chappell FM, Valdés Hernández MDC, Arteaga-Reyes C, Clancy U, Garcia DJ, Wiseman S, Stringer MS, Thrippleton M, Cheng Y, Zhang J, Liu X, Jochems ACC, Doubal F, Wardlaw JM. Prevalence and Clinical Implications of Hemosiderin Deposits in Recent Small Subcortical Infarcts. Neurology 2024; 103:e209973. [PMID: 39447100 PMCID: PMC11510007 DOI: 10.1212/wnl.0000000000209973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVES A quarter of ischemic strokes are of lacunar clinical subtype and have an underlying recent small subcortical infarct (RSSI), but their long-term outcomes remain poorly characterized. Hemosiderin deposits (HDs) have been noted in RSSIs at chronic stages and might mimic primary hemorrhage. We characterized HDs' morphology, frequency, and clinical relevance. METHODS Participants with RSSIs were identified from a prospective longitudinal study and evaluated on 3T MRI including susceptibility-weighted imaging (SWI) from stroke diagnosis to 12 months. We categorized HDs in RSSIs on SWI at all available time points into 4 types (spots, smudge, rim, cluster) and assessed their associations with demographic factors, stroke-related factors, and image markers with adjusted logistic regression. RESULTS HDs were observed in 43 (55.0%) of 108 participants within 3 months and 83 (76.9%) of 108 within 12 months after stroke onset. The mean time to first detection of HDs was 87 (interquartile range 53-164) days. A "rim" pattern (similar to late appearance of primary hemorrhage) occurred in at least 26.5% of RSSIs at all follow-up time points, mainly those located in the lentiform/internal capsule (50.0%) or thalamus (36.4%). Infarct volume (odds ratio [OR] 1.003, 95% CI 1.001-1.006; p = 0.004) and the total small vessel disease (SVD) score at baseline (OR 2.50, 95% CI 1.28-4.86, p = 0.007) independently predicted HDs at 12 months. HDs were positively associated with more lacunes (OR 1.60, 95% CI 1.13-2.26, p < 0.01), but not the Fazekas score, number of microbleeds, basal ganglia mineral deposit score, or clinical outcomes. DISCUSSION HDs occur commonly in RSSIs and may be associated with infarct volume and SVD score. Hemosiderin "rim" is common in RSSIs, urging caution to avoid mistaking ischemic RSSI for primary hemorrhage in subacute and chronic stages.
Collapse
Affiliation(s)
- Yu-Yuan Xu
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Francesca M Chappell
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Maria Del C Valdés Hernández
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Carmen Arteaga-Reyes
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Una Clancy
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Daniela Jaime Garcia
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Stewart Wiseman
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Michael S Stringer
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Michael Thrippleton
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Yajun Cheng
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Junfang Zhang
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Xiaodi Liu
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Angela C C Jochems
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Fergus Doubal
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Joanna M Wardlaw
- From the China National Clinical Research Center for Neurological Diseases (Y.-Y.X.), Beijing Tiantan Hospital, Capital Medical University; Centre for Clinical Brain Sciences (F.M.C., M.D.C.V.H., C.A.-R., U.C., D.J.G., S.W., M.S.S., M.T., A.C.C.J., F.D., J.M.W.), UK Dementia Research Institute, University of Edinburgh, United Kingdom; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu; Department of Neurology & Institute of Neurology (J.Z.), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine; and Division of Neurology (X.L.), Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| |
Collapse
|
181
|
Lin GQ, He XF, Liu B, Wei CY, Tao R, Yang P, Pei Z, Mo YM. Continuous theta burst stimulation ameliorates cognitive deficits in microinfarcts mice via inhibiting glial activation and promoting paravascular CSF-ISF exchange. Neuroscience 2024; 561:20-29. [PMID: 39366451 DOI: 10.1016/j.neuroscience.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Microinfarcts are widespread in the elderly, accompanied by varying degrees of cognitive decline. Continuous theta burst stimulation (cTBS) has been demonstrated to be neuroprotective on cognitive dysfunction, but the underlying cellular mechanism has been still not clear. In the present study, we evaluated the effects of cTBS on cognitive function and brain pathological changes in mice model of microinfarcts. The spatial learning and memory was assessed by Morris water maze (MWM), Glymphatic clearance efficiency was evaluated using in vivo two-photon imaging. The loss of neurons, activation of astrocytes and microglia, the expression and polarity distribution of the astrocytic aquaporin-4 (AQP4) were assessed by immunofluorescence staining. Our results showed that cTBS treatment significantly improved the spatial learning and memory, accelerated the efficiency of glymphatic clearance, up-regulated the AQP4 expression and improved the polarity distribution of AQP4 in microinfarcts mice. Besides, cTBS treatment increased the number of surviving neurons, whereas decreased the activated astrocytes and microglia. Our study suggested that cTBS accelerated glymphatic clearance and inhibited the excessive gliogenesis, which ultimately exerted neuroprotective effects on microinfarcts mice.
Collapse
Affiliation(s)
- Gui-Qing Lin
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| | - Xiao-Fei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bo Liu
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Chun-Ying Wei
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Ran Tao
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Peng Yang
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, SunYat-sen University, Guangzhou 510080, China
| | - Ying-Min Mo
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| |
Collapse
|
182
|
Zhang C, Jiang F, Liu S, Ni H, Feng Z, Huang M, Lu Y, Qian Y, Shao J, Rui Q. TREM1 promotes neuroinflammation after traumatic brain injury in rats: Possible involvement of ERK/cPLA2 signalling pathway. Neuroscience 2024; 561:74-86. [PMID: 39304022 DOI: 10.1016/j.neuroscience.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
The neuroinflammatory response promotes secondary brain injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 1 (TREM1) is a key regulator of inflammation. However, the role of TREM1 in TBI is poorly studied. The purpose of this study was to investigate the role of TREM1 in TBI and the possible underlying mechanism. We found that the protein expression of TREM1 significantly increased after TBI in rats, and the TREM1 protein localized to microglia. Inhibition of the TREM1 protein with LP17 significantly blocked ERK phosphorylation and reduced cytoplasmic phospholipase A2 (cPLA2) protein expression and phosphorylation. In addition, LP17-mediated TREM1 inhibition significantly reduced the protein expression of iNOS and increased the protein expression of Arg1. Moreover, after TREM1 was inhibited, the secretion of the proinflammatory factors TNF-α and IL-1β was significantly reduced, while the secretion of the anti-inflammatory factors IL-4 and IL-10 was significantly increased. Additionally, inhibition of TREM1 by LP17 significantly reduced neuronal apoptosis and ameliorated nerve dysfunction in TBI model rats. In conclusion, our findings suggest that TREM1 enhances neuroinflammation and promotes neuronal apoptosis after TBI, and these effects may be partly mediated via the ERK/cPLA2 signalling pathway.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Neurology, The Third People's Hospital of Zhangjiagang City, Suzhou 215006, China
| | - Feng Jiang
- Department of Neurosurgery, The First People's Hospital of Zhangjiagang City, Suzhou 215006, China
| | - Shengqing Liu
- Department of Neurology, The Third People's Hospital of Zhangjiagang City, Suzhou 215006, China
| | - Haibo Ni
- Department of Neurosurgery, The Fourth Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Zhanchun Feng
- Department of Neurology, The Third People's Hospital of Zhangjiagang City, Suzhou 215006, China
| | - Minye Huang
- Department of Neurology, The Third People's Hospital of Zhangjiagang City, Suzhou 215006, China
| | - Yunwei Lu
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518000, China
| | - Yinwei Qian
- Department of Neurology, The Third People's Hospital of Zhangjiagang City, Suzhou 215006, China
| | - Jianfeng Shao
- Department of Neurology, The Third People's Hospital of Zhangjiagang City, Suzhou 215006, China.
| | - Qin Rui
- Department of Center of Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Suzhou 215123, China.
| |
Collapse
|
183
|
Zhou Z, Jiang WJ, Wang YP, Si JQ, Zeng XS, Li L. CD36-mediated ROS/PI3K/AKT signaling pathway exacerbates cognitive impairment in APP/PS1 mice after noise exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175879. [PMID: 39233068 DOI: 10.1016/j.scitotenv.2024.175879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
There is an association between noise exposure and cognitive impairment, and noise may have a more severe impact on patients with Alzheimer's disease (AD) and mild cognitive impairment; however, the mechanisms need further investigation. This study used the classic AD animal model APP/PS1 mice to simulate the AD population, and C57BL/6J mice to simulate the normal population. We compared their cognitive abilities after noise exposure, analyzed changes in Cluster of Differentiation (CD) between the two types of mice using transcriptomics, identified the differential CD molecule: CD36 in APP/PS1 after noise exposure, and used its pharmacological inhibitor to intervene to explore the mechanism by which CD36 affects APP/PS1 cognitive abilities. Our study shows that noise exposure has a more severe impact on the cognitive abilities of APP/PS1 mice, and that the expression trends of differentiation cluster molecules differ significantly between C57BL/6J and APP/PS1 mice. Transcriptomic analysis showed that the expression of CD36 in the hippocampus of APP/PS1 mice increased by 2.45-fold after noise exposure (p < 0.001). Meanwhile, Western Blot results from the hippocampus and entorhinal cortex indicated that CD36 protein levels increased by approximately 1.5-fold (p < 0.001) and 1.3-fold (p < 0.05) respectively, after noise exposure in APP/PS1 mice. The changes in CD36 expression elevated oxidative stress levels in the hippocampus and entorhinal cortex, leading to a decrease in PI3K/AKT phosphorylation, which in turn increased M1-type microglia and A1-type astrocytes while reducing the numbers of M2-type microglia and A2-type astrocytes. This increased neuroinflammation in the hippocampus and entorhinal cortex, causing synaptic and neuronal damage in APP/PS1 mice, ultimately exacerbating cognitive impairment. These findings may provide new insights into the relationship between noise exposure and cognitive impairment, especially given the different expression trends of CD molecules in the two types of mice, which warrants further research.
Collapse
Affiliation(s)
- Zan Zhou
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China; Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi 832000, Xinjiang, China
| | - Wen-Jun Jiang
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China; Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310051, China
| | - Yan-Ping Wang
- Department of Nursing, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi 832000, Xinjiang, China
| | - Xian-Si Zeng
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China.
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China.
| |
Collapse
|
184
|
Teglas T, Marcos AC, Torices S, Toborek M. Circadian control of polycyclic aromatic hydrocarbon-induced dysregulation of endothelial tight junctions and mitochondrial bioenergetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175886. [PMID: 39218115 PMCID: PMC11444715 DOI: 10.1016/j.scitotenv.2024.175886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The study evaluates the impact of environmental toxicants, such as polycyclic aromatic hydrocarbons (PAHs), on circadian regulations and functions of brain endothelial cells, which form the main structural element of the blood-brain barrier (BBB). PAH are lipophilic and highly toxic environmental pollutants that accumulate in human and animal tissues. Environmental factors related to climate change, such as an increase in frequency and intensity of wildfires or enhanced strength of hurricanes or tropical cyclones, may lead to redistribution of these toxicants and enhanced human exposure. These natural disasters are also associated with disruption of circadian rhythms in affected populations, linking increased exposure to environmental toxicants to alterations of circadian rhythm pathways. Several vital physiological processes are coordinated by circadian rhythms, and disruption of the circadian clock can contribute to the development of several diseases. The blood-brain barrier (BBB) is crucial for protecting the brain from blood-borne harmful substances, and its integrity is influenced by circadian rhythms. Exposure of brain endothelial cells to a human and environmentally-relevant PAH mixture resulted in dose-dependent alterations of expression of critical circadian modulators, such as Clock, Bmal1, Cry1/2, and Per1/2. Moreover, silencing of the circadian Clock gene potentiated the impact of PAHs on the expression of the main tight junction genes and proteins (namely, claudin-5, occludin, JAM-2, and ZO-2), as well as mitochondrial bioenergetics. Findings from this study contribute to a better understanding of pathological influence of PAH-induced health effects, especially those related to circadian rhythm disruption.
Collapse
Affiliation(s)
- Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Anne Caroline Marcos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA; Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
| |
Collapse
|
185
|
Lee JS, Yoon BS, Kim Y, Park CB. LDHB-deficient brain exhibits resistance to ischemic neuronal cell death due to increased vasodilation. Biochem Biophys Res Commun 2024; 734:150766. [PMID: 39368368 DOI: 10.1016/j.bbrc.2024.150766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Ischemic stroke triggers a cascade of metabolic and inflammatory events leading to neuronal death, particularly in the hippocampus. Here, we investigate the role of lactate metabolism in ischemic resistance using LDHB-deficient mice, which exhibit impaired lactate utilization. Contrary to expectations of severe neuronal damage due to metabolic defects, LDHB-deficient mice displayed significantly increased neuronal survival following ischemic insult. Magnetic resonance spectroscopy revealed elevated lactate levels in LDHB-deficient brains, which correlated with enhanced vasodilation of the posterior communicating artery (PComA) and increased extracellular PGE2 levels. These findings suggest that elevated lactate inhibits PGE2 reabsorption, promoting vasodilation and neuronal protection. Our results highlight lactate's potential role in neuroprotection and its therapeutic promise for ischemic stroke.
Collapse
Affiliation(s)
- Jin Soo Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, 16499, Republic of Korea
| | - Bok Seon Yoon
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, 16499, Republic of Korea
| | - Yihyang Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
186
|
Paidlewar M, Kumari S, Dhapola R, Sharma P, HariKrishnaReddy D. Unveiling the role of astrogliosis in Alzheimer's disease Pathology: Insights into mechanisms and therapeutic approaches. Int Immunopharmacol 2024; 141:112940. [PMID: 39154532 DOI: 10.1016/j.intimp.2024.112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is one of the most debilitating age-related disorders that affect people globally. It impacts social and cognitive behavior of the individual and is characterized by phosphorylated tau and Aβ accumulation. Astrocytesmaintain a quiescent, anti-inflammatory state on anatomical level, expressing few cytokines and exhibit phagocytic activity to remove misfolded proteins. But in AD, in response to specific stimuli, astrocytes overstimulate their phagocytic character with overexpressing cytokine gene modules. Upon interaction with generated Aβ and neurofibrillary tangle, astrocytes that are continuously activated release a large number of inflammatory cytokines. This cytokine storm leads to neuroinflammation which is also one of the recognizable features of AD. Astrogliosis eventually promotes cholinergic dysfunction, calcium imbalance, oxidative stress and excitotoxicity. Furthermore, C5aR1, Lcn2/, BDNF/TrkB and PPARα/TFEB signaling dysregulation has a major impact on the disease progression. This review clarifies numerous ways that lead to astrogliosis, which is stimulated by a variety of processes that exacerbate AD pathology and make it a suitable target for AD treatment. Drugs under clinical and preclinical investigations that target several pathways managing astrogliosis and are efficacious in ameliorating the pathology of the disease are also included in this study. D-ALA2GIP, TRAM-34, Genistein, L-serine, MW150 and XPro1595 are examples of few drugs targeting astrogliosis. Therefore, this study may aid in the development of a potent therapeutic agent for ameliorating astrogliosis mediated AD progression.
Collapse
Affiliation(s)
- Mohit Paidlewar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India.
| |
Collapse
|
187
|
Sun WJ, An XD, Zhang YH, Tang SS, Sun YT, Kang XM, Jiang LL, Zhao XF, Gao Q, Ji HY, Lian FM. Autophagy-dependent ferroptosis may play a critical role in early stages of diabetic retinopathy. World J Diabetes 2024; 15:2189-2202. [DOI: 10.4239/wjd.v15.i11.2189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 10/16/2024] Open
Abstract
Diabetic retinopathy (DR), as one of the most common and significant microvascular complications of diabetes mellitus (DM), continues to elude effective targeted treatment for vision loss despite ongoing enrichment of the under-standing of its pathogenic mechanisms from perspectives such as inflammation and oxidative stress. Recent studies have indicated that characteristic neuroglial degeneration induced by DM occurs before the onset of apparent microvascular lesions. In order to comprehensively grasp the early-stage pathological changes of DR, the retinal neurovascular unit (NVU) will become a crucial focal point for future research into the occurrence and progression of DR. Based on existing evidence, ferroptosis, a form of cell death regulated by processes like fer-ritinophagy and chaperone-mediated autophagy, mediates apoptosis in retinal NVU components, including pericytes and ganglion cells. Autophagy-dependent ferroptosis-related factors, including BECN1 and FABP4, may serve as both biomarkers for DR occurrence and development and potentially crucial targets for future effective DR treatments. The aforementioned findings present novel perspectives for comprehending the mechanisms underlying the early-stage pathological alterations in DR and open up innovative avenues for investigating supplementary therapeutic strategies.
Collapse
Affiliation(s)
- Wen-Jie Sun
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xue-Dong An
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Yue-Hong Zhang
- Department of Endocrinology, Fangshan Hospital of Beijing University of Chinese Medicine, Beijing 102400, China
| | - Shan-Shan Tang
- Department of Endocrinology, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Yu-Ting Sun
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xiao-Min Kang
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Lin-Lin Jiang
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xue-Fei Zhao
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Qing Gao
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Hang-Yu Ji
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Feng-Mei Lian
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| |
Collapse
|
188
|
Wang J, Lai Q, Han J, Qin P, Wu H. Neuroimaging biomarkers for the diagnosis and prognosis of patients with disorders of consciousness. Brain Res 2024; 1843:149133. [PMID: 39084451 DOI: 10.1016/j.brainres.2024.149133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The progress in neuroimaging and electrophysiological techniques has shown substantial promise in improving the clinical assessment of disorders of consciousness (DOC). Through the examination of both stimulus-induced and spontaneous brain activity, numerous comprehensive investigations have explored variations in brain activity patterns among patients with DOC, yielding valuable insights for clinical diagnosis and prognostic purposes. Nonetheless, reaching a consensus on precise neuroimaging biomarkers for patients with DOC remains a challenge. Therefore, in this review, we begin by summarizing the empirical evidence related to neuroimaging biomarkers for DOC using various paradigms, including active, passive, and resting-state approaches, by employing task-based fMRI, resting-state fMRI (rs-fMRI), electroencephalography (EEG), and positron emission tomography (PET) techniques. Subsequently, we conducted a review of studies examining the neural correlates of consciousness in patients with DOC, with the findings holding potential value for the clinical application of DOC. Notably, previous research indicates that neuroimaging techniques have the potential to unveil covert awareness that conventional behavioral assessments might overlook. Furthermore, when integrated with various task paradigms or analytical approaches, this combination has the potential to significantly enhance the accuracy of both diagnosis and prognosis in DOC patients. Nonetheless, the stability of these neural biomarkers still needs additional validation, and future directions may entail integrating diagnostic and prognostic methods with big data and deep learning approaches.
Collapse
Affiliation(s)
- Jiaying Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Qiantu Lai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Pazhou Lab, Guangzhou 510330, China.
| | - Hang Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
189
|
Gao J, Liu R, Tang J, Pan M, Zhuang Y, Zhang Y, Liao H, Li Z, Shen N, Ma W, Chen J, Wan Q. Suppressing nuclear translocation of microglial PKM2 confers neuroprotection via downregulation of neuroinflammation after mouse cerebral ischemia-reperfusion injury. Int Immunopharmacol 2024; 141:112880. [PMID: 39153304 DOI: 10.1016/j.intimp.2024.112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key metabolic enzyme. Yet, its role in cerebral ischemia injury remains unclear. In this study we demonstrated that PKM2 expression was increased in the microglia after mouse cerebral ischemia-reperfusion (I/R) injury. We found that microglial polarization-mediated pro-inflammatory effect was mediated by PKM2 after cerebral I/R. Mechanistically, our results revealed that nuclear PKM2 mediated ischemia-induced microglial polarization through association with acetyl-H3K9. Hif-1α mediated the effect of nuclear PKM2/histone H3 on microglial polarization. PKM2-dependent Histone H3/Hif-1α modifications contributed the expression of CCL2 and induced up-regulation of microglial polarization in peri-infarct, resulting in neuroinflammation. Inhibiting nuclear translocation of microglial PKM2 reduced ischemia-induced pro-inflammation and promoted neuronal survival. Together, this study identifies nucleus PKM2 as a crucial mediator for regulating ischemia-induced neuroinflammation, suggesting PKM2 as a potential therapeutic target in ischemic stroke.
Collapse
Affiliation(s)
- Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Rui Liu
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Junchun Tang
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Mengxian Pan
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Yang Zhuang
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Ya Zhang
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Huabao Liao
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Zhuo Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Na Shen
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Wenlong Ma
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Juan Chen
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, 26 Shengli Street, Wuhan 430013, China.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China.
| |
Collapse
|
190
|
Wang Q, Wei J, He J, Ming S, Li X, Huang X, Hong Z, Wu Y. HSP70 contributes to pathogenesis of fulminant hepatitis induced by coronavirus. Int Immunopharmacol 2024; 141:112963. [PMID: 39159560 DOI: 10.1016/j.intimp.2024.112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Fulminant viral hepatitis (FH) represents a significant clinical challenge, with its pathogenesis not yet fully elucidated. Heat shock protein (HSP)70, a molecular chaperone protein with a broad range of cytoprotective functions, is upregulated in response to stress. However, the role of HSP70 in FH remains to be investigated. Notably, HSP70 expression is upregulated in the livers of coronavirus-infected mice and patients. Therefore, we investigated the mechanistic role of HSP70 in coronavirus-associated FH pathogenesis. FH was induced in HSP70-deficient (HSP70 KO) mice or in WT mice treated with the HSP70 inhibitor VER155008 when infected with the mouse hepatitis virus strain A59 (MHV-A59). MHV-A59-infected HSP70 KO mice exhibited significantly reduced liver damage and mortality. This effect was attributed to decreased infiltration of monocyte-macrophages and neutrophils in the liver of HSP70 KO mice, resulting in lower levels of inflammatory cytokines such as IL-1β, TNFα, and IL-6, and a reduced viral load. Moreover, treatment with the HSP70 inhibitor VER155008 protected mice from MHV-A59-induced liver damage and FH mortality. In summary, HSP70 promotes coronavirus-induced FH pathogenesis by enhancing the infiltration of monocyte-macrophages and neutrophils and promoting the secretion of inflammatory cytokines. Therefore, HSP70 is a potential therapeutic target in viral FH intervention.
Collapse
Affiliation(s)
- Qiaohua Wang
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jiayou Wei
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Siqi Ming
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, Guangdong Province 519015, China
| | - Xingyu Li
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xi Huang
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zhongsi Hong
- Center of Infectious Disease, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Yongjian Wu
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| |
Collapse
|
191
|
Liu Y, Fu X, Sun J, Cui R, Yang W. AdipoRon exerts an antidepressant effect by inhibiting NLRP3 inflammasome activation in microglia via promoting mitophagy. Int Immunopharmacol 2024; 141:113011. [PMID: 39213872 DOI: 10.1016/j.intimp.2024.113011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Depression is a serious mental disorder that threatens patients' physical and mental health worldwide. The activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is essential for microglia-mediated neuroinflammation and neuronal damage in depression. Numerous pathophysiological factors, such as mitochondrial dysfunction and impaired mitophagy, have an essential role in activating the NLRP3 inflammasome. AdipoRon is a potent adiponectin receptor agonist; however, its antidepressant effects have not been thoroughly investigated. In this study, we found that AdipoRon ameliorated depression-like behavior and neuronal damage induced by chronic unpredictable mild stress (CUMS). Further research demonstrated that AdipoRon inhibited the activation of the NLRP3 inflammasome and protected hippocampal neurons from microglial cytotoxicity by promoting mitophagy, increasing the clearance of damaged mitochondria, and reducing mtROS accumulation. Importantly, inhibition of mitophagy attenuated the antidepressant and neuroprotective effects of AdipoRon. Overall, these findings indicate that AdipoRon alleviates depression by inhibiting NLRP3 inflammasome activation in microglia via improving mitophagy.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin Province, China; Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiying Fu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China; Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiangjin Sun
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin Province, China; Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin Province, China; Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
192
|
Xie W, Ding B, Lou J, Wang X, Guo X, Zhu J. Metformin attenuates white matter injury in neonatal mice through activating NRF2/HO-1/NF-κB pathway. Int Immunopharmacol 2024; 141:112961. [PMID: 39163687 DOI: 10.1016/j.intimp.2024.112961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
White matter injury (WMI) is a major form of brain injury that occurs in preterm infants and develops into lifelong disabilities, including cerebral palsy, impaired cognitive function, and psychiatric disorders. Metformin (MET) has been reported to have neuroprotective effects. However, whether MET is responsible for neuroprotection against WMI remains unclear. In this study, we established a WMI model in neonatal mice to explore the neuroprotective effects of MET and attempted to elucidate its potential mechanisms. Our results showed that MET increased the expression of myelin basic protein (MBP), oligodendrocyte transcription factor 2 (Olig2), and CC1, improved the thickness and density of the myelin sheath, and reduced oxidative stress and microglial infiltration after chronic hypoxia induction. Moreover, MET improved memory, learning, and motor abilities as well as relieved anxiety-like behaviors in mice with WMI. These protective effects of MET may involve the upregulation of the nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase-1(HO-1)/NF-κB pathway related protein expressions. In addition, the NRF2 inhibitor ML385 could significantly reverse the effects of MET. In conclusion, this study suggested that MET attenuated chronic hypoxia-induced WMI through activating the NRF2/HO-1/NF-κB pathway, indicating that MET might be a promising therapeutic option for WMI.
Collapse
Affiliation(s)
- Weiwei Xie
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Pediatrics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximen Street, Linhai, Zhejiang, China
| | - Bingqing Ding
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Lou
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyi Wang
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoling Guo
- Scientific Research Department, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
| | - Jianghu Zhu
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China.
| |
Collapse
|
193
|
Vargas R, Lizano-Barrantes C, Romero M, Valencia-Clua K, Narváez-Narváez DA, Suñé-Negre JM, Pérez-Lozano P, García-Montoya E, Martinez-Martinez N, Hernández-Munain C, Suñé C, Suñé-Pou M. The piper at the gates of brain: A systematic review of surface modification strategies on lipid nanoparticles to overcome the Blood-Brain-Barrier. Int J Pharm 2024; 665:124686. [PMID: 39265851 DOI: 10.1016/j.ijpharm.2024.124686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
The Blood-Brain Barrier (BBB) significantly impedes drug delivery to the central nervous system. Nanotechnology, especially surface-functionalized lipid nanoparticles, offers innovative approaches to overcome this barrier. However, choosing an effective functionalization strategy is challenging due to the lack of detailed comparative analysis in current literature. Our systematic review examined various functionalization strategies and their impact on BBB permeability from 2041 identified articles, of which 80 were included for data extraction. Peptides were the most common modification (18) followed by mixed strategies (12) proteins (9), antibodies (7), and other strategies (8). Interestingly, 26 studies showed BBB penetration with unmodified or modified nanoparticles using commonly applied strategies such as PEGylation or surfactant addition. Statistical analysis across 42 studies showed correlation between higher in vivo permeation improvements and nanoparticle type, size, and functionalization category. The highest ratios were found for nanostructured lipid carriers or biomimetic systems, in studies with particle sizes under 150 nm, and in those applying mixed functionalization strategies. The interstudy heterogeneity we observed highlights the importance of adopting standardized evaluation protocols to enhance comparability. Our systematic review aims to provide a comparative insight and identify future research directions in the development of more effective lipid nanoparticle systems for drug delivery to the brain to help improve the treatment of neurological and psychiatric disorders and brain tumours.
Collapse
Affiliation(s)
- Ronny Vargas
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Costa Rica, San José, Costa Rica.
| | - Catalina Lizano-Barrantes
- Department of Pharmaceutical Care and Clinical Pharmacy, Faculty of Pharmacy, Universidad de Costa Rica, San José, Costa Rica
| | - Miquel Romero
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Kevin Valencia-Clua
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - David A Narváez-Narváez
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Josep Ma Suñé-Negre
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Pilar Pérez-Lozano
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Encarna García-Montoya
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Noelia Martinez-Martinez
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain.
| | - Marc Suñé-Pou
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
194
|
Tang X, Chen H, Zhao M, Yang W, Shuang R, Xu S. α7nAChR-mediated astrocytic activation: A novel mechanism of Xiongzhi Dilong decoction in ameliorating chronic migraine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118509. [PMID: 38971346 DOI: 10.1016/j.jep.2024.118509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alpha 7 nicotinic acetylcholine receptor (α7nAChR)-mediated astrocytic activation is closely related to central sensitization of chronic migraine (CM). Xiongzhi Dilong decoction (XZDL), originated from Xiongzhi Shigao decoction of Yi-zong-jin-jian, has been confirmed to relieve CM in experiment and clinic. However, its underlying mechanism for treating CM has not been elucidated. AIM OF THE STUDY To reveal the underlying mechanisms of XZDL to alleviate CM in vivo focusing mainly on α7nAChR-mediated astrocytic activation and central sensitization in TNC. MATERIALS AND METHODS CM rat model was established by subcutaneous injection of nitroglycerin (NTG) recurrently, and treated with XZDL simultaneously. Migraine-like behaviors of rats (ear redness, head scratching, and cage climbing) and pain-related reactions (mechanical hind-paw withdrawal threshold) of rats were evaluated before and after NTG injection and XZDL administration at different points in time for nine days. The immunofluorescence single and double staining were applied to detect the levels of CGRP, c-Fos, GFAP and α7nAChR in NTG-induced CM rats. ELISA kits were employed to quantify levels of TNF-α, IL-1β, and IL-6 in medulla oblongata of CM rats. The expression levels of target proteins were examined using western blotting. Finally, methyllycaconitine citrate (MLA, a specific antagonist of α7nAChR) was applied to further validate the mechanisms of XZDL in vivo. RESULTS XZDL significantly attenuated the pain-related behaviors of the NTG-induced CM rats, manifesting as constraints of aberrant migraine-like behaviors including elongated latency of ear redness and decreased numbers of head scratching and cage climbing, and increment of mechanical withdrawal threshold. Moreover, XZDL markedly lowered levels of CGRP and c-Fos, as well as inflammatory cytokines (IL-1β, IL-6 and TNF-α) in CM rats. Furthermore, XZDL significantly enhanced α7nAChR expression and its co-localization with GFAP, while markedly inhibited the expression of GFAP and the activation of JAK2/STAT3/NF-κB pathway in the TNC of CM rats. Finally, blocking α7nAChR with MLA reversed the effects of XZDL on astrocytic activation, central sensitization, and the pain-related behaviors in vivo. CONCLUSION XZDL inhibited astrocytic activation and central sensitization in NTG-induced CM rats by facilitating α7nAChR expression and suppressing JAK2/STAT3/NF-κB pathway, implying that the regulation of α7nAChR-mediated astrocytic activation represents a novel mechanism of XZDL for relieving CM.
Collapse
Affiliation(s)
- Xueqian Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Meihuan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Wenqin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Ruonan Shuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
195
|
Jia Z, Yue W, Zhang X, Xue B, He J. Erianin alleviates cerebral ischemia-reperfusion injury by inhibiting microglial cell polarization and inflammation via the PI3K/AKT and NF-κB pathways. Int Immunopharmacol 2024; 141:112915. [PMID: 39146784 DOI: 10.1016/j.intimp.2024.112915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) is a leading cause of disability and mortality worldwide, with limited therapeutic options available. Erianin, a natural compound derived from traditional Chinese medicine, has been reported to possess anti-inflammatory and neuroprotective properties. This study aimed to investigate the therapeutic potential of Erianin in CI/RI and elucidate its underlying mechanisms. Network pharmacology analysis predicted that Erianin could target the PI3K/AKT pathway, which are closely associated with CI/RI. In vivo experiments using a rat model of CI/RI demonstrated that Erianin treatment significantly alleviated neurological deficits, reduced infarct volume, and attenuated neuronal damage. Mechanistically, Erianin inhibited microglial cell polarization towards the pro-inflammatory M1 phenotype, as evidenced by the modulation of specific markers. Furthermore, Erianin suppressed the expression of pro-inflammatory cytokines and mediators, such as TNF-α, IL-6, and COX-2, while enhancing the production of anti-inflammatory factors, including Arg1, CD206, IL-4 and IL-10. In vitro studies using oxygen-glucose deprivation/reoxygenation (OGD/R)-stimulated microglial cells corroborated the anti-inflammatory and anti-apoptotic effects of Erianin. Notably, Erianin inhibited the NF-κB signaling pathway by inhibiting p65 phosphorylation and preventing the nuclear translocation of the p65 subunit. Collectively, these findings suggest that Erianin represents a promising therapeutic candidate for CI/RI by targeting microglial cell polarization and inflammation.
Collapse
Affiliation(s)
- Zengqiang Jia
- Department of Neurointerventional, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China
| | - Wenfeng Yue
- Department of Neurointerventional, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China
| | - Xiuyun Zhang
- Department of Health Management, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China
| | - Bingxia Xue
- Department of Otolaryngology, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China
| | - Jinchao He
- Department of Neurosurgery, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China.
| |
Collapse
|
196
|
Canêdo VSR, de Moraes MV, Abreu BJ, Silva FS. Nephroprotective effects of hyperbaric oxygen therapy in murine models of acute kidney injury: A systematic review and meta-analysis. Life Sci 2024; 357:123098. [PMID: 39362585 DOI: 10.1016/j.lfs.2024.123098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
AIMS Acute kidney injury (AKI) is a life-threatening condition marked by sudden kidney function loss and azotemia. While its management is limited to supportive care, the effects of hyperbaric oxygen therapy (HBO) on AKI remain a subject of conflicting animal research. This study aimed to systematically review and meta-analyze HBO's effects on renal function biomarkers serum creatinine (SCr) and blood urea nitrogen (BUN) in murine AKI models, also exploring tissue-level nephroprotection. MAIN METHODS The PUBMED, SciELO, and LILACS databases were searched until September 5, 2024. Effect sizes of HBO on SCr and BUN levels were expressed as standardized mean difference (SMD) alongside 95 % confidence interval (CI), calculated by random-effects model. Extracted data also included murine specie/strain, HBO parameters, AKI induction method (toxic, ischemic, others), and histological findings. Study quality and publication bias were respectively assessed using the CAMARADES checklist and Egger's test. This review adhered to PRISMA guidelines and was registered in PROSPERO (CRD42022369804). KEY FINDINGS Data synthesis from 21 studies demonstrates that HBO effectively reduces azotemia in AKI-affected animals (SCr's SMD = -1.69, 95 % CI = -2.38 to -0.99, P < 0.001; BUN's SMD = -1.51, 95 % CI = -2.32 to -0.71, P < 0.001) while mitigating histological damage. Subgroup analyses indicate that HBO particularly benefits ischemic and other AKI types (P < 0.05). In contrast, data from toxic AKI models were inconclusive due to insufficient statistical power (P > 0.05, 1-β < 30 %). SIGNIFICANCE This meta-analysis provides compelling evidence supporting the adjunctive use of HBO in AKI management.
Collapse
Affiliation(s)
| | | | - Bento João Abreu
- Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Flávio Santos Silva
- Department of Health Sciences, Federal Rural University of the Semi-Arid (UFERSA), Mossoró, Brazil.
| |
Collapse
|
197
|
Gupta V, Singh S, Singh TG. Pervasive expostulation of p53 gene promoting the precipitation of neurogenic convulsions: A journey in therapeutic advancements. Eur J Pharmacol 2024; 983:176990. [PMID: 39251181 DOI: 10.1016/j.ejphar.2024.176990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Epilepsy, a neurological disorder characterized by prolonged and excessive seizures, has been linked to elevated levels of the tumor suppressor gene p53, which contributes to neuronal dysfunction. This review explores the molecular mechanisms of p53 in epilepsy and discusses potential future therapeutic strategies. Research indicates that changes in p53 expression during neuronal apoptosis, neuroinflammation, and oxidative stress play a significant role in the pathogenesis of epilepsy. Elevated p53 disrupts glutamatergic neurotransmission and hyperactivates NMDA and AMPA receptors, leading to increased neuronal calcium influx, mitochondrial oxidative stress, and activation of apoptotic pathways mediated neuronal dysfunction, exacerbating epileptogenesis. The involvement of p53 in epilepsy suggests that targeting this protein could be beneficial in mitigating neuronal damage and preventing seizure recurrence. Pharmacological agents like pifithrin-α have shown promise in reducing p53-mediated apoptosis and seizure severity. Gene therapy approaches, such as viral vector-mediated delivery of wild-type p53 or RNA interference targeting mutant p53, have also been effective in restoring normal p53 function and reducing seizure susceptibility. Despite these advances, the heterogeneous nature of epilepsy and potential long-term side effects of p53 modulation present challenges. Future research should focus on elucidating the precise molecular mechanisms of p53 and developing personalized therapeutic strategies. Modulating p53 activity holds promise for reducing seizure susceptibility and improving the quality of life for individuals with epilepsy. The current review provides the understanding the intricate role of p53 in neuroinflammatory pathways, including JAK-STAT, JNK, NF-κB, Sonic Hedgehog, and Wnt, is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Vrinda Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India; School of Public Health, Faculty of Health, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
198
|
Dong Y, Fu C, Zhang T, Dong F, Zhu X, Jiang Y, Hu L, Pan L, Li J, Zhang X. Abnormal hippocampal neurogenesis and impaired social recognition memory in two neurodevelopmental models of schizophrenia. FASEB J 2024; 38:e70138. [PMID: 39485229 DOI: 10.1096/fj.202401258rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Schizophrenia is a mental disorder characterized by cognitive impairments, specifically deficits in social recognition memory (SRM). Abnormal hippocampal neurogenesis has been implicated in these deficits. Due to the pathogenetic heterogeneity of schizophrenia, studying the hippocampal neurogenesis and SRM in two models with prenatal and postnatal defects could enhance our understanding of the developmental aspects of the biological susceptibility to schizophrenia. Here, we examined SRM and hippocampal neurogenesis in two developmental models of schizophrenia: gestational exposure to methylazoxymethanol acetate (MAM) and postweaning social isolation (SI). Our findings revealed that gestational MAM exposure induced a decay of social memory while postweaning SI led to impaired social memory formation and decay. In both models, we observed a correlation between impaired SRM and reduced number, and abnormal differentiation and less complex morphology of hippocampal neurons. These results indicate that aberrant hippocampal neurogenesis may contribute to the deficits of SRM in both models, and these abnormalities may be a shared underlying pathogenic factor in developmental models of schizophrenia, regardless of prenatal and postnatal pathogenesis.
Collapse
Affiliation(s)
- Yibei Dong
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chuxian Fu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Ting Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Feiyuan Dong
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xinyi Zhu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yingke Jiang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Linbo Hu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Luhui Pan
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jiawen Li
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoqin Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
199
|
Wang S, Wang Q, Zhao K, Zhang S, Chen Z. Exploration of the shared diagnostic genes and mechanisms between periodontitis and primary Sjögren's syndrome by integrated comprehensive bioinformatics analysis and machine learning. Int Immunopharmacol 2024; 141:112899. [PMID: 39142001 DOI: 10.1016/j.intimp.2024.112899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Accumulating evidence has showed a bidirectional link between periodontitis (PD) and primary Sjögren's syndrome (pSS), but the mechanisms of their occurrence remain unclear. Hence, this study aimed to investigate the shared diagnostic genes and potential mechanisms between PD and pSS using bioinformatics methods. METHODS Gene expression data for PD and pSS were acquired from the Gene Expression Omnibus (GEO) database. Differential expression genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA) were utilized to search common genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted to explore biological functions. Three machine learning algorithms (least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE), and random forest (RF)) were used to further identify shared diagnostic genes, and these genes were assessed via receiver operating characteristic (ROC) curves in discovery and validation datasets. CIBERSORT was employed for immune cell infiltration analysis. Transcription factors (TFs)-genes and miRNAs-genes regulatory networks were conducted by NetworkAnalyst. Finally, relevant drug targets were predicted by DSigDB. RESULTS Based on DEGs, 173 overlapping genes were obtained and primarily enriched in immune- and inflammation-related pathways. WGCNA revealed 34 common disease-related genes, which were enriched in similar biological pathways. Intersecting the DEGs with WGCNA results yielded 22 candidate genes. Moreover, three machine learning algorithms identified three shared genes (CSF2RB, CXCR4, and LYN) between PD and pSS, and these genes demonstrated good diagnostic performance (AUC>0.85) in both discovery and validation datasets. The immune cell infiltration analysis showed significant dysregulation in several immune cell populations. Regulatory network analysis highlighted that WRNIP1 and has-mir-155-5p might be pivotal co-regulators of the three shared gene expressions. Finally, the top 10 potential gene-targeted drugs were screened. CONCLUSION CSF2RB, CXCR4, and LYN may serve as potential biomarkers for the concurrent diagnosis of PD and pSS. Additionally, we identified common molecular mechanisms, TFs, miRNAs, and candidate drugs between PD and pSS, which may provide novel insights and targets for future research on the pathogenesis, diagnosis, and therapy of both diseases.
Collapse
Affiliation(s)
- Shaoru Wang
- Institute of Stomatology, Binzhou Medical University, Yantai 264003, China; Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Qimin Wang
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Kai Zhao
- Department of Stomatology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215125, China
| | - Shengchao Zhang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Zhenggang Chen
- Institute of Stomatology, Binzhou Medical University, Yantai 264003, China; The affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
200
|
Yin S, Xia F, Zou W, Jiang F, Shen K, Sun B, Lu Z. Ginsenoside Rg1 regulates astrocytes to promote angiogenesis in spinal cord injury via the JAK2/STAT3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118531. [PMID: 38971343 DOI: 10.1016/j.jep.2024.118531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng C. A. Mey) is a common traditional Chinese medicine used for anti-inflammation, anti-apoptosis, anti-oxidative stress, and neuroprotection. Ginsenosides Rg1, the main active components isolated from ginseng, may be a feasible therapy for spinal cord injury (SCI). AIMS OF THE STUDY SCI causes endothelial cell death and blood vessel rupture, ultimately resulting in long-term neurological impairment. As a result, encouraging spinal angiogenesis may be a feasible therapy for SCI. This investigation aimed to validate the capacity of ginsenoside Rg1 in stimulating angiogenesis within the spinal cord. MATERIALS AND METHODS Rats with SCI were injected intraperitoneally with ginsenoside Rg1. The effectiveness of ginsenoside Rg1 was assessed using the motor function score and the motor-evoked potential (MEP). Immunofluorescence techniques were applied to identify the spinal cord's angiogenesis. Angiogenic factors were examined through Western Blot (WB) and Immunohistochemistry. Oxygen-glucose deprivation (OGD) was employed to establish the hypoxia-ischemia model in vitro, and astrocytes (As) were given ginsenoside Rg1 and co-cultured with spinal cord microvascular endothelial cells (SCMECs). Immunofluorescence, wound healing test, and tube formation assay were used to identify the co-cultured SCMECs' activity. Finally, network pharmacology analysis and siRNA transfection were applied to verify the mechanism of ginsenoside Rg1 promoting angiogenesis. RESULTS The rats with SCI treated with ginsenoside Rg1 indicated more significant functional recovery, more pronounced angiogenesis, and higher levels of angiogenic factor expression. In vitro, the co-culture system with ginsenoside Rg1 intervention improved SCMECs' capacity for proliferating, migrating, and forming tubes, possibly by promoting the expression of vascular endothelial growth factor (VEGF) in As via the janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. CONCLUSION Ginsenoside Rg1 can regulate As to promote angiogenesis, which may help to understand the mechanism of promoting SCI recovery.
Collapse
Affiliation(s)
- Shiyuan Yin
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Feiyun Xia
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Wenjun Zou
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Fengxian Jiang
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Kelv Shen
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Baihan Sun
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Zhengfeng Lu
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China.
| |
Collapse
|