201
|
Amiri S, Vrtovec T, Mustafaev T, Deufel CL, Thomsen HS, Sillesen MH, Brandt EGS, Andersen MB, Müller CF, Ibragimov B. Reinforcement learning-based anatomical maps for pancreas subregion and duct segmentation. Med Phys 2024; 51:7378-7392. [PMID: 39031886 DOI: 10.1002/mp.17300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND The pancreas is a complex abdominal organ with many anatomical variations, and therefore automated pancreas segmentation from medical images is a challenging application. PURPOSE In this paper, we present a framework for segmenting individual pancreatic subregions and the pancreatic duct from three-dimensional (3D) computed tomography (CT) images. METHODS A multiagent reinforcement learning (RL) network was used to detect landmarks of the head, neck, body, and tail of the pancreas, and landmarks along the pancreatic duct in a selected target CT image. Using the landmark detection results, an atlas of pancreases was nonrigidly registered to the target image, resulting in anatomical probability maps for the pancreatic subregions and duct. The probability maps were augmented with multilabel 3D U-Net architectures to obtain the final segmentation results. RESULTS To evaluate the performance of our proposed framework, we computed the Dice similarity coefficient (DSC) between the predicted and ground truth manual segmentations on a database of 82 CT images with manually segmented pancreatic subregions and 37 CT images with manually segmented pancreatic ducts. For the four pancreatic subregions, the mean DSC improved from 0.38, 0.44, and 0.39 with standard 3D U-Net, Attention U-Net, and shifted windowing (Swin) U-Net architectures, to 0.51, 0.47, and 0.49, respectively, when utilizing the proposed RL-based framework. For the pancreatic duct, the RL-based framework achieved a mean DSC of 0.70, significantly outperforming the standard approaches and existing methods on different datasets. CONCLUSIONS The resulting accuracy of the proposed RL-based segmentation framework demonstrates an improvement against segmentation with standard U-Net architectures.
Collapse
Affiliation(s)
- Sepideh Amiri
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Tomaž Vrtovec
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Henrik S Thomsen
- Department of Radiology, Herlev Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Martin Hylleholt Sillesen
- Department of Organ Surgery and Transplantation, and CSTAR, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Michael Brun Andersen
- Department of Radiology, Herlev Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Christoph Felix Müller
- Department of Radiology, Herlev Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bulat Ibragimov
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
202
|
Ludusanu A, Ciuntu BM, Tanevski A, Bernic V, Tinica G. The correlation between the European System for Cardiac Operative Risk Evaluation and the Model for End-Stage Liver Disease in patients with coronary artery bypass graft surgery. J Med Life 2024; 17:926-933. [PMID: 39720173 PMCID: PMC11665745 DOI: 10.25122/jml-2024-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 12/26/2024] Open
Abstract
The Model for End-Stage Liver Disease (MELD) score is a widely used tool for quantifying hepatic dysfunction, providing greater accuracy and a wider range of values compared to the Child-Turcotte-Pugh (CTP) score, being also used in prioritizing patients who are eligible for liver transplantation. This study assessed the correlation between the MELD score and the European System for Cardiac Operative Risk Evaluation II (EuroSCORE II), a reliable system for categorizing risk levels in patients undergoing cardiovascular surgery. This retrospective study analyzed data from 589 patients who underwent coronary artery bypass grafting (CABG) at the Institute of Cardiovascular Diseases 'Prof. Dr. George I.M. Georgescu' in Iași between January 2011 and December 2020. Data collected included demographical, clinical, biochemical, and intraoperative parameters. The average MELD score was 6.09 ± 4.1 (median = 5.72), and the average EuroSCORE II was 6.28 ± 8 (median = 3.85). A significant but relatively modest positive relationship was found between the MELD score and EuroSCORE II, with a correlation coefficient of 0.23 and a corresponding significance level of 0.001. This study demonstrates a positive correlation between MELD and EuroSCORE II in patients who underwent CABG. Incorporating the MELD score into the preoperative risk assessment of cardiac surgery patients could help identify high-risk individuals and guide clinical decision-making.
Collapse
Affiliation(s)
- Andreea Ludusanu
- Department of Morpho-Functional Sciences I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Bogdan-Mihnea Ciuntu
- Department of General Surgery, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- General Surgery Clinic, St. Spiridon County Emergency Clinical Hospital, Iasi, Romania
| | - Adelina Tanevski
- Department of General Surgery, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- General Surgery Clinic, St. Spiridon County Emergency Clinical Hospital, Iasi, Romania
| | - Valentin Bernic
- General Surgery Clinic, St. Spiridon County Emergency Clinical Hospital, Iasi, Romania
| | - Grigore Tinica
- Institute of Cardiovascular Diseases Prof. Dr. George I.M. Georgescu, Iasi, Romania
- Department of Cardiac Surgery, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
203
|
Demagny H, Perino A, Schoonjans K. Protecting liver health with microbial-derived succinylated bile acids. LIFE METABOLISM 2024; 3:loae023. [PMID: 39872141 PMCID: PMC11749272 DOI: 10.1093/lifemeta/loae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 01/29/2025]
Affiliation(s)
- Hadrien Demagny
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
204
|
Wu J, Tang G, Cheng CS, Yeerken R, Chan YT, Fu Z, Zheng YC, Feng Y, Wang N. Traditional Chinese medicine for the treatment of cancers of hepatobiliary system: from clinical evidence to drug discovery. Mol Cancer 2024; 23:218. [PMID: 39354529 PMCID: PMC11443773 DOI: 10.1186/s12943-024-02136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Hepatic, biliary, and pancreatic cancer pose significant challenges in the field of digestive system diseases due to their highly malignant nature. Traditional Chinese medicine (TCM) has gained attention as a potential therapeutic approach with long-standing use in China and well-recognized clinical benefits. In this review, we systematically summarized the clinical applications of TCM that have shown promising results in clinical trials in treating hepatic, biliary, and pancreatic cancer. We highlighted several commonly used TCM therapeutics with validated efficacy through rigorous clinical trials, including Huaier Granule, Huachansu, and Icaritin. The active compounds and their potential targets have been thoroughly elucidated to offer valuable insights into the potential of TCM for anti-cancer drug discovery. We emphasized the importance of further research to bridge the gap between TCM and modern oncology, facilitating the development of evidence-based TCM treatment for these challenging malignancies.
Collapse
Affiliation(s)
- Junyu Wu
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Chien-Shan Cheng
- Department of Digestive Endoscopy Center & Gastroenterology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Ranna Yeerken
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Yau-Tuen Chan
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention &, Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| | - Ning Wang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| |
Collapse
|
205
|
Lu D, Hu Z, Chen H, Khan AA, Xu Q, Lin Z, Li H, Zhuo J, He C, Zhuang L, Yang Z, Dong S, Cai J, Zheng S, Xu X. Myosteatosis and muscle loss impact liver transplant outcomes in male patients with hepatocellular carcinoma. J Cachexia Sarcopenia Muscle 2024; 15:2071-2083. [PMID: 39192518 PMCID: PMC11446693 DOI: 10.1002/jcsm.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Sarcopenia is associated with unfavourable long-term survival in patients undergoing liver transplantation (LT) for hepatocellular carcinoma (HCC). However, the impact of myosteatosis and muscle loss on patient prognosis has not been investigated. METHODS Seven hundred fifty-six HCC patients who received LT at 3 transplant centres were included. Computed tomography (CT) images of recipients were collected to measure skeletal muscle index (SMI) and skeletal muscle radiodensity (SMRA). The impact of myosteatosis on the prognosis of sarcopenic and non-sarcopenic patients was studied separately. Muscle status was evaluated based on the presence of sarcopenia and myosteatosis. The muscle loss of 342 males was calculated as the relative change of SMI between pre- and post-LT evaluations. Cox regression models were used to identify predictors of overall survival (OS) and recurrence-free survival (RFS). RESULTS The study comprised 673 males and 83 females. The median follow-up time was 31 months (interquartile range, 19-43 months). Prior to LT, 267 (39.7%) and 187 (27.8%) males were defined as sarcopenic (low-SMI) and myosteatotic (low-SMRA), respectively. For sarcopenic recipients, the presence of myosteatosis was followed by a 23.6% decrease in 5 year OS (P < 0.001) and a 15.0% decrease in 5 year RFS (P = 0.014). Univariate and multivariate analyses revealed that muscle status was an independent predictor of OS [hazard ratio (HR), 1.569; 95% confidence interval (CI), 1.317-1.869; P < 0.001] and RFS (HR, 1.369; 95% CI, 1.182-1.586; P < 0.001). Postoperatively, a muscle loss >14.2% was an independent risk factor for poor OS (HR, 2.286; 95% CI, 1.358-3.849; P = 0.002) and RFS (HR, 2.219; 95% CI, 1.418-3.471; P < 0.001) in non-sarcopenic recipients (N = 209). CONCLUSIONS Pre-transplant myosteatosis aggravated the adverse impact of sarcopenia on liver transplant outcomes in male HCC patients. Post-transplant muscle loss might assist in prognostic stratification of recipients without pre-existing sarcopenia, intriguing new insights into individualized management.
Collapse
Affiliation(s)
- Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical CollegeHangzhouChina
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhouChina
| | - Zhihang Hu
- Zhejiang University School of MedicineHangzhouChina
| | - Hao Chen
- Zhejiang University School of MedicineHangzhouChina
| | | | - Qingguo Xu
- Organ Transplantation CenterAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Huigang Li
- Zhejiang University School of MedicineHangzhouChina
| | - Jianyong Zhuo
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Chiyu He
- Zhejiang University School of MedicineHangzhouChina
| | - Li Zhuang
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Zhe Yang
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Siyi Dong
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jinzhen Cai
- Organ Transplantation CenterAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical CollegeHangzhouChina
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhouChina
- Institute of Translational MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
206
|
Guo Z, Liu Y, Ling Q, Xu L, Wang T, Zhu J, Lin Y, Lu X, Qu W, Zhang F, Zhu Z, Zhang J, Jia Z, Zeng P, Wang W, Sun Q, Luo Q, Hu Z, Zheng Z, Jia Y, Li J, Zheng Y, Wang M, Wang S, Han Z, Yu S, Li C, Zhang S, Xiong J, Deng F, Liu Y, Chen H, Wang Y, Li L, Liang W, Schlegel A, Nashan B, Liu C, Zheng S, He X. Pretransplant use of immune checkpoint inhibitors for hepatocellular carcinoma: A multicenter, retrospective cohort study. Am J Transplant 2024; 24:1837-1856. [PMID: 38642712 DOI: 10.1016/j.ajt.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Immune checkpoint inhibitors (ICIs) as a downstaging or bridging therapy for liver transplantation (LT) in hepatocellular carcinoma patients are rapidly increasing. However, the evidence about the feasibility and safety of pre-LT ICI therapy is limited and controversial. To this end, a multicenter, retrospective cohort study was conducted in 11 Chinese centers. The results showed that 83 recipients received pre-LT ICI therapy during the study period. The median post-LT follow-up was 8.1 (interquartile range 3.3-14.6) months. During the short follow-up, 23 (27.7%) recipients developed allograft rejection, and 7 of them (30.4%) were diagnosed by liver biopsy. Multivariate logistics regression analysis showed that the time interval between the last administration of ICI therapy and LT (TLAT) ≥ 30 days was an independent protective factor for allograft rejection (odds ratio = 0.096, 95% confidence interval 0.026-0.357; P < .001). Multivariate Cox analysis showed that allograft rejection was an independent risk factor for overall survival (hazard ratio = 9.960, 95% confidence interval 1.006-98.610; P = .043). We conclude that patients who receive a pre-LT ICI therapy with a TLAT shorter than 30 days have a much higher risk of allograft rejection than those with a TLAT longer than 30 days. The presence of rejection episodes might be associated with higher post-LT mortality.
Collapse
Affiliation(s)
- Zhiyong Guo
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yao Liu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Qi Ling
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Leibo Xu
- Department of Biliary Pancreatic Surgery and Liver Transplantation Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tielong Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jiaxing Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yimou Lin
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Xinjun Lu
- Department of Biliary Pancreatic Surgery and Liver Transplantation Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Qu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Fan Zhang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Zhijun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China
| | - Zehua Jia
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Ping Zeng
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Wenjing Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiang Sun
- Department of General Surgery, Zhongshan People's Hospital, Zhongshan, China
| | - Qijie Luo
- Department of General Surgery, Zhongshan People's Hospital, Zhongshan, China
| | - Zemin Hu
- Department of General Surgery, Zhongshan People's Hospital, Zhongshan, China
| | - Zhouying Zheng
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yingbin Jia
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yujian Zheng
- Department of Hepatobiliary Surgery & Liver Transplantation Center, General Hospital of Southern Theater Command, Guangzhou, China
| | - Mengchao Wang
- Department of Hepatobiliary Surgery & Liver Transplantation Center, General Hospital of Southern Theater Command, Guangzhou, China
| | - Shaoping Wang
- Department of Hepatobiliary Surgery & Liver Transplantation Center, General Hospital of Southern Theater Command, Guangzhou, China
| | - Zemin Han
- Division of Hepato-Bilio-Pancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng Yu
- Division of Hepato-Bilio-Pancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanjiang Li
- Division of Hepato-Bilio-Pancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuhua Zhang
- Department of Hepatobiliary Surgery of General Surgery, Liver transplant center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiong
- Department of Hepatobiliary Surgery of General Surgery, Liver transplant center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feiwen Deng
- Organ Transplant Centre, Liver Surgery Department, The First People's Hospital of Foshan, Foshan, China
| | - Ying Liu
- Organ Transplant Centre, Liver Surgery Department, The First People's Hospital of Foshan, Foshan, China
| | - Huanwei Chen
- Organ Transplant Centre, Liver Surgery Department, The First People's Hospital of Foshan, Foshan, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Ling Li
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Wenjin Liang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Andrea Schlegel
- Transplantation Center, Digestive Disease and Surgery Institute, Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Björn Nashan
- Organ Transplantation Center, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, China
| | - Chao Liu
- Department of Biliary Pancreatic Surgery and Liver Transplantation Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Shusen Zheng
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.
| | - Xiaoshun He
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China.
| |
Collapse
|
207
|
Dawood S, Sandhir N, Akasheh M, El Khoury M, Otsmane S, Alnassar M, Abulkhair O, Farhat F, Olsen S. Genomic Landscape of Advanced Solid Tumors in Middle East and North Africa Using Circulating Tumor DNA in Routine Clinical Practice. Oncology 2024:1-13. [PMID: 39342926 DOI: 10.1159/000541571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION Next-generation sequencing (NGS) of tumor DNA can detect actionable drivers and help guide therapy for patients with advanced-stage cancers. While tissue-based genotyping is considered a standard of care, blood-based genotyping is emerging as a valid alternative. Tumor genomic profiles may vary by region, and data from the Middle East and North Africa (MENA) are not widely available. This study elucidates the genomic landscape of advanced solid cancers in patients from the MENA region by retrospectively analyzing results from NGS circulating tumor DNA (ctDNA) testing. METHODS In routine clinical practice, 926 plasma samples from 767 patients with advanced cancers from the MENA region were profiled using a comprehensive NGS assay (Guardant360®). We conducted a pan-cancer analysis and sub-analyses focusing on lung, breast, and colorectal cancers. RESULTS In the pan-cancer group, TP53 (58.5%), EGFR (20.4%), and KRAS (18.9%) were the most frequently mutated genes. EGFR (10.2%), FGFR1 (4.9%), and PIK3CA (4.9%) showed the most amplifications, while fusions were observed in 2.7% of patients, including ALK, FGFR2, and RET. For lung adenocarcinoma, EGFR (30.5%), KRAS (19.3%), and ERBB2 (4.6%) were the most frequently identified alterations among the genes recommended for evaluation by the National Comprehensive Cancer Network (NCCN). In patients with breast cancer, PIK3CA (35.3%), ESR1 (21.7%), and BRCA1/2 (13.3%) had the most prevalent alterations among NCCN-recommended genes. In colorectal cancer, KRAS (39.0%), NRAS (8.0%), and BRAF (V600E, 4.0%) were the most observed mutations among genes recommended by the NCCN. Comparing this cohort to publicly available Western and Eastern datasets also indicated similarities (including PIK3CA in breast cancer) and variances (including EGFR in lung adenocarcinoma) in key genes of interest in the analyzed cancer types. CONCLUSION Overall, our findings provide insight into the genomic landscape of individuals with advanced solid organ malignancies from the MENA region and support the role of ctDNA in guiding therapeutic decisions.
Collapse
Affiliation(s)
- Shaheenah Dawood
- Department of Medical Oncology, Mediclinic City Hospital, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | | | - Maroun El Khoury
- Cancer Care Center, American Hospital Dubai, Dubai, United Arab Emirates
| | - Sonia Otsmane
- Burjeel Medical City Hospital, Abu Dhabi, United Arab Emirates
| | | | | | - Fadi Farhat
- Department of Hematology and Oncology, Hammoud Hospital University Medical Centre, Sidon, Lebanon
| | | |
Collapse
|
208
|
Tang Y, Guo S, Yu N, Li H. ZIP4: a promising early diagnostic and therapeutic targets for pancreatic cancer. Am J Cancer Res 2024; 14:4652-4664. [PMID: 39417191 PMCID: PMC11477812 DOI: 10.62347/avym3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
Pancreatic cancer is an aggressive and metastatic tumor that lacks effective early detection and treatment methods. There is an urgent need to further understand its underlying molecular mechanisms and identify new biomarkers for early detection. Zinc, a critical trace element and catalytic cofactor, is tightly regulated within cells. ZIP4, a zinc transporter protein significantly overexpressed in human pancreatic cancer, appears to play a pivotal role in tumor development by modulating intracellular zinc concentration. This review highlights the role of ZIP4 in tumorigenesis, including its impact on pancreatic cancer growth, proliferation, migration, and drug resistance. ZIP4 exerts its effects by regulating zinc dependent transcriptional factors like CREB, STAT3, and ZEB1, resulting in upregulation of Cyclin D1, TP53INP1, ITGA3, CD44, ENT1 proteins, and miR-373. Moreover, ZIP4 mediates the miR373-PHLPP2-AKT signaling axis, which increases TGF-β expression. Coupled with CREB-activated macrophage catabolism-related genes SDC1 and DNM2, ZIP4 promotes cancer cachexia and supports amino acids to tumor cells under metabolic stress. Furthermore, ZIP4 facilitates bone resorption by osteoclasts via the RANKL-activated NF-κB pathway. A deeper understanding of these mechanisms may unveil potential targets for early diagnosis, prognosis assessment, and dietary recommendations for pancreatic cancer. These findings hold clinical significance not only for pancreatic cancer but also for other malignancies exhibiting heightened ZIP4 expression.
Collapse
Affiliation(s)
- Yunpeng Tang
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, PR China
| | - Sheng Guo
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, PR China
| | - Nianhui Yu
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, PR China
| | - Hui Li
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, PR China
| |
Collapse
|
209
|
Liu Y, Huang Y, He G, Guo C, Dong J, Wu L. Development of mRNA Lipid Nanoparticles: Targeting and Therapeutic Aspects. Int J Mol Sci 2024; 25:10166. [PMID: 39337651 PMCID: PMC11432440 DOI: 10.3390/ijms251810166] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as leading non-viral carriers for messenger RNA (mRNA) delivery in clinical applications. Overcoming challenges in safe and effective mRNA delivery to target tissues and cells, along with controlling release from the delivery vehicle, remains pivotal in mRNA-based therapies. This review elucidates the structure of LNPs, the mechanism for mRNA delivery, and the targeted delivery of LNPs to various cells and tissues, including leukocytes, T-cells, dendritic cells, Kupffer cells, hepatic endothelial cells, and hepatic and extrahepatic tissues. Here, we discuss the applications of mRNA-LNP vaccines for the prevention of infectious diseases and for the treatment of cancer and various genetic diseases. Although challenges remain in terms of delivery efficiency, specific tissue targeting, toxicity, and storage stability, mRNA-LNP technology holds extensive potential for the treatment of diseases.
Collapse
Affiliation(s)
- Yaping Liu
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yingying Huang
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guantao He
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Guo
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinhua Dong
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
210
|
Healy FM, Turner AL, Marensi V, MacEwan DJ. Mediating kinase activity in Ras-mutant cancer: potential for an individualised approach? Front Pharmacol 2024; 15:1441938. [PMID: 39372214 PMCID: PMC11450236 DOI: 10.3389/fphar.2024.1441938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
It is widely acknowledged that there is a considerable number of oncogenic mutations within the Ras superfamily of small GTPases which are the driving force behind a multitude of cancers. Ras proteins mediate a plethora of kinase pathways, including the MAPK, PI3K, and Ral pathways. Since Ras was considered undruggable until recently, pharmacological targeting of pathways downstream of Ras has been attempted to varying success, though drug resistance has often proven an issue. Nuances between kinase pathway activation in the presence of various Ras mutants are thought to contribute to the resistance, however, the reasoning behind activation of different pathways in different Ras mutational contexts is yet to be fully elucidated. Indeed, such disparities often depend on cancer type and disease progression. However, we are in a revolutionary age of Ras mutant targeted therapy, with direct-targeting KRAS-G12C inhibitors revolutionising the field and achieving FDA-approval in recent years. However, these are only beneficial in a subset of patients. Approximately 90% of Ras-mutant cancers are not KRAS-G12C mutant, and therefore raises the question as to whether other distinct amino acid substitutions within Ras may one day be targetable in a similar manner, and indeed whether better understanding of the downstream pathways these various mutants activate could further improve therapy. Here, we discuss the favouring of kinase pathways across an array of Ras-mutant oncogenic contexts and assess recent advances in pharmacological targeting of various Ras mutants. Ultimately, we will examine the utility of individualised pharmacological approaches to Ras-mediated cancer.
Collapse
Affiliation(s)
- Fiona M. Healy
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Amy L. Turner
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Vanessa Marensi
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Chester Medical School, University of Chester, Chester, United Kingdom
| | - David J. MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
211
|
Badwei N. Challenges related to clinical decision-making in hepatocellular carcinoma recurrence post-liver transplantation: Is there a hope? World J Transplant 2024; 14:96637. [PMID: 39295978 PMCID: PMC11317853 DOI: 10.5500/wjt.v14.i3.96637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common liver malignancy and represents a serious cause of cancer-related mortality and morbidity. One of the favourable curative surgical therapeutic options for HCC is liver transplantation (LT) in selected patients fulfilling the known standard Milan/University of California San Francisco criteria which have shown better outcomes and longer-term survival. Despite careful adherence to the strict HCC selection criteria for LT in different transplant centres, the recurrence rate still occurs which could negatively affect HCC patients' survival. Hence HCC recurrence post-LT could predict patients' survival and prognosis, depending on the exact timing of recurrence after LT (early or late), and whether intra/extrahepatic HCC recurrence. Several factors may aid in such a complication, particularly tumour-related criteria including larger sizes, higher grades or poor tumour differentiation, microvascular invasion, and elevated serum alpha-fetoprotein. Therefore, managing such cases is challenging, different therapeutic options have been proposed, including curative surgical and ablative treatments that have shown better outcomes, compared to the palliative locoregional and systemic therapies, which may be helpful in those with unresectable tumour burden. To handle all these issues in our review.
Collapse
Affiliation(s)
- Nourhan Badwei
- Department of Tropical Medicine, Gastroenterology and Hepatology, Hepatoma Group, Ain Shams University, Cairo 11517, Egypt
| |
Collapse
|
212
|
Yilmaz ZB, Memisoglu F, Akbulut S. Management of cytomegalovirus infection after liver transplantation. World J Transplant 2024; 14:93209. [PMID: 39295968 PMCID: PMC11317856 DOI: 10.5500/wjt.v14.i3.93209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/27/2024] [Indexed: 07/31/2024] Open
Abstract
Cytomegalovirus (CMV) infection is one of the primary causes of morbidity and mortality following liver transplantation (LT). Based on current worldwide guidelines, the most effective strategies for avoiding post-transplant CMV infection are antiviral prophylaxis and pre-emptive treatment. CMV- IgG serology is the established technique for pretransplant screening of both donors and recipients. The clinical presentation of CMV infection and disease exhibits variability, prompting clinicians to consistently consider this possibility, particularly within the first year post-transplantation or subsequent to heightened immunosuppression. At annual symposia to discuss CMV prevention and how treatment outcomes can be improved, evidence on the incorporation of immune functional tests into clinical practice is presented, and the results of studies with new antiviral treatments are evaluated. Although there are ongoing studies on the use of letermovir and maribavir in solid organ transplantation, a consensus reflected in the guidelines has not been formed. Determining the most appropriate strategy at the individual level appears to be the key to enhancing outcomes. Although prevention strategies reduce the risk of CMV disease, the disease can still occur in up to 50% of high-risk patients. A balance between the risk of infection and disease development and the use of immunosuppressants must be considered when talking about the proper management of CMV in solid organ transplant recipients. The objective of this study was to establish a comprehensive framework for the management of CMV in patients who have had LT.
Collapse
Affiliation(s)
- Zeynep Burcin Yilmaz
- Infectious Diseases and Clinical Microbiology, Inonu University Faculty of Medicine, Malatya 44280, Türkiye
| | - Funda Memisoglu
- Infectious Diseases and Clinical Microbiology, Inonu University Faculty of Medicine, Malatya 44280, Türkiye
| | - Sami Akbulut
- Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya 44280, Türkiye
| |
Collapse
|
213
|
Zhu X, Bi C, Cao W, Li S, Yuan C, Xu P, Wang D, Chen Q, Zhang L. A self-assembled copper-artemisinin nanoprodrug as an efficient reactive oxygen species amplified cascade system for cancer treatment. J Mater Chem B 2024; 12:8902-8910. [PMID: 39206758 DOI: 10.1039/d4tb01237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chemodynamic therapy (CDT) is a tumor-specific intervention methodology, which is based on the upregulation of reactive oxygen species (ROS) content by triggering the Fenton or Fenton-like reaction within the tumor microenvironment (TME). However, there are still challenges in achieving high-efficiency CDT on account of both the limited intracellular hydrogen peroxide (H2O2) and delivery efficiency of Fenton metal ions. Copper-based nanotherapeutic systems have attracted extensive attention and have been widely applied in the construction of nanotherapeutic systems and multimodal synergistic therapy. Herein, we propose a strategy to synergize chemotherapy drugs that upregulate intracellular ROS content with chemodynamic therapy and construct an artemisinin-copper nanoprodrug for proof-of-concept. With the proposed biomimetic self-assembly strategy, we successfully construct an injectable nanoprodrug with suitable size distribution and high drug loading content (68.1 wt%) through the self-assembly of amphiphilic artemisinin prodrug and copper ions. After reaching the TME, both Cu2+ ions and free AH drugs can be released from AHCu nanoprodrugs. Subsequently, the disassembled Cu2+ ions are converted into Cu+ ions by consuming the intracellular GSH. The generated Cu+ ions serve as a highly efficient Fenton-like reagent for robust ROS generation from both AH and tumor-over-produced H2O2. Results show that the nanoprodrug can realize the cascade amplification of ROS generation via artemisinin delivery and subsequent in situ Fenton-like reaction and a high tumor inhibition rate of 62.48% in vivo. This work provides a promising strategy for the design and development of an efficient nanoprodrug for tumor-specific treatment.
Collapse
Affiliation(s)
- Xueyu Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, 230001, China
| | - Chenyang Bi
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Cao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, 230001, China
| | - Shuangshuang Li
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, 230001, China
| | - Chuting Yuan
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Pengping Xu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Dongdong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, 230001, China
| |
Collapse
|
214
|
Jiang Z, Qian M, Zhen Z, Yang X, Xu C, Zuo L, Jiang J, Zhang W, Hu N. Gut microbiota and metabolomic profile changes play critical roles in tacrolimus-induced diabetes in rats. Front Cell Infect Microbiol 2024; 14:1436477. [PMID: 39355267 PMCID: PMC11442430 DOI: 10.3389/fcimb.2024.1436477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024] Open
Abstract
Aims Hyperglycemia is one of the adverse effects of tacrolimus (TAC), but the underlying mechanism is not fully identified. We used multi-omics analysis to evaluate the changes in the gut microbiota and metabolic profile of rats with TAC-induced diabetes. Methods To establish a diabetic animal model, Sprague Dawley rats were divided randomly into two groups. Those in the TAC group received intraperitoneal injections of TAC (3 mg/kg) for 8 weeks, and those in the CON group served as the control. 16S rRNA sequencing was used to analyze fecal microbiota. The metabolites of the two groups were detected and analyzed by nontargeted and targeted metabolomics, including amino acids (AAs), bile acids (BAs), and short-chain fatty acids (SCFAs). Results The rats treated with TAC exhibited hyperglycemia as well as changes in the gut microbiota and metabolites. Specifically, their gut microbiota had significantly higher abundances of Escherichia-Shigella, Enterococcus, and Allobaculum, and significantly lower abundances of Ruminococcus, Akkermansia, and Roseburia. In addition, they had significantly reduced serum levels of AAs including asparagine, aspartic acid, glutamic acid, and methionine. With respect to BAs, they had significantly higher serum levels of taurocholic acid (TCA), and glycochenodeoxycholic acid (GCDCA), but significantly lower levels of taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA). There were no differences in the levels of SCFAs between the two groups. Correlations existed among glucose metabolism indexes (fasting blood glucose and fasting insulin), gut microbiota (Ruminococcus and Akkermansia), and metabolites (glutamic acid, hydroxyproline, GCDCA, TDCA, and TUDCA). Conclusions Both AAs and BAs may play crucial roles as signaling molecules in the regulation of TAC-induced diabetes.
Collapse
Affiliation(s)
- Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Minyan Qian
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Zeng Zhen
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Xuping Yang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Caomei Xu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Li'an Zuo
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wenting Zhang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Pediatric Central Laboratory, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, China
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| |
Collapse
|
215
|
Yadav M, Verma S, Tiwari P, Mugale MN. Unraveling the mechanisms of hepatogenous diabetes and its therapeutic perspectives. Life Sci 2024; 353:122934. [PMID: 39089644 DOI: 10.1016/j.lfs.2024.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The review focused mainly on the pathogenesis of hepatogenous diabetes (HD) in liver cirrhosis (LC). This review reveals parallels between the mechanisms of metabolic dysfunction observed in LC and type II diabetes (T2DM), suggesting a shared pathway leading to HD. It underscores the role of insulin in HD pathogenesis, highlighting key factors such as insulin signaling, glucose metabolism, insulin resistance (IR), and the influence of adipocytes. Furthermore, the impact of adipose tissue accumulation, fatty acid metabolism, and pro-inflammatory cytokines like Tumor necrosis factor-α (TNF-α) on IR are discussed in the context of HD. Altered signaling pathways, disruptions in the endocrine system, liver inflammation, changes in muscle mass and composition, and modifications to the gut microbiota collectively contribute to the complex interplay linking cirrhosis and HD. This study highlights how important it is to identify and treat this complex condition in cirrhotic patients by thoroughly analyzing the link between cirrhosis, IR, and HD. It also emphasizes the vitality of targeted interventions. Cellular and molecular investigations into IR have revealed potential therapeutic targets for managing and preventing HD.
Collapse
Affiliation(s)
- Manisha Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Purnima Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
216
|
Zhang SD, Li H, Zhou YL, Liu XC, Li DC, Hao CF, You QD, Xu XL. Protein-protein interactions in cGAS-STING pathway: a medicinal chemistry perspective. Future Med Chem 2024; 16:1801-1820. [PMID: 39263789 PMCID: PMC11457635 DOI: 10.1080/17568919.2024.2383164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 09/13/2024] Open
Abstract
Protein-protein interactions (PPIs) play pivotal roles in biological processes and are closely linked with human diseases. Research on small molecule inhibitors targeting PPIs provides valuable insights and guidance for novel drug development. The cGAS-STING pathway plays a crucial role in regulating human innate immunity and is implicated in various pathological conditions. Therefore, modulators of the cGAS-STING pathway have garnered extensive attention. Given that this pathway involves multiple PPIs, modulating PPIs associated with the cGAS-STING pathway has emerged as a promising strategy for modulating this pathway. In this review, we summarize an overview of recent advancements in medicinal chemistry insights into cGAS-STING PPI-based modulators and propose alternative strategies for further drug discovery based on the cGAS-STING pathway.
Collapse
Affiliation(s)
- Shi-Duo Zhang
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ye-Ling Zhou
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue-Chun Liu
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - De-Chang Li
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chuan-Feng Hao
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
217
|
Chen S, Yu B, DU GT, Huang TY, Zhang N, Fu N. KIF18B: an important role in signaling pathways and a potential resistant target in tumor development. Discov Oncol 2024; 15:430. [PMID: 39259333 PMCID: PMC11390998 DOI: 10.1007/s12672-024-01330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
KIF18B is a key member of the kinesin-8 family, involved in regulating various physiological processes such as microtubule length, spindle assembly, and chromosome alignment. This article briefly introduces the structure and physiological functions of KIF18B, examines its role in malignant tumors, and the associated carcinogenic signaling pathways such as PI3K/AKT, Wnt/β-catenin, and mTOR pathways. Research indicates that the upregulation of KIF18B enhances tumor malignancy and resistance to radiotherapy and chemotherapy. KIF18B could become a new target for anticancer drugs, offering significant potential for the treatment of malignant tumors and reducing chemotherapy resistance.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Bo Yu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Guo Tu DU
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Tian Yu Huang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China.
| | - Ni Fu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China.
| |
Collapse
|
218
|
Chen G, Yu Y, Qi Y, Li G, Li N, Meng F, Wang W, Shen R. Comparative analysis of PD-L1 expression and molecular alterations in primary versus metastatic lung adenocarcinoma: a real-world study in China. Front Oncol 2024; 14:1393686. [PMID: 39323996 PMCID: PMC11422015 DOI: 10.3389/fonc.2024.1393686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Objectives Programmed death-ligand 1 (PD-L1) is the only Food and Drug Administration-approved biomarker for monitoring response to immune checkpoint inhibitor (ICI) therapy in patients with lung adenocarcinoma. Understanding the nuances of molecular phenotypes, clinical attributes, and PD-L1 expression levels in primary and metastatic lung adenocarcinoma may help predict response to therapy and assist in the clinical management of lung adenocarcinoma. Methods A total of 235 primary and metastatic lesion specimens from patients with non-small cell lung cancer (NSCLC) an institution in Shandong, China were analyzed. PD-L1 expression was assessed by immunohistochemistry using the 22C3 antibody, and the molecular phenotype was determined by next-generation sequencing of 450 genes. The molecular phenotypes of the primary and metastatic lesions were compared. Results Elevated PD-L1 expression was significantly associated with advanced and metastatic disease (P = 0.001). The distribution of PD-L1 expression varied based on the anatomical location, showing a higher frequency of elevated PD-L1 expression in distal metastases than in the primary tumor. Metastatic lesions exhibited a higher proportion of carcinogenic pathway gene alterations and a greater number of DNA damage-repair pathway gene alterations than the primary lesions. Notably, CDKN2A copy number deletions were more prevalent in metastatic lesions than in primary lesions. Clinical data stemming from research conducted at the Memorial Sloan Kettering Cancer Center revealed an association between the absence of CDKN2A expression and a poorer prognosis in stage I lung adenocarcinoma. Conclusion Samples of metastatic tumors exhibited a higher proportion of elevated PD-L1 expression, a greater number of pathway alterations, and a higher occurrence of CDKN2A copy number deletions than primary samples. This highlights the importance of reinforcing the clinical management and follow-up of patients with CDKN2A deficiency, particularly within the subset of stage I lung adenocarcinoma.
Collapse
Affiliation(s)
- Gang Chen
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yang Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Youchao Qi
- Department of Thoracic Surgery, The Second People's Hospital of Dezhou City, Dezhou, Shandong, China
| | - Guangxu Li
- Department of Thoracic Surgery, The Second People's Hospital of Dezhou City, Dezhou, Shandong, China
| | - Ning Li
- Department of Radiotherapy, The Second People's Hospital of Dezhou City, Dezhou, Shandong, China
| | - Fande Meng
- Department of Internal Medicine, Changle County Traditional Chinese Medicine (TMC) Hospital, Weifang, Shandong, China
| | - Wujie Wang
- Department of Interventional Medicine, The Second Hospital, Cheeloo College of Medicine, Institute of Tumor Intervention, Shandong University, Jinan, Shandong, China
| | - Rong Shen
- Department of Minimally Invasive Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
219
|
Miao L, Yu C, Guan G, Luan X, Jin X, Pan M, Yang Y, Yan J, Chen P, Di G. Extracellular vesicles containing GAS6 protect the liver from ischemia-reperfusion injury by enhancing macrophage efferocytosis via MerTK-ERK-COX2 signaling. Cell Death Discov 2024; 10:401. [PMID: 39256347 PMCID: PMC11387478 DOI: 10.1038/s41420-024-02169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a significant issue during liver transplantation and surgery, contributing to the liver failure or even mortality. Although extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have shown substantial potentials in cell replacement therapy of various organ ischemia reperfusion injuries (IRIs), the precise mechanisms remain unclear. In this study, we demonstrate that systemic MSC-EVs administration is predominantly absorbed by macrophages, and verified that it could significantly reduce the liver injury and inflammatory response in mice suffering from HIRI. Furthermore, treatment with MSC-EVs induces macrophage polarization toward an anti-inflammatory phenotype. Mechanistically, proteomic profiling reveals an enrichment of growth arrest-specific 6 (GAS6) in MSC-EVs, significantly promoting the activation of myeloid-epithelial-reproductive tyrosine kinase/extracellular regulated protein kinases/cyclooxygenase 2 (MerTK/ERK/COX2) signaling pathway in macrophages and further enhancing their efferocytosis efficiency. Knockdown of GAS6 via lentiviral transfection or inhibition of MerTK using UNC2025 (a MerTK small molecule inhibitor) partially eliminates the protective effects of MSC-EVs on macrophage efferocytosis and liver injury. Overall, our findings support that MSC-EVs enriched GAS6 execute an anti-inflammation effect, highlighting that treatment based on the modulation of macrophage function by MSC-EVs as a promising approach in IRI. HIRI is a thorny problem after liver surgery such as liver transplantation. In a murine model of HIRI, MSC-EVs enriched GAS6 effectively enhance macrophage efferocytosis both in vivo and in vitro through the GAS6/MerTK/ERK/COX2 signaling pathway and significantly mitigate liver injury. This image was drawn by the authors.
Collapse
Affiliation(s)
- Longyu Miao
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chaoqun Yu
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Ge Guan
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoyu Luan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiaoshuang Jin
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Meiqi Pan
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yuzhen Yang
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jiaoyang Yan
- Department of Clinical Medicine, Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
| | - Peng Chen
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| | - Guohu Di
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, Shandong, China.
| |
Collapse
|
220
|
Giacco A, Petito G, Silvestri E, Scopigno N, Vigliotti M, Mercurio G, de Lange P, Lombardi A, Moreno M, Goglia F, Lanni A, Senese R, Cioffi F. Comparative effects of 3,5-diiodo-L-thyronine and 3,5,3'-triiodo-L-thyronine on mitochondrial damage and cGAS/STING-driven inflammation in liver of hypothyroid rats. Front Endocrinol (Lausanne) 2024; 15:1432819. [PMID: 39301315 PMCID: PMC11410700 DOI: 10.3389/fendo.2024.1432819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Maintaining a well-functioning mitochondrial network through the mitochondria quality control (MQC) mechanisms, including biogenesis, dynamics and mitophagy, is crucial for overall health. Mitochondrial dysfunction caused by oxidative stress and further exacerbated by impaired quality control can trigger inflammation through the release of the damage-associated molecular patterns (mtDAMPs). mtDAMPs act by stimulating the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) pathway. Recently, aberrant signalling of the cGAS-STING axis has been recognised to be closely associated with several sterile inflammatory diseases (e.g. non-alcoholic fatty liver disease, obesity). This may fit the pathophysiology of hypothyroidism, an endocrine disorder characterised by the reduction of thyroid hormone production associated with impaired metabolic fluxes, oxidative balance and inflammatory status. Both 3,5,3'-triiodo-L-tyronine (T3) and its derivative 3,5-diiodo-L-thyronine (3,5-T2), are known to mitigate processes targeting mitochondria, albeit the underlying mechanisms are not yet fully understood. Therefore, we used a chemically induced hypothyroidism rat model to investigate the effect of 3,5-T2 or T3 administration on inflammation-related factors (inflammatory cytokines, hepatic cGAS-STING pathway), oxidative stress, antioxidant defence enzymes, mitochondrial DNA (mtDNA) damage, release and repair, and the MQC system in the liver. Hypothyroid rats showed: i) increased oxidative stress, ii) accumulation of mtDNA damage, iii) high levels of circulating cytokines, iv) hepatic activation of cGAS-STING pathways and v) impairment of MQC mechanisms and autophagy. Both iodothyronines restored oxidative balance by enhancing antioxidant defence, preventing mtDNA damage through the activation of mtDNA repair mechanisms (OGG1, APE1, and POLγ) and promoting autophagy progression. Concerning MQC, both iodothyronines stimulated mitophagy and dynamics, with 3,5-T2 activating fusion and T3 modulating both fusion and fission processes. Moreover, only T3 enhanced mitochondrial biogenesis. Notably, 3,5-T2, but not T3, reversed the hypothyroidism-induced activation of the cGAS-STING inflammatory cascade. In addition, it is noteworthy that 3,5-T2 seems more effective than T3 in reducing circulating pro-inflammatory cytokines IL-6 and IL-1B and in stimulating the release of IL-10, a known anti-inflammatory cytokine. These findings reveal novel molecular mechanisms of hepatic signalling pathways involved in hypothyroidism, which could be targeted by natural iodothyronines, particularly 3,5-T2, paving the way for the development of new treatment strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Antonia Giacco
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Elena Silvestri
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Nicla Scopigno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Michela Vigliotti
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Giovanna Mercurio
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Maria Moreno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Federica Cioffi
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| |
Collapse
|
221
|
Zhang X, Yang Z, Fu C, Yao R, Li H, Peng F, Li N. Emerging roles of liquid-liquid phase separation in liver innate immunity. Cell Commun Signal 2024; 22:430. [PMID: 39227829 PMCID: PMC11373118 DOI: 10.1186/s12964-024-01787-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
Biomolecular condensates formed by liquid-liquid phase separation (LLPS) have become an extensive mechanism of macromolecular metabolism and biochemical reactions in cells. Large molecules like proteins and nucleic acids will spontaneously aggregate and assemble into droplet-like structures driven by LLPS when the physical and chemical properties of cells are altered. LLPS provides a mature molecular platform for innate immune response, which tightly regulates key signaling in liver immune response spatially and physically, including DNA and RNA sensing pathways, inflammasome activation, and autophagy. Take this, LLPS plays a promoting or protecting role in a range of liver diseases, such as viral hepatitis, non-alcoholic fatty liver disease, liver fibrosis, hepatic ischemia-reperfusion injury, autoimmune liver disease, and liver cancer. This review systematically describes the whole landscape of LLPS in liver innate immunity. It will help us to guide a better-personalized approach to LLPS-targeted immunotherapy for liver diseases.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan Province, China
| | - Ziyue Yang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Chunmeng Fu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Run Yao
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Huan Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
222
|
Ren L, Wan J, Li X, Yao J, Ma Y, Meng F, Zheng S, Han W, Wang H. Mitochondrial rewiring with small-molecule drug-free nanoassemblies unleashes anticancer immunity. Nat Commun 2024; 15:7664. [PMID: 39227567 PMCID: PMC11372058 DOI: 10.1038/s41467-024-51945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers.
Collapse
Affiliation(s)
- Lulu Ren
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, PR China
| | - Jianqin Wan
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Xiaoyan Li
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
- Department of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Jie Yao
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
- Department of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Yan Ma
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Fanchao Meng
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Shusen Zheng
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
| | - Weidong Han
- Department of Colorectal Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, PR China.
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, PR China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China.
| |
Collapse
|
223
|
Mauro E, Sanduzzi-Zamparelli M, Jutras G, Garcia R, Soler Perromat A, Llarch N, Holguin Arce V, Ruiz P, Rimola J, Lopez E, Ferrer-Fàbrega J, García-Criado Á, Colmenero J, Lai JC, Forner A. Challenges in Liver Transplantation for Hepatocellular Carcinoma: A Review of Current Controversies. Cancers (Basel) 2024; 16:3059. [PMID: 39272917 PMCID: PMC11394545 DOI: 10.3390/cancers16173059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Liver transplantation (LT) remains one of the most effective treatments for hepatocellular carcinoma (HCC) and significantly enhances patient survival. However, the application of LT for HCC faces challenges owing to advancements in cancer-specific treatment modalities and the increased burden of patients' comorbidities. This narrative review explores current controversies and advancements in LT for HCC. Key areas of focus include the management of comorbidities and patient education by advanced practice nurses, impacts of frailty on waitlists and post-LT outcomes, selection criteria for LT in the era of new downstaging tools, role of radiology in patient selection, and implications of potential immunotherapy use both before and after LT. Additionally, the importance of immunosuppression management with strategies aimed at minimizing rejection while considering the risk of HCC recurrence and the role of surveillance for HCC recurrence is highlighted. This review also underscores the importance of a multidisciplinary approach for optimizing outcomes in patients with HCC undergoing LT.
Collapse
Affiliation(s)
- Ezequiel Mauro
- Liver Oncology Unit, Liver Unit, ICMDM, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, IDIBAPS, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Marco Sanduzzi-Zamparelli
- Liver Oncology Unit, Liver Unit, ICMDM, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, IDIBAPS, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Gabrielle Jutras
- Department of Medicine, Division of Hepatology, Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 3E4, Canada
| | - Raquel Garcia
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Liver Transplant Unit, Liver Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, 08007 Barcelona, Spain
| | - Alexandre Soler Perromat
- Barcelona Clinic Liver Cancer (BCLC) Group, IDIBAPS, 08036 Barcelona, Spain
- Radiology Department, CDI, Hospital Clinic Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Neus Llarch
- Liver Oncology Unit, Liver Unit, ICMDM, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, IDIBAPS, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Victor Holguin Arce
- Barcelona Clinic Liver Cancer (BCLC) Group, IDIBAPS, 08036 Barcelona, Spain
- Hepatobiliopancreatic Surgery and Liver and Pancreatic Transplantation Unit, Department of Surgery, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Pablo Ruiz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Liver Transplant Unit, Liver Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, 08007 Barcelona, Spain
| | - Jordi Rimola
- Barcelona Clinic Liver Cancer (BCLC) Group, IDIBAPS, 08036 Barcelona, Spain
- Radiology Department, CDI, Hospital Clinic Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Eva Lopez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Liver Transplant Unit, Liver Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, 08007 Barcelona, Spain
- Universidad Jaume I, 12006 Castellón de la Plana, Spain
| | - Joana Ferrer-Fàbrega
- Barcelona Clinic Liver Cancer (BCLC) Group, IDIBAPS, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Hepatobiliopancreatic Surgery and Liver and Pancreatic Transplantation Unit, Department of Surgery, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- University of Barcelona, 08007 Barcelona, Spain
| | - Ángeles García-Criado
- Barcelona Clinic Liver Cancer (BCLC) Group, IDIBAPS, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Radiology Department, CDI, Hospital Clinic Barcelona, IDIBAPS, 08036 Barcelona, Spain
- University of Barcelona, 08007 Barcelona, Spain
| | - Jordi Colmenero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Liver Transplant Unit, Liver Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, 08007 Barcelona, Spain
- University of Barcelona, 08007 Barcelona, Spain
| | - Jennifer C Lai
- Departament of Medicine, Division of Gastroenterology and Hepatology, University of California-San Francisco, San Francisco, CA 94115, USA
| | - Alejandro Forner
- Liver Oncology Unit, Liver Unit, ICMDM, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, IDIBAPS, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- University of Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
224
|
Li P, Ma X, Huang D, Gu X. Exploring the roles of non-coding RNAs in liver regeneration. Noncoding RNA Res 2024; 9:945-953. [PMID: 38680418 PMCID: PMC11046251 DOI: 10.1016/j.ncrna.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Liver regeneration (LR) is a complex process encompassing three distinct phases: priming, proliferation phase and restoration, all influenced by various regulatory factors. After liver damage or partial resection, the liver tissue demonstrates remarkable restorative capacity, driven by cellular proliferation and repair mechanisms. The essential roles of non-coding RNAs (ncRNAs), predominantly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNA (circRNA), in regulating LR have been vastly studied. Additionally, the impact of ncRNAs on LR and their abnormal expression profiles during this process have been extensively documented. Mechanistic investigations have revealed that ncRNAs interact with genes involved in proliferation to regulate hepatocyte proliferation, apoptosis and differentiation, along with liver progenitor cell proliferation and migration. Given the significant role of ncRNAs in LR, an in-depth exploration of their involvement in the liver's self-repair capacity can reveal promising therapeutic strategies for LR and liver-related diseases. Moreover, understanding the unique regenerative potential of the adult liver and the mechanisms and regulatory factors of ncRNAs in LR are crucial for improving current treatment strategies and exploring new therapeutic approaches for various liver-related diseases. This review provides a brief overview of the LR process and the ncRNA expression profiles during this process. Furthermore, we also elaborate on the specific molecular mechanisms through which multiple key ncRNAs regulate the LR process. Finally, based on the expression characteristics of ncRNAs and their interactions with proliferation-associated genes, we explore their potential clinical application, such as developing predictive indicators reflecting liver regenerative activity and manipulating LR processes for therapeutic purposes.
Collapse
Affiliation(s)
- Penghui Li
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| |
Collapse
|
225
|
Abdelhamed W, Shousha H, El-Kassas M. Portal vein tumor thrombosis in hepatocellular carcinoma patients: Is it the end? LIVER RESEARCH (BEIJING, CHINA) 2024; 8:141-151. [PMID: 39957750 PMCID: PMC11771265 DOI: 10.1016/j.livres.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 01/03/2025]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most prevalent form of cancer globally and the third leading cause of cancer-related mortality. The incidence of portal vein tumor thrombosis (PVTT) in HCC patients is 21% at one year and 46% at three years. The presence of PVTT has consistently been associated with a poor prognosis for HCC patients over the past decades. Notably, HCC prognosis is influenced not only by the presence of PVTT but also by the degree or extent of PVTT. Currently, there is a lack of global consensus or established protocols regarding the optimal management of HCC with associated PVTT. The Barcelona Clinic for Liver Cancer classifies HCC patients with PVTT as stage C, indicating an advanced stage, and limiting treatment recommendations for these patients to systemic therapy. In recent years, there has been an increase in the availability of therapeutic options for HCC patients with PVTT. Treatment modalities include systemic therapy, transarterial chemoembolization, surgical resection, stereotactic body radiotherapy, transarterial radioembolization, and liver transplantation. An ideal therapy for each patient necessitates a multidisciplinary approach. This review article presents the latest updates in managing HCC patients with PVTT.
Collapse
Affiliation(s)
| | - Hend Shousha
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
- Liver Disease Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
226
|
Yang M, Wei X, Shu W, Zhai X, Zhou Z, Cai J, Yang J, Jin B, Zheng S, Xu X. Influence of intraoperative blood salvage and autotransfusion on tumor recurrence after deceased donor liver transplantation: a large nationwide cohort study. Int J Surg 2024; 110:5652-5661. [PMID: 38847771 PMCID: PMC11392187 DOI: 10.1097/js9.0000000000001683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/10/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND AND AIMS The practice of intraoperative blood salvage and autotransfusion (IBSA) during deceased donor liver transplantation for hepatocellular carcinoma (HCC) can potentially reduce the need for allogeneic blood transfusion. However, implementing IBSA remains debatable due to concerns about its possible detrimental effects on oncologic recurrence. METHODS This study retrospectively enrolled nationwide recipients of deceased donor liver transplantation for HCC between 2015 and 2020. The focus was on comparing the cumulative recurrence rate and the recurrence-free survival rate. Propensity score matching was conducted repeatedly for further subgroup comparison. Recipients were categorized based on the Milan criteria, macrovascular invasion, and pretransplant α-Fetoprotein (AFP) level to identify subgroups at risk of HCC recurrence. RESULTS A total of 6196 and 329 patients were enrolled in the non-IBSA and IBSA groups in this study. Multivariable competing risk regression analysis identified IBSA as independent risk factors for HCC recurrence ( P <0.05). Postmatching, the cumulative recurrence rate and recurrence-free survival rate revealed no significant difference in the IBSA group and non-IBSA group (22.4 vs. 16.5%, P =0.12; 60.3 vs. 60.9%, P =0.74). Recipients beyond Milan criteria had higher, albeit not significant, risk of HCC recurrence if receiving IBSA (33.4 vs. 22.5%, P =0.14). For recipients with macrovascular invasion, the risk of HCC recurrence has no significant difference between the two groups (32.2 vs. 21.3%, P =0.231). For recipients with an AFP level <20 ng/ml, the risk of HCC recurrence was comparable in the IBSA group and the non-IBSA group (12.8 vs. 18.7%, P =0.99). Recipients with an AFP level ≥20 ng/ml, the risk of HCC recurrence was significantly higher in the IBSA group. For those with an AFP level ≥400 ng/ml, the impact of IBSA on the cumulative recurrence rate was even more pronounced (49.8 vs. 21.9%, P =0.011). CONCLUSIONS IBSA does not appear to be associated with worse outcomes for recipients with HCC exceeding the Milan criteria or with macrovascular invasion. IBSA could be confidently applied for recipients with a pretransplant AFP level <20 ng/ml. For recipients with AFP levels ≥20 ng/ml, undertaking IBSA would increase the risk of HCC recurrence.
Collapse
Affiliation(s)
- Mengfan Yang
- Department of Organ Transplantation, Qilu Hospital of Shandong University
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| | - Wenzhi Shu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital
- Zhejiang University School of Medicine
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital, Shandong University, Jinan
| | - Zhisheng Zhou
- National Center for Healthcare Quality Management in Liver Transplant
| | - Jinzhen Cai
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jiayin Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu
| | - Bin Jin
- Department of Organ Transplantation, Qilu Hospital of Shandong University
- Department of Hepatobiliary Surgery, The Second Hospital, Shandong University, Jinan
| | - Shusen Zheng
- Zhejiang University School of Medicine
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital
- National Center for Healthcare Quality Management in Liver Transplant
| | - Xiao Xu
- Zhejiang University School of Medicine
- National Center for Healthcare Quality Management in Liver Transplant
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| |
Collapse
|
227
|
Mohamed ME, Saqr A, Staley C, Onyeaghala G, Teigen L, Dorr CR, Remmel RP, Guan W, Oetting WS, Matas AJ, Israni AK, Jacobson PA. Pharmacomicrobiomics: Immunosuppressive Drugs and Microbiome Interactions in Transplantation. Transplantation 2024; 108:1895-1910. [PMID: 38361239 PMCID: PMC11327386 DOI: 10.1097/tp.0000000000004926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The human microbiome is associated with human health and disease. Exogenous compounds, including pharmaceutical products, are also known to be affected by the microbiome, and this discovery has led to the field of pharmacomicobiomics. The microbiome can also alter drug pharmacokinetics and pharmacodynamics, possibly resulting in side effects, toxicities, and unanticipated disease response. Microbiome-mediated effects are referred to as drug-microbiome interactions (DMI). Rapid advances in the field of pharmacomicrobiomics have been driven by the availability of efficient bacterial genome sequencing methods and new computational and bioinformatics tools. The success of fecal microbiota transplantation for recurrent Clostridioides difficile has fueled enthusiasm and research in the field. This review focuses on the pharmacomicrobiome in transplantation. Alterations in the microbiome in transplant recipients are well documented, largely because of prophylactic antibiotic use, and the potential for DMI is high. There is evidence that the gut microbiome may alter the pharmacokinetic disposition of tacrolimus and result in microbiome-specific tacrolimus metabolites. The gut microbiome also impacts the enterohepatic recirculation of mycophenolate, resulting in substantial changes in pharmacokinetic disposition and systemic exposure. The mechanisms of these DMI and the specific bacteria or communities of bacteria are under investigation. There are little or no human DMI data for cyclosporine A, corticosteroids, and sirolimus. The available evidence in transplantation is limited and driven by small studies of heterogeneous designs. Larger clinical studies are needed, but the potential for future clinical application of the pharmacomicrobiome in avoiding poor outcomes is high.
Collapse
Affiliation(s)
- Moataz E Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Abdelrahman Saqr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | | | - Guillaume Onyeaghala
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Levi Teigen
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN
| | - Casey R Dorr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
- Department of Medicine, Hennepin Healthcare, Minneapolis, MN
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Ajay K Israni
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, Hennepin Healthcare, Minneapolis, MN
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| |
Collapse
|
228
|
Yang M, Lin Z, Zhuang L, Pan L, Wang R, Chen H, Hu Z, Shen W, Zhuo J, Yang X, Li H, He C, Yang Z, Xie Q, Dong S, Chen J, Su R, Wei X, Yin J, Zheng S, Lu D, Xu X. An inflammatory liquid fingerprint predicting tumor recurrence after liver transplantation for hepatocellular carcinoma. MedComm (Beijing) 2024; 5:e678. [PMID: 39188937 PMCID: PMC11345533 DOI: 10.1002/mco2.678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
Tumor recurrence is a life-threatening complication after liver transplantation (LT) for hepatocellular carcinoma (HCC). Precise recurrence risk stratification before transplantation is essential for the management of recipients. Here, we aimed to establish an inflammation-related prediction model for posttransplant HCC recurrence based on pretransplant peripheral cytokine profiling. Two hundred and ninety-three patients who underwent LT in two independent medical centers were enrolled, and their pretransplant plasma samples were sent for cytokine profiling. We identified four independent risk factors, including alpha-fetoprotein, systemic immune-inflammation index, interleukin 6, and osteocalcin in the training cohort (n = 190) by COX regression analysis. A prediction model named inflammatory fingerprint (IFP) was established based on the above factors. The IFP effectively predicted posttransplant recurrence (area under the receiver operating characteristic curve [AUROC]: 0.792, C-index: 0.736). The high IFP group recipients had significantly worse 3-year recurrence-free survival rates (37.9 vs. 86.9%, p < 0.001). Simultaneous T-cell profiling revealed that recipients with high IFP were characterized by impaired T cell function. The IFP also performed well in the validation cohort (n = 103, AUROC: 0.807, C-index: 0.681). In conclusion, the IFP efficiently predicted posttransplant HCC recurrence and helped to refine pretransplant risk stratification. Impaired T cell function might be the intrinsic mechanism for the high recurrence risk of recipients in the high IFP group.
Collapse
Affiliation(s)
- Modan Yang
- Department of Breast SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- NHC Key Laboratory of Combined Multi‐Organ TransplantationZhejiang UniversityHangzhouChina
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Li Zhuang
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Linhui Pan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Rui Wang
- Zhejiang University School of MedicineHangzhouChina
| | - Hao Chen
- Zhejiang University School of MedicineHangzhouChina
| | - Zhihang Hu
- Zhejiang University School of MedicineHangzhouChina
| | - Wei Shen
- Zhejiang University School of MedicineHangzhouChina
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Huigang Li
- Zhejiang University School of MedicineHangzhouChina
| | - Chiyu He
- Zhejiang University School of MedicineHangzhouChina
| | - Zhe Yang
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Qinfen Xie
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Siyi Dong
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Junli Chen
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Renyi Su
- Zhejiang University School of MedicineHangzhouChina
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Junjie Yin
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi‐Organ TransplantationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital)School of Clinical MedicineHangzhou Medical CollegeHangzhouChina
| | - Xiao Xu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital)School of Clinical MedicineHangzhou Medical CollegeHangzhouChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
229
|
Lv G, Wang Q, Lin L, Ye Q, Li X, Zhou Q, Kong X, Deng H, You F, Chen H, Wu S, Yuan L. mTORC2-driven chromatin cGAS mediates chemoresistance through epigenetic reprogramming in colorectal cancer. Nat Cell Biol 2024; 26:1585-1596. [PMID: 39080411 PMCID: PMC11392818 DOI: 10.1038/s41556-024-01473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/07/2024] [Indexed: 09/14/2024]
Abstract
Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor that initiates a STING-dependent innate immune response, binds tightly to chromatin, where its catalytic activity is inhibited; however, mechanisms underlying cGAS recruitment to chromatin and functions of chromatin-bound cGAS (ccGAS) remain unclear. Here we show that mTORC2-mediated phosphorylation of human cGAS serine 37 promotes its chromatin localization in colorectal cancer cells, regulating cell growth and drug resistance independently of STING. We discovered that ccGAS recruits the SWI/SNF complex at specific chromatin regions, modifying expression of genes linked to glutaminolysis and DNA replication. Although ccGAS depletion inhibited cell growth, it induced chemoresistance to fluorouracil treatment in vitro and in vivo. Moreover, blocking kidney-type glutaminase, a downstream ccGAS target, overcame chemoresistance caused by ccGAS loss. Thus, ccGAS coordinates colorectal cancer plasticity and acquired chemoresistance through epigenetic patterning. Targeting both mTORC2-ccGAS and glutaminase provides a promising strategy to eliminate quiescent resistant cancer cells.
Collapse
Affiliation(s)
- Guoqing Lv
- Institute of Biomedical Sciences, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Wang
- Department of Urology, The Third Affiliated Hospital & South China Hospital of Shenzhen University, Shenzhen, China
| | - Lin Lin
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Qiao Ye
- Clinical Medicine Laboratory, Air Force Medical Center, Beijing, China
| | - Xi Li
- Institute of Biomedical Sciences, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qian Zhou
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Xiangzhen Kong
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital & South China Hospital of Shenzhen University, Shenzhen, China.
| | - Lin Yuan
- Institute of Biomedical Sciences, Peking University Shenzhen Hospital, Shenzhen, China.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
230
|
Li Y, Yi J, Ma R, Wang Y, Lou X, Dong Y, Cao Y, Li X, Wang M, Dang X, Li R, Lei N, Song H, Qin Z, Yang W. A polymeric nanoplatform enhances the cGAS-STING pathway in macrophages to potentiate phagocytosis for cancer immunotherapy. J Control Release 2024; 373:447-462. [PMID: 39038546 DOI: 10.1016/j.jconrel.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Immunosuppressive tumor-associated macrophages (TAMs) account for a high proportion of the tumor tissue and significantly impede immunoefficacy. Furthermore, the signal regulatory protein α (SIRPα) expressed in TAMs adversely correlates with macrophage activation and phagocytosis, resulting in immunosurveillance escape. To address these difficulties, a mannose-modified, pH-responsive nanoplatform with resiquimod (R848) and 2', 3'-cyclic GMP-AMP (cGAMP) co-encapsulation (named M-PNP@R@C) is designed to polarize TAMs and lower SIRPα expression. The co-delivery of R848 and cGAMP synergistically facilitates the polarization of TAMs from the anti-inflammatory M2 phenotype into the pro-inflammatory M1 phenotype, thereby enhancing antitumor immunotherapy. Remarkably, activation of the cGAMP-mediated stimulator of interferon genes (STING) in TAMs significantly downregulates the expression of SIRPα, which synergizes with the cluster of differentiation 47 (CD47) antibody for the dual blockade of the CD47-SIRPα axis. Further analysis of single-cell RNA sequencing indicates that STING activation downregulates SIRPα by regulating intracellular fatty acid oxidation metabolism. In vivo studies indicate that M-PNP@R@C significantly inhibits tumor growth with a potent antitumor immune response in melanoma graft tumor models. After synergy with anti-CD47, the double blockade strategies of the SIRPα/CD47 axis result in a notable inhibition of lung metastasis. A prolonged survival rate is observed after combination treatment with CD47 and programmed death ligand-1 antibodies for the triple immune checkpoint blockade. In summary, our study provides original insights into the potential role of the STING pathway in macrophage-based immunotherapy, thus offering a potential combinatorial strategy for cancer therapy.
Collapse
Affiliation(s)
- Yongjuan Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of basic medical sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jinmeng Yi
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of basic medical sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Rong Ma
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou 450001, China
| | - Yayun Wang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaohan Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ya Dong
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yongjian Cao
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyan Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ming Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaowei Dang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Rui Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ningjing Lei
- School of basic medical sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haiwei Song
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore.
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Weijing Yang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
231
|
Al-Adhami D, Al-Shatti M, Alrabi K, Haidar M, Al-Ibraheem A. High-Grade Hepatic Spindle Cell Carcinoma as a Cause of Diffuse Right Hepatic Lobe Hypermetabolism Identified With 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (18F-FDG PET/CT) Imaging. Cureus 2024; 16:e68793. [PMID: 39371758 PMCID: PMC11456283 DOI: 10.7759/cureus.68793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
We present a rare case of high-grade spindle cell liver carcinoma investigated using 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in a 70-year-old man with worsened clinical symptoms for more than three months. These include hiccups, belching, loss of appetite, and significant weight loss of 30 kg over the last three months. 18F-FDG PET/CT was employed as part of the initial diagnostic assessment, revealing intense diffuse right hepatic lobe hypermetabolism. Fused PET/CT images revealed a locally confined right hepatic lobe tumor exhibiting heterogeneous metabolic activity with predominant hypermetabolism surrounding two internally contained hypometabolic islands. These findings suggested an aggressive and unusual neoplastic pattern. Ultrasound-guided biopsy confirmed high-grade spindle cell sarcoma of the liver. Unfortunately, the patient passed away shortly thereafter, precluding therapeutic decisions.
Collapse
Affiliation(s)
- Dhuha Al-Adhami
- Nuclear Medicine and Positron Emission Tomography/Computed Tomography (PET/CT), King Hussein Cancer Center (KHCC), Amman, JOR
| | | | - Kamal Alrabi
- Medical Oncology, King Hussein Cancer Center (KHCC), Amman, JOR
| | - Mohammad Haidar
- Nuclear Medicine, American University of Beirut Medical Center, Beirut, LBN
| | - Akram Al-Ibraheem
- Nuclear Medicine and Positron Emission Tomography/Computed Tomography (PET/CT), King Hussein Cancer Center (KHCC), Amman, JOR
| |
Collapse
|
232
|
Lu X, Yu L, Zheng J, Li A, Li J, Lou H, Zhang W, Guo H, Wang Y, Li X, Gao Y, Fan X, Borlak J. miR-106b-5p protects against drug-induced liver injury by targeting vimentin to stimulate liver regeneration. MedComm (Beijing) 2024; 5:e692. [PMID: 39170945 PMCID: PMC11337467 DOI: 10.1002/mco2.692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Understanding the endogenous mechanism of adaptive response to drug-induced liver injury (arDILI) may discover innovative strategies to manage DILI. To gain mechanistic insight into arDILI, we investigated exosomal miRNAs in the adaptive response to toosendanin-induced liver injury (TILI) of mice. Exosomal miR-106b-5p was identified as a specific regulator of arDILI by comprehensive miRNA profiling. Outstandingly, miR-106b-5p agomir treatment alleviated TILI and other DILI by inhibiting apoptosis and promoting hepatocyte proliferation. Conversely, antagomir treatments had opposite effects, indicating that miR-106b-5p protects mice from liver injury. Injured hepatocytes released miR-106b-5p-enriched exosomes taken up by surrounding hepatocytes. Vim (encodes vimentin) was identified as an important target of miR-106b-5p by dual luciferase reporter and siRNA assays. Furthermore, single-cell RNA-sequencing analysis of toosendanin-injured mouse liver revealed a cluster of Vim + hepatocytes; nonetheless declined following miR-106b-5p cotreatment. More importantly, Vim knockout protected mice from acetaminophen poisoning and TILI. In the clinic, serum miR-106b-5p expression levels correlated with the severity of DILI. Indeed, liver biopsies of clinical cases exposed to different DILI causing drugs revealed marked vimentin expression among harmed hepatocytes, confirming clinical relevance. Together, we report mechanisms of arDILI whereby miR-106b-5p safeguards restorative tissue repair by targeting vimentin.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- State Key Laboratory of Chinese Medicine ModernizationInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Lingqi Yu
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- State Key Laboratory of Chinese Medicine ModernizationInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
| | - Jie Zheng
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Anyao Li
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Junying Li
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - He Lou
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Wentao Zhang
- Department of Hepatobiliarythe First Affiliated Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Hui Guo
- Department of Hepatobiliarythe First Affiliated Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuzhen Wang
- Department of PharmacySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xuemei Li
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yue Gao
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Department of Pharmaceutical SciencesBeijing Institute of Radiation MedicineBeijingChina
| | - Xiaohui Fan
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- State Key Laboratory of Chinese Medicine ModernizationInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- The Joint‐Laboratory of Clinical Multi‐Omics Research Between Zhejiang University and Ningbo Municipal Hospital of TCMNingbo Municipal Hospital of TCMNingboChina
| | - Jürgen Borlak
- Centre for Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
233
|
Huang X, Liu Y, Rong X, Zhao Y, Feng D, Wang J, Xing W. IFIT3 mediates TBK1 phosphorylation to promote activation of pDCs and exacerbate systemic sclerosis in mice. Clin Transl Med 2024; 14:e1800. [PMID: 39305055 PMCID: PMC11415598 DOI: 10.1002/ctm2.1800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE To assess the impact of the IFIT3/TBK1 signalling pathway in activating plasmacytoid dendritic cells (pDCs) and its role in the development of SSc. METHODS Utilized single-cell RNA sequencing (scRNA-seq) and high-throughput transcriptome RNA sequencing to reveal the differential abundance of pDCs and the role of the key gene IFIT3 in SSc. Conducted in vitro cell experiments to evaluate the effect of IFIT3/TBK1 signalling pathway intervention on pDC activation cytokine release and fibroblast function. Constructed an IFIT3-/- mouse model using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to assess the potential benefits of intervening in the IFIT3/TBK1 signalling pathway on skin and lung fibrosis in the SSc mouse model. RESULTS The IFIT3/TBK1 signalling pathway plays a crucial role in activating pDCs, with IFIT3 acting as an upstream regulator of TBK1. Intervention in the IFIT3/TBK1 signalling pathway can inhibit pDC activation cytokine release and impact fibroblast function. The IFIT3-/- mouse model shows potential benefits of targeting the IFIT3/TBK1 signalling pathway in reducing skin and lung fibrosis in the SSc mouse model. CONCLUSION This study provides new insights into potential therapeutic targets for SSc, highlighting the critical role of the IFIT3/TBK1 signalling pathway in SSc development. HIGHLIGHTS This study elucidates the pivotal role of plasmacytoid dendritic cells (pDCs) in systemic sclerosis (SSc). This study identified the key regulatory gene involved in systemic sclerosis (SSc) as IFIT3. This study has found that IFIT3 functions as an upstream regulatory factor, activating TBK1. This study provides Evidence of the regulatory effects of the IFIT3/TBK1 pathway on plasmacytoid dendritic cells (pDCs). This study validated the therapeutic potential using the IFIT3-/- mouse model.
Collapse
Affiliation(s)
- Xiangyang Huang
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yi Liu
- Department of Communication Sciences & DisordersMGH Institute of Health ProfessionsBostonMassachusettsUSA
| | - Xia Rong
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yiheng Zhao
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Dan Feng
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Jun Wang
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Wanhong Xing
- Department of Cardiothoracic SurgeryThe Sixth People's Hospital of ChengduChengduSichuanChina
| |
Collapse
|
234
|
Numata Y, Akutsu N, Idogawa M, Wagatsuma K, Numata Y, Ishigami K, Nakamura T, Hirano T, Kawakami Y, Masaki Y, Murota A, Sasaki S, Nakase H. Genomic analysis of an aggressive hepatic leiomyosarcoma case following treatment for hepatocellular carcinoma. Hepatol Res 2024; 54:859-865. [PMID: 38459823 DOI: 10.1111/hepr.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/10/2024]
Abstract
A 70-year-old man undergoing treatment for immunoglobulin G4-related disease developed a liver mass on computed tomography during routine imaging examination. The tumor was located in the hepatic S1/4 region, was 38 mm in size, and showed arterial enhancement on dynamic contrast-enhanced computed tomography. We performed a liver biopsy and diagnosed moderately differentiated hepatocellular carcinoma. The patient underwent proton beam therapy. The tumor remained unchanged but enlarged after 4 years. The patient was diagnosed with hepatocellular carcinoma recurrence and received hepatic arterial chemoembolization. However, 1 year later, the patient developed jaundice, and the liver tumor grew in size. Unfortunately, the patient passed away. Autopsy revealed that the tumor consisted of spindle-shaped cells exhibiting nuclear atypia and a fission pattern and tested positive for α-smooth muscle actin and vimentin. No hepatocellular carcinoma components were observed, and the patient was pathologically diagnosed with hepatic leiomyosarcoma. Next-generation sequencing revealed somatic mutations in CACNA2D4, CTNNB1, DOCK5, IPO8, MTMR1, PABPC5, SEMA6D, and ZFP36L1. Based on the genetic mutation, sarcomatoid hepatocarcinoma was the most likely pathogenesis in this case. This mutation is indicative of the transition from sarcomatoid hepatocarcinoma to hepatic leiomyosarcoma.
Collapse
Affiliation(s)
- Yuto Numata
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Akutsu
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masashi Idogawa
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohei Wagatsuma
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasunao Numata
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keisuike Ishigami
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoya Nakamura
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takehiro Hirano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yujiro Kawakami
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiharu Masaki
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ayako Murota
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shigeru Sasaki
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
235
|
Shoja Doost J, Fazel F, Boodhoo N, Sharif S. mRNA Vaccination: An Outlook on Innate Sensing and Adaptive Immune Responses. Viruses 2024; 16:1404. [PMID: 39339880 PMCID: PMC11437395 DOI: 10.3390/v16091404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Vaccination has led to significant dismantling of infectious diseases worldwide. Since the dawn of the SARS-CoV-2 pandemic, there has been increased popularity in the usage and study of the mRNA vaccine platform. Here, we highlight fundamental knowledge on mRNA vaccine pharmacology, followed by the immunity conferred by innate sensing and adaptive responses resulting from exposure to the mRNA vaccine construct and encapsulation materials. A better understanding of these immune mechanisms will shed light on further improvements in mRNA vaccine design, aiming to improve efficiency and optimize immune responses upon inoculation.
Collapse
Affiliation(s)
| | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.S.D.); (F.F.); (N.B.)
| |
Collapse
|
236
|
Kaushik N, Jaiswal A, Bhartiya P, Choi EH, Kaushik NK. TFCP2 as a therapeutic nexus: unveiling molecular signatures in cancer. Cancer Metastasis Rev 2024; 43:959-975. [PMID: 38451384 DOI: 10.1007/s10555-024-10175-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Tumor suppressor genes and proto-oncogenes comprise most of the complex genomic landscape associated with cancer, with a minimal number of genes exhibiting dual-context-dependent functions. The transcription factor cellular promoter 2 (TFCP2), a pivotal transcription factor encoded by the alpha globin transcription factor CP2 gene, is a constituent of the TFCP2/grainyhead family of transcription factors. While grainyhead members have been extensively studied for their crucial roles in developmental processes, embryogenesis, and multiple cancers, the TFCP2 subfamily has been relatively less explored. The molecular mechanisms underlying TFCP2's involvement in carcinogenesis are still unclear even though it is a desirable target for cancer treatment and a therapeutic marker. This comprehensive literature review summarizes the molecular functions of TFCP2, emphasizing its involvement in cancer pathophysiology, particularly in the epithelial-mesenchymal transition and metastasis. It highlights TFCP2's critical function as a regulatory target and explores its potential as a prognostic marker for survival and inflammation in carcinomas. Its ambiguous association with carcinomas underlines the urgent need for an in-depth understanding to facilitate the development of more efficacious targeted therapeutic modality and diagnostic tools. This study aims to elucidate the multifaceted effects of TFCP2 regulation, through a comprehensive integration of the existing knowledge in cancer therapeutics. Furthermore, the clinical relevance and the inherent challenges encountered in investigating its intricate role in cancer pathogenesis have been discussed in this review.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Korea
| | - Apurva Jaiswal
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Pradeep Bhartiya
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| |
Collapse
|
237
|
Li SL, Zhou H, Liu J, Yang J, Jiang L, Yuan HM, Wang MH, Yang KS, Xiang M. Restoration of HMGCS2-mediated ketogenesis alleviates tacrolimus-induced hepatic lipid metabolism disorder. Acta Pharmacol Sin 2024; 45:1898-1911. [PMID: 38760545 PMCID: PMC11335741 DOI: 10.1038/s41401-024-01300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Tacrolimus, one of the macrolide calcineurin inhibitors, is the most frequently used immunosuppressant after transplantation. Long-term administration of tacrolimus leads to dyslipidemia and affects liver lipid metabolism. In this study, we investigated the mode of action and underlying mechanisms of this adverse reaction. Mice were administered tacrolimus (2.5 mg·kg-1·d-1, i.g.) for 10 weeks, then euthanized; the blood samples and liver tissues were collected for analyses. We showed that tacrolimus administration induced significant dyslipidemia and lipid deposition in mouse liver. Dyslipidemia was also observed in heart or kidney transplantation patients treated with tacrolimus. We demonstrated that tacrolimus did not directly induce de novo synthesis of fatty acids, but markedly decreased fatty acid oxidation (FAO) in AML12 cells. Furthermore, we showed that tacrolimus dramatically decreased the expression of HMGCS2, the rate-limiting enzyme of ketogenesis, with decreased ketogenesis in AML12 cells, which was responsible for lipid deposition in normal hepatocytes. Moreover, we revealed that tacrolimus inhibited forkhead box protein O1 (FoxO1) nuclear translocation by promoting FKBP51-FoxO1 complex formation, thus reducing FoxO1 binding to the HMGCS2 promoter and its transcription ability in AML12 cells. The loss of HMGCS2 induced by tacrolimus caused decreased ketogenesis and increased acetyl-CoA accumulation, which promoted mitochondrial protein acetylation, thereby resulting in FAO function inhibition. Liver-specific HMGCS2 overexpression via tail intravenous injection of AAV8-TBG-HMGCS2 construct reversed tacrolimus-induced mitochondrial protein acetylation and FAO inhibition, thus removing the lipid deposition in hepatocytes. Collectively, this study demonstrates a novel mechanism of liver lipid deposition and hyperlipidemia induced by long-term administration of tacrolimus, resulted from the loss of HMGCS2-mediated ketogenesis and subsequent FAO inhibition, providing an alternative target for reversing tacrolimus-induced adverse reaction.
Collapse
Affiliation(s)
- Sen-Lin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Jiang
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Min Yuan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng-Heng Wang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke-Shan Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
238
|
Berg T, Aehling NF, Bruns T, Welker MW, Weismüller T, Trebicka J, Tacke F, Strnad P, Sterneck M, Settmacher U, Seehofer D, Schott E, Schnitzbauer AA, Schmidt HH, Schlitt HJ, Pratschke J, Pascher A, Neumann U, Manekeller S, Lammert F, Klein I, Kirchner G, Guba M, Glanemann M, Engelmann C, Canbay AE, Braun F, Berg CP, Bechstein WO, Becker T, Trautwein C. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:1397-1573. [PMID: 39250961 DOI: 10.1055/a-2255-7246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Affiliation(s)
- Thomas Berg
- Bereich Hepatologie, Medizinischen Klinik II, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Niklas F Aehling
- Bereich Hepatologie, Medizinischen Klinik II, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Tony Bruns
- Medizinische Klinik III, Universitätsklinikum Aachen, Aachen, Deutschland
| | - Martin-Walter Welker
- Medizinische Klinik I Gastroent., Hepat., Pneum., Endokrin. Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - Tobias Weismüller
- Klinik für Innere Medizin - Gastroenterologie und Hepatologie, Vivantes Humboldt-Klinikum, Berlin, Deutschland
| | - Jonel Trebicka
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Deutschland
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Berlin, Deutschland
| | - Pavel Strnad
- Medizinische Klinik III, Universitätsklinikum Aachen, Aachen, Deutschland
| | - Martina Sterneck
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Hamburg, Hamburg, Deutschland
| | - Utz Settmacher
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Universitätsklinikum Jena, Jena, Deutschland
| | - Daniel Seehofer
- Klinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Eckart Schott
- Klinik für Innere Medizin II - Gastroenterologie, Hepatologie und Diabetolgie, Helios Klinikum Emil von Behring, Berlin, Deutschland
| | | | - Hartmut H Schmidt
- Klinik für Gastroenterologie und Hepatologie, Universitätsklinikum Essen, Essen, Deutschland
| | - Hans J Schlitt
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - Johann Pratschke
- Chirurgische Klinik, Charité Campus Virchow-Klinikum - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Andreas Pascher
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Münster, Münster, Deutschland
| | - Ulf Neumann
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Essen, Essen, Deutschland
| | - Steffen Manekeller
- Klinik und Poliklinik für Allgemein-, Viszeral-, Thorax- und Gefäßchirurgie, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Frank Lammert
- Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Ingo Klein
- Chirurgische Klinik I, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Gabriele Kirchner
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg und Innere Medizin I, Caritaskrankenhaus St. Josef Regensburg, Regensburg, Deutschland
| | - Markus Guba
- Klinik für Allgemeine, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Universitätsklinikum München, München, Deutschland
| | - Matthias Glanemann
- Klinik für Allgemeine, Viszeral-, Gefäß- und Kinderchirurgie, Universitätsklinikum des Saarlandes, Homburg, Deutschland
| | - Cornelius Engelmann
- Charité - Universitätsmedizin Berlin, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Berlin, Deutschland
| | - Ali E Canbay
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Deutschland
| | - Felix Braun
- Klinik für Allgemeine Chirurgie, Viszeral-, Thorax-, Transplantations- und Kinderchirurgie, Universitätsklinikum Schlewswig-Holstein, Kiel, Deutschland
| | - Christoph P Berg
- Innere Medizin I Gastroenterologie, Hepatologie, Infektiologie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Wolf O Bechstein
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - Thomas Becker
- Klinik für Allgemeine Chirurgie, Viszeral-, Thorax-, Transplantations- und Kinderchirurgie, Universitätsklinikum Schlewswig-Holstein, Kiel, Deutschland
| | | |
Collapse
|
239
|
Yoon J, Oh DY. HER2-targeted therapies beyond breast cancer - an update. Nat Rev Clin Oncol 2024; 21:675-700. [PMID: 39039196 DOI: 10.1038/s41571-024-00924-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
The receptor tyrosine-kinase HER2 (also known as ErbB2) is a well-established therapeutic target in patients with breast or gastric cancer selected on the basis of HER2 overexpression on immunohistochemistry and/or ERBB2 amplification on in situ hybridization. With advances in cancer molecular profiling and increased implementation of precision medicine approaches into oncology practice, actionable HER2 alterations in solid tumours have expanded to include ERBB2 mutations in addition to traditional HER2 overexpression and ERBB2 amplification. These various HER2 alterations can be found in solid tumour types beyond breast and gastric cancer, although few HER2-targeted therapeutic options have been established for the other tumour types. Nevertheless, during the 5 years since our previous Review on this topic was published in this journal, obvious and fruitful progress in the development of HER2-targeted therapies has been made, including new disease indications, innovative drugs with diverse mechanisms of action and novel frameworks for approval by regulatory authorities. These advances have culminated in the recent histology-agnostic approval of the anti-HER2 antibody-drug conjugate trastuzumab deruxtecan for patients with HER2-overexpressing solid tumours. In this new Review, we provide an update on the current development landscape of HER2-targeted therapies beyond breast cancer, as well as anticipated future HER2-directed treatment strategies to overcome resistance and thereby improve efficacy and patient outcomes.
Collapse
Affiliation(s)
- Jeesun Yoon
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do-Youn Oh
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea.
| |
Collapse
|
240
|
Schmidt VF, Öcal O, Walther V, Fabritius MP, Dietrich O, Kazmierczak PM, Weiss L, Deniz S, Ümütlü MR, Puhr-Westerheide D, Wildgruber M, Ricke J, Seidensticker M. Clinical benefits of MRI-guided freehand biopsy of small focal liver lesions in comparison to CT guidance. Eur Radiol 2024; 34:5507-5516. [PMID: 38319427 PMCID: PMC11364707 DOI: 10.1007/s00330-024-10623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVES To compare clinical success, procedure time, and complication rates between MRI-guided and CT-guided real-time biopsies of small focal liver lesions (FLL) < 20 mm. METHODS A comparison of a prospectively collected MRI-guided cohort (n = 30) to a retrospectively collected CT-guided cohort (n = 147) was performed, in which patients underwent real-time biopsies of small FLL < 20 mm in a freehand technique. In both groups, clinical and periprocedural data, including clinical success, procedure time, and complication rates (classified according to CIRSE guidelines), were analyzed. Wilcoxon rank sum test, Pearson's chi-squared test, and Fisher's exact test were used for statistical analysis. Additionally, propensity score matching (PSM) was performed using the following criteria for direct matching: age, gender, presence of liver cirrhosis, liver lobe, lesion diameter, and skin-to-target distance. RESULTS The median FLL diameter in the MRI-guided cohort was significantly smaller compared to CT guidance (p < 0.001; 11.0 mm vs. 16.3 mm), while the skin-to-target distance was significantly longer (p < 0.001; 90.0 mm vs. 74.0 mm). MRI-guided procedures revealed significantly higher clinical success compared to CT guidance (p = 0.021; 97% vs. 79%) as well as lower complication rates (p = 0.047; 0% vs. 13%). Total procedure time was significantly longer in the MRI-guided cohort (p < 0.001; 38 min vs. 28 min). After PSM (n = 24/n = 38), MRI-guided procedures still revealed significantly higher clinical success compared to CT guidance (p = 0.039; 96% vs. 74%). CONCLUSION Despite the longer procedure time, freehand biopsy of small FLL < 20 mm under MR guidance can be considered superior to CT guidance because of its high clinical success and low complication rates. CLINICAL RELEVANCE STATEMENT Biopsy of small liver lesions is challenging due to the size and conspicuity of the lesions on native images. MRI offers higher soft tissue contrast, which translates into a higher success of obtaining enough tissue material with MRI compared to CT-guided biopsies. KEY POINTS • Image-guided biopsy of small focal liver lesions (FLL) is challenging due to inadequate visualization, leading to sampling errors and false-negative biopsies. • MRI-guided real-time biopsy of FLL < 20 mm revealed significantly higher clinical success (p = 0.021; 97% vs. 79%) and lower complication rates (p = 0.047; 0% vs. 13%) compared to CT guidance. • Although the procedure time is longer, MRI-guided biopsy can be considered superior for small FLL < 20 mm.
Collapse
Affiliation(s)
- Vanessa F Schmidt
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| | - Osman Öcal
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Viktoria Walther
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Olaf Dietrich
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Lena Weiss
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Sinan Deniz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Muzzafer R Ümütlü
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
241
|
Li Z, Han B, Qi M, Li Y, Duan Y, Yao Y. Modulating macrophage-mediated programmed cell removal: An attractive strategy for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189172. [PMID: 39151808 DOI: 10.1016/j.bbcan.2024.189172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Macrophage-mediated programmed cell removal (PrCR) is crucial for the identification and elimination of needless cells that maintain tissue homeostasis. The efficacy of PrCR depends on the balance between pro-phagocytic "eat me" signals and anti-phagocytic "don't eat me" signals. Recently, a growing number of studies have shown that tumourigenesis and progression are closely associated with PrCR. In the tumour microenvironment, PrCR activated by the "eat me" signal is counterbalanced by the "don't eat me" signal of CD47/SIRPα, resulting in tumour immune escape. Therefore, targeting exciting "eat me" signalling while simultaneously suppressing "don't eat me" signalling and eventually inducing macrophages to produce effective PrCR will be a very attractive antitumour strategy. Here, we comprehensively review the functions of PrCR-activating signal molecules (CRT, PS, Annexin1, SLAMF7) and PrCR-inhibiting signal molecules (CD47/SIRPα, MHC-I/LILRB1, CD24/Siglec-10, SLAMF3, SLAMF4, PD-1/PD-L1, CD31, GD2, VCAM1), the interactions between these molecules, and Warburg effect. In addition, we highlight the molecular regulatory mechanisms that affect immune system function by exciting or suppressing PrCR. Finally, we review the research advances in tumour therapy by activating PrCR and discuss the challenges and potential solutions to smooth the way for tumour treatment strategies that target PrCR.
Collapse
Affiliation(s)
- Zhenzhen Li
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingqian Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menghui Qi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongtao Duan
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yongfang Yao
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
242
|
Ye Z, Zhuang L, Liu X, Song M, Zhang J, Cao G. The clinical outcomes of patients with vascular invasion after deceased donor liver transplantation. J Gastrointest Oncol 2024; 15:1686-1697. [PMID: 39279926 PMCID: PMC11399840 DOI: 10.21037/jgo-24-328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 09/18/2024] Open
Abstract
Background Vascular invasion is a major risk factor for poor prognosis of liver transplantation (LT) for hepatocellular carcinoma (HCC), and this study aimed to evaluate the feasibility and efficacy of deceased donor LT (DDLT) for the treatment of microvascular invasion (MVI) and segmental portal vein tumor thrombus (PVTT). Methods We retrospectively analyzed 141 patients who received DDLT for HCC combined with vascular invasion from January 2016 to December 2023 at Shulan (Hangzhou) Hospital. To assess the risk of vascular invasion associated with the LT prognosis, we evaluated various clinicopathologic variables. The recurrence-free survival (RFS) and overall survival (OS) based on different types of vascular invasion were also analyzed. Results A total of 141 patients were enrolled in this study, including patients with MVI (MVI group, n=60), segmental PVTT with segmental branches of the portal vein or above (segmental PVTT group, n=13), and lobar PVTT involving the left and right branches of the portal vein or the main portal vein (lobar PVTT group, n=68). Between the tumor recurrence group and the no recurrence group, there were significant differences in alpha-fetoprotein (AFP) level, tumor total diameter, pretransplant treatment, histological grade, and types of vascular invasion. Subgroup analyses were performed according to the types of vascular invasion, the lobar PVTT group had a significantly higher recurrence rate (lobar vs. MVI: 88.2% vs. 35.0%, lobar vs. segmental: 88.2% vs. 30.8%, both P<0.001), but there was no difference in recurrence rate between the MVI group and the segmental PVTT group (35.0% vs. 30.8%, P>0.99). The 3-year RFS rate and OS rate were as low as 9.1% and 45.9% in the lobar PVTT group, compared with 65.5% and 76.0% in the MVI group, 58.3% and 75.0% in the segmental PVTT group. Multivariate analysis showed that Child-Pugh classification, tumor total diameter, histological grade, and lobar PVTT were the main risk factors affecting RFS, whereas Child-Pugh classification, tumor total diameter, and lobar PVTT were the main risk factors affecting OS. Finally, analysis of the segmental PVTT group revealed that RFS was significantly higher in well and moderately-differentiated patients than in poor-differentiated patients (P=0.01). Conclusions Lobar PVTT remains a contraindication to LT, whereas segmental PVTT can still be considered for LT after careful screening.
Collapse
Affiliation(s)
- Zhaodan Ye
- Department of Radiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Li Zhuang
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Xiangyan Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Mengchen Song
- Department of Radiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Jingfeng Zhang
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Guohong Cao
- Department of Radiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| |
Collapse
|
243
|
Yang B, Huang G, Chen D, Wei L, Zhao Y, Chen G, Li J, Wang L, Xie B, Jiang W, Chen Z. A nomogram incorporating Psoas muscle index for predicting tumor recurrence after liver transplantation: A retrospective study in an Eastern Asian population. Heliyon 2024; 10:e34019. [PMID: 39262955 PMCID: PMC11388506 DOI: 10.1016/j.heliyon.2024.e34019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 09/13/2024] Open
Abstract
Background and aims Tumor recurrence significantly affects the prognostic outcomes for liver cancer patients following liver transplantation. However, existing predictive models often neglect the inclusion of body composition indicators. Hence, this research aimed to investigate the significance of the psoas muscle index (PMI) in evaluating the post-transplant prognosis of liver cancer. Methods A retrospective analysis was conducted on liver cancer patients who underwent liver transplantation surgery. Imaging analysis was performed using CT data to calculate PMI based on the left and right psoas muscle areas. Subsequently, the patients were categorized into PMI-Low and PMI-High groups using the established cut-off values. Univariate and multivariate analyses were performed using Cox proportional hazards regression to assess the correlation between PMI and clinical outcomes, and a nomogram was constructed accordingly. Results Among the 225 patients included in the analysis, the PMI-High group exhibited significantly improved overall survival (P < 0.001) and disease-free survival (DFS, P < 0.001) rates compared to the PMI-Low group. PMI exhibited a positive correlation with body mass index (R = 0.25, P < 0.001), but no significant correlations were observed. In the multivariate analysis, PMI (HR = 4.596, P < 0.001), MELD score (HR = 1.591, P = 0.038), and Hangzhou criteria (HR = 2.557, P < 0.001) emerged as significant predictors of DFS. The constructed nomogram, incorporating these predictors, demonstrated outstanding predictive performance. Decision curve analysis revealed the superiority of the nomogram over conventional methods. Conclusions PMI serves as a valuable prognostic factor for tumor recurrence in liver cancer patients after liver transplantation. The established nomogram is pivotal in delivering personalized predictions of DFS.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Guobin Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Gen Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junbo Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Bowen Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Wei Jiang
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| |
Collapse
|
244
|
Vincelette C, Mulongo P, Giard JM, Amzallag É, Carr A, Chaudhury P, Dajani K, Fugère R, Gonzalez-Valencia N, Joosten A, Kandelman S, Karvellas C, McCluskey SA, Özelsel T, Park J, Simoneau È, Trottier H, Chassé M, Carrier FM. Risk evaluation and recipient selection in adult liver transplantation: A mixed-methods survey. CANADIAN LIVER JOURNAL 2024; 7:352-367. [DOI: 10.3138/canlivj-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Background: Liver transplant (LT) is the definitive treatment for end-stage liver disease. Limited resources and important post-operative implications for recipients compel judicious risk stratification and patient selection. However, little is known about the factors influencing physicians’ assessment regarding patient selection for LT and risk evaluation. Methods: We conducted a mixed-methods, cross-sectional survey involving Canadian hepatologists, anesthesiologists, LT surgeons, and French anesthesiologists. The survey contained quantitative questions and a vignette-based qualitative substudy about risk assessment and patient selection for LT. Descriptive statistics and qualitative content analyses were used. Results: We obtained answers from 129 physicians, and 63 participated in the qualitative substudy. We observed considerable variability in risk assessment prior to LT and identified many factors perceived to increase the risk of complications. Clinicians reported that the acceptable incidence of at least 1 severe post-operative complication for a LT program was 20% (95% CI: 20-30%). They identified the presence of any comorbidity as increasing the risk of different post-operative complications, especially acute kidney injury and cardiovascular complications. Frailty and functional disorders, severity of the liver disease, renal failure and cardiovascular comorbidities prior to LT emerged as important risk factors for post-operative morbidity. Most respondents were willing to pursue LT in patients with grade III acute-on-chronic liver failure but were less often willing to do so when faced with the uncertainty of a clinical example. Conclusions: Clinicians had a heterogeneous appraisal of the post-operative risk of complications following LT, as well as factors considered in risk assessment.
Collapse
Affiliation(s)
- Christian Vincelette
- Health Innovation and Evaluation Hub, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Faculty of Medicine and Postdoctoral Studies, Université de Montréal, Montréal, Québec, Canada
| | - Philémon Mulongo
- School of Public Health, Université de Montréal, Montréal, Quebec, Canada
| | - Jeanne-Marie Giard
- Department of Medicine, Liver Disease Division, Centre hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Éva Amzallag
- Health Innovation and Evaluation Hub, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Adrienne Carr
- Department of Anesthesiology, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Prosanto Chaudhury
- Department of Surgery, McGill University Health Centre, Montréal, Quebec, Canada
| | - Khaled Dajani
- Department of Surgery, University Health Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Réné Fugère
- Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
| | - Nelson Gonzalez-Valencia
- Department of Anesthesiology and Perioperative Medicine, Western University and London Health Sciences Centre, London, Ontario, Canada
| | - Alexandre Joosten
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Stanislas Kandelman
- Department of Anesthesiology, McGill University Health Centre, Montréal, Quebec, Canada
| | - Constantine Karvellas
- Division of Gastroenterology (Liver Unit), Department of Critical Care Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Stuart A. McCluskey
- Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, Ontario, Canada
- Department of Anesthesiology & Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Timur Özelsel
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Jeieung Park
- Department of Anesthesiology and Perioperative Care, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Colombia, Vancouver, British Columbia, Canada
| | - Ève Simoneau
- Hepatobiliary Division, Department of Surgery, Centre hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Helen Trottier
- Department of Social and Preventive Medicine, École de santé publique de l'Université de Montréal, Montréal, Quebec, Canada
| | - Michaël Chassé
- Department of Anesthesiology, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Critical Care Division, Department of Medicine, Centre hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - François Martin Carrier
- Department of Anesthesiology, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Critical Care Division, Department of Medicine, Centre hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, Quebec, Canada
- Correspondence: François Martin Carrier, MD, MSc, PhD(c) Département d'anesthésiologie, Centre hospitalier de l'Université de Montréal (CHUM), 4e étage, Pavillon D, porte D04-5031, 1000, rue St-Denis, Montréal, Québec H2 × 0C1, Canada. Tel: 514-890-8000, #12132
| |
Collapse
|
245
|
Yun WG, Kim D, Lee M, Han Y, Chae YS, Jung HS, Cho YJ, Kwon W, Park JS, Park D, Jang JY. Comparing clinical and genomic features based on the tumor location in patients with resected pancreatic cancer. BMC Cancer 2024; 24:1048. [PMID: 39187784 PMCID: PMC11346014 DOI: 10.1186/s12885-024-12795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Pancreatic cancer is anatomically divided into pancreatic head and body/tail cancers, and some studies have reported differences in prognosis. However, whether this discrepancy is induced from the difference of tumor biology is hotly debated. Therefore, we aimed to evaluate the differences in clinical outcomes and tumor biology depending on the tumor location. METHODS In this retrospective cohort study, we identified 800 patients with pancreatic ductal adenocarcinoma who had undergone upfront curative-intent surgery. Cox regression analysis was performed to explore the prognostic impact of the tumor location. Among them, 153 patients with sufficient tumor tissue and blood samples who provided informed consent for next-generation sequencing were selected as the cohort for genomic analysis. RESULTS Out of the 800 patients, 500 (62.5%) had pancreatic head cancer, and 300 (37.5%) had body/tail cancer. Tumor location in the body/tail of the pancreas was not identified as a significant predictor of survival outcomes compared to that in the head in multivariate analysis (hazard ratio, 0.94; 95% confidence interval, 0.77-1.14; P = 0.511). Additionally, in the genomic analyses of 153 patients, there were no significant differences in mutational landscapes, distribution of subtypes based on transcriptomic profiling, and estimated infiltration levels of various immune cells between pancreatic head and body/tail cancers. CONCLUSIONS We could not find differences in prognosis and tumor biology depending on tumor location in pancreatic ductal adenocarcinoma. Discrepancies in prognosis may represent a combination of lead time, selection bias, and clinical differences, including the surgical burden between tumor sites.
Collapse
Affiliation(s)
- Won-Gun Yun
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Daeun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
- Ajou Energy Science Research Center, Ajou University, Suwon, 16499, Republic of Korea
| | - Mirang Lee
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Youngmin Han
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yoon Soo Chae
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hye-Sol Jung
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Young Jae Cho
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Joon Seong Park
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Daechan Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
- Advanced College of Bio-Convergence Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
246
|
He G, Li Y, Zeng Y, Zhang Y, Jiang Q, Zhang Q, Zhu J, Gong J. Advancements in melanoma immunotherapy: the emergence of Extracellular Vesicle Vaccines. Cell Death Discov 2024; 10:374. [PMID: 39174509 PMCID: PMC11341806 DOI: 10.1038/s41420-024-02150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Malignant melanoma represents a particularly aggressive type of skin cancer, originating from the pathological transformation of melanocytes. While conventional interventions such as surgical resection, chemotherapy, and radiation therapy are available, their non-specificity and collateral damage to normal cells has shifted the focus towards immunotherapy as a notable approach. Extracellular vesicles (EVs) are naturally occurring transporters, and are capable of delivering tumor-specific antigens and directly engaging in the immune response. Multiple types of EVs have emerged as promising platforms for melanoma vaccination. The effectiveness of EV-based melanoma vaccines manifests their ability to potentiate the immune response, particularly by activating dendritic cells (DCs) and CD8+ T lymphocytes, through engineering a synergy of antigen presentation and targeted delivery. Here, this review mainly focuses on the construction strategies for EV vaccines from various sources, their effects, and immunological mechanisms in treating melanoma, as well as the shortcomings and future perspectives in this field. These findings will provide novel insights into the innovative exploitation of EV-based vaccines for melanoma immune therapy.
Collapse
Affiliation(s)
- Guijuan He
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yichuan Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuyang Zeng
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiong Jiang
- Department of Pharmacy, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Xianning Medical College, Hubei University of Science & Technology, Xianning, Hubei, China.
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
247
|
He C, Hu Z, Lin Z, Chen H, Cao C, Chen J, Yang X, Li H, Shen W, Wei X, Zhuang L, Zheng S, Xu X, Lu D. Chitinase-3 like-protein-1, a prognostic biomarker in patients with hepatocellular carcinoma and concomitant myosteatosis. BMC Cancer 2024; 24:1042. [PMID: 39179959 PMCID: PMC11342564 DOI: 10.1186/s12885-024-12808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Chitinase-3 like-protein-1 (CHI3L1) is a member of the mammalian chitinase-like proteins and elevated serum CHI3L1 level has been proved to be associated with poor prognosis in hepatocellular carcinoma (HCC). This study aimed to investigate the relationship between serum CHI3L1 levels and body composition parameters in patients with HCC after liver transplantation (LT). METHODS This retrospective study enrolled 200 patients after LT for HCC. Blood samples were collected and serum concentrations of CHI3L1 were measured by enzyme-linked immunosorbent assay. Computer tomography (CT) were used to estimate skeletal muscle and adipose tissue mass. Spearman's rank correlation test was performed to assess associations between serum CHI3L1 levels and these body composition parameters. A Cox proportional-hazards regression model was performed to identify independent prognostic factors. Overall survival (OS) and recurrence-free survival (RFS) curves were constructed using the Kaplan-Meier method and compared by the log-rank test. RESULTS Total 71 patients (35.5%) were diagnosed with myosteatosis according to skeletal muscle radiation attenuation (SMRA). The 5-year OS rates were 66.9% in non-myosteatosis group, significantly higher than 49.5% in myosteatosis group (p = 0.025), while the RFS of myosteatosis group (5-year RFS: 52.6%) or non-myosteatosis group (5-year RFS: 42.0%) shown no significant difference (p = 0.068). The serum CHI3L1 level were significantly negative correlated with SMRA (r = -0.3, p < 0.001). Interestingly, in patients with myosteatosis, Kaplan-Meier analysis revealed that elevated serum CHI3L1 levels were associated with worse OS (p < 0.001) and RFS (p = 0.047). However, in patients without myosteatosis, Kaplan-Meier analysis found elevated serum CHI3L1 levels were not associated with OS (p = 0.070) or RFS (p = 0.104). CONCLUSIONS Elevated CHI3L1 was negatively correlated with SMRA, and predicted poorer prognosis in Chinese population after LT for HCC, especially in those patients with concomitant myosteatosis. Monitoring serum CHI3L1 can predict prognosis and effectively guide individual nutrition intervention.
Collapse
Affiliation(s)
- Chiyu He
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyuan Lin
- Zhejiang University School of Medicine, Hangzhou, China
- Hangzhou First People's Hospital, Hangzhou, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chenghao Cao
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyan Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | | | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xuyong Wei
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Li Zhuang
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
| | - Xiao Xu
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Di Lu
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
248
|
Lu B, Liu Y, Yao Y, Zhu D, Zhang X, Dong K, Xu X, Lv D, Zhao Z, Zhang H, Yang X, Fu W, Huang R, Cao J, Chu J, Pan X, Cui X. Unveiling the unique role of TSPAN7 across tumors: a pan-cancer study incorporating retrospective clinical research and bioinformatic analysis. Biol Direct 2024; 19:72. [PMID: 39175035 PMCID: PMC11340126 DOI: 10.1186/s13062-024-00516-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND TSPAN7 is an important factor in tumor progression. However, the precise function of TSPAN7 and its role in pan-cancer are not clear. METHODS Based on Xinhua cohort incorporating 370 patients with kidney neoplasm, we conducted differential expression analysis by immunohistochemistry between tumor and normal tissues, and explored correlations of TSPAN7 with patients' survival. Subsequently, we conducted a pan-cancer study, and successively employed differential expression analysis, competing endogenous RNA (ceRNA) analysis, protein-protein interaction (PPI) analysis, correlation analysis of TSPAN7 with clinical characteristics, tumor purity, tumor genomics, tumor immunity, and drug sensitivity. Last but not least, gene set enrichment analysis was applied to identify enriched pathways of TSPAN7. RESULTS In Xinhua cohort, TSPAN7 expression was significantly up-regulated (P-value = 0.0019) in tumor tissues of kidney neoplasm patients. High TSPAN7 expression was associated with decreases in overall survival (OS) (P-value = 0.009) and progression-free survival (P-value = 0.009), and it was further revealed as an independent risk factor for OS (P-value = 0.0326, HR = 5.66, 95%CI = 1.155-27.8). In pan-cancer analysis, TSPAN7 expression was down-regulated in most tumors, and it was associated with patients' survival, tumor purity, tumor genomics, tumor immunity, and drug sensitivity. The ceRNA network and PPI network of TSPAN7 were also constructed. Last but not least, the top five enriched pathways of TSPAN7 in various tumors were identified. CONCLUSION TSPAN7 served as a promising biomarker of various tumors, especially kidney neoplasms, and it was closely associated with tumor purity, tumor genomics, tumor immunology, and drug sensitivity in pan-cancer level.
Collapse
Affiliation(s)
- Bingnan Lu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Yuntao Yao
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Dawei Zhu
- Department of Urology, the Second People's Hospital of Pinghu, Zhejiang, 314200, China
| | - Xiangmin Zhang
- Department of Urology, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Keqin Dong
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiao Xu
- Department of Urology, the Second People's Hospital of Pinghu, Zhejiang, 314200, China
| | - Donghao Lv
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Zihui Zhao
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Haoyu Zhang
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Xinyue Yang
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Wenjia Fu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Runzhi Huang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Jianwei Cao
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China.
- Department of Urology, the Second People's Hospital of Pinghu, Zhejiang, 314200, China.
| | - Jian Chu
- Department of Urology, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China.
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China.
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
249
|
Luo Y, Peng S, Cheng J, Yang H, Lin L, Yang G, Jin Y, Wang Q, Wen Z. Chitosan-Stabilized Selenium Nanoparticles Alleviate High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease (NAFLD) by Modulating the Gut Barrier Function and Microbiota. J Funct Biomater 2024; 15:236. [PMID: 39194674 DOI: 10.3390/jfb15080236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Low molecular weight chitosan selenium nanoparticles (LCS-SeNPs), a biologically active compound derived from selenium polysaccharides, have demonstrated potential in addressing obesity. However, the mechanism through which LCS-SeNPs alleviate high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) remains unclear. Our results elucidated that LCS-SeNPs significantly inhibited fat accumulation and markedly improved the intestinal barrier by increasing mucus secretion from goblet cells. Moreover, LCS-SeNPs reshaped intestinal flora composition by increasing the abundance of mucus-associated microbiota (Bifidobacterium, Akkermansia, and Muribaculaceae_unclassified) and decreasing the abundance of obesity-contributed bacterium (Anaerotruncus, Lachnoclostridium, and Proteus). The modulation of intestinal microbiota by LCS-SeNPs influenced several metabolic pathways, including bile acid secretion, purine metabolites, and tryptophan derivation. Meanwhile, glycocholic acid and tauro-beta-muricholic acid were significantly reduced in the LCS-SeNP group. Our study suggests the crucial role of intestinal microbiota composition and metabolism, providing a new theoretical foundation for utilizing selenium polysaccharides in the intervention of HFD-induced NAFLD.
Collapse
Affiliation(s)
- Yuhang Luo
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shujiang Peng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | | | - Hongli Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lin Lin
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | | | - Yuanxiang Jin
- Xianghu Laboratory, Hangzhou 311231, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | - Zhengshun Wen
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Xianghu Laboratory, Hangzhou 311231, China
| |
Collapse
|
250
|
Liang J, Zhou X, Yuan L, Chen T, Wan Y, Jiang Y, Meng H, Xu M, Zhang L, Cheng W. Olaparib combined with CDK12-IN-3 to promote genomic instability and cell death in ovarian cancer. Int J Biol Sci 2024; 20:4513-4531. [PMID: 39247812 PMCID: PMC11380446 DOI: 10.7150/ijbs.94568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Large-scale phase III clinical trials of Olaparib have revealed benefits for ovarian cancer patients with BRCA gene mutations or homologous recombination deficiency (HRD). However, fewer than 50% of ovarian cancer patients have both BRCA mutations and HRD. Therefore, improving the effect of Olaparib in HR-proficient patients is of great clinical value. Here, a combination strategy comprising Olaparib and CDK12-IN-3 effectively inhibited the growth of HR-proficient ovarian cancer in cell line, patient-derived organoid (PDO), and mouse xenograft models. Furthermore, the combination strategy induced severe DNA double-strand break (DSB) formation, increased NHEJ activity in the G2 phase, and reduced HR activity in cancer cells. Mechanistically, the combination treatment impaired Ku80 poly(ADP-ribosyl)ation (PARylation) and phosphorylation, resulting in PARP1-Ku80 complex dissociation. After dissociation, Ku80 occupancy at DSBs and the resulting Ku80-primed NHEJ activity were increased. Owing to Ku80-mediated DNA end protection, MRE11 and Rad51 foci formation was inhibited after the combination treatment, suggesting that this treatment suppressed HR activity. Intriguingly, the combination strategy expedited cGAS nuclear relocalization, further suppressing HR and, conversely, increasing genomic instability. Moreover, the inhibitory effect on cell survival persisted after drug withdrawal. These findings provide a rationale for the clinical application of CDK12-IN-3 in combination with Olaparib.
Collapse
Affiliation(s)
- Jianqiang Liang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xuan Zhou
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lin Yuan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Tian Chen
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yicong Wan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yi Jiang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Huangyang Meng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Mengting Xu
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lin Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Wenjun Cheng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|